id
stringlengths 9
104
| author
stringlengths 3
36
| task_category
stringclasses 32
values | tags
sequencelengths 1
4.05k
| created_time
unknowndate 2022-03-02 23:29:04
2025-03-18 02:34:30
| last_modified
stringdate 2021-02-13 00:06:56
2025-03-18 09:30:19
| downloads
int64 0
15.6M
| likes
int64 0
4.86k
| README
stringlengths 44
1.01M
| matched_bigbio_names
sequencelengths 1
8
|
---|---|---|---|---|---|---|---|---|---|
mosaicml/mpt-7b-instruct | mosaicml | text-generation | [
"transformers",
"pytorch",
"mpt",
"text-generation",
"Composer",
"MosaicML",
"llm-foundry",
"custom_code",
"dataset:mosaicml/dolly_hhrlhf",
"arxiv:2205.14135",
"arxiv:2108.12409",
"arxiv:2010.04245",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | "2023-05-05T00:52:12Z" | 2024-03-05T20:24:35+00:00 | 9,841 | 469 | ---
datasets:
- mosaicml/dolly_hhrlhf
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---
# MPT-7B-Instruct
MPT-7B-Instruct is a model for short-form instruction following.
It is built by finetuning [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
* License: Apache 2.0
* [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct)
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
May 5, 2023
## Model License
Apache 2.0
## Documentation
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
### Example Question/Instruction
**Longboi24**:
> What is a quoll?
**MPT-7B-Instruct**:
>A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
### Formatting
This model was trained on data formatted in the dolly-15k format:
```python
INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
instruction="{instruction}",
response_key=RESPONSE_KEY,
)
example = "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week? Explain before answering."
fmt_ex = PROMPT_FOR_GENERATION_FORMAT.format(instruction=example)
```
In the above example, `fmt_ex` is ready to be tokenized and sent through the model.
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## PreTraining Data
For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
### Training Configuration
This model was trained on 8 A100-40GBs for about 2.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Sam Havens and the MosaicML NLP team
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
``` | [
"BLURB"
] |
BAAI/bge-reranker-v2-minicpm-layerwise | BAAI | text-classification | [
"sentence-transformers",
"safetensors",
"minicpm",
"text-generation",
"transformers",
"text-classification",
"custom_code",
"multilingual",
"arxiv:2312.15503",
"arxiv:2402.03216",
"license:apache-2.0",
"region:us"
] | "2024-03-16T15:19:29Z" | 2024-03-19T09:26:28+00:00 | 9,783 | 51 | ---
language:
- multilingual
license: apache-2.0
pipeline_tag: text-classification
tags:
- transformers
- sentence-transformers
---
# Reranker
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master).**
- [Model List](#model-list)
- [Usage](#usage)
- [Fine-tuning](#fine-tune)
- [Evaluation](#evaluation)
- [Citation](#citation)
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
And the score can be mapped to a float value in [0,1] by sigmoid function.
## Model List
| Model | Base model | Language | layerwise | feature |
|:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
You can select the model according your senario and resource.
- For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
- For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
- For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
- For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
## Usage
### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score) # -5.65234375
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
score = reranker.compute_score(['query', 'passage'], normalize=True)
print(score) # 0.003497010252573502
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores) # [-8.1875, 5.26171875]
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
print(scores) # [0.00027803096387751553, 0.9948403768236574]
```
#### For LLM-based reranker
```python
from FlagEmbedding import FlagLLMReranker
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### For LLM-based layerwise reranker
```python
from FlagEmbedding import LayerWiseFlagLLMReranker
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
print(scores)
```
### Using Huggingface transformers
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
Get relevance scores (higher scores indicate more relevance):
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
#### For LLM-based reranker
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
if prompt is None:
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
sep = "\n"
prompt_inputs = tokenizer(prompt,
return_tensors=None,
add_special_tokens=False)['input_ids']
sep_inputs = tokenizer(sep,
return_tensors=None,
add_special_tokens=False)['input_ids']
inputs = []
for query, passage in pairs:
query_inputs = tokenizer(f'A: {query}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length * 3 // 4,
truncation=True)
passage_inputs = tokenizer(f'B: {passage}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length,
truncation=True)
item = tokenizer.prepare_for_model(
[tokenizer.bos_token_id] + query_inputs['input_ids'],
sep_inputs + passage_inputs['input_ids'],
truncation='only_second',
max_length=max_length,
padding=False,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=False
)
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
item['attention_mask'] = [1] * len(item['input_ids'])
inputs.append(item)
return tokenizer.pad(
inputs,
padding=True,
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
pad_to_multiple_of=8,
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = get_inputs(pairs, tokenizer)
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
print(scores)
```
#### For LLM-based layerwise reranker
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
if prompt is None:
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
sep = "\n"
prompt_inputs = tokenizer(prompt,
return_tensors=None,
add_special_tokens=False)['input_ids']
sep_inputs = tokenizer(sep,
return_tensors=None,
add_special_tokens=False)['input_ids']
inputs = []
for query, passage in pairs:
query_inputs = tokenizer(f'A: {query}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length * 3 // 4,
truncation=True)
passage_inputs = tokenizer(f'B: {passage}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length,
truncation=True)
item = tokenizer.prepare_for_model(
[tokenizer.bos_token_id] + query_inputs['input_ids'],
sep_inputs + passage_inputs['input_ids'],
truncation='only_second',
max_length=max_length,
padding=False,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=False
)
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
item['attention_mask'] = [1] * len(item['input_ids'])
inputs.append(item)
return tokenizer.pad(
inputs,
padding=True,
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
pad_to_multiple_of=8,
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to('cuda')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = get_inputs(pairs, tokenizer).to(model.device)
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
print(all_scores)
```
## Fine-tune
### Data Format
Train data should be a json file, where each line is a dict like this:
```
{"query": str, "pos": List[str], "neg":List[str], "prompt": str}
```
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts, `prompt` indicates the relationship between query and texts. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
See [toy_finetune_data.jsonl](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker/toy_finetune_data.jsonl) for a toy data file.
### Train
You can fine-tune the reranker with the following code:
**For llm-based reranker**
```shell
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
--output_dir {path to save model} \
--model_name_or_path google/gemma-2b \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--dataloader_drop_last True \
--query_max_len 512 \
--passage_max_len 512 \
--train_group_size 16 \
--logging_steps 1 \
--save_steps 2000 \
--save_total_limit 50 \
--ddp_find_unused_parameters False \
--gradient_checkpointing \
--deepspeed stage1.json \
--warmup_ratio 0.1 \
--bf16 \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--use_flash_attn True \
--target_modules q_proj k_proj v_proj o_proj
```
**For llm-based layerwise reranker**
```shell
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
--output_dir {path to save model} \
--model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--dataloader_drop_last True \
--query_max_len 512 \
--passage_max_len 512 \
--train_group_size 16 \
--logging_steps 1 \
--save_steps 2000 \
--save_total_limit 50 \
--ddp_find_unused_parameters False \
--gradient_checkpointing \
--deepspeed stage1.json \
--warmup_ratio 0.1 \
--bf16 \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--use_flash_attn True \
--target_modules q_proj k_proj v_proj o_proj \
--start_layer 8 \
--head_multi True \
--head_type simple \
--lora_extra_parameters linear_head
```
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
- [quora train data](https://huggingface.co/datasets/quora)
- [fever train data](https://fever.ai/dataset/fever.html)
## Evaluation
- llama-index.

- BEIR.
rereank the top 100 results from bge-en-v1.5 large.

rereank the top 100 results from e5 mistral 7b instruct.

- CMTEB-retrieval.
It rereank the top 100 results from bge-zh-v1.5 large.

- miracl (multi-language).
It rereank the top 100 results from bge-m3.

## Citation
If you find this repository useful, please consider giving a star and citation
```bibtex
@misc{li2023making,
title={Making Large Language Models A Better Foundation For Dense Retrieval},
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
year={2023},
eprint={2312.15503},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{chen2024bge,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
"BEAR"
] |
PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1 | PatronusAI | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pytorch",
"Lynx",
"Patronus AI",
"evaluation",
"hallucination-detection",
"conversational",
"en",
"arxiv:2407.08488",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-07-24T20:00:23Z" | 2024-07-31T17:01:34+00:00 | 9,624 | 10 | ---
language:
- en
library_name: transformers
license: cc-by-nc-4.0
tags:
- text-generation
- pytorch
- Lynx
- Patronus AI
- evaluation
- hallucination-detection
---
# Model Card for Model ID
Lynx is an open-source hallucination evaluation model. Patronus-Lynx-8B-Instruct-v1.1 was trained on a mix of datasets including CovidQA, PubmedQA, DROP, RAGTruth.
The datasets contain a mix of hand-annotated and synthetic data. The maximum sequence length is 128000 tokens.
## Model Details
- **Model Type:** Patronus-Lynx-8B-Instruct-v1.1 is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct model.
- **Language:** Primarily English
- **Developed by:** Patronus AI
- **Paper:** [https://arxiv.org/abs/2407.08488](https://arxiv.org/abs/2407.08488)
- **License:** [https://creativecommons.org/licenses/by-nc/4.0/](https://creativecommons.org/licenses/by-nc/4.0/)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/patronus-ai/Lynx-hallucination-detection](https://github.com/patronus-ai/Lynx-hallucination-detection)
## How to Get Started with the Model
Lynx is trained to detect hallucinations in RAG settings. Provided a document, question and answer, the model can evaluate whether the answer is faithful to the document.
To use the model, we recommend using the following prompt:
```
PROMPT = """
Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{question}
--
DOCUMENT:
{context}
--
ANSWER:
{answer}
--
Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""
```
The model will output the score as 'PASS' if the answer is faithful to the document or FAIL if the answer is not faithful to the document.
## Inference
To run inference, you can use HF pipeline:
```
model_name = 'PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1'
pipe = pipeline(
"text-generation",
model=model_name,
max_new_tokens=600,
device="cuda",
return_full_text=False
)
messages = [
{"role": "user", "content": prompt},
]
result = pipe(messages)
print(result[0]['generated_text'])
```
Since the model is trained in chat format, ensure that you pass the prompt as a user message.
For more information on training details, refer to our [ArXiv paper](https://arxiv.org/abs/2407.08488).
## Evaluation
The model was evaluated on [PatronusAI/HaluBench](https://huggingface.co/datasets/PatronusAI/HaluBench).
| Model | HaluEval | RAGTruth | FinanceBench | DROP | CovidQA | PubmedQA | Overall
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPT-4o | <ins>87.9%</ins> | 84.3% | <ins>85.3%</ins> | 84.3% | 95.0% | 82.1% | <ins>86.5%</ins> |
| GPT-4-Turbo | 86.0% | <ins>85.0%</ins> | 82.2% | <ins>84.8%</ins> | 90.6% | 83.5% | 85.0% |
| GPT-3.5-Turbo | 62.2% | 50.7% | 60.9% | 57.2% | 56.7% | 62.8% | 58.7% |
| Claude-3.5-Sonnet | 84.5% | 79.1% | 69.3% | 69.7% | 70.8% |84.8% |83.7%|
| RAGAS Faithfulness | 70.6% | 75.8% | 59.5% | 59.6% | 75.0% | 67.7% | 66.9% |
| Mistral-Instruct-7B | 78.3% | 77.7% | 56.3% | 56.3% | 71.7% | 77.9% | 69.4% |
| Llama-3-Instruct-8B | 83.1% | 80.0% | 55.0% | 58.2% | 75.2% | 70.7% | 70.4% |
| Llama-3-Instruct-70B | 87.0% | **83.8%** | 72.7% | 69.4% | 85.0% | 82.6% | 80.1% |
| Lynx (8B) | 85.7% | 80.0% | 72.5% | **77.8%** | 96.3% | 85.2% | 82.9% |
| Lynx v1.1 (8B) | **87.3%** | 79.9% | **75.6%** | 77.5% | <ins>**96.9%**</ins> |<ins> **88.9%**</ins> | **84.3%** |
## Citation
If you are using the model, cite using
```
@article{ravi2024lynx,
title={Lynx: An Open Source Hallucination Evaluation Model},
author={Ravi, Selvan Sunitha and Mielczarek, Bartosz and Kannappan, Anand and Kiela, Douwe and Qian, Rebecca},
journal={arXiv preprint arXiv:2407.08488},
year={2024}
}
```
## Model Card Contact
[@sunitha-ravi](https://huggingface.co/sunitha-ravi)
[@RebeccaQian1](https://huggingface.co/RebeccaQian1)
[@presidev](https://huggingface.co/presidev) | [
"PUBMEDQA"
] |
kamalkraj/BioELECTRA-PICO | kamalkraj | token-classification | [
"transformers",
"pytorch",
"safetensors",
"electra",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2022-03-02T23:29:05Z" | 2023-12-02T06:47:15+00:00 | 9,419 | 8 | ---
widget:
- text: Those in the aspirin group experienced reduced duration of headache compared
to those in the placebo arm (P<0.05)
---
BioELECTRA-PICO
Cite our paper using below citation
```
@inproceedings{kanakarajan-etal-2021-bioelectra,
title = "{B}io{ELECTRA}:Pretrained Biomedical text Encoder using Discriminators",
author = "Kanakarajan, Kamal raj and
Kundumani, Bhuvana and
Sankarasubbu, Malaikannan",
booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.bionlp-1.16",
doi = "10.18653/v1/2021.bionlp-1.16",
pages = "143--154",
abstract = "Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply {`}replaced token detection{'} pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34{\%}(1.39{\%} accuracy improvement) on MedNLI and 64{\%} (2.98{\%} accuracy improvement) on PubMedQA dataset.",
}
``` | [
"BLURB",
"MEDNLI",
"PUBMEDQA"
] |
tiiuae/Falcon3-1B-Base | tiiuae | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"falcon3",
"en",
"fr",
"es",
"pt",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-12-13T12:00:46Z" | 2025-03-10T04:53:37+00:00 | 9,195 | 23 | ---
language:
- en
- fr
- es
- pt
library_name: transformers
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
tags:
- falcon3
---
<div align="center">
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>
# Falcon3-1B-Base
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
This repository contains the **Falcon3-1B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-1B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 4K.
It was pruned in terms of depth, width, number of heads, and embedding channels from a larger 3B Falcon model, and was efficiently trained on only 80 GT using a knowledge distillation objective.
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
## Model Details
- Architecture
- Transformer-based causal decoder-only architecture
- 18 decoder blocks
- Grouped Query Attention (GQA) for faster inference: 8 query heads and 4 key-value heads
- Wider head dimension: 256
- High RoPE value to support long context understanding: 1000042
- Uses SwiGLU and RMSNorm
- 4K context length
- 131K vocab size
- Pruned and healed using larger Falcon models (3B and 7B respectively) on only 80 Gigatokens of datasets comprising of web, code, STEM, high quality and multilingual data using 256 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
## Getting started
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="tiiuae/Falcon3-1B-Base",
torch_dtype=torch.bfloat16,
device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```
</details>
<br>
## Benchmarks
We report in the following table our internal pipeline benchmarks.
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
- We report **raw scores**.
- We use same batch-size across all models.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Llama-3.2-1B</th>
<th>Qwen2.5-1.5B</th>
<th>SmolLM2-1.7B</th>
<th>Falcon3-1B-Base</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>31.1</td>
<td><b>61.0</b></td>
<td>50.1</td>
<td>42.5</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>11.7</td>
<td><b>28.4</b></td>
<td>21.3</td>
<td>16.1</td>
</tr>
<tr>
<td>IFEval</td>
<td>14.8</td>
<td><b>26.0</b></td>
<td>24.2</td>
<td>25.2</td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>GSM8K (5-shot)</td>
<td>6.6</td>
<td><b>62.2</b></td>
<td>31.0</td>
<td>34.3</td>
</tr>
<tr>
<td>MATH Lvl-5 (4-shot)</td>
<td>0.2</td>
<td><b>6.7</b></td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td rowspan="4">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>40.2</td>
<td><b>54.8</b></td>
<td>54.1</td>
<td>48.1</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td>24.2</td>
<td>28.1</td>
<td><b>28.9</b></td>
<td>28.1</td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td>34.5</td>
<td>35.5</td>
<td>34.7</td>
<td><b>41.9</b></td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>31.2</td>
<td><b>41.1</b></td>
<td>34.2</td>
<td>36.0</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>74.5</td>
<td>76.0</td>
<td><b>77.5</b></td>
<td>74.5</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>88.5</td>
<td><b>93.1</b></td>
<td>90.8</td>
<td>91.1</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td>60.4</td>
<td>63.0</td>
<td><b>66.1</b></td>
<td>61.2</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td>37.4</td>
<td>40.4</td>
<td><b>44.0</b></td>
<td>41.0</td>
</tr>
</tbody>
</table>
## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
## Technical Report
Coming soon....
## Citation
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {The Falcon 3 Family of Open Models},
url = {https://huggingface.co/blog/falcon3},
author = {Falcon-LLM Team},
month = {December},
year = {2024}
}
``` | [
"SCIQ"
] |
EleutherAI/pythia-2.8b-deduped | EleutherAI | text-generation | [
"transformers",
"pytorch",
"safetensors",
"gpt_neox",
"text-generation",
"causal-lm",
"pythia",
"en",
"dataset:EleutherAI/the_pile_deduplicated",
"arxiv:2304.01373",
"arxiv:2101.00027",
"arxiv:2201.07311",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2023-02-10T22:26:20Z" | 2023-07-09T16:06:37+00:00 | 9,120 | 14 | ---
datasets:
- EleutherAI/the_pile_deduplicated
language:
- en
license: apache-2.0
tags:
- pytorch
- causal-lm
- pythia
---
The *Pythia Scaling Suite* is a collection of models developed to facilitate
interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf).
It contains two sets of eight models of sizes
70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two
models: one trained on the Pile, and one trained on the Pile after the dataset
has been globally deduplicated. All 8 model sizes are trained on the exact
same data, in the exact same order. We also provide 154 intermediate
checkpoints per model, hosted on Hugging Face as branches.
The Pythia model suite was designed to promote scientific
research on large language models, especially interpretability research.
Despite not centering downstream performance as a design goal, we find the
models <a href="#evaluations">match or exceed</a> the performance of
similar and same-sized models, such as those in the OPT and GPT-Neo suites.
<details>
<summary style="font-weight:600">Details on previous early release and naming convention.</summary>
Previously, we released an early version of the Pythia suite to the public.
However, we decided to retrain the model suite to address a few hyperparameter
discrepancies. This model card <a href="#changelog">lists the changes</a>;
see appendix B in the Pythia paper for further discussion. We found no
difference in benchmark performance between the two Pythia versions.
The old models are
[still available](https://huggingface.co/models?other=pythia_v0), but we
suggest the retrained suite if you are just starting to use Pythia.<br>
**This is the current release.**
Please note that all models in the *Pythia* suite were renamed in January
2023. For clarity, a <a href="#naming-convention-and-parameter-count">table
comparing the old and new names</a> is provided in this model card, together
with exact parameter counts.
</details>
<br>
# Pythia-2.8B-deduped
## Model Details
- Developed by: [EleutherAI](http://eleuther.ai)
- Model type: Transformer-based Language Model
- Language: English
- Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia)
for training procedure, config files, and details on how to use.
[See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation
details.
- Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
- License: Apache 2.0
- Contact: to ask questions about this model, join the [EleutherAI
Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`.
Please read the existing *Pythia* documentation before asking about it in the
EleutherAI Discord. For general correspondence: [contact@eleuther.
ai](mailto:[email protected]).
<figure>
| Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models |
| -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: |
| 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — |
| 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M |
| 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M |
| 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — |
| 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B |
| 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B |
| 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B |
| 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — |
<figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and
non-deduped models of a given size have the same hyperparameters. “Equivalent”
models have <b>exactly</b> the same architecture, and the same number of
non-embedding parameters.</figcaption>
</figure>
## Uses and Limitations
### Intended Use
The primary intended use of Pythia is research on the behavior, functionality,
and limitations of large language models. This suite is intended to provide
a controlled setting for performing scientific experiments. We also provide
154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints
`step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to
`step143000`. These checkpoints are hosted on Hugging Face as branches. Note
that branch `143000` corresponds exactly to the model checkpoint on the `main`
branch of each model.
You may also further fine-tune and adapt Pythia-2.8B-deduped for deployment,
as long as your use is in accordance with the Apache 2.0 license. Pythia
models work with the Hugging Face [Transformers
Library](https://huggingface.co/docs/transformers/index). If you decide to use
pre-trained Pythia-2.8B-deduped as a basis for your fine-tuned model, please
conduct your own risk and bias assessment.
### Out-of-scope use
The Pythia Suite is **not** intended for deployment. It is not a in itself
a product and cannot be used for human-facing interactions. For example,
the model may generate harmful or offensive text. Please evaluate the risks
associated with your particular use case.
Pythia models are English-language only, and are not suitable for translation
or generating text in other languages.
Pythia-2.8B-deduped has not been fine-tuned for downstream contexts in which
language models are commonly deployed, such as writing genre prose,
or commercial chatbots. This means Pythia-2.8B-deduped will **not**
respond to a given prompt the way a product like ChatGPT does. This is because,
unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
Learning from Human Feedback (RLHF) to better “follow” human instructions.
### Limitations and biases
The core functionality of a large language model is to take a string of text
and predict the next token. The token used by the model need not produce the
most “accurate” text. Never rely on Pythia-2.8B-deduped to produce factually accurate
output.
This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset
known to contain profanity and texts that are lewd or otherwise offensive.
See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a
discussion of documented biases with regards to gender, religion, and race.
Pythia-2.8B-deduped may produce socially unacceptable or undesirable text, *even if*
the prompt itself does not include anything explicitly offensive.
If you plan on using text generated through, for example, the Hosted Inference
API, we recommend having a human curate the outputs of this language model
before presenting it to other people. Please inform your audience that the
text was generated by Pythia-2.8B-deduped.
### Quickstart
Pythia models can be loaded and used via the following code, demonstrated here
for the third `pythia-70m-deduped` checkpoint:
```python
from transformers import GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained(
"EleutherAI/pythia-70m-deduped",
revision="step3000",
cache_dir="./pythia-70m-deduped/step3000",
)
tokenizer = AutoTokenizer.from_pretrained(
"EleutherAI/pythia-70m-deduped",
revision="step3000",
cache_dir="./pythia-70m-deduped/step3000",
)
inputs = tokenizer("Hello, I am", return_tensors="pt")
tokens = model.generate(**inputs)
tokenizer.decode(tokens[0])
```
Revision/branch `step143000` corresponds exactly to the model checkpoint on
the `main` branch of each model.<br>
For more information on how to use all Pythia models, see [documentation on
GitHub](https://github.com/EleutherAI/pythia).
## Training
### Training data
Pythia-2.8B-deduped was trained on the Pile **after the dataset has been globally
deduplicated**.<br>
[The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in
English. It was created by EleutherAI specifically for training large language
models. It contains texts from 22 diverse sources, roughly broken down into
five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl),
prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and
miscellaneous (e.g. GitHub, Enron Emails). See [the Pile
paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources,
methodology, and a discussion of ethical implications. Consult [the
datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation
about the Pile and its component datasets. The Pile can be downloaded from
the [official website](https://pile.eleuther.ai/), or from a [community
mirror](https://the-eye.eu/public/AI/pile/).
### Training procedure
All models were trained on the exact same data, in the exact same order. Each
model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
model are saved every 2,097,152,000 tokens, spaced evenly throughout training,
from `step1000` to `step143000` (which is the same as `main`). In addition, we
also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`.
This corresponds to training for just under 1 epoch on the Pile for
non-deduplicated models, and about 1.5 epochs on the deduplicated Pile.
All *Pythia* models trained for 143000 steps at a batch size
of 2M (2,097,152 tokens).<br>
See [GitHub](https://github.com/EleutherAI/pythia) for more details on training
procedure, including [how to reproduce
it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br>
Pythia uses the same tokenizer as [GPT-NeoX-
20B](https://huggingface.co/EleutherAI/gpt-neox-20b).
## Evaluations
All 16 *Pythia* models were evaluated using the [LM Evaluation
Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access
the results by model and step at `results/json/*` in the [GitHub
repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br>
Expand the sections below to see plots of evaluation results for all
Pythia and Pythia-deduped models compared with OPT and BLOOM.
<details>
<summary>LAMBADA – OpenAI</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/>
</details>
<details>
<summary>Physical Interaction: Question Answering (PIQA)</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/>
</details>
<details>
<summary>WinoGrande</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/>
</details>
<details>
<summary>AI2 Reasoning Challenge—Easy Set</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/>
</details>
<details>
<summary>SciQ</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/>
</details>
## Changelog
This section compares differences between previously released
[Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current
models. See Appendix B of the Pythia paper for further discussion of these
changes and the motivation behind them. We found that retraining Pythia had no
impact on benchmark performance.
- All model sizes are now trained with uniform batch size of 2M tokens.
Previously, the models of size 160M, 410M, and 1.4B parameters were trained
with batch sizes of 4M tokens.
- We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64,
128,256,512} in addition to every 1000 training steps.
- Flash Attention was used in the new retrained suite.
- We remedied a minor inconsistency that existed in the original suite: all
models of size 2.8B parameters or smaller had a learning rate (LR) schedule
which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and
12B models all used an LR schedule which decayed to a minimum LR of 0. In
the redone training runs, we rectified this inconsistency: all models now were
trained with LR decaying to a minimum of 0.1× their maximum LR.
### Naming convention and parameter count
*Pythia* models were renamed in January 2023. It is possible that the old
naming convention still persists in some documentation by accident. The
current naming convention (70M, 160M, etc.) is based on total parameter count.
<figure style="width:32em">
| current Pythia suffix | old suffix | total params | non-embedding params |
| --------------------: | ---------: | -------------: | -------------------: |
| 70M | 19M | 70,426,624 | 18,915,328 |
| 160M | 125M | 162,322,944 | 85,056,000 |
| 410M | 350M | 405,334,016 | 302,311,424 |
| 1B | 800M | 1,011,781,632 | 805,736,448 |
| 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 |
| 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 |
| 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 |
| 12B | 13B | 11,846,072,320 | 11,327,027,200 |
</figure> | [
"SCIQ"
] |
OrlikB/KartonBERT-USE-base-v1 | OrlikB | sentence-similarity | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"mteb",
"pl",
"license:gpl-3.0",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-09-30T06:53:46Z" | 2024-10-01T18:18:29+00:00 | 9,109 | 9 | ---
language:
- pl
license: gpl-3.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: KartonBERT-USE-base-v1
results:
- task:
type: Classification
dataset:
name: MTEB AllegroReviews (default)
type: PL-MTEB/allegro-reviews
config: default
split: test
revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6
metrics:
- type: accuracy
value: 54.15506958250498
- type: f1
value: 46.5327734573016
- type: f1_weighted
value: 54.68392312652715
- type: main_score
value: 54.15506958250498
- task:
type: Retrieval
dataset:
name: MTEB ArguAna-PL (default)
type: clarin-knext/arguana-pl
config: default
split: test
revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
metrics:
- type: main_score
value: 56.901
- type: map_at_1
value: 31.791999999999998
- type: map_at_10
value: 48.054
- type: map_at_100
value: 48.878
- type: map_at_1000
value: 48.882
- type: map_at_20
value: 48.737
- type: map_at_3
value: 43.231
- type: map_at_5
value: 46.111999999999995
- type: mrr_at_1
value: 32.574679943100996
- type: mrr_at_10
value: 48.33367201788255
- type: mrr_at_100
value: 49.15718185630711
- type: mrr_at_1000
value: 49.1617121578244
- type: mrr_at_20
value: 49.01694598176999
- type: mrr_at_3
value: 43.51588430535799
- type: mrr_at_5
value: 46.39284020862968
- type: nauc_map_at_1000_diff1
value: 9.261912197433015
- type: nauc_map_at_1000_max
value: -7.845080024659214
- type: nauc_map_at_1000_std
value: -11.991866544435679
- type: nauc_map_at_100_diff1
value: 9.26664720652122
- type: nauc_map_at_100_max
value: -7.832848294616753
- type: nauc_map_at_100_std
value: -11.9808027056787
- type: nauc_map_at_10_diff1
value: 8.807497468420616
- type: nauc_map_at_10_max
value: -7.964448980578822
- type: nauc_map_at_10_std
value: -12.12899711880432
- type: nauc_map_at_1_diff1
value: 13.32445989333938
- type: nauc_map_at_1_max
value: -10.482064414968285
- type: nauc_map_at_1_std
value: -13.501360370797148
- type: nauc_map_at_20_diff1
value: 9.195156779288766
- type: nauc_map_at_20_max
value: -7.783014219043757
- type: nauc_map_at_20_std
value: -11.969490540925406
- type: nauc_map_at_3_diff1
value: 9.216987154577305
- type: nauc_map_at_3_max
value: -7.320889292833926
- type: nauc_map_at_3_std
value: -11.556536581082206
- type: nauc_map_at_5_diff1
value: 8.632595608937663
- type: nauc_map_at_5_max
value: -8.100862283698563
- type: nauc_map_at_5_std
value: -12.362725223929877
- type: nauc_mrr_at_1000_diff1
value: 6.955563701248687
- type: nauc_mrr_at_1000_max
value: -8.482826175940565
- type: nauc_mrr_at_1000_std
value: -11.685173284450771
- type: nauc_mrr_at_100_diff1
value: 6.960630009309121
- type: nauc_mrr_at_100_max
value: -8.47053290533026
- type: nauc_mrr_at_100_std
value: -11.674185693345231
- type: nauc_mrr_at_10_diff1
value: 6.571885416453002
- type: nauc_mrr_at_10_max
value: -8.579534736340365
- type: nauc_mrr_at_10_std
value: -11.828451090180964
- type: nauc_mrr_at_1_diff1
value: 11.037953768000532
- type: nauc_mrr_at_1_max
value: -9.873898613911402
- type: nauc_mrr_at_1_std
value: -12.460415140907712
- type: nauc_mrr_at_20_diff1
value: 6.900888306598456
- type: nauc_mrr_at_20_max
value: -8.416481040187186
- type: nauc_mrr_at_20_std
value: -11.664087568363449
- type: nauc_mrr_at_3_diff1
value: 7.06762175360558
- type: nauc_mrr_at_3_max
value: -8.017279028707673
- type: nauc_mrr_at_3_std
value: -11.297456731246768
- type: nauc_mrr_at_5_diff1
value: 6.448800345577737
- type: nauc_mrr_at_5_max
value: -8.745349771650183
- type: nauc_mrr_at_5_std
value: -11.969389047713944
- type: nauc_ndcg_at_1000_diff1
value: 8.76255638439487
- type: nauc_ndcg_at_1000_max
value: -7.343629528331341
- type: nauc_ndcg_at_1000_std
value: -11.47940744019621
- type: nauc_ndcg_at_100_diff1
value: 8.919277731016157
- type: nauc_ndcg_at_100_max
value: -7.019108339742727
- type: nauc_ndcg_at_100_std
value: -11.194732417709883
- type: nauc_ndcg_at_10_diff1
value: 6.935115430123545
- type: nauc_ndcg_at_10_max
value: -7.331328886115093
- type: nauc_ndcg_at_10_std
value: -11.823538474289432
- type: nauc_ndcg_at_1_diff1
value: 13.32445989333938
- type: nauc_ndcg_at_1_max
value: -10.482064414968285
- type: nauc_ndcg_at_1_std
value: -13.501360370797148
- type: nauc_ndcg_at_20_diff1
value: 8.459389806724928
- type: nauc_ndcg_at_20_max
value: -6.58398762434462
- type: nauc_ndcg_at_20_std
value: -11.058848254315285
- type: nauc_ndcg_at_3_diff1
value: 7.835560234578747
- type: nauc_ndcg_at_3_max
value: -6.423483615691791
- type: nauc_ndcg_at_3_std
value: -10.911115187058067
- type: nauc_ndcg_at_5_diff1
value: 6.682571459029503
- type: nauc_ndcg_at_5_max
value: -7.818737713863339
- type: nauc_ndcg_at_5_std
value: -12.432449183297598
- type: nauc_precision_at_1000_diff1
value: -2.5745586949686294
- type: nauc_precision_at_1000_max
value: 10.263038467948435
- type: nauc_precision_at_1000_std
value: 68.30822185314709
- type: nauc_precision_at_100_diff1
value: 32.41864555136661
- type: nauc_precision_at_100_max
value: 52.55109728866118
- type: nauc_precision_at_100_std
value: 62.241685968841395
- type: nauc_precision_at_10_diff1
value: -4.819815865728714
- type: nauc_precision_at_10_max
value: -3.3537757455238877
- type: nauc_precision_at_10_std
value: -9.963817157694175
- type: nauc_precision_at_1_diff1
value: 13.32445989333938
- type: nauc_precision_at_1_max
value: -10.482064414968285
- type: nauc_precision_at_1_std
value: -13.501360370797148
- type: nauc_precision_at_20_diff1
value: 3.635887978878025
- type: nauc_precision_at_20_max
value: 14.898454122959496
- type: nauc_precision_at_20_std
value: 6.619835540940379
- type: nauc_precision_at_3_diff1
value: 3.6054431173895667
- type: nauc_precision_at_3_max
value: -3.728728411630629
- type: nauc_precision_at_3_std
value: -8.937528472143674
- type: nauc_precision_at_5_diff1
value: -0.655295588469194
- type: nauc_precision_at_5_max
value: -7.099667676645105
- type: nauc_precision_at_5_std
value: -13.01579557796282
- type: nauc_recall_at_1000_diff1
value: -2.5745586949696144
- type: nauc_recall_at_1000_max
value: 10.26303846794546
- type: nauc_recall_at_1000_std
value: 68.3082218531417
- type: nauc_recall_at_100_diff1
value: 32.41864555136416
- type: nauc_recall_at_100_max
value: 52.55109728865944
- type: nauc_recall_at_100_std
value: 62.24168596884267
- type: nauc_recall_at_10_diff1
value: -4.819815865728716
- type: nauc_recall_at_10_max
value: -3.353775745523958
- type: nauc_recall_at_10_std
value: -9.963817157694203
- type: nauc_recall_at_1_diff1
value: 13.32445989333938
- type: nauc_recall_at_1_max
value: -10.482064414968285
- type: nauc_recall_at_1_std
value: -13.501360370797148
- type: nauc_recall_at_20_diff1
value: 3.6358879788779648
- type: nauc_recall_at_20_max
value: 14.898454122959254
- type: nauc_recall_at_20_std
value: 6.619835540940201
- type: nauc_recall_at_3_diff1
value: 3.6054431173895582
- type: nauc_recall_at_3_max
value: -3.7287284116306205
- type: nauc_recall_at_3_std
value: -8.937528472143658
- type: nauc_recall_at_5_diff1
value: -0.6552955884692194
- type: nauc_recall_at_5_max
value: -7.099667676645175
- type: nauc_recall_at_5_std
value: -13.015795577962777
- type: ndcg_at_1
value: 31.791999999999998
- type: ndcg_at_10
value: 56.901
- type: ndcg_at_100
value: 60.192
- type: ndcg_at_1000
value: 60.288
- type: ndcg_at_20
value: 59.303
- type: ndcg_at_3
value: 47.028999999999996
- type: ndcg_at_5
value: 52.201
- type: precision_at_1
value: 31.791999999999998
- type: precision_at_10
value: 8.506
- type: precision_at_100
value: 0.989
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.719
- type: precision_at_3
value: 19.346
- type: precision_at_5
value: 14.111
- type: recall_at_1
value: 31.791999999999998
- type: recall_at_10
value: 85.064
- type: recall_at_100
value: 98.933
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 94.381
- type: recall_at_3
value: 58.037000000000006
- type: recall_at_5
value: 70.555
- task:
type: Retrieval
dataset:
name: MTEB BelebeleRetrieval (pol_Latn-pol_Latn)
type: facebook/belebele
config: pol_Latn-pol_Latn
split: test
revision: 75b399394a9803252cfec289d103de462763db7c
metrics:
- type: main_score
value: 91.541
- type: map_at_1
value: 85.77799999999999
- type: map_at_10
value: 89.752
- type: map_at_100
value: 89.878
- type: map_at_1000
value: 89.881
- type: map_at_20
value: 89.852
- type: map_at_3
value: 89.019
- type: map_at_5
value: 89.363
- type: mrr_at_1
value: 85.77777777777777
- type: mrr_at_10
value: 89.75198412698411
- type: mrr_at_100
value: 89.87762406306918
- type: mrr_at_1000
value: 89.8806515152748
- type: mrr_at_20
value: 89.85208842298627
- type: mrr_at_3
value: 89.01851851851852
- type: mrr_at_5
value: 89.36296296296297
- type: nauc_map_at_1000_diff1
value: 91.4476978163489
- type: nauc_map_at_1000_max
value: 81.5514176763366
- type: nauc_map_at_1000_std
value: -26.55954678441229
- type: nauc_map_at_100_diff1
value: 91.45032737132165
- type: nauc_map_at_100_max
value: 81.55491042152336
- type: nauc_map_at_100_std
value: -26.529320255777634
- type: nauc_map_at_10_diff1
value: 91.39551937416603
- type: nauc_map_at_10_max
value: 81.62509202485019
- type: nauc_map_at_10_std
value: -26.551904492525747
- type: nauc_map_at_1_diff1
value: 92.16805294153365
- type: nauc_map_at_1_max
value: 79.46808026227919
- type: nauc_map_at_1_std
value: -26.20021553032597
- type: nauc_map_at_20_diff1
value: 91.44854892971289
- type: nauc_map_at_20_max
value: 81.57301440410872
- type: nauc_map_at_20_std
value: -26.442044476153104
- type: nauc_map_at_3_diff1
value: 91.37113720093754
- type: nauc_map_at_3_max
value: 81.86549795443065
- type: nauc_map_at_3_std
value: -27.81837152321835
- type: nauc_map_at_5_diff1
value: 91.36501739587844
- type: nauc_map_at_5_max
value: 81.68480517417245
- type: nauc_map_at_5_std
value: -28.018028030994742
- type: nauc_mrr_at_1000_diff1
value: 91.4476978163489
- type: nauc_mrr_at_1000_max
value: 81.5514176763366
- type: nauc_mrr_at_1000_std
value: -26.55954678441229
- type: nauc_mrr_at_100_diff1
value: 91.45032737132165
- type: nauc_mrr_at_100_max
value: 81.55491042152336
- type: nauc_mrr_at_100_std
value: -26.529320255777634
- type: nauc_mrr_at_10_diff1
value: 91.39551937416603
- type: nauc_mrr_at_10_max
value: 81.62509202485019
- type: nauc_mrr_at_10_std
value: -26.551904492525747
- type: nauc_mrr_at_1_diff1
value: 92.16805294153365
- type: nauc_mrr_at_1_max
value: 79.46808026227919
- type: nauc_mrr_at_1_std
value: -26.20021553032597
- type: nauc_mrr_at_20_diff1
value: 91.44854892971289
- type: nauc_mrr_at_20_max
value: 81.57301440410872
- type: nauc_mrr_at_20_std
value: -26.442044476153104
- type: nauc_mrr_at_3_diff1
value: 91.37113720093754
- type: nauc_mrr_at_3_max
value: 81.86549795443065
- type: nauc_mrr_at_3_std
value: -27.81837152321835
- type: nauc_mrr_at_5_diff1
value: 91.36501739587844
- type: nauc_mrr_at_5_max
value: 81.68480517417245
- type: nauc_mrr_at_5_std
value: -28.018028030994742
- type: nauc_ndcg_at_1000_diff1
value: 91.38663887591338
- type: nauc_ndcg_at_1000_max
value: 81.83100576728476
- type: nauc_ndcg_at_1000_std
value: -26.052082966114693
- type: nauc_ndcg_at_100_diff1
value: 91.46858617319295
- type: nauc_ndcg_at_100_max
value: 81.93078333237341
- type: nauc_ndcg_at_100_std
value: -25.153555276485868
- type: nauc_ndcg_at_10_diff1
value: 91.13804299227158
- type: nauc_ndcg_at_10_max
value: 82.25580303805849
- type: nauc_ndcg_at_10_std
value: -25.383981896383467
- type: nauc_ndcg_at_1_diff1
value: 92.16805294153365
- type: nauc_ndcg_at_1_max
value: 79.46808026227919
- type: nauc_ndcg_at_1_std
value: -26.20021553032597
- type: nauc_ndcg_at_20_diff1
value: 91.43798225301471
- type: nauc_ndcg_at_20_max
value: 82.07518001371142
- type: nauc_ndcg_at_20_std
value: -24.777088112541364
- type: nauc_ndcg_at_3_diff1
value: 91.09449436290618
- type: nauc_ndcg_at_3_max
value: 82.67766398790694
- type: nauc_ndcg_at_3_std
value: -28.698696574215248
- type: nauc_ndcg_at_5_diff1
value: 91.06439333732669
- type: nauc_ndcg_at_5_max
value: 82.36532604706885
- type: nauc_ndcg_at_5_std
value: -29.0545149754883
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_100_diff1
value: 100.0
- type: nauc_precision_at_100_max
value: 92.1568627450979
- type: nauc_precision_at_100_std
value: 67.46031746031498
- type: nauc_precision_at_10_diff1
value: 88.79551820728234
- type: nauc_precision_at_10_max
value: 87.94261294261227
- type: nauc_precision_at_10_std
value: -10.505997270703746
- type: nauc_precision_at_1_diff1
value: 92.16805294153365
- type: nauc_precision_at_1_max
value: 79.46808026227919
- type: nauc_precision_at_1_std
value: -26.20021553032597
- type: nauc_precision_at_20_diff1
value: 93.71543489190498
- type: nauc_precision_at_20_max
value: 90.03447532859191
- type: nauc_precision_at_20_std
value: 17.970265029086878
- type: nauc_precision_at_3_diff1
value: 89.92617880485524
- type: nauc_precision_at_3_max
value: 86.0965219421104
- type: nauc_precision_at_3_std
value: -32.5922035480858
- type: nauc_precision_at_5_diff1
value: 89.51410629611307
- type: nauc_precision_at_5_max
value: 85.74266307830291
- type: nauc_precision_at_5_std
value: -34.57278336171098
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_100_diff1
value: 100.0
- type: nauc_recall_at_100_max
value: 92.15686274509831
- type: nauc_recall_at_100_std
value: 67.4603174603183
- type: nauc_recall_at_10_diff1
value: 88.79551820728301
- type: nauc_recall_at_10_max
value: 87.94261294261294
- type: nauc_recall_at_10_std
value: -10.505997270703194
- type: nauc_recall_at_1_diff1
value: 92.16805294153365
- type: nauc_recall_at_1_max
value: 79.46808026227919
- type: nauc_recall_at_1_std
value: -26.20021553032597
- type: nauc_recall_at_20_diff1
value: 93.71543489190589
- type: nauc_recall_at_20_max
value: 90.03447532859326
- type: nauc_recall_at_20_std
value: 17.97026502908778
- type: nauc_recall_at_3_diff1
value: 89.92617880485525
- type: nauc_recall_at_3_max
value: 86.09652194211006
- type: nauc_recall_at_3_std
value: -32.592203548085735
- type: nauc_recall_at_5_diff1
value: 89.5141062961131
- type: nauc_recall_at_5_max
value: 85.74266307830314
- type: nauc_recall_at_5_std
value: -34.572783361711004
- type: ndcg_at_1
value: 85.77799999999999
- type: ndcg_at_10
value: 91.541
- type: ndcg_at_100
value: 92.07600000000001
- type: ndcg_at_1000
value: 92.15
- type: ndcg_at_20
value: 91.906
- type: ndcg_at_3
value: 90.017
- type: ndcg_at_5
value: 90.625
- type: precision_at_1
value: 85.77799999999999
- type: precision_at_10
value: 9.711
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.928
- type: precision_at_3
value: 30.963
- type: precision_at_5
value: 18.867
- type: recall_at_1
value: 85.77799999999999
- type: recall_at_10
value: 97.111
- type: recall_at_100
value: 99.444
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 98.556
- type: recall_at_3
value: 92.889
- type: recall_at_5
value: 94.333
- task:
type: Retrieval
dataset:
name: MTEB BelebeleRetrieval (pol_Latn-eng_Latn)
type: facebook/belebele
config: pol_Latn-eng_Latn
split: test
revision: 75b399394a9803252cfec289d103de462763db7c
metrics:
- type: main_score
value: 83.504
- type: map_at_1
value: 74.333
- type: map_at_10
value: 80.569
- type: map_at_100
value: 80.803
- type: map_at_1000
value: 80.816
- type: map_at_20
value: 80.723
- type: map_at_3
value: 79.278
- type: map_at_5
value: 80.067
- type: mrr_at_1
value: 74.33333333333333
- type: mrr_at_10
value: 80.56869488536155
- type: mrr_at_100
value: 80.80281231188738
- type: mrr_at_1000
value: 80.81591021232106
- type: mrr_at_20
value: 80.72251527043838
- type: mrr_at_3
value: 79.27777777777779
- type: mrr_at_5
value: 80.06666666666666
- type: nauc_map_at_1000_diff1
value: 87.1827200996951
- type: nauc_map_at_1000_max
value: 76.68256630016205
- type: nauc_map_at_1000_std
value: -5.730353903171156
- type: nauc_map_at_100_diff1
value: 87.17937163549941
- type: nauc_map_at_100_max
value: 76.69368952203838
- type: nauc_map_at_100_std
value: -5.6873032838969255
- type: nauc_map_at_10_diff1
value: 87.12042254029072
- type: nauc_map_at_10_max
value: 76.71805257742122
- type: nauc_map_at_10_std
value: -5.592480366964013
- type: nauc_map_at_1_diff1
value: 89.24798011187079
- type: nauc_map_at_1_max
value: 75.83442039626006
- type: nauc_map_at_1_std
value: -8.486603514571154
- type: nauc_map_at_20_diff1
value: 87.14327639577641
- type: nauc_map_at_20_max
value: 76.68990390370077
- type: nauc_map_at_20_std
value: -5.580217539312647
- type: nauc_map_at_3_diff1
value: 87.08395702335557
- type: nauc_map_at_3_max
value: 76.49131087180318
- type: nauc_map_at_3_std
value: -7.960457023584337
- type: nauc_map_at_5_diff1
value: 87.01407675116587
- type: nauc_map_at_5_max
value: 76.79987365594535
- type: nauc_map_at_5_std
value: -6.096086399895831
- type: nauc_mrr_at_1000_diff1
value: 87.1827200996951
- type: nauc_mrr_at_1000_max
value: 76.68256630016205
- type: nauc_mrr_at_1000_std
value: -5.730353903171156
- type: nauc_mrr_at_100_diff1
value: 87.17937163549941
- type: nauc_mrr_at_100_max
value: 76.69368952203838
- type: nauc_mrr_at_100_std
value: -5.6873032838969255
- type: nauc_mrr_at_10_diff1
value: 87.12042254029072
- type: nauc_mrr_at_10_max
value: 76.71805257742122
- type: nauc_mrr_at_10_std
value: -5.592480366964013
- type: nauc_mrr_at_1_diff1
value: 89.24798011187079
- type: nauc_mrr_at_1_max
value: 75.83442039626006
- type: nauc_mrr_at_1_std
value: -8.486603514571154
- type: nauc_mrr_at_20_diff1
value: 87.14327639577641
- type: nauc_mrr_at_20_max
value: 76.68990390370077
- type: nauc_mrr_at_20_std
value: -5.580217539312647
- type: nauc_mrr_at_3_diff1
value: 87.08395702335557
- type: nauc_mrr_at_3_max
value: 76.49131087180318
- type: nauc_mrr_at_3_std
value: -7.960457023584337
- type: nauc_mrr_at_5_diff1
value: 87.01407675116587
- type: nauc_mrr_at_5_max
value: 76.79987365594535
- type: nauc_mrr_at_5_std
value: -6.096086399895831
- type: nauc_ndcg_at_1000_diff1
value: 86.83526635543689
- type: nauc_ndcg_at_1000_max
value: 76.87213223376376
- type: nauc_ndcg_at_1000_std
value: -4.326702937186593
- type: nauc_ndcg_at_100_diff1
value: 86.77852107145551
- type: nauc_ndcg_at_100_max
value: 77.13812696037
- type: nauc_ndcg_at_100_std
value: -3.1580272337005453
- type: nauc_ndcg_at_10_diff1
value: 86.36604843288399
- type: nauc_ndcg_at_10_max
value: 77.1221987239842
- type: nauc_ndcg_at_10_std
value: -2.4207447014322576
- type: nauc_ndcg_at_1_diff1
value: 89.24798011187079
- type: nauc_ndcg_at_1_max
value: 75.83442039626006
- type: nauc_ndcg_at_1_std
value: -8.486603514571154
- type: nauc_ndcg_at_20_diff1
value: 86.44160384842657
- type: nauc_ndcg_at_20_max
value: 77.02933401904579
- type: nauc_ndcg_at_20_std
value: -2.1826470452412066
- type: nauc_ndcg_at_3_diff1
value: 86.2326519838603
- type: nauc_ndcg_at_3_max
value: 76.62394641640242
- type: nauc_ndcg_at_3_std
value: -7.766101601996052
- type: nauc_ndcg_at_5_diff1
value: 86.06089203598795
- type: nauc_ndcg_at_5_max
value: 77.29478430133818
- type: nauc_ndcg_at_5_std
value: -3.9125333318549913
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_100_diff1
value: 84.08579117921693
- type: nauc_precision_at_100_max
value: 91.12978524743181
- type: nauc_precision_at_100_std
value: 60.69368924040307
- type: nauc_precision_at_10_diff1
value: 81.55999773646823
- type: nauc_precision_at_10_max
value: 80.02433296550915
- type: nauc_precision_at_10_std
value: 22.35591206179418
- type: nauc_precision_at_1_diff1
value: 89.24798011187079
- type: nauc_precision_at_1_max
value: 75.83442039626006
- type: nauc_precision_at_1_std
value: -8.486603514571154
- type: nauc_precision_at_20_diff1
value: 80.35765030649968
- type: nauc_precision_at_20_max
value: 80.32415864896703
- type: nauc_precision_at_20_std
value: 36.235943652823465
- type: nauc_precision_at_3_diff1
value: 82.92001397135886
- type: nauc_precision_at_3_max
value: 77.08808644406645
- type: nauc_precision_at_3_std
value: -7.015034073765726
- type: nauc_precision_at_5_diff1
value: 81.50283822138118
- type: nauc_precision_at_5_max
value: 79.7989593188268
- type: nauc_precision_at_5_std
value: 7.5491958372753745
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_100_diff1
value: 84.08579117921708
- type: nauc_recall_at_100_max
value: 91.12978524743201
- type: nauc_recall_at_100_std
value: 60.6936892404014
- type: nauc_recall_at_10_diff1
value: 81.55999773646843
- type: nauc_recall_at_10_max
value: 80.02433296550944
- type: nauc_recall_at_10_std
value: 22.355912061794637
- type: nauc_recall_at_1_diff1
value: 89.24798011187079
- type: nauc_recall_at_1_max
value: 75.83442039626006
- type: nauc_recall_at_1_std
value: -8.486603514571154
- type: nauc_recall_at_20_diff1
value: 80.35765030649934
- type: nauc_recall_at_20_max
value: 80.32415864896662
- type: nauc_recall_at_20_std
value: 36.23594365282353
- type: nauc_recall_at_3_diff1
value: 82.92001397135877
- type: nauc_recall_at_3_max
value: 77.08808644406626
- type: nauc_recall_at_3_std
value: -7.015034073765913
- type: nauc_recall_at_5_diff1
value: 81.50283822138132
- type: nauc_recall_at_5_max
value: 79.7989593188269
- type: nauc_recall_at_5_std
value: 7.549195837275434
- type: ndcg_at_1
value: 74.333
- type: ndcg_at_10
value: 83.504
- type: ndcg_at_100
value: 84.66
- type: ndcg_at_1000
value: 84.92
- type: ndcg_at_20
value: 84.065
- type: ndcg_at_3
value: 80.864
- type: ndcg_at_5
value: 82.284
- type: precision_at_1
value: 74.333
- type: precision_at_10
value: 9.267
- type: precision_at_100
value: 0.9809999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.744000000000001
- type: precision_at_3
value: 28.481
- type: precision_at_5
value: 17.778
- type: recall_at_1
value: 74.333
- type: recall_at_10
value: 92.667
- type: recall_at_100
value: 98.111
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 94.889
- type: recall_at_3
value: 85.444
- type: recall_at_5
value: 88.889
- task:
type: Retrieval
dataset:
name: MTEB BelebeleRetrieval (eng_Latn-pol_Latn)
type: facebook/belebele
config: eng_Latn-pol_Latn
split: test
revision: 75b399394a9803252cfec289d103de462763db7c
metrics:
- type: main_score
value: 89.445
- type: map_at_1
value: 83.0
- type: map_at_10
value: 87.421
- type: map_at_100
value: 87.563
- type: map_at_1000
value: 87.569
- type: map_at_20
value: 87.507
- type: map_at_3
value: 86.611
- type: map_at_5
value: 87.072
- type: mrr_at_1
value: 83.0
- type: mrr_at_10
value: 87.42085537918871
- type: mrr_at_100
value: 87.56310628611797
- type: mrr_at_1000
value: 87.56892446259369
- type: mrr_at_20
value: 87.50710137481293
- type: mrr_at_3
value: 86.61111111111111
- type: mrr_at_5
value: 87.07222222222222
- type: nauc_map_at_1000_diff1
value: 85.27894860675904
- type: nauc_map_at_1000_max
value: 71.20075329739284
- type: nauc_map_at_1000_std
value: -30.5553788367382
- type: nauc_map_at_100_diff1
value: 85.2804076974538
- type: nauc_map_at_100_max
value: 71.20036875912842
- type: nauc_map_at_100_std
value: -30.555551579374157
- type: nauc_map_at_10_diff1
value: 85.22909026521418
- type: nauc_map_at_10_max
value: 71.3137782383334
- type: nauc_map_at_10_std
value: -30.527384226196947
- type: nauc_map_at_1_diff1
value: 85.80361577110865
- type: nauc_map_at_1_max
value: 67.3871119624879
- type: nauc_map_at_1_std
value: -30.446069799990923
- type: nauc_map_at_20_diff1
value: 85.3024090163576
- type: nauc_map_at_20_max
value: 71.26314736084274
- type: nauc_map_at_20_std
value: -30.449354240689352
- type: nauc_map_at_3_diff1
value: 84.83736781234883
- type: nauc_map_at_3_max
value: 71.61002582441802
- type: nauc_map_at_3_std
value: -29.99465285790686
- type: nauc_map_at_5_diff1
value: 85.20235777737288
- type: nauc_map_at_5_max
value: 71.46957069322528
- type: nauc_map_at_5_std
value: -30.945869713231627
- type: nauc_mrr_at_1000_diff1
value: 85.27894860675904
- type: nauc_mrr_at_1000_max
value: 71.20075329739284
- type: nauc_mrr_at_1000_std
value: -30.5553788367382
- type: nauc_mrr_at_100_diff1
value: 85.2804076974538
- type: nauc_mrr_at_100_max
value: 71.20036875912842
- type: nauc_mrr_at_100_std
value: -30.555551579374157
- type: nauc_mrr_at_10_diff1
value: 85.22909026521418
- type: nauc_mrr_at_10_max
value: 71.3137782383334
- type: nauc_mrr_at_10_std
value: -30.527384226196947
- type: nauc_mrr_at_1_diff1
value: 85.80361577110865
- type: nauc_mrr_at_1_max
value: 67.3871119624879
- type: nauc_mrr_at_1_std
value: -30.446069799990923
- type: nauc_mrr_at_20_diff1
value: 85.3024090163576
- type: nauc_mrr_at_20_max
value: 71.26314736084274
- type: nauc_mrr_at_20_std
value: -30.449354240689352
- type: nauc_mrr_at_3_diff1
value: 84.83736781234883
- type: nauc_mrr_at_3_max
value: 71.61002582441802
- type: nauc_mrr_at_3_std
value: -29.99465285790686
- type: nauc_mrr_at_5_diff1
value: 85.20235777737288
- type: nauc_mrr_at_5_max
value: 71.46957069322528
- type: nauc_mrr_at_5_std
value: -30.945869713231627
- type: nauc_ndcg_at_1000_diff1
value: 85.28579610897238
- type: nauc_ndcg_at_1000_max
value: 71.71856783729305
- type: nauc_ndcg_at_1000_std
value: -30.549569322105352
- type: nauc_ndcg_at_100_diff1
value: 85.33303778055202
- type: nauc_ndcg_at_100_max
value: 71.72213771654093
- type: nauc_ndcg_at_100_std
value: -30.425199058298535
- type: nauc_ndcg_at_10_diff1
value: 85.20490226070947
- type: nauc_ndcg_at_10_max
value: 72.52298735993796
- type: nauc_ndcg_at_10_std
value: -30.24271239212584
- type: nauc_ndcg_at_1_diff1
value: 85.80361577110865
- type: nauc_ndcg_at_1_max
value: 67.3871119624879
- type: nauc_ndcg_at_1_std
value: -30.446069799990923
- type: nauc_ndcg_at_20_diff1
value: 85.48817468663597
- type: nauc_ndcg_at_20_max
value: 72.3267173920573
- type: nauc_ndcg_at_20_std
value: -29.808693982808173
- type: nauc_ndcg_at_3_diff1
value: 84.39869942100012
- type: nauc_ndcg_at_3_max
value: 72.98018260317248
- type: nauc_ndcg_at_3_std
value: -29.88649089998115
- type: nauc_ndcg_at_5_diff1
value: 85.08666261656307
- type: nauc_ndcg_at_5_max
value: 72.80513750333559
- type: nauc_ndcg_at_5_std
value: -31.764129823670928
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_100_diff1
value: 89.66253167933957
- type: nauc_precision_at_100_max
value: 72.46231826063688
- type: nauc_precision_at_100_std
value: -16.92677070828227
- type: nauc_precision_at_10_diff1
value: 85.47348764067038
- type: nauc_precision_at_10_max
value: 81.89223057644087
- type: nauc_precision_at_10_std
value: -26.041820236867007
- type: nauc_precision_at_1_diff1
value: 85.80361577110865
- type: nauc_precision_at_1_max
value: 67.3871119624879
- type: nauc_precision_at_1_std
value: -30.446069799990923
- type: nauc_precision_at_20_diff1
value: 88.99436317736968
- type: nauc_precision_at_20_max
value: 83.0826157623541
- type: nauc_precision_at_20_std
value: -18.139848532006024
- type: nauc_precision_at_3_diff1
value: 82.57426427361068
- type: nauc_precision_at_3_max
value: 78.46422519625116
- type: nauc_precision_at_3_std
value: -29.474588189185337
- type: nauc_precision_at_5_diff1
value: 84.62792524417179
- type: nauc_precision_at_5_max
value: 79.38286425681366
- type: nauc_precision_at_5_std
value: -36.41827101210859
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_100_diff1
value: 89.66253167933883
- type: nauc_recall_at_100_max
value: 72.46231826063716
- type: nauc_recall_at_100_std
value: -16.926770708284298
- type: nauc_recall_at_10_diff1
value: 85.47348764067067
- type: nauc_recall_at_10_max
value: 81.89223057644107
- type: nauc_recall_at_10_std
value: -26.041820236866585
- type: nauc_recall_at_1_diff1
value: 85.80361577110865
- type: nauc_recall_at_1_max
value: 67.3871119624879
- type: nauc_recall_at_1_std
value: -30.446069799990923
- type: nauc_recall_at_20_diff1
value: 88.99436317736975
- type: nauc_recall_at_20_max
value: 83.08261576235462
- type: nauc_recall_at_20_std
value: -18.139848532005708
- type: nauc_recall_at_3_diff1
value: 82.57426427361058
- type: nauc_recall_at_3_max
value: 78.46422519625135
- type: nauc_recall_at_3_std
value: -29.47458818918515
- type: nauc_recall_at_5_diff1
value: 84.62792524417188
- type: nauc_recall_at_5_max
value: 79.38286425681372
- type: nauc_recall_at_5_std
value: -36.418271012108875
- type: ndcg_at_1
value: 83.0
- type: ndcg_at_10
value: 89.445
- type: ndcg_at_100
value: 90.167
- type: ndcg_at_1000
value: 90.277
- type: ndcg_at_20
value: 89.756
- type: ndcg_at_3
value: 87.742
- type: ndcg_at_5
value: 88.569
- type: precision_at_1
value: 83.0
- type: precision_at_10
value: 9.578000000000001
- type: precision_at_100
value: 0.992
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.8500000000000005
- type: precision_at_3
value: 30.333
- type: precision_at_5
value: 18.6
- type: recall_at_1
value: 83.0
- type: recall_at_10
value: 95.77799999999999
- type: recall_at_100
value: 99.222
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 97.0
- type: recall_at_3
value: 91.0
- type: recall_at_5
value: 93.0
- task:
type: BitextMining
dataset:
name: MTEB BibleNLPBitextMining (eng_Latn-pol_Latn)
type: davidstap/biblenlp-corpus-mmteb
config: eng_Latn-pol_Latn
split: train
revision: 264a18480c529d9e922483839b4b9758e690b762
metrics:
- type: accuracy
value: 96.875
- type: f1
value: 95.83333333333333
- type: main_score
value: 95.83333333333333
- type: precision
value: 95.3125
- type: recall
value: 96.875
- task:
type: BitextMining
dataset:
name: MTEB BibleNLPBitextMining (pol_Latn-eng_Latn)
type: davidstap/biblenlp-corpus-mmteb
config: pol_Latn-eng_Latn
split: train
revision: 264a18480c529d9e922483839b4b9758e690b762
metrics:
- type: accuracy
value: 95.3125
- type: f1
value: 93.88020833333334
- type: main_score
value: 93.88020833333334
- type: precision
value: 93.1640625
- type: recall
value: 95.3125
- task:
type: Classification
dataset:
name: MTEB CBD (default)
type: PL-MTEB/cbd
config: default
split: test
revision: 36ddb419bcffe6a5374c3891957912892916f28d
metrics:
- type: accuracy
value: 75.26
- type: ap
value: 28.410218749169303
- type: ap_weighted
value: 28.410218749169303
- type: f1
value: 64.90867824844531
- type: f1_weighted
value: 78.81011528610803
- type: main_score
value: 75.26
- task:
type: PairClassification
dataset:
name: MTEB CDSC-E (default)
type: PL-MTEB/cdsce-pairclassification
config: default
split: test
revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d
metrics:
- type: cosine_accuracy
value: 89.4
- type: cosine_accuracy_threshold
value: 94.002366065979
- type: cosine_ap
value: 77.00188770290791
- type: cosine_f1
value: 68.07228915662651
- type: cosine_f1_threshold
value: 94.002366065979
- type: cosine_precision
value: 79.5774647887324
- type: cosine_recall
value: 59.473684210526315
- type: dot_accuracy
value: 89.4
- type: dot_accuracy_threshold
value: 94.002366065979
- type: dot_ap
value: 77.00188770290791
- type: dot_f1
value: 68.07228915662651
- type: dot_f1_threshold
value: 94.002366065979
- type: dot_precision
value: 79.5774647887324
- type: dot_recall
value: 59.473684210526315
- type: euclidean_accuracy
value: 89.4
- type: euclidean_accuracy_threshold
value: 34.634196758270264
- type: euclidean_ap
value: 77.00188770290791
- type: euclidean_f1
value: 68.07228915662651
- type: euclidean_f1_threshold
value: 34.634196758270264
- type: euclidean_precision
value: 79.5774647887324
- type: euclidean_recall
value: 59.473684210526315
- type: main_score
value: 77.06644109822335
- type: manhattan_accuracy
value: 89.4
- type: manhattan_accuracy_threshold
value: 755.0533294677734
- type: manhattan_ap
value: 77.06644109822335
- type: manhattan_f1
value: 68.07228915662651
- type: manhattan_f1_threshold
value: 755.0533294677734
- type: manhattan_precision
value: 79.5774647887324
- type: manhattan_recall
value: 59.473684210526315
- type: max_accuracy
value: 89.4
- type: max_ap
value: 77.06644109822335
- type: max_f1
value: 68.07228915662651
- type: max_precision
value: 79.5774647887324
- type: max_recall
value: 59.473684210526315
- type: similarity_accuracy
value: 89.4
- type: similarity_accuracy_threshold
value: 94.00235414505005
- type: similarity_ap
value: 77.00188770290791
- type: similarity_f1
value: 68.07228915662651
- type: similarity_f1_threshold
value: 94.00235414505005
- type: similarity_precision
value: 79.5774647887324
- type: similarity_recall
value: 59.473684210526315
- task:
type: STS
dataset:
name: MTEB CDSC-R (default)
type: PL-MTEB/cdscr-sts
config: default
split: test
revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd
metrics:
- type: cosine_pearson
value: 91.17119649361847
- type: cosine_spearman
value: 91.20577905928302
- type: euclidean_pearson
value: 90.5668852344143
- type: euclidean_spearman
value: 91.20577905928302
- type: main_score
value: 91.20577905928302
- type: manhattan_pearson
value: 90.6503906128131
- type: manhattan_spearman
value: 91.30706035965189
- type: pearson
value: 91.1711959701339
- type: spearman
value: 91.20576339049457
- task:
type: Retrieval
dataset:
name: MTEB DBPedia-PL (default)
type: clarin-knext/dbpedia-pl
config: default
split: test
revision: 76afe41d9af165cc40999fcaa92312b8b012064a
metrics:
- type: main_score
value: 31.115
- type: map_at_1
value: 6.665
- type: map_at_10
value: 13.611999999999998
- type: map_at_100
value: 18.631
- type: map_at_1000
value: 19.973
- type: map_at_20
value: 15.482000000000001
- type: map_at_3
value: 10.191
- type: map_at_5
value: 11.518
- type: mrr_at_1
value: 49.75
- type: mrr_at_10
value: 61.24871031746032
- type: mrr_at_100
value: 61.6639721612659
- type: mrr_at_1000
value: 61.68652629644693
- type: mrr_at_20
value: 61.526411705339726
- type: mrr_at_3
value: 59.62499999999999
- type: mrr_at_5
value: 60.5125
- type: nauc_map_at_1000_diff1
value: 27.97392366194627
- type: nauc_map_at_1000_max
value: 30.16452498569316
- type: nauc_map_at_1000_std
value: 29.201329015427007
- type: nauc_map_at_100_diff1
value: 29.367174741920238
- type: nauc_map_at_100_max
value: 28.973659071057366
- type: nauc_map_at_100_std
value: 26.31505365178391
- type: nauc_map_at_10_diff1
value: 36.69851589594083
- type: nauc_map_at_10_max
value: 20.25364813839131
- type: nauc_map_at_10_std
value: 9.574222619557707
- type: nauc_map_at_1_diff1
value: 47.36289088982068
- type: nauc_map_at_1_max
value: 16.040304183649507
- type: nauc_map_at_1_std
value: 2.4515925926521254
- type: nauc_map_at_20_diff1
value: 34.08015789582933
- type: nauc_map_at_20_max
value: 23.19631824118355
- type: nauc_map_at_20_std
value: 15.110110478483914
- type: nauc_map_at_3_diff1
value: 38.7674548696569
- type: nauc_map_at_3_max
value: 13.542163903569318
- type: nauc_map_at_3_std
value: 2.134613354826337
- type: nauc_map_at_5_diff1
value: 37.95693744467431
- type: nauc_map_at_5_max
value: 16.05432858439634
- type: nauc_map_at_5_std
value: 4.590544603710069
- type: nauc_mrr_at_1000_diff1
value: 44.295123899826386
- type: nauc_mrr_at_1000_max
value: 54.69332333119172
- type: nauc_mrr_at_1000_std
value: 33.77442293639657
- type: nauc_mrr_at_100_diff1
value: 44.305525925983034
- type: nauc_mrr_at_100_max
value: 54.701484072630976
- type: nauc_mrr_at_100_std
value: 33.77276371639727
- type: nauc_mrr_at_10_diff1
value: 44.26301636684395
- type: nauc_mrr_at_10_max
value: 54.853048563594875
- type: nauc_mrr_at_10_std
value: 33.92811076621932
- type: nauc_mrr_at_1_diff1
value: 45.93444117911359
- type: nauc_mrr_at_1_max
value: 51.62632337425907
- type: nauc_mrr_at_1_std
value: 29.68452022378797
- type: nauc_mrr_at_20_diff1
value: 44.30198592107031
- type: nauc_mrr_at_20_max
value: 54.758257064607385
- type: nauc_mrr_at_20_std
value: 33.85765225017787
- type: nauc_mrr_at_3_diff1
value: 44.300646770830745
- type: nauc_mrr_at_3_max
value: 55.05487704215323
- type: nauc_mrr_at_3_std
value: 33.6243706461525
- type: nauc_mrr_at_5_diff1
value: 44.254814329835774
- type: nauc_mrr_at_5_max
value: 55.429557231467555
- type: nauc_mrr_at_5_std
value: 33.89131816053683
- type: nauc_ndcg_at_1000_diff1
value: 26.532231272555943
- type: nauc_ndcg_at_1000_max
value: 42.82810443913827
- type: nauc_ndcg_at_1000_std
value: 41.786347836419175
- type: nauc_ndcg_at_100_diff1
value: 29.769506208591867
- type: nauc_ndcg_at_100_max
value: 38.53042002334068
- type: nauc_ndcg_at_100_std
value: 33.887665540688886
- type: nauc_ndcg_at_10_diff1
value: 31.732079187467072
- type: nauc_ndcg_at_10_max
value: 39.82093012860551
- type: nauc_ndcg_at_10_std
value: 29.1806509581709
- type: nauc_ndcg_at_1_diff1
value: 39.54320133436284
- type: nauc_ndcg_at_1_max
value: 42.045131681424216
- type: nauc_ndcg_at_1_std
value: 25.077965965725056
- type: nauc_ndcg_at_20_diff1
value: 31.45644544950967
- type: nauc_ndcg_at_20_max
value: 36.28423421245746
- type: nauc_ndcg_at_20_std
value: 28.30688750237228
- type: nauc_ndcg_at_3_diff1
value: 29.70854623710537
- type: nauc_ndcg_at_3_max
value: 39.94336409131591
- type: nauc_ndcg_at_3_std
value: 27.22757989754428
- type: nauc_ndcg_at_5_diff1
value: 30.651845085418376
- type: nauc_ndcg_at_5_max
value: 40.37224782227242
- type: nauc_ndcg_at_5_std
value: 27.502645528938817
- type: nauc_precision_at_1000_diff1
value: -13.927590619742706
- type: nauc_precision_at_1000_max
value: 3.1836041302862386
- type: nauc_precision_at_1000_std
value: 15.58030701421384
- type: nauc_precision_at_100_diff1
value: -6.758322244317817
- type: nauc_precision_at_100_max
value: 28.118442940968187
- type: nauc_precision_at_100_std
value: 43.53996850999107
- type: nauc_precision_at_10_diff1
value: 7.804251693756052
- type: nauc_precision_at_10_max
value: 39.42439336826685
- type: nauc_precision_at_10_std
value: 41.41138537059063
- type: nauc_precision_at_1_diff1
value: 45.93444117911359
- type: nauc_precision_at_1_max
value: 51.62632337425907
- type: nauc_precision_at_1_std
value: 29.68452022378797
- type: nauc_precision_at_20_diff1
value: -0.12893175925907663
- type: nauc_precision_at_20_max
value: 35.05865541707333
- type: nauc_precision_at_20_std
value: 43.92422660338514
- type: nauc_precision_at_3_diff1
value: 16.156714450361957
- type: nauc_precision_at_3_max
value: 39.392697606797675
- type: nauc_precision_at_3_std
value: 35.04515973514324
- type: nauc_precision_at_5_diff1
value: 11.96106707384123
- type: nauc_precision_at_5_max
value: 38.93920971689429
- type: nauc_precision_at_5_std
value: 36.95318644468955
- type: nauc_recall_at_1000_diff1
value: 13.88981638274071
- type: nauc_recall_at_1000_max
value: 31.97503175789552
- type: nauc_recall_at_1000_std
value: 46.86459640727557
- type: nauc_recall_at_100_diff1
value: 21.231813262732814
- type: nauc_recall_at_100_max
value: 27.607024026953887
- type: nauc_recall_at_100_std
value: 33.43815591518041
- type: nauc_recall_at_10_diff1
value: 31.161072928150496
- type: nauc_recall_at_10_max
value: 16.792954450120913
- type: nauc_recall_at_10_std
value: 7.9865023792723395
- type: nauc_recall_at_1_diff1
value: 47.36289088982068
- type: nauc_recall_at_1_max
value: 16.040304183649507
- type: nauc_recall_at_1_std
value: 2.4515925926521254
- type: nauc_recall_at_20_diff1
value: 25.765142923465966
- type: nauc_recall_at_20_max
value: 16.296695698388213
- type: nauc_recall_at_20_std
value: 12.842983647767928
- type: nauc_recall_at_3_diff1
value: 32.22545303434119
- type: nauc_recall_at_3_max
value: 8.911149866544205
- type: nauc_recall_at_3_std
value: 0.6114376548438478
- type: nauc_recall_at_5_diff1
value: 31.513268164295926
- type: nauc_recall_at_5_max
value: 11.88810794407339
- type: nauc_recall_at_5_std
value: 2.2459671612376306
- type: ndcg_at_1
value: 40.5
- type: ndcg_at_10
value: 31.115
- type: ndcg_at_100
value: 34.508
- type: ndcg_at_1000
value: 41.71
- type: ndcg_at_20
value: 30.505
- type: ndcg_at_3
value: 35.303000000000004
- type: ndcg_at_5
value: 32.547
- type: precision_at_1
value: 49.75
- type: precision_at_10
value: 24.7
- type: precision_at_100
value: 8.012
- type: precision_at_1000
value: 1.818
- type: precision_at_20
value: 18.425
- type: precision_at_3
value: 38.417
- type: precision_at_5
value: 31.35
- type: recall_at_1
value: 6.665
- type: recall_at_10
value: 18.529999999999998
- type: recall_at_100
value: 39.309
- type: recall_at_1000
value: 63.085
- type: recall_at_20
value: 24.237000000000002
- type: recall_at_3
value: 11.648
- type: recall_at_5
value: 13.969000000000001
- task:
type: Retrieval
dataset:
name: MTEB DBPedia-PLHardNegatives (default)
type: mteb/DBPedia_PL_test_top_250_only_w_correct-v2
config: default
split: test
revision: bebc2b5c8f73cd6ba9d2a4664d5f3769e6ad557a
metrics:
- type: main_score
value: 36.334
- type: map_at_1
value: 7.4270000000000005
- type: map_at_10
value: 15.809999999999999
- type: map_at_100
value: 25.295
- type: map_at_1000
value: 28.994999999999997
- type: map_at_20
value: 18.598
- type: map_at_3
value: 11.225999999999999
- type: map_at_5
value: 13.075000000000001
- type: mrr_at_1
value: 56.49999999999999
- type: mrr_at_10
value: 67.59107142857142
- type: mrr_at_100
value: 67.97602561595816
- type: mrr_at_1000
value: 67.98142601983503
- type: mrr_at_20
value: 67.80010691385498
- type: mrr_at_3
value: 65.5
- type: mrr_at_5
value: 66.825
- type: nauc_map_at_1000_diff1
value: 19.03489213465321
- type: nauc_map_at_1000_max
value: 24.31248855223973
- type: nauc_map_at_1000_std
value: 7.6486353701964065
- type: nauc_map_at_100_diff1
value: 23.803948576163872
- type: nauc_map_at_100_max
value: 26.064916066562972
- type: nauc_map_at_100_std
value: 4.5603234154703065
- type: nauc_map_at_10_diff1
value: 34.852165552762905
- type: nauc_map_at_10_max
value: 15.937406490323783
- type: nauc_map_at_10_std
value: -11.21886485917206
- type: nauc_map_at_1_diff1
value: 43.611175943667455
- type: nauc_map_at_1_max
value: 10.29490789808112
- type: nauc_map_at_1_std
value: -15.47370286445684
- type: nauc_map_at_20_diff1
value: 31.63917106452436
- type: nauc_map_at_20_max
value: 20.02214953017864
- type: nauc_map_at_20_std
value: -5.944642243477304
- type: nauc_map_at_3_diff1
value: 38.40895845560947
- type: nauc_map_at_3_max
value: 11.73261168022514
- type: nauc_map_at_3_std
value: -15.957596656985743
- type: nauc_map_at_5_diff1
value: 37.74389955615709
- type: nauc_map_at_5_max
value: 12.530750051473461
- type: nauc_map_at_5_std
value: -14.904446849665357
- type: nauc_mrr_at_1000_diff1
value: 37.3255053078257
- type: nauc_mrr_at_1000_max
value: 50.092590673362835
- type: nauc_mrr_at_1000_std
value: 24.465063640168896
- type: nauc_mrr_at_100_diff1
value: 37.317631959351154
- type: nauc_mrr_at_100_max
value: 50.089186894932446
- type: nauc_mrr_at_100_std
value: 24.47297127967704
- type: nauc_mrr_at_10_diff1
value: 37.26619954875676
- type: nauc_mrr_at_10_max
value: 50.35898421281153
- type: nauc_mrr_at_10_std
value: 24.53041743892045
- type: nauc_mrr_at_1_diff1
value: 38.257605492082334
- type: nauc_mrr_at_1_max
value: 45.15981702574061
- type: nauc_mrr_at_1_std
value: 19.840646832561436
- type: nauc_mrr_at_20_diff1
value: 37.43862334380517
- type: nauc_mrr_at_20_max
value: 50.173131837502375
- type: nauc_mrr_at_20_std
value: 24.539969193655452
- type: nauc_mrr_at_3_diff1
value: 37.88117659952954
- type: nauc_mrr_at_3_max
value: 51.60950598444801
- type: nauc_mrr_at_3_std
value: 25.166999682440615
- type: nauc_mrr_at_5_diff1
value: 37.958493437638026
- type: nauc_mrr_at_5_max
value: 51.21047679102041
- type: nauc_mrr_at_5_std
value: 24.69873551695111
- type: nauc_ndcg_at_1000_diff1
value: 18.79475374007571
- type: nauc_ndcg_at_1000_max
value: 38.41026674964163
- type: nauc_ndcg_at_1000_std
value: 26.689990462447888
- type: nauc_ndcg_at_100_diff1
value: 21.578286919038224
- type: nauc_ndcg_at_100_max
value: 33.60574596089818
- type: nauc_ndcg_at_100_std
value: 13.551338023245407
- type: nauc_ndcg_at_10_diff1
value: 25.57361673709202
- type: nauc_ndcg_at_10_max
value: 32.54833248349918
- type: nauc_ndcg_at_10_std
value: 8.51937062532666
- type: nauc_ndcg_at_1_diff1
value: 31.81949553561505
- type: nauc_ndcg_at_1_max
value: 34.38816292397119
- type: nauc_ndcg_at_1_std
value: 13.948958424185824
- type: nauc_ndcg_at_20_diff1
value: 26.103449829594766
- type: nauc_ndcg_at_20_max
value: 30.71124051388171
- type: nauc_ndcg_at_20_std
value: 7.071826626406438
- type: nauc_ndcg_at_3_diff1
value: 23.45723135474484
- type: nauc_ndcg_at_3_max
value: 34.80165664743321
- type: nauc_ndcg_at_3_std
value: 11.811364107953635
- type: nauc_ndcg_at_5_diff1
value: 25.820575290072824
- type: nauc_ndcg_at_5_max
value: 33.57773696590368
- type: nauc_ndcg_at_5_std
value: 10.115752058469747
- type: nauc_precision_at_1000_diff1
value: -16.854445390790353
- type: nauc_precision_at_1000_max
value: -10.816821804734126
- type: nauc_precision_at_1000_std
value: -3.569694723301324
- type: nauc_precision_at_100_diff1
value: -17.072761519475527
- type: nauc_precision_at_100_max
value: 10.65661794744656
- type: nauc_precision_at_100_std
value: 20.505610434684947
- type: nauc_precision_at_10_diff1
value: -0.9054613184930507
- type: nauc_precision_at_10_max
value: 30.391584829217706
- type: nauc_precision_at_10_std
value: 24.808586474275025
- type: nauc_precision_at_1_diff1
value: 38.257605492082334
- type: nauc_precision_at_1_max
value: 45.15981702574061
- type: nauc_precision_at_1_std
value: 19.840646832561436
- type: nauc_precision_at_20_diff1
value: -7.2709845751747615
- type: nauc_precision_at_20_max
value: 25.023088848967213
- type: nauc_precision_at_20_std
value: 24.518659186798256
- type: nauc_precision_at_3_diff1
value: 9.282149063740338
- type: nauc_precision_at_3_max
value: 34.52938117524703
- type: nauc_precision_at_3_std
value: 18.985796468895796
- type: nauc_precision_at_5_diff1
value: 5.981279708090407
- type: nauc_precision_at_5_max
value: 31.74568145808379
- type: nauc_precision_at_5_std
value: 21.190093133655658
- type: nauc_recall_at_1000_diff1
value: 9.56810937763011
- type: nauc_recall_at_1000_max
value: 36.88125925346485
- type: nauc_recall_at_1000_std
value: 54.516273733852096
- type: nauc_recall_at_100_diff1
value: 12.66136659540159
- type: nauc_recall_at_100_max
value: 21.842810710889896
- type: nauc_recall_at_100_std
value: 11.099322582373153
- type: nauc_recall_at_10_diff1
value: 27.227630640264373
- type: nauc_recall_at_10_max
value: 8.920146050576527
- type: nauc_recall_at_10_std
value: -13.094871094982471
- type: nauc_recall_at_1_diff1
value: 43.611175943667455
- type: nauc_recall_at_1_max
value: 10.29490789808112
- type: nauc_recall_at_1_std
value: -15.47370286445684
- type: nauc_recall_at_20_diff1
value: 24.213720610882994
- type: nauc_recall_at_20_max
value: 13.984478640047193
- type: nauc_recall_at_20_std
value: -6.873995197727176
- type: nauc_recall_at_3_diff1
value: 34.7580051454075
- type: nauc_recall_at_3_max
value: 9.41880541336725
- type: nauc_recall_at_3_std
value: -16.155623757406694
- type: nauc_recall_at_5_diff1
value: 33.9246093125407
- type: nauc_recall_at_5_max
value: 7.8188437738274335
- type: nauc_recall_at_5_std
value: -16.27760332961706
- type: ndcg_at_1
value: 46.125
- type: ndcg_at_10
value: 36.334
- type: ndcg_at_100
value: 45.507
- type: ndcg_at_1000
value: 55.42
- type: ndcg_at_20
value: 36.356
- type: ndcg_at_3
value: 39.544000000000004
- type: ndcg_at_5
value: 37.282
- type: precision_at_1
value: 56.49999999999999
- type: precision_at_10
value: 30.099999999999998
- type: precision_at_100
value: 13.295000000000002
- type: precision_at_1000
value: 3.107
- type: precision_at_20
value: 24.05
- type: precision_at_3
value: 43.25
- type: precision_at_5
value: 36.7
- type: recall_at_1
value: 7.4270000000000005
- type: recall_at_10
value: 21.939
- type: recall_at_100
value: 57.275
- type: recall_at_1000
value: 87.541
- type: recall_at_20
value: 28.887
- type: recall_at_3
value: 12.488000000000001
- type: recall_at_5
value: 16.012
- task:
type: Clustering
dataset:
name: MTEB EightTagsClustering (default)
type: PL-MTEB/8tags-clustering
config: default
split: test
revision: 78b962b130c6690659c65abf67bf1c2f030606b6
metrics:
- type: main_score
value: 29.45128843333412
- type: v_measure
value: 29.45128843333412
- type: v_measure_std
value: 3.041162560667918
- type: main_score
value: 29.8763373396929
- type: v_measure
value: 29.8763373396929
- type: v_measure_std
value: 2.1856457067601442
- task:
type: Retrieval
dataset:
name: MTEB FiQA-PL (default)
type: clarin-knext/fiqa-pl
config: default
split: test
revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
metrics:
- type: main_score
value: 35.528
- type: map_at_1
value: 17.557000000000002
- type: map_at_10
value: 28.286
- type: map_at_100
value: 30.034
- type: map_at_1000
value: 30.23
- type: map_at_20
value: 29.26
- type: map_at_3
value: 24.845
- type: map_at_5
value: 26.499
- type: mrr_at_1
value: 34.72222222222222
- type: mrr_at_10
value: 43.146923378404864
- type: mrr_at_100
value: 44.04815902024235
- type: mrr_at_1000
value: 44.097903716068586
- type: mrr_at_20
value: 43.7156255652916
- type: mrr_at_3
value: 40.715020576131685
- type: mrr_at_5
value: 41.92644032921811
- type: nauc_map_at_1000_diff1
value: 33.644270831543075
- type: nauc_map_at_1000_max
value: 24.03453792787825
- type: nauc_map_at_1000_std
value: 1.97615287272658
- type: nauc_map_at_100_diff1
value: 33.6032740378985
- type: nauc_map_at_100_max
value: 23.89185578371163
- type: nauc_map_at_100_std
value: 1.8654578877539438
- type: nauc_map_at_10_diff1
value: 33.883307076533676
- type: nauc_map_at_10_max
value: 22.682305975492028
- type: nauc_map_at_10_std
value: 0.8046906577573549
- type: nauc_map_at_1_diff1
value: 37.655216700037144
- type: nauc_map_at_1_max
value: 16.668551169596526
- type: nauc_map_at_1_std
value: -4.0646987080934895
- type: nauc_map_at_20_diff1
value: 33.58718564397087
- type: nauc_map_at_20_max
value: 23.389386039635035
- type: nauc_map_at_20_std
value: 1.395995783937243
- type: nauc_map_at_3_diff1
value: 34.35572697234372
- type: nauc_map_at_3_max
value: 20.45983616887038
- type: nauc_map_at_3_std
value: -1.2736797152737924
- type: nauc_map_at_5_diff1
value: 34.34016596200666
- type: nauc_map_at_5_max
value: 22.418291988627736
- type: nauc_map_at_5_std
value: -0.44701086507254306
- type: nauc_mrr_at_1000_diff1
value: 36.19004469292243
- type: nauc_mrr_at_1000_max
value: 30.56126525504521
- type: nauc_mrr_at_1000_std
value: 3.4741128332372306
- type: nauc_mrr_at_100_diff1
value: 36.184227341579984
- type: nauc_mrr_at_100_max
value: 30.550618338595836
- type: nauc_mrr_at_100_std
value: 3.462976738014996
- type: nauc_mrr_at_10_diff1
value: 36.30215412647522
- type: nauc_mrr_at_10_max
value: 30.487801430449498
- type: nauc_mrr_at_10_std
value: 3.448188439511118
- type: nauc_mrr_at_1_diff1
value: 38.95670761428797
- type: nauc_mrr_at_1_max
value: 29.4564169058169
- type: nauc_mrr_at_1_std
value: -0.33742039884770314
- type: nauc_mrr_at_20_diff1
value: 36.22848718875828
- type: nauc_mrr_at_20_max
value: 30.594947294958303
- type: nauc_mrr_at_20_std
value: 3.4116016526988298
- type: nauc_mrr_at_3_diff1
value: 36.34985197043398
- type: nauc_mrr_at_3_max
value: 30.532575216956936
- type: nauc_mrr_at_3_std
value: 2.6086817144501344
- type: nauc_mrr_at_5_diff1
value: 36.43204592281127
- type: nauc_mrr_at_5_max
value: 30.510055166263804
- type: nauc_mrr_at_5_std
value: 2.7846933372715474
- type: nauc_ndcg_at_1000_diff1
value: 33.569589146097606
- type: nauc_ndcg_at_1000_max
value: 28.44966024793093
- type: nauc_ndcg_at_1000_std
value: 6.687377760452772
- type: nauc_ndcg_at_100_diff1
value: 33.41392761635845
- type: nauc_ndcg_at_100_max
value: 26.802853552558226
- type: nauc_ndcg_at_100_std
value: 5.728593254623888
- type: nauc_ndcg_at_10_diff1
value: 33.688317854955066
- type: nauc_ndcg_at_10_max
value: 24.328331387672677
- type: nauc_ndcg_at_10_std
value: 3.2688582818838525
- type: nauc_ndcg_at_1_diff1
value: 38.95670761428797
- type: nauc_ndcg_at_1_max
value: 29.4564169058169
- type: nauc_ndcg_at_1_std
value: -0.33742039884770314
- type: nauc_ndcg_at_20_diff1
value: 33.06908590284782
- type: nauc_ndcg_at_20_max
value: 25.552680732497357
- type: nauc_ndcg_at_20_std
value: 4.212872336532075
- type: nauc_ndcg_at_3_diff1
value: 33.802719939106936
- type: nauc_ndcg_at_3_max
value: 26.786920515224622
- type: nauc_ndcg_at_3_std
value: 1.997987618355165
- type: nauc_ndcg_at_5_diff1
value: 34.160233314172075
- type: nauc_ndcg_at_5_max
value: 25.400020591229104
- type: nauc_ndcg_at_5_std
value: 1.7012614030206177
- type: nauc_precision_at_1000_diff1
value: 2.513296682036913
- type: nauc_precision_at_1000_max
value: 29.943306602524
- type: nauc_precision_at_1000_std
value: 14.284110752896906
- type: nauc_precision_at_100_diff1
value: 9.00849244829456
- type: nauc_precision_at_100_max
value: 32.061761129561845
- type: nauc_precision_at_100_std
value: 15.263912490326792
- type: nauc_precision_at_10_diff1
value: 18.545801394437728
- type: nauc_precision_at_10_max
value: 33.1450392767742
- type: nauc_precision_at_10_std
value: 12.798727612731073
- type: nauc_precision_at_1_diff1
value: 38.95670761428797
- type: nauc_precision_at_1_max
value: 29.4564169058169
- type: nauc_precision_at_1_std
value: -0.33742039884770314
- type: nauc_precision_at_20_diff1
value: 14.32446132754539
- type: nauc_precision_at_20_max
value: 33.691221995211606
- type: nauc_precision_at_20_std
value: 14.279203240881522
- type: nauc_precision_at_3_diff1
value: 24.812141928018846
- type: nauc_precision_at_3_max
value: 32.503439032877026
- type: nauc_precision_at_3_std
value: 7.7068527544857215
- type: nauc_precision_at_5_diff1
value: 23.78762563464159
- type: nauc_precision_at_5_max
value: 34.70036993285849
- type: nauc_precision_at_5_std
value: 8.956553891218908
- type: nauc_recall_at_1000_diff1
value: 20.97047749110538
- type: nauc_recall_at_1000_max
value: 32.50998840246347
- type: nauc_recall_at_1000_std
value: 36.74691034137564
- type: nauc_recall_at_100_diff1
value: 24.410642765125317
- type: nauc_recall_at_100_max
value: 19.3720875912961
- type: nauc_recall_at_100_std
value: 14.436674160770957
- type: nauc_recall_at_10_diff1
value: 27.25521943152881
- type: nauc_recall_at_10_max
value: 16.53742681254563
- type: nauc_recall_at_10_std
value: 5.693616949046378
- type: nauc_recall_at_1_diff1
value: 37.655216700037144
- type: nauc_recall_at_1_max
value: 16.668551169596526
- type: nauc_recall_at_1_std
value: -4.0646987080934895
- type: nauc_recall_at_20_diff1
value: 24.374626441398036
- type: nauc_recall_at_20_max
value: 18.945220734293102
- type: nauc_recall_at_20_std
value: 8.277345594606045
- type: nauc_recall_at_3_diff1
value: 30.295438911225535
- type: nauc_recall_at_3_max
value: 17.72576332782552
- type: nauc_recall_at_3_std
value: -0.4150602462194551
- type: nauc_recall_at_5_diff1
value: 29.147471255769474
- type: nauc_recall_at_5_max
value: 18.160645721922407
- type: nauc_recall_at_5_std
value: 1.184845715848266
- type: ndcg_at_1
value: 34.721999999999994
- type: ndcg_at_10
value: 35.528
- type: ndcg_at_100
value: 42.251
- type: ndcg_at_1000
value: 45.693
- type: ndcg_at_20
value: 38.216
- type: ndcg_at_3
value: 32.151
- type: ndcg_at_5
value: 32.727000000000004
- type: precision_at_1
value: 34.721999999999994
- type: precision_at_10
value: 9.846
- type: precision_at_100
value: 1.662
- type: precision_at_1000
value: 0.22699999999999998
- type: precision_at_20
value: 6.010999999999999
- type: precision_at_3
value: 21.348
- type: precision_at_5
value: 15.123000000000001
- type: recall_at_1
value: 17.557000000000002
- type: recall_at_10
value: 42.065000000000005
- type: recall_at_100
value: 67.207
- type: recall_at_1000
value: 88.016
- type: recall_at_20
value: 50.345
- type: recall_at_3
value: 29.479
- type: recall_at_5
value: 33.992
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ace_Arab-pol_Latn)
type: mteb/flores
config: ace_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.592885375494071
- type: f1
value: 0.3181350268903164
- type: main_score
value: 0.3181350268903164
- type: precision
value: 0.30839411484572776
- type: recall
value: 0.592885375494071
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bam_Latn-pol_Latn)
type: mteb/flores
config: bam_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.727272727272727
- type: f1
value: 18.856205163673437
- type: main_score
value: 18.856205163673437
- type: precision
value: 17.853574155086342
- type: recall
value: 22.727272727272727
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (dzo_Tibt-pol_Latn)
type: mteb/flores
config: dzo_Tibt-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.1976284584980237
- type: f1
value: 0.09900990099009901
- type: main_score
value: 0.09900990099009901
- type: precision
value: 0.09891216208275716
- type: recall
value: 0.1976284584980237
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hin_Deva-pol_Latn)
type: mteb/flores
config: hin_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.9525691699604746
- type: f1
value: 2.897496113899276
- type: main_score
value: 2.897496113899276
- type: precision
value: 2.611381778726582
- type: recall
value: 3.9525691699604746
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (khm_Khmr-pol_Latn)
type: mteb/flores
config: khm_Khmr-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.418972332015812
- type: f1
value: 21.422759388174406
- type: main_score
value: 21.422759388174406
- type: precision
value: 20.7400345871417
- type: recall
value: 23.418972332015812
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mag_Deva-pol_Latn)
type: mteb/flores
config: mag_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.458498023715415
- type: f1
value: 2.622018112486536
- type: main_score
value: 2.622018112486536
- type: precision
value: 2.4537595577858893
- type: recall
value: 3.458498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pap_Latn-pol_Latn)
type: mteb/flores
config: pap_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.03162055335969
- type: f1
value: 35.30015219760418
- type: main_score
value: 35.30015219760418
- type: precision
value: 34.15844644794522
- type: recall
value: 39.03162055335969
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (sot_Latn-pol_Latn)
type: mteb/flores
config: sot_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.158102766798418
- type: f1
value: 17.69223633337849
- type: main_score
value: 17.69223633337849
- type: precision
value: 17.098070294852068
- type: recall
value: 20.158102766798418
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tur_Latn-pol_Latn)
type: mteb/flores
config: tur_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.703557312252965
- type: f1
value: 21.29177122803851
- type: main_score
value: 21.29177122803851
- type: precision
value: 20.34792343942746
- type: recall
value: 24.703557312252965
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ace_Latn-pol_Latn)
type: mteb/flores
config: ace_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.889328063241106
- type: f1
value: 23.06308953172751
- type: main_score
value: 23.06308953172751
- type: precision
value: 22.24893068053073
- type: recall
value: 25.889328063241106
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ban_Latn-pol_Latn)
type: mteb/flores
config: ban_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.494071146245062
- type: f1
value: 22.007814923395514
- type: main_score
value: 22.007814923395514
- type: precision
value: 21.18801029853241
- type: recall
value: 25.494071146245062
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ell_Grek-pol_Latn)
type: mteb/flores
config: ell_Grek-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.102766798418973
- type: f1
value: 6.988965766514098
- type: main_score
value: 6.988965766514098
- type: precision
value: 6.712602330760323
- type: recall
value: 8.102766798418973
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hne_Deva-pol_Latn)
type: mteb/flores
config: hne_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.371541501976284
- type: f1
value: 1.6313787028973608
- type: main_score
value: 1.6313787028973608
- type: precision
value: 1.4932697009729146
- type: recall
value: 2.371541501976284
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kik_Latn-pol_Latn)
type: mteb/flores
config: kik_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.31225296442688
- type: f1
value: 27.111449621000936
- type: main_score
value: 27.111449621000936
- type: precision
value: 25.53133982182309
- type: recall
value: 32.31225296442688
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mai_Deva-pol_Latn)
type: mteb/flores
config: mai_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.0395256916996045
- type: f1
value: 3.966855997318039
- type: main_score
value: 3.966855997318039
- type: precision
value: 3.6789065258502127
- type: recall
value: 5.0395256916996045
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pbt_Arab-pol_Latn)
type: mteb/flores
config: pbt_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.782608695652174
- type: f1
value: 9.121288821137288
- type: main_score
value: 9.121288821137288
- type: precision
value: 8.943568976230727
- type: recall
value: 9.782608695652174
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (spa_Latn-pol_Latn)
type: mteb/flores
config: spa_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 31.422924901185773
- type: f1
value: 29.66768938484047
- type: main_score
value: 29.66768938484047
- type: precision
value: 29.105673047225345
- type: recall
value: 31.422924901185773
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (twi_Latn-pol_Latn)
type: mteb/flores
config: twi_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 36.16600790513834
- type: f1
value: 31.626095086908773
- type: main_score
value: 31.626095086908773
- type: precision
value: 30.198784888700832
- type: recall
value: 36.16600790513834
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (acm_Arab-pol_Latn)
type: mteb/flores
config: acm_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.557312252964427
- type: f1
value: 2.721978575559138
- type: main_score
value: 2.721978575559138
- type: precision
value: 2.5283071397201833
- type: recall
value: 3.557312252964427
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bel_Cyrl-pol_Latn)
type: mteb/flores
config: bel_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.6561264822134385
- type: f1
value: 2.831898415680433
- type: main_score
value: 2.831898415680433
- type: precision
value: 2.683681277663466
- type: recall
value: 3.6561264822134385
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (eng_Latn-pol_Latn)
type: mteb/flores
config: eng_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 99.90118577075098
- type: f1
value: 99.86824769433464
- type: main_score
value: 99.86824769433464
- type: precision
value: 99.85177865612648
- type: recall
value: 99.90118577075098
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hrv_Latn-pol_Latn)
type: mteb/flores
config: hrv_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.52569169960474
- type: f1
value: 34.67037471251808
- type: main_score
value: 34.67037471251808
- type: precision
value: 33.32842236446319
- type: recall
value: 39.52569169960474
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kin_Latn-pol_Latn)
type: mteb/flores
config: kin_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 16.798418972332016
- type: f1
value: 14.429336215660468
- type: main_score
value: 14.429336215660468
- type: precision
value: 13.794164021713101
- type: recall
value: 16.798418972332016
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mal_Mlym-pol_Latn)
type: mteb/flores
config: mal_Mlym-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.3596837944664033
- type: f1
value: 2.4283903952876282
- type: main_score
value: 2.4283903952876282
- type: precision
value: 2.2272021456804065
- type: recall
value: 3.3596837944664033
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pes_Arab-pol_Latn)
type: mteb/flores
config: pes_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.312252964426877
- type: f1
value: 6.133645183085144
- type: main_score
value: 6.133645183085144
- type: precision
value: 5.840438054980056
- type: recall
value: 7.312252964426877
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (srd_Latn-pol_Latn)
type: mteb/flores
config: srd_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.37154150197628
- type: f1
value: 24.557303562561366
- type: main_score
value: 24.557303562561366
- type: precision
value: 23.69733617903604
- type: recall
value: 27.37154150197628
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tzm_Tfng-pol_Latn)
type: mteb/flores
config: tzm_Tfng-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.6561264822134385
- type: f1
value: 2.7323453897955785
- type: main_score
value: 2.7323453897955785
- type: precision
value: 2.5125182239806745
- type: recall
value: 3.6561264822134385
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (acq_Arab-pol_Latn)
type: mteb/flores
config: acq_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.6561264822134385
- type: f1
value: 2.7828303630661635
- type: main_score
value: 2.7828303630661635
- type: precision
value: 2.6216215063238377
- type: recall
value: 3.6561264822134385
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bem_Latn-pol_Latn)
type: mteb/flores
config: bem_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.418972332015812
- type: f1
value: 20.18154247440937
- type: main_score
value: 20.18154247440937
- type: precision
value: 19.337227107086584
- type: recall
value: 23.418972332015812
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (epo_Latn-pol_Latn)
type: mteb/flores
config: epo_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 34.58498023715415
- type: f1
value: 31.141139192708856
- type: main_score
value: 31.141139192708856
- type: precision
value: 30.228963674031846
- type: recall
value: 34.58498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hun_Latn-pol_Latn)
type: mteb/flores
config: hun_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.83794466403162
- type: f1
value: 18.382660044834967
- type: main_score
value: 18.382660044834967
- type: precision
value: 17.62388154204811
- type: recall
value: 21.83794466403162
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kir_Cyrl-pol_Latn)
type: mteb/flores
config: kir_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.7312252964426875
- type: f1
value: 4.390398521734955
- type: main_score
value: 4.390398521734955
- type: precision
value: 4.083283520585645
- type: recall
value: 5.7312252964426875
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mar_Deva-pol_Latn)
type: mteb/flores
config: mar_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.3596837944664033
- type: f1
value: 2.8885124537298448
- type: main_score
value: 2.8885124537298448
- type: precision
value: 2.7483235363670144
- type: recall
value: 3.3596837944664033
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (plt_Latn-pol_Latn)
type: mteb/flores
config: plt_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.490118577075098
- type: f1
value: 14.096422773395407
- type: main_score
value: 14.096422773395407
- type: precision
value: 13.352882758512802
- type: recall
value: 17.490118577075098
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (srp_Cyrl-pol_Latn)
type: mteb/flores
config: srp_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.940711462450593
- type: f1
value: 3.9464130963200947
- type: main_score
value: 3.9464130963200947
- type: precision
value: 3.6485591702983005
- type: recall
value: 4.940711462450593
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (uig_Arab-pol_Latn)
type: mteb/flores
config: uig_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.422924901185771
- type: f1
value: 5.005627451279625
- type: main_score
value: 5.005627451279625
- type: precision
value: 4.641382098959696
- type: recall
value: 6.422924901185771
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (aeb_Arab-pol_Latn)
type: mteb/flores
config: aeb_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.557312252964427
- type: f1
value: 2.6480295253947594
- type: main_score
value: 2.6480295253947594
- type: precision
value: 2.4734523333559957
- type: recall
value: 3.557312252964427
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ben_Beng-pol_Latn)
type: mteb/flores
config: ben_Beng-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.458498023715415
- type: f1
value: 2.9105495953322036
- type: main_score
value: 2.9105495953322036
- type: precision
value: 2.7819736015310457
- type: recall
value: 3.458498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (est_Latn-pol_Latn)
type: mteb/flores
config: est_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.122529644268774
- type: f1
value: 19.955099258098155
- type: main_score
value: 19.955099258098155
- type: precision
value: 19.23495074794038
- type: recall
value: 23.122529644268774
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hye_Armn-pol_Latn)
type: mteb/flores
config: hye_Armn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.446640316205533
- type: f1
value: 3.2768240711744383
- type: main_score
value: 3.2768240711744383
- type: precision
value: 3.0602119144770374
- type: recall
value: 4.446640316205533
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kmb_Latn-pol_Latn)
type: mteb/flores
config: kmb_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 14.32806324110672
- type: f1
value: 12.331135021968532
- type: main_score
value: 12.331135021968532
- type: precision
value: 11.91995364188873
- type: recall
value: 14.32806324110672
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (min_Arab-pol_Latn)
type: mteb/flores
config: min_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.3952569169960474
- type: f1
value: 0.20182057731464847
- type: main_score
value: 0.20182057731464847
- type: precision
value: 0.1997649956026004
- type: recall
value: 0.3952569169960474
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ace_Arab)
type: mteb/flores
config: pol_Latn-ace_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.592885375494071
- type: f1
value: 0.07409945181279336
- type: main_score
value: 0.07409945181279336
- type: precision
value: 0.04302453996987383
- type: recall
value: 0.592885375494071
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bam_Latn)
type: mteb/flores
config: pol_Latn-bam_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.40711462450593
- type: f1
value: 19.400581302755214
- type: main_score
value: 19.400581302755214
- type: precision
value: 17.845439584570016
- type: recall
value: 24.40711462450593
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-dzo_Tibt)
type: mteb/flores
config: pol_Latn-dzo_Tibt
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.2964426877470355
- type: f1
value: 0.009811695142164987
- type: main_score
value: 0.009811695142164987
- type: precision
value: 0.005088402404388525
- type: recall
value: 0.2964426877470355
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hin_Deva)
type: mteb/flores
config: pol_Latn-hin_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.806324110671936
- type: f1
value: 4.700948820933142
- type: main_score
value: 4.700948820933142
- type: precision
value: 4.085403094012081
- type: recall
value: 7.806324110671936
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-khm_Khmr)
type: mteb/flores
config: pol_Latn-khm_Khmr
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 28.458498023715418
- type: f1
value: 20.920653101020132
- type: main_score
value: 20.920653101020132
- type: precision
value: 18.878444679295004
- type: recall
value: 28.458498023715418
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mag_Deva)
type: mteb/flores
config: pol_Latn-mag_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.905138339920949
- type: f1
value: 4.7160981251785765
- type: main_score
value: 4.7160981251785765
- type: precision
value: 4.084836368220641
- type: recall
value: 7.905138339920949
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-pap_Latn)
type: mteb/flores
config: pol_Latn-pap_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 48.418972332015805
- type: f1
value: 39.21844495373907
- type: main_score
value: 39.21844495373907
- type: precision
value: 35.95251819436602
- type: recall
value: 48.418972332015805
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-sot_Latn)
type: mteb/flores
config: pol_Latn-sot_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.249011857707508
- type: f1
value: 20.207185491276398
- type: main_score
value: 20.207185491276398
- type: precision
value: 17.683968963307308
- type: recall
value: 29.249011857707508
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tur_Latn)
type: mteb/flores
config: pol_Latn-tur_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.841897233201582
- type: f1
value: 23.310580092941755
- type: main_score
value: 23.310580092941755
- type: precision
value: 21.51464711072004
- type: recall
value: 29.841897233201582
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ace_Latn)
type: mteb/flores
config: pol_Latn-ace_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 35.276679841897234
- type: f1
value: 26.56043312355645
- type: main_score
value: 26.56043312355645
- type: precision
value: 24.029183691544187
- type: recall
value: 35.276679841897234
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ban_Latn)
type: mteb/flores
config: pol_Latn-ban_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 34.28853754940712
- type: f1
value: 25.31387739735394
- type: main_score
value: 25.31387739735394
- type: precision
value: 22.630872914963824
- type: recall
value: 34.28853754940712
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ell_Grek)
type: mteb/flores
config: pol_Latn-ell_Grek
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 12.944664031620553
- type: f1
value: 7.700420087043759
- type: main_score
value: 7.700420087043759
- type: precision
value: 6.557677527690299
- type: recall
value: 12.944664031620553
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hne_Deva)
type: mteb/flores
config: pol_Latn-hne_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.027667984189724
- type: f1
value: 3.7449153372588277
- type: main_score
value: 3.7449153372588277
- type: precision
value: 3.233029505119999
- type: recall
value: 6.027667984189724
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kik_Latn)
type: mteb/flores
config: pol_Latn-kik_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 33.794466403162055
- type: f1
value: 27.039119650545697
- type: main_score
value: 27.039119650545697
- type: precision
value: 24.780510943296644
- type: recall
value: 33.794466403162055
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mai_Deva)
type: mteb/flores
config: pol_Latn-mai_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.683794466403162
- type: f1
value: 6.347035635402815
- type: main_score
value: 6.347035635402815
- type: precision
value: 5.645462573386804
- type: recall
value: 9.683794466403162
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-pbt_Arab)
type: mteb/flores
config: pol_Latn-pbt_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 13.83399209486166
- type: f1
value: 8.577476120246123
- type: main_score
value: 8.577476120246123
- type: precision
value: 7.307301107422271
- type: recall
value: 13.83399209486166
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-spa_Latn)
type: mteb/flores
config: pol_Latn-spa_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 55.434782608695656
- type: f1
value: 47.04059938743733
- type: main_score
value: 47.04059938743733
- type: precision
value: 43.96519899731363
- type: recall
value: 55.434782608695656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-twi_Latn)
type: mteb/flores
config: pol_Latn-twi_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 36.95652173913043
- type: f1
value: 29.213974786225428
- type: main_score
value: 29.213974786225428
- type: precision
value: 26.67718658701861
- type: recall
value: 36.95652173913043
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-acm_Arab)
type: mteb/flores
config: pol_Latn-acm_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.015810276679842
- type: f1
value: 3.8689788384375685
- type: main_score
value: 3.8689788384375685
- type: precision
value: 3.295533948722674
- type: recall
value: 7.015810276679842
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bel_Cyrl)
type: mteb/flores
config: pol_Latn-bel_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.312252964426877
- type: f1
value: 4.433740291213768
- type: main_score
value: 4.433740291213768
- type: precision
value: 3.7685799545496645
- type: recall
value: 7.312252964426877
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-eng_Latn)
type: mteb/flores
config: pol_Latn-eng_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 98.81422924901186
- type: f1
value: 98.41897233201581
- type: main_score
value: 98.41897233201581
- type: precision
value: 98.22134387351778
- type: recall
value: 98.81422924901186
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hrv_Latn)
type: mteb/flores
config: pol_Latn-hrv_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 41.798418972332016
- type: f1
value: 34.01400189073114
- type: main_score
value: 34.01400189073114
- type: precision
value: 31.4615696984529
- type: recall
value: 41.798418972332016
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kin_Latn)
type: mteb/flores
config: pol_Latn-kin_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.134387351778656
- type: f1
value: 14.941913199793063
- type: main_score
value: 14.941913199793063
- type: precision
value: 13.09437075957867
- type: recall
value: 22.134387351778656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mal_Mlym)
type: mteb/flores
config: pol_Latn-mal_Mlym
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.905138339920949
- type: f1
value: 4.676431663013731
- type: main_score
value: 4.676431663013731
- type: precision
value: 3.963416458591999
- type: recall
value: 7.905138339920949
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-pes_Arab)
type: mteb/flores
config: pol_Latn-pes_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.6600790513834
- type: f1
value: 7.168267060928982
- type: main_score
value: 7.168267060928982
- type: precision
value: 6.158810820381868
- type: recall
value: 11.6600790513834
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-srd_Latn)
type: mteb/flores
config: pol_Latn-srd_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.723320158102766
- type: f1
value: 31.331230254155155
- type: main_score
value: 31.331230254155155
- type: precision
value: 28.576141140370382
- type: recall
value: 39.723320158102766
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tzm_Tfng)
type: mteb/flores
config: pol_Latn-tzm_Tfng
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.312252964426877
- type: f1
value: 3.9530501105195044
- type: main_score
value: 3.9530501105195044
- type: precision
value: 3.3006450734694783
- type: recall
value: 7.312252964426877
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-acq_Arab)
type: mteb/flores
config: pol_Latn-acq_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.521739130434782
- type: f1
value: 3.7118615772057084
- type: main_score
value: 3.7118615772057084
- type: precision
value: 3.140963634812984
- type: recall
value: 6.521739130434782
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bem_Latn)
type: mteb/flores
config: pol_Latn-bem_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.940711462450594
- type: f1
value: 21.838134223625964
- type: main_score
value: 21.838134223625964
- type: precision
value: 19.601437433830295
- type: recall
value: 29.940711462450594
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-epo_Latn)
type: mteb/flores
config: pol_Latn-epo_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 45.25691699604743
- type: f1
value: 37.470343665995834
- type: main_score
value: 37.470343665995834
- type: precision
value: 34.91015394428969
- type: recall
value: 45.25691699604743
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hun_Latn)
type: mteb/flores
config: pol_Latn-hun_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.766798418972332
- type: f1
value: 19.856585262886124
- type: main_score
value: 19.856585262886124
- type: precision
value: 17.632943238979625
- type: recall
value: 27.766798418972332
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kir_Cyrl)
type: mteb/flores
config: pol_Latn-kir_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.980237154150199
- type: f1
value: 5.976712030682037
- type: main_score
value: 5.976712030682037
- type: precision
value: 5.1168105551227905
- type: recall
value: 9.980237154150199
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mar_Deva)
type: mteb/flores
config: pol_Latn-mar_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.312252964426877
- type: f1
value: 4.145286234223563
- type: main_score
value: 4.145286234223563
- type: precision
value: 3.5337956030345037
- type: recall
value: 7.312252964426877
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-plt_Latn)
type: mteb/flores
config: pol_Latn-plt_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.90118577075099
- type: f1
value: 18.082595637436008
- type: main_score
value: 18.082595637436008
- type: precision
value: 16.16756856262583
- type: recall
value: 24.90118577075099
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-srp_Cyrl)
type: mteb/flores
config: pol_Latn-srp_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.806324110671936
- type: f1
value: 4.668414246710413
- type: main_score
value: 4.668414246710413
- type: precision
value: 4.07016381507616
- type: recall
value: 7.806324110671936
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-uig_Arab)
type: mteb/flores
config: pol_Latn-uig_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.58498023715415
- type: f1
value: 5.958798680475491
- type: main_score
value: 5.958798680475491
- type: precision
value: 5.1177497873792746
- type: recall
value: 9.58498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-aeb_Arab)
type: mteb/flores
config: pol_Latn-aeb_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.8181818181818175
- type: f1
value: 3.75515263763757
- type: main_score
value: 3.75515263763757
- type: precision
value: 3.1582416170556162
- type: recall
value: 6.8181818181818175
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ben_Beng)
type: mteb/flores
config: pol_Latn-ben_Beng
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.608695652173914
- type: f1
value: 4.041225756257413
- type: main_score
value: 4.041225756257413
- type: precision
value: 3.324217301397562
- type: recall
value: 7.608695652173914
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-est_Latn)
type: mteb/flores
config: pol_Latn-est_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.347826086956523
- type: f1
value: 22.32776391373229
- type: main_score
value: 22.32776391373229
- type: precision
value: 20.281558764760348
- type: recall
value: 29.347826086956523
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hye_Armn)
type: mteb/flores
config: pol_Latn-hye_Armn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.992094861660078
- type: f1
value: 5.410264691947379
- type: main_score
value: 5.410264691947379
- type: precision
value: 4.551435410943297
- type: recall
value: 8.992094861660078
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kmb_Latn)
type: mteb/flores
config: pol_Latn-kmb_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.33201581027668
- type: f1
value: 15.508983949241994
- type: main_score
value: 15.508983949241994
- type: precision
value: 13.84626446237118
- type: recall
value: 22.33201581027668
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-min_Arab)
type: mteb/flores
config: pol_Latn-min_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.4940711462450593
- type: f1
value: 0.1263500946050829
- type: main_score
value: 0.1263500946050829
- type: precision
value: 0.1133716826651609
- type: recall
value: 0.4940711462450593
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ssw_Latn)
type: mteb/flores
config: pol_Latn-ssw_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.948616600790515
- type: f1
value: 13.737818978807919
- type: main_score
value: 13.737818978807919
- type: precision
value: 11.8912676418156
- type: recall
value: 20.948616600790515
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ukr_Cyrl)
type: mteb/flores
config: pol_Latn-ukr_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.015810276679842
- type: f1
value: 3.949638010614578
- type: main_score
value: 3.949638010614578
- type: precision
value: 3.351660503470364
- type: recall
value: 7.015810276679842
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-afr_Latn)
type: mteb/flores
config: pol_Latn-afr_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 42.78656126482213
- type: f1
value: 34.60139378961342
- type: main_score
value: 34.60139378961342
- type: precision
value: 32.04002903113575
- type: recall
value: 42.78656126482213
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bho_Deva)
type: mteb/flores
config: pol_Latn-bho_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.893280632411066
- type: f1
value: 5.424250733521232
- type: main_score
value: 5.424250733521232
- type: precision
value: 4.6840650669488015
- type: recall
value: 8.893280632411066
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-eus_Latn)
type: mteb/flores
config: pol_Latn-eus_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.94466403162055
- type: f1
value: 29.129736096139265
- type: main_score
value: 29.129736096139265
- type: precision
value: 26.27383239290354
- type: recall
value: 37.94466403162055
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ibo_Latn)
type: mteb/flores
config: pol_Latn-ibo_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.82608695652174
- type: f1
value: 18.160396366918103
- type: main_score
value: 18.160396366918103
- type: precision
value: 16.68498579812809
- type: recall
value: 22.82608695652174
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kmr_Latn)
type: mteb/flores
config: pol_Latn-kmr_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.83794466403162
- type: f1
value: 16.69834842262613
- type: main_score
value: 16.69834842262613
- type: precision
value: 15.096012124362323
- type: recall
value: 21.83794466403162
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-min_Latn)
type: mteb/flores
config: pol_Latn-min_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 33.99209486166008
- type: f1
value: 25.434667166386532
- type: main_score
value: 25.434667166386532
- type: precision
value: 22.89181280773553
- type: recall
value: 33.99209486166008
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-por_Latn)
type: mteb/flores
config: pol_Latn-por_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 48.71541501976285
- type: f1
value: 39.9428047797613
- type: main_score
value: 39.9428047797613
- type: precision
value: 36.89033189033189
- type: recall
value: 48.71541501976285
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-sun_Latn)
type: mteb/flores
config: pol_Latn-sun_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 34.387351778656125
- type: f1
value: 26.088610555013712
- type: main_score
value: 26.088610555013712
- type: precision
value: 23.44616594047338
- type: recall
value: 34.387351778656125
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-umb_Latn)
type: mteb/flores
config: pol_Latn-umb_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.34387351778656
- type: f1
value: 15.03361444124914
- type: main_score
value: 15.03361444124914
- type: precision
value: 13.457627923107571
- type: recall
value: 21.34387351778656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ajp_Arab)
type: mteb/flores
config: pol_Latn-ajp_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.288537549407115
- type: f1
value: 5.414032335360037
- type: main_score
value: 5.414032335360037
- type: precision
value: 4.607723748005992
- type: recall
value: 9.288537549407115
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bjn_Arab)
type: mteb/flores
config: pol_Latn-bjn_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.4940711462450593
- type: f1
value: 0.11765254656700863
- type: main_score
value: 0.11765254656700863
- type: precision
value: 0.10873873255364525
- type: recall
value: 0.4940711462450593
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ewe_Latn)
type: mteb/flores
config: pol_Latn-ewe_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.976284584980238
- type: f1
value: 21.945314237804357
- type: main_score
value: 21.945314237804357
- type: precision
value: 20.516700032510307
- type: recall
value: 26.976284584980238
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ilo_Latn)
type: mteb/flores
config: pol_Latn-ilo_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.32806324110672
- type: f1
value: 30.38183785911059
- type: main_score
value: 30.38183785911059
- type: precision
value: 27.592691125299822
- type: recall
value: 39.32806324110672
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-knc_Arab)
type: mteb/flores
config: pol_Latn-knc_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.881422924901186
- type: f1
value: 5.620639548496682
- type: main_score
value: 5.620639548496682
- type: precision
value: 4.632203265894544
- type: recall
value: 9.881422924901186
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mkd_Cyrl)
type: mteb/flores
config: pol_Latn-mkd_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.201581027667984
- type: f1
value: 5.756667198483056
- type: main_score
value: 5.756667198483056
- type: precision
value: 5.172948249340367
- type: recall
value: 8.201581027667984
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-prs_Arab)
type: mteb/flores
config: pol_Latn-prs_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.782608695652174
- type: f1
value: 5.919630385538823
- type: main_score
value: 5.919630385538823
- type: precision
value: 5.130159105954237
- type: recall
value: 9.782608695652174
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-swe_Latn)
type: mteb/flores
config: pol_Latn-swe_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 45.355731225296445
- type: f1
value: 36.27500518804867
- type: main_score
value: 36.27500518804867
- type: precision
value: 33.26172976123569
- type: recall
value: 45.355731225296445
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-urd_Arab)
type: mteb/flores
config: pol_Latn-urd_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.632411067193676
- type: f1
value: 3.569460684222274
- type: main_score
value: 3.569460684222274
- type: precision
value: 3.1240488378742373
- type: recall
value: 5.632411067193676
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-aka_Latn)
type: mteb/flores
config: pol_Latn-aka_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 36.56126482213439
- type: f1
value: 29.486626632613916
- type: main_score
value: 29.486626632613916
- type: precision
value: 27.144587132235355
- type: recall
value: 36.56126482213439
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bjn_Latn)
type: mteb/flores
config: pol_Latn-bjn_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 31.027667984189723
- type: f1
value: 23.143749721435146
- type: main_score
value: 23.143749721435146
- type: precision
value: 20.753021818980315
- type: recall
value: 31.027667984189723
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fao_Latn)
type: mteb/flores
config: pol_Latn-fao_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 30.434782608695656
- type: f1
value: 22.605249989130634
- type: main_score
value: 22.605249989130634
- type: precision
value: 20.2527359827261
- type: recall
value: 30.434782608695656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ind_Latn)
type: mteb/flores
config: pol_Latn-ind_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.648221343873516
- type: f1
value: 28.81205301932887
- type: main_score
value: 28.81205301932887
- type: precision
value: 26.10980623345404
- type: recall
value: 37.648221343873516
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-knc_Latn)
type: mteb/flores
config: pol_Latn-knc_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 31.719367588932805
- type: f1
value: 25.271598735037472
- type: main_score
value: 25.271598735037472
- type: precision
value: 23.153872856640987
- type: recall
value: 31.719367588932805
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mlt_Latn)
type: mteb/flores
config: pol_Latn-mlt_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.74703557312253
- type: f1
value: 29.91421484751524
- type: main_score
value: 29.91421484751524
- type: precision
value: 27.373131717945178
- type: recall
value: 37.74703557312253
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-quy_Latn)
type: mteb/flores
config: pol_Latn-quy_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 31.32411067193676
- type: f1
value: 22.65035601201609
- type: main_score
value: 22.65035601201609
- type: precision
value: 20.25053685652812
- type: recall
value: 31.32411067193676
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-swh_Latn)
type: mteb/flores
config: pol_Latn-swh_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.209486166007903
- type: f1
value: 17.217401340425052
- type: main_score
value: 17.217401340425052
- type: precision
value: 15.316212104443727
- type: recall
value: 24.209486166007903
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-uzn_Latn)
type: mteb/flores
config: pol_Latn-uzn_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.284584980237153
- type: f1
value: 18.861504835791653
- type: main_score
value: 18.861504835791653
- type: precision
value: 16.75885497785852
- type: recall
value: 26.284584980237153
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-als_Latn)
type: mteb/flores
config: pol_Latn-als_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.905138339920946
- type: f1
value: 26.20568763315395
- type: main_score
value: 26.20568763315395
- type: precision
value: 24.225254735383192
- type: recall
value: 32.905138339920946
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bod_Tibt)
type: mteb/flores
config: pol_Latn-bod_Tibt
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.434782608695652
- type: f1
value: 2.0762499375776593
- type: main_score
value: 2.0762499375776593
- type: precision
value: 1.584450632089665
- type: recall
value: 5.434782608695652
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fij_Latn)
type: mteb/flores
config: pol_Latn-fij_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.110671936758894
- type: f1
value: 16.493571645324778
- type: main_score
value: 16.493571645324778
- type: precision
value: 14.493070973297389
- type: recall
value: 24.110671936758894
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-isl_Latn)
type: mteb/flores
config: pol_Latn-isl_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.592885375494074
- type: f1
value: 18.80255539753331
- type: main_score
value: 18.80255539753331
- type: precision
value: 16.858735659377956
- type: recall
value: 25.592885375494074
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kon_Latn)
type: mteb/flores
config: pol_Latn-kon_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.173913043478258
- type: f1
value: 19.474921255779222
- type: main_score
value: 19.474921255779222
- type: precision
value: 17.42934918318192
- type: recall
value: 27.173913043478258
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mni_Beng)
type: mteb/flores
config: pol_Latn-mni_Beng
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.7312252964426875
- type: f1
value: 2.6892720436412247
- type: main_score
value: 2.6892720436412247
- type: precision
value: 2.13032205646918
- type: recall
value: 5.7312252964426875
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ron_Latn)
type: mteb/flores
config: pol_Latn-ron_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 50.39525691699605
- type: f1
value: 42.86300765549777
- type: main_score
value: 42.86300765549777
- type: precision
value: 40.16924253831368
- type: recall
value: 50.39525691699605
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-szl_Latn)
type: mteb/flores
config: pol_Latn-szl_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 87.94466403162056
- type: f1
value: 84.61791831357048
- type: main_score
value: 84.61791831357048
- type: precision
value: 83.06982872200265
- type: recall
value: 87.94466403162056
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-vec_Latn)
type: mteb/flores
config: pol_Latn-vec_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 47.03557312252965
- type: f1
value: 39.26110341130104
- type: main_score
value: 39.26110341130104
- type: precision
value: 36.65560888386975
- type: recall
value: 47.03557312252965
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-amh_Ethi)
type: mteb/flores
config: pol_Latn-amh_Ethi
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.213438735177865
- type: f1
value: 4.229592189919405
- type: main_score
value: 4.229592189919405
- type: precision
value: 3.6053747800289306
- type: recall
value: 7.213438735177865
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bos_Latn)
type: mteb/flores
config: pol_Latn-bos_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 41.205533596837945
- type: f1
value: 33.10834279905426
- type: main_score
value: 33.10834279905426
- type: precision
value: 30.403204886900536
- type: recall
value: 41.205533596837945
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fin_Latn)
type: mteb/flores
config: pol_Latn-fin_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.841897233201582
- type: f1
value: 21.713522647146743
- type: main_score
value: 21.713522647146743
- type: precision
value: 19.350322170716574
- type: recall
value: 29.841897233201582
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ita_Latn)
type: mteb/flores
config: pol_Latn-ita_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 50.29644268774703
- type: f1
value: 40.906659765355414
- type: main_score
value: 40.906659765355414
- type: precision
value: 37.68257105213627
- type: recall
value: 50.29644268774703
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kor_Hang)
type: mteb/flores
config: pol_Latn-kor_Hang
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.264822134387352
- type: f1
value: 5.931697077593314
- type: main_score
value: 5.931697077593314
- type: precision
value: 4.9535659231074884
- type: recall
value: 11.264822134387352
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mos_Latn)
type: mteb/flores
config: pol_Latn-mos_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.40711462450593
- type: f1
value: 18.514184619660327
- type: main_score
value: 18.514184619660327
- type: precision
value: 16.817790607446316
- type: recall
value: 24.40711462450593
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-run_Latn)
type: mteb/flores
config: pol_Latn-run_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.134387351778656
- type: f1
value: 15.38932603408888
- type: main_score
value: 15.38932603408888
- type: precision
value: 13.646404187542108
- type: recall
value: 22.134387351778656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tam_Taml)
type: mteb/flores
config: pol_Latn-tam_Taml
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.782608695652174
- type: f1
value: 5.6178894438842555
- type: main_score
value: 5.6178894438842555
- type: precision
value: 4.75356748528658
- type: recall
value: 9.782608695652174
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-vie_Latn)
type: mteb/flores
config: pol_Latn-vie_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.446640316205535
- type: f1
value: 23.58383601466605
- type: main_score
value: 23.58383601466605
- type: precision
value: 21.79765810879941
- type: recall
value: 29.446640316205535
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-apc_Arab)
type: mteb/flores
config: pol_Latn-apc_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.58498023715415
- type: f1
value: 5.606078233293074
- type: main_score
value: 5.606078233293074
- type: precision
value: 4.687138313620527
- type: recall
value: 9.58498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bug_Latn)
type: mteb/flores
config: pol_Latn-bug_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.31225296442688
- type: f1
value: 24.07572142528976
- type: main_score
value: 24.07572142528976
- type: precision
value: 21.67035670741204
- type: recall
value: 32.31225296442688
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fon_Latn)
type: mteb/flores
config: pol_Latn-fon_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.07509881422925
- type: f1
value: 21.33543800292812
- type: main_score
value: 21.33543800292812
- type: precision
value: 19.557752665590193
- type: recall
value: 27.07509881422925
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-jav_Latn)
type: mteb/flores
config: pol_Latn-jav_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.509881422924906
- type: f1
value: 23.972031207703143
- type: main_score
value: 23.972031207703143
- type: precision
value: 21.51591043098832
- type: recall
value: 32.509881422924906
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lao_Laoo)
type: mteb/flores
config: pol_Latn-lao_Laoo
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 35.37549407114625
- type: f1
value: 28.995182737771664
- type: main_score
value: 28.995182737771664
- type: precision
value: 27.077181737448885
- type: recall
value: 35.37549407114625
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mri_Latn)
type: mteb/flores
config: pol_Latn-mri_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.134387351778656
- type: f1
value: 15.354442612607786
- type: main_score
value: 15.354442612607786
- type: precision
value: 13.594571086102247
- type: recall
value: 22.134387351778656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-rus_Cyrl)
type: mteb/flores
config: pol_Latn-rus_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.992094861660078
- type: f1
value: 5.8135612152195755
- type: main_score
value: 5.8135612152195755
- type: precision
value: 5.163711679758252
- type: recall
value: 8.992094861660078
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-taq_Latn)
type: mteb/flores
config: pol_Latn-taq_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.80632411067194
- type: f1
value: 26.83270577364974
- type: main_score
value: 26.83270577364974
- type: precision
value: 24.99793839961824
- type: recall
value: 32.80632411067194
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-war_Latn)
type: mteb/flores
config: pol_Latn-war_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 46.14624505928854
- type: f1
value: 37.38924037095973
- type: main_score
value: 37.38924037095973
- type: precision
value: 34.53650072646034
- type: recall
value: 46.14624505928854
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-arb_Arab)
type: mteb/flores
config: pol_Latn-arb_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.521739130434782
- type: f1
value: 3.5196469175927976
- type: main_score
value: 3.5196469175927976
- type: precision
value: 2.9206974315601584
- type: recall
value: 6.521739130434782
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bul_Cyrl)
type: mteb/flores
config: pol_Latn-bul_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.782608695652174
- type: f1
value: 7.0918258926674085
- type: main_score
value: 7.0918258926674085
- type: precision
value: 6.34613789429909
- type: recall
value: 9.782608695652174
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fra_Latn)
type: mteb/flores
config: pol_Latn-fra_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 59.387351778656125
- type: f1
value: 51.296113306982875
- type: main_score
value: 51.296113306982875
- type: precision
value: 48.246403532528845
- type: recall
value: 59.387351778656125
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-jpn_Jpan)
type: mteb/flores
config: pol_Latn-jpn_Jpan
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.9644268774703555
- type: f1
value: 0.944206619732386
- type: main_score
value: 0.944206619732386
- type: precision
value: 0.6727116823200325
- type: recall
value: 2.9644268774703555
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lij_Latn)
type: mteb/flores
config: pol_Latn-lij_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 43.77470355731226
- type: f1
value: 35.2610249582756
- type: main_score
value: 35.2610249582756
- type: precision
value: 32.377518863437835
- type: recall
value: 43.77470355731226
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-mya_Mymr)
type: mteb/flores
config: pol_Latn-mya_Mymr
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.486166007905137
- type: f1
value: 4.685784685126671
- type: main_score
value: 4.685784685126671
- type: precision
value: 3.7744225331158545
- type: recall
value: 9.486166007905137
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-sag_Latn)
type: mteb/flores
config: pol_Latn-sag_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.604743083003953
- type: f1
value: 18.7955635422213
- type: main_score
value: 18.7955635422213
- type: precision
value: 17.210956257762234
- type: recall
value: 24.604743083003953
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-taq_Tfng)
type: mteb/flores
config: pol_Latn-taq_Tfng
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 10.375494071146244
- type: f1
value: 5.969657887031101
- type: main_score
value: 5.969657887031101
- type: precision
value: 5.113323685856255
- type: recall
value: 10.375494071146244
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-wol_Latn)
type: mteb/flores
config: pol_Latn-wol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.446640316205535
- type: f1
value: 22.516172232601395
- type: main_score
value: 22.516172232601395
- type: precision
value: 20.50913832737827
- type: recall
value: 29.446640316205535
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-arb_Latn)
type: mteb/flores
config: pol_Latn-arb_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.885375494071145
- type: f1
value: 11.136634966921527
- type: main_score
value: 11.136634966921527
- type: precision
value: 9.470246749242751
- type: recall
value: 17.885375494071145
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-cat_Latn)
type: mteb/flores
config: pol_Latn-cat_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 53.952569169960476
- type: f1
value: 45.5981348471467
- type: main_score
value: 45.5981348471467
- type: precision
value: 42.58885438233265
- type: recall
value: 53.952569169960476
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fur_Latn)
type: mteb/flores
config: pol_Latn-fur_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 43.97233201581028
- type: f1
value: 35.834735093628375
- type: main_score
value: 35.834735093628375
- type: precision
value: 33.147622853650525
- type: recall
value: 43.97233201581028
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kab_Latn)
type: mteb/flores
config: pol_Latn-kab_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.857707509881422
- type: f1
value: 7.397762207050744
- type: main_score
value: 7.397762207050744
- type: precision
value: 6.311522971296096
- type: recall
value: 11.857707509881422
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lim_Latn)
type: mteb/flores
config: pol_Latn-lim_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 45.8498023715415
- type: f1
value: 37.7763778885611
- type: main_score
value: 37.7763778885611
- type: precision
value: 34.853639582711615
- type: recall
value: 45.8498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-nld_Latn)
type: mteb/flores
config: pol_Latn-nld_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 47.5296442687747
- type: f1
value: 38.405752953677855
- type: main_score
value: 38.405752953677855
- type: precision
value: 35.274876090093485
- type: recall
value: 47.5296442687747
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-san_Deva)
type: mteb/flores
config: pol_Latn-san_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.189723320158102
- type: f1
value: 5.205993892335911
- type: main_score
value: 5.205993892335911
- type: precision
value: 4.337201997808373
- type: recall
value: 9.189723320158102
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tat_Cyrl)
type: mteb/flores
config: pol_Latn-tat_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.189723320158102
- type: f1
value: 5.314675144304728
- type: main_score
value: 5.314675144304728
- type: precision
value: 4.492476362336001
- type: recall
value: 9.189723320158102
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-xho_Latn)
type: mteb/flores
config: pol_Latn-xho_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.90118577075099
- type: f1
value: 16.50000499061764
- type: main_score
value: 16.50000499061764
- type: precision
value: 14.219926880064056
- type: recall
value: 24.90118577075099
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ars_Arab)
type: mteb/flores
config: pol_Latn-ars_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.150197628458498
- type: f1
value: 1.9884773395885484
- type: main_score
value: 1.9884773395885484
- type: precision
value: 1.6176875636726988
- type: recall
value: 4.150197628458498
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ceb_Latn)
type: mteb/flores
config: pol_Latn-ceb_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.426877470355734
- type: f1
value: 30.411252669157808
- type: main_score
value: 30.411252669157808
- type: precision
value: 27.625018536579798
- type: recall
value: 39.426877470355734
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-fuv_Latn)
type: mteb/flores
config: pol_Latn-fuv_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.889328063241106
- type: f1
value: 18.16006406557946
- type: main_score
value: 18.16006406557946
- type: precision
value: 16.093802710132557
- type: recall
value: 25.889328063241106
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kac_Latn)
type: mteb/flores
config: pol_Latn-kac_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 28.063241106719367
- type: f1
value: 20.537588393674426
- type: main_score
value: 20.537588393674426
- type: precision
value: 18.555593378125913
- type: recall
value: 28.063241106719367
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lin_Latn)
type: mteb/flores
config: pol_Latn-lin_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.56916996047431
- type: f1
value: 19.59550667924326
- type: main_score
value: 19.59550667924326
- type: precision
value: 17.366118810405023
- type: recall
value: 27.56916996047431
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-nno_Latn)
type: mteb/flores
config: pol_Latn-nno_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 44.466403162055336
- type: f1
value: 36.52365909233498
- type: main_score
value: 36.52365909233498
- type: precision
value: 34.02154307045611
- type: recall
value: 44.466403162055336
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-sat_Olck)
type: mteb/flores
config: pol_Latn-sat_Olck
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 1.7786561264822136
- type: f1
value: 0.5308103241702219
- type: main_score
value: 0.5308103241702219
- type: precision
value: 0.3879325601322212
- type: recall
value: 1.7786561264822136
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tel_Telu)
type: mteb/flores
config: pol_Latn-tel_Telu
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 13.043478260869565
- type: f1
value: 7.211621994490727
- type: main_score
value: 7.211621994490727
- type: precision
value: 6.072556380043011
- type: recall
value: 13.043478260869565
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ydd_Hebr)
type: mteb/flores
config: pol_Latn-ydd_Hebr
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 10.17786561264822
- type: f1
value: 6.04945869467265
- type: main_score
value: 6.04945869467265
- type: precision
value: 5.313130898081306
- type: recall
value: 10.17786561264822
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ary_Arab)
type: mteb/flores
config: pol_Latn-ary_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.905138339920949
- type: f1
value: 4.544108401407499
- type: main_score
value: 4.544108401407499
- type: precision
value: 3.869493506162304
- type: recall
value: 7.905138339920949
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ces_Latn)
type: mteb/flores
config: pol_Latn-ces_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 45.45454545454545
- type: f1
value: 38.024558240445856
- type: main_score
value: 38.024558240445856
- type: precision
value: 35.54695706331953
- type: recall
value: 45.45454545454545
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-gaz_Latn)
type: mteb/flores
config: pol_Latn-gaz_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.16600790513834
- type: f1
value: 6.159234456287466
- type: main_score
value: 6.159234456287466
- type: precision
value: 5.133667829697058
- type: recall
value: 11.16600790513834
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kam_Latn)
type: mteb/flores
config: pol_Latn-kam_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.221343873517785
- type: f1
value: 18.353962970667776
- type: main_score
value: 18.353962970667776
- type: precision
value: 16.88928967302209
- type: recall
value: 23.221343873517785
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lit_Latn)
type: mteb/flores
config: pol_Latn-lit_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.4703557312253
- type: f1
value: 21.64822878200428
- type: main_score
value: 21.64822878200428
- type: precision
value: 19.899989111993023
- type: recall
value: 27.4703557312253
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-nob_Latn)
type: mteb/flores
config: pol_Latn-nob_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 47.43083003952569
- type: f1
value: 38.246988518727655
- type: main_score
value: 38.246988518727655
- type: precision
value: 35.016858690277665
- type: recall
value: 47.43083003952569
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-scn_Latn)
type: mteb/flores
config: pol_Latn-scn_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 31.225296442687743
- type: f1
value: 24.21253976589945
- type: main_score
value: 24.21253976589945
- type: precision
value: 22.16210944903703
- type: recall
value: 31.225296442687743
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tgk_Cyrl)
type: mteb/flores
config: pol_Latn-tgk_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.387351778656127
- type: f1
value: 5.6102738478742555
- type: main_score
value: 5.6102738478742555
- type: precision
value: 4.867386506350517
- type: recall
value: 9.387351778656127
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-yor_Latn)
type: mteb/flores
config: pol_Latn-yor_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.4703557312253
- type: f1
value: 20.59402252337035
- type: main_score
value: 20.59402252337035
- type: precision
value: 18.62389494756967
- type: recall
value: 27.4703557312253
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-arz_Arab)
type: mteb/flores
config: pol_Latn-arz_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.928853754940711
- type: f1
value: 3.5288297962170567
- type: main_score
value: 3.5288297962170567
- type: precision
value: 3.0691475575368856
- type: recall
value: 5.928853754940711
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-cjk_Latn)
type: mteb/flores
config: pol_Latn-cjk_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.221343873517785
- type: f1
value: 16.159405299721502
- type: main_score
value: 16.159405299721502
- type: precision
value: 14.393576878448815
- type: recall
value: 23.221343873517785
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-gla_Latn)
type: mteb/flores
config: pol_Latn-gla_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.35573122529644
- type: f1
value: 13.720070726259618
- type: main_score
value: 13.720070726259618
- type: precision
value: 12.052392225429521
- type: recall
value: 20.35573122529644
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kan_Knda)
type: mteb/flores
config: pol_Latn-kan_Knda
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.201581027667984
- type: f1
value: 4.437171161571691
- type: main_score
value: 4.437171161571691
- type: precision
value: 3.749542197197035
- type: recall
value: 8.201581027667984
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lmo_Latn)
type: mteb/flores
config: pol_Latn-lmo_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 38.83399209486166
- type: f1
value: 31.714524774447494
- type: main_score
value: 31.714524774447494
- type: precision
value: 29.391946711610746
- type: recall
value: 38.83399209486166
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-npi_Deva)
type: mteb/flores
config: pol_Latn-npi_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 10.968379446640316
- type: f1
value: 6.473612825827703
- type: main_score
value: 6.473612825827703
- type: precision
value: 5.49084990741001
- type: recall
value: 10.968379446640316
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-shn_Mymr)
type: mteb/flores
config: pol_Latn-shn_Mymr
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 38.43873517786561
- type: f1
value: 29.396836145848006
- type: main_score
value: 29.396836145848006
- type: precision
value: 26.534336875245966
- type: recall
value: 38.43873517786561
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tgl_Latn)
type: mteb/flores
config: pol_Latn-tgl_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.70750988142292
- type: f1
value: 24.076005742744012
- type: main_score
value: 24.076005742744012
- type: precision
value: 21.6550168649971
- type: recall
value: 32.70750988142292
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-yue_Hant)
type: mteb/flores
config: pol_Latn-yue_Hant
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.980237154150199
- type: f1
value: 5.866820855869608
- type: main_score
value: 5.866820855869608
- type: precision
value: 4.994463315141073
- type: recall
value: 9.980237154150199
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-asm_Beng)
type: mteb/flores
config: pol_Latn-asm_Beng
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.027667984189724
- type: f1
value: 2.9919947985546753
- type: main_score
value: 2.9919947985546753
- type: precision
value: 2.396787621140054
- type: recall
value: 6.027667984189724
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ckb_Arab)
type: mteb/flores
config: pol_Latn-ckb_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.0395256916996045
- type: f1
value: 2.6313333428590333
- type: main_score
value: 2.6313333428590333
- type: precision
value: 2.1441980481557246
- type: recall
value: 5.0395256916996045
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-gle_Latn)
type: mteb/flores
config: pol_Latn-gle_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.92490118577075
- type: f1
value: 16.366565597793155
- type: main_score
value: 16.366565597793155
- type: precision
value: 14.427773313642877
- type: recall
value: 22.92490118577075
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kas_Arab)
type: mteb/flores
config: pol_Latn-kas_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.41106719367589
- type: f1
value: 4.268493390151145
- type: main_score
value: 4.268493390151145
- type: precision
value: 3.6318124097564928
- type: recall
value: 7.41106719367589
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ltg_Latn)
type: mteb/flores
config: pol_Latn-ltg_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 28.85375494071146
- type: f1
value: 21.831210848523185
- type: main_score
value: 21.831210848523185
- type: precision
value: 19.65490879893054
- type: recall
value: 28.85375494071146
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-nso_Latn)
type: mteb/flores
config: pol_Latn-nso_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.051383399209485
- type: f1
value: 21.425082008345996
- type: main_score
value: 21.425082008345996
- type: precision
value: 19.24843153307464
- type: recall
value: 29.051383399209485
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-sin_Sinh)
type: mteb/flores
config: pol_Latn-sin_Sinh
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.992094861660078
- type: f1
value: 5.979100944100412
- type: main_score
value: 5.979100944100412
- type: precision
value: 5.385543481178876
- type: recall
value: 8.992094861660078
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tha_Thai)
type: mteb/flores
config: pol_Latn-tha_Thai
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.909090909090908
- type: f1
value: 9.796795116437666
- type: main_score
value: 9.796795116437666
- type: precision
value: 8.360619704129169
- type: recall
value: 15.909090909090908
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-zho_Hans)
type: mteb/flores
config: pol_Latn-zho_Hans
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 16.50197628458498
- type: f1
value: 10.270309138975882
- type: main_score
value: 10.270309138975882
- type: precision
value: 8.73478574565531
- type: recall
value: 16.50197628458498
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ast_Latn)
type: mteb/flores
config: pol_Latn-ast_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 47.92490118577075
- type: f1
value: 39.26617464660943
- type: main_score
value: 39.26617464660943
- type: precision
value: 36.18855836741212
- type: recall
value: 47.92490118577075
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-crh_Latn)
type: mteb/flores
config: pol_Latn-crh_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.197628458498023
- type: f1
value: 18.670974077359066
- type: main_score
value: 18.670974077359066
- type: precision
value: 16.954646692788984
- type: recall
value: 25.197628458498023
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-glg_Latn)
type: mteb/flores
config: pol_Latn-glg_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 52.37154150197628
- type: f1
value: 43.88566144000926
- type: main_score
value: 43.88566144000926
- type: precision
value: 40.966425976307406
- type: recall
value: 52.37154150197628
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kas_Deva)
type: mteb/flores
config: pol_Latn-kas_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.209486166007903
- type: f1
value: 16.853008476346325
- type: main_score
value: 16.853008476346325
- type: precision
value: 14.851243130407093
- type: recall
value: 24.209486166007903
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ltz_Latn)
type: mteb/flores
config: pol_Latn-ltz_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 44.86166007905138
- type: f1
value: 36.53990936599632
- type: main_score
value: 36.53990936599632
- type: precision
value: 33.71791123723814
- type: recall
value: 44.86166007905138
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-nus_Latn)
type: mteb/flores
config: pol_Latn-nus_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.612648221343871
- type: f1
value: 10.556552033824762
- type: main_score
value: 10.556552033824762
- type: precision
value: 9.225857138021011
- type: recall
value: 15.612648221343871
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-slk_Latn)
type: mteb/flores
config: pol_Latn-slk_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 41.60079051383399
- type: f1
value: 34.67679197175244
- type: main_score
value: 34.67679197175244
- type: precision
value: 32.45954710407592
- type: recall
value: 41.60079051383399
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tir_Ethi)
type: mteb/flores
config: pol_Latn-tir_Ethi
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.719367588932807
- type: f1
value: 3.3274360285725493
- type: main_score
value: 3.3274360285725493
- type: precision
value: 2.8253990375336113
- type: recall
value: 6.719367588932807
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-zho_Hant)
type: mteb/flores
config: pol_Latn-zho_Hant
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 12.648221343873518
- type: f1
value: 7.529818632617995
- type: main_score
value: 7.529818632617995
- type: precision
value: 6.454425829925467
- type: recall
value: 12.648221343873518
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-awa_Deva)
type: mteb/flores
config: pol_Latn-awa_Deva
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.300395256916996
- type: f1
value: 4.53959024560111
- type: main_score
value: 4.53959024560111
- type: precision
value: 3.890776976863834
- type: recall
value: 8.300395256916996
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-cym_Latn)
type: mteb/flores
config: pol_Latn-cym_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.4703557312253
- type: f1
value: 19.68063199050937
- type: main_score
value: 19.68063199050937
- type: precision
value: 17.529989174140933
- type: recall
value: 27.4703557312253
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-grn_Latn)
type: mteb/flores
config: pol_Latn-grn_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.45059288537549
- type: f1
value: 28.71171428483681
- type: main_score
value: 28.71171428483681
- type: precision
value: 25.925313793526815
- type: recall
value: 37.45059288537549
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kat_Geor)
type: mteb/flores
config: pol_Latn-kat_Geor
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.58498023715415
- type: f1
value: 5.5219657006276055
- type: main_score
value: 5.5219657006276055
- type: precision
value: 4.6367511696542865
- type: recall
value: 9.58498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lua_Latn)
type: mteb/flores
config: pol_Latn-lua_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 30.92885375494071
- type: f1
value: 22.5116731094992
- type: main_score
value: 22.5116731094992
- type: precision
value: 20.106998654559504
- type: recall
value: 30.92885375494071
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-nya_Latn)
type: mteb/flores
config: pol_Latn-nya_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 30.335968379446644
- type: f1
value: 21.866230950695634
- type: main_score
value: 21.866230950695634
- type: precision
value: 19.365828866947027
- type: recall
value: 30.335968379446644
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-slv_Latn)
type: mteb/flores
config: pol_Latn-slv_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.54940711462451
- type: f1
value: 30.26678570994605
- type: main_score
value: 30.26678570994605
- type: precision
value: 27.977184847374154
- type: recall
value: 37.54940711462451
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tpi_Latn)
type: mteb/flores
config: pol_Latn-tpi_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 54.841897233201585
- type: f1
value: 45.945094650628256
- type: main_score
value: 45.945094650628256
- type: precision
value: 42.74126894186182
- type: recall
value: 54.841897233201585
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-zsm_Latn)
type: mteb/flores
config: pol_Latn-zsm_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.31225296442688
- type: f1
value: 23.805788858652942
- type: main_score
value: 23.805788858652942
- type: precision
value: 21.37002869388159
- type: recall
value: 32.31225296442688
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ayr_Latn)
type: mteb/flores
config: pol_Latn-ayr_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.50592885375494
- type: f1
value: 17.06755049189183
- type: main_score
value: 17.06755049189183
- type: precision
value: 15.074182726898094
- type: recall
value: 24.50592885375494
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-dan_Latn)
type: mteb/flores
config: pol_Latn-dan_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 47.72727272727273
- type: f1
value: 39.43143464301335
- type: main_score
value: 39.43143464301335
- type: precision
value: 36.54565995598604
- type: recall
value: 47.72727272727273
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-guj_Gujr)
type: mteb/flores
config: pol_Latn-guj_Gujr
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.324110671936759
- type: f1
value: 3.3326388017378736
- type: main_score
value: 3.3326388017378736
- type: precision
value: 2.757544255992551
- type: recall
value: 6.324110671936759
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kaz_Cyrl)
type: mteb/flores
config: pol_Latn-kaz_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.758893280632412
- type: f1
value: 7.071173491888075
- type: main_score
value: 7.071173491888075
- type: precision
value: 6.050963825834047
- type: recall
value: 11.758893280632412
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lug_Latn)
type: mteb/flores
config: pol_Latn-lug_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.889328063241106
- type: f1
value: 18.129380500922
- type: main_score
value: 18.129380500922
- type: precision
value: 16.074419054685272
- type: recall
value: 25.889328063241106
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-oci_Latn)
type: mteb/flores
config: pol_Latn-oci_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 53.55731225296443
- type: f1
value: 44.99836022563295
- type: main_score
value: 44.99836022563295
- type: precision
value: 42.04267049375744
- type: recall
value: 53.55731225296443
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-smo_Latn)
type: mteb/flores
config: pol_Latn-smo_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.889328063241106
- type: f1
value: 18.157441837399986
- type: main_score
value: 18.157441837399986
- type: precision
value: 16.178864593379544
- type: recall
value: 25.889328063241106
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tsn_Latn)
type: mteb/flores
config: pol_Latn-tsn_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.865612648221344
- type: f1
value: 19.498233309640387
- type: main_score
value: 19.498233309640387
- type: precision
value: 17.179968828931276
- type: recall
value: 27.865612648221344
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-zul_Latn)
type: mteb/flores
config: pol_Latn-zul_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 18.774703557312254
- type: f1
value: 11.903397061759863
- type: main_score
value: 11.903397061759863
- type: precision
value: 10.198701796150065
- type: recall
value: 18.774703557312254
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-azb_Arab)
type: mteb/flores
config: pol_Latn-azb_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.545454545454546
- type: f1
value: 2.132585793652987
- type: main_score
value: 2.132585793652987
- type: precision
value: 1.643447767589644
- type: recall
value: 4.545454545454546
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-deu_Latn)
type: mteb/flores
config: pol_Latn-deu_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 51.18577075098815
- type: f1
value: 42.361535942679865
- type: main_score
value: 42.361535942679865
- type: precision
value: 39.02309907374136
- type: recall
value: 51.18577075098815
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hat_Latn)
type: mteb/flores
config: pol_Latn-hat_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.56916996047431
- type: f1
value: 21.147938933628303
- type: main_score
value: 21.147938933628303
- type: precision
value: 19.18156560959233
- type: recall
value: 27.56916996047431
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kbp_Latn)
type: mteb/flores
config: pol_Latn-kbp_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.90118577075099
- type: f1
value: 19.400134514030917
- type: main_score
value: 19.400134514030917
- type: precision
value: 17.88038314123646
- type: recall
value: 24.90118577075099
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-luo_Latn)
type: mteb/flores
config: pol_Latn-luo_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.988142292490117
- type: f1
value: 18.495583232417694
- type: main_score
value: 18.495583232417694
- type: precision
value: 16.526610238319726
- type: recall
value: 25.988142292490117
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-ory_Orya)
type: mteb/flores
config: pol_Latn-ory_Orya
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.201581027667984
- type: f1
value: 4.347389033695483
- type: main_score
value: 4.347389033695483
- type: precision
value: 3.6527450801940744
- type: recall
value: 8.201581027667984
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-sna_Latn)
type: mteb/flores
config: pol_Latn-sna_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.936758893280633
- type: f1
value: 13.626286791374994
- type: main_score
value: 13.626286791374994
- type: precision
value: 11.587003974907658
- type: recall
value: 21.936758893280633
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tso_Latn)
type: mteb/flores
config: pol_Latn-tso_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.616600790513832
- type: f1
value: 15.920835945002468
- type: main_score
value: 15.920835945002468
- type: precision
value: 13.785758159275947
- type: recall
value: 23.616600790513832
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-azj_Latn)
type: mteb/flores
config: pol_Latn-azj_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.73913043478261
- type: f1
value: 16.54747537902312
- type: main_score
value: 16.54747537902312
- type: precision
value: 15.108106759292534
- type: recall
value: 21.73913043478261
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-dik_Latn)
type: mteb/flores
config: pol_Latn-dik_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 35.96837944664031
- type: f1
value: 28.780955713033933
- type: main_score
value: 28.780955713033933
- type: precision
value: 26.50347346987663
- type: recall
value: 35.96837944664031
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-hau_Latn)
type: mteb/flores
config: pol_Latn-hau_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.09881422924901
- type: f1
value: 17.50488293385294
- type: main_score
value: 17.50488293385294
- type: precision
value: 15.584319377114658
- type: recall
value: 25.09881422924901
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-kea_Latn)
type: mteb/flores
config: pol_Latn-kea_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.62450592885375
- type: f1
value: 31.270850168199622
- type: main_score
value: 31.270850168199622
- type: precision
value: 28.530398387831802
- type: recall
value: 39.62450592885375
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lus_Latn)
type: mteb/flores
config: pol_Latn-lus_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 46.24505928853755
- type: f1
value: 37.202998472761315
- type: main_score
value: 37.202998472761315
- type: precision
value: 34.138708513708515
- type: recall
value: 46.24505928853755
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-pag_Latn)
type: mteb/flores
config: pol_Latn-pag_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 51.77865612648221
- type: f1
value: 42.621375385703445
- type: main_score
value: 42.621375385703445
- type: precision
value: 39.34708462376447
- type: recall
value: 51.77865612648221
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-snd_Arab)
type: mteb/flores
config: pol_Latn-snd_Arab
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.58498023715415
- type: f1
value: 6.1479644020877435
- type: main_score
value: 6.1479644020877435
- type: precision
value: 5.414916392558302
- type: recall
value: 9.58498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tuk_Latn)
type: mteb/flores
config: pol_Latn-tuk_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.023715415019762
- type: f1
value: 17.26881292064288
- type: main_score
value: 17.26881292064288
- type: precision
value: 15.607159530883665
- type: recall
value: 23.023715415019762
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-bak_Cyrl)
type: mteb/flores
config: pol_Latn-bak_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.288537549407115
- type: f1
value: 5.527728406351995
- type: main_score
value: 5.527728406351995
- type: precision
value: 4.713201013355736
- type: recall
value: 9.288537549407115
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-dyu_Latn)
type: mteb/flores
config: pol_Latn-dyu_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.91304347826087
- type: f1
value: 17.018730336418084
- type: main_score
value: 17.018730336418084
- type: precision
value: 14.966286314060392
- type: recall
value: 23.91304347826087
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-heb_Hebr)
type: mteb/flores
config: pol_Latn-heb_Hebr
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.980237154150199
- type: f1
value: 5.4971546949165875
- type: main_score
value: 5.4971546949165875
- type: precision
value: 4.676576441810379
- type: recall
value: 9.980237154150199
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-khk_Cyrl)
type: mteb/flores
config: pol_Latn-khk_Cyrl
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.707509881422925
- type: f1
value: 4.6221237336068315
- type: main_score
value: 4.6221237336068315
- type: precision
value: 3.9456592706208924
- type: recall
value: 7.707509881422925
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-lvs_Latn)
type: mteb/flores
config: pol_Latn-lvs_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.122529644268774
- type: f1
value: 16.608556682667356
- type: main_score
value: 16.608556682667356
- type: precision
value: 14.73247944226003
- type: recall
value: 23.122529644268774
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-pan_Guru)
type: mteb/flores
config: pol_Latn-pan_Guru
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 8.992094861660078
- type: f1
value: 4.8126673611522595
- type: main_score
value: 4.8126673611522595
- type: precision
value: 3.9900445824655755
- type: recall
value: 8.992094861660078
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-som_Latn)
type: mteb/flores
config: pol_Latn-som_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.616600790513832
- type: f1
value: 16.280717795842147
- type: main_score
value: 16.280717795842147
- type: precision
value: 14.38424443365155
- type: recall
value: 23.616600790513832
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pol_Latn-tum_Latn)
type: mteb/flores
config: pol_Latn-tum_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.173913043478258
- type: f1
value: 19.45508871892271
- type: main_score
value: 19.45508871892271
- type: precision
value: 17.333758687513626
- type: recall
value: 27.173913043478258
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ssw_Latn-pol_Latn)
type: mteb/flores
config: ssw_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 13.636363636363635
- type: f1
value: 11.545325158304745
- type: main_score
value: 11.545325158304745
- type: precision
value: 11.04849034050014
- type: recall
value: 13.636363636363635
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ukr_Cyrl-pol_Latn)
type: mteb/flores
config: ukr_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.3478260869565215
- type: f1
value: 3.36055023938623
- type: main_score
value: 3.36055023938623
- type: precision
value: 3.145713238288773
- type: recall
value: 4.3478260869565215
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (afr_Latn-pol_Latn)
type: mteb/flores
config: afr_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.351778656126484
- type: f1
value: 32.657254375087675
- type: main_score
value: 32.657254375087675
- type: precision
value: 31.31990798417892
- type: recall
value: 37.351778656126484
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bho_Deva-pol_Latn)
type: mteb/flores
config: bho_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.434782608695652
- type: f1
value: 4.248538461856328
- type: main_score
value: 4.248538461856328
- type: precision
value: 3.9363477747469755
- type: recall
value: 5.434782608695652
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (eus_Latn-pol_Latn)
type: mteb/flores
config: eus_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.249011857707508
- type: f1
value: 24.621199842181067
- type: main_score
value: 24.621199842181067
- type: precision
value: 23.318479076012707
- type: recall
value: 29.249011857707508
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ibo_Latn-pol_Latn)
type: mteb/flores
config: ibo_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.66403162055336
- type: f1
value: 16.366065476178022
- type: main_score
value: 16.366065476178022
- type: precision
value: 15.483095342831795
- type: recall
value: 19.66403162055336
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kmr_Latn-pol_Latn)
type: mteb/flores
config: kmr_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.810276679841898
- type: f1
value: 13.131433621845694
- type: main_score
value: 13.131433621845694
- type: precision
value: 12.496160503188007
- type: recall
value: 15.810276679841898
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (min_Latn-pol_Latn)
type: mteb/flores
config: min_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.221343873517785
- type: f1
value: 20.460829297482324
- type: main_score
value: 20.460829297482324
- type: precision
value: 19.666039753880405
- type: recall
value: 23.221343873517785
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (por_Latn-pol_Latn)
type: mteb/flores
config: por_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.608695652173914
- type: f1
value: 30.038782875813897
- type: main_score
value: 30.038782875813897
- type: precision
value: 29.3346482933393
- type: recall
value: 32.608695652173914
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (sun_Latn-pol_Latn)
type: mteb/flores
config: sun_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.284584980237153
- type: f1
value: 23.167693438533703
- type: main_score
value: 23.167693438533703
- type: precision
value: 22.344726485619383
- type: recall
value: 26.284584980237153
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (umb_Latn-pol_Latn)
type: mteb/flores
config: umb_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 14.229249011857709
- type: f1
value: 11.72032447043487
- type: main_score
value: 11.72032447043487
- type: precision
value: 11.113345808470575
- type: recall
value: 14.229249011857709
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ajp_Arab-pol_Latn)
type: mteb/flores
config: ajp_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.027667984189724
- type: f1
value: 4.906383446809295
- type: main_score
value: 4.906383446809295
- type: precision
value: 4.626812580140678
- type: recall
value: 6.027667984189724
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bjn_Arab-pol_Latn)
type: mteb/flores
config: bjn_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.2964426877470355
- type: f1
value: 0.014739619645471455
- type: main_score
value: 0.014739619645471455
- type: precision
value: 0.007793259862334742
- type: recall
value: 0.2964426877470355
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ewe_Latn-pol_Latn)
type: mteb/flores
config: ewe_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.3201581027668
- type: f1
value: 19.752939023865142
- type: main_score
value: 19.752939023865142
- type: precision
value: 18.695225242144133
- type: recall
value: 23.3201581027668
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ilo_Latn-pol_Latn)
type: mteb/flores
config: ilo_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.877470355731226
- type: f1
value: 24.036761426467308
- type: main_score
value: 24.036761426467308
- type: precision
value: 23.214768526844647
- type: recall
value: 26.877470355731226
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (knc_Arab-pol_Latn)
type: mteb/flores
config: knc_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.422924901185771
- type: f1
value: 5.471861993108544
- type: main_score
value: 5.471861993108544
- type: precision
value: 5.208482825359429
- type: recall
value: 6.422924901185771
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mkd_Cyrl-pol_Latn)
type: mteb/flores
config: mkd_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.743083003952568
- type: f1
value: 3.8745999077711124
- type: main_score
value: 3.8745999077711124
- type: precision
value: 3.6662900574163095
- type: recall
value: 4.743083003952568
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (prs_Arab-pol_Latn)
type: mteb/flores
config: prs_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.8300395256917
- type: f1
value: 4.67672888868541
- type: main_score
value: 4.67672888868541
- type: precision
value: 4.385871767652376
- type: recall
value: 5.8300395256917
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (swe_Latn-pol_Latn)
type: mteb/flores
config: swe_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.130434782608695
- type: f1
value: 35.40899916648588
- type: main_score
value: 35.40899916648588
- type: precision
value: 34.37500839081867
- type: recall
value: 39.130434782608695
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (urd_Arab-pol_Latn)
type: mteb/flores
config: urd_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.8656126482213438
- type: f1
value: 2.198814997617321
- type: main_score
value: 2.198814997617321
- type: precision
value: 2.0934232972037385
- type: recall
value: 2.8656126482213438
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (aka_Latn-pol_Latn)
type: mteb/flores
config: aka_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 34.88142292490119
- type: f1
value: 29.74508937764049
- type: main_score
value: 29.74508937764049
- type: precision
value: 28.153705393466193
- type: recall
value: 34.88142292490119
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bjn_Latn-pol_Latn)
type: mteb/flores
config: bjn_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 18.675889328063242
- type: f1
value: 16.43948645657555
- type: main_score
value: 16.43948645657555
- type: precision
value: 15.862834370794616
- type: recall
value: 18.675889328063242
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fao_Latn-pol_Latn)
type: mteb/flores
config: fao_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.395256916996047
- type: f1
value: 21.625753426979184
- type: main_score
value: 21.625753426979184
- type: precision
value: 20.774449730898926
- type: recall
value: 25.395256916996047
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ind_Latn-pol_Latn)
type: mteb/flores
config: ind_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.494071146245062
- type: f1
value: 22.89853629340138
- type: main_score
value: 22.89853629340138
- type: precision
value: 22.19346819224176
- type: recall
value: 25.494071146245062
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (knc_Latn-pol_Latn)
type: mteb/flores
config: knc_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.778656126482215
- type: f1
value: 23.135121575804448
- type: main_score
value: 23.135121575804448
- type: precision
value: 22.197098986477734
- type: recall
value: 26.778656126482215
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mlt_Latn-pol_Latn)
type: mteb/flores
config: mlt_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.27272727272727
- type: f1
value: 23.26113833343015
- type: main_score
value: 23.26113833343015
- type: precision
value: 22.291588018440425
- type: recall
value: 27.27272727272727
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (quy_Latn-pol_Latn)
type: mteb/flores
config: quy_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.640316205533598
- type: f1
value: 18.324982985871475
- type: main_score
value: 18.324982985871475
- type: precision
value: 17.384170773661005
- type: recall
value: 21.640316205533598
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (swh_Latn-pol_Latn)
type: mteb/flores
config: swh_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 16.50197628458498
- type: f1
value: 13.784780581928224
- type: main_score
value: 13.784780581928224
- type: precision
value: 13.15906973436561
- type: recall
value: 16.50197628458498
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (uzn_Latn-pol_Latn)
type: mteb/flores
config: uzn_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 13.73517786561265
- type: f1
value: 11.7621999636561
- type: main_score
value: 11.7621999636561
- type: precision
value: 11.21864560930682
- type: recall
value: 13.73517786561265
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (als_Latn-pol_Latn)
type: mteb/flores
config: als_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.64426877470356
- type: f1
value: 25.093862889528456
- type: main_score
value: 25.093862889528456
- type: precision
value: 23.85649046493975
- type: recall
value: 29.64426877470356
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bod_Tibt-pol_Latn)
type: mteb/flores
config: bod_Tibt-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 1.8774703557312251
- type: f1
value: 1.482427322348271
- type: main_score
value: 1.482427322348271
- type: precision
value: 1.3969415351679186
- type: recall
value: 1.8774703557312251
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fij_Latn-pol_Latn)
type: mteb/flores
config: fij_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.588932806324113
- type: f1
value: 15.044924633719347
- type: main_score
value: 15.044924633719347
- type: precision
value: 14.422284220226055
- type: recall
value: 17.588932806324113
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (isl_Latn-pol_Latn)
type: mteb/flores
config: isl_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.059288537549406
- type: f1
value: 16.993604061124348
- type: main_score
value: 16.993604061124348
- type: precision
value: 16.38307404546514
- type: recall
value: 20.059288537549406
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kon_Latn-pol_Latn)
type: mteb/flores
config: kon_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.059288537549406
- type: f1
value: 17.30021401344778
- type: main_score
value: 17.30021401344778
- type: precision
value: 16.5997172620091
- type: recall
value: 20.059288537549406
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mni_Beng-pol_Latn)
type: mteb/flores
config: mni_Beng-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.766798418972332
- type: f1
value: 1.8188857320273997
- type: main_score
value: 1.8188857320273997
- type: precision
value: 1.596105526645877
- type: recall
value: 2.766798418972332
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ron_Latn-pol_Latn)
type: mteb/flores
config: ron_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 44.762845849802375
- type: f1
value: 40.20969594868712
- type: main_score
value: 40.20969594868712
- type: precision
value: 38.92095571914066
- type: recall
value: 44.762845849802375
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (szl_Latn-pol_Latn)
type: mteb/flores
config: szl_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 88.93280632411067
- type: f1
value: 86.11989459815547
- type: main_score
value: 86.11989459815547
- type: precision
value: 84.89295125164689
- type: recall
value: 88.93280632411067
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (vec_Latn-pol_Latn)
type: mteb/flores
config: vec_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 33.201581027667984
- type: f1
value: 30.53786572808312
- type: main_score
value: 30.53786572808312
- type: precision
value: 29.781267755341258
- type: recall
value: 33.201581027667984
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (amh_Ethi-pol_Latn)
type: mteb/flores
config: amh_Ethi-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.8656126482213438
- type: f1
value: 2.3343702175686536
- type: main_score
value: 2.3343702175686536
- type: precision
value: 2.225088157792761
- type: recall
value: 2.8656126482213438
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bos_Latn-pol_Latn)
type: mteb/flores
config: bos_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 40.81027667984189
- type: f1
value: 35.816068036824284
- type: main_score
value: 35.816068036824284
- type: precision
value: 34.36131947680184
- type: recall
value: 40.81027667984189
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fin_Latn-pol_Latn)
type: mteb/flores
config: fin_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.047430830039527
- type: f1
value: 18.32388688372778
- type: main_score
value: 18.32388688372778
- type: precision
value: 17.65836451963984
- type: recall
value: 21.047430830039527
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ita_Latn-pol_Latn)
type: mteb/flores
config: ita_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.284584980237153
- type: f1
value: 25.328031148557844
- type: main_score
value: 25.328031148557844
- type: precision
value: 25.0573427033527
- type: recall
value: 26.284584980237153
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kor_Hang-pol_Latn)
type: mteb/flores
config: kor_Hang-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.225296442687747
- type: f1
value: 5.624717838156572
- type: main_score
value: 5.624717838156572
- type: precision
value: 5.436776229110326
- type: recall
value: 6.225296442687747
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mos_Latn-pol_Latn)
type: mteb/flores
config: mos_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.861660079051383
- type: f1
value: 16.686949600048273
- type: main_score
value: 16.686949600048273
- type: precision
value: 15.759010718370876
- type: recall
value: 19.861660079051383
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (run_Latn-pol_Latn)
type: mteb/flores
config: run_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.41501976284585
- type: f1
value: 12.844131292483732
- type: main_score
value: 12.844131292483732
- type: precision
value: 12.239314986108212
- type: recall
value: 15.41501976284585
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tam_Taml-pol_Latn)
type: mteb/flores
config: tam_Taml-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.138339920948617
- type: f1
value: 4.107577623493304
- type: main_score
value: 4.107577623493304
- type: precision
value: 3.8837297105930646
- type: recall
value: 5.138339920948617
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (vie_Latn-pol_Latn)
type: mteb/flores
config: vie_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 25.889328063241106
- type: f1
value: 22.579397348874743
- type: main_score
value: 22.579397348874743
- type: precision
value: 21.595638551483958
- type: recall
value: 25.889328063241106
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (apc_Arab-pol_Latn)
type: mteb/flores
config: apc_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.8300395256917
- type: f1
value: 4.771345020289305
- type: main_score
value: 4.771345020289305
- type: precision
value: 4.531490987141249
- type: recall
value: 5.8300395256917
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bug_Latn-pol_Latn)
type: mteb/flores
config: bug_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.91304347826087
- type: f1
value: 20.07699048356012
- type: main_score
value: 20.07699048356012
- type: precision
value: 19.08000382091288
- type: recall
value: 23.91304347826087
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fon_Latn-pol_Latn)
type: mteb/flores
config: fon_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.802371541501977
- type: f1
value: 21.068053623570577
- type: main_score
value: 21.068053623570577
- type: precision
value: 20.049528384718315
- type: recall
value: 24.802371541501977
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (jav_Latn-pol_Latn)
type: mteb/flores
config: jav_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.861660079051383
- type: f1
value: 17.8252060266033
- type: main_score
value: 17.8252060266033
- type: precision
value: 17.232613108208085
- type: recall
value: 19.861660079051383
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lao_Laoo-pol_Latn)
type: mteb/flores
config: lao_Laoo-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 28.952569169960473
- type: f1
value: 26.545881654577308
- type: main_score
value: 26.545881654577308
- type: precision
value: 25.711840655780314
- type: recall
value: 28.952569169960473
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mri_Latn-pol_Latn)
type: mteb/flores
config: mri_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.786561264822133
- type: f1
value: 15.783709557066814
- type: main_score
value: 15.783709557066814
- type: precision
value: 15.323213600988495
- type: recall
value: 17.786561264822133
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (rus_Cyrl-pol_Latn)
type: mteb/flores
config: rus_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.7312252964426875
- type: f1
value: 4.633980959784417
- type: main_score
value: 4.633980959784417
- type: precision
value: 4.381700463126679
- type: recall
value: 5.7312252964426875
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (taq_Latn-pol_Latn)
type: mteb/flores
config: taq_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 28.85375494071146
- type: f1
value: 24.7016707123012
- type: main_score
value: 24.7016707123012
- type: precision
value: 23.47897679898959
- type: recall
value: 28.85375494071146
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (war_Latn-pol_Latn)
type: mteb/flores
config: war_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 38.63636363636363
- type: f1
value: 34.295490067770984
- type: main_score
value: 34.295490067770984
- type: precision
value: 33.21862519220829
- type: recall
value: 38.63636363636363
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (arb_Arab-pol_Latn)
type: mteb/flores
config: arb_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.6561264822134385
- type: f1
value: 2.773676919366406
- type: main_score
value: 2.773676919366406
- type: precision
value: 2.6137121358188073
- type: recall
value: 3.6561264822134385
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bul_Cyrl-pol_Latn)
type: mteb/flores
config: bul_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.632411067193676
- type: f1
value: 4.504705439488048
- type: main_score
value: 4.504705439488048
- type: precision
value: 4.22258230186781
- type: recall
value: 5.632411067193676
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fra_Latn-pol_Latn)
type: mteb/flores
config: fra_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 45.65217391304348
- type: f1
value: 42.319337266121366
- type: main_score
value: 42.319337266121366
- type: precision
value: 41.337433711384975
- type: recall
value: 45.65217391304348
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (jpn_Jpan-pol_Latn)
type: mteb/flores
config: jpn_Jpan-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 1.7786561264822136
- type: f1
value: 1.5436431670974948
- type: main_score
value: 1.5436431670974948
- type: precision
value: 1.4988121544095525
- type: recall
value: 1.7786561264822136
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lij_Latn-pol_Latn)
type: mteb/flores
config: lij_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.11462450592885
- type: f1
value: 29.849869097168057
- type: main_score
value: 29.849869097168057
- type: precision
value: 29.154947704114285
- type: recall
value: 32.11462450592885
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (mya_Mymr-pol_Latn)
type: mteb/flores
config: mya_Mymr-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.0395256916996045
- type: f1
value: 4.519431283756075
- type: main_score
value: 4.519431283756075
- type: precision
value: 4.356224477087554
- type: recall
value: 5.0395256916996045
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (sag_Latn-pol_Latn)
type: mteb/flores
config: sag_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.094861660079054
- type: f1
value: 14.637628173381545
- type: main_score
value: 14.637628173381545
- type: precision
value: 14.112004954025323
- type: recall
value: 17.094861660079054
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (taq_Tfng-pol_Latn)
type: mteb/flores
config: taq_Tfng-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.632411067193676
- type: f1
value: 4.909914312233067
- type: main_score
value: 4.909914312233067
- type: precision
value: 4.724626945040803
- type: recall
value: 5.632411067193676
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (wol_Latn-pol_Latn)
type: mteb/flores
config: wol_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 23.616600790513832
- type: f1
value: 20.279347388097182
- type: main_score
value: 20.279347388097182
- type: precision
value: 19.46070794354514
- type: recall
value: 23.616600790513832
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (arb_Latn-pol_Latn)
type: mteb/flores
config: arb_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 9.288537549407115
- type: f1
value: 8.086159010072054
- type: main_score
value: 8.086159010072054
- type: precision
value: 7.813028740140765
- type: recall
value: 9.288537549407115
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (cat_Latn-pol_Latn)
type: mteb/flores
config: cat_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 38.24110671936759
- type: f1
value: 35.27552312466981
- type: main_score
value: 35.27552312466981
- type: precision
value: 34.31791722698166
- type: recall
value: 38.24110671936759
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fur_Latn-pol_Latn)
type: mteb/flores
config: fur_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 34.387351778656125
- type: f1
value: 31.058068019828706
- type: main_score
value: 31.058068019828706
- type: precision
value: 30.052825623033737
- type: recall
value: 34.387351778656125
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kab_Latn-pol_Latn)
type: mteb/flores
config: kab_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.806324110671936
- type: f1
value: 5.902874997333144
- type: main_score
value: 5.902874997333144
- type: precision
value: 5.423746587330392
- type: recall
value: 7.806324110671936
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lim_Latn-pol_Latn)
type: mteb/flores
config: lim_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 39.723320158102766
- type: f1
value: 35.389001290356084
- type: main_score
value: 35.389001290356084
- type: precision
value: 34.13435535421377
- type: recall
value: 39.723320158102766
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (nld_Latn-pol_Latn)
type: mteb/flores
config: nld_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 42.094861660079054
- type: f1
value: 37.93291320500714
- type: main_score
value: 37.93291320500714
- type: precision
value: 36.767114618952355
- type: recall
value: 42.094861660079054
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (san_Deva-pol_Latn)
type: mteb/flores
config: san_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.632411067193676
- type: f1
value: 4.660741759396567
- type: main_score
value: 4.660741759396567
- type: precision
value: 4.430956752636382
- type: recall
value: 5.632411067193676
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tat_Cyrl-pol_Latn)
type: mteb/flores
config: tat_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.928853754940711
- type: f1
value: 4.929180488481535
- type: main_score
value: 4.929180488481535
- type: precision
value: 4.674956123463861
- type: recall
value: 5.928853754940711
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (xho_Latn-pol_Latn)
type: mteb/flores
config: xho_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 16.40316205533597
- type: f1
value: 14.1584637782076
- type: main_score
value: 14.1584637782076
- type: precision
value: 13.551169277747055
- type: recall
value: 16.40316205533597
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ars_Arab-pol_Latn)
type: mteb/flores
config: ars_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.075098814229249
- type: f1
value: 1.5663001729144188
- type: main_score
value: 1.5663001729144188
- type: precision
value: 1.5034847066262733
- type: recall
value: 2.075098814229249
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ceb_Latn-pol_Latn)
type: mteb/flores
config: ceb_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 27.766798418972332
- type: f1
value: 25.138248191646635
- type: main_score
value: 25.138248191646635
- type: precision
value: 24.52148356634336
- type: recall
value: 27.766798418972332
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (fuv_Latn-pol_Latn)
type: mteb/flores
config: fuv_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.652173913043477
- type: f1
value: 18.497889827878236
- type: main_score
value: 18.497889827878236
- type: precision
value: 17.894908363824175
- type: recall
value: 20.652173913043477
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kac_Latn-pol_Latn)
type: mteb/flores
config: kac_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 18.675889328063242
- type: f1
value: 16.47500264090945
- type: main_score
value: 16.47500264090945
- type: precision
value: 15.965045864487637
- type: recall
value: 18.675889328063242
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lin_Latn-pol_Latn)
type: mteb/flores
config: lin_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.861660079051383
- type: f1
value: 16.669395867367935
- type: main_score
value: 16.669395867367935
- type: precision
value: 15.996611411786905
- type: recall
value: 19.861660079051383
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (nno_Latn-pol_Latn)
type: mteb/flores
config: nno_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.74703557312253
- type: f1
value: 33.43750147323936
- type: main_score
value: 33.43750147323936
- type: precision
value: 32.26544682279166
- type: recall
value: 37.74703557312253
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (sat_Olck-pol_Latn)
type: mteb/flores
config: sat_Olck-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 0.9881422924901186
- type: f1
value: 0.738017708056005
- type: main_score
value: 0.738017708056005
- type: precision
value: 0.6918021091302707
- type: recall
value: 0.9881422924901186
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tel_Telu-pol_Latn)
type: mteb/flores
config: tel_Telu-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.806324110671936
- type: f1
value: 6.455909948121061
- type: main_score
value: 6.455909948121061
- type: precision
value: 6.10016680289029
- type: recall
value: 7.806324110671936
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ydd_Hebr-pol_Latn)
type: mteb/flores
config: ydd_Hebr-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.8300395256917
- type: f1
value: 4.714103592822127
- type: main_score
value: 4.714103592822127
- type: precision
value: 4.418610320290162
- type: recall
value: 5.8300395256917
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ary_Arab-pol_Latn)
type: mteb/flores
config: ary_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.9525691699604746
- type: f1
value: 3.038700967670975
- type: main_score
value: 3.038700967670975
- type: precision
value: 2.852792175238853
- type: recall
value: 3.9525691699604746
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ces_Latn-pol_Latn)
type: mteb/flores
config: ces_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 43.3794466403162
- type: f1
value: 38.33097409419722
- type: main_score
value: 38.33097409419722
- type: precision
value: 36.81077971825639
- type: recall
value: 43.3794466403162
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (gaz_Latn-pol_Latn)
type: mteb/flores
config: gaz_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.841897233201581
- type: f1
value: 3.749327265034994
- type: main_score
value: 3.749327265034994
- type: precision
value: 3.5976880947568186
- type: recall
value: 4.841897233201581
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kam_Latn-pol_Latn)
type: mteb/flores
config: kam_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.82608695652174
- type: f1
value: 19.26086834997352
- type: main_score
value: 19.26086834997352
- type: precision
value: 18.374103098537436
- type: recall
value: 22.82608695652174
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lit_Latn-pol_Latn)
type: mteb/flores
config: lit_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.50592885375494
- type: f1
value: 20.41895151835619
- type: main_score
value: 20.41895151835619
- type: precision
value: 19.338293047532176
- type: recall
value: 24.50592885375494
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (nob_Latn-pol_Latn)
type: mteb/flores
config: nob_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 36.6600790513834
- type: f1
value: 32.77972950668669
- type: main_score
value: 32.77972950668669
- type: precision
value: 31.673807638587903
- type: recall
value: 36.6600790513834
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (scn_Latn-pol_Latn)
type: mteb/flores
config: scn_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.652173913043477
- type: f1
value: 19.09631332716127
- type: main_score
value: 19.09631332716127
- type: precision
value: 18.58198848760543
- type: recall
value: 20.652173913043477
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tgk_Cyrl-pol_Latn)
type: mteb/flores
config: tgk_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.533596837944664
- type: f1
value: 4.55426300946565
- type: main_score
value: 4.55426300946565
- type: precision
value: 4.305510392181988
- type: recall
value: 5.533596837944664
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (yor_Latn-pol_Latn)
type: mteb/flores
config: yor_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.011857707509883
- type: f1
value: 20.4852283680085
- type: main_score
value: 20.4852283680085
- type: precision
value: 19.307145104230646
- type: recall
value: 24.011857707509883
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (arz_Arab-pol_Latn)
type: mteb/flores
config: arz_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.8656126482213438
- type: f1
value: 2.050382343389291
- type: main_score
value: 2.050382343389291
- type: precision
value: 1.9244732677291967
- type: recall
value: 2.8656126482213438
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (cjk_Latn-pol_Latn)
type: mteb/flores
config: cjk_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.909090909090908
- type: f1
value: 13.094697079040241
- type: main_score
value: 13.094697079040241
- type: precision
value: 12.451127946209137
- type: recall
value: 15.909090909090908
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (gla_Latn-pol_Latn)
type: mteb/flores
config: gla_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 14.229249011857709
- type: f1
value: 11.8958091961019
- type: main_score
value: 11.8958091961019
- type: precision
value: 11.308813312132354
- type: recall
value: 14.229249011857709
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kan_Knda-pol_Latn)
type: mteb/flores
config: kan_Knda-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.446640316205533
- type: f1
value: 3.543866950918991
- type: main_score
value: 3.543866950918991
- type: precision
value: 3.344953602611705
- type: recall
value: 4.446640316205533
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lmo_Latn-pol_Latn)
type: mteb/flores
config: lmo_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 31.818181818181817
- type: f1
value: 28.84565227513798
- type: main_score
value: 28.84565227513798
- type: precision
value: 27.901861094548845
- type: recall
value: 31.818181818181817
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (npi_Deva-pol_Latn)
type: mteb/flores
config: npi_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.126482213438735
- type: f1
value: 4.995296774703681
- type: main_score
value: 4.995296774703681
- type: precision
value: 4.716743907131579
- type: recall
value: 6.126482213438735
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (shn_Mymr-pol_Latn)
type: mteb/flores
config: shn_Mymr-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.41106719367589
- type: f1
value: 29.33468087609507
- type: main_score
value: 29.33468087609507
- type: precision
value: 28.217299436243536
- type: recall
value: 32.41106719367589
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tgl_Latn-pol_Latn)
type: mteb/flores
config: tgl_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.960474308300398
- type: f1
value: 17.358391772917464
- type: main_score
value: 17.358391772917464
- type: precision
value: 16.714674395610597
- type: recall
value: 19.960474308300398
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (yue_Hant-pol_Latn)
type: mteb/flores
config: yue_Hant-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.8300395256917
- type: f1
value: 5.1056101485728576
- type: main_score
value: 5.1056101485728576
- type: precision
value: 4.867798538747156
- type: recall
value: 5.8300395256917
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (asm_Beng-pol_Latn)
type: mteb/flores
config: asm_Beng-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.766798418972332
- type: f1
value: 2.1076417295698957
- type: main_score
value: 2.1076417295698957
- type: precision
value: 1.9539846461201957
- type: recall
value: 2.766798418972332
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ckb_Arab-pol_Latn)
type: mteb/flores
config: ckb_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.4703557312252964
- type: f1
value: 1.7603256093421709
- type: main_score
value: 1.7603256093421709
- type: precision
value: 1.5924946194322374
- type: recall
value: 2.4703557312252964
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (gle_Latn-pol_Latn)
type: mteb/flores
config: gle_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.490118577075098
- type: f1
value: 15.1736996743734
- type: main_score
value: 15.1736996743734
- type: precision
value: 14.611817031828728
- type: recall
value: 17.490118577075098
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kas_Arab-pol_Latn)
type: mteb/flores
config: kas_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.150197628458498
- type: f1
value: 3.4109750619615435
- type: main_score
value: 3.4109750619615435
- type: precision
value: 3.2236152439722527
- type: recall
value: 4.150197628458498
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ltg_Latn-pol_Latn)
type: mteb/flores
config: ltg_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 26.778656126482215
- type: f1
value: 22.413478254607035
- type: main_score
value: 22.413478254607035
- type: precision
value: 21.276900635762036
- type: recall
value: 26.778656126482215
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (nso_Latn-pol_Latn)
type: mteb/flores
config: nso_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.011857707509883
- type: f1
value: 20.924527200344738
- type: main_score
value: 20.924527200344738
- type: precision
value: 20.22077114271249
- type: recall
value: 24.011857707509883
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (sin_Sinh-pol_Latn)
type: mteb/flores
config: sin_Sinh-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.3478260869565215
- type: f1
value: 3.346071948603057
- type: main_score
value: 3.346071948603057
- type: precision
value: 3.095815510077129
- type: recall
value: 4.3478260869565215
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tha_Thai-pol_Latn)
type: mteb/flores
config: tha_Thai-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 10.17786561264822
- type: f1
value: 9.03960816616096
- type: main_score
value: 9.03960816616096
- type: precision
value: 8.720792794162358
- type: recall
value: 10.17786561264822
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (zho_Hans-pol_Latn)
type: mteb/flores
config: zho_Hans-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.16600790513834
- type: f1
value: 9.816083127794206
- type: main_score
value: 9.816083127794206
- type: precision
value: 9.449149883932492
- type: recall
value: 11.16600790513834
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ast_Latn-pol_Latn)
type: mteb/flores
config: ast_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 30.434782608695656
- type: f1
value: 28.20427596119296
- type: main_score
value: 28.20427596119296
- type: precision
value: 27.513652569681575
- type: recall
value: 30.434782608695656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (crh_Latn-pol_Latn)
type: mteb/flores
config: crh_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.75098814229249
- type: f1
value: 17.77221970878066
- type: main_score
value: 17.77221970878066
- type: precision
value: 17.05363389516053
- type: recall
value: 20.75098814229249
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (glg_Latn-pol_Latn)
type: mteb/flores
config: glg_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 35.37549407114625
- type: f1
value: 32.855499945461084
- type: main_score
value: 32.855499945461084
- type: precision
value: 32.22612135335778
- type: recall
value: 35.37549407114625
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kas_Deva-pol_Latn)
type: mteb/flores
config: kas_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 16.40316205533597
- type: f1
value: 14.19769011598097
- type: main_score
value: 14.19769011598097
- type: precision
value: 13.509038094724147
- type: recall
value: 16.40316205533597
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ltz_Latn-pol_Latn)
type: mteb/flores
config: ltz_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.84584980237154
- type: f1
value: 33.44048344372484
- type: main_score
value: 33.44048344372484
- type: precision
value: 32.05143506407127
- type: recall
value: 37.84584980237154
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (nus_Latn-pol_Latn)
type: mteb/flores
config: nus_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 12.845849802371543
- type: f1
value: 10.896227857585187
- type: main_score
value: 10.896227857585187
- type: precision
value: 10.294754358350081
- type: recall
value: 12.845849802371543
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (slk_Latn-pol_Latn)
type: mteb/flores
config: slk_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 41.00790513833992
- type: f1
value: 36.01972871344834
- type: main_score
value: 36.01972871344834
- type: precision
value: 34.530391529091034
- type: recall
value: 41.00790513833992
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tir_Ethi-pol_Latn)
type: mteb/flores
config: tir_Ethi-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.66798418972332
- type: f1
value: 2.2198721083844957
- type: main_score
value: 2.2198721083844957
- type: precision
value: 2.1499716421629076
- type: recall
value: 2.66798418972332
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (zho_Hant-pol_Latn)
type: mteb/flores
config: zho_Hant-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.312252964426877
- type: f1
value: 6.340388250223482
- type: main_score
value: 6.340388250223482
- type: precision
value: 6.111030998564803
- type: recall
value: 7.312252964426877
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (awa_Deva-pol_Latn)
type: mteb/flores
config: awa_Deva-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.3596837944664033
- type: f1
value: 2.579158411169609
- type: main_score
value: 2.579158411169609
- type: precision
value: 2.403919362726758
- type: recall
value: 3.3596837944664033
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (cym_Latn-pol_Latn)
type: mteb/flores
config: cym_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 20.35573122529644
- type: f1
value: 18.287058620527255
- type: main_score
value: 18.287058620527255
- type: precision
value: 17.70382884312341
- type: recall
value: 20.35573122529644
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (grn_Latn-pol_Latn)
type: mteb/flores
config: grn_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 28.55731225296443
- type: f1
value: 24.9187073406344
- type: main_score
value: 24.9187073406344
- type: precision
value: 23.940053904041108
- type: recall
value: 28.55731225296443
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kat_Geor-pol_Latn)
type: mteb/flores
config: kat_Geor-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 6.027667984189724
- type: f1
value: 4.838828225825765
- type: main_score
value: 4.838828225825765
- type: precision
value: 4.530376375310547
- type: recall
value: 6.027667984189724
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lua_Latn-pol_Latn)
type: mteb/flores
config: lua_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.936758893280633
- type: f1
value: 19.137345487494034
- type: main_score
value: 19.137345487494034
- type: precision
value: 18.50076951838475
- type: recall
value: 21.936758893280633
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (nya_Latn-pol_Latn)
type: mteb/flores
config: nya_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.727272727272727
- type: f1
value: 19.352203630458405
- type: main_score
value: 19.352203630458405
- type: precision
value: 18.403212982984027
- type: recall
value: 22.727272727272727
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (slv_Latn-pol_Latn)
type: mteb/flores
config: slv_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 34.58498023715415
- type: f1
value: 29.987852862596537
- type: main_score
value: 29.987852862596537
- type: precision
value: 28.67320439878897
- type: recall
value: 34.58498023715415
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tpi_Latn-pol_Latn)
type: mteb/flores
config: tpi_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 49.50592885375494
- type: f1
value: 45.07371755426884
- type: main_score
value: 45.07371755426884
- type: precision
value: 43.583045144983984
- type: recall
value: 49.50592885375494
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (zsm_Latn-pol_Latn)
type: mteb/flores
config: zsm_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 24.40711462450593
- type: f1
value: 21.96257404337446
- type: main_score
value: 21.96257404337446
- type: precision
value: 21.242868844120004
- type: recall
value: 24.40711462450593
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ayr_Latn-pol_Latn)
type: mteb/flores
config: ayr_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.76284584980237
- type: f1
value: 16.61210544522444
- type: main_score
value: 16.61210544522444
- type: precision
value: 15.90306566825407
- type: recall
value: 19.76284584980237
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (dan_Latn-pol_Latn)
type: mteb/flores
config: dan_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 41.798418972332016
- type: f1
value: 37.28920180969047
- type: main_score
value: 37.28920180969047
- type: precision
value: 35.93657133520941
- type: recall
value: 41.798418972332016
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (guj_Gujr-pol_Latn)
type: mteb/flores
config: guj_Gujr-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.260869565217391
- type: f1
value: 2.5249735724995688
- type: main_score
value: 2.5249735724995688
- type: precision
value: 2.388309383138791
- type: recall
value: 3.260869565217391
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kaz_Cyrl-pol_Latn)
type: mteb/flores
config: kaz_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 7.41106719367589
- type: f1
value: 6.058280483075661
- type: main_score
value: 6.058280483075661
- type: precision
value: 5.757579952561782
- type: recall
value: 7.41106719367589
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lug_Latn-pol_Latn)
type: mteb/flores
config: lug_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.885375494071145
- type: f1
value: 15.521929947232882
- type: main_score
value: 15.521929947232882
- type: precision
value: 14.947095140298922
- type: recall
value: 17.885375494071145
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (oci_Latn-pol_Latn)
type: mteb/flores
config: oci_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 43.47826086956522
- type: f1
value: 40.4731863475219
- type: main_score
value: 40.4731863475219
- type: precision
value: 39.59450765088603
- type: recall
value: 43.47826086956522
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (smo_Latn-pol_Latn)
type: mteb/flores
config: smo_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.588932806324113
- type: f1
value: 15.690160809698227
- type: main_score
value: 15.690160809698227
- type: precision
value: 15.156564766279049
- type: recall
value: 17.588932806324113
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tsn_Latn-pol_Latn)
type: mteb/flores
config: tsn_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.34387351778656
- type: f1
value: 18.434350717459363
- type: main_score
value: 18.434350717459363
- type: precision
value: 17.774574235822616
- type: recall
value: 21.34387351778656
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (zul_Latn-pol_Latn)
type: mteb/flores
config: zul_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 11.6600790513834
- type: f1
value: 9.735829734910533
- type: main_score
value: 9.735829734910533
- type: precision
value: 9.312566681548638
- type: recall
value: 11.6600790513834
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (azb_Arab-pol_Latn)
type: mteb/flores
config: azb_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 2.1739130434782608
- type: f1
value: 1.5873015873015872
- type: main_score
value: 1.5873015873015872
- type: precision
value: 1.4545689817428948
- type: recall
value: 2.1739130434782608
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (deu_Latn-pol_Latn)
type: mteb/flores
config: deu_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 44.762845849802375
- type: f1
value: 41.12292987587522
- type: main_score
value: 41.12292987587522
- type: precision
value: 39.92950680327162
- type: recall
value: 44.762845849802375
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hat_Latn-pol_Latn)
type: mteb/flores
config: hat_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.33201581027668
- type: f1
value: 18.967394150492094
- type: main_score
value: 18.967394150492094
- type: precision
value: 18.182537641253294
- type: recall
value: 22.33201581027668
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kbp_Latn-pol_Latn)
type: mteb/flores
config: kbp_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.245059288537547
- type: f1
value: 18.09991436613242
- type: main_score
value: 18.09991436613242
- type: precision
value: 17.252105388177373
- type: recall
value: 21.245059288537547
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (luo_Latn-pol_Latn)
type: mteb/flores
config: luo_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 22.233201581027668
- type: f1
value: 18.449176192713168
- type: main_score
value: 18.449176192713168
- type: precision
value: 17.624851982025028
- type: recall
value: 22.233201581027668
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (ory_Orya-pol_Latn)
type: mteb/flores
config: ory_Orya-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.3478260869565215
- type: f1
value: 3.611531226271985
- type: main_score
value: 3.611531226271985
- type: precision
value: 3.468918020129858
- type: recall
value: 4.3478260869565215
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (sna_Latn-pol_Latn)
type: mteb/flores
config: sna_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.217391304347828
- type: f1
value: 12.702456926626832
- type: main_score
value: 12.702456926626832
- type: precision
value: 12.135158314143617
- type: recall
value: 15.217391304347828
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tso_Latn-pol_Latn)
type: mteb/flores
config: tso_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 18.181818181818183
- type: f1
value: 15.288851001752626
- type: main_score
value: 15.288851001752626
- type: precision
value: 14.650945991352978
- type: recall
value: 18.181818181818183
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (azj_Latn-pol_Latn)
type: mteb/flores
config: azj_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 18.57707509881423
- type: f1
value: 14.966220609361827
- type: main_score
value: 14.966220609361827
- type: precision
value: 13.961871486067762
- type: recall
value: 18.57707509881423
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (dik_Latn-pol_Latn)
type: mteb/flores
config: dik_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 32.70750988142292
- type: f1
value: 28.22133496338573
- type: main_score
value: 28.22133496338573
- type: precision
value: 26.929658124002465
- type: recall
value: 32.70750988142292
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (hau_Latn-pol_Latn)
type: mteb/flores
config: hau_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.490118577075098
- type: f1
value: 15.013241657524787
- type: main_score
value: 15.013241657524787
- type: precision
value: 14.360189776791414
- type: recall
value: 17.490118577075098
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (kea_Latn-pol_Latn)
type: mteb/flores
config: kea_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 29.249011857707508
- type: f1
value: 25.728171141197727
- type: main_score
value: 25.728171141197727
- type: precision
value: 24.845714735234882
- type: recall
value: 29.249011857707508
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lus_Latn-pol_Latn)
type: mteb/flores
config: lus_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 37.45059288537549
- type: f1
value: 34.1522273339155
- type: main_score
value: 34.1522273339155
- type: precision
value: 33.11133967978197
- type: recall
value: 37.45059288537549
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pag_Latn-pol_Latn)
type: mteb/flores
config: pag_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 46.44268774703557
- type: f1
value: 42.55956424045618
- type: main_score
value: 42.55956424045618
- type: precision
value: 41.308049408906065
- type: recall
value: 46.44268774703557
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (snd_Arab-pol_Latn)
type: mteb/flores
config: snd_Arab-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.7312252964426875
- type: f1
value: 4.418129345402073
- type: main_score
value: 4.418129345402073
- type: precision
value: 4.080735393694834
- type: recall
value: 5.7312252964426875
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tuk_Latn-pol_Latn)
type: mteb/flores
config: tuk_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 18.478260869565215
- type: f1
value: 14.559489584262082
- type: main_score
value: 14.559489584262082
- type: precision
value: 13.576842652514323
- type: recall
value: 18.478260869565215
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (bak_Cyrl-pol_Latn)
type: mteb/flores
config: bak_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.7312252964426875
- type: f1
value: 4.523459883439954
- type: main_score
value: 4.523459883439954
- type: precision
value: 4.2460184752788495
- type: recall
value: 5.7312252964426875
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (dyu_Latn-pol_Latn)
type: mteb/flores
config: dyu_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 17.885375494071145
- type: f1
value: 15.287973467865342
- type: main_score
value: 15.287973467865342
- type: precision
value: 14.602748983645133
- type: recall
value: 17.885375494071145
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (heb_Hebr-pol_Latn)
type: mteb/flores
config: heb_Hebr-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 5.434782608695652
- type: f1
value: 4.41417092476672
- type: main_score
value: 4.41417092476672
- type: precision
value: 4.190847187073325
- type: recall
value: 5.434782608695652
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (khk_Cyrl-pol_Latn)
type: mteb/flores
config: khk_Cyrl-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 3.8537549407114624
- type: f1
value: 2.7896363021461554
- type: main_score
value: 2.7896363021461554
- type: precision
value: 2.554176462902154
- type: recall
value: 3.8537549407114624
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (lvs_Latn-pol_Latn)
type: mteb/flores
config: lvs_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 19.76284584980237
- type: f1
value: 15.95516453180757
- type: main_score
value: 15.95516453180757
- type: precision
value: 14.79353339363382
- type: recall
value: 19.76284584980237
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (pan_Guru-pol_Latn)
type: mteb/flores
config: pan_Guru-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 4.150197628458498
- type: f1
value: 3.19295355133975
- type: main_score
value: 3.19295355133975
- type: precision
value: 2.959982158565134
- type: recall
value: 4.150197628458498
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (som_Latn-pol_Latn)
type: mteb/flores
config: som_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 15.217391304347828
- type: f1
value: 13.211426918534308
- type: main_score
value: 13.211426918534308
- type: precision
value: 12.706032748562594
- type: recall
value: 15.217391304347828
- task:
type: BitextMining
dataset:
name: MTEB FloresBitextMining (tum_Latn-pol_Latn)
type: mteb/flores
config: tum_Latn-pol_Latn
split: devtest
revision: e6b647fcb6299a2f686f742f4d4c023e553ea67e
metrics:
- type: accuracy
value: 21.73913043478261
- type: f1
value: 18.12344158190285
- type: main_score
value: 18.12344158190285
- type: precision
value: 17.177114905727347
- type: recall
value: 21.73913043478261
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA-PL (default)
type: clarin-knext/hotpotqa-pl
config: default
split: test
revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
metrics:
- type: main_score
value: 57.45
- type: map_at_1
value: 35.375
- type: map_at_10
value: 48.074
- type: map_at_100
value: 48.919000000000004
- type: map_at_1000
value: 48.998000000000005
- type: map_at_20
value: 48.556
- type: map_at_3
value: 45.518
- type: map_at_5
value: 47.032000000000004
- type: mrr_at_1
value: 70.74949358541525
- type: mrr_at_10
value: 76.78829190915619
- type: mrr_at_100
value: 77.08402375999609
- type: mrr_at_1000
value: 77.09935954798011
- type: mrr_at_20
value: 76.96994129997728
- type: mrr_at_3
value: 75.67184334908845
- type: mrr_at_5
value: 76.36191762322755
- type: nauc_map_at_1000_diff1
value: 27.947206485539006
- type: nauc_map_at_1000_max
value: 26.1771329073023
- type: nauc_map_at_1000_std
value: 5.2314854933790285
- type: nauc_map_at_100_diff1
value: 27.941434167482498
- type: nauc_map_at_100_max
value: 26.16836231495222
- type: nauc_map_at_100_std
value: 5.19915879926482
- type: nauc_map_at_10_diff1
value: 28.30412093215599
- type: nauc_map_at_10_max
value: 26.507043849371705
- type: nauc_map_at_10_std
value: 4.9731091966343435
- type: nauc_map_at_1_diff1
value: 72.97828307949827
- type: nauc_map_at_1_max
value: 52.081763648188485
- type: nauc_map_at_1_std
value: 4.3782414938724274
- type: nauc_map_at_20_diff1
value: 28.02867231346264
- type: nauc_map_at_20_max
value: 26.269293729821857
- type: nauc_map_at_20_std
value: 5.034947943611055
- type: nauc_map_at_3_diff1
value: 30.823298736315678
- type: nauc_map_at_3_max
value: 28.305551752514486
- type: nauc_map_at_3_std
value: 4.10815806251092
- type: nauc_map_at_5_diff1
value: 29.05835258195969
- type: nauc_map_at_5_max
value: 27.040450341544826
- type: nauc_map_at_5_std
value: 4.436108837487476
- type: nauc_mrr_at_1000_diff1
value: 70.79284622625714
- type: nauc_mrr_at_1000_max
value: 53.545770296186
- type: nauc_mrr_at_1000_std
value: 6.713898700895104
- type: nauc_mrr_at_100_diff1
value: 70.78789266461835
- type: nauc_mrr_at_100_max
value: 53.548974646684
- type: nauc_mrr_at_100_std
value: 6.718944513343734
- type: nauc_mrr_at_10_diff1
value: 70.73072977161314
- type: nauc_mrr_at_10_max
value: 53.596940611126044
- type: nauc_mrr_at_10_std
value: 6.738009246182779
- type: nauc_mrr_at_1_diff1
value: 72.97828307949827
- type: nauc_mrr_at_1_max
value: 52.081763648188485
- type: nauc_mrr_at_1_std
value: 4.3782414938724274
- type: nauc_mrr_at_20_diff1
value: 70.75348482278754
- type: nauc_mrr_at_20_max
value: 53.5477479731434
- type: nauc_mrr_at_20_std
value: 6.725694432271149
- type: nauc_mrr_at_3_diff1
value: 70.90921193129459
- type: nauc_mrr_at_3_max
value: 53.56666547708075
- type: nauc_mrr_at_3_std
value: 6.015691765361308
- type: nauc_mrr_at_5_diff1
value: 70.77429682323806
- type: nauc_mrr_at_5_max
value: 53.58598108314783
- type: nauc_mrr_at_5_std
value: 6.3197118267571835
- type: nauc_ndcg_at_1000_diff1
value: 31.832520163159945
- type: nauc_ndcg_at_1000_max
value: 28.87137244600895
- type: nauc_ndcg_at_1000_std
value: 8.080240653998418
- type: nauc_ndcg_at_100_diff1
value: 31.669664556952565
- type: nauc_ndcg_at_100_max
value: 28.71594989425018
- type: nauc_ndcg_at_100_std
value: 7.4921101438523205
- type: nauc_ndcg_at_10_diff1
value: 33.226000860634876
- type: nauc_ndcg_at_10_max
value: 30.107656505365547
- type: nauc_ndcg_at_10_std
value: 6.439918456928247
- type: nauc_ndcg_at_1_diff1
value: 72.97828307949827
- type: nauc_ndcg_at_1_max
value: 52.081763648188485
- type: nauc_ndcg_at_1_std
value: 4.3782414938724274
- type: nauc_ndcg_at_20_diff1
value: 32.302839386753554
- type: nauc_ndcg_at_20_max
value: 29.29907663228911
- type: nauc_ndcg_at_20_std
value: 6.580587478607336
- type: nauc_ndcg_at_3_diff1
value: 37.7188612666666
- type: nauc_ndcg_at_3_max
value: 33.15240774572049
- type: nauc_ndcg_at_3_std
value: 4.819925669362351
- type: nauc_ndcg_at_5_diff1
value: 34.87704367410069
- type: nauc_ndcg_at_5_max
value: 31.209233398164365
- type: nauc_ndcg_at_5_std
value: 5.320757770134728
- type: nauc_precision_at_1000_diff1
value: -8.121260561311551
- type: nauc_precision_at_1000_max
value: 1.4600692792429486
- type: nauc_precision_at_1000_std
value: 18.980551255975282
- type: nauc_precision_at_100_diff1
value: 0.9595396043800729
- type: nauc_precision_at_100_max
value: 7.487652446748426
- type: nauc_precision_at_100_std
value: 12.550190196346483
- type: nauc_precision_at_10_diff1
value: 11.523234033091521
- type: nauc_precision_at_10_max
value: 16.240380877381945
- type: nauc_precision_at_10_std
value: 8.103831621990937
- type: nauc_precision_at_1_diff1
value: 72.97828307949827
- type: nauc_precision_at_1_max
value: 52.081763648188485
- type: nauc_precision_at_1_std
value: 4.3782414938724274
- type: nauc_precision_at_20_diff1
value: 7.776696643703554
- type: nauc_precision_at_20_max
value: 13.003394172221489
- type: nauc_precision_at_20_std
value: 8.456147688962815
- type: nauc_precision_at_3_diff1
value: 22.92875552320387
- type: nauc_precision_at_3_max
value: 24.690141011441337
- type: nauc_precision_at_3_std
value: 4.897559810894209
- type: nauc_precision_at_5_diff1
value: 17.073370028457965
- type: nauc_precision_at_5_max
value: 20.395437811786447
- type: nauc_precision_at_5_std
value: 5.746343973587844
- type: nauc_recall_at_1000_diff1
value: -8.1212605613113
- type: nauc_recall_at_1000_max
value: 1.4600692792431236
- type: nauc_recall_at_1000_std
value: 18.98055125597542
- type: nauc_recall_at_100_diff1
value: 0.9595396043800083
- type: nauc_recall_at_100_max
value: 7.487652446748395
- type: nauc_recall_at_100_std
value: 12.550190196346373
- type: nauc_recall_at_10_diff1
value: 11.523234033091546
- type: nauc_recall_at_10_max
value: 16.240380877381995
- type: nauc_recall_at_10_std
value: 8.103831621991013
- type: nauc_recall_at_1_diff1
value: 72.97828307949827
- type: nauc_recall_at_1_max
value: 52.081763648188485
- type: nauc_recall_at_1_std
value: 4.3782414938724274
- type: nauc_recall_at_20_diff1
value: 7.776696643703573
- type: nauc_recall_at_20_max
value: 13.0033941722215
- type: nauc_recall_at_20_std
value: 8.45614768896279
- type: nauc_recall_at_3_diff1
value: 22.928755523203822
- type: nauc_recall_at_3_max
value: 24.690141011441263
- type: nauc_recall_at_3_std
value: 4.897559810894166
- type: nauc_recall_at_5_diff1
value: 17.073370028458005
- type: nauc_recall_at_5_max
value: 20.395437811786472
- type: nauc_recall_at_5_std
value: 5.746343973587907
- type: ndcg_at_1
value: 70.749
- type: ndcg_at_10
value: 57.45
- type: ndcg_at_100
value: 60.650999999999996
- type: ndcg_at_1000
value: 62.291
- type: ndcg_at_20
value: 58.727
- type: ndcg_at_3
value: 53.539
- type: ndcg_at_5
value: 55.592
- type: precision_at_1
value: 70.749
- type: precision_at_10
value: 11.622
- type: precision_at_100
value: 1.415
- type: precision_at_1000
value: 0.163
- type: precision_at_20
value: 6.2219999999999995
- type: precision_at_3
value: 32.915
- type: precision_at_5
value: 21.375
- type: recall_at_1
value: 35.375
- type: recall_at_10
value: 58.109
- type: recall_at_100
value: 70.77
- type: recall_at_1000
value: 81.708
- type: recall_at_20
value: 62.221000000000004
- type: recall_at_3
value: 49.372
- type: recall_at_5
value: 53.437
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA-PLHardNegatives (default)
type: mteb/HotpotQA_PL_test_top_250_only_w_correct-v2
config: default
split: test
revision: 0642cadffa3205c6b21c9af901fdffcd60d6f31e
metrics:
- type: main_score
value: 60.56700000000001
- type: map_at_1
value: 36.199999999999996
- type: map_at_10
value: 50.897999999999996
- type: map_at_100
value: 52.038
- type: map_at_1000
value: 52.134
- type: map_at_20
value: 51.55800000000001
- type: map_at_3
value: 47.766999999999996
- type: map_at_5
value: 49.434
- type: mrr_at_1
value: 72.39999999999999
- type: mrr_at_10
value: 78.74666666666667
- type: mrr_at_100
value: 79.06754299755188
- type: mrr_at_1000
value: 79.07929688256422
- type: mrr_at_20
value: 78.97176876614957
- type: mrr_at_3
value: 77.5
- type: mrr_at_5
value: 78.20499999999998
- type: nauc_map_at_1000_diff1
value: 21.13561300802851
- type: nauc_map_at_1000_max
value: 21.249219453246322
- type: nauc_map_at_1000_std
value: -4.669822840258497
- type: nauc_map_at_100_diff1
value: 21.095306085908604
- type: nauc_map_at_100_max
value: 21.202772455601586
- type: nauc_map_at_100_std
value: -4.723750393340032
- type: nauc_map_at_10_diff1
value: 21.765115098977773
- type: nauc_map_at_10_max
value: 21.77000691170242
- type: nauc_map_at_10_std
value: -5.4382501708747
- type: nauc_map_at_1_diff1
value: 68.79425914914317
- type: nauc_map_at_1_max
value: 47.223208976547
- type: nauc_map_at_1_std
value: -12.63967936490773
- type: nauc_map_at_20_diff1
value: 21.23060640067979
- type: nauc_map_at_20_max
value: 21.263514907637227
- type: nauc_map_at_20_std
value: -5.156492062150907
- type: nauc_map_at_3_diff1
value: 23.863613350758534
- type: nauc_map_at_3_max
value: 22.361538264217785
- type: nauc_map_at_3_std
value: -6.12150529504839
- type: nauc_map_at_5_diff1
value: 22.542999500961926
- type: nauc_map_at_5_max
value: 22.759646449359817
- type: nauc_map_at_5_std
value: -4.761823706494758
- type: nauc_mrr_at_1000_diff1
value: 68.09475501720986
- type: nauc_mrr_at_1000_max
value: 49.08784703387968
- type: nauc_mrr_at_1000_std
value: -11.912122956070558
- type: nauc_mrr_at_100_diff1
value: 68.08653096396323
- type: nauc_mrr_at_100_max
value: 49.082623679323305
- type: nauc_mrr_at_100_std
value: -11.922377942768259
- type: nauc_mrr_at_10_diff1
value: 68.01720190274823
- type: nauc_mrr_at_10_max
value: 49.181515292974105
- type: nauc_mrr_at_10_std
value: -11.64889917671523
- type: nauc_mrr_at_1_diff1
value: 68.79425914914317
- type: nauc_mrr_at_1_max
value: 47.223208976547
- type: nauc_mrr_at_1_std
value: -12.63967936490773
- type: nauc_mrr_at_20_diff1
value: 68.11391215333266
- type: nauc_mrr_at_20_max
value: 49.22271597462208
- type: nauc_mrr_at_20_std
value: -11.806540894851986
- type: nauc_mrr_at_3_diff1
value: 68.39904516682762
- type: nauc_mrr_at_3_max
value: 48.66756325961343
- type: nauc_mrr_at_3_std
value: -12.807791929130827
- type: nauc_mrr_at_5_diff1
value: 68.22020582688101
- type: nauc_mrr_at_5_max
value: 49.32584715351403
- type: nauc_mrr_at_5_std
value: -11.383099021799612
- type: nauc_ndcg_at_1000_diff1
value: 25.403527087657316
- type: nauc_ndcg_at_1000_max
value: 24.333374836810293
- type: nauc_ndcg_at_1000_std
value: -2.301241563130495
- type: nauc_ndcg_at_100_diff1
value: 24.23532138995639
- type: nauc_ndcg_at_100_max
value: 23.39054626234519
- type: nauc_ndcg_at_100_std
value: -3.01304262560594
- type: nauc_ndcg_at_10_diff1
value: 26.762683685078137
- type: nauc_ndcg_at_10_max
value: 25.25683654056493
- type: nauc_ndcg_at_10_std
value: -5.778271315402495
- type: nauc_ndcg_at_1_diff1
value: 68.79425914914317
- type: nauc_ndcg_at_1_max
value: 47.223208976547
- type: nauc_ndcg_at_1_std
value: -12.63967936490773
- type: nauc_ndcg_at_20_diff1
value: 25.2054038951938
- type: nauc_ndcg_at_20_max
value: 23.85054805466091
- type: nauc_ndcg_at_20_std
value: -5.167987087532739
- type: nauc_ndcg_at_3_diff1
value: 31.188392391732428
- type: nauc_ndcg_at_3_max
value: 27.05796419887928
- type: nauc_ndcg_at_3_std
value: -7.175158473634911
- type: nauc_ndcg_at_5_diff1
value: 28.875147538360512
- type: nauc_ndcg_at_5_max
value: 27.36413608753433
- type: nauc_ndcg_at_5_std
value: -4.789438250105259
- type: nauc_precision_at_1000_diff1
value: -32.63749453783157
- type: nauc_precision_at_1000_max
value: -8.735044720641296
- type: nauc_precision_at_1000_std
value: 36.93974744038624
- type: nauc_precision_at_100_diff1
value: -15.12713425869049
- type: nauc_precision_at_100_max
value: -1.124498888901322
- type: nauc_precision_at_100_std
value: 13.404652097687492
- type: nauc_precision_at_10_diff1
value: 5.003599070842457
- type: nauc_precision_at_10_max
value: 12.408359902893231
- type: nauc_precision_at_10_std
value: -1.9903333253005324
- type: nauc_precision_at_1_diff1
value: 68.79425914914317
- type: nauc_precision_at_1_max
value: 47.223208976547
- type: nauc_precision_at_1_std
value: -12.63967936490773
- type: nauc_precision_at_20_diff1
value: -2.5188824194472934
- type: nauc_precision_at_20_max
value: 5.93923729966351
- type: nauc_precision_at_20_std
value: 0.47431834856040817
- type: nauc_precision_at_3_diff1
value: 16.917738934458505
- type: nauc_precision_at_3_max
value: 19.198721140491106
- type: nauc_precision_at_3_std
value: -4.843523153122463
- type: nauc_precision_at_5_diff1
value: 11.667368686863435
- type: nauc_precision_at_5_max
value: 18.856227988562072
- type: nauc_precision_at_5_std
value: -0.13702330327582785
- type: nauc_recall_at_1000_diff1
value: -32.63749453783146
- type: nauc_recall_at_1000_max
value: -8.735044720641307
- type: nauc_recall_at_1000_std
value: 36.9397474403863
- type: nauc_recall_at_100_diff1
value: -15.127134258690614
- type: nauc_recall_at_100_max
value: -1.124498888901344
- type: nauc_recall_at_100_std
value: 13.404652097687325
- type: nauc_recall_at_10_diff1
value: 5.003599070842488
- type: nauc_recall_at_10_max
value: 12.408359902893208
- type: nauc_recall_at_10_std
value: -1.9903333253004714
- type: nauc_recall_at_1_diff1
value: 68.79425914914317
- type: nauc_recall_at_1_max
value: 47.223208976547
- type: nauc_recall_at_1_std
value: -12.63967936490773
- type: nauc_recall_at_20_diff1
value: -2.5188824194472703
- type: nauc_recall_at_20_max
value: 5.939237299663526
- type: nauc_recall_at_20_std
value: 0.47431834856051747
- type: nauc_recall_at_3_diff1
value: 16.917738934458495
- type: nauc_recall_at_3_max
value: 19.198721140491156
- type: nauc_recall_at_3_std
value: -4.8435231531224465
- type: nauc_recall_at_5_diff1
value: 11.667368686863474
- type: nauc_recall_at_5_max
value: 18.856227988562125
- type: nauc_recall_at_5_std
value: -0.13702330327578427
- type: ndcg_at_1
value: 72.39999999999999
- type: ndcg_at_10
value: 60.56700000000001
- type: ndcg_at_100
value: 64.703
- type: ndcg_at_1000
value: 66.523
- type: ndcg_at_20
value: 62.278999999999996
- type: ndcg_at_3
value: 55.762
- type: ndcg_at_5
value: 58.001999999999995
- type: precision_at_1
value: 72.39999999999999
- type: precision_at_10
value: 12.55
- type: precision_at_100
value: 1.5810000000000002
- type: precision_at_1000
value: 0.182
- type: precision_at_20
value: 6.825
- type: precision_at_3
value: 34.567
- type: precision_at_5
value: 22.52
- type: recall_at_1
value: 36.199999999999996
- type: recall_at_10
value: 62.74999999999999
- type: recall_at_100
value: 79.05
- type: recall_at_1000
value: 91.05
- type: recall_at_20
value: 68.25
- type: recall_at_3
value: 51.849999999999994
- type: recall_at_5
value: 56.3
- task:
type: Classification
dataset:
name: MTEB LanguageClassification (default)
type: papluca/language-identification
config: default
split: test
revision: aa56583bf2bc52b0565770607d6fc3faebecf9e2
metrics:
- type: accuracy
value: 59.3115234375
- type: f1
value: 55.45455992019244
- type: f1_weighted
value: 55.5143868826049
- type: main_score
value: 59.3115234375
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO-PL (default)
type: clarin-knext/msmarco-pl
config: default
split: test
revision: 8634c07806d5cce3a6138e260e59b81760a0a640
metrics:
- type: main_score
value: 57.105
- type: map_at_1
value: 1.9900000000000002
- type: map_at_10
value: 10.452
- type: map_at_100
value: 27.809
- type: map_at_1000
value: 34.333999999999996
- type: map_at_20
value: 15.934999999999999
- type: map_at_3
value: 4.139
- type: map_at_5
value: 6.593
- type: mrr_at_1
value: 81.3953488372093
- type: mrr_at_10
value: 88.00664451827242
- type: mrr_at_100
value: 88.00664451827242
- type: mrr_at_1000
value: 88.00664451827242
- type: mrr_at_20
value: 88.00664451827242
- type: mrr_at_3
value: 86.04651162790698
- type: mrr_at_5
value: 87.67441860465117
- type: nauc_map_at_1000_diff1
value: -8.012101097997089
- type: nauc_map_at_1000_max
value: 56.4366412455371
- type: nauc_map_at_1000_std
value: 42.9964737470612
- type: nauc_map_at_100_diff1
value: 6.041944857071697
- type: nauc_map_at_100_max
value: 45.956568555496126
- type: nauc_map_at_100_std
value: 26.25070487004926
- type: nauc_map_at_10_diff1
value: 18.286490244171176
- type: nauc_map_at_10_max
value: 28.211402521021554
- type: nauc_map_at_10_std
value: -1.552502361118044
- type: nauc_map_at_1_diff1
value: 20.512143297892948
- type: nauc_map_at_1_max
value: -15.919747659099992
- type: nauc_map_at_1_std
value: -27.130727104051793
- type: nauc_map_at_20_diff1
value: 18.236288908512847
- type: nauc_map_at_20_max
value: 34.1167080054512
- type: nauc_map_at_20_std
value: 1.14669873714027
- type: nauc_map_at_3_diff1
value: 14.365487356948107
- type: nauc_map_at_3_max
value: 6.975356551295571
- type: nauc_map_at_3_std
value: -9.646239922358001
- type: nauc_map_at_5_diff1
value: 13.364114223444492
- type: nauc_map_at_5_max
value: 15.079226719804579
- type: nauc_map_at_5_std
value: -8.19304844226965
- type: nauc_mrr_at_1000_diff1
value: 12.044984137524793
- type: nauc_mrr_at_1000_max
value: 22.507880773810452
- type: nauc_mrr_at_1000_std
value: 5.769039872012413
- type: nauc_mrr_at_100_diff1
value: 12.044984137524793
- type: nauc_mrr_at_100_max
value: 22.507880773810452
- type: nauc_mrr_at_100_std
value: 5.769039872012413
- type: nauc_mrr_at_10_diff1
value: 12.044984137524793
- type: nauc_mrr_at_10_max
value: 22.507880773810452
- type: nauc_mrr_at_10_std
value: 5.769039872012413
- type: nauc_mrr_at_1_diff1
value: 18.791336292581494
- type: nauc_mrr_at_1_max
value: 17.34729375621222
- type: nauc_mrr_at_1_std
value: 5.970890372277977
- type: nauc_mrr_at_20_diff1
value: 12.044984137524793
- type: nauc_mrr_at_20_max
value: 22.507880773810452
- type: nauc_mrr_at_20_std
value: 5.769039872012413
- type: nauc_mrr_at_3_diff1
value: 3.3178668209270006
- type: nauc_mrr_at_3_max
value: 22.893544175421162
- type: nauc_mrr_at_3_std
value: 9.55254750349961
- type: nauc_mrr_at_5_diff1
value: 14.170130034718365
- type: nauc_mrr_at_5_max
value: 23.91480366047494
- type: nauc_mrr_at_5_std
value: 2.3989686840953475
- type: nauc_ndcg_at_1000_diff1
value: -4.6649217802242395
- type: nauc_ndcg_at_1000_max
value: 61.847729061932036
- type: nauc_ndcg_at_1000_std
value: 37.82228582066131
- type: nauc_ndcg_at_100_diff1
value: 0.50290949273706
- type: nauc_ndcg_at_100_max
value: 56.67022656538278
- type: nauc_ndcg_at_100_std
value: 36.09127681926358
- type: nauc_ndcg_at_10_diff1
value: -9.802324122004562
- type: nauc_ndcg_at_10_max
value: 43.331529382026304
- type: nauc_ndcg_at_10_std
value: 17.31386700864639
- type: nauc_ndcg_at_1_diff1
value: 5.761397078780122
- type: nauc_ndcg_at_1_max
value: 15.085833736334006
- type: nauc_ndcg_at_1_std
value: -3.649463680185266
- type: nauc_ndcg_at_20_diff1
value: -9.960862900268634
- type: nauc_ndcg_at_20_max
value: 45.071949623905894
- type: nauc_ndcg_at_20_std
value: 19.66644760558708
- type: nauc_ndcg_at_3_diff1
value: -16.306996796248235
- type: nauc_ndcg_at_3_max
value: 32.221092998275154
- type: nauc_ndcg_at_3_std
value: 17.93948728916441
- type: nauc_ndcg_at_5_diff1
value: -10.728392149102975
- type: nauc_ndcg_at_5_max
value: 35.86494251484633
- type: nauc_ndcg_at_5_std
value: 11.684815101805704
- type: nauc_precision_at_1000_diff1
value: -35.821618516281355
- type: nauc_precision_at_1000_max
value: 31.03090279111049
- type: nauc_precision_at_1000_std
value: 46.79376309398088
- type: nauc_precision_at_100_diff1
value: -30.000379472915522
- type: nauc_precision_at_100_max
value: 36.20094774818339
- type: nauc_precision_at_100_std
value: 47.724950898741824
- type: nauc_precision_at_10_diff1
value: -14.670361579043648
- type: nauc_precision_at_10_max
value: 50.88317572882223
- type: nauc_precision_at_10_std
value: 34.00961099560648
- type: nauc_precision_at_1_diff1
value: 18.791336292581494
- type: nauc_precision_at_1_max
value: 17.34729375621222
- type: nauc_precision_at_1_std
value: 5.970890372277977
- type: nauc_precision_at_20_diff1
value: -21.901371452888753
- type: nauc_precision_at_20_max
value: 46.04639118721932
- type: nauc_precision_at_20_std
value: 35.611867234067546
- type: nauc_precision_at_3_diff1
value: -20.73209389401944
- type: nauc_precision_at_3_max
value: 41.838425924111675
- type: nauc_precision_at_3_std
value: 39.85194295498681
- type: nauc_precision_at_5_diff1
value: -17.19319873775553
- type: nauc_precision_at_5_max
value: 51.56250664664223
- type: nauc_precision_at_5_std
value: 32.26306628179021
- type: nauc_recall_at_1000_diff1
value: -5.135727487054241
- type: nauc_recall_at_1000_max
value: 55.28965364606285
- type: nauc_recall_at_1000_std
value: 39.29017243470838
- type: nauc_recall_at_100_diff1
value: 9.288604504308834
- type: nauc_recall_at_100_max
value: 36.941533115974366
- type: nauc_recall_at_100_std
value: 17.162321543551354
- type: nauc_recall_at_10_diff1
value: 24.5075068137349
- type: nauc_recall_at_10_max
value: 24.704472613718117
- type: nauc_recall_at_10_std
value: -10.491448477311643
- type: nauc_recall_at_1_diff1
value: 20.512143297892948
- type: nauc_recall_at_1_max
value: -15.919747659099992
- type: nauc_recall_at_1_std
value: -27.130727104051793
- type: nauc_recall_at_20_diff1
value: 20.470205622940263
- type: nauc_recall_at_20_max
value: 25.03335185200762
- type: nauc_recall_at_20_std
value: -9.542230615026384
- type: nauc_recall_at_3_diff1
value: 12.721138757081683
- type: nauc_recall_at_3_max
value: 4.808299122775801
- type: nauc_recall_at_3_std
value: -11.465076844396568
- type: nauc_recall_at_5_diff1
value: 16.88567314127846
- type: nauc_recall_at_5_max
value: 10.614245198185062
- type: nauc_recall_at_5_std
value: -16.18888205921033
- type: ndcg_at_1
value: 67.829
- type: ndcg_at_10
value: 57.105
- type: ndcg_at_100
value: 51.527
- type: ndcg_at_1000
value: 59.46399999999999
- type: ndcg_at_20
value: 54.138
- type: ndcg_at_3
value: 58.202
- type: ndcg_at_5
value: 59.363
- type: precision_at_1
value: 81.395
- type: precision_at_10
value: 66.047
- type: precision_at_100
value: 30.953000000000003
- type: precision_at_1000
value: 6.04
- type: precision_at_20
value: 55.93
- type: precision_at_3
value: 70.543
- type: precision_at_5
value: 72.09299999999999
- type: recall_at_1
value: 1.9900000000000002
- type: recall_at_10
value: 12.335
- type: recall_at_100
value: 42.348
- type: recall_at_1000
value: 68.891
- type: recall_at_20
value: 20.054
- type: recall_at_3
value: 4.375
- type: recall_at_5
value: 7.534000000000001
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO-PLHardNegatives (default)
type: mteb/MSMARCO_PL_test_top_250_only_w_correct-v2
config: default
split: test
revision: b609cb1ec6772bf92b8e014343a7ecfb10eef2d9
metrics:
- type: main_score
value: 62.479
- type: map_at_1
value: 2.015
- type: map_at_10
value: 11.856
- type: map_at_100
value: 40.988
- type: map_at_1000
value: 57.959
- type: map_at_20
value: 19.111
- type: map_at_3
value: 4.817
- type: map_at_5
value: 7.3709999999999996
- type: mrr_at_1
value: 83.72093023255815
- type: mrr_at_10
value: 89.8671096345515
- type: mrr_at_100
value: 89.8671096345515
- type: mrr_at_1000
value: 89.8671096345515
- type: mrr_at_20
value: 89.8671096345515
- type: mrr_at_3
value: 88.37209302325581
- type: mrr_at_5
value: 89.53488372093024
- type: nauc_map_at_1000_diff1
value: -34.846135323586424
- type: nauc_map_at_1000_max
value: 29.18292115867256
- type: nauc_map_at_1000_std
value: 57.23667838425766
- type: nauc_map_at_100_diff1
value: -6.016983594119641
- type: nauc_map_at_100_max
value: 27.97105320494105
- type: nauc_map_at_100_std
value: 20.986545754487558
- type: nauc_map_at_10_diff1
value: 22.220254287378715
- type: nauc_map_at_10_max
value: 11.403052444554513
- type: nauc_map_at_10_std
value: -13.130226658464897
- type: nauc_map_at_1_diff1
value: 39.69550436091381
- type: nauc_map_at_1_max
value: -16.882723045728202
- type: nauc_map_at_1_std
value: -29.330395083370686
- type: nauc_map_at_20_diff1
value: 18.161494182946907
- type: nauc_map_at_20_max
value: 16.529920908408926
- type: nauc_map_at_20_std
value: -10.081086213313265
- type: nauc_map_at_3_diff1
value: 31.32204771377053
- type: nauc_map_at_3_max
value: -5.482815149647405
- type: nauc_map_at_3_std
value: -20.43957139807913
- type: nauc_map_at_5_diff1
value: 22.486941436188367
- type: nauc_map_at_5_max
value: 4.612195845771766
- type: nauc_map_at_5_std
value: -14.837761155598313
- type: nauc_mrr_at_1000_diff1
value: 2.2095971706487303
- type: nauc_mrr_at_1000_max
value: 10.097437841508302
- type: nauc_mrr_at_1000_std
value: 24.63211668703523
- type: nauc_mrr_at_100_diff1
value: 2.2095971706487303
- type: nauc_mrr_at_100_max
value: 10.097437841508302
- type: nauc_mrr_at_100_std
value: 24.63211668703523
- type: nauc_mrr_at_10_diff1
value: 2.2095971706487303
- type: nauc_mrr_at_10_max
value: 10.097437841508302
- type: nauc_mrr_at_10_std
value: 24.63211668703523
- type: nauc_mrr_at_1_diff1
value: 15.276398946528131
- type: nauc_mrr_at_1_max
value: 8.717153299832296
- type: nauc_mrr_at_1_std
value: 28.600034127271652
- type: nauc_mrr_at_20_diff1
value: 2.2095971706487303
- type: nauc_mrr_at_20_max
value: 10.097437841508302
- type: nauc_mrr_at_20_std
value: 24.63211668703523
- type: nauc_mrr_at_3_diff1
value: -10.560729627695347
- type: nauc_mrr_at_3_max
value: 9.031758340498751
- type: nauc_mrr_at_3_std
value: 22.47764642580193
- type: nauc_mrr_at_5_diff1
value: 5.023952302939077
- type: nauc_mrr_at_5_max
value: 11.596859447930543
- type: nauc_mrr_at_5_std
value: 24.20435962088466
- type: nauc_ndcg_at_1000_diff1
value: -38.521295110914316
- type: nauc_ndcg_at_1000_max
value: 33.742873661087955
- type: nauc_ndcg_at_1000_std
value: 54.07862663678682
- type: nauc_ndcg_at_100_diff1
value: -13.191806198203498
- type: nauc_ndcg_at_100_max
value: 42.898538839792785
- type: nauc_ndcg_at_100_std
value: 52.431848941001846
- type: nauc_ndcg_at_10_diff1
value: -14.094228653427074
- type: nauc_ndcg_at_10_max
value: 22.013625698488877
- type: nauc_ndcg_at_10_std
value: 32.269373872153004
- type: nauc_ndcg_at_1_diff1
value: -0.9536993894348202
- type: nauc_ndcg_at_1_max
value: 13.241805975751314
- type: nauc_ndcg_at_1_std
value: 20.628301389219217
- type: nauc_ndcg_at_20_diff1
value: -14.259970601088892
- type: nauc_ndcg_at_20_max
value: 22.406568590509757
- type: nauc_ndcg_at_20_std
value: 36.19985844757674
- type: nauc_ndcg_at_3_diff1
value: -17.33669028160956
- type: nauc_ndcg_at_3_max
value: 16.074824713300455
- type: nauc_ndcg_at_3_std
value: 27.403567224575443
- type: nauc_ndcg_at_5_diff1
value: -12.820784911984436
- type: nauc_ndcg_at_5_max
value: 21.542886528832174
- type: nauc_ndcg_at_5_std
value: 29.07282374739257
- type: nauc_precision_at_1000_diff1
value: -35.60122645356994
- type: nauc_precision_at_1000_max
value: 2.766728293354684
- type: nauc_precision_at_1000_std
value: 45.106529504482644
- type: nauc_precision_at_100_diff1
value: -42.734941084266296
- type: nauc_precision_at_100_max
value: 14.953258911586055
- type: nauc_precision_at_100_std
value: 55.037972769837175
- type: nauc_precision_at_10_diff1
value: -28.890384218334038
- type: nauc_precision_at_10_max
value: 32.5381595525642
- type: nauc_precision_at_10_std
value: 45.24099410430647
- type: nauc_precision_at_1_diff1
value: 15.276398946528131
- type: nauc_precision_at_1_max
value: 8.717153299832296
- type: nauc_precision_at_1_std
value: 28.600034127271652
- type: nauc_precision_at_20_diff1
value: -33.02729563387234
- type: nauc_precision_at_20_max
value: 27.19557155623203
- type: nauc_precision_at_20_std
value: 44.47754520309755
- type: nauc_precision_at_3_diff1
value: -14.501195444762063
- type: nauc_precision_at_3_max
value: 13.86633130712465
- type: nauc_precision_at_3_std
value: 40.179238021661355
- type: nauc_precision_at_5_diff1
value: -17.545737121609438
- type: nauc_precision_at_5_max
value: 34.62230292211274
- type: nauc_precision_at_5_std
value: 49.446043969419165
- type: nauc_recall_at_1000_diff1
value: -95.32777618701374
- type: nauc_recall_at_1000_max
value: 48.60765801360888
- type: nauc_recall_at_1000_std
value: 88.76245635034805
- type: nauc_recall_at_100_diff1
value: 5.691841865744837
- type: nauc_recall_at_100_max
value: 23.96749843706024
- type: nauc_recall_at_100_std
value: 1.9555743397908651
- type: nauc_recall_at_10_diff1
value: 27.624372183401157
- type: nauc_recall_at_10_max
value: 4.019210332304043
- type: nauc_recall_at_10_std
value: -20.85263152189046
- type: nauc_recall_at_1_diff1
value: 39.69550436091381
- type: nauc_recall_at_1_max
value: -16.882723045728202
- type: nauc_recall_at_1_std
value: -29.330395083370686
- type: nauc_recall_at_20_diff1
value: 22.01978317945599
- type: nauc_recall_at_20_max
value: 7.144473524395364
- type: nauc_recall_at_20_std
value: -18.490981365877715
- type: nauc_recall_at_3_diff1
value: 31.62038934003161
- type: nauc_recall_at_3_max
value: -10.760815503593776
- type: nauc_recall_at_3_std
value: -25.045384537758242
- type: nauc_recall_at_5_diff1
value: 25.9168912492029
- type: nauc_recall_at_5_max
value: -1.57601021265437
- type: nauc_recall_at_5_std
value: -21.644578724944903
- type: ndcg_at_1
value: 68.605
- type: ndcg_at_10
value: 62.479
- type: ndcg_at_100
value: 66.44200000000001
- type: ndcg_at_1000
value: 79.411
- type: ndcg_at_20
value: 61.366
- type: ndcg_at_3
value: 64.29899999999999
- type: ndcg_at_5
value: 64.265
- type: precision_at_1
value: 83.721
- type: precision_at_10
value: 72.558
- type: precision_at_100
value: 45.674
- type: precision_at_1000
value: 9.251
- type: precision_at_20
value: 65.581
- type: precision_at_3
value: 80.62
- type: precision_at_5
value: 79.07
- type: recall_at_1
value: 2.015
- type: recall_at_10
value: 14.13
- type: recall_at_100
value: 60.998
- type: recall_at_1000
value: 96.55799999999999
- type: recall_at_20
value: 23.983999999999998
- type: recall_at_3
value: 5.248
- type: recall_at_5
value: 8.456
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 72.63954270342971
- type: f1
value: 69.45307590994116
- type: f1_weighted
value: 71.79973967852227
- type: main_score
value: 72.63954270342971
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: validation
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 73.62518445646828
- type: f1
value: 68.92188487113377
- type: f1_weighted
value: 72.64149757960894
- type: main_score
value: 73.62518445646828
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 76.56018829858776
- type: f1
value: 76.02756886857807
- type: f1_weighted
value: 76.61092646592095
- type: main_score
value: 76.56018829858776
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: validation
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 76.7683226758485
- type: f1
value: 76.02969933641604
- type: f1_weighted
value: 76.73489976040989
- type: main_score
value: 76.7683226758485
- task:
type: MultilabelClassification
dataset:
name: MTEB MultiEURLEXMultilabelClassification (pl)
type: mteb/eurlex-multilingual
config: pl
split: test
revision: 2aea5a6dc8fdcfeca41d0fb963c0a338930bde5c
metrics:
- type: accuracy
value: 4.218
- type: f1
value: 35.41806947791864
- type: lrap
value: 46.31597017195712
- type: main_score
value: 4.218
- task:
type: Classification
dataset:
name: MTEB MultiHateClassification (pol)
type: mteb/multi-hatecheck
config: pol
split: test
revision: 8f95949846bb9e33c6aaf730ccfdb8fe6bcfb7a9
metrics:
- type: accuracy
value: 61.550000000000004
- type: ap
value: 34.943205720242624
- type: ap_weighted
value: 34.943205720242624
- type: f1
value: 57.42076384232142
- type: f1_weighted
value: 62.592131425733
- type: main_score
value: 61.550000000000004
- task:
type: Classification
dataset:
name: MTEB MultilingualSentimentClassification (pol)
type: mteb/multilingual-sentiment-classification
config: pol
split: test
revision: 2b9b4d10fc589af67794141fe8cbd3739de1eb33
metrics:
- type: accuracy
value: 90.58333333333331
- type: ap
value: 85.78887796762379
- type: ap_weighted
value: 85.78887796762379
- type: f1
value: 90.45854538654365
- type: f1_weighted
value: 90.59802034163135
- type: main_score
value: 90.58333333333331
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus-PL (default)
type: clarin-knext/nfcorpus-pl
config: default
split: test
revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
metrics:
- type: main_score
value: 32.836999999999996
- type: map_at_1
value: 5.407
- type: map_at_10
value: 11.602
- type: map_at_100
value: 14.698
- type: map_at_1000
value: 16.116
- type: map_at_20
value: 12.712000000000002
- type: map_at_3
value: 8.519
- type: map_at_5
value: 9.892
- type: mrr_at_1
value: 43.653250773993804
- type: mrr_at_10
value: 52.844120104182025
- type: mrr_at_100
value: 53.449775403110614
- type: mrr_at_1000
value: 53.490875731391355
- type: mrr_at_20
value: 53.22127287411389
- type: mrr_at_3
value: 50.92879256965944
- type: mrr_at_5
value: 52.07430340557275
- type: nauc_map_at_1000_diff1
value: 21.252095579684628
- type: nauc_map_at_1000_max
value: 26.70622083525327
- type: nauc_map_at_1000_std
value: 8.767942285021244
- type: nauc_map_at_100_diff1
value: 21.91396527029906
- type: nauc_map_at_100_max
value: 24.78831708869797
- type: nauc_map_at_100_std
value: 4.685598528309627
- type: nauc_map_at_10_diff1
value: 23.354902063893743
- type: nauc_map_at_10_max
value: 18.13889773190672
- type: nauc_map_at_10_std
value: -5.875489355896885
- type: nauc_map_at_1_diff1
value: 33.360938146617976
- type: nauc_map_at_1_max
value: 10.174509947819098
- type: nauc_map_at_1_std
value: -15.198793788870043
- type: nauc_map_at_20_diff1
value: 23.212136861648684
- type: nauc_map_at_20_max
value: 20.531117659821536
- type: nauc_map_at_20_std
value: -2.786681819195299
- type: nauc_map_at_3_diff1
value: 28.31527977573991
- type: nauc_map_at_3_max
value: 11.587612514076165
- type: nauc_map_at_3_std
value: -12.603907215111693
- type: nauc_map_at_5_diff1
value: 25.965083702703495
- type: nauc_map_at_5_max
value: 14.729243254441165
- type: nauc_map_at_5_std
value: -10.677653224851138
- type: nauc_mrr_at_1000_diff1
value: 36.42318903416605
- type: nauc_mrr_at_1000_max
value: 51.18409250517103
- type: nauc_mrr_at_1000_std
value: 31.29570352877994
- type: nauc_mrr_at_100_diff1
value: 36.43269897021644
- type: nauc_mrr_at_100_max
value: 51.21737308452086
- type: nauc_mrr_at_100_std
value: 31.337400205547254
- type: nauc_mrr_at_10_diff1
value: 36.367711586434055
- type: nauc_mrr_at_10_max
value: 51.13843457934155
- type: nauc_mrr_at_10_std
value: 30.99940878155313
- type: nauc_mrr_at_1_diff1
value: 38.020555260298266
- type: nauc_mrr_at_1_max
value: 45.76508007462295
- type: nauc_mrr_at_1_std
value: 26.56239846524524
- type: nauc_mrr_at_20_diff1
value: 36.4735716127678
- type: nauc_mrr_at_20_max
value: 51.18482045326876
- type: nauc_mrr_at_20_std
value: 31.182761897720628
- type: nauc_mrr_at_3_diff1
value: 36.74620136204912
- type: nauc_mrr_at_3_max
value: 50.46246550759349
- type: nauc_mrr_at_3_std
value: 30.928776699074977
- type: nauc_mrr_at_5_diff1
value: 36.43604909883522
- type: nauc_mrr_at_5_max
value: 50.961876020556105
- type: nauc_mrr_at_5_std
value: 30.558689522445277
- type: nauc_ndcg_at_1000_diff1
value: 22.367261695212818
- type: nauc_ndcg_at_1000_max
value: 46.381076848268314
- type: nauc_ndcg_at_1000_std
value: 32.87206147838707
- type: nauc_ndcg_at_100_diff1
value: 21.484143323872498
- type: nauc_ndcg_at_100_max
value: 39.12491937457514
- type: nauc_ndcg_at_100_std
value: 23.79972574892049
- type: nauc_ndcg_at_10_diff1
value: 23.61423535088915
- type: nauc_ndcg_at_10_max
value: 39.18046026051968
- type: nauc_ndcg_at_10_std
value: 21.500043266959334
- type: nauc_ndcg_at_1_diff1
value: 37.55672462811441
- type: nauc_ndcg_at_1_max
value: 44.461461345711996
- type: nauc_ndcg_at_1_std
value: 24.638179893174854
- type: nauc_ndcg_at_20_diff1
value: 23.313762933875577
- type: nauc_ndcg_at_20_max
value: 37.61712630443033
- type: nauc_ndcg_at_20_std
value: 20.47709166123172
- type: nauc_ndcg_at_3_diff1
value: 26.65064647305834
- type: nauc_ndcg_at_3_max
value: 42.37171469906345
- type: nauc_ndcg_at_3_std
value: 23.179726698729016
- type: nauc_ndcg_at_5_diff1
value: 24.262311738959486
- type: nauc_ndcg_at_5_max
value: 41.40200588435856
- type: nauc_ndcg_at_5_std
value: 21.662269993534142
- type: nauc_precision_at_1000_diff1
value: -1.289992273496289
- type: nauc_precision_at_1000_max
value: 15.583146284118996
- type: nauc_precision_at_1000_std
value: 29.804029015112356
- type: nauc_precision_at_100_diff1
value: 1.564940945124233
- type: nauc_precision_at_100_max
value: 26.392385300263037
- type: nauc_precision_at_100_std
value: 38.76232331369285
- type: nauc_precision_at_10_diff1
value: 10.074337562319577
- type: nauc_precision_at_10_max
value: 40.138351711813634
- type: nauc_precision_at_10_std
value: 34.220232921350025
- type: nauc_precision_at_1_diff1
value: 38.020555260298266
- type: nauc_precision_at_1_max
value: 45.76508007462295
- type: nauc_precision_at_1_std
value: 26.56239846524524
- type: nauc_precision_at_20_diff1
value: 7.895964325229299
- type: nauc_precision_at_20_max
value: 37.24274329998079
- type: nauc_precision_at_20_std
value: 37.404193953417106
- type: nauc_precision_at_3_diff1
value: 19.55020676002291
- type: nauc_precision_at_3_max
value: 43.59370824619839
- type: nauc_precision_at_3_std
value: 28.46885149275582
- type: nauc_precision_at_5_diff1
value: 13.091453046202925
- type: nauc_precision_at_5_max
value: 43.182417322718536
- type: nauc_precision_at_5_std
value: 29.92195463487166
- type: nauc_recall_at_1000_diff1
value: 4.97907300227104
- type: nauc_recall_at_1000_max
value: 22.28246568460588
- type: nauc_recall_at_1000_std
value: 25.715913887754134
- type: nauc_recall_at_100_diff1
value: 10.909246688962302
- type: nauc_recall_at_100_max
value: 22.341695674602903
- type: nauc_recall_at_100_std
value: 15.46486876238366
- type: nauc_recall_at_10_diff1
value: 15.684351712023942
- type: nauc_recall_at_10_max
value: 13.99640438074371
- type: nauc_recall_at_10_std
value: -5.991871068665403
- type: nauc_recall_at_1_diff1
value: 33.360938146617976
- type: nauc_recall_at_1_max
value: 10.174509947819098
- type: nauc_recall_at_1_std
value: -15.198793788870043
- type: nauc_recall_at_20_diff1
value: 15.905172434675574
- type: nauc_recall_at_20_max
value: 15.783093168064557
- type: nauc_recall_at_20_std
value: -2.263046672061753
- type: nauc_recall_at_3_diff1
value: 26.426234689785133
- type: nauc_recall_at_3_max
value: 11.087891452701028
- type: nauc_recall_at_3_std
value: -11.772482622591477
- type: nauc_recall_at_5_diff1
value: 22.11736638320966
- type: nauc_recall_at_5_max
value: 13.571692363425214
- type: nauc_recall_at_5_std
value: -11.244894889011983
- type: ndcg_at_1
value: 42.26
- type: ndcg_at_10
value: 32.836999999999996
- type: ndcg_at_100
value: 30.341
- type: ndcg_at_1000
value: 39.114
- type: ndcg_at_20
value: 30.375999999999998
- type: ndcg_at_3
value: 38.174
- type: ndcg_at_5
value: 35.945
- type: precision_at_1
value: 43.653
- type: precision_at_10
value: 24.303
- type: precision_at_100
value: 8.025
- type: precision_at_1000
value: 2.062
- type: precision_at_20
value: 17.616
- type: precision_at_3
value: 36.429
- type: precision_at_5
value: 31.207
- type: recall_at_1
value: 5.407
- type: recall_at_10
value: 16.026
- type: recall_at_100
value: 30.755
- type: recall_at_1000
value: 63.058
- type: recall_at_20
value: 19.56
- type: recall_at_3
value: 9.383
- type: recall_at_5
value: 11.955
- task:
type: Retrieval
dataset:
name: MTEB NQ-PL (default)
type: clarin-knext/nq-pl
config: default
split: test
revision: f171245712cf85dd4700b06bef18001578d0ca8d
metrics:
- type: main_score
value: 40.046
- type: map_at_1
value: 20.836
- type: map_at_10
value: 33.147
- type: map_at_100
value: 34.305
- type: map_at_1000
value: 34.365
- type: map_at_20
value: 33.866
- type: map_at_3
value: 29.029
- type: map_at_5
value: 31.387999999999998
- type: mrr_at_1
value: 23.638470451911935
- type: mrr_at_10
value: 35.410666004524636
- type: mrr_at_100
value: 36.39008970520291
- type: mrr_at_1000
value: 36.434922659126926
- type: mrr_at_20
value: 36.040096707445514
- type: mrr_at_3
value: 31.909038238702202
- type: mrr_at_5
value: 33.951332560834295
- type: nauc_map_at_1000_diff1
value: 30.33789317509847
- type: nauc_map_at_1000_max
value: 34.42459859725807
- type: nauc_map_at_1000_std
value: 9.97643796318094
- type: nauc_map_at_100_diff1
value: 30.330830102419498
- type: nauc_map_at_100_max
value: 34.447821563623194
- type: nauc_map_at_100_std
value: 10.005636991113455
- type: nauc_map_at_10_diff1
value: 30.34368851651713
- type: nauc_map_at_10_max
value: 34.049110329953194
- type: nauc_map_at_10_std
value: 9.191908504593075
- type: nauc_map_at_1_diff1
value: 35.26679557790614
- type: nauc_map_at_1_max
value: 29.771974215418318
- type: nauc_map_at_1_std
value: 4.776546296003624
- type: nauc_map_at_20_diff1
value: 30.281421969911225
- type: nauc_map_at_20_max
value: 34.33650674553603
- type: nauc_map_at_20_std
value: 9.727603420278799
- type: nauc_map_at_3_diff1
value: 31.145137267648813
- type: nauc_map_at_3_max
value: 32.38852468715383
- type: nauc_map_at_3_std
value: 6.999311805347667
- type: nauc_map_at_5_diff1
value: 30.32736513433838
- type: nauc_map_at_5_max
value: 33.292378027926425
- type: nauc_map_at_5_std
value: 8.145447139184112
- type: nauc_mrr_at_1000_diff1
value: 29.831199924703817
- type: nauc_mrr_at_1000_max
value: 34.10844541447466
- type: nauc_mrr_at_1000_std
value: 11.226040436619018
- type: nauc_mrr_at_100_diff1
value: 29.83092714251575
- type: nauc_mrr_at_100_max
value: 34.13324232175186
- type: nauc_mrr_at_100_std
value: 11.251560383955486
- type: nauc_mrr_at_10_diff1
value: 29.761109883105085
- type: nauc_mrr_at_10_max
value: 33.87749240441422
- type: nauc_mrr_at_10_std
value: 10.756431499661819
- type: nauc_mrr_at_1_diff1
value: 33.989066055249154
- type: nauc_mrr_at_1_max
value: 30.395509585555487
- type: nauc_mrr_at_1_std
value: 6.5196986843728295
- type: nauc_mrr_at_20_diff1
value: 29.746190088974455
- type: nauc_mrr_at_20_max
value: 34.070814927054016
- type: nauc_mrr_at_20_std
value: 11.101583529780374
- type: nauc_mrr_at_3_diff1
value: 30.086990584032293
- type: nauc_mrr_at_3_max
value: 32.714654369197135
- type: nauc_mrr_at_3_std
value: 9.37948033677932
- type: nauc_mrr_at_5_diff1
value: 29.53541842449955
- type: nauc_mrr_at_5_max
value: 33.34401975157522
- type: nauc_mrr_at_5_std
value: 10.156864160967393
- type: nauc_ndcg_at_1000_diff1
value: 29.110288584326693
- type: nauc_ndcg_at_1000_max
value: 36.90253858086684
- type: nauc_ndcg_at_1000_std
value: 14.532331118999608
- type: nauc_ndcg_at_100_diff1
value: 28.97540691413146
- type: nauc_ndcg_at_100_max
value: 37.584960544191304
- type: nauc_ndcg_at_100_std
value: 15.442845119344694
- type: nauc_ndcg_at_10_diff1
value: 28.795881184832485
- type: nauc_ndcg_at_10_max
value: 35.94272625161231
- type: nauc_ndcg_at_10_std
value: 12.023528372246636
- type: nauc_ndcg_at_1_diff1
value: 34.100597438365206
- type: nauc_ndcg_at_1_max
value: 30.35880635797757
- type: nauc_ndcg_at_1_std
value: 6.556654032875343
- type: nauc_ndcg_at_20_diff1
value: 28.616176665243685
- type: nauc_ndcg_at_20_max
value: 36.94100478517521
- type: nauc_ndcg_at_20_std
value: 13.84115539697913
- type: nauc_ndcg_at_3_diff1
value: 29.800875843729536
- type: nauc_ndcg_at_3_max
value: 32.97586122644207
- type: nauc_ndcg_at_3_std
value: 8.254595787337179
- type: nauc_ndcg_at_5_diff1
value: 28.564485497706897
- type: nauc_ndcg_at_5_max
value: 34.36550798481214
- type: nauc_ndcg_at_5_std
value: 9.979146706487176
- type: nauc_precision_at_1000_diff1
value: -2.0183745076034305
- type: nauc_precision_at_1000_max
value: 17.01703235798985
- type: nauc_precision_at_1000_std
value: 24.752710326143955
- type: nauc_precision_at_100_diff1
value: 5.351886729324482
- type: nauc_precision_at_100_max
value: 30.913625083631977
- type: nauc_precision_at_100_std
value: 33.69481614506668
- type: nauc_precision_at_10_diff1
value: 15.938911938541489
- type: nauc_precision_at_10_max
value: 35.6404201670323
- type: nauc_precision_at_10_std
value: 21.02640517885096
- type: nauc_precision_at_1_diff1
value: 34.100597438365206
- type: nauc_precision_at_1_max
value: 30.35880635797757
- type: nauc_precision_at_1_std
value: 6.556654032875343
- type: nauc_precision_at_20_diff1
value: 12.06019821733859
- type: nauc_precision_at_20_max
value: 35.709266792371615
- type: nauc_precision_at_20_std
value: 26.83935698262609
- type: nauc_precision_at_3_diff1
value: 23.293715443749498
- type: nauc_precision_at_3_max
value: 34.352815559576754
- type: nauc_precision_at_3_std
value: 12.400616118285498
- type: nauc_precision_at_5_diff1
value: 18.62536694684322
- type: nauc_precision_at_5_max
value: 35.23411734933911
- type: nauc_precision_at_5_std
value: 16.198868970484614
- type: nauc_recall_at_1000_diff1
value: 19.95715343716757
- type: nauc_recall_at_1000_max
value: 66.40788089117626
- type: nauc_recall_at_1000_std
value: 68.87954839929897
- type: nauc_recall_at_100_diff1
value: 22.83247580652378
- type: nauc_recall_at_100_max
value: 56.48998030807925
- type: nauc_recall_at_100_std
value: 47.86881793700064
- type: nauc_recall_at_10_diff1
value: 24.09148418102836
- type: nauc_recall_at_10_max
value: 40.405060126060754
- type: nauc_recall_at_10_std
value: 18.243191480781267
- type: nauc_recall_at_1_diff1
value: 35.26679557790614
- type: nauc_recall_at_1_max
value: 29.771974215418318
- type: nauc_recall_at_1_std
value: 4.776546296003624
- type: nauc_recall_at_20_diff1
value: 22.69685579729365
- type: nauc_recall_at_20_max
value: 45.429255336368044
- type: nauc_recall_at_20_std
value: 26.960602261646045
- type: nauc_recall_at_3_diff1
value: 26.763890354016656
- type: nauc_recall_at_3_max
value: 33.44197235279934
- type: nauc_recall_at_3_std
value: 9.139561741646231
- type: nauc_recall_at_5_diff1
value: 23.79794408992853
- type: nauc_recall_at_5_max
value: 35.948339011548484
- type: nauc_recall_at_5_std
value: 12.507365356132215
- type: ndcg_at_1
value: 23.61
- type: ndcg_at_10
value: 40.046
- type: ndcg_at_100
value: 45.353
- type: ndcg_at_1000
value: 46.811
- type: ndcg_at_20
value: 42.482
- type: ndcg_at_3
value: 32.162
- type: ndcg_at_5
value: 36.146
- type: precision_at_1
value: 23.61
- type: precision_at_10
value: 7.037
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_20
value: 4.079
- type: precision_at_3
value: 14.929
- type: precision_at_5
value: 11.251
- type: recall_at_1
value: 20.836
- type: recall_at_10
value: 59.021
- type: recall_at_100
value: 82.814
- type: recall_at_1000
value: 93.675
- type: recall_at_20
value: 68.185
- type: recall_at_3
value: 38.376
- type: recall_at_5
value: 47.615
- task:
type: Retrieval
dataset:
name: MTEB NQ-PLHardNegatives (default)
type: mteb/NQ_PL_test_top_250_only_w_correct-v2
config: default
split: test
revision: 9a2878a70ea545a8f4df0cdfa1adea27f4f64390
metrics:
- type: main_score
value: 42.744
- type: map_at_1
value: 22.167
- type: map_at_10
value: 35.442
- type: map_at_100
value: 36.809
- type: map_at_1000
value: 36.849
- type: map_at_20
value: 36.281
- type: map_at_3
value: 30.911
- type: map_at_5
value: 33.799
- type: mrr_at_1
value: 24.9
- type: mrr_at_10
value: 37.717619047619046
- type: mrr_at_100
value: 38.83175098401238
- type: mrr_at_1000
value: 38.863984091549106
- type: mrr_at_20
value: 38.42165681025202
- type: mrr_at_3
value: 33.93333333333333
- type: mrr_at_5
value: 36.38333333333333
- type: nauc_map_at_1000_diff1
value: 29.349107175768076
- type: nauc_map_at_1000_max
value: 32.65755799907269
- type: nauc_map_at_1000_std
value: -3.806253487436536
- type: nauc_map_at_100_diff1
value: 29.32313704694836
- type: nauc_map_at_100_max
value: 32.674805659308234
- type: nauc_map_at_100_std
value: -3.763463883857777
- type: nauc_map_at_10_diff1
value: 29.378099045661276
- type: nauc_map_at_10_max
value: 32.40977984208203
- type: nauc_map_at_10_std
value: -4.750749976310079
- type: nauc_map_at_1_diff1
value: 34.65899813124808
- type: nauc_map_at_1_max
value: 27.5836856142388
- type: nauc_map_at_1_std
value: -5.77408059219477
- type: nauc_map_at_20_diff1
value: 29.234934100000142
- type: nauc_map_at_20_max
value: 32.64242252873959
- type: nauc_map_at_20_std
value: -3.9339041815132245
- type: nauc_map_at_3_diff1
value: 29.75553691236355
- type: nauc_map_at_3_max
value: 30.628821642751685
- type: nauc_map_at_3_std
value: -6.71815410382398
- type: nauc_map_at_5_diff1
value: 29.67011442099744
- type: nauc_map_at_5_max
value: 31.880169485661735
- type: nauc_map_at_5_std
value: -5.23243858089082
- type: nauc_mrr_at_1000_diff1
value: 29.034444335684984
- type: nauc_mrr_at_1000_max
value: 32.3826387684809
- type: nauc_mrr_at_1000_std
value: -1.6453099036883947
- type: nauc_mrr_at_100_diff1
value: 29.012673846053328
- type: nauc_mrr_at_100_max
value: 32.39330681563384
- type: nauc_mrr_at_100_std
value: -1.611798217539563
- type: nauc_mrr_at_10_diff1
value: 28.927278042494308
- type: nauc_mrr_at_10_max
value: 32.241913064296654
- type: nauc_mrr_at_10_std
value: -2.196305056221632
- type: nauc_mrr_at_1_diff1
value: 34.193706220534295
- type: nauc_mrr_at_1_max
value: 28.472182308269332
- type: nauc_mrr_at_1_std
value: -3.588866144076354
- type: nauc_mrr_at_20_diff1
value: 28.905967167900897
- type: nauc_mrr_at_20_max
value: 32.514840048451944
- type: nauc_mrr_at_20_std
value: -1.5928217819446544
- type: nauc_mrr_at_3_diff1
value: 28.910819895018104
- type: nauc_mrr_at_3_max
value: 31.02262661603842
- type: nauc_mrr_at_3_std
value: -3.7189550210915105
- type: nauc_mrr_at_5_diff1
value: 29.153815747673384
- type: nauc_mrr_at_5_max
value: 32.020862613895844
- type: nauc_mrr_at_5_std
value: -2.559856974862219
- type: nauc_ndcg_at_1000_diff1
value: 28.03384223859073
- type: nauc_ndcg_at_1000_max
value: 34.65513427128041
- type: nauc_ndcg_at_1000_std
value: -0.24943181025018912
- type: nauc_ndcg_at_100_diff1
value: 27.314090721793853
- type: nauc_ndcg_at_100_max
value: 35.139601373088546
- type: nauc_ndcg_at_100_std
value: 1.029635770311101
- type: nauc_ndcg_at_10_diff1
value: 27.406187481616122
- type: nauc_ndcg_at_10_max
value: 34.294782527860775
- type: nauc_ndcg_at_10_std
value: -2.7210616901005844
- type: nauc_ndcg_at_1_diff1
value: 34.193706220534295
- type: nauc_ndcg_at_1_max
value: 28.472182308269332
- type: nauc_ndcg_at_1_std
value: -3.588866144076354
- type: nauc_ndcg_at_20_diff1
value: 26.95213352438165
- type: nauc_ndcg_at_20_max
value: 35.29748291845877
- type: nauc_ndcg_at_20_std
value: -0.030327507133456177
- type: nauc_ndcg_at_3_diff1
value: 27.96016479797334
- type: nauc_ndcg_at_3_max
value: 31.260064258340847
- type: nauc_ndcg_at_3_std
value: -6.185360480716815
- type: nauc_ndcg_at_5_diff1
value: 28.09280399502525
- type: nauc_ndcg_at_5_max
value: 33.303439636075424
- type: nauc_ndcg_at_5_std
value: -3.772285985055726
- type: nauc_precision_at_1000_diff1
value: -4.281358315231413
- type: nauc_precision_at_1000_max
value: 15.068351358617104
- type: nauc_precision_at_1000_std
value: 22.607343044895217
- type: nauc_precision_at_100_diff1
value: -1.8498660906232658
- type: nauc_precision_at_100_max
value: 24.711460259737567
- type: nauc_precision_at_100_std
value: 29.23005993545415
- type: nauc_precision_at_10_diff1
value: 12.909738393494976
- type: nauc_precision_at_10_max
value: 35.070650662332916
- type: nauc_precision_at_10_std
value: 6.898514999972704
- type: nauc_precision_at_1_diff1
value: 34.193706220534295
- type: nauc_precision_at_1_max
value: 28.472182308269332
- type: nauc_precision_at_1_std
value: -3.588866144076354
- type: nauc_precision_at_20_diff1
value: 7.203222790381147
- type: nauc_precision_at_20_max
value: 34.687485444161794
- type: nauc_precision_at_20_std
value: 18.72758400919753
- type: nauc_precision_at_3_diff1
value: 21.26316091253772
- type: nauc_precision_at_3_max
value: 33.927142239391834
- type: nauc_precision_at_3_std
value: -4.082242115397914
- type: nauc_precision_at_5_diff1
value: 18.018252640795644
- type: nauc_precision_at_5_max
value: 35.690648047326626
- type: nauc_precision_at_5_std
value: 2.7145471077534262
- type: nauc_recall_at_1000_diff1
value: 20.536163183221504
- type: nauc_recall_at_1000_max
value: 81.88608776844036
- type: nauc_recall_at_1000_std
value: 76.64799253034528
- type: nauc_recall_at_100_diff1
value: 8.475735597617868
- type: nauc_recall_at_100_max
value: 56.05392838189596
- type: nauc_recall_at_100_std
value: 47.124156579313166
- type: nauc_recall_at_10_diff1
value: 20.846541949906808
- type: nauc_recall_at_10_max
value: 38.356937471723704
- type: nauc_recall_at_10_std
value: 0.9534412860615692
- type: nauc_recall_at_1_diff1
value: 34.65899813124808
- type: nauc_recall_at_1_max
value: 27.5836856142388
- type: nauc_recall_at_1_std
value: -5.77408059219477
- type: nauc_recall_at_20_diff1
value: 17.388853770371078
- type: nauc_recall_at_20_max
value: 44.5348067371247
- type: nauc_recall_at_20_std
value: 13.477242036566658
- type: nauc_recall_at_3_diff1
value: 23.292689488826923
- type: nauc_recall_at_3_max
value: 31.397211941626402
- type: nauc_recall_at_3_std
value: -7.266266306172304
- type: nauc_recall_at_5_diff1
value: 23.446848626918783
- type: nauc_recall_at_5_max
value: 35.30890874307417
- type: nauc_recall_at_5_std
value: -2.1058394852209883
- type: ndcg_at_1
value: 24.9
- type: ndcg_at_10
value: 42.744
- type: ndcg_at_100
value: 48.995
- type: ndcg_at_1000
value: 49.944
- type: ndcg_at_20
value: 45.589
- type: ndcg_at_3
value: 34.311
- type: ndcg_at_5
value: 39.127
- type: precision_at_1
value: 24.9
- type: precision_at_10
value: 7.430000000000001
- type: precision_at_100
value: 1.098
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_20
value: 4.385
- type: precision_at_3
value: 15.8
- type: precision_at_5
value: 12.2
- type: recall_at_1
value: 22.167
- type: recall_at_10
value: 62.766999999999996
- type: recall_at_100
value: 90.75
- type: recall_at_1000
value: 97.833
- type: recall_at_20
value: 73.483
- type: recall_at_3
value: 41.15
- type: recall_at_5
value: 52.217
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (arb_Arab-pol_Latn)
type: mteb/NTREX
config: arb_Arab-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 2.6039058587881825
- type: f1
value: 1.7420063165137074
- type: main_score
value: 1.7420063165137074
- type: precision
value: 1.5987458678183388
- type: recall
value: 2.6039058587881825
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (bel_Cyrl-pol_Latn)
type: mteb/NTREX
config: bel_Cyrl-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 6.71006509764647
- type: f1
value: 5.379820175253383
- type: main_score
value: 5.379820175253383
- type: precision
value: 5.006027887096325
- type: recall
value: 6.71006509764647
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (ben_Beng-pol_Latn)
type: mteb/NTREX
config: ben_Beng-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 1.0015022533800702
- type: f1
value: 0.657269658938351
- type: main_score
value: 0.657269658938351
- type: precision
value: 0.5774496357952187
- type: recall
value: 1.0015022533800702
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (bos_Latn-pol_Latn)
type: mteb/NTREX
config: bos_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 41.4621932899349
- type: f1
value: 36.566294033782604
- type: main_score
value: 36.566294033782604
- type: precision
value: 34.94809949228646
- type: recall
value: 41.4621932899349
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (bul_Cyrl-pol_Latn)
type: mteb/NTREX
config: bul_Cyrl-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 7.611417125688533
- type: f1
value: 6.256776694331179
- type: main_score
value: 6.256776694331179
- type: precision
value: 5.9087199342302625
- type: recall
value: 7.611417125688533
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (ces_Latn-pol_Latn)
type: mteb/NTREX
config: ces_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 44.566850275413124
- type: f1
value: 39.63102995727847
- type: main_score
value: 39.63102995727847
- type: precision
value: 37.92173103351191
- type: recall
value: 44.566850275413124
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (deu_Latn-pol_Latn)
type: mteb/NTREX
config: deu_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 41.4621932899349
- type: f1
value: 37.33454445419768
- type: main_score
value: 37.33454445419768
- type: precision
value: 35.95442215997948
- type: recall
value: 41.4621932899349
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (ell_Grek-pol_Latn)
type: mteb/NTREX
config: ell_Grek-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 8.462694041061592
- type: f1
value: 6.8087684894952885
- type: main_score
value: 6.8087684894952885
- type: precision
value: 6.376933631700838
- type: recall
value: 8.462694041061592
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (eng_Latn-pol_Latn)
type: mteb/NTREX
config: eng_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 96.84526790185278
- type: f1
value: 95.9472542146553
- type: main_score
value: 95.9472542146553
- type: precision
value: 95.52411951260224
- type: recall
value: 96.84526790185278
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (fas_Arab-pol_Latn)
type: mteb/NTREX
config: fas_Arab-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 11.817726589884828
- type: f1
value: 10.601177340803874
- type: main_score
value: 10.601177340803874
- type: precision
value: 10.223703198232055
- type: recall
value: 11.817726589884828
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (fin_Latn-pol_Latn)
type: mteb/NTREX
config: fin_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 24.13620430645969
- type: f1
value: 20.11481738578615
- type: main_score
value: 20.11481738578615
- type: precision
value: 19.018296909416655
- type: recall
value: 24.13620430645969
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (fra_Latn-pol_Latn)
type: mteb/NTREX
config: fra_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 43.415122684026045
- type: f1
value: 39.73512828041284
- type: main_score
value: 39.73512828041284
- type: precision
value: 38.61547526672604
- type: recall
value: 43.415122684026045
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (heb_Hebr-pol_Latn)
type: mteb/NTREX
config: heb_Hebr-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 5.107661492238358
- type: f1
value: 3.7469320469398637
- type: main_score
value: 3.7469320469398637
- type: precision
value: 3.4073111528601916
- type: recall
value: 5.107661492238358
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (hin_Deva-pol_Latn)
type: mteb/NTREX
config: hin_Deva-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 3.755633450175263
- type: f1
value: 2.6979430411046788
- type: main_score
value: 2.6979430411046788
- type: precision
value: 2.476982778272265
- type: recall
value: 3.755633450175263
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (hrv_Latn-pol_Latn)
type: mteb/NTREX
config: hrv_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 41.61241862794191
- type: f1
value: 36.74310386132114
- type: main_score
value: 36.74310386132114
- type: precision
value: 35.08204010628832
- type: recall
value: 41.61241862794191
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (hun_Latn-pol_Latn)
type: mteb/NTREX
config: hun_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 25.187781672508763
- type: f1
value: 21.589008204041267
- type: main_score
value: 21.589008204041267
- type: precision
value: 20.550856861808544
- type: recall
value: 25.187781672508763
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (ind_Latn-pol_Latn)
type: mteb/NTREX
config: ind_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 25.38808212318478
- type: f1
value: 22.027865588136557
- type: main_score
value: 22.027865588136557
- type: precision
value: 21.02193156294836
- type: recall
value: 25.38808212318478
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (jpn_Jpan-pol_Latn)
type: mteb/NTREX
config: jpn_Jpan-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 1.4521782674011017
- type: f1
value: 1.1551267029994832
- type: main_score
value: 1.1551267029994832
- type: precision
value: 1.0709350063506407
- type: recall
value: 1.4521782674011017
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (kor_Hang-pol_Latn)
type: mteb/NTREX
config: kor_Hang-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 8.662994491737606
- type: f1
value: 7.702831195040925
- type: main_score
value: 7.702831195040925
- type: precision
value: 7.399493724590964
- type: recall
value: 8.662994491737606
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (lit_Latn-pol_Latn)
type: mteb/NTREX
config: lit_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 27.240861291937907
- type: f1
value: 22.67568012885724
- type: main_score
value: 22.67568012885724
- type: precision
value: 21.345389137270303
- type: recall
value: 27.240861291937907
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (mkd_Cyrl-pol_Latn)
type: mteb/NTREX
config: mkd_Cyrl-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 5.2578868302453685
- type: f1
value: 4.206059607176409
- type: main_score
value: 4.206059607176409
- type: precision
value: 3.9704622621726124
- type: recall
value: 5.2578868302453685
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (nld_Latn-pol_Latn)
type: mteb/NTREX
config: nld_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 41.66249374061092
- type: f1
value: 37.07298258743049
- type: main_score
value: 37.07298258743049
- type: precision
value: 35.62787031614285
- type: recall
value: 41.66249374061092
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-arb_Arab)
type: mteb/NTREX
config: pol_Latn-arb_Arab
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 4.606910365548322
- type: f1
value: 2.46942582684724
- type: main_score
value: 2.46942582684724
- type: precision
value: 2.1050793953671145
- type: recall
value: 4.606910365548322
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-bel_Cyrl)
type: mteb/NTREX
config: pol_Latn-bel_Cyrl
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 8.662994491737606
- type: f1
value: 5.182695919286112
- type: main_score
value: 5.182695919286112
- type: precision
value: 4.489760167778365
- type: recall
value: 8.662994491737606
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-ben_Beng)
type: mteb/NTREX
config: pol_Latn-ben_Beng
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 2.6539809714571856
- type: f1
value: 1.258614201836631
- type: main_score
value: 1.258614201836631
- type: precision
value: 1.0713961698889642
- type: recall
value: 2.6539809714571856
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-bos_Latn)
type: mteb/NTREX
config: pol_Latn-bos_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 36.55483224837256
- type: f1
value: 29.774094494365304
- type: main_score
value: 29.774094494365304
- type: precision
value: 27.80072080015492
- type: recall
value: 36.55483224837256
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-bul_Cyrl)
type: mteb/NTREX
config: pol_Latn-bul_Cyrl
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 10.015022533800702
- type: f1
value: 6.883913130592241
- type: main_score
value: 6.883913130592241
- type: precision
value: 6.16024442614442
- type: recall
value: 10.015022533800702
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-ces_Latn)
type: mteb/NTREX
config: pol_Latn-ces_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 42.06309464196295
- type: f1
value: 34.378555224013816
- type: main_score
value: 34.378555224013816
- type: precision
value: 31.962839439959527
- type: recall
value: 42.06309464196295
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-deu_Latn)
type: mteb/NTREX
config: pol_Latn-deu_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 43.465197796695044
- type: f1
value: 35.448522434000644
- type: main_score
value: 35.448522434000644
- type: precision
value: 32.92927940126679
- type: recall
value: 43.465197796695044
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-ell_Grek)
type: mteb/NTREX
config: pol_Latn-ell_Grek
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 10.665998998497747
- type: f1
value: 6.412653388709864
- type: main_score
value: 6.412653388709864
- type: precision
value: 5.553629367440621
- type: recall
value: 10.665998998497747
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-eng_Latn)
type: mteb/NTREX
config: pol_Latn-eng_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 95.6434651977967
- type: f1
value: 94.3281589050242
- type: main_score
value: 94.3281589050242
- type: precision
value: 93.69470872976132
- type: recall
value: 95.6434651977967
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-fas_Arab)
type: mteb/NTREX
config: pol_Latn-fas_Arab
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 14.521782674011016
- type: f1
value: 9.83927594272999
- type: main_score
value: 9.83927594272999
- type: precision
value: 8.762366993974261
- type: recall
value: 14.521782674011016
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-fin_Latn)
type: mteb/NTREX
config: pol_Latn-fin_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 24.837255883825737
- type: f1
value: 17.81630308485758
- type: main_score
value: 17.81630308485758
- type: precision
value: 16.06189265176832
- type: recall
value: 24.837255883825737
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-fra_Latn)
type: mteb/NTREX
config: pol_Latn-fra_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 46.21932899349023
- type: f1
value: 37.289762204634506
- type: main_score
value: 37.289762204634506
- type: precision
value: 34.35696093911357
- type: recall
value: 46.21932899349023
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-heb_Hebr)
type: mteb/NTREX
config: pol_Latn-heb_Hebr
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 7.811717576364546
- type: f1
value: 4.325980977253967
- type: main_score
value: 4.325980977253967
- type: precision
value: 3.692034397493451
- type: recall
value: 7.811717576364546
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-hin_Deva)
type: mteb/NTREX
config: pol_Latn-hin_Deva
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 5.408112168252378
- type: f1
value: 3.3012026283157954
- type: main_score
value: 3.3012026283157954
- type: precision
value: 2.9200987844982302
- type: recall
value: 5.408112168252378
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-hrv_Latn)
type: mteb/NTREX
config: pol_Latn-hrv_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 35.65348022033049
- type: f1
value: 28.87968630538368
- type: main_score
value: 28.87968630538368
- type: precision
value: 26.862013496119065
- type: recall
value: 35.65348022033049
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-hun_Latn)
type: mteb/NTREX
config: pol_Latn-hun_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 25.58838257386079
- type: f1
value: 18.48609113402143
- type: main_score
value: 18.48609113402143
- type: precision
value: 16.57296197744189
- type: recall
value: 25.58838257386079
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-ind_Latn)
type: mteb/NTREX
config: pol_Latn-ind_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 29.093640460691038
- type: f1
value: 21.347745568207063
- type: main_score
value: 21.347745568207063
- type: precision
value: 19.290524664413102
- type: recall
value: 29.093640460691038
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-jpn_Jpan)
type: mteb/NTREX
config: pol_Latn-jpn_Jpan
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 3.1547320981472207
- type: f1
value: 1.3591775209486017
- type: main_score
value: 1.3591775209486017
- type: precision
value: 1.0911488276885473
- type: recall
value: 3.1547320981472207
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-kor_Hang)
type: mteb/NTREX
config: pol_Latn-kor_Hang
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 10.866299449173761
- type: f1
value: 6.470438882301941
- type: main_score
value: 6.470438882301941
- type: precision
value: 5.5886448167365
- type: recall
value: 10.866299449173761
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-lit_Latn)
type: mteb/NTREX
config: pol_Latn-lit_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 25.38808212318478
- type: f1
value: 19.368194787457522
- type: main_score
value: 19.368194787457522
- type: precision
value: 17.739499047326586
- type: recall
value: 25.38808212318478
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-mkd_Cyrl)
type: mteb/NTREX
config: pol_Latn-mkd_Cyrl
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 7.361041562343515
- type: f1
value: 4.620503162223216
- type: main_score
value: 4.620503162223216
- type: precision
value: 4.0633841300538
- type: recall
value: 7.361041562343515
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-nld_Latn)
type: mteb/NTREX
config: pol_Latn-nld_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 42.16324486730095
- type: f1
value: 34.45435727520619
- type: main_score
value: 34.45435727520619
- type: precision
value: 32.16608920524314
- type: recall
value: 42.16324486730095
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-por_Latn)
type: mteb/NTREX
config: pol_Latn-por_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 38.45768652979469
- type: f1
value: 30.772146637068243
- type: main_score
value: 30.772146637068243
- type: precision
value: 28.392073335240376
- type: recall
value: 38.45768652979469
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-rus_Cyrl)
type: mteb/NTREX
config: pol_Latn-rus_Cyrl
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 9.01352028042063
- type: f1
value: 5.7469829042905545
- type: main_score
value: 5.7469829042905545
- type: precision
value: 5.093509037970949
- type: recall
value: 9.01352028042063
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-slk_Latn)
type: mteb/NTREX
config: pol_Latn-slk_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 38.407611417125686
- type: f1
value: 31.11590026725889
- type: main_score
value: 31.11590026725889
- type: precision
value: 28.88764140353986
- type: recall
value: 38.407611417125686
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-slv_Latn)
type: mteb/NTREX
config: pol_Latn-slv_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 33.24987481221833
- type: f1
value: 25.950822457683554
- type: main_score
value: 25.950822457683554
- type: precision
value: 23.846365535044157
- type: recall
value: 33.24987481221833
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-spa_Latn)
type: mteb/NTREX
config: pol_Latn-spa_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 45.06760140210315
- type: f1
value: 36.824239877433804
- type: main_score
value: 36.824239877433804
- type: precision
value: 34.21671795018105
- type: recall
value: 45.06760140210315
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-srp_Cyrl)
type: mteb/NTREX
config: pol_Latn-srp_Cyrl
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 7.911867801702553
- type: f1
value: 5.036235972381512
- type: main_score
value: 5.036235972381512
- type: precision
value: 4.4125802643383745
- type: recall
value: 7.911867801702553
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-srp_Latn)
type: mteb/NTREX
config: pol_Latn-srp_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 25.43815723585378
- type: f1
value: 18.921733221569646
- type: main_score
value: 18.921733221569646
- type: precision
value: 17.32003570311133
- type: recall
value: 25.43815723585378
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-swa_Latn)
type: mteb/NTREX
config: pol_Latn-swa_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 21.732598898347522
- type: f1
value: 15.880290797178201
- type: main_score
value: 15.880290797178201
- type: precision
value: 14.395403694763726
- type: recall
value: 21.732598898347522
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-swe_Latn)
type: mteb/NTREX
config: pol_Latn-swe_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 40.610916374561846
- type: f1
value: 32.421490223283655
- type: main_score
value: 32.421490223283655
- type: precision
value: 29.896983936859545
- type: recall
value: 40.610916374561846
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-tam_Taml)
type: mteb/NTREX
config: pol_Latn-tam_Taml
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 7.961942914371558
- type: f1
value: 4.558103071505523
- type: main_score
value: 4.558103071505523
- type: precision
value: 3.8662602469179768
- type: recall
value: 7.961942914371558
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-tur_Latn)
type: mteb/NTREX
config: pol_Latn-tur_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 28.392588883324986
- type: f1
value: 22.030266589108034
- type: main_score
value: 22.030266589108034
- type: precision
value: 20.308934108335674
- type: recall
value: 28.392588883324986
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-ukr_Cyrl)
type: mteb/NTREX
config: pol_Latn-ukr_Cyrl
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 8.512769153730595
- type: f1
value: 5.296718542027111
- type: main_score
value: 5.296718542027111
- type: precision
value: 4.650127564300294
- type: recall
value: 8.512769153730595
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-vie_Latn)
type: mteb/NTREX
config: pol_Latn-vie_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 30.14521782674011
- type: f1
value: 23.61573142082293
- type: main_score
value: 23.61573142082293
- type: precision
value: 21.67325222681889
- type: recall
value: 30.14521782674011
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-zho_Hant)
type: mteb/NTREX
config: pol_Latn-zho_Hant
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 24.036054081121684
- type: f1
value: 17.92926410467618
- type: main_score
value: 17.92926410467618
- type: precision
value: 16.264283236205312
- type: recall
value: 24.036054081121684
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (pol_Latn-zul_Latn)
type: mteb/NTREX
config: pol_Latn-zul_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 23.83575363044567
- type: f1
value: 16.400739962706364
- type: main_score
value: 16.400739962706364
- type: precision
value: 14.601613184463366
- type: recall
value: 23.83575363044567
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (por_Latn-pol_Latn)
type: mteb/NTREX
config: por_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 37.40610916374562
- type: f1
value: 33.819136027629646
- type: main_score
value: 33.819136027629646
- type: precision
value: 32.675346971067114
- type: recall
value: 37.40610916374562
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (rus_Cyrl-pol_Latn)
type: mteb/NTREX
config: rus_Cyrl-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 6.609914872308463
- type: f1
value: 5.344181532448552
- type: main_score
value: 5.344181532448552
- type: precision
value: 5.016035805663429
- type: recall
value: 6.609914872308463
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (slk_Latn-pol_Latn)
type: mteb/NTREX
config: slk_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 43.21482223335003
- type: f1
value: 38.594026070011935
- type: main_score
value: 38.594026070011935
- type: precision
value: 37.059186258663104
- type: recall
value: 43.21482223335003
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (slv_Latn-pol_Latn)
type: mteb/NTREX
config: slv_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 34.501752628943414
- type: f1
value: 30.335345420429487
- type: main_score
value: 30.335345420429487
- type: precision
value: 28.9518422565815
- type: recall
value: 34.501752628943414
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (spa_Latn-pol_Latn)
type: mteb/NTREX
config: spa_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 37.656484727090636
- type: f1
value: 33.980789524776114
- type: main_score
value: 33.980789524776114
- type: precision
value: 32.90989855225763
- type: recall
value: 37.656484727090636
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (srp_Cyrl-pol_Latn)
type: mteb/NTREX
config: srp_Cyrl-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 5.808713069604407
- type: f1
value: 4.451889762512088
- type: main_score
value: 4.451889762512088
- type: precision
value: 4.125584144733145
- type: recall
value: 5.808713069604407
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (srp_Latn-pol_Latn)
type: mteb/NTREX
config: srp_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 28.14221331997997
- type: f1
value: 23.51959297831865
- type: main_score
value: 23.51959297831865
- type: precision
value: 22.110666143488064
- type: recall
value: 28.14221331997997
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (swa_Latn-pol_Latn)
type: mteb/NTREX
config: swa_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 19.779669504256383
- type: f1
value: 16.604335328648055
- type: main_score
value: 16.604335328648055
- type: precision
value: 15.768002918453657
- type: recall
value: 19.779669504256383
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (swe_Latn-pol_Latn)
type: mteb/NTREX
config: swe_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 40.86129193790686
- type: f1
value: 36.23109651947736
- type: main_score
value: 36.23109651947736
- type: precision
value: 34.74497479993283
- type: recall
value: 40.86129193790686
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (tam_Taml-pol_Latn)
type: mteb/NTREX
config: tam_Taml-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 5.107661492238358
- type: f1
value: 3.7687687480859795
- type: main_score
value: 3.7687687480859795
- type: precision
value: 3.4356832920668214
- type: recall
value: 5.107661492238358
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (tur_Latn-pol_Latn)
type: mteb/NTREX
config: tur_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 29.944917376064094
- type: f1
value: 24.863268061783938
- type: main_score
value: 24.863268061783938
- type: precision
value: 23.36063980331642
- type: recall
value: 29.944917376064094
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (ukr_Cyrl-pol_Latn)
type: mteb/NTREX
config: ukr_Cyrl-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 7.260891337005508
- type: f1
value: 5.704027989612987
- type: main_score
value: 5.704027989612987
- type: precision
value: 5.2703090950782165
- type: recall
value: 7.260891337005508
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (vie_Latn-pol_Latn)
type: mteb/NTREX
config: vie_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 29.093640460691038
- type: f1
value: 24.651820126812275
- type: main_score
value: 24.651820126812275
- type: precision
value: 23.25686506040681
- type: recall
value: 29.093640460691038
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (zho_Hant-pol_Latn)
type: mteb/NTREX
config: zho_Hant-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 21.732598898347522
- type: f1
value: 18.829299781805904
- type: main_score
value: 18.829299781805904
- type: precision
value: 17.89806400969999
- type: recall
value: 21.732598898347522
- task:
type: BitextMining
dataset:
name: MTEB NTREXBitextMining (zul_Latn-pol_Latn)
type: mteb/NTREX
config: zul_Latn-pol_Latn
split: test
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33
metrics:
- type: accuracy
value: 23.084626940410615
- type: f1
value: 19.616655275302847
- type: main_score
value: 19.616655275302847
- type: precision
value: 18.61171758782464
- type: recall
value: 23.084626940410615
- task:
type: Classification
dataset:
name: MTEB PAC (default)
type: laugustyniak/abusive-clauses-pl
config: default
split: test
revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543
metrics:
- type: accuracy
value: 64.98696785403996
- type: ap
value: 75.86324311231046
- type: ap_weighted
value: 75.86324311231046
- type: f1
value: 62.65274332767454
- type: f1_weighted
value: 65.4625863993904
- type: main_score
value: 64.98696785403996
- task:
type: PairClassification
dataset:
name: MTEB PSC (default)
type: PL-MTEB/psc-pairclassification
config: default
split: test
revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669
metrics:
- type: cosine_accuracy
value: 97.86641929499072
- type: cosine_accuracy_threshold
value: 62.92417049407959
- type: cosine_ap
value: 99.19415840133571
- type: cosine_f1
value: 96.52042360060513
- type: cosine_f1_threshold
value: 62.92417049407959
- type: cosine_precision
value: 95.7957957957958
- type: cosine_recall
value: 97.2560975609756
- type: dot_accuracy
value: 97.86641929499072
- type: dot_accuracy_threshold
value: 62.92417645454407
- type: dot_ap
value: 99.19415840133571
- type: dot_f1
value: 96.52042360060513
- type: dot_f1_threshold
value: 62.92417645454407
- type: dot_precision
value: 95.7957957957958
- type: dot_recall
value: 97.2560975609756
- type: euclidean_accuracy
value: 97.86641929499072
- type: euclidean_accuracy_threshold
value: 86.11080646514893
- type: euclidean_ap
value: 99.19415840133571
- type: euclidean_f1
value: 96.52042360060513
- type: euclidean_f1_threshold
value: 86.11080646514893
- type: euclidean_precision
value: 95.7957957957958
- type: euclidean_recall
value: 97.2560975609756
- type: main_score
value: 99.20490128975061
- type: manhattan_accuracy
value: 97.6808905380334
- type: manhattan_accuracy_threshold
value: 1888.6344909667969
- type: manhattan_ap
value: 99.20490128975061
- type: manhattan_f1
value: 96.2178517397882
- type: manhattan_f1_threshold
value: 1888.6344909667969
- type: manhattan_precision
value: 95.4954954954955
- type: manhattan_recall
value: 96.95121951219512
- type: max_accuracy
value: 97.86641929499072
- type: max_ap
value: 99.20490128975061
- type: max_f1
value: 96.52042360060513
- type: max_precision
value: 95.7957957957958
- type: max_recall
value: 97.2560975609756
- type: similarity_accuracy
value: 97.86641929499072
- type: similarity_accuracy_threshold
value: 62.924182415008545
- type: similarity_ap
value: 99.19415840133571
- type: similarity_f1
value: 96.52042360060513
- type: similarity_f1_threshold
value: 62.924182415008545
- type: similarity_precision
value: 95.7957957957958
- type: similarity_recall
value: 97.2560975609756
- task:
type: Clustering
dataset:
name: MTEB PlscClusteringP2P.v2 (default)
type: PL-MTEB/plsc-clustering-p2p
config: default
split: test
revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b
metrics:
- type: main_score
value: 71.31966022242881
- type: v_measure
value: 71.31966022242881
- type: v_measure_std
value: 0.8738571211439499
- task:
type: Clustering
dataset:
name: MTEB PlscClusteringS2S.v2 (default)
type: PL-MTEB/plsc-clustering-s2s
config: default
split: test
revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a
metrics:
- type: main_score
value: 70.2396182092355
- type: v_measure
value: 70.2396182092355
- type: v_measure_std
value: 1.8000040105133557
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-IN (default)
type: PL-MTEB/polemo2_in
config: default
split: test
revision: d90724373c70959f17d2331ad51fb60c71176b03
metrics:
- type: accuracy
value: 77.06371191135733
- type: f1
value: 75.24924358433623
- type: f1_weighted
value: 77.67381875190982
- type: main_score
value: 77.06371191135733
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-OUT (default)
type: PL-MTEB/polemo2_out
config: default
split: test
revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4
metrics:
- type: accuracy
value: 51.1336032388664
- type: f1
value: 43.593636081086586
- type: f1_weighted
value: 58.20039598624505
- type: main_score
value: 51.1336032388664
- task:
type: PairClassification
dataset:
name: MTEB PPC (default)
type: PL-MTEB/ppc-pairclassification
config: default
split: test
revision: 2c7d2df57801a591f6b1e3aaf042e7a04ec7d9f2
metrics:
- type: cosine_accuracy
value: 87.2
- type: cosine_accuracy_threshold
value: 85.1994276046753
- type: cosine_ap
value: 92.14410059169685
- type: cosine_f1
value: 89.84126984126983
- type: cosine_f1_threshold
value: 85.01211404800415
- type: cosine_precision
value: 86.28048780487805
- type: cosine_recall
value: 93.70860927152319
- type: dot_accuracy
value: 87.2
- type: dot_accuracy_threshold
value: 85.1994276046753
- type: dot_ap
value: 92.14410059169685
- type: dot_f1
value: 89.84126984126983
- type: dot_f1_threshold
value: 85.0121259689331
- type: dot_precision
value: 86.28048780487805
- type: dot_recall
value: 93.70860927152319
- type: euclidean_accuracy
value: 87.2
- type: euclidean_accuracy_threshold
value: 54.40692901611328
- type: euclidean_ap
value: 92.14410059169685
- type: euclidean_f1
value: 89.84126984126983
- type: euclidean_f1_threshold
value: 54.75010871887207
- type: euclidean_precision
value: 86.28048780487805
- type: euclidean_recall
value: 93.70860927152319
- type: main_score
value: 92.1546894976679
- type: manhattan_accuracy
value: 87.3
- type: manhattan_accuracy_threshold
value: 1165.2369499206543
- type: manhattan_ap
value: 92.1546894976679
- type: manhattan_f1
value: 89.81555733761026
- type: manhattan_f1_threshold
value: 1165.2369499206543
- type: manhattan_precision
value: 87.09175738724728
- type: manhattan_recall
value: 92.71523178807946
- type: max_accuracy
value: 87.3
- type: max_ap
value: 92.1546894976679
- type: max_f1
value: 89.84126984126983
- type: max_precision
value: 87.09175738724728
- type: max_recall
value: 93.70860927152319
- type: similarity_accuracy
value: 87.2
- type: similarity_accuracy_threshold
value: 85.19943356513977
- type: similarity_ap
value: 92.14410059169685
- type: similarity_f1
value: 89.84126984126983
- type: similarity_f1_threshold
value: 85.0121259689331
- type: similarity_precision
value: 86.28048780487805
- type: similarity_recall
value: 93.70860927152319
- task:
type: Retrieval
dataset:
name: MTEB Quora-PL (default)
type: clarin-knext/quora-pl
config: default
split: test
revision: 0be27e93455051e531182b85e85e425aba12e9d4
metrics:
- type: main_score
value: 83.875
- type: map_at_1
value: 65.774
- type: map_at_10
value: 79.594
- type: map_at_100
value: 80.336
- type: map_at_1000
value: 80.35799999999999
- type: map_at_20
value: 80.081
- type: map_at_3
value: 76.543
- type: map_at_5
value: 78.45400000000001
- type: mrr_at_1
value: 75.76
- type: mrr_at_10
value: 82.84497222222222
- type: mrr_at_100
value: 83.02868118414814
- type: mrr_at_1000
value: 83.03198341669084
- type: mrr_at_20
value: 82.97830966853064
- type: mrr_at_3
value: 81.605
- type: mrr_at_5
value: 82.4165
- type: nauc_map_at_1000_diff1
value: 73.40640121058422
- type: nauc_map_at_1000_max
value: 28.46337709715841
- type: nauc_map_at_1000_std
value: -34.36170797178319
- type: nauc_map_at_100_diff1
value: 73.41027935468242
- type: nauc_map_at_100_max
value: 28.448897737305167
- type: nauc_map_at_100_std
value: -34.410053175618984
- type: nauc_map_at_10_diff1
value: 73.63608438663765
- type: nauc_map_at_10_max
value: 27.99805524703715
- type: nauc_map_at_10_std
value: -35.96926536472381
- type: nauc_map_at_1_diff1
value: 77.37739722887241
- type: nauc_map_at_1_max
value: 20.489751324646726
- type: nauc_map_at_1_std
value: -34.43345176075925
- type: nauc_map_at_20_diff1
value: 73.48489056640469
- type: nauc_map_at_20_max
value: 28.302520798061405
- type: nauc_map_at_20_std
value: -35.033039709762456
- type: nauc_map_at_3_diff1
value: 74.22725361971708
- type: nauc_map_at_3_max
value: 25.81523287150949
- type: nauc_map_at_3_std
value: -37.576947757072034
- type: nauc_map_at_5_diff1
value: 73.82247830220571
- type: nauc_map_at_5_max
value: 27.097568871055334
- type: nauc_map_at_5_std
value: -37.178201184627305
- type: nauc_mrr_at_1000_diff1
value: 73.671442290651
- type: nauc_mrr_at_1000_max
value: 30.524947345269105
- type: nauc_mrr_at_1000_std
value: -31.36532587671011
- type: nauc_mrr_at_100_diff1
value: 73.66992200638639
- type: nauc_mrr_at_100_max
value: 30.52663991152657
- type: nauc_mrr_at_100_std
value: -31.359539680268337
- type: nauc_mrr_at_10_diff1
value: 73.63189061102112
- type: nauc_mrr_at_10_max
value: 30.606965655536673
- type: nauc_mrr_at_10_std
value: -31.411534218742432
- type: nauc_mrr_at_1_diff1
value: 75.17418724066114
- type: nauc_mrr_at_1_max
value: 29.14884092629756
- type: nauc_mrr_at_1_std
value: -31.16093210023857
- type: nauc_mrr_at_20_diff1
value: 73.65231966885165
- type: nauc_mrr_at_20_max
value: 30.583763761309974
- type: nauc_mrr_at_20_std
value: -31.337398441591773
- type: nauc_mrr_at_3_diff1
value: 73.3913556687992
- type: nauc_mrr_at_3_max
value: 30.476618323576627
- type: nauc_mrr_at_3_std
value: -31.858863133453397
- type: nauc_mrr_at_5_diff1
value: 73.4716463702077
- type: nauc_mrr_at_5_max
value: 30.61795159461716
- type: nauc_mrr_at_5_std
value: -31.563308058631534
- type: nauc_ndcg_at_1000_diff1
value: 72.95508712773197
- type: nauc_ndcg_at_1000_max
value: 30.12028043393866
- type: nauc_ndcg_at_1000_std
value: -31.90016377526389
- type: nauc_ndcg_at_100_diff1
value: 72.91161449349684
- type: nauc_ndcg_at_100_max
value: 30.1573165397239
- type: nauc_ndcg_at_100_std
value: -31.898114473155537
- type: nauc_ndcg_at_10_diff1
value: 72.98440999465589
- type: nauc_ndcg_at_10_max
value: 29.498984798918926
- type: nauc_ndcg_at_10_std
value: -34.409963346107
- type: nauc_ndcg_at_1_diff1
value: 74.96338647049875
- type: nauc_ndcg_at_1_max
value: 29.69806164680575
- type: nauc_ndcg_at_1_std
value: -30.506573641100786
- type: nauc_ndcg_at_20_diff1
value: 72.94194704227928
- type: nauc_ndcg_at_20_max
value: 29.914187952525413
- type: nauc_ndcg_at_20_std
value: -33.164979047878795
- type: nauc_ndcg_at_3_diff1
value: 72.40928680360435
- type: nauc_ndcg_at_3_max
value: 28.217746151291877
- type: nauc_ndcg_at_3_std
value: -34.5876406089579
- type: nauc_ndcg_at_5_diff1
value: 72.65286836503851
- type: nauc_ndcg_at_5_max
value: 28.762447019502797
- type: nauc_ndcg_at_5_std
value: -35.11764039207373
- type: nauc_precision_at_1000_diff1
value: -41.68149562579916
- type: nauc_precision_at_1000_max
value: 0.5346848775768239
- type: nauc_precision_at_1000_std
value: 37.63984778174331
- type: nauc_precision_at_100_diff1
value: -40.70814450989262
- type: nauc_precision_at_100_max
value: 1.7957963726862223
- type: nauc_precision_at_100_std
value: 36.681132193570996
- type: nauc_precision_at_10_diff1
value: -30.413343518298632
- type: nauc_precision_at_10_max
value: 7.5727147760066575
- type: nauc_precision_at_10_std
value: 22.74763162315844
- type: nauc_precision_at_1_diff1
value: 74.96338647049875
- type: nauc_precision_at_1_max
value: 29.69806164680575
- type: nauc_precision_at_1_std
value: -30.506573641100786
- type: nauc_precision_at_20_diff1
value: -36.12470932128835
- type: nauc_precision_at_20_max
value: 4.897816846407051
- type: nauc_precision_at_20_std
value: 29.979051739488423
- type: nauc_precision_at_3_diff1
value: -5.353214272695143
- type: nauc_precision_at_3_max
value: 15.194981772023484
- type: nauc_precision_at_3_std
value: 2.8778017019216726
- type: nauc_precision_at_5_diff1
value: -19.967483442538388
- type: nauc_precision_at_5_max
value: 11.178726211951638
- type: nauc_precision_at_5_std
value: 12.462110198882302
- type: nauc_recall_at_1000_diff1
value: 54.20555830597288
- type: nauc_recall_at_1000_max
value: 54.00511659799212
- type: nauc_recall_at_1000_std
value: 43.666835088245136
- type: nauc_recall_at_100_diff1
value: 61.715707167844926
- type: nauc_recall_at_100_max
value: 39.33537383712575
- type: nauc_recall_at_100_std
value: -5.81121276399585
- type: nauc_recall_at_10_diff1
value: 67.46913802915881
- type: nauc_recall_at_10_max
value: 29.316426634098924
- type: nauc_recall_at_10_std
value: -39.30499385618004
- type: nauc_recall_at_1_diff1
value: 77.37739722887241
- type: nauc_recall_at_1_max
value: 20.489751324646726
- type: nauc_recall_at_1_std
value: -34.43345176075925
- type: nauc_recall_at_20_diff1
value: 66.28280245365029
- type: nauc_recall_at_20_max
value: 32.71950916379278
- type: nauc_recall_at_20_std
value: -31.233343041727274
- type: nauc_recall_at_3_diff1
value: 70.28676363121481
- type: nauc_recall_at_3_max
value: 24.287271486292788
- type: nauc_recall_at_3_std
value: -40.82142827677811
- type: nauc_recall_at_5_diff1
value: 68.8387400353206
- type: nauc_recall_at_5_max
value: 26.453954769696157
- type: nauc_recall_at_5_std
value: -41.642567850497706
- type: ndcg_at_1
value: 75.86
- type: ndcg_at_10
value: 83.875
- type: ndcg_at_100
value: 85.596
- type: ndcg_at_1000
value: 85.804
- type: ndcg_at_20
value: 84.789
- type: ndcg_at_3
value: 80.548
- type: ndcg_at_5
value: 82.352
- type: precision_at_1
value: 75.86
- type: precision_at_10
value: 12.867
- type: precision_at_100
value: 1.505
- type: precision_at_1000
value: 0.156
- type: precision_at_20
value: 6.909999999999999
- type: precision_at_3
value: 35.4
- type: precision_at_5
value: 23.43
- type: recall_at_1
value: 65.774
- type: recall_at_10
value: 92.42099999999999
- type: recall_at_100
value: 98.68400000000001
- type: recall_at_1000
value: 99.82
- type: recall_at_20
value: 95.43700000000001
- type: recall_at_3
value: 82.92
- type: recall_at_5
value: 87.89
- task:
type: Retrieval
dataset:
name: MTEB Quora-PL (default)
type: clarin-knext/quora-pl
config: default
split: validation
revision: 0be27e93455051e531182b85e85e425aba12e9d4
metrics:
- type: main_score
value: 83.78999999999999
- type: map_at_1
value: 65.527
- type: map_at_10
value: 79.54299999999999
- type: map_at_100
value: 80.215
- type: map_at_1000
value: 80.23599999999999
- type: map_at_20
value: 80.009
- type: map_at_3
value: 76.375
- type: map_at_5
value: 78.361
- type: mrr_at_1
value: 75.38
- type: mrr_at_10
value: 82.58898412698412
- type: mrr_at_100
value: 82.78276550796194
- type: mrr_at_1000
value: 82.78548907447124
- type: mrr_at_20
value: 82.72455061390276
- type: mrr_at_3
value: 81.29333333333332
- type: mrr_at_5
value: 82.16133333333333
- type: nauc_map_at_1000_diff1
value: 72.17082965966746
- type: nauc_map_at_1000_max
value: 25.561957524983104
- type: nauc_map_at_1000_std
value: -32.729084893747775
- type: nauc_map_at_100_diff1
value: 72.18145209742738
- type: nauc_map_at_100_max
value: 25.562273072340062
- type: nauc_map_at_100_std
value: -32.75499194018571
- type: nauc_map_at_10_diff1
value: 72.17540509768051
- type: nauc_map_at_10_max
value: 25.23028091664771
- type: nauc_map_at_10_std
value: -33.80938822847208
- type: nauc_map_at_1_diff1
value: 76.85902162952067
- type: nauc_map_at_1_max
value: 15.119432901181101
- type: nauc_map_at_1_std
value: -33.215413587802175
- type: nauc_map_at_20_diff1
value: 72.20269126012819
- type: nauc_map_at_20_max
value: 25.463663870881515
- type: nauc_map_at_20_std
value: -33.171428047416875
- type: nauc_map_at_3_diff1
value: 72.96664356556279
- type: nauc_map_at_3_max
value: 22.83884443984863
- type: nauc_map_at_3_std
value: -35.67073538019632
- type: nauc_map_at_5_diff1
value: 72.29231438141625
- type: nauc_map_at_5_max
value: 24.39299322090406
- type: nauc_map_at_5_std
value: -34.8848651530573
- type: nauc_mrr_at_1000_diff1
value: 72.36083495768207
- type: nauc_mrr_at_1000_max
value: 27.29785049455846
- type: nauc_mrr_at_1000_std
value: -29.413065947303934
- type: nauc_mrr_at_100_diff1
value: 72.36147319908831
- type: nauc_mrr_at_100_max
value: 27.30253888986283
- type: nauc_mrr_at_100_std
value: -29.407204355739324
- type: nauc_mrr_at_10_diff1
value: 72.29190315984265
- type: nauc_mrr_at_10_max
value: 27.391173320996902
- type: nauc_mrr_at_10_std
value: -29.425675339523078
- type: nauc_mrr_at_1_diff1
value: 73.87822190537509
- type: nauc_mrr_at_1_max
value: 23.821278424587756
- type: nauc_mrr_at_1_std
value: -30.73829013582936
- type: nauc_mrr_at_20_diff1
value: 72.34287269332268
- type: nauc_mrr_at_20_max
value: 27.36468207313298
- type: nauc_mrr_at_20_std
value: -29.397399644114923
- type: nauc_mrr_at_3_diff1
value: 72.07642967834977
- type: nauc_mrr_at_3_max
value: 27.938085395784988
- type: nauc_mrr_at_3_std
value: -29.747194738371384
- type: nauc_mrr_at_5_diff1
value: 72.06309211487309
- type: nauc_mrr_at_5_max
value: 27.560904443136664
- type: nauc_mrr_at_5_std
value: -29.39113946238272
- type: nauc_ndcg_at_1000_diff1
value: 71.7974375201558
- type: nauc_ndcg_at_1000_max
value: 27.297077258449914
- type: nauc_ndcg_at_1000_std
value: -30.166803695034446
- type: nauc_ndcg_at_100_diff1
value: 71.90182708721001
- type: nauc_ndcg_at_100_max
value: 27.463368073082243
- type: nauc_ndcg_at_100_std
value: -30.173059997756113
- type: nauc_ndcg_at_10_diff1
value: 71.4971649738977
- type: nauc_ndcg_at_10_max
value: 27.33895888686314
- type: nauc_ndcg_at_10_std
value: -32.149121259739296
- type: nauc_ndcg_at_1_diff1
value: 73.79341779758884
- type: nauc_ndcg_at_1_max
value: 24.07575045739801
- type: nauc_ndcg_at_1_std
value: -30.569253092715094
- type: nauc_ndcg_at_20_diff1
value: 71.83476165120113
- type: nauc_ndcg_at_20_max
value: 27.484988191438763
- type: nauc_ndcg_at_20_std
value: -31.18933505569125
- type: nauc_ndcg_at_3_diff1
value: 71.3211324267825
- type: nauc_ndcg_at_3_max
value: 26.3827563071973
- type: nauc_ndcg_at_3_std
value: -33.26564798575043
- type: nauc_ndcg_at_5_diff1
value: 71.13111409439679
- type: nauc_ndcg_at_5_max
value: 26.899174537293668
- type: nauc_ndcg_at_5_std
value: -33.037279714247596
- type: nauc_precision_at_1000_diff1
value: -41.06260416535236
- type: nauc_precision_at_1000_max
value: 4.065296262607365
- type: nauc_precision_at_1000_std
value: 32.664889523073235
- type: nauc_precision_at_100_diff1
value: -39.46417965752645
- type: nauc_precision_at_100_max
value: 5.845231054532795
- type: nauc_precision_at_100_std
value: 32.267579356245015
- type: nauc_precision_at_10_diff1
value: -30.398862391847853
- type: nauc_precision_at_10_max
value: 11.366479364106302
- type: nauc_precision_at_10_std
value: 20.905381134697873
- type: nauc_precision_at_1_diff1
value: 73.79341779758884
- type: nauc_precision_at_1_max
value: 24.07575045739801
- type: nauc_precision_at_1_std
value: -30.569253092715094
- type: nauc_precision_at_20_diff1
value: -34.95246979130432
- type: nauc_precision_at_20_max
value: 8.471127128333388
- type: nauc_precision_at_20_std
value: 26.200816731005723
- type: nauc_precision_at_3_diff1
value: -6.0507685352298
- type: nauc_precision_at_3_max
value: 18.181944109090693
- type: nauc_precision_at_3_std
value: 2.4766181822784477
- type: nauc_precision_at_5_diff1
value: -20.921638552869315
- type: nauc_precision_at_5_max
value: 15.093648854992317
- type: nauc_precision_at_5_std
value: 12.390250332801731
- type: nauc_recall_at_1000_diff1
value: 72.76959786511301
- type: nauc_recall_at_1000_max
value: 61.37728666951695
- type: nauc_recall_at_1000_std
value: 38.29139577477708
- type: nauc_recall_at_100_diff1
value: 73.26264132727238
- type: nauc_recall_at_100_max
value: 43.79687261540802
- type: nauc_recall_at_100_std
value: -11.430272905442566
- type: nauc_recall_at_10_diff1
value: 65.56843657357662
- type: nauc_recall_at_10_max
value: 30.859225864152133
- type: nauc_recall_at_10_std
value: -34.881586204916495
- type: nauc_recall_at_1_diff1
value: 76.85902162952067
- type: nauc_recall_at_1_max
value: 15.119432901181101
- type: nauc_recall_at_1_std
value: -33.215413587802175
- type: nauc_recall_at_20_diff1
value: 67.37834715400818
- type: nauc_recall_at_20_max
value: 35.213982982419374
- type: nauc_recall_at_20_std
value: -29.688579231776913
- type: nauc_recall_at_3_diff1
value: 68.79765755095777
- type: nauc_recall_at_3_max
value: 25.26409330029704
- type: nauc_recall_at_3_std
value: -37.49808566043117
- type: nauc_recall_at_5_diff1
value: 66.41529573662208
- type: nauc_recall_at_5_max
value: 27.814159729907644
- type: nauc_recall_at_5_std
value: -37.02337127906464
- type: ndcg_at_1
value: 75.42
- type: ndcg_at_10
value: 83.78999999999999
- type: ndcg_at_100
value: 85.45700000000001
- type: ndcg_at_1000
value: 85.661
- type: ndcg_at_20
value: 84.711
- type: ndcg_at_3
value: 80.342
- type: ndcg_at_5
value: 82.203
- type: precision_at_1
value: 75.42
- type: precision_at_10
value: 12.848
- type: precision_at_100
value: 1.469
- type: precision_at_1000
value: 0.152
- type: precision_at_20
value: 6.837999999999999
- type: precision_at_3
value: 35.32
- type: precision_at_5
value: 23.427999999999997
- type: recall_at_1
value: 65.527
- type: recall_at_10
value: 92.547
- type: recall_at_100
value: 98.722
- type: recall_at_1000
value: 99.833
- type: recall_at_20
value: 95.636
- type: recall_at_3
value: 82.798
- type: recall_at_5
value: 87.932
- task:
type: Retrieval
dataset:
name: MTEB Quora-PLHardNegatives (default)
type: mteb/Quora_PL_test_top_250_only_w_correct-v2
config: default
split: test
revision: 523ff30f3346cd9c36081c19fc6eaef0a2f8d53d
metrics:
- type: main_score
value: 83.441
- type: map_at_1
value: 64.566
- type: map_at_10
value: 78.976
- type: map_at_100
value: 79.784
- type: map_at_1000
value: 79.805
- type: map_at_20
value: 79.473
- type: map_at_3
value: 75.60900000000001
- type: map_at_5
value: 77.59700000000001
- type: mrr_at_1
value: 75.0
- type: mrr_at_10
value: 82.24003968253967
- type: mrr_at_100
value: 82.39148676909636
- type: mrr_at_1000
value: 82.39412953563897
- type: mrr_at_20
value: 82.3380424924233
- type: mrr_at_3
value: 80.81666666666666
- type: mrr_at_5
value: 81.76666666666667
- type: nauc_map_at_1000_diff1
value: 70.11947044713457
- type: nauc_map_at_1000_max
value: 32.0785962251563
- type: nauc_map_at_1000_std
value: -25.72180310228886
- type: nauc_map_at_100_diff1
value: 70.119223903828
- type: nauc_map_at_100_max
value: 32.04902408982848
- type: nauc_map_at_100_std
value: -25.741933094347818
- type: nauc_map_at_10_diff1
value: 70.24873166549017
- type: nauc_map_at_10_max
value: 32.01344077405822
- type: nauc_map_at_10_std
value: -26.352879248313887
- type: nauc_map_at_1_diff1
value: 76.3838359798031
- type: nauc_map_at_1_max
value: 19.687227608021665
- type: nauc_map_at_1_std
value: -27.80404785623863
- type: nauc_map_at_20_diff1
value: 70.11742272646482
- type: nauc_map_at_20_max
value: 31.974908565557914
- type: nauc_map_at_20_std
value: -26.055873277823867
- type: nauc_map_at_3_diff1
value: 71.38775037924422
- type: nauc_map_at_3_max
value: 29.347110576500025
- type: nauc_map_at_3_std
value: -27.546917264739633
- type: nauc_map_at_5_diff1
value: 70.47666721538849
- type: nauc_map_at_5_max
value: 30.391213537368557
- type: nauc_map_at_5_std
value: -27.469926373290765
- type: nauc_mrr_at_1000_diff1
value: 70.6739515891783
- type: nauc_mrr_at_1000_max
value: 35.73696455413425
- type: nauc_mrr_at_1000_std
value: -24.903543941487516
- type: nauc_mrr_at_100_diff1
value: 70.6727011010652
- type: nauc_mrr_at_100_max
value: 35.7441879616733
- type: nauc_mrr_at_100_std
value: -24.893145024514293
- type: nauc_mrr_at_10_diff1
value: 70.64421848648517
- type: nauc_mrr_at_10_max
value: 35.737645000885344
- type: nauc_mrr_at_10_std
value: -24.91053298763681
- type: nauc_mrr_at_1_diff1
value: 72.96054421768706
- type: nauc_mrr_at_1_max
value: 33.44908424908425
- type: nauc_mrr_at_1_std
value: -27.055782312925196
- type: nauc_mrr_at_20_diff1
value: 70.65109502016541
- type: nauc_mrr_at_20_max
value: 35.75121651931555
- type: nauc_mrr_at_20_std
value: -24.935827426097262
- type: nauc_mrr_at_3_diff1
value: 70.46651990006681
- type: nauc_mrr_at_3_max
value: 36.82409033566682
- type: nauc_mrr_at_3_std
value: -23.77252296025634
- type: nauc_mrr_at_5_diff1
value: 70.37584561193329
- type: nauc_mrr_at_5_max
value: 35.95184767311965
- type: nauc_mrr_at_5_std
value: -24.46407294516173
- type: nauc_ndcg_at_1000_diff1
value: 69.78988888464094
- type: nauc_ndcg_at_1000_max
value: 33.78633223806749
- type: nauc_ndcg_at_1000_std
value: -24.30471382823556
- type: nauc_ndcg_at_100_diff1
value: 69.68080255594029
- type: nauc_ndcg_at_100_max
value: 33.75329157895577
- type: nauc_ndcg_at_100_std
value: -23.950742923771408
- type: nauc_ndcg_at_10_diff1
value: 69.32410336421049
- type: nauc_ndcg_at_10_max
value: 32.62171559106042
- type: nauc_ndcg_at_10_std
value: -25.055305262714896
- type: nauc_ndcg_at_1_diff1
value: 73.79808983795444
- type: nauc_ndcg_at_1_max
value: 31.11741586732179
- type: nauc_ndcg_at_1_std
value: -26.49182333274088
- type: nauc_ndcg_at_20_diff1
value: 69.28319519809568
- type: nauc_ndcg_at_20_max
value: 32.649729085506685
- type: nauc_ndcg_at_20_std
value: -24.78286422887768
- type: nauc_ndcg_at_3_diff1
value: 69.46374350677924
- type: nauc_ndcg_at_3_max
value: 33.48691707083252
- type: nauc_ndcg_at_3_std
value: -23.258882920352097
- type: nauc_ndcg_at_5_diff1
value: 69.15940341139341
- type: nauc_ndcg_at_5_max
value: 32.38283752475865
- type: nauc_ndcg_at_5_std
value: -25.331353469618236
- type: nauc_precision_at_1000_diff1
value: -39.89797626190511
- type: nauc_precision_at_1000_max
value: 0.6876951931266619
- type: nauc_precision_at_1000_std
value: 24.135579123642
- type: nauc_precision_at_100_diff1
value: -39.27741905918931
- type: nauc_precision_at_100_max
value: 1.5295807101881045
- type: nauc_precision_at_100_std
value: 23.73873597896803
- type: nauc_precision_at_10_diff1
value: -31.95569799072481
- type: nauc_precision_at_10_max
value: 11.133351075606681
- type: nauc_precision_at_10_std
value: 18.12306130253635
- type: nauc_precision_at_1_diff1
value: 73.79808983795444
- type: nauc_precision_at_1_max
value: 31.11741586732179
- type: nauc_precision_at_1_std
value: -26.49182333274088
- type: nauc_precision_at_20_diff1
value: -35.86837967186013
- type: nauc_precision_at_20_max
value: 5.146168726202043
- type: nauc_precision_at_20_std
value: 20.394902558258444
- type: nauc_precision_at_3_diff1
value: -7.123794765840237
- type: nauc_precision_at_3_max
value: 23.732805023923436
- type: nauc_precision_at_3_std
value: 6.118602290851066
- type: nauc_precision_at_5_diff1
value: -22.353212199080236
- type: nauc_precision_at_5_max
value: 16.87754190425444
- type: nauc_precision_at_5_std
value: 12.493503307109334
- type: nauc_recall_at_1000_diff1
value: 66.2401683837391
- type: nauc_recall_at_1000_max
value: 69.89586795169929
- type: nauc_recall_at_1000_std
value: 54.31274718413008
- type: nauc_recall_at_100_diff1
value: 52.18342869491622
- type: nauc_recall_at_100_max
value: 45.26570476940006
- type: nauc_recall_at_100_std
value: 28.11023427839046
- type: nauc_recall_at_10_diff1
value: 59.84335909161517
- type: nauc_recall_at_10_max
value: 27.875640239194
- type: nauc_recall_at_10_std
value: -22.99606199719549
- type: nauc_recall_at_1_diff1
value: 76.3838359798031
- type: nauc_recall_at_1_max
value: 19.687227608021665
- type: nauc_recall_at_1_std
value: -27.80404785623863
- type: nauc_recall_at_20_diff1
value: 57.20155639145018
- type: nauc_recall_at_20_max
value: 23.36552345698421
- type: nauc_recall_at_20_std
value: -20.66577074515514
- type: nauc_recall_at_3_diff1
value: 66.70593366498305
- type: nauc_recall_at_3_max
value: 29.49668171631047
- type: nauc_recall_at_3_std
value: -23.511735151015237
- type: nauc_recall_at_5_diff1
value: 62.801105437887806
- type: nauc_recall_at_5_max
value: 28.681608337339814
- type: nauc_recall_at_5_std
value: -26.076742308083222
- type: ndcg_at_1
value: 74.6
- type: ndcg_at_10
value: 83.441
- type: ndcg_at_100
value: 85.207
- type: ndcg_at_1000
value: 85.39099999999999
- type: ndcg_at_20
value: 84.315
- type: ndcg_at_3
value: 79.911
- type: ndcg_at_5
value: 81.733
- type: precision_at_1
value: 74.6
- type: precision_at_10
value: 13.33
- type: precision_at_100
value: 1.585
- type: precision_at_1000
value: 0.163
- type: precision_at_20
value: 7.215000000000001
- type: precision_at_3
value: 35.6
- type: precision_at_5
value: 23.880000000000003
- type: recall_at_1
value: 64.566
- type: recall_at_10
value: 92.599
- type: recall_at_100
value: 98.846
- type: recall_at_1000
value: 99.845
- type: recall_at_20
value: 95.257
- type: recall_at_3
value: 82.077
- type: recall_at_5
value: 87.397
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS-PL (default)
type: clarin-knext/scidocs-pl
config: default
split: test
revision: 45452b03f05560207ef19149545f168e596c9337
metrics:
- type: main_score
value: 15.873000000000001
- type: map_at_1
value: 3.775
- type: map_at_10
value: 9.161
- type: map_at_100
value: 10.918999999999999
- type: map_at_1000
value: 11.202
- type: map_at_20
value: 10.067
- type: map_at_3
value: 6.597
- type: map_at_5
value: 7.854
- type: mrr_at_1
value: 18.6
- type: mrr_at_10
value: 27.886428571428567
- type: mrr_at_100
value: 28.989174893729764
- type: mrr_at_1000
value: 29.06969368618742
- type: mrr_at_20
value: 28.52687026509782
- type: mrr_at_3
value: 24.733333333333334
- type: mrr_at_5
value: 26.62333333333333
- type: nauc_map_at_1000_diff1
value: 17.338063492099025
- type: nauc_map_at_1000_max
value: 31.676710363869258
- type: nauc_map_at_1000_std
value: 19.44787478817694
- type: nauc_map_at_100_diff1
value: 17.330001556011098
- type: nauc_map_at_100_max
value: 31.529980407900478
- type: nauc_map_at_100_std
value: 19.101197347850587
- type: nauc_map_at_10_diff1
value: 16.69617773011823
- type: nauc_map_at_10_max
value: 29.330357636083065
- type: nauc_map_at_10_std
value: 14.520443867477189
- type: nauc_map_at_1_diff1
value: 19.69959398347788
- type: nauc_map_at_1_max
value: 21.15503613820104
- type: nauc_map_at_1_std
value: 5.949517842252173
- type: nauc_map_at_20_diff1
value: 17.23299101990182
- type: nauc_map_at_20_max
value: 30.743033737387552
- type: nauc_map_at_20_std
value: 17.045152961765215
- type: nauc_map_at_3_diff1
value: 16.869461560565544
- type: nauc_map_at_3_max
value: 24.702066531086228
- type: nauc_map_at_3_std
value: 8.381332247849253
- type: nauc_map_at_5_diff1
value: 16.79450517482287
- type: nauc_map_at_5_max
value: 26.953610672135465
- type: nauc_map_at_5_std
value: 11.362691870524827
- type: nauc_mrr_at_1000_diff1
value: 17.689725068831603
- type: nauc_mrr_at_1000_max
value: 24.730134223817196
- type: nauc_mrr_at_1000_std
value: 12.385372746391045
- type: nauc_mrr_at_100_diff1
value: 17.69979261858343
- type: nauc_mrr_at_100_max
value: 24.745016185063882
- type: nauc_mrr_at_100_std
value: 12.43761305969452
- type: nauc_mrr_at_10_diff1
value: 17.790136790834275
- type: nauc_mrr_at_10_max
value: 24.63646057782297
- type: nauc_mrr_at_10_std
value: 12.051623774206263
- type: nauc_mrr_at_1_diff1
value: 19.694047484705795
- type: nauc_mrr_at_1_max
value: 21.093009975002662
- type: nauc_mrr_at_1_std
value: 5.620129192869433
- type: nauc_mrr_at_20_diff1
value: 17.663848767206282
- type: nauc_mrr_at_20_max
value: 24.736258292269998
- type: nauc_mrr_at_20_std
value: 12.417424425736334
- type: nauc_mrr_at_3_diff1
value: 16.741243494943962
- type: nauc_mrr_at_3_max
value: 22.496607924575194
- type: nauc_mrr_at_3_std
value: 8.83985463832847
- type: nauc_mrr_at_5_diff1
value: 17.453148482385096
- type: nauc_mrr_at_5_max
value: 24.191411493762853
- type: nauc_mrr_at_5_std
value: 11.106728198617791
- type: nauc_ndcg_at_1000_diff1
value: 17.05819787430221
- type: nauc_ndcg_at_1000_max
value: 34.36473654929546
- type: nauc_ndcg_at_1000_std
value: 27.84149425841954
- type: nauc_ndcg_at_100_diff1
value: 17.654089575349236
- type: nauc_ndcg_at_100_max
value: 33.58798073847035
- type: nauc_ndcg_at_100_std
value: 26.20805574689576
- type: nauc_ndcg_at_10_diff1
value: 17.31879632124412
- type: nauc_ndcg_at_10_max
value: 30.288116141634454
- type: nauc_ndcg_at_10_std
value: 17.301156501534756
- type: nauc_ndcg_at_1_diff1
value: 19.694047484705795
- type: nauc_ndcg_at_1_max
value: 21.093009975002662
- type: nauc_ndcg_at_1_std
value: 5.620129192869433
- type: nauc_ndcg_at_20_diff1
value: 17.594180577310784
- type: nauc_ndcg_at_20_max
value: 32.11676032463241
- type: nauc_ndcg_at_20_std
value: 20.9930275041836
- type: nauc_ndcg_at_3_diff1
value: 16.345054106202365
- type: nauc_ndcg_at_3_max
value: 24.438635311197014
- type: nauc_ndcg_at_3_std
value: 9.012466244196702
- type: nauc_ndcg_at_5_diff1
value: 16.787572813850378
- type: nauc_ndcg_at_5_max
value: 27.482032734078444
- type: nauc_ndcg_at_5_std
value: 13.333137895321832
- type: nauc_precision_at_1000_diff1
value: 8.803110756113522
- type: nauc_precision_at_1000_max
value: 31.2791590763206
- type: nauc_precision_at_1000_std
value: 38.94233269200768
- type: nauc_precision_at_100_diff1
value: 14.061557381077398
- type: nauc_precision_at_100_max
value: 33.71562748261276
- type: nauc_precision_at_100_std
value: 36.94329011079927
- type: nauc_precision_at_10_diff1
value: 15.856997461162498
- type: nauc_precision_at_10_max
value: 32.81363590609658
- type: nauc_precision_at_10_std
value: 22.416593036651
- type: nauc_precision_at_1_diff1
value: 19.694047484705795
- type: nauc_precision_at_1_max
value: 21.093009975002662
- type: nauc_precision_at_1_std
value: 5.620129192869433
- type: nauc_precision_at_20_diff1
value: 15.811209412149053
- type: nauc_precision_at_20_max
value: 34.81747068913031
- type: nauc_precision_at_20_std
value: 28.32039806351492
- type: nauc_precision_at_3_diff1
value: 15.007806096740516
- type: nauc_precision_at_3_max
value: 25.467608599280595
- type: nauc_precision_at_3_std
value: 9.97528298821604
- type: nauc_precision_at_5_diff1
value: 15.711050079779485
- type: nauc_precision_at_5_max
value: 30.04221632785474
- type: nauc_precision_at_5_std
value: 16.94260428944902
- type: nauc_recall_at_1000_diff1
value: 8.100290478639437
- type: nauc_recall_at_1000_max
value: 31.18523144848299
- type: nauc_recall_at_1000_std
value: 40.20433662499107
- type: nauc_recall_at_100_diff1
value: 13.661547776170554
- type: nauc_recall_at_100_max
value: 33.409430597319314
- type: nauc_recall_at_100_std
value: 37.290964212520926
- type: nauc_recall_at_10_diff1
value: 15.72252257570797
- type: nauc_recall_at_10_max
value: 32.44746727086122
- type: nauc_recall_at_10_std
value: 22.19023327223186
- type: nauc_recall_at_1_diff1
value: 19.69959398347788
- type: nauc_recall_at_1_max
value: 21.15503613820104
- type: nauc_recall_at_1_std
value: 5.949517842252173
- type: nauc_recall_at_20_diff1
value: 15.608371103886329
- type: nauc_recall_at_20_max
value: 34.42514959297327
- type: nauc_recall_at_20_std
value: 28.274144467952674
- type: nauc_recall_at_3_diff1
value: 14.911590535221745
- type: nauc_recall_at_3_max
value: 25.079059447651776
- type: nauc_recall_at_3_std
value: 9.9537124673317
- type: nauc_recall_at_5_diff1
value: 15.657528497044314
- type: nauc_recall_at_5_max
value: 29.616816427701554
- type: nauc_recall_at_5_std
value: 16.68457790000254
- type: ndcg_at_1
value: 18.6
- type: ndcg_at_10
value: 15.873000000000001
- type: ndcg_at_100
value: 23.14
- type: ndcg_at_1000
value: 28.504
- type: ndcg_at_20
value: 18.502
- type: ndcg_at_3
value: 14.97
- type: ndcg_at_5
value: 13.153
- type: precision_at_1
value: 18.6
- type: precision_at_10
value: 8.260000000000002
- type: precision_at_100
value: 1.8769999999999998
- type: precision_at_1000
value: 0.317
- type: precision_at_20
value: 5.66
- type: precision_at_3
value: 13.966999999999999
- type: precision_at_5
value: 11.559999999999999
- type: recall_at_1
value: 3.775
- type: recall_at_10
value: 16.733
- type: recall_at_100
value: 38.153
- type: recall_at_1000
value: 64.387
- type: recall_at_20
value: 22.972
- type: recall_at_3
value: 8.498
- type: recall_at_5
value: 11.723
- task:
type: Classification
dataset:
name: MTEB SIB200Classification (pol_Latn)
type: mteb/sib200
config: pol_Latn
split: test
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
metrics:
- type: accuracy
value: 76.17647058823529
- type: f1
value: 75.26003745335032
- type: f1_weighted
value: 76.19627183062285
- type: main_score
value: 76.17647058823529
- task:
type: Classification
dataset:
name: MTEB SIB200Classification (pol_Latn)
type: mteb/sib200
config: pol_Latn
split: train
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
metrics:
- type: accuracy
value: 74.26533523537803
- type: f1
value: 73.07458947819569
- type: f1_weighted
value: 74.28822395076898
- type: main_score
value: 74.26533523537803
- task:
type: Classification
dataset:
name: MTEB SIB200Classification (pol_Latn)
type: mteb/sib200
config: pol_Latn
split: validation
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
metrics:
- type: accuracy
value: 73.03030303030302
- type: f1
value: 71.62450940401054
- type: f1_weighted
value: 73.04756771855028
- type: main_score
value: 73.03030303030302
- task:
type: Clustering
dataset:
name: MTEB SIB200ClusteringS2S (pol_Latn)
type: mteb/sib200
config: pol_Latn
split: test
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b
metrics:
- type: main_score
value: 43.50358545235172
- type: v_measure
value: 43.50358545235172
- type: v_measure_std
value: 3.737257341216802
- task:
type: PairClassification
dataset:
name: MTEB SICK-E-PL (default)
type: PL-MTEB/sicke-pl-pairclassification
config: default
split: test
revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9
metrics:
- type: cosine_accuracy
value: 85.50754178556869
- type: cosine_accuracy_threshold
value: 89.79843258857727
- type: cosine_ap
value: 79.81733712144906
- type: cosine_f1
value: 73.49797272392186
- type: cosine_f1_threshold
value: 89.26491141319275
- type: cosine_precision
value: 76.1650114591291
- type: cosine_recall
value: 71.01139601139602
- type: dot_accuracy
value: 85.50754178556869
- type: dot_accuracy_threshold
value: 89.79843854904175
- type: dot_ap
value: 79.81731228808121
- type: dot_f1
value: 73.49797272392186
- type: dot_f1_threshold
value: 89.26491141319275
- type: dot_precision
value: 76.1650114591291
- type: dot_recall
value: 71.01139601139602
- type: euclidean_accuracy
value: 85.50754178556869
- type: euclidean_accuracy_threshold
value: 45.16982138156891
- type: euclidean_ap
value: 79.81733712144904
- type: euclidean_f1
value: 73.49797272392186
- type: euclidean_f1_threshold
value: 46.335917711257935
- type: euclidean_precision
value: 76.1650114591291
- type: euclidean_recall
value: 71.01139601139602
- type: main_score
value: 79.89579409621868
- type: manhattan_accuracy
value: 85.50754178556869
- type: manhattan_accuracy_threshold
value: 977.5501251220703
- type: manhattan_ap
value: 79.89579409621868
- type: manhattan_f1
value: 73.34315169366717
- type: manhattan_f1_threshold
value: 1012.5644683837891
- type: manhattan_precision
value: 75.91463414634147
- type: manhattan_recall
value: 70.94017094017094
- type: max_accuracy
value: 85.50754178556869
- type: max_ap
value: 79.89579409621868
- type: max_f1
value: 73.49797272392186
- type: max_precision
value: 76.1650114591291
- type: max_recall
value: 71.01139601139602
- type: similarity_accuracy
value: 85.50754178556869
- type: similarity_accuracy_threshold
value: 89.79843854904175
- type: similarity_ap
value: 79.81733712144904
- type: similarity_f1
value: 73.49797272392186
- type: similarity_f1_threshold
value: 89.26491737365723
- type: similarity_precision
value: 76.1650114591291
- type: similarity_recall
value: 71.01139601139602
- task:
type: STS
dataset:
name: MTEB SICK-R-PL (default)
type: PL-MTEB/sickr-pl-sts
config: default
split: test
revision: fd5c2441b7eeff8676768036142af4cfa42c1339
metrics:
- type: cosine_pearson
value: 84.04170078857925
- type: cosine_spearman
value: 78.92221847607668
- type: euclidean_pearson
value: 80.88578682387758
- type: euclidean_spearman
value: 78.92222004062023
- type: main_score
value: 78.92221847607668
- type: manhattan_pearson
value: 80.87171998509311
- type: manhattan_spearman
value: 78.9413295057423
- type: pearson
value: 84.04170012505008
- type: spearman
value: 78.92224330603815
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 41.59174229342081
- type: cosine_spearman
value: 41.81518057324345
- type: euclidean_pearson
value: 32.466997983374014
- type: euclidean_spearman
value: 41.93847574622057
- type: main_score
value: 41.81518057324345
- type: manhattan_pearson
value: 32.601545876828375
- type: manhattan_spearman
value: 42.085389551718336
- type: pearson
value: 41.59174140580378
- type: spearman
value: 41.71631322253171
- task:
type: STS
dataset:
name: MTEB STS22.v2 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
metrics:
- type: cosine_pearson
value: 46.55653550801935
- type: cosine_spearman
value: 46.66163352853958
- type: euclidean_pearson
value: 37.117407808457074
- type: euclidean_spearman
value: 46.60094969381428
- type: main_score
value: 46.66163352853958
- type: manhattan_pearson
value: 36.80577904845572
- type: manhattan_spearman
value: 46.494374958837525
- type: pearson
value: 46.55653507995975
- type: spearman
value: 46.55498079345369
- task:
type: STS
dataset:
name: MTEB STS22.v2 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
metrics:
- type: cosine_pearson
value: 80.21617029742387
- type: cosine_spearman
value: 78.77574527045532
- type: euclidean_pearson
value: 80.97356448551602
- type: euclidean_spearman
value: 78.77574527045532
- type: main_score
value: 78.77574527045532
- type: manhattan_pearson
value: 80.09457133506493
- type: manhattan_spearman
value: 78.9474544606806
- type: pearson
value: 80.21617046885102
- type: spearman
value: 78.77574527045532
- task:
type: STS
dataset:
name: MTEB STS22.v2 (de-pl)
type: mteb/sts22-crosslingual-sts
config: de-pl
split: test
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
metrics:
- type: cosine_pearson
value: 21.14452310169841
- type: cosine_spearman
value: 36.737365475055704
- type: euclidean_pearson
value: 24.37979189301095
- type: euclidean_spearman
value: 36.737365475055704
- type: main_score
value: 36.737365475055704
- type: manhattan_pearson
value: 25.671050857257033
- type: manhattan_spearman
value: 36.798953682054965
- type: pearson
value: 21.14454518448624
- type: spearman
value: 36.737365475055704
- task:
type: STS
dataset:
name: MTEB STS22.v2 (fr-pl)
type: mteb/sts22-crosslingual-sts
config: fr-pl
split: test
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
metrics:
- type: cosine_pearson
value: 76.45845272153467
- type: cosine_spearman
value: 84.51542547285167
- type: euclidean_pearson
value: 78.31632842671074
- type: euclidean_spearman
value: 84.51542547285167
- type: main_score
value: 84.51542547285167
- type: manhattan_pearson
value: 76.0583275237825
- type: manhattan_spearman
value: 84.51542547285167
- type: pearson
value: 76.45845588981632
- type: spearman
value: 84.51542547285167
- task:
type: STS
dataset:
name: MTEB STSBenchmarkMultilingualSTS (pl)
type: mteb/stsb_multi_mt
config: pl
split: dev
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
metrics:
- type: cosine_pearson
value: 85.13515881535021
- type: cosine_spearman
value: 85.87832429778716
- type: euclidean_pearson
value: 85.53675589178216
- type: euclidean_spearman
value: 85.87827749186407
- type: main_score
value: 85.87832429778716
- type: manhattan_pearson
value: 85.4970561306807
- type: manhattan_spearman
value: 85.88418120738208
- type: pearson
value: 85.1351598271008
- type: spearman
value: 85.87829302337471
- task:
type: STS
dataset:
name: MTEB STSBenchmarkMultilingualSTS (pl)
type: mteb/stsb_multi_mt
config: pl
split: test
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
metrics:
- type: cosine_pearson
value: 83.90154924854153
- type: cosine_spearman
value: 83.5802958202105
- type: euclidean_pearson
value: 83.10838323620546
- type: euclidean_spearman
value: 83.58158501150402
- type: main_score
value: 83.5802958202105
- type: manhattan_pearson
value: 83.1419912790974
- type: manhattan_spearman
value: 83.70858645330948
- type: pearson
value: 83.90154919039564
- type: spearman
value: 83.58111597101961
- task:
type: Retrieval
dataset:
name: MTEB SciFact-PL (default)
type: clarin-knext/scifact-pl
config: default
split: test
revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
metrics:
- type: main_score
value: 60.6
- type: map_at_1
value: 46.317
- type: map_at_10
value: 55.915000000000006
- type: map_at_100
value: 56.643
- type: map_at_1000
value: 56.702
- type: map_at_20
value: 56.399
- type: map_at_3
value: 53.324000000000005
- type: map_at_5
value: 54.786
- type: mrr_at_1
value: 48.66666666666667
- type: mrr_at_10
value: 57.321296296296296
- type: mrr_at_100
value: 57.89882051667452
- type: mrr_at_1000
value: 57.95238378103823
- type: mrr_at_20
value: 57.6981314981315
- type: mrr_at_3
value: 55.166666666666664
- type: mrr_at_5
value: 56.45
- type: nauc_map_at_1000_diff1
value: 60.35721143333672
- type: nauc_map_at_1000_max
value: 60.05322180601467
- type: nauc_map_at_1000_std
value: 16.99125810591374
- type: nauc_map_at_100_diff1
value: 60.334099364313246
- type: nauc_map_at_100_max
value: 60.0503907670776
- type: nauc_map_at_100_std
value: 17.023508113514342
- type: nauc_map_at_10_diff1
value: 60.23211261543967
- type: nauc_map_at_10_max
value: 59.8033036450801
- type: nauc_map_at_10_std
value: 16.464499848116212
- type: nauc_map_at_1_diff1
value: 67.47955127132796
- type: nauc_map_at_1_max
value: 57.93579782873647
- type: nauc_map_at_1_std
value: 14.983305646438419
- type: nauc_map_at_20_diff1
value: 60.191720208816726
- type: nauc_map_at_20_max
value: 60.00050816589238
- type: nauc_map_at_20_std
value: 16.629980059093093
- type: nauc_map_at_3_diff1
value: 61.196988451613436
- type: nauc_map_at_3_max
value: 59.99256716686697
- type: nauc_map_at_3_std
value: 15.09494519132578
- type: nauc_map_at_5_diff1
value: 60.595708985100536
- type: nauc_map_at_5_max
value: 59.39892558822073
- type: nauc_map_at_5_std
value: 14.467451148982066
- type: nauc_mrr_at_1000_diff1
value: 61.11648031485068
- type: nauc_mrr_at_1000_max
value: 62.219011526871995
- type: nauc_mrr_at_1000_std
value: 19.42767858763793
- type: nauc_mrr_at_100_diff1
value: 61.088188874994096
- type: nauc_mrr_at_100_max
value: 62.223871302167964
- type: nauc_mrr_at_100_std
value: 19.457452279707773
- type: nauc_mrr_at_10_diff1
value: 61.08159685694334
- type: nauc_mrr_at_10_max
value: 62.21990131935562
- type: nauc_mrr_at_10_std
value: 19.376402355543178
- type: nauc_mrr_at_1_diff1
value: 67.27438307353606
- type: nauc_mrr_at_1_max
value: 62.885827711514494
- type: nauc_mrr_at_1_std
value: 20.70936596493396
- type: nauc_mrr_at_20_diff1
value: 60.94521143486739
- type: nauc_mrr_at_20_max
value: 62.12161984797176
- type: nauc_mrr_at_20_std
value: 19.22025350990408
- type: nauc_mrr_at_3_diff1
value: 61.950249652240515
- type: nauc_mrr_at_3_max
value: 63.14286143096035
- type: nauc_mrr_at_3_std
value: 18.592436891815797
- type: nauc_mrr_at_5_diff1
value: 61.19640903375612
- type: nauc_mrr_at_5_max
value: 62.467767526202
- type: nauc_mrr_at_5_std
value: 18.347510898506194
- type: nauc_ndcg_at_1000_diff1
value: 59.01051651703205
- type: nauc_ndcg_at_1000_max
value: 60.66279150024507
- type: nauc_ndcg_at_1000_std
value: 18.6616104733483
- type: nauc_ndcg_at_100_diff1
value: 58.26248080377461
- type: nauc_ndcg_at_100_max
value: 60.38566791814694
- type: nauc_ndcg_at_100_std
value: 19.505638219628143
- type: nauc_ndcg_at_10_diff1
value: 57.67727303919001
- type: nauc_ndcg_at_10_max
value: 59.692480553663295
- type: nauc_ndcg_at_10_std
value: 17.35947712811857
- type: nauc_ndcg_at_1_diff1
value: 67.27438307353606
- type: nauc_ndcg_at_1_max
value: 62.885827711514494
- type: nauc_ndcg_at_1_std
value: 20.70936596493396
- type: nauc_ndcg_at_20_diff1
value: 57.30641762099167
- type: nauc_ndcg_at_20_max
value: 59.95671965731118
- type: nauc_ndcg_at_20_std
value: 17.33468485022403
- type: nauc_ndcg_at_3_diff1
value: 59.01671872632254
- type: nauc_ndcg_at_3_max
value: 61.340857926998225
- type: nauc_ndcg_at_3_std
value: 15.691398633173204
- type: nauc_ndcg_at_5_diff1
value: 58.096149600090556
- type: nauc_ndcg_at_5_max
value: 59.46021363773192
- type: nauc_ndcg_at_5_std
value: 13.964334038615151
- type: nauc_precision_at_1000_diff1
value: -17.83315623809618
- type: nauc_precision_at_1000_max
value: 19.620815707345145
- type: nauc_precision_at_1000_std
value: 48.10708581433734
- type: nauc_precision_at_100_diff1
value: 4.305969098053754
- type: nauc_precision_at_100_max
value: 33.095489054143926
- type: nauc_precision_at_100_std
value: 47.8246720129009
- type: nauc_precision_at_10_diff1
value: 21.6453117579965
- type: nauc_precision_at_10_max
value: 48.088709784794
- type: nauc_precision_at_10_std
value: 33.99668913851027
- type: nauc_precision_at_1_diff1
value: 67.27438307353606
- type: nauc_precision_at_1_max
value: 62.885827711514494
- type: nauc_precision_at_1_std
value: 20.70936596493396
- type: nauc_precision_at_20_diff1
value: 13.06836048047285
- type: nauc_precision_at_20_max
value: 43.08893420898951
- type: nauc_precision_at_20_std
value: 34.521189143539914
- type: nauc_precision_at_3_diff1
value: 38.595356035798126
- type: nauc_precision_at_3_max
value: 59.77300449881297
- type: nauc_precision_at_3_std
value: 24.25730237357198
- type: nauc_precision_at_5_diff1
value: 30.655944367834824
- type: nauc_precision_at_5_max
value: 53.28245247554937
- type: nauc_precision_at_5_std
value: 20.886182524837356
- type: nauc_recall_at_1000_diff1
value: 41.433239962651925
- type: nauc_recall_at_1000_max
value: 86.11111111111035
- type: nauc_recall_at_1000_std
value: 7.936507936508372
- type: nauc_recall_at_100_diff1
value: 43.29551453892163
- type: nauc_recall_at_100_max
value: 55.55531351071509
- type: nauc_recall_at_100_std
value: 32.58481678344614
- type: nauc_recall_at_10_diff1
value: 45.809480869001085
- type: nauc_recall_at_10_max
value: 54.047819362944146
- type: nauc_recall_at_10_std
value: 15.998244308111959
- type: nauc_recall_at_1_diff1
value: 67.47955127132796
- type: nauc_recall_at_1_max
value: 57.93579782873647
- type: nauc_recall_at_1_std
value: 14.983305646438419
- type: nauc_recall_at_20_diff1
value: 41.257961783439534
- type: nauc_recall_at_20_max
value: 54.240380865722024
- type: nauc_recall_at_20_std
value: 14.07822046015856
- type: nauc_recall_at_3_diff1
value: 53.05384331122555
- type: nauc_recall_at_3_max
value: 58.59544973536968
- type: nauc_recall_at_3_std
value: 9.86718965198744
- type: nauc_recall_at_5_diff1
value: 48.19331315126426
- type: nauc_recall_at_5_max
value: 54.47823169862453
- type: nauc_recall_at_5_std
value: 6.943218011112343
- type: ndcg_at_1
value: 48.667
- type: ndcg_at_10
value: 60.6
- type: ndcg_at_100
value: 63.773
- type: ndcg_at_1000
value: 65.295
- type: ndcg_at_20
value: 62.172000000000004
- type: ndcg_at_3
value: 55.981
- type: ndcg_at_5
value: 58.270999999999994
- type: precision_at_1
value: 48.667
- type: precision_at_10
value: 8.233
- type: precision_at_100
value: 0.997
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 4.4830000000000005
- type: precision_at_3
value: 22.111
- type: precision_at_5
value: 14.6
- type: recall_at_1
value: 46.317
- type: recall_at_10
value: 73.433
- type: recall_at_100
value: 87.533
- type: recall_at_1000
value: 99.333
- type: recall_at_20
value: 79.333
- type: recall_at_3
value: 60.882999999999996
- type: recall_at_5
value: 66.89399999999999
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID-PL (default)
type: clarin-knext/trec-covid-pl
config: default
split: test
revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
metrics:
- type: main_score
value: 69.32000000000001
- type: map_at_1
value: 0.22599999999999998
- type: map_at_10
value: 1.7420000000000002
- type: map_at_100
value: 9.665
- type: map_at_1000
value: 24.174
- type: map_at_20
value: 3.003
- type: map_at_3
value: 0.599
- type: map_at_5
value: 0.9560000000000001
- type: mrr_at_1
value: 82.0
- type: mrr_at_10
value: 90.0
- type: mrr_at_100
value: 90.0
- type: mrr_at_1000
value: 90.0
- type: mrr_at_20
value: 90.0
- type: mrr_at_3
value: 90.0
- type: mrr_at_5
value: 90.0
- type: nauc_map_at_1000_diff1
value: -15.757643018986789
- type: nauc_map_at_1000_max
value: 58.83724759719735
- type: nauc_map_at_1000_std
value: 81.5806407072152
- type: nauc_map_at_100_diff1
value: -15.914337821257696
- type: nauc_map_at_100_max
value: 42.94384150292272
- type: nauc_map_at_100_std
value: 61.23454197897242
- type: nauc_map_at_10_diff1
value: -22.890685727481163
- type: nauc_map_at_10_max
value: 15.202784946934035
- type: nauc_map_at_10_std
value: 19.53713756551298
- type: nauc_map_at_1_diff1
value: -8.23648182483711
- type: nauc_map_at_1_max
value: 2.9418466254777185
- type: nauc_map_at_1_std
value: 9.066665328272006
- type: nauc_map_at_20_diff1
value: -15.741357368332274
- type: nauc_map_at_20_max
value: 23.093660938745934
- type: nauc_map_at_20_std
value: 28.37835837211648
- type: nauc_map_at_3_diff1
value: -22.196812161671943
- type: nauc_map_at_3_max
value: 12.750029854270887
- type: nauc_map_at_3_std
value: 23.17304521418692
- type: nauc_map_at_5_diff1
value: -22.190118389435636
- type: nauc_map_at_5_max
value: 15.24441128160928
- type: nauc_map_at_5_std
value: 22.690240797848766
- type: nauc_mrr_at_1000_diff1
value: -16.600985221674865
- type: nauc_mrr_at_1000_max
value: 7.108374384236335
- type: nauc_mrr_at_1000_std
value: 26.517241379310256
- type: nauc_mrr_at_100_diff1
value: -16.600985221674865
- type: nauc_mrr_at_100_max
value: 7.108374384236335
- type: nauc_mrr_at_100_std
value: 26.517241379310256
- type: nauc_mrr_at_10_diff1
value: -16.600985221674865
- type: nauc_mrr_at_10_max
value: 7.108374384236335
- type: nauc_mrr_at_10_std
value: 26.517241379310256
- type: nauc_mrr_at_1_diff1
value: -13.608326908249815
- type: nauc_mrr_at_1_max
value: 12.622535521533287
- type: nauc_mrr_at_1_std
value: 28.81374600726958
- type: nauc_mrr_at_20_diff1
value: -16.600985221674865
- type: nauc_mrr_at_20_max
value: 7.108374384236335
- type: nauc_mrr_at_20_std
value: 26.517241379310256
- type: nauc_mrr_at_3_diff1
value: -16.600985221674865
- type: nauc_mrr_at_3_max
value: 7.108374384236335
- type: nauc_mrr_at_3_std
value: 26.517241379310256
- type: nauc_mrr_at_5_diff1
value: -16.600985221674865
- type: nauc_mrr_at_5_max
value: 7.108374384236335
- type: nauc_mrr_at_5_std
value: 26.517241379310256
- type: nauc_ndcg_at_1000_diff1
value: -13.194696606963987
- type: nauc_ndcg_at_1000_max
value: 55.39361570574168
- type: nauc_ndcg_at_1000_std
value: 78.24389785896678
- type: nauc_ndcg_at_100_diff1
value: -14.709514114787883
- type: nauc_ndcg_at_100_max
value: 42.5762797951252
- type: nauc_ndcg_at_100_std
value: 72.26496604715362
- type: nauc_ndcg_at_10_diff1
value: -20.152166371506738
- type: nauc_ndcg_at_10_max
value: 32.94483821938343
- type: nauc_ndcg_at_10_std
value: 44.03398124005722
- type: nauc_ndcg_at_1_diff1
value: 7.175383527123184
- type: nauc_ndcg_at_1_max
value: 9.772757416331425
- type: nauc_ndcg_at_1_std
value: 25.648790839559606
- type: nauc_ndcg_at_20_diff1
value: -9.62589500953276
- type: nauc_ndcg_at_20_max
value: 39.30914262040181
- type: nauc_ndcg_at_20_std
value: 56.880739749710116
- type: nauc_ndcg_at_3_diff1
value: -17.947554993563717
- type: nauc_ndcg_at_3_max
value: 26.74365078754596
- type: nauc_ndcg_at_3_std
value: 41.793803172791606
- type: nauc_ndcg_at_5_diff1
value: -17.417527011830227
- type: nauc_ndcg_at_5_max
value: 33.88471424700834
- type: nauc_ndcg_at_5_std
value: 46.534674061431424
- type: nauc_precision_at_1000_diff1
value: -13.500374587246162
- type: nauc_precision_at_1000_max
value: 41.89683167017185
- type: nauc_precision_at_1000_std
value: 47.996095424591886
- type: nauc_precision_at_100_diff1
value: -15.762075381944218
- type: nauc_precision_at_100_max
value: 44.01616846578541
- type: nauc_precision_at_100_std
value: 72.07152761602794
- type: nauc_precision_at_10_diff1
value: -35.93338426279604
- type: nauc_precision_at_10_max
value: 34.183040488922856
- type: nauc_precision_at_10_std
value: 42.87975553857905
- type: nauc_precision_at_1_diff1
value: -28.30756013745697
- type: nauc_precision_at_1_max
value: 9.358124693176201
- type: nauc_precision_at_1_std
value: 39.51276386843394
- type: nauc_precision_at_20_diff1
value: -10.583246399588123
- type: nauc_precision_at_20_max
value: 40.86870520654101
- type: nauc_precision_at_20_std
value: 59.31717494682367
- type: nauc_precision_at_3_diff1
value: -44.10520186335414
- type: nauc_precision_at_3_max
value: 38.37344720496887
- type: nauc_precision_at_3_std
value: 55.199922360248365
- type: nauc_precision_at_5_diff1
value: -34.27848522284507
- type: nauc_precision_at_5_max
value: 42.824052076404136
- type: nauc_precision_at_5_std
value: 51.120165352085856
- type: nauc_recall_at_1000_diff1
value: -11.76715587281032
- type: nauc_recall_at_1000_max
value: 52.088079742910274
- type: nauc_recall_at_1000_std
value: 68.23415173297899
- type: nauc_recall_at_100_diff1
value: -10.978661355290605
- type: nauc_recall_at_100_max
value: 31.748771511392693
- type: nauc_recall_at_100_std
value: 51.122645111292876
- type: nauc_recall_at_10_diff1
value: -19.336151816299974
- type: nauc_recall_at_10_max
value: 10.743443384702298
- type: nauc_recall_at_10_std
value: 12.911493888937114
- type: nauc_recall_at_1_diff1
value: -8.23648182483711
- type: nauc_recall_at_1_max
value: 2.9418466254777185
- type: nauc_recall_at_1_std
value: 9.066665328272006
- type: nauc_recall_at_20_diff1
value: -8.54869518672105
- type: nauc_recall_at_20_max
value: 15.362562157663387
- type: nauc_recall_at_20_std
value: 21.489881366775784
- type: nauc_recall_at_3_diff1
value: -21.0866131241463
- type: nauc_recall_at_3_max
value: 11.195127104924845
- type: nauc_recall_at_3_std
value: 20.620111859982334
- type: nauc_recall_at_5_diff1
value: -19.067070989034356
- type: nauc_recall_at_5_max
value: 12.493604263463501
- type: nauc_recall_at_5_std
value: 16.31157612407365
- type: ndcg_at_1
value: 76.0
- type: ndcg_at_10
value: 69.32000000000001
- type: ndcg_at_100
value: 53.480000000000004
- type: ndcg_at_1000
value: 50.283
- type: ndcg_at_20
value: 65.157
- type: ndcg_at_3
value: 73.75399999999999
- type: ndcg_at_5
value: 71.881
- type: precision_at_1
value: 84.0
- type: precision_at_10
value: 73.6
- type: precision_at_100
value: 55.26
- type: precision_at_1000
value: 22.259999999999998
- type: precision_at_20
value: 68.5
- type: precision_at_3
value: 80.0
- type: precision_at_5
value: 77.60000000000001
- type: recall_at_1
value: 0.22599999999999998
- type: recall_at_10
value: 1.978
- type: recall_at_100
value: 13.272999999999998
- type: recall_at_1000
value: 48.092
- type: recall_at_20
value: 3.5839999999999996
- type: recall_at_3
value: 0.636
- type: recall_at_5
value: 1.046
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pol-eng)
type: mteb/tatoeba-bitext-mining
config: pol-eng
split: test
revision: 69e8f12da6e31d59addadda9a9c8a2e601a0e282
metrics:
- type: accuracy
value: 95.3
- type: f1
value: 93.94
- type: main_score
value: 93.94
- type: precision
value: 93.29166666666666
- type: recall
value: 95.3
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (pol-pol)
type: jinaai/xpqa
config: pol-pol
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: main_score
value: 51.515
- type: map_at_1
value: 26.518000000000004
- type: map_at_10
value: 45.369
- type: map_at_100
value: 47.223
- type: map_at_1000
value: 47.321999999999996
- type: map_at_20
value: 46.428000000000004
- type: map_at_3
value: 39.318999999999996
- type: map_at_5
value: 43.36
- type: mrr_at_1
value: 44.968152866242036
- type: mrr_at_10
value: 52.43079567283389
- type: mrr_at_100
value: 53.34807803305783
- type: mrr_at_1000
value: 53.37806353437189
- type: mrr_at_20
value: 52.99111513455048
- type: mrr_at_3
value: 49.78768577494692
- type: mrr_at_5
value: 51.11889596602973
- type: nauc_map_at_1000_diff1
value: 40.6335226588315
- type: nauc_map_at_1000_max
value: 28.16397840496108
- type: nauc_map_at_1000_std
value: -32.21841199511412
- type: nauc_map_at_100_diff1
value: 40.590959517763906
- type: nauc_map_at_100_max
value: 28.19178863787807
- type: nauc_map_at_100_std
value: -32.21041997091445
- type: nauc_map_at_10_diff1
value: 40.728865810296924
- type: nauc_map_at_10_max
value: 28.10952776056662
- type: nauc_map_at_10_std
value: -32.858725977862235
- type: nauc_map_at_1_diff1
value: 53.70650384931953
- type: nauc_map_at_1_max
value: 14.899229671716071
- type: nauc_map_at_1_std
value: -27.68849479744787
- type: nauc_map_at_20_diff1
value: 40.42458500884532
- type: nauc_map_at_20_max
value: 28.105454952138793
- type: nauc_map_at_20_std
value: -32.54318887740866
- type: nauc_map_at_3_diff1
value: 43.6909634186489
- type: nauc_map_at_3_max
value: 24.284262589928197
- type: nauc_map_at_3_std
value: -31.57069615207669
- type: nauc_map_at_5_diff1
value: 41.06724797035683
- type: nauc_map_at_5_max
value: 27.848131743238234
- type: nauc_map_at_5_std
value: -32.25111649789939
- type: nauc_mrr_at_1000_diff1
value: 46.67398611613204
- type: nauc_mrr_at_1000_max
value: 27.609373654318524
- type: nauc_mrr_at_1000_std
value: -34.735880744535905
- type: nauc_mrr_at_100_diff1
value: 46.66073223241135
- type: nauc_mrr_at_100_max
value: 27.627036817536453
- type: nauc_mrr_at_100_std
value: -34.70550683592668
- type: nauc_mrr_at_10_diff1
value: 46.487500926010135
- type: nauc_mrr_at_10_max
value: 27.75350626705907
- type: nauc_mrr_at_10_std
value: -35.08601176389904
- type: nauc_mrr_at_1_diff1
value: 51.06876475124916
- type: nauc_mrr_at_1_max
value: 25.92322105282855
- type: nauc_mrr_at_1_std
value: -34.15792018096852
- type: nauc_mrr_at_20_diff1
value: 46.5162605888926
- type: nauc_mrr_at_20_max
value: 27.55019106976382
- type: nauc_mrr_at_20_std
value: -34.80694715170915
- type: nauc_mrr_at_3_diff1
value: 47.36233736696853
- type: nauc_mrr_at_3_max
value: 27.543928085898884
- type: nauc_mrr_at_3_std
value: -35.21504971692032
- type: nauc_mrr_at_5_diff1
value: 46.91292088489212
- type: nauc_mrr_at_5_max
value: 27.298410620653396
- type: nauc_mrr_at_5_std
value: -35.24045074547203
- type: nauc_ndcg_at_1000_diff1
value: 41.07705948487416
- type: nauc_ndcg_at_1000_max
value: 28.874643241309244
- type: nauc_ndcg_at_1000_std
value: -31.60833641025355
- type: nauc_ndcg_at_100_diff1
value: 40.2376962346747
- type: nauc_ndcg_at_100_max
value: 29.635075481651157
- type: nauc_ndcg_at_100_std
value: -30.81574899851739
- type: nauc_ndcg_at_10_diff1
value: 39.818321210198796
- type: nauc_ndcg_at_10_max
value: 29.29397326733968
- type: nauc_ndcg_at_10_std
value: -33.94466582211004
- type: nauc_ndcg_at_1_diff1
value: 51.06876475124916
- type: nauc_ndcg_at_1_max
value: 25.92322105282855
- type: nauc_ndcg_at_1_std
value: -34.15792018096852
- type: nauc_ndcg_at_20_diff1
value: 39.27450983639958
- type: nauc_ndcg_at_20_max
value: 28.894936103549007
- type: nauc_ndcg_at_20_std
value: -33.21160980125333
- type: nauc_ndcg_at_3_diff1
value: 41.785541318953186
- type: nauc_ndcg_at_3_max
value: 27.23155369736596
- type: nauc_ndcg_at_3_std
value: -33.37324927794433
- type: nauc_ndcg_at_5_diff1
value: 40.72837220220939
- type: nauc_ndcg_at_5_max
value: 28.55495870540679
- type: nauc_ndcg_at_5_std
value: -33.24344549702784
- type: nauc_precision_at_1000_diff1
value: -13.322446650376113
- type: nauc_precision_at_1000_max
value: 8.545426214523442
- type: nauc_precision_at_1000_std
value: 6.979424267581099
- type: nauc_precision_at_100_diff1
value: -10.509590126006007
- type: nauc_precision_at_100_max
value: 15.171580740556001
- type: nauc_precision_at_100_std
value: 4.194466586738409
- type: nauc_precision_at_10_diff1
value: 2.644797279359475
- type: nauc_precision_at_10_max
value: 25.855731593146437
- type: nauc_precision_at_10_std
value: -19.233983107036174
- type: nauc_precision_at_1_diff1
value: 51.06876475124916
- type: nauc_precision_at_1_max
value: 25.92322105282855
- type: nauc_precision_at_1_std
value: -34.15792018096852
- type: nauc_precision_at_20_diff1
value: -3.1136913912470736
- type: nauc_precision_at_20_max
value: 21.359090339642805
- type: nauc_precision_at_20_std
value: -13.023770103071856
- type: nauc_precision_at_3_diff1
value: 15.584460581411957
- type: nauc_precision_at_3_max
value: 27.42225721000173
- type: nauc_precision_at_3_std
value: -25.104318309636454
- type: nauc_precision_at_5_diff1
value: 7.674766587199025
- type: nauc_precision_at_5_max
value: 28.111733106326504
- type: nauc_precision_at_5_std
value: -21.937042014222495
- type: nauc_recall_at_1000_diff1
value: 73.66889189263455
- type: nauc_recall_at_1000_max
value: 90.15156027243394
- type: nauc_recall_at_1000_std
value: 66.48304725775141
- type: nauc_recall_at_100_diff1
value: 21.99762616698104
- type: nauc_recall_at_100_max
value: 41.71147447669556
- type: nauc_recall_at_100_std
value: -4.743160690089563
- type: nauc_recall_at_10_diff1
value: 30.034636842475482
- type: nauc_recall_at_10_max
value: 31.214728078930452
- type: nauc_recall_at_10_std
value: -32.97398123551153
- type: nauc_recall_at_1_diff1
value: 53.70650384931953
- type: nauc_recall_at_1_max
value: 14.899229671716071
- type: nauc_recall_at_1_std
value: -27.68849479744787
- type: nauc_recall_at_20_diff1
value: 26.007825826053683
- type: nauc_recall_at_20_max
value: 29.217535040661367
- type: nauc_recall_at_20_std
value: -30.70687672239101
- type: nauc_recall_at_3_diff1
value: 38.44779042450265
- type: nauc_recall_at_3_max
value: 24.889721742689385
- type: nauc_recall_at_3_std
value: -31.13463300886431
- type: nauc_recall_at_5_diff1
value: 34.22038381301645
- type: nauc_recall_at_5_max
value: 29.516584372821526
- type: nauc_recall_at_5_std
value: -31.484524861831925
- type: ndcg_at_1
value: 44.968
- type: ndcg_at_10
value: 51.515
- type: ndcg_at_100
value: 58.501000000000005
- type: ndcg_at_1000
value: 60.068
- type: ndcg_at_20
value: 54.429
- type: ndcg_at_3
value: 44.909
- type: ndcg_at_5
value: 47.682
- type: precision_at_1
value: 44.968
- type: precision_at_10
value: 12.903999999999998
- type: precision_at_100
value: 1.873
- type: precision_at_1000
value: 0.207
- type: precision_at_20
value: 7.489999999999999
- type: precision_at_3
value: 28.79
- type: precision_at_5
value: 21.682000000000002
- type: recall_at_1
value: 26.518000000000004
- type: recall_at_10
value: 62.05500000000001
- type: recall_at_100
value: 89.607
- type: recall_at_1000
value: 99.682
- type: recall_at_20
value: 71.531
- type: recall_at_3
value: 43.671
- type: recall_at_5
value: 52.373999999999995
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (eng-pol)
type: jinaai/xpqa
config: eng-pol
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: main_score
value: 34.001999999999995
- type: map_at_1
value: 14.172
- type: map_at_10
value: 27.466
- type: map_at_100
value: 29.469
- type: map_at_1000
value: 29.686
- type: map_at_20
value: 28.544000000000004
- type: map_at_3
value: 22.451999999999998
- type: map_at_5
value: 25.237
- type: mrr_at_1
value: 30.828025477707005
- type: mrr_at_10
value: 38.19634010716813
- type: mrr_at_100
value: 39.2480381484182
- type: mrr_at_1000
value: 39.321378424305784
- type: mrr_at_20
value: 38.77839570360424
- type: mrr_at_3
value: 35.64755838641189
- type: mrr_at_5
value: 37.06157112526539
- type: nauc_map_at_1000_diff1
value: 31.180369776855038
- type: nauc_map_at_1000_max
value: 23.696275295738246
- type: nauc_map_at_1000_std
value: -21.27413499405951
- type: nauc_map_at_100_diff1
value: 31.189167925330995
- type: nauc_map_at_100_max
value: 23.655306190408066
- type: nauc_map_at_100_std
value: -21.436647059542242
- type: nauc_map_at_10_diff1
value: 31.318694969880156
- type: nauc_map_at_10_max
value: 23.074738813224236
- type: nauc_map_at_10_std
value: -21.923538669237157
- type: nauc_map_at_1_diff1
value: 41.6000692063174
- type: nauc_map_at_1_max
value: 15.406617421977645
- type: nauc_map_at_1_std
value: -20.907084480848887
- type: nauc_map_at_20_diff1
value: 30.970001594011244
- type: nauc_map_at_20_max
value: 23.14174410247358
- type: nauc_map_at_20_std
value: -21.957135319177706
- type: nauc_map_at_3_diff1
value: 32.54806390568495
- type: nauc_map_at_3_max
value: 20.300802458881474
- type: nauc_map_at_3_std
value: -21.94392553088974
- type: nauc_map_at_5_diff1
value: 31.54042190428169
- type: nauc_map_at_5_max
value: 23.203725494722843
- type: nauc_map_at_5_std
value: -21.90268057328536
- type: nauc_mrr_at_1000_diff1
value: 31.59051275226857
- type: nauc_mrr_at_1000_max
value: 23.34286182938858
- type: nauc_mrr_at_1000_std
value: -17.005575811675644
- type: nauc_mrr_at_100_diff1
value: 31.569651385372694
- type: nauc_mrr_at_100_max
value: 23.342499818552994
- type: nauc_mrr_at_100_std
value: -16.966751458089767
- type: nauc_mrr_at_10_diff1
value: 31.64921530070727
- type: nauc_mrr_at_10_max
value: 23.026241511313508
- type: nauc_mrr_at_10_std
value: -17.656777429702032
- type: nauc_mrr_at_1_diff1
value: 34.49289583539921
- type: nauc_mrr_at_1_max
value: 24.574155198363375
- type: nauc_mrr_at_1_std
value: -17.42832990773259
- type: nauc_mrr_at_20_diff1
value: 31.5433649153002
- type: nauc_mrr_at_20_max
value: 23.11967165826937
- type: nauc_mrr_at_20_std
value: -17.356109119216693
- type: nauc_mrr_at_3_diff1
value: 31.38888681404883
- type: nauc_mrr_at_3_max
value: 23.46764438246823
- type: nauc_mrr_at_3_std
value: -17.441932437536085
- type: nauc_mrr_at_5_diff1
value: 31.42962954759095
- type: nauc_mrr_at_5_max
value: 22.961395531351496
- type: nauc_mrr_at_5_std
value: -17.751199294592183
- type: nauc_ndcg_at_1000_diff1
value: 30.152430844510363
- type: nauc_ndcg_at_1000_max
value: 24.69903031443189
- type: nauc_ndcg_at_1000_std
value: -17.020300975357372
- type: nauc_ndcg_at_100_diff1
value: 30.056132616191643
- type: nauc_ndcg_at_100_max
value: 24.678111161152504
- type: nauc_ndcg_at_100_std
value: -17.636510310102548
- type: nauc_ndcg_at_10_diff1
value: 30.453542123287775
- type: nauc_ndcg_at_10_max
value: 21.918608131636432
- type: nauc_ndcg_at_10_std
value: -21.615985468383712
- type: nauc_ndcg_at_1_diff1
value: 34.49289583539921
- type: nauc_ndcg_at_1_max
value: 24.574155198363375
- type: nauc_ndcg_at_1_std
value: -17.42832990773259
- type: nauc_ndcg_at_20_diff1
value: 29.618071857334964
- type: nauc_ndcg_at_20_max
value: 22.165933820138235
- type: nauc_ndcg_at_20_std
value: -21.24516593709915
- type: nauc_ndcg_at_3_diff1
value: 29.935596954829425
- type: nauc_ndcg_at_3_max
value: 23.870746063527886
- type: nauc_ndcg_at_3_std
value: -20.52820962231354
- type: nauc_ndcg_at_5_diff1
value: 30.611546547499852
- type: nauc_ndcg_at_5_max
value: 22.46894832525212
- type: nauc_ndcg_at_5_std
value: -21.42555859684832
- type: nauc_precision_at_1000_diff1
value: -2.508301193301942
- type: nauc_precision_at_1000_max
value: 22.390556885836265
- type: nauc_precision_at_1000_std
value: 16.405344138171944
- type: nauc_precision_at_100_diff1
value: 5.680220194312509
- type: nauc_precision_at_100_max
value: 26.73017311371664
- type: nauc_precision_at_100_std
value: 5.21547577464621
- type: nauc_precision_at_10_diff1
value: 14.123129946524987
- type: nauc_precision_at_10_max
value: 25.1809898898883
- type: nauc_precision_at_10_std
value: -13.934743869017877
- type: nauc_precision_at_1_diff1
value: 34.49289583539921
- type: nauc_precision_at_1_max
value: 24.574155198363375
- type: nauc_precision_at_1_std
value: -17.42832990773259
- type: nauc_precision_at_20_diff1
value: 10.679094728567474
- type: nauc_precision_at_20_max
value: 24.36678691093217
- type: nauc_precision_at_20_std
value: -10.544690003735347
- type: nauc_precision_at_3_diff1
value: 18.847592800225204
- type: nauc_precision_at_3_max
value: 27.370778609630392
- type: nauc_precision_at_3_std
value: -17.213845532849913
- type: nauc_precision_at_5_diff1
value: 16.205691936009224
- type: nauc_precision_at_5_max
value: 28.651246298621903
- type: nauc_precision_at_5_std
value: -16.454362592616576
- type: nauc_recall_at_1000_diff1
value: 26.134757901840477
- type: nauc_recall_at_1000_max
value: 46.02150918798059
- type: nauc_recall_at_1000_std
value: 43.284136673058285
- type: nauc_recall_at_100_diff1
value: 22.56382049727145
- type: nauc_recall_at_100_max
value: 25.364782533613546
- type: nauc_recall_at_100_std
value: -5.261771997179095
- type: nauc_recall_at_10_diff1
value: 26.108301564213672
- type: nauc_recall_at_10_max
value: 16.37450289809244
- type: nauc_recall_at_10_std
value: -22.244371629240995
- type: nauc_recall_at_1_diff1
value: 41.6000692063174
- type: nauc_recall_at_1_max
value: 15.406617421977645
- type: nauc_recall_at_1_std
value: -20.907084480848887
- type: nauc_recall_at_20_diff1
value: 23.043146881697876
- type: nauc_recall_at_20_max
value: 15.787128435166457
- type: nauc_recall_at_20_std
value: -21.829136287635855
- type: nauc_recall_at_3_diff1
value: 27.70945722150185
- type: nauc_recall_at_3_max
value: 17.38259189188097
- type: nauc_recall_at_3_std
value: -21.45814251937902
- type: nauc_recall_at_5_diff1
value: 26.482067595811316
- type: nauc_recall_at_5_max
value: 18.563489596790177
- type: nauc_recall_at_5_std
value: -21.423753382233
- type: ndcg_at_1
value: 30.828
- type: ndcg_at_10
value: 34.001999999999995
- type: ndcg_at_100
value: 41.932
- type: ndcg_at_1000
value: 45.9
- type: ndcg_at_20
value: 36.93
- type: ndcg_at_3
value: 29.116999999999997
- type: ndcg_at_5
value: 30.160999999999998
- type: precision_at_1
value: 30.828
- type: precision_at_10
value: 10.688
- type: precision_at_100
value: 1.8010000000000002
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_20
value: 6.5409999999999995
- type: precision_at_3
value: 21.486
- type: precision_at_5
value: 16.611
- type: recall_at_1
value: 14.172
- type: recall_at_10
value: 41.588
- type: recall_at_100
value: 72.478
- type: recall_at_1000
value: 98.44800000000001
- type: recall_at_20
value: 50.461
- type: recall_at_3
value: 26.066
- type: recall_at_5
value: 32.548
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (pol-eng)
type: jinaai/xpqa
config: pol-eng
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: main_score
value: 46.075
- type: map_at_1
value: 22.926
- type: map_at_10
value: 40.257
- type: map_at_100
value: 42.135
- type: map_at_1000
value: 42.262
- type: map_at_20
value: 41.253
- type: map_at_3
value: 34.868
- type: map_at_5
value: 38.475
- type: mrr_at_1
value: 39.768339768339764
- type: mrr_at_10
value: 47.09873138444567
- type: mrr_at_100
value: 48.139301720039676
- type: mrr_at_1000
value: 48.18418194119319
- type: mrr_at_20
value: 47.644195865668664
- type: mrr_at_3
value: 44.72329472329472
- type: mrr_at_5
value: 45.86229086229087
- type: nauc_map_at_1000_diff1
value: 35.70994225720207
- type: nauc_map_at_1000_max
value: 31.922573287374682
- type: nauc_map_at_1000_std
value: -19.077890896454814
- type: nauc_map_at_100_diff1
value: 35.65001346737191
- type: nauc_map_at_100_max
value: 31.88853880847858
- type: nauc_map_at_100_std
value: -19.122326726996974
- type: nauc_map_at_10_diff1
value: 36.06524735461695
- type: nauc_map_at_10_max
value: 32.246461162800074
- type: nauc_map_at_10_std
value: -19.679632621277232
- type: nauc_map_at_1_diff1
value: 48.21834981287912
- type: nauc_map_at_1_max
value: 19.568464844451327
- type: nauc_map_at_1_std
value: -17.84079220033572
- type: nauc_map_at_20_diff1
value: 35.85403649253042
- type: nauc_map_at_20_max
value: 31.998466861950746
- type: nauc_map_at_20_std
value: -19.417428025928675
- type: nauc_map_at_3_diff1
value: 37.71461187785153
- type: nauc_map_at_3_max
value: 27.85047376524254
- type: nauc_map_at_3_std
value: -20.55351273572571
- type: nauc_map_at_5_diff1
value: 36.41442025594757
- type: nauc_map_at_5_max
value: 31.93891173147263
- type: nauc_map_at_5_std
value: -20.470677786255496
- type: nauc_mrr_at_1000_diff1
value: 40.12863479380261
- type: nauc_mrr_at_1000_max
value: 32.60419234657007
- type: nauc_mrr_at_1000_std
value: -19.444706103106302
- type: nauc_mrr_at_100_diff1
value: 40.08976184544935
- type: nauc_mrr_at_100_max
value: 32.596616195907316
- type: nauc_mrr_at_100_std
value: -19.412710800127886
- type: nauc_mrr_at_10_diff1
value: 40.118684898684506
- type: nauc_mrr_at_10_max
value: 32.881384976300964
- type: nauc_mrr_at_10_std
value: -19.609244341545555
- type: nauc_mrr_at_1_diff1
value: 44.54706413166179
- type: nauc_mrr_at_1_max
value: 30.651084477793876
- type: nauc_mrr_at_1_std
value: -20.909499665543724
- type: nauc_mrr_at_20_diff1
value: 40.12732869131533
- type: nauc_mrr_at_20_max
value: 32.63485461369245
- type: nauc_mrr_at_20_std
value: -19.53234890306859
- type: nauc_mrr_at_3_diff1
value: 40.28699877191242
- type: nauc_mrr_at_3_max
value: 32.10901511067561
- type: nauc_mrr_at_3_std
value: -20.523157017762113
- type: nauc_mrr_at_5_diff1
value: 40.598142279113624
- type: nauc_mrr_at_5_max
value: 32.79284811079324
- type: nauc_mrr_at_5_std
value: -20.10434179938904
- type: nauc_ndcg_at_1000_diff1
value: 35.41293508928805
- type: nauc_ndcg_at_1000_max
value: 32.95260794989011
- type: nauc_ndcg_at_1000_std
value: -16.69889720188341
- type: nauc_ndcg_at_100_diff1
value: 33.96563718225739
- type: nauc_ndcg_at_100_max
value: 32.658834254535115
- type: nauc_ndcg_at_100_std
value: -16.121037324309018
- type: nauc_ndcg_at_10_diff1
value: 35.465622135521365
- type: nauc_ndcg_at_10_max
value: 34.096760552498615
- type: nauc_ndcg_at_10_std
value: -18.520624911178732
- type: nauc_ndcg_at_1_diff1
value: 44.54706413166179
- type: nauc_ndcg_at_1_max
value: 30.651084477793876
- type: nauc_ndcg_at_1_std
value: -20.909499665543724
- type: nauc_ndcg_at_20_diff1
value: 34.95908417380056
- type: nauc_ndcg_at_20_max
value: 33.271534461469024
- type: nauc_ndcg_at_20_std
value: -17.891499167451634
- type: nauc_ndcg_at_3_diff1
value: 36.119618180303114
- type: nauc_ndcg_at_3_max
value: 30.662594748089145
- type: nauc_ndcg_at_3_std
value: -20.681275639308534
- type: nauc_ndcg_at_5_diff1
value: 36.21550522955033
- type: nauc_ndcg_at_5_max
value: 33.50161574303214
- type: nauc_ndcg_at_5_std
value: -20.088080257880865
- type: nauc_precision_at_1000_diff1
value: -11.522647268410749
- type: nauc_precision_at_1000_max
value: 9.883825545840985
- type: nauc_precision_at_1000_std
value: 12.25330079826974
- type: nauc_precision_at_100_diff1
value: -8.19761548329529
- type: nauc_precision_at_100_max
value: 15.63757897309177
- type: nauc_precision_at_100_std
value: 8.653177981589872
- type: nauc_precision_at_10_diff1
value: 7.361531571818795
- type: nauc_precision_at_10_max
value: 30.843010914980688
- type: nauc_precision_at_10_std
value: -8.588494931873978
- type: nauc_precision_at_1_diff1
value: 44.54706413166179
- type: nauc_precision_at_1_max
value: 30.651084477793876
- type: nauc_precision_at_1_std
value: -20.909499665543724
- type: nauc_precision_at_20_diff1
value: 2.8986420707285117
- type: nauc_precision_at_20_max
value: 25.892300867175162
- type: nauc_precision_at_20_std
value: -3.5411294612333744
- type: nauc_precision_at_3_diff1
value: 15.349623540592155
- type: nauc_precision_at_3_max
value: 30.160697321707737
- type: nauc_precision_at_3_std
value: -16.526565753263412
- type: nauc_precision_at_5_diff1
value: 11.487837439817703
- type: nauc_precision_at_5_max
value: 33.00171032517383
- type: nauc_precision_at_5_std
value: -13.576335609623799
- type: nauc_recall_at_1000_diff1
value: 50.71476253406417
- type: nauc_recall_at_1000_max
value: 80.27518537738743
- type: nauc_recall_at_1000_std
value: 51.88951079114522
- type: nauc_recall_at_100_diff1
value: 11.542640499848636
- type: nauc_recall_at_100_max
value: 28.86012280016378
- type: nauc_recall_at_100_std
value: 2.4903592627436635
- type: nauc_recall_at_10_diff1
value: 28.879631516382137
- type: nauc_recall_at_10_max
value: 36.2244883366462
- type: nauc_recall_at_10_std
value: -13.892468342124683
- type: nauc_recall_at_1_diff1
value: 48.21834981287912
- type: nauc_recall_at_1_max
value: 19.568464844451327
- type: nauc_recall_at_1_std
value: -17.84079220033572
- type: nauc_recall_at_20_diff1
value: 26.184388494939803
- type: nauc_recall_at_20_max
value: 32.97413130761342
- type: nauc_recall_at_20_std
value: -12.523995865516586
- type: nauc_recall_at_3_diff1
value: 32.6063576626463
- type: nauc_recall_at_3_max
value: 28.665520067623607
- type: nauc_recall_at_3_std
value: -18.890858269554286
- type: nauc_recall_at_5_diff1
value: 31.148210159300234
- type: nauc_recall_at_5_max
value: 35.00176018739188
- type: nauc_recall_at_5_std
value: -18.078139835750264
- type: ndcg_at_1
value: 39.768
- type: ndcg_at_10
value: 46.075
- type: ndcg_at_100
value: 53.417
- type: ndcg_at_1000
value: 55.7
- type: ndcg_at_20
value: 48.815
- type: ndcg_at_3
value: 40.271
- type: ndcg_at_5
value: 42.558
- type: precision_at_1
value: 39.768
- type: precision_at_10
value: 11.802
- type: precision_at_100
value: 1.797
- type: precision_at_1000
value: 0.21
- type: precision_at_20
value: 6.866
- type: precision_at_3
value: 26.512
- type: precision_at_5
value: 19.82
- type: recall_at_1
value: 22.926
- type: recall_at_10
value: 55.909
- type: recall_at_100
value: 84.758
- type: recall_at_1000
value: 99.7
- type: recall_at_20
value: 64.75800000000001
- type: recall_at_3
value: 39.123000000000005
- type: recall_at_5
value: 46.861999999999995
---
# Model Card for KartonBERT-USE-base-v1
This universal sentence encoder model is designed to convert text content into a 768-float vector space, ensuring an effective representation. It aims to be proficient in tasks involving sentence / document similarity.
Despite its small size (104 million parameters only), the model maintains a high level of performance. It uses a lowercase-optimized tokenizer with a vocabulary size of 23,000 tokens. This balance between compactness and effectiveness allows the model to deliver strong results in text encoding tasks, ensuring both speed and accuracy in real-time applications.
## Model Description
- **Developed by:** Bartłomiej Orlik, https://www.linkedin.com/in/bartłomiej-orlik/
- **Model type:** BERT Universal Sentence Encoder
- **Language:** Polish
- **License:** GPL-3.0
- **Trained from model:** OrlikB/KartonBERT_base_uncased_v1: https://huggingface.co/OrlikB/KartonBERT_base_uncased_v1
## How to Get Started with the Model
Use the code below to get started with the model.
### Using Sentence-Transformers
You can use the model with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('OrlikB/KartonBERT-USE-base-v1')
text_1 = 'Jestem wielkim fanem opakowań tekturowych'
text_2 = 'Bardzo podobają mi się kartony'
embeddings_1 = model.encode(text_1, normalize_embeddings=True)
embeddings_2 = model.encode(text_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
### Using HuggingFace Transformers
```python
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
def encode_text(text):
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=512)
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = model_output[0][:, 0]
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.squeeze().numpy()
cosine_similarity = lambda a, b: np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
tokenizer = AutoTokenizer.from_pretrained('OrlikB/KartonBERT-USE-base-v1')
model = AutoModel.from_pretrained('OrlikB/KartonBERT-USE-base-v1')
model.eval()
text_1 = 'Jestem wielkim fanem opakowań tekturowych'
text_2 = 'Bardzo podobają mi się kartony'
embeddings_1 = encode_text(text_1)
embeddings_2 = encode_text(text_2)
print(cosine_similarity(embeddings_1, embeddings_2))
```
*Note: You can use the encode_text function for demonstration purposes. For the best experience, it's recommended to process text in batches.
## Evaluation
[MTEB for Polish Language](https://huggingface.co/spaces/mteb/leaderboard)
| Rank | Model | Model Size (Million Parameters) | Memory Usage (GB, fp32) | Embedding Dimensions | Max Tokens | Average (26 datasets) | Classification Average (7 datasets) | Clustering Average (1 dataset) | PairClassification Average (4 datasets) | Retrieval Average (11 datasets) | STS Average (3 datasets) |
|------|-------------------------------------|---------------------------------|-------------------------|----------------------|------------|-----------------------|------------------------------------|---------------------------------|----------------------------------------|-----------------------------------|--------------------------|
| 1 | bge-multilingual-gemma2 | 9242 | 34.43 | 3584 | 8192 | 70 | 77.99 | 50.29 | 89.62 | 59.41 | 70.64 |
| 2 | gte-Qwen2-7B-instruct | 7613 | 28.36 | 3584 | 131072 | 67.86 | 77.84 | 51.36 | 88.48 | 54.69 | 70.86 |
| 3 | gte-Qwen2-1.5B-instruct | 1776 | 6.62 | 1536 | 131072 | 64.04 | 72.29 | 44.59 | 84.87 | 51.88 | 68.12 |
| 4 | jina-embeddings-v3 | 572 | 2.13 | 1024 | 8194 | 63.97 | 70.81 | 43.66 | 83.70 | 51.89 | 72.77 |
| 5 | jina-embeddings-v3 | 572 | 2.13 | 1024 | 8194 | 63.97 | 70.81 | 43.66 | 83.70 | 51.89 | 72.77 |
| 6 | mmlw-roberta-large | 435 | 1.62 | 1024 | 514 | 63.23 | 66.39 | 31.16 | 89.13 | 52.71 | 70.59 |
| 7 | **KartonBERT-USE-base-v1** | **104** | **0.39** | **768** | 512 | 61.67 | 67.57 | 29.88 | 87.04 | 49.14 | 70.65 |
| 8 | mmlw-e5-large | 560 | 2.09 | 1024 | 514 | 61.17 | 61.07 | 30.62 | 85.90 | 52.63 | 69.98 |
| 9 | mmlw-roberta-base | 124 | 0.46 | 768 | 514 | 61.05 | 62.92 | 33.08 | 88.14 | 49.92 | 70.70 |
| 10 | multilingual-e5-large | 560 | 2.09 | 1024 | 514 | 60.08 | 63.82 | 33.88 | 85.50 | 48.98 | 66.91 |
| 11 | mmlw-e5-base | 278 | 1.04 | 768 | 514 | 59.71 | 59.52 | 30.25 | 86.16 | 50.06 | 70.13 |
| 12 | gte-multilingual-base | 305 | 1.14 | 768 | 8192 | 58.22 | 60.15 | 33.67 | 85.45 | 46.40 | 68.92 |
| 13 | st-polish-kartonberta-base-alpha-v1 | 124 | 0.46 | 768 | 514 | 56.92 | 60.44 | 32.85 | 87.92 | 42.19 | 69.47 |
## More Information
If I have spare computing resources (GPU), I may improve the quality of the model by further training.
| [
"SCIFACT"
] |
facebook/mms-lid-4017 | facebook | audio-classification | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"audio-classification",
"mms",
"ab",
"af",
"ak",
"am",
"ar",
"as",
"av",
"ay",
"az",
"ba",
"bm",
"be",
"bn",
"bi",
"bo",
"sh",
"br",
"bg",
"ca",
"cs",
"ce",
"cv",
"ku",
"cy",
"da",
"de",
"dv",
"dz",
"el",
"en",
"eo",
"et",
"eu",
"ee",
"fo",
"fa",
"fj",
"fi",
"fr",
"fy",
"ff",
"ga",
"gl",
"gn",
"gu",
"zh",
"ht",
"ha",
"he",
"hi",
"hu",
"hy",
"ig",
"ia",
"ms",
"is",
"it",
"jv",
"ja",
"kn",
"ka",
"kk",
"kr",
"km",
"ki",
"rw",
"ky",
"ko",
"kv",
"lo",
"la",
"lv",
"ln",
"lt",
"lb",
"lg",
"mh",
"ml",
"mr",
"mk",
"mg",
"mt",
"mn",
"mi",
"my",
"nl",
"no",
"ne",
"ny",
"oc",
"om",
"or",
"os",
"pa",
"pl",
"pt",
"ps",
"qu",
"ro",
"rn",
"ru",
"sg",
"sk",
"sl",
"sm",
"sn",
"sd",
"so",
"es",
"sq",
"su",
"sv",
"sw",
"ta",
"tt",
"te",
"tg",
"tl",
"th",
"ti",
"ts",
"tr",
"uk",
"vi",
"wo",
"xh",
"yo",
"zu",
"za",
"dataset:google/fleurs",
"arxiv:2305.13516",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | "2023-06-13T08:59:29Z" | 2023-06-13T10:16:56+00:00 | 9,082 | 8 | ---
datasets:
- google/fleurs
language:
- ab
- af
- ak
- am
- ar
- as
- av
- ay
- az
- ba
- bm
- be
- bn
- bi
- bo
- sh
- br
- bg
- ca
- cs
- ce
- cv
- ku
- cy
- da
- de
- dv
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- fj
- fi
- fr
- fy
- ff
- ga
- gl
- gn
- gu
- zh
- ht
- ha
- he
- hi
- sh
- hu
- hy
- ig
- ia
- ms
- is
- it
- jv
- ja
- kn
- ka
- kk
- kr
- km
- ki
- rw
- ky
- ko
- kv
- lo
- la
- lv
- ln
- lt
- lb
- lg
- mh
- ml
- mr
- ms
- mk
- mg
- mt
- mn
- mi
- my
- zh
- nl
- 'no'
- 'no'
- ne
- ny
- oc
- om
- or
- os
- pa
- pl
- pt
- ms
- ps
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- ro
- rn
- ru
- sg
- sk
- sl
- sm
- sn
- sd
- so
- es
- sq
- su
- sv
- sw
- ta
- tt
- te
- tg
- tl
- th
- ti
- ts
- tr
- uk
- ms
- vi
- wo
- xh
- ms
- yo
- ms
- zu
- za
license: cc-by-nc-4.0
metrics:
- acc
tags:
- mms
---
# Massively Multilingual Speech (MMS) - Finetuned LID
This checkpoint is a model fine-tuned for speech language identification (LID) and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and classifies raw audio input to a probability distribution over 4017 output classes (each class representing a language).
The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 4017 languages.
## Table Of Content
- [Example](#example)
- [Supported Languages](#supported-languages)
- [Model details](#model-details)
- [Additional links](#additional-links)
## Example
This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to identify
the spoken language of an audio. It can recognize the [following 4017 languages](#supported-languages).
Let's look at a simple example.
First, we install transformers and some other libraries
```
pip install torch accelerate torchaudio datasets
pip install --upgrade transformers
````
**Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
source:
```
pip install git+https://github.com/huggingface/transformers.git
```
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# Arabic
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
ar_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch
model_id = "facebook/mms-lid-4017"
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition)
```py
# English
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'eng'
# Arabic
inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'ara'
```
To see all the supported languages of a checkpoint, you can print out the language ids as follows:
```py
processor.id2label.values()
```
For more details, about the architecture please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
## Supported Languages
This model supports 4017 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
<details>
<summary>Click to toggle</summary>
- ara
- cmn
- eng
- spa
- fra
- mlg
- swe
- ful
- por
- vie
- sun
- zlm
- ben
- kor
- tuk
- hin
- asm
- ind
- urd
- swh
- aze
- hau
- som
- mon
- tel
- bod
- rus
- tat
- tgl
- slv
- tur
- mar
- heb
- tha
- ron
- yor
- bel
- mal
- cat
- amh
- bul
- hat
- mkd
- pol
- nld
- hun
- tam
- hrv
- fas
- afr
- nya
- cym
- isl
- orm
- kmr
- lin
- jav
- snd
- nob
- uzb
- bos
- deu
- lit
- mya
- lat
- grn
- kaz
- npi
- kik
- ell
- sqi
- yue
- cak
- hye
- kat
- kan
- jpn
- pan
- lav
- guj
- ces
- tgk
- khm
- bak
- ukr
- che
- fao
- mam
- xog
- glg
- ltz
- quc
- aka
- lao
- crh
- sna
- mlt
- poh
- sin
- cfm
- ixl
- aiw
- mri
- tuv
- gag
- pus
- ita
- srp
- lug
- eus
- kia
- nno
- nhx
- gur
- ory
- luo
- sxn
- xsm
- cmo
- kbp
- slk
- ewe
- dtp
- fin
- acr
- ayo
- quy
- saq
- quh
- rif
- bre
- bqc
- tzj
- mos
- bwq
- yao
- cac
- xon
- new
- yid
- hne
- dan
- hus
- dyu
- uig
- pse
- bam
- bus
- ttq
- ngl
- est
- txa
- tso
- gng
- seh
- wlx
- sck
- rjs
- ntm
- lok
- tcc
- mup
- dga
- lis
- kru
- cnh
- bxk
- mnk
- amf
- dos
- guh
- rmc
- rel
- zne
- teo
- mzi
- tpi
- ycl
- bis
- xsr
- ddn
- thl
- wal
- ctg
- onb
- uhn
- gbo
- vmw
- beh
- mip
- lnd
- khg
- bfz
- ifa
- gna
- rol
- nzi
- ceb
- lcp
- kml
- sxb
- nym
- acn
- bfo
- mhy
- adx
- mqj
- bbc
- pmf
- dsh
- bfy
- sid
- nko
- grc
- bno
- bfa
- pxm
- sda
- oku
- mbu
- pwg
- qxl
- ndv
- nmz
- soy
- vut
- tzh
- mcr
- box
- iri
- nxq
- ayr
- ikk
- bgq
- bbo
- gof
- bmq
- kdt
- cla
- asa
- lew
- war
- muv
- bqp
- kfx
- zpu
- txu
- xal
- fon
- maj
- mag
- kle
- alp
- hlb
- any
- poe
- bjw
- rro
- pil
- rej
- lbw
- bdu
- dgi
- mgo
- mkl
- mco
- maa
- vif
- btd
- kcg
- tng
- pls
- kdl
- tzo
- pui
- pap
- lns
- kyb
- ksb
- akp
- zar
- gil
- blt
- ctd
- mhx
- mtg
- gud
- hnn
- kek
- mxt
- frd
- bmv
- krc
- suz
- ndy
- pny
- ava
- cwa
- icr
- mcp
- hyw
- bov
- hlt
- zim
- dnw
- naw
- udm
- xed
- kqp
- kpv
- bkd
- xnj
- atb
- cwe
- lje
- nog
- kij
- ttc
- sch
- mqn
- mbj
- btx
- atg
- ife
- bgw
- gri
- trs
- kjh
- bhz
- moz
- mjv
- kyf
- chv
- ati
- ybb
- did
- gau
- dnj
- bzh
- kbo
- cle
- pib
- crs
- had
- nhy
- yba
- zpz
- yka
- tgo
- dgk
- mgd
- twb
- lon
- cek
- tuo
- cab
- muy
- rug
- taq
- tex
- tlj
- sne
- smo
- nsu
- enx
- bqj
- nin
- cnl
- btt
- nlc
- nlg
- mcq
- tly
- mge
- prk
- ium
- zpt
- aeu
- eka
- mfk
- akb
- mxb
- cso
- kak
- yre
- obo
- tgj
- abi
- yas
- men
- nga
- blh
- kdc
- cmr
- zyp
- bom
- aia
- zpg
- yea
- xuo
- ubl
- hwc
- xtm
- mhr
- avn
- log
- xsb
- kri
- idd
- mnw
- plw
- nuj
- ted
- guq
- sbp
- lln
- blx
- tmc
- knb
- kwf
- met
- rkt
- mib
- miy
- lsi
- zaj
- mih
- myv
- luc
- rnl
- tob
- mpm
- kfw
- kne
- asg
- pps
- ake
- amk
- flr
- trn
- tom
- yat
- tna
- xmm
- poi
- qxr
- myy
- bep
- tte
- zmz
- kqe
- sjm
- kwd
- abp
- kmd
- tih
- pez
- urt
- mim
- knj
- gqr
- kvn
- suc
- med
- ury
- kpq
- tbl
- mto
- kzf
- lex
- bdh
- zpc
- hoc
- mbc
- moa
- krs
- mej
- snp
- nlk
- wsg
- zaq
- far
- rap
- bmr
- gwr
- not
- yaz
- ess
- pss
- cgc
- dbq
- gub
- kje
- azg
- ktj
- sil
- kqr
- tnt
- pjt
- cul
- tmf
- tav
- stn
- cjo
- mil
- kir
- cbi
- dav
- gai
- sey
- ppk
- xtd
- pis
- qvh
- cbr
- mai
- omw
- tao
- prt
- tnr
- tlb
- kin
- ami
- agu
- cok
- san
- kaq
- lif
- arl
- tvw
- atq
- iba
- knk
- wap
- kog
- rub
- tuf
- zga
- crt
- jun
- yal
- ksr
- boj
- run
- tye
- cpu
- ngu
- huu
- mcd
- byr
- dah
- cpb
- nas
- nij
- pkb
- gux
- dig
- gog
- gbm
- kmu
- tbk
- nhe
- snn
- cui
- lid
- hnj
- ojb
- ubu
- nyy
- sho
- mpd
- tir
- kdj
- gvc
- urb
- awa
- bcc
- cof
- cot
- bgr
- sus
- nan
- ame
- kno
- nyn
- nyf
- bor
- dnt
- grt
- xte
- mdy
- hak
- guo
- ses
- suk
- mqf
- bjr
- bem
- keo
- guk
- mtj
- bbb
- crk
- lam
- kue
- khq
- kus
- lsm
- bwu
- dug
- nsk
- sbd
- kdh
- crq
- sah
- mur
- shn
- spy
- cko
- aha
- mfz
- rmy
- nim
- gjn
- kde
- bsq
- spp
- esi
- kqn
- zyb
- oci
- nnw
- qva
- cly
- rim
- oss
- vag
- bru
- dag
- ade
- gum
- law
- yaa
- tem
- hap
- kaa
- raw
- mpx
- kff
- lhu
- taj
- dyo
- hui
- kbr
- mpg
- mwq
- guc
- niy
- nus
- mzj
- mnx
- tbz
- bib
- quz
- mev
- kma
- ptu
- wme
- lef
- mfi
- bky
- mdm
- mgh
- bvc
- bim
- eip
- mnb
- fij
- maw
- dip
- qul
- bgc
- mxv
- thf
- bud
- dzo
- lom
- ztq
- urk
- mfq
- ach
- las
- kyz
- nia
- sgb
- tpm
- tbt
- dgo
- qvo
- zab
- dik
- pbb
- cas
- kac
- dop
- pcm
- shk
- xnr
- zpo
- ktb
- bba
- sba
- myb
- quw
- emp
- ctu
- gbk
- guw
- blz
- nst
- cnt
- ilo
- cme
- yan
- srx
- qvm
- mhi
- mzw
- fal
- zao
- set
- csk
- wol
- nnb
- zas
- zaw
- cap
- mgq
- yam
- sig
- kam
- biv
- laj
- otq
- pce
- mwv
- mak
- bvz
- kfb
- alz
- dwr
- hif
- hag
- kao
- rav
- mor
- lme
- nav
- lob
- cax
- cdj
- upv
- dhi
- knf
- mad
- kfy
- alt
- tgw
- ceg
- wwa
- ljp
- myk
- acd
- jow
- sag
- ntr
- kbq
- jiv
- mxq
- ahk
- kab
- mie
- car
- nfr
- mfe
- cni
- led
- mbb
- twu
- nag
- cya
- kum
- tsz
- cco
- mnf
- prf
- bgt
- nhu
- mzm
- trq
- ken
- ker
- bpr
- cou
- kyq
- pkr
- xpe
- zpl
- kyc
- enb
- yva
- zad
- bcl
- bex
- huv
- sas
- ruf
- srn
- vun
- gor
- tik
- xtn
- gmv
- kez
- sld
- kss
- vid
- old
- nod
- kxm
- lia
- izr
- ozm
- bfd
- acf
- thk
- mah
- sgw
- mfh
- daa
- yuz
- ifb
- jmc
- nyo
- anv
- cbt
- myx
- zai
- nhw
- tby
- ncu
- nhi
- adj
- wba
- usp
- lgg
- irk
- iou
- tca
- mjl
- ote
- kpz
- bdq
- qub
- jam
- agr
- zpi
- sml
- soq
- mvp
- kxc
- bsc
- hay
- dyi
- ilb
- itv
- hil
- bkv
- poy
- tgp
- awb
- cuk
- miz
- bmu
- txq
- gyr
- kdi
- zpm
- adh
- npl
- tue
- mrw
- lee
- bss
- pam
- aaz
- kqy
- pau
- key
- cpa
- alj
- kkj
- tap
- sbl
- qvw
- yua
- ziw
- xrb
- msy
- mcu
- sur
- heh
- con
- lwo
- gej
- gnd
- ace
- zos
- agd
- bci
- cce
- toc
- mbt
- shi
- tll
- cjp
- kjb
- toi
- pbi
- ann
- krl
- bht
- vmy
- bst
- gkn
- klv
- nwb
- bng
- shp
- pag
- jbu
- klu
- gso
- kyu
- mio
- ngp
- zaa
- eza
- omi
- izz
- loq
- pww
- udu
- miq
- tnk
- min
- pab
- cuc
- mca
- agn
- lem
- bav
- bzj
- jac
- gbi
- pko
- noa
- dts
- bnp
- gxx
- haw
- ood
- qxh
- bts
- crn
- krj
- umb
- sgj
- tbc
- tpp
- zty
- kki
- rai
- qwh
- kub
- ndj
- hns
- chz
- ksp
- qvn
- gde
- mfy
- bjv
- udg
- mpp
- sja
- cbs
- ese
- ded
- rng
- bao
- muh
- mif
- cwt
- wmw
- ign
- acu
- ndp
- mir
- bzi
- bps
- ycn
- snw
- jnj
- ifu
- iqw
- djk
- lip
- gvl
- kdn
- mzk
- tnn
- toh
- apb
- qxn
- nnq
- rmo
- xsu
- ncj
- nyu
- mop
- mrj
- tpt
- wob
- ifk
- mog
- ter
- bcw
- boa
- stp
- hig
- mit
- maz
- way
- tee
- ban
- srm
- pao
- pbc
- mas
- mda
- nse
- gym
- tri
- hto
- mfx
- hno
- bgd
- cbc
- mqb
- yli
- gwi
- tac
- cbv
- bxg
- npy
- qvs
- ura
- nch
- hub
- coe
- ibg
- pir
- mbh
- mey
- meq
- zae
- neb
- ldi
- ify
- qvz
- zca
- gam
- pad
- jvn
- kwi
- tfr
- ata
- bxh
- mox
- nab
- ndz
- sri
- guu
- quf
- csy
- yad
- cbu
- mza
- inb
- qve
- qvc
- waw
- saj
- caa
- wbi
- alw
- lgl
- jic
- lac
- apr
- azz
- cnw
- tos
- qxo
- ibo
- des
- nca
- mkw
- avu
- otn
- stb
- kby
- xho
- bcq
- pae
- aui
- lnl
- tbg
- tnc
- guz
- ksw
- syl
- tyv
- lww
- zul
- lai
- mww
- mcb
- loz
- beq
- mer
- mwt
- arn
- ore
- bza
- lun
- lbj
- apf
- bto
- mnh
- sab
- kxf
- pov
- nbw
- ckb
- bdg
- epo
- sfw
- knc
- tzm
- top
- lus
- ige
- tum
- gvr
- bjz
- csh
- xdy
- bho
- abk
- ijc
- nso
- vai
- neq
- gkp
- dje
- bev
- jen
- lub
- ndc
- lrc
- qug
- aca
- bax
- bum
- srr
- tiv
- sea
- maf
- pci
- xkl
- rhg
- dgr
- bft
- ngc
- tew
- lua
- kck
- awn
- cag
- lag
- tdy
- ada
- soe
- swk
- mni
- pdt
- ebu
- bwr
- etu
- krw
- gaa
- isn
- sru
- mkn
- gle
- ubr
- mzz
- mug
- kqs
- ipi
- ssn
- ida
- kvj
- knp
- trc
- zza
- nzb
- mcn
- wed
- lol
- lic
- jaa
- zpq
- skr
- dww
- rml
- ggu
- hdy
- ktu
- mgw
- lmp
- mfa
- enl
- cje
- ijn
- mwm
- vmk
- mua
- ngb
- dur
- nup
- tsc
- bkm
- kpm
- ayz
- wim
- idu
- ksf
- kqf
- kea
- urh
- ksz
- mro
- ego
- gya
- kfc
- nnc
- mrt
- ndi
- ena
- ogo
- tui
- bhi
- bzw
- elm
- okr
- its
- adi
- geb
- dow
- kng
- mhw
- mgr
- ast
- igb
- kfi
- dzg
- mzl
- gvs
- ncl
- rao
- kmb
- krr
- sat
- unr
- ald
- bhb
- glk
- gnn
- iso
- sef
- bin
- sgc
- coh
- dua
- aoi
- swp
- viv
- acz
- nbq
- wbp
- gvo
- giz
- tod
- mwf
- khe
- dks
- kaj
- wlo
- ady
- ntj
- emk
- suj
- lzz
- snf
- tvs
- wnc
- jra
- zav
- bbj
- mhu
- kel
- njz
- tuy
- efi
- lgr
- bmk
- dhg
- lgm
- tdh
- lue
- tke
- igl
- bzd
- nde
- tsn
- beo
- gom
- nyd
- trp
- kjl
- haq
- byv
- ven
- gvj
- mpj
- fan
- ble
- jmx
- byd
- toq
- snc
- bvu
- sdr
- wes
- her
- swb
- wod
- dbj
- bcp
- lma
- nhr
- dde
- haj
- mzp
- wbf
- ktz
- qxu
- bvd
- mlk
- bee
- rmn
- mwc
- sou
- sot
- pln
- rag
- glv
- bjg
- mve
- kha
- nmn
- xuu
- mjt
- jmd
- koe
- mwn
- yml
- wof
- tvk
- xer
- oki
- dim
- nnh
- tbo
- kjc
- sep
- gno
- mix
- trd
- sco
- klr
- evn
- brv
- kjg
- nuy
- srq
- tkr
- tsb
- djr
- kgk
- mfv
- div
- msc
- rki
- fmu
- mch
- eyo
- aoz
- twm
- nfa
- mhs
- hvn
- chf
- kls
- ggw
- mym
- lbx
- are
- mjx
- mtd
- ghr
- nys
- lrm
- hni
- pmy
- lbm
- akh
- kay
- rgs
- lwg
- nuz
- khw
- the
- pof
- seg
- wci
- tpe
- bqi
- bjn
- bmf
- kiw
- khz
- ccp
- cto
- abt
- sbe
- suv
- nos
- tog
- llc
- zac
- tet
- kuj
- tab
- tcz
- psa
- kyg
- zin
- yup
- ajg
- bkx
- imo
- iru
- knx
- knu
- llg
- nyk
- ymm
- xmc
- lig
- bgz
- ina
- xem
- mau
- wat
- hix
- rgu
- mbp
- cnk
- nni
- kpc
- bfg
- kud
- tnv
- loe
- slu
- ztg
- dwy
- esg
- thq
- pgg
- snk
- nza
- srb
- blo
- otd
- yrl
- adq
- cjs
- bbr
- gup
- pht
- lbf
- blr
- scg
- awi
- tpa
- xdn
- xdo
- tix
- dnn
- fli
- zam
- lla
- hts
- agg
- xta
- nuf
- tro
- tlr
- ssy
- rah
- pbo
- ckt
- pri
- yon
- duc
- ctp
- kpo
- pnb
- mki
- zpv
- bha
- maq
- tth
- nwi
- eto
- bob
- atd
- beu
- bhw
- gwn
- phr
- mxx
- mui
- sdq
- xsq
- tkt
- xky
- mee
- tsj
- uki
- mgp
- kap
- vaa
- awu
- afz
- mvv
- enq
- bxr
- qxp
- sza
- tdt
- olu
- bji
- ton
- knl
- pdu
- blb
- pwo
- bon
- kei
- xav
- zgb
- bug
- yiu
- cbn
- ckh
- tpr
- age
- sie
- gah
- nes
- jml
- dgc
- kvo
- kmw
- mrr
- asy
- oyb
- ria
- ghe
- shr
- gnk
- vah
- djo
- krn
- khb
- tpx
- vaj
- kas
- hii
- bun
- jab
- sbu
- hmd
- aoj
- yoy
- dhw
- lir
- kvw
- dhn
- onr
- lyn
- skx
- cao
- ssw
- iii
- kca
- kps
- row
- pcf
- peg
- itl
- agx
- kib
- bap
- brx
- tqo
- jna
- apz
- gaj
- dry
- mho
- bmb
- wmt
- dre
- leu
- srl
- nbe
- kup
- gld
- kqb
- dar
- anu
- nti
- ncm
- kmc
- mxn
- ksd
- tnl
- sei
- ino
- lep
- zyn
- rwr
- pcc
- kpy
- hmt
- kxv
- dta
- fwe
- aix
- mxj
- sdo
- hea
- kfv
- lae
- cns
- aso
- lri
- nmi
- ong
- cdm
- nii
- mji
- zik
- dib
- ewo
- yom
- bpe
- cli
- cro
- mrm
- wib
- cch
- kfq
- bzf
- shj
- apw
- mlu
- xmz
- vay
- yiz
- kai
- afe
- kcl
- gea
- bcf
- ish
- wbr
- tpj
- kgp
- mrd
- sgp
- ola
- thr
- pmi
- sip
- xri
- xtl
- twe
- ekg
- aly
- kqm
- kvf
- pav
- ygr
- ybi
- kwv
- bas
- kfk
- bku
- amn
- njb
- zzj
- rab
- pex
- boq
- lot
- bzy
- syw
- stt
- ppt
- tnp
- afu
- dhd
- ulu
- pud
- mjc
- bwi
- ram
- gol
- tsx
- twh
- cfa
- hut
- snx
- dhm
- bfb
- tdf
- onp
- wbm
- kpb
- blk
- ass
- bhj
- kge
- att
- swv
- giw
- krv
- nmo
- cua
- tpu
- ikx
- bwx
- kjp
- mgm
- ahl
- cik
- wtm
- xuj
- nbu
- mle
- tjg
- les
- ntp
- gju
- kwl
- kyo
- goj
- cgk
- zpj
- szb
- ysn
- haz
- niq
- xra
- tsr
- mpr
- yig
- dby
- sfm
- mtr
- ttr
- kzs
- pah
- sdp
- bpx
- wlv
- mfc
- dwz
- kpr
- sya
- uth
- aai
- tes
- myl
- brg
- lar
- aii
- uar
- bde
- shg
- bzz
- cux
- kty
- say
- nfu
- hmo
- meu
- shy
- kjo
- ian
- mde
- mke
- tic
- txo
- baa
- lml
- knv
- agw
- dao
- bco
- ywq
- jul
- lbq
- grv
- kgq
- kxz
- gjk
- ztp
- aau
- sso
- mks
- mbz
- lra
- tsg
- mte
- dob
- all
- lpo
- qud
- gdb
- kwx
- kbd
- loy
- mrg
- xub
- yss
- kun
- scp
- arr
- kbc
- slr
- nkb
- ica
- pkh
- lec
- raa
- sjp
- wad
- mnz
- soi
- sax
- ybh
- tld
- klz
- bpp
- mql
- sif
- uss
- hoe
- arv
- tbf
- lsr
- mxu
- skj
- nmf
- xmt
- mdk
- soa
- kbl
- mdb
- bns
- byn
- mvg
- tba
- klw
- mdd
- mdr
- tcy
- cnb
- tio
- xtc
- asc
- tar
- amr
- tan
- dot
- plj
- blw
- lbe
- aks
- yij
- mjg
- puu
- uri
- byx
- noe
- lhm
- kft
- grj
- shb
- mcf
- mpc
- hca
- kwj
- ruk
- bcs
- eja
- btu
- msi
- grd
- jao
- tcu
- gwj
- sly
- mmg
- pnq
- ssx
- hmr
- lnu
- mzr
- mgu
- mlm
- lbk
- jms
- brh
- kjd
- cub
- bkq
- bla
- nbl
- xkk
- bfw
- ott
- ldl
- lyg
- wbl
- lax
- ort
- hms
- zpa
- juk
- jmn
- nku
- nlx
- yet
- bge
- rog
- bec
- jda
- anr
- kxj
- pug
- tcs
- llp
- ksu
- poc
- bkk
- prp
- wuu
- zua
- npb
- gry
- kex
- kcv
- bhu
- lle
- cna
- hsn
- kui
- zlj
- mxe
- mjz
- pai
- bqg
- kfp
- bca
- ksg
- aar
- kdp
- ssk
- cog
- wmo
- brt
- khr
- swi
- nto
- xkf
- kzr
- pwr
- tyz
- dus
- kua
- dzl
- bgp
- hoy
- oro
- cnc
- xwe
- gec
- bli
- myp
- nao
- inj
- lhi
- sqq
- nnu
- bww
- hia
- mxy
- bix
- msm
- bma
- zau
- tdd
- roh
- sui
- xkz
- bhx
- lmx
- pwb
- ahr
- lro
- clo
- jer
- saw
- mpq
- xbi
- nfd
- dad
- cin
- hal
- tcn
- der
- mng
- roo
- apt
- wsi
- muk
- jib
- nnm
- jbj
- sjl
- qwa
- fod
- cta
- kej
- zom
- keu
- gbe
- tyr
- gga
- aro
- ebo
- tgs
- gia
- anm
- bda
- zyj
- ssb
- scu
- bra
- bio
- lea
- foi
- chq
- nbm
- kad
- kil
- abo
- kpl
- ysp
- kph
- aup
- cav
- abs
- kmi
- kvi
- pcn
- dka
- esk
- nhp
- bhd
- isu
- kzq
- ppq
- sce
- ums
- aim
- ril
- xua
- aac
- bbk
- kfg
- mab
- wno
- bfu
- ttv
- tsv
- iyo
- xkb
- gaw
- pid
- alu
- lch
- apu
- bei
- kgr
- mdv
- ths
- sss
- kvx
- lhp
- ygw
- jid
- phk
- dai
- jio
- hmg
- hld
- myu
- cvg
- auc
- okv
- zyg
- bkl
- lmn
- wog
- kgy
- diu
- alk
- tcf
- dub
- lkt
- aot
- tuz
- kxp
- nke
- sgh
- tts
- qvi
- moc
- pmj
- yuf
- ngt
- gdn
- duh
- khn
- xwl
- nar
- ndd
- mme
- alf
- lkr
- bcn
- bvr
- kif
- mpt
- gaq
- ldj
- tja
- koi
- bkr
- thy
- ayg
- zak
- tcx
- hre
- hmj
- nbr
- vav
- tdj
- tvd
- suy
- esu
- yes
- bwd
- nbc
- tgd
- ncq
- irx
- dbv
- vas
- tpq
- xsn
- bkc
- xbr
- bdv
- lpn
- jwi
- bgg
- muz
- bjx
- lbo
- apn
- aol
- dcc
- gdr
- sbx
- ssi
- bqv
- ctl
- scl
- kul
- skn
- aon
- eve
- pih
- bby
- lsh
- lez
- eot
- cih
- tkb
- jae
- bdi
- rop
- bvh
- can
- zay
- kpk
- dbm
- juy
- ngn
- buu
- bxa
- bfr
- spn
- fai
- zpk
- mfl
- kky
- wiu
- bhf
- ndx
- dir
- faa
- bcg
- tww
- xac
- ktn
- yiq
- bew
- avt
- cjv
- cqd
- mtt
- lhl
- pnc
- wew
- iws
- stk
- bfm
- luj
- mkz
- hmb
- hbn
- dza
- tqu
- kra
- moi
- kgj
- lkh
- pne
- dmg
- kxw
- dso
- mnl
- mse
- doz
- hve
- ggb
- gru
- ich
- mig
- ute
- anp
- ayb
- oub
- ghs
- rmb
- kwe
- cjk
- wti
- agl
- xtj
- nac
- kga
- brd
- los
- khj
- noi
- emn
- brr
- ndr
- ldb
- ymk
- gwd
- pcg
- ktv
- arg
- mbk
- bjj
- nqg
- fie
- mln
- nms
- hru
- wau
- suo
- nxr
- kwa
- tis
- tva
- pca
- bwo
- zdj
- kmo
- qxs
- bef
- emb
- mqu
- nzy
- fir
- drg
- kmy
- wja
- arh
- drs
- yaq
- saf
- bqh
- pll
- gmb
- ksm
- jeh
- kwc
- kmt
- azo
- nux
- lbn
- gyz
- bol
- baw
- cdh
- amb
- yeu
- tig
- kjq
- muo
- byc
- uiv
- bab
- nnp
- bac
- yde
- xty
- fqs
- kwn
- oym
- nhb
- bwe
- uis
- dmo
- dio
- gby
- ibb
- mjs
- nxk
- drd
- apj
- pua
- wmd
- sme
- lmd
- mvn
- tlx
- biz
- gdf
- otx
- prm
- nud
- yno
- sgz
- bfh
- aps
- ekr
- zaz
- aoe
- otr
- ppo
- res
- brf
- vmz
- aez
- sbn
- brb
- vmc
- krx
- usi
- nco
- mzq
- nut
- ndm
- ihp
- tkx
- kvb
- gas
- aio
- heg
- mfn
- juo
- ywl
- kvl
- plc
- tlf
- nsm
- thz
- vig
- mfd
- adl
- thm
- jbm
- bej
- sen
- mgb
- hoo
- liq
- tpl
- tek
- kid
- tcp
- rin
- chw
- xkn
- kbx
- bbt
- cjm
- mrn
- khs
- gvn
- siw
- udi
- mjw
- nlu
- kmn
- rnd
- wrm
- kix
- bsp
- pqa
- hio
- ynq
- yev
- lev
- ldm
- dnd
- aki
- ktm
- sym
- bnj
- hul
- bys
- swo
- nbn
- yay
- jkp
- amu
- stj
- pma
- yrk
- cyo
- isi
- grh
- naq
- bau
- bsh
- mrq
- pbm
- kkn
- crw
- nja
- erk
- dgh
- bdl
- ags
- ite
- int
- kcc
- svs
- bpn
- nuk
- kkc
- tvu
- ybj
- mxp
- myw
- kio
- bsf
- mxs
- lga
- twx
- pmq
- zns
- bzu
- dni
- itd
- ndb
- gfk
- zwa
- gel
- hmz
- nma
- pck
- sng
- scs
- dgz
- gue
- nlv
- ghk
- clj
- xwg
- lop
- fvr
- snl
- blf
- sre
- zkr
- khy
- bfj
- kfr
- tku
- zps
- ksn
- mgc
- bdd
- kwk
- ciw
- rue
- eky
- anj
- tdn
- lky
- hue
- zln
- taw
- zkn
- tlp
- ayu
- wuv
- ula
- zkd
- dia
- szp
- hot
- nbb
- alh
- aom
- bpz
- ito
- ukw
- byp
- tdg
- kys
- duv
- mkk
- auu
- aof
- bhq
- kyv
- wms
- sge
- pym
- kku
- eit
- kee
- uta
- vrs
- hmw
- ncr
- mlq
- snm
- wut
- spt
- wni
- kzi
- nnd
- mdt
- wlc
- nna
- pio
- duw
- xkt
- bui
- mcc
- mmm
- jum
- miu
- ngw
- ksa
- lur
- ilk
- cde
- mez
- kvr
- mus
- tmn
- pmx
- asb
- ppm
- mlf
- btg
- ppl
- ykm
- cod
- rar
- nri
- jmr
- ttk
- abz
- osi
- jax
- bse
- dsq
- doy
- naj
- kmm
- hoj
- pch
- jit
- for
- jmb
- yin
- kji
- kgo
- akg
- yuq
- loa
- jnl
- bgf
- nez
- tji
- kow
- wlw
- ybl
- pot
- ape
- klo
- xks
- lkn
- zpx
- kwo
- bpy
- jle
- bqr
- bdb
- git
- wle
- nir
- wyy
- pbs
- cdo
- nbh
- isd
- nhn
- ckx
- gim
- kla
- sjo
- kvq
- vmx
- jad
- cdr
- mvo
- uya
- cho
- aqm
- mea
- krf
- ijj
- dez
- gnm
- cbj
- bgn
- mbl
- utr
- bcy
- cry
- spo
- alx
- ukp
- bhh
- ahp
- kht
- wwo
- bya
- mlv
- qvj
- nix
- xkv
- has
- slp
- kza
- mxd
- dna
- bmi
- ont
- rbb
- auk
- mov
- bsn
- mck
- odu
- kvt
- nrf
- rmt
- duu
- nnj
- csa
- sps
- dox
- kal
- bri
- piy
- atp
- loh
- ets
- ccl
- djm
- nak
- png
- hoa
- bgs
- bbq
- tnb
- aab
- cnq
- lmu
- pha
- kvu
- cpx
- nih
- sjb
- how
- nxd
- gis
- xns
- hbb
- sde
- ior
- mmd
- pnu
- ngs
- hrm
- bze
- byz
- cov
- oma
- bfs
- bfq
- mdj
- syk
- pei
- mmz
- ldg
- tds
- tkd
- wow
- cox
- czt
- coj
- akc
- grx
- jiu
- zng
- kdu
- iry
- vam
- siu
- bmd
- nyi
- lcm
- gut
- bcj
- ogc
- add
- huc
- bbf
- wud
- pwm
- dms
- lva
- pum
- emg
- zms
- bhs
- cuv
- adn
- tvn
- pwa
- cyb
- ale
- kis
- kql
- yae
- ncg
- mzb
- tgc
- gdl
- msw
- yah
- erh
- smf
- ppi
- cdi
- clk
- knm
- ktp
- nkx
- das
- smq
- mkc
- apm
- bbp
- bkw
- rhp
- itz
- yuy
- nbp
- mlw
- iar
- cut
- lht
- ekl
- tty
- mhp
- slz
- khc
- boh
- var
- kdx
- nou
- khl
- wbq
- atu
- rir
- bkg
- mls
- cky
- sku
- anc
- mmc
- bnx
- pbp
- sua
- puc
- mav
- tif
- nmb
- goa
- bet
- bly
- kcx
- mfb
- zmb
- btm
- hml
- nau
- ikw
- zoc
- pia
- afo
- bpw
- mxa
- mvz
- ccg
- tvl
- pta
- sol
- sto
- rad
- hra
- vkn
- xom
- lgt
- nnz
- qws
- ngi
- dtb
- sbr
- aug
- tfn
- skt
- ibl
- pem
- gpa
- byo
- psn
- nka
- akw
- xmh
- jya
- yui
- jub
- agc
- njo
- won
- mxl
- tcd
- ikt
- hwo
- ged
- yuj
- txn
- kch
- bhy
- aal
- kci
- gro
- liu
- crx
- yum
- mdu
- mds
- dgd
- bjp
- vkl
- aun
- byj
- thd
- mrh
- ost
- swj
- bey
- bip
- kfh
- qxa
- mbi
- ntu
- nbi
- gra
- azd
- kuy
- llu
- zpn
- jog
- bxq
- jni
- pnz
- nxg
- jiy
- sse
- njm
- ors
- kmp
- kkf
- rkm
- wan
- bjt
- bxs
- ywa
- ono
- mgg
- cbk
- tce
- xod
- oia
- moh
- kih
- nyq
- akt
- mct
- prx
- nyh
- weh
- bil
- mkf
- mmx
- nba
- rau
- taz
- ddg
- quv
- clt
- pow
- mfg
- abr
- bqt
- ktc
- pkt
- ver
- jnd
- caq
- mgi
- trf
- sed
- nyb
- cvn
- zhi
- mum
- bqa
- nbv
- nid
- kvy
- hnd
- gbz
- liw
- max
- sad
- mcs
- dru
- hav
- ntk
- teq
- kxx
- kna
- rdb
- kmq
- ega
- nhz
- klg
- twy
- bhp
- lel
- ner
- dri
- kpw
- dun
- aty
- mbq
- kny
- cfg
- hop
- lgq
- kbj
- amm
- tml
- bag
- zts
- gnu
- pwn
- yer
- daq
- shw
- plg
- kfo
- yak
- cfd
- kce
- kxb
- kpj
- gbg
- mhl
- buz
- phl
- org
- chx
- gvf
- qux
- lgu
- xkg
- kie
- yif
- onn
- nxa
- buk
- pip
- doo
- tdk
- kvv
- mpn
- bjh
- tfi
- kmh
- xkc
- chr
- sst
- wrp
- bbw
- bje
- raf
- mhz
- sez
- ato
- yle
- nat
- zag
- kfa
- mut
- wrs
- yyu
- mta
- cld
- kjs
- jdg
- nmk
- dij
- bgv
- buo
- geg
- gvp
- sle
- opa
- hac
- mqg
- ert
- gbh
- ndu
- gmz
- glw
- tli
- kcq
- aog
- win
- tmy
- mqx
- wgi
- hah
- dln
- fak
- rey
- czh
- diw
- bjk
- bdm
- stf
- tal
- nqy
- ymb
- nce
- bqo
- bbu
- kqi
- tii
- pru
- aww
- ahg
- nit
- sop
- wsk
- gqa
- kbv
- weo
- nof
- nmc
- nap
- jei
- ndo
- gcf
- sgi
- buh
- gbr
- tbp
- she
- bxb
- mij
- auy
- bye
- txt
- kqo
- umu
- pku
- cll
- yun
- mfm
- kcr
- ryu
- kli
- kfm
- deg
- bvm
- gow
- jgk
- kvd
- bhl
- odk
- gdu
- ems
- syb
- nng
- gig
- ggg
- etr
- yix
- asr
- sbk
- tov
- pbn
- ktf
- jqr
- slx
- yis
- alq
- kfd
- klq
- oso
- aku
- pak
- iyx
- vmm
- bga
- mtk
- mbd
- sxw
- gew
- dbi
- rwa
- xmg
- kvm
- tru
- kdz
- kxh
- sjr
- lse
- chp
- tay
- nuo
- mep
- wji
- elk
- crj
- fut
- jns
- agf
- kyk
- iqu
- mfo
- jeb
- sbz
- xrw
- mml
- acv
- kdq
- tiw
- jaq
- kfz
- aqg
- kks
- knt
- gou
- pdo
- kcs
- uba
- abn
- iti
- amo
- gye
- kbz
- wem
- yap
- ghl
- zbu
- mgk
- nen
- uuu
- bit
- vum
- bvw
- itt
- kod
- slc
- awe
- ccj
- orh
- dih
- kbh
- jig
- one
- zaf
- mqh
- bub
- siy
- aad
- kjr
- ruy
- kqj
- hum
- jku
- xti
- ydg
- ots
- thp
- dtm
- jru
- yaf
- tsw
- mma
- rei
- mtu
- gdx
- ttm
- mbx
- smy
- nzm
- ncf
- anw
- adz
- ank
- koh
- lan
- tuq
- otm
- kip
- aik
- ldq
- tak
- wca
- wom
- huh
- jup
- nhv
- def
- mfj
- mtf
- tsp
- bnv
- hch
- fun
- dil
- ttb
- dof
- nyg
- src
- ael
- scv
- gop
- xnz
- sti
- ebr
- ahb
- due
- spm
- wss
- kdm
- ldp
- mcw
- mbv
- sct
- vra
- mkg
- agy
- cib
- vmp
- sdh
- brq
- bmj
- vls
- kcd
- akq
- rwk
- dbd
- spu
- udl
- meh
- auq
- liz
- cdn
- kmk
- mmp
- bwm
- akr
- sor
- xtt
- kqa
- ruz
- afi
- tma
- laa
- ctt
- bux
- ldk
- jma
- kwu
- klk
- ybe
- szg
- pyu
- frc
- itr
- bvi
- ala
- pbl
- kni
- dya
- ahs
- msl
- nlo
- bof
- mhk
- kic
- gid
- ung
- boo
- bpu
- eze
- yns
- tvt
- mla
- sob
- kzc
- ywn
- mku
- mef
- mxh
- kpa
- whg
- akl
- zsm
- bqx
- iko
- krh
- bcz
- clc
- rat
- zro
- dkx
- sau
- zpr
- mqz
- mii
- duq
- fla
- yim
- mne
- tny
- sok
- saz
- skv
- kcj
- zrg
- dyg
- mph
- enn
- jkr
- blc
- skd
- kmj
- gmm
- gab
- hkk
- com
- ttj
- ckl
- aaw
- xvi
- nfl
- see
- dak
- pdc
- iow
- ogb
- twp
- ocu
- hdn
- bni
- rcf
- soo
- fap
- nhg
- ike
- smt
- snq
- mrz
- zcd
- rui
- ksj
- msg
- kwb
- fll
- zuy
- bja
- bwt
- mtp
- kot
- irr
- tsu
- dgx
- gek
- ncb
- mek
- klx
- aif
- mmn
- piu
- gaf
- mat
- kqk
- arx
- glr
- orx
- fay
- tiy
- msn
- cdf
- bcv
- big
- agh
- leq
- nrg
- amc
- pmm
- epi
- kev
- njj
- hol
- bif
- eme
- ilp
- pbv
- hux
- srz
- lmk
- esh
- anl
- coc
- kvg
- bva
- iwm
- trv
- lie
- aqt
- sky
- lrl
- nph
- dor
- cob
- sry
- sgd
- scn
- tla
- lor
- anf
- ado
- kqw
- mtb
- tou
- mna
- bez
- tlq
- was
- vaf
- cgg
- zrs
- asu
- yax
- bxl
- hgm
- wbb
- sug
- cte
- ykg
- akf
- dee
- goz
- xkj
- kbm
- mae
- arp
- avi
- nmh
- bpv
- aaf
- mdn
- arw
- cku
- bzx
- apy
- pcl
- job
- sgr
- vmh
- mdh
- bhg
- wbj
- dbn
- ctz
- nsa
- rtm
- sbg
- bbv
- buf
- bqs
- bea
- idi
- lna
- gcr
- njh
- chd
- skq
- van
- shc
- iby
- hla
- toj
- pac
- ifm
- gul
- tug
- xmf
- sev
- cos
- gox
- okh
- tyy
- nev
- knz
- jrt
- nuq
- moe
- psw
- sek
- ngz
- kzm
- tdv
- nyw
- asi
- plv
- shs
- pbg
- ity
- gua
- plr
- hna
- vem
- mic
- pcb
- tti
- qus
- zpy
- tiq
- lih
- mkb
- ldo
- pqm
- mye
- nre
- bsy
- atk
- lwl
- gar
- too
- yra
- yrb
- buw
- kit
- ksv
- nge
- twr
- ekp
- tol
- zte
- agb
- crv
- ivb
- dis
- kjt
- bfe
- ney
- sao
- dbb
- sha
- keb
- zia
- bws
- cra
- bou
- scw
- avd
- mti
- sns
- cae
- chy
- wdj
- dsn
- mlx
- mwe
- lki
- luz
- grs
- dem
- nlj
- kkh
- njs
- aba
- biu
- mbf
- tgy
- nal
- pfe
- mnv
- ijs
- oke
- ykk
- tdl
- mot
- plu
- tls
- abu
- shh
- bid
- tsa
- kfe
- pek
- irn
- tto
- nyj
- pos
- nmm
- kst
- nkw
- gbn
- abm
- brl
- xes
- kmz
- zbc
- lik
- nil
- kkk
- erg
- brp
- mtl
- blq
- coz
- stv
- djn
- tbj
- knn
- tkq
- yog
- mwg
- mtq
- tdc
- bgi
- nwm
- dhv
- tau
- phq
- vnk
- yhd
- iai
- gnb
- ema
- daw
- dge
- ler
- bdw
- agt
- mmy
- orz
- dma
- pkg
- mnp
- chk
- kpx
- aul
- pcj
- zmq
- ztx
- aee
- kdd
- lil
- azt
- kof
- tdo
- zoh
- lum
- une
- nds
- bnn
- usa
- soz
- aey
- rji
- mgf
- tow
- anx
- caz
- peb
- dmr
- okx
- uni
- ibd
- oyd
- umm
- tef
- nun
- tul
- gla
- biy
- bjo
- bar
- unx
- bks
- lvk
- moy
- hur
- mxm
- lek
- dme
- mnm
- axk
- oni
- env
- gni
- rwo
- ogg
- niu
- iki
- mzn
- cbg
- mbs
- saa
- owi
- puo
- lmg
- oka
- lal
- hid
- kbb
- kuh
- dwa
- plk
- bwf
- gwa
- ral
- aji
- zmp
- kyy
- tkp
- jaf
- ivv
- bek
- yur
- ndh
- pdn
- sys
- gae
- hvv
- kdy
- oks
- kkd
- hei
- bjc
- dva
- mzv
- dgg
- sir
- lad
- sbh
- mdw
- sjg
- moj
- cja
- diz
- lti
- kos
- psi
- ofu
- bgx
- snv
- pon
- sro
- yki
- bte
- sgy
- onj
- poo
- yaw
- gyd
- gad
- mps
- ipo
- blm
- nqt
- prc
- sos
- kol
- kxn
- kwt
- buj
- haa
- cbo
- kfu
- zpw
- noz
- wgb
- kms
- etx
- sbc
- end
- sby
- huf
- msk
- crc
- wsa
- mhc
- kyh
- pic
- tof
- niw
- ilu
- xok
- ttw
- sbb
- zun
- tnm
- mnu
- glo
- tsi
- nkh
- ugo
- gsw
- dei
- skb
- chj
- mbo
- kkz
- kgb
- huz
- jge
- ano
- lmi
- vmj
- tft
- svb
- hgw
- swr
- mrp
- cma
- wkd
- kep
- yot
- zpe
- zpd
- har
- fry
- gbv
- clu
- kcf
- wro
- ayt
- qun
- bta
- lcc
- wbk
- mwp
- mrf
- sny
- nzk
- xgu
- knw
- psh
- smn
- zat
- ngj
- shq
- amt
- qui
- gww
- caf
- agi
- pay
- cbd
- suq
- djc
- mwa
- gcn
- aaa
- etn
</details>
## Model details
- **Developed by:** Vineel Pratap et al.
- **Model type:** Multi-Lingual Automatic Speech Recognition model
- **Language(s):** 4017 languages, see [supported languages](#supported-languages)
- **License:** CC-BY-NC 4.0 license
- **Num parameters**: 1 billion
- **Audio sampling rate**: 16,000 kHz
- **Cite as:**
@article{pratap2023mms,
title={Scaling Speech Technology to 1,000+ Languages},
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
journal={arXiv},
year={2023}
}
## Additional Links
- [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
- [Paper](https://arxiv.org/abs/2305.13516)
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
- MMS base checkpoints:
- [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
- [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
- [Official Space](https://huggingface.co/spaces/facebook/MMS)
| [
"CAS",
"GAD"
] |
BAAI/bge-small-zh | BAAI | feature-extraction | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"zh",
"arxiv:2310.07554",
"arxiv:2309.07597",
"license:mit",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2023-08-05T08:03:22Z" | 2023-10-12T03:37:29+00:00 | 9,020 | 18 | ---
language:
- zh
license: mit
---
**Recommend switching to newest [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5), which has more reasonable similarity distribution and same method of usage.**
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#frequently-asked-questions>FAQ</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#contact">Contact</a> |
<a href="#citation">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
And it also can be used in vector databases for LLMs.
************* 🌟**Updates**🌟 *************
- 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire:
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
- 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
- 09/12/2023: New models:
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
<details>
<summary>More</summary>
<!-- ### More -->
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
</details>
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
## Frequently asked questions
<details>
<summary>1. How to fine-tune bge embedding model?</summary>
<!-- ### How to fine-tune bge embedding model? -->
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
</details>
<details>
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
Since we finetune the models by contrastive learning with a temperature of 0.01,
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
For downstream tasks, such as passage retrieval or semantic similarity,
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold,
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
</details>
<details>
<summary>3. When does the query instruction need to be used</summary>
<!-- ### When does the query instruction need to be used -->
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
No instruction only has a slight degradation in retrieval performance compared with using instruction.
So you can generate embedding without instruction in all cases for convenience.
For a retrieval task that uses short queries to find long related documents,
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction.
</details>
## Usage
### Usage for Embedding Model
Here are some examples for using `bge` models with
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5',
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
#### Using Sentence-Transformers
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task,
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
#### Using Langchain
You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```
#### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
### Usage for Reranker
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### Using Huggingface transformers
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
- **C-MTEB**:
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
## Train
### BAAI Embedding
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
### BGE Reranker
Cross-encoder will perform full-attention over the input pair,
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data,
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
## Contact
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
| [
"BEAR"
] |
unicamp-dl/translation-en-pt-t5 | unicamp-dl | translation | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"translation",
"en",
"pt",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2022-03-02T23:29:05Z" | 2021-10-11T03:47:21+00:00 | 9,018 | 20 | ---
datasets:
- EMEA
- ParaCrawl 99k
- CAPES
- Scielo
- JRC-Acquis
- Biomedical Domain Corpora
language:
- en
- pt
metrics:
- bleu
tags:
- translation
---
# Introduction
This repository brings an implementation of T5 for translation in EN-PT tasks using a modest hardware setup. We propose some changes in tokenizator and post-processing that improves the result and used a Portuguese pretrained model for the translation. You can collect more informations in [our repository](https://github.com/unicamp-dl/Lite-T5-Translation). Also, check [our paper](https://aclanthology.org/2020.wmt-1.90.pdf)!
# Usage
Just follow "Use in Transformers" instructions. It is necessary to add a few words before to define the task to T5.
You can also create a pipeline for it. An example with the phrase "I like to eat rice" is:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("unicamp-dl/translation-en-pt-t5")
model = AutoModelForSeq2SeqLM.from_pretrained("unicamp-dl/translation-en-pt-t5")
enpt_pipeline = pipeline('text2text-generation', model=model, tokenizer=tokenizer)
enpt_pipeline("translate English to Portuguese: I like to eat rice.")
```
# Citation
```bibtex
@inproceedings{lopes-etal-2020-lite,
title = "Lite Training Strategies for {P}ortuguese-{E}nglish and {E}nglish-{P}ortuguese Translation",
author = "Lopes, Alexandre and
Nogueira, Rodrigo and
Lotufo, Roberto and
Pedrini, Helio",
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.wmt-1.90",
pages = "833--840",
}
``` | [
"SCIELO"
] |
mukaj/fin-mpnet-base | mukaj | sentence-similarity | [
"sentence-transformers",
"safetensors",
"mpnet",
"feature-extraction",
"sentence-similarity",
"mteb",
"financial",
"fiqa",
"finance",
"retrieval",
"rag",
"esg",
"fixed-income",
"equity",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-01-17T09:38:25Z" | 2024-01-17T21:49:41+00:00 | 8,471 | 6 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- financial
- fiqa
- finance
- retrieval
- rag
- esg
- fixed-income
- equity
model-index:
- name: fin-mpnet-base-v0.1
results:
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 29.128
- type: f1
value: 28.657401543151707
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.111
- type: map_at_10
value: 40.083
- type: map_at_100
value: 41.201
- type: map_at_1000
value: 41.215
- type: map_at_3
value: 35.325
- type: map_at_5
value: 37.796
- type: mrr_at_1
value: 25.036
- type: mrr_at_10
value: 40.436
- type: mrr_at_100
value: 41.554
- type: mrr_at_1000
value: 41.568
- type: mrr_at_3
value: 35.644999999999996
- type: mrr_at_5
value: 38.141000000000005
- type: ndcg_at_1
value: 24.111
- type: ndcg_at_10
value: 49.112
- type: ndcg_at_100
value: 53.669999999999995
- type: ndcg_at_1000
value: 53.944
- type: ndcg_at_3
value: 39.035
- type: ndcg_at_5
value: 43.503
- type: precision_at_1
value: 24.111
- type: precision_at_10
value: 7.817
- type: precision_at_100
value: 0.976
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 16.596
- type: precision_at_5
value: 12.134
- type: recall_at_1
value: 24.111
- type: recall_at_10
value: 78.16499999999999
- type: recall_at_100
value: 97.58200000000001
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 49.787
- type: recall_at_5
value: 60.669
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 80.25
- type: f1
value: 79.64999520103544
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.747
- type: map_at_10
value: 72.223
- type: map_at_100
value: 73.802
- type: map_at_1000
value: 73.80499999999999
- type: map_at_3
value: 61.617999999999995
- type: map_at_5
value: 67.92200000000001
- type: mrr_at_1
value: 71.914
- type: mrr_at_10
value: 80.71000000000001
- type: mrr_at_100
value: 80.901
- type: mrr_at_1000
value: 80.901
- type: mrr_at_3
value: 78.935
- type: mrr_at_5
value: 80.193
- type: ndcg_at_1
value: 71.914
- type: ndcg_at_10
value: 79.912
- type: ndcg_at_100
value: 82.675
- type: ndcg_at_1000
value: 82.702
- type: ndcg_at_3
value: 73.252
- type: ndcg_at_5
value: 76.36
- type: precision_at_1
value: 71.914
- type: precision_at_10
value: 23.071
- type: precision_at_100
value: 2.62
- type: precision_at_1000
value: 0.263
- type: precision_at_3
value: 51.235
- type: precision_at_5
value: 38.117000000000004
- type: recall_at_1
value: 37.747
- type: recall_at_10
value: 91.346
- type: recall_at_100
value: 99.776
- type: recall_at_1000
value: 99.897
- type: recall_at_3
value: 68.691
- type: recall_at_5
value: 80.742
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.124
- type: map_at_10
value: 10.206999999999999
- type: map_at_100
value: 13.181000000000001
- type: map_at_1000
value: 14.568
- type: map_at_3
value: 7.2620000000000005
- type: map_at_5
value: 8.622
- type: mrr_at_1
value: 39.009
- type: mrr_at_10
value: 48.144
- type: mrr_at_100
value: 48.746
- type: mrr_at_1000
value: 48.789
- type: mrr_at_3
value: 45.356
- type: mrr_at_5
value: 47.152
- type: ndcg_at_1
value: 36.533
- type: ndcg_at_10
value: 29.643000000000004
- type: ndcg_at_100
value: 27.893
- type: ndcg_at_1000
value: 37.307
- type: ndcg_at_3
value: 33.357
- type: ndcg_at_5
value: 32.25
- type: precision_at_1
value: 38.7
- type: precision_at_10
value: 22.941
- type: precision_at_100
value: 7.303
- type: precision_at_1000
value: 2.028
- type: precision_at_3
value: 31.889
- type: precision_at_5
value: 29.04
- type: recall_at_1
value: 4.124
- type: recall_at_10
value: 14.443
- type: recall_at_100
value: 29.765000000000004
- type: recall_at_1000
value: 63.074
- type: recall_at_3
value: 8.516
- type: recall_at_5
value: 10.979
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 49.010999999999996
- type: map_at_10
value: 60.094
- type: map_at_100
value: 60.79900000000001
- type: map_at_1000
value: 60.828
- type: map_at_3
value: 57.175
- type: map_at_5
value: 58.748
- type: mrr_at_1
value: 51.666999999999994
- type: mrr_at_10
value: 61.312
- type: mrr_at_100
value: 61.821000000000005
- type: mrr_at_1000
value: 61.85000000000001
- type: mrr_at_3
value: 59.0
- type: mrr_at_5
value: 60.199999999999996
- type: ndcg_at_1
value: 51.666999999999994
- type: ndcg_at_10
value: 65.402
- type: ndcg_at_100
value: 68.377
- type: ndcg_at_1000
value: 69.094
- type: ndcg_at_3
value: 60.153999999999996
- type: ndcg_at_5
value: 62.455000000000005
- type: precision_at_1
value: 51.666999999999994
- type: precision_at_10
value: 9.067
- type: precision_at_100
value: 1.0670000000000002
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 24.0
- type: precision_at_5
value: 15.933
- type: recall_at_1
value: 49.010999999999996
- type: recall_at_10
value: 80.511
- type: recall_at_100
value: 94.0
- type: recall_at_1000
value: 99.5
- type: recall_at_3
value: 66.2
- type: recall_at_5
value: 71.944
---
full evaluation not complete
# Fin-MPNET-Base (v0.1)
This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model aims to be very strong on Financial Document Retrieval Tasks, while trying to maintain as much generalized performance as possible.
| | FiQA | SciFact | AmazonReviews | OnlineBankingIntent | ArguAna |
|-------------------|-------|---------|---------------|---------------------|---------|
| fin-mpnet-base | 79.91 | 65.40 | 29.12 | 80.25 | 49.11 |
| all-mpnet-base-v2 | 49.96 | 65.57 | 31.92 | 81.86 | 46.52 |
| previous SoTA | 56.59 | - | - | - | - |
v0.1 shows SoTA results on FiQA Test set while other non-financial benchmarks only drop a few small % and improvement in others.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mukaj/fin-mpnet-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
Model was evaluated during training only on the new finance QA examples, as such only financial relevant benchmarks were evaluated on for v0.1 [FiQA-2018, BankingClassification77]
The model currently shows the highest FiQA Retrieval score on the test set, on the MTEB Leaderboard (https://huggingface.co/spaces/mteb/leaderboard)
The model will have likely suffered some performance on other benchmarks, i.e. BankingClassification77 has dropped from 81.6 to 80.25, this will be addressed for v0.2 and full evaluation on all sets will be run.
## Training
"sentence-transformers/all-mpnet-base-v2" was fine-tuned on 150k+ financial document QA examples using MNR Loss.
| [
"SCIFACT"
] |
HIT-TMG/KaLM-embedding-multilingual-mini-v1 | HIT-TMG | sentence-similarity | [
"sentence-transformers",
"safetensors",
"qwen2",
"feature-extraction",
"sentence-similarity",
"mteb",
"arxiv:2501.01028",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-08-27T08:56:33Z" | 2025-01-03T07:26:50+00:00 | 8,131 | 20 | ---
license: mit
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
model-index:
- name: KaLM-Embedding
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.16041979010495
- type: ap
value: 22.731316107205824
- type: ap_weighted
value: 22.731316107205824
- type: f1
value: 61.311184650259634
- type: f1_weighted
value: 78.92070802470501
- type: main_score
value: 74.16041979010495
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 72.35820895522387
- type: ap
value: 34.13026440006763
- type: ap_weighted
value: 34.13026440006763
- type: f1
value: 65.91101941691169
- type: f1_weighted
value: 74.90947851184335
- type: main_score
value: 72.35820895522387
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 95.2693
- type: ap
value: 93.69278757537118
- type: ap_weighted
value: 93.69278757537118
- type: f1
value: 95.26705627226383
- type: f1_weighted
value: 95.26705627226384
- type: main_score
value: 95.2693
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 51.01
- type: f1
value: 48.69903082137716
- type: f1_weighted
value: 48.69903082137716
- type: main_score
value: 51.01
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 56.713
- type: map_at_1
value: 31.436999999999998
- type: map_at_10
value: 47.632000000000005
- type: map_at_100
value: 48.418
- type: map_at_1000
value: 48.421
- type: map_at_20
value: 48.274
- type: map_at_3
value: 42.568
- type: map_at_5
value: 45.473
- type: mrr_at_1
value: 31.934566145092464
- type: mrr_at_10
value: 47.80803359750735
- type: mrr_at_100
value: 48.594181951484266
- type: mrr_at_1000
value: 48.59689299100106
- type: mrr_at_20
value: 48.450028297368256
- type: mrr_at_3
value: 42.7453769559033
- type: mrr_at_5
value: 45.625889046941744
- type: nauc_map_at_1000_diff1
value: 11.309764384647323
- type: nauc_map_at_1000_max
value: -12.696935142377729
- type: nauc_map_at_1000_std
value: -12.712119206533423
- type: nauc_map_at_100_diff1
value: 11.311862879869643
- type: nauc_map_at_100_max
value: -12.688064356825764
- type: nauc_map_at_100_std
value: -12.708245196445258
- type: nauc_map_at_10_diff1
value: 11.180369964075947
- type: nauc_map_at_10_max
value: -12.557609097774142
- type: nauc_map_at_10_std
value: -12.86587547951096
- type: nauc_map_at_1_diff1
value: 13.545199807116537
- type: nauc_map_at_1_max
value: -15.05694303234355
- type: nauc_map_at_1_std
value: -13.135999468701948
- type: nauc_map_at_20_diff1
value: 11.301805884587152
- type: nauc_map_at_20_max
value: -12.580961418657783
- type: nauc_map_at_20_std
value: -12.626994998566007
- type: nauc_map_at_3_diff1
value: 11.021077829815507
- type: nauc_map_at_3_max
value: -13.20022886911152
- type: nauc_map_at_3_std
value: -13.127711855412471
- type: nauc_map_at_5_diff1
value: 11.138694322935278
- type: nauc_map_at_5_max
value: -12.748146823323433
- type: nauc_map_at_5_std
value: -13.183789787796002
- type: nauc_mrr_at_1000_diff1
value: 9.677867008889587
- type: nauc_mrr_at_1000_max
value: -13.420330905625857
- type: nauc_mrr_at_1000_std
value: -12.792519437553008
- type: nauc_mrr_at_100_diff1
value: 9.680107626011944
- type: nauc_mrr_at_100_max
value: -13.411410836965254
- type: nauc_mrr_at_100_std
value: -12.788644939208261
- type: nauc_mrr_at_10_diff1
value: 9.589680890065521
- type: nauc_mrr_at_10_max
value: -13.261739941834202
- type: nauc_mrr_at_10_std
value: -12.944134710141187
- type: nauc_mrr_at_1_diff1
value: 12.085031779160564
- type: nauc_mrr_at_1_max
value: -15.02002211766975
- type: nauc_mrr_at_1_std
value: -13.355756268733016
- type: nauc_mrr_at_20_diff1
value: 9.677873154739816
- type: nauc_mrr_at_20_max
value: -13.300790622622587
- type: nauc_mrr_at_20_std
value: -12.707185337847148
- type: nauc_mrr_at_3_diff1
value: 9.472988614112802
- type: nauc_mrr_at_3_max
value: -13.919505060412762
- type: nauc_mrr_at_3_std
value: -13.164277574722277
- type: nauc_mrr_at_5_diff1
value: 9.467059127457365
- type: nauc_mrr_at_5_max
value: -13.584824274866206
- type: nauc_mrr_at_5_std
value: -13.199173673034172
- type: nauc_ndcg_at_1000_diff1
value: 11.117383537119457
- type: nauc_ndcg_at_1000_max
value: -12.047108406166398
- type: nauc_ndcg_at_1000_std
value: -12.4255053792295
- type: nauc_ndcg_at_100_diff1
value: 11.199092599092824
- type: nauc_ndcg_at_100_max
value: -11.816562361312737
- type: nauc_ndcg_at_100_std
value: -12.321599738274934
- type: nauc_ndcg_at_10_diff1
value: 10.619688096042301
- type: nauc_ndcg_at_10_max
value: -10.991140718309158
- type: nauc_ndcg_at_10_std
value: -12.913717053782964
- type: nauc_ndcg_at_1_diff1
value: 13.545199807116537
- type: nauc_ndcg_at_1_max
value: -15.05694303234355
- type: nauc_ndcg_at_1_std
value: -13.135999468701948
- type: nauc_ndcg_at_20_diff1
value: 11.079239059115043
- type: nauc_ndcg_at_20_max
value: -11.107522795986476
- type: nauc_ndcg_at_20_std
value: -11.917269092652596
- type: nauc_ndcg_at_3_diff1
value: 10.328082482022936
- type: nauc_ndcg_at_3_max
value: -12.609971276627075
- type: nauc_ndcg_at_3_std
value: -13.581875503621793
- type: nauc_ndcg_at_5_diff1
value: 10.598034768408395
- type: nauc_ndcg_at_5_max
value: -11.664284036838387
- type: nauc_ndcg_at_5_std
value: -13.738318585447246
- type: nauc_precision_at_1000_diff1
value: 3.733355117431035
- type: nauc_precision_at_1000_max
value: 22.126811641224737
- type: nauc_precision_at_1000_std
value: 77.22610895194498
- type: nauc_precision_at_100_diff1
value: 27.682371417569136
- type: nauc_precision_at_100_max
value: 55.30719621706036
- type: nauc_precision_at_100_std
value: 51.87386775498134
- type: nauc_precision_at_10_diff1
value: 7.322656348885176
- type: nauc_precision_at_10_max
value: 0.2704135680738493
- type: nauc_precision_at_10_std
value: -12.841217202927321
- type: nauc_precision_at_1_diff1
value: 13.545199807116537
- type: nauc_precision_at_1_max
value: -15.05694303234355
- type: nauc_precision_at_1_std
value: -13.135999468701948
- type: nauc_precision_at_20_diff1
value: 10.486079260481048
- type: nauc_precision_at_20_max
value: 14.003109613986817
- type: nauc_precision_at_20_std
value: 4.910816164725959
- type: nauc_precision_at_3_diff1
value: 8.271896718206264
- type: nauc_precision_at_3_max
value: -10.827383320727357
- type: nauc_precision_at_3_std
value: -15.106532989878312
- type: nauc_precision_at_5_diff1
value: 8.834654894956898
- type: nauc_precision_at_5_max
value: -7.540039352361894
- type: nauc_precision_at_5_std
value: -15.969132098353741
- type: nauc_recall_at_1000_diff1
value: 3.733355117431255
- type: nauc_recall_at_1000_max
value: 22.126811641217202
- type: nauc_recall_at_1000_std
value: 77.22610895193765
- type: nauc_recall_at_100_diff1
value: 27.682371417566458
- type: nauc_recall_at_100_max
value: 55.30719621705814
- type: nauc_recall_at_100_std
value: 51.8738677549813
- type: nauc_recall_at_10_diff1
value: 7.322656348885266
- type: nauc_recall_at_10_max
value: 0.27041356807404016
- type: nauc_recall_at_10_std
value: -12.841217202927096
- type: nauc_recall_at_1_diff1
value: 13.545199807116537
- type: nauc_recall_at_1_max
value: -15.05694303234355
- type: nauc_recall_at_1_std
value: -13.135999468701948
- type: nauc_recall_at_20_diff1
value: 10.486079260481167
- type: nauc_recall_at_20_max
value: 14.003109613986972
- type: nauc_recall_at_20_std
value: 4.910816164726593
- type: nauc_recall_at_3_diff1
value: 8.271896718206312
- type: nauc_recall_at_3_max
value: -10.827383320727314
- type: nauc_recall_at_3_std
value: -15.106532989878287
- type: nauc_recall_at_5_diff1
value: 8.834654894956909
- type: nauc_recall_at_5_max
value: -7.540039352361923
- type: nauc_recall_at_5_std
value: -15.969132098353715
- type: ndcg_at_1
value: 31.436999999999998
- type: ndcg_at_10
value: 56.713
- type: ndcg_at_100
value: 59.887
- type: ndcg_at_1000
value: 59.94500000000001
- type: ndcg_at_20
value: 58.98
- type: ndcg_at_3
value: 46.261
- type: ndcg_at_5
value: 51.501
- type: precision_at_1
value: 31.436999999999998
- type: precision_at_10
value: 8.578
- type: precision_at_100
value: 0.992
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.73
- type: precision_at_3
value: 18.990000000000002
- type: precision_at_5
value: 13.94
- type: recall_at_1
value: 31.436999999999998
- type: recall_at_10
value: 85.775
- type: recall_at_100
value: 99.21799999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 94.595
- type: recall_at_3
value: 56.97
- type: recall_at_5
value: 69.70100000000001
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: main_score
value: 47.077382303485514
- type: v_measure
value: 47.077382303485514
- type: v_measure_std
value: 14.00039477846898
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: main_score
value: 39.11589804504639
- type: v_measure
value: 39.11589804504639
- type: v_measure_std
value: 14.697039096668583
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 60.01096720382656
- type: map
value: 60.01096720382656
- type: mrr
value: 74.4235588972431
- type: nAUC_map_diff1
value: 14.296647950054817
- type: nAUC_map_max
value: 21.720215707737303
- type: nAUC_map_std
value: 18.20845510591147
- type: nAUC_mrr_diff1
value: 23.769639422872142
- type: nAUC_mrr_max
value: 33.07785201075024
- type: nAUC_mrr_std
value: 18.461570711690968
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 87.60987223075549
- type: cosine_spearman
value: 86.23750714877664
- type: euclidean_pearson
value: 86.21541799525612
- type: euclidean_spearman
value: 86.23750714877664
- type: main_score
value: 86.23750714877664
- type: manhattan_pearson
value: 86.1758097383748
- type: manhattan_spearman
value: 86.37365482930716
- type: pearson
value: 87.60987223075549
- type: spearman
value: 86.23750714877664
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 79.16883116883118
- type: f1
value: 78.34840435712427
- type: f1_weighted
value: 78.3484043571243
- type: main_score
value: 79.16883116883118
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: main_score
value: 39.29881417268574
- type: v_measure
value: 39.29881417268574
- type: v_measure_std
value: 1.1874002185778423
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: main_score
value: 33.9614529554878
- type: v_measure
value: 33.9614529554878
- type: v_measure_std
value: 0.6283058974037568
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: main_score
value: 51.891
- type: map_at_1
value: 33.335
- type: map_at_10
value: 45.206
- type: map_at_100
value: 46.794000000000004
- type: map_at_1000
value: 46.910000000000004
- type: map_at_20
value: 46.107
- type: map_at_3
value: 41.478
- type: map_at_5
value: 43.491
- type: mrr_at_1
value: 40.2002861230329
- type: mrr_at_10
value: 51.27449644617026
- type: mrr_at_100
value: 51.94262681998448
- type: mrr_at_1000
value: 51.98748435659779
- type: mrr_at_20
value: 51.679253979427365
- type: mrr_at_3
value: 48.545541249403904
- type: mrr_at_5
value: 50.26943252265138
- type: nauc_map_at_1000_diff1
value: 53.279892622864466
- type: nauc_map_at_1000_max
value: 37.30026325175372
- type: nauc_map_at_1000_std
value: -5.31272778840401
- type: nauc_map_at_100_diff1
value: 53.260255242354035
- type: nauc_map_at_100_max
value: 37.34138849578408
- type: nauc_map_at_100_std
value: -5.223853769998806
- type: nauc_map_at_10_diff1
value: 53.01168904143889
- type: nauc_map_at_10_max
value: 36.52985848709173
- type: nauc_map_at_10_std
value: -6.60737122397934
- type: nauc_map_at_1_diff1
value: 57.48774969135532
- type: nauc_map_at_1_max
value: 32.87239964104006
- type: nauc_map_at_1_std
value: -9.65950934039381
- type: nauc_map_at_20_diff1
value: 53.014218960477145
- type: nauc_map_at_20_max
value: 36.95460780612761
- type: nauc_map_at_20_std
value: -5.7846033314898975
- type: nauc_map_at_3_diff1
value: 53.386035964079085
- type: nauc_map_at_3_max
value: 35.494196154327376
- type: nauc_map_at_3_std
value: -7.761241655463379
- type: nauc_map_at_5_diff1
value: 52.52045589069632
- type: nauc_map_at_5_max
value: 35.87189518536011
- type: nauc_map_at_5_std
value: -7.280825988785475
- type: nauc_mrr_at_1000_diff1
value: 52.21043432899831
- type: nauc_mrr_at_1000_max
value: 37.52636619273335
- type: nauc_mrr_at_1000_std
value: -5.458572482733526
- type: nauc_mrr_at_100_diff1
value: 52.19543099780388
- type: nauc_mrr_at_100_max
value: 37.528593941814115
- type: nauc_mrr_at_100_std
value: -5.434274045688043
- type: nauc_mrr_at_10_diff1
value: 51.89698285990516
- type: nauc_mrr_at_10_max
value: 37.444484137976744
- type: nauc_mrr_at_10_std
value: -5.682595266827838
- type: nauc_mrr_at_1_diff1
value: 56.17142686081959
- type: nauc_mrr_at_1_max
value: 36.815076888109125
- type: nauc_mrr_at_1_std
value: -9.1961282634956
- type: nauc_mrr_at_20_diff1
value: 52.13365466798001
- type: nauc_mrr_at_20_max
value: 37.47508491548877
- type: nauc_mrr_at_20_std
value: -5.38723388397372
- type: nauc_mrr_at_3_diff1
value: 52.261215410063635
- type: nauc_mrr_at_3_max
value: 38.06288987541818
- type: nauc_mrr_at_3_std
value: -6.3586931672947555
- type: nauc_mrr_at_5_diff1
value: 51.361626281443954
- type: nauc_mrr_at_5_max
value: 37.21931557944178
- type: nauc_mrr_at_5_std
value: -6.2463983922879125
- type: nauc_ndcg_at_1000_diff1
value: 52.302043350366354
- type: nauc_ndcg_at_1000_max
value: 38.20021133882071
- type: nauc_ndcg_at_1000_std
value: -2.4092846074901835
- type: nauc_ndcg_at_100_diff1
value: 52.08002602041293
- type: nauc_ndcg_at_100_max
value: 38.59011692167586
- type: nauc_ndcg_at_100_std
value: -1.1028958529707618
- type: nauc_ndcg_at_10_diff1
value: 50.96919959110156
- type: nauc_ndcg_at_10_max
value: 37.27781873450064
- type: nauc_ndcg_at_10_std
value: -4.275751021315601
- type: nauc_ndcg_at_1_diff1
value: 56.17142686081959
- type: nauc_ndcg_at_1_max
value: 36.815076888109125
- type: nauc_ndcg_at_1_std
value: -9.1961282634956
- type: nauc_ndcg_at_20_diff1
value: 51.18802925052476
- type: nauc_ndcg_at_20_max
value: 37.37541430996012
- type: nauc_ndcg_at_20_std
value: -2.535809483675881
- type: nauc_ndcg_at_3_diff1
value: 51.55692622850066
- type: nauc_ndcg_at_3_max
value: 38.161090909217535
- type: nauc_ndcg_at_3_std
value: -5.451913542383229
- type: nauc_ndcg_at_5_diff1
value: 49.79865041898466
- type: nauc_ndcg_at_5_max
value: 37.05367743749936
- type: nauc_ndcg_at_5_std
value: -5.333995413688977
- type: nauc_precision_at_1000_diff1
value: -9.765182693652369
- type: nauc_precision_at_1000_max
value: -6.187402469203501
- type: nauc_precision_at_1000_std
value: -1.6165299667925566
- type: nauc_precision_at_100_diff1
value: -3.3699636809298488
- type: nauc_precision_at_100_max
value: 10.763143757354227
- type: nauc_precision_at_100_std
value: 14.6134300235666
- type: nauc_precision_at_10_diff1
value: 12.380848989838922
- type: nauc_precision_at_10_max
value: 27.814295948898703
- type: nauc_precision_at_10_std
value: 9.281809355379423
- type: nauc_precision_at_1_diff1
value: 56.17142686081959
- type: nauc_precision_at_1_max
value: 36.815076888109125
- type: nauc_precision_at_1_std
value: -9.1961282634956
- type: nauc_precision_at_20_diff1
value: 5.172974864217038
- type: nauc_precision_at_20_max
value: 21.610380863767407
- type: nauc_precision_at_20_std
value: 14.897216777831563
- type: nauc_precision_at_3_diff1
value: 32.62574902686228
- type: nauc_precision_at_3_max
value: 38.23786681054578
- type: nauc_precision_at_3_std
value: 1.5049286474387453
- type: nauc_precision_at_5_diff1
value: 20.157338510243537
- type: nauc_precision_at_5_max
value: 33.504499592506924
- type: nauc_precision_at_5_std
value: 5.128885224590291
- type: nauc_recall_at_1000_diff1
value: 52.32430518946571
- type: nauc_recall_at_1000_max
value: 56.03264454563954
- type: nauc_recall_at_1000_std
value: 59.06408303625301
- type: nauc_recall_at_100_diff1
value: 44.41661317138834
- type: nauc_recall_at_100_max
value: 43.511654367641746
- type: nauc_recall_at_100_std
value: 28.435889217482348
- type: nauc_recall_at_10_diff1
value: 41.091326330340564
- type: nauc_recall_at_10_max
value: 32.634495610887825
- type: nauc_recall_at_10_std
value: 0.4940136136777342
- type: nauc_recall_at_1_diff1
value: 57.48774969135532
- type: nauc_recall_at_1_max
value: 32.87239964104006
- type: nauc_recall_at_1_std
value: -9.65950934039381
- type: nauc_recall_at_20_diff1
value: 40.31827375470033
- type: nauc_recall_at_20_max
value: 32.29591796577925
- type: nauc_recall_at_20_std
value: 9.003204772501102
- type: nauc_recall_at_3_diff1
value: 45.516327838347145
- type: nauc_recall_at_3_max
value: 34.64131339427055
- type: nauc_recall_at_3_std
value: -4.883112425443149
- type: nauc_recall_at_5_diff1
value: 40.04821220854672
- type: nauc_recall_at_5_max
value: 31.778912319343245
- type: nauc_recall_at_5_std
value: -3.7415628516202455
- type: ndcg_at_1
value: 40.2
- type: ndcg_at_10
value: 51.891
- type: ndcg_at_100
value: 57.176
- type: ndcg_at_1000
value: 58.923
- type: ndcg_at_20
value: 54.069
- type: ndcg_at_3
value: 46.598
- type: ndcg_at_5
value: 49.09
- type: precision_at_1
value: 40.2
- type: precision_at_10
value: 9.914000000000001
- type: precision_at_100
value: 1.567
- type: precision_at_1000
value: 0.201
- type: precision_at_20
value: 5.88
- type: precision_at_3
value: 22.413
- type: precision_at_5
value: 16.166
- type: recall_at_1
value: 33.335
- type: recall_at_10
value: 64.551
- type: recall_at_100
value: 85.821
- type: recall_at_1000
value: 96.762
- type: recall_at_20
value: 72.174
- type: recall_at_3
value: 49.486000000000004
- type: recall_at_5
value: 56.333
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: main_score
value: 47.743
- type: map_at_1
value: 30.749
- type: map_at_10
value: 41.893
- type: map_at_100
value: 43.074
- type: map_at_1000
value: 43.206
- type: map_at_20
value: 42.484
- type: map_at_3
value: 38.832
- type: map_at_5
value: 40.56
- type: mrr_at_1
value: 38.47133757961784
- type: mrr_at_10
value: 47.47879385299764
- type: mrr_at_100
value: 48.13041682690096
- type: mrr_at_1000
value: 48.16908094151714
- type: mrr_at_20
value: 47.83975520310091
- type: mrr_at_3
value: 45.24416135881104
- type: mrr_at_5
value: 46.4575371549894
- type: nauc_map_at_1000_diff1
value: 53.06462034979563
- type: nauc_map_at_1000_max
value: 40.432105687788656
- type: nauc_map_at_1000_std
value: 0.8039549983504692
- type: nauc_map_at_100_diff1
value: 53.05370086178664
- type: nauc_map_at_100_max
value: 40.35039423002031
- type: nauc_map_at_100_std
value: 0.6926327616039866
- type: nauc_map_at_10_diff1
value: 53.1830045138059
- type: nauc_map_at_10_max
value: 39.627286670538595
- type: nauc_map_at_10_std
value: -0.22464993353878815
- type: nauc_map_at_1_diff1
value: 56.871781522537766
- type: nauc_map_at_1_max
value: 32.96704680744524
- type: nauc_map_at_1_std
value: -5.921602493857661
- type: nauc_map_at_20_diff1
value: 53.145249746486044
- type: nauc_map_at_20_max
value: 40.01420443810482
- type: nauc_map_at_20_std
value: 0.08024012298451409
- type: nauc_map_at_3_diff1
value: 53.61256390241628
- type: nauc_map_at_3_max
value: 37.718761042447355
- type: nauc_map_at_3_std
value: -3.1494217572705643
- type: nauc_map_at_5_diff1
value: 53.42451370773802
- type: nauc_map_at_5_max
value: 39.10211508999835
- type: nauc_map_at_5_std
value: -1.3726005124064382
- type: nauc_mrr_at_1000_diff1
value: 52.366327228586826
- type: nauc_mrr_at_1000_max
value: 42.79408822085321
- type: nauc_mrr_at_1000_std
value: 5.269519433666342
- type: nauc_mrr_at_100_diff1
value: 52.35603052240957
- type: nauc_mrr_at_100_max
value: 42.79000481880218
- type: nauc_mrr_at_100_std
value: 5.2750737033839
- type: nauc_mrr_at_10_diff1
value: 52.39562273635053
- type: nauc_mrr_at_10_max
value: 42.89003586620541
- type: nauc_mrr_at_10_std
value: 5.271670669960424
- type: nauc_mrr_at_1_diff1
value: 55.23898880710424
- type: nauc_mrr_at_1_max
value: 40.54533981737213
- type: nauc_mrr_at_1_std
value: 2.8970042155061764
- type: nauc_mrr_at_20_diff1
value: 52.37981625369539
- type: nauc_mrr_at_20_max
value: 42.84997042876778
- type: nauc_mrr_at_20_std
value: 5.227463826093572
- type: nauc_mrr_at_3_diff1
value: 52.72571788614424
- type: nauc_mrr_at_3_max
value: 42.345870917325726
- type: nauc_mrr_at_3_std
value: 3.299097645280945
- type: nauc_mrr_at_5_diff1
value: 52.62188834616699
- type: nauc_mrr_at_5_max
value: 42.903468515894396
- type: nauc_mrr_at_5_std
value: 4.747245788723795
- type: nauc_ndcg_at_1000_diff1
value: 51.35755860941204
- type: nauc_ndcg_at_1000_max
value: 42.52609999052394
- type: nauc_ndcg_at_1000_std
value: 5.642311193436153
- type: nauc_ndcg_at_100_diff1
value: 51.28342511372341
- type: nauc_ndcg_at_100_max
value: 42.37095542860874
- type: nauc_ndcg_at_100_std
value: 5.438433970975347
- type: nauc_ndcg_at_10_diff1
value: 51.71963256563276
- type: nauc_ndcg_at_10_max
value: 42.02346709779174
- type: nauc_ndcg_at_10_std
value: 3.824062263424335
- type: nauc_ndcg_at_1_diff1
value: 55.23898880710424
- type: nauc_ndcg_at_1_max
value: 40.54533981737213
- type: nauc_ndcg_at_1_std
value: 2.8970042155061764
- type: nauc_ndcg_at_20_diff1
value: 51.62634477715352
- type: nauc_ndcg_at_20_max
value: 42.29963927857424
- type: nauc_ndcg_at_20_std
value: 3.9028710206367236
- type: nauc_ndcg_at_3_diff1
value: 52.222449202755016
- type: nauc_ndcg_at_3_max
value: 41.46992245846295
- type: nauc_ndcg_at_3_std
value: 1.0823436332685996
- type: nauc_ndcg_at_5_diff1
value: 52.16212705304167
- type: nauc_ndcg_at_5_max
value: 42.13209332939894
- type: nauc_ndcg_at_5_std
value: 2.4542588912655274
- type: nauc_precision_at_1000_diff1
value: -8.401668509217943
- type: nauc_precision_at_1000_max
value: 15.032825183812085
- type: nauc_precision_at_1000_std
value: 26.43305637512703
- type: nauc_precision_at_100_diff1
value: -1.8634808652246229
- type: nauc_precision_at_100_max
value: 25.81140765391014
- type: nauc_precision_at_100_std
value: 30.416905158069866
- type: nauc_precision_at_10_diff1
value: 17.41557757307102
- type: nauc_precision_at_10_max
value: 39.14885850946607
- type: nauc_precision_at_10_std
value: 24.95280377881581
- type: nauc_precision_at_1_diff1
value: 55.23898880710424
- type: nauc_precision_at_1_max
value: 40.54533981737213
- type: nauc_precision_at_1_std
value: 2.8970042155061764
- type: nauc_precision_at_20_diff1
value: 10.062640125327128
- type: nauc_precision_at_20_max
value: 35.045402951191846
- type: nauc_precision_at_20_std
value: 25.70168197296463
- type: nauc_precision_at_3_diff1
value: 33.46362110931572
- type: nauc_precision_at_3_max
value: 41.412992322808925
- type: nauc_precision_at_3_std
value: 11.979383703068118
- type: nauc_precision_at_5_diff1
value: 26.683507518187668
- type: nauc_precision_at_5_max
value: 41.72280139069927
- type: nauc_precision_at_5_std
value: 19.17798438251631
- type: nauc_recall_at_1000_diff1
value: 38.735635750923215
- type: nauc_recall_at_1000_max
value: 44.86473643316888
- type: nauc_recall_at_1000_std
value: 31.25373100446453
- type: nauc_recall_at_100_diff1
value: 40.57017590339941
- type: nauc_recall_at_100_max
value: 41.58935193499359
- type: nauc_recall_at_100_std
value: 19.64130480064006
- type: nauc_recall_at_10_diff1
value: 45.17360514460368
- type: nauc_recall_at_10_max
value: 40.261115967269255
- type: nauc_recall_at_10_std
value: 7.455967519438798
- type: nauc_recall_at_1_diff1
value: 56.871781522537766
- type: nauc_recall_at_1_max
value: 32.96704680744524
- type: nauc_recall_at_1_std
value: -5.921602493857661
- type: nauc_recall_at_20_diff1
value: 43.72345233115324
- type: nauc_recall_at_20_max
value: 41.57606589762751
- type: nauc_recall_at_20_std
value: 8.691613720578838
- type: nauc_recall_at_3_diff1
value: 49.05085474723903
- type: nauc_recall_at_3_max
value: 37.76677336796684
- type: nauc_recall_at_3_std
value: -2.60155821559317
- type: nauc_recall_at_5_diff1
value: 47.93530083560441
- type: nauc_recall_at_5_max
value: 40.34510386143269
- type: nauc_recall_at_5_std
value: 2.490510815950763
- type: ndcg_at_1
value: 38.471
- type: ndcg_at_10
value: 47.743
- type: ndcg_at_100
value: 52.105999999999995
- type: ndcg_at_1000
value: 54.047
- type: ndcg_at_20
value: 49.277
- type: ndcg_at_3
value: 43.423
- type: ndcg_at_5
value: 45.308
- type: precision_at_1
value: 38.471
- type: precision_at_10
value: 8.936
- type: precision_at_100
value: 1.439
- type: precision_at_1000
value: 0.191
- type: precision_at_20
value: 5.197
- type: precision_at_3
value: 21.21
- type: precision_at_5
value: 14.764
- type: recall_at_1
value: 30.749
- type: recall_at_10
value: 58.769000000000005
- type: recall_at_100
value: 77.12599999999999
- type: recall_at_1000
value: 89.131
- type: recall_at_20
value: 64.23299999999999
- type: recall_at_3
value: 45.722
- type: recall_at_5
value: 51.434999999999995
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: main_score
value: 61.763999999999996
- type: map_at_1
value: 41.738
- type: map_at_10
value: 55.54900000000001
- type: map_at_100
value: 56.595
- type: map_at_1000
value: 56.641
- type: map_at_20
value: 56.211
- type: map_at_3
value: 52.11900000000001
- type: map_at_5
value: 54.11
- type: mrr_at_1
value: 47.460815047021946
- type: mrr_at_10
value: 58.77068716723895
- type: mrr_at_100
value: 59.38209751192344
- type: mrr_at_1000
value: 59.40317589090272
- type: mrr_at_20
value: 59.18129234953538
- type: mrr_at_3
value: 56.269592476489095
- type: mrr_at_5
value: 57.708463949843356
- type: nauc_map_at_1000_diff1
value: 51.887217799463734
- type: nauc_map_at_1000_max
value: 38.476238579220265
- type: nauc_map_at_1000_std
value: -8.909798628947804
- type: nauc_map_at_100_diff1
value: 51.89673571830934
- type: nauc_map_at_100_max
value: 38.49528851775263
- type: nauc_map_at_100_std
value: -8.889935720271557
- type: nauc_map_at_10_diff1
value: 51.91349178068071
- type: nauc_map_at_10_max
value: 38.245010697659836
- type: nauc_map_at_10_std
value: -9.52932907514524
- type: nauc_map_at_1_diff1
value: 55.367152126889216
- type: nauc_map_at_1_max
value: 31.488529193663776
- type: nauc_map_at_1_std
value: -11.70055580794173
- type: nauc_map_at_20_diff1
value: 51.85824325926638
- type: nauc_map_at_20_max
value: 38.46667850988723
- type: nauc_map_at_20_std
value: -9.073982957469298
- type: nauc_map_at_3_diff1
value: 52.453646927521646
- type: nauc_map_at_3_max
value: 37.17158366121139
- type: nauc_map_at_3_std
value: -11.075317328080358
- type: nauc_map_at_5_diff1
value: 52.18170093862806
- type: nauc_map_at_5_max
value: 37.87875768077388
- type: nauc_map_at_5_std
value: -10.419858401874496
- type: nauc_mrr_at_1000_diff1
value: 50.893763535986395
- type: nauc_mrr_at_1000_max
value: 38.27283318452696
- type: nauc_mrr_at_1000_std
value: -8.965768039001496
- type: nauc_mrr_at_100_diff1
value: 50.89248813810169
- type: nauc_mrr_at_100_max
value: 38.28950132255245
- type: nauc_mrr_at_100_std
value: -8.95128100093488
- type: nauc_mrr_at_10_diff1
value: 50.77022223657664
- type: nauc_mrr_at_10_max
value: 38.375655546871265
- type: nauc_mrr_at_10_std
value: -9.095822436312883
- type: nauc_mrr_at_1_diff1
value: 54.273269231030376
- type: nauc_mrr_at_1_max
value: 35.215199363709694
- type: nauc_mrr_at_1_std
value: -11.475700374314476
- type: nauc_mrr_at_20_diff1
value: 50.81456113949372
- type: nauc_mrr_at_20_max
value: 38.302175737552055
- type: nauc_mrr_at_20_std
value: -8.934574273523289
- type: nauc_mrr_at_3_diff1
value: 50.78862027858185
- type: nauc_mrr_at_3_max
value: 37.897265642308774
- type: nauc_mrr_at_3_std
value: -9.7051681225179
- type: nauc_mrr_at_5_diff1
value: 50.90492316147762
- type: nauc_mrr_at_5_max
value: 38.53722687374221
- type: nauc_mrr_at_5_std
value: -9.299890938504227
- type: nauc_ndcg_at_1000_diff1
value: 50.73638139548288
- type: nauc_ndcg_at_1000_max
value: 39.85802557514683
- type: nauc_ndcg_at_1000_std
value: -6.70113183960232
- type: nauc_ndcg_at_100_diff1
value: 50.779535406638765
- type: nauc_ndcg_at_100_max
value: 40.394251354245036
- type: nauc_ndcg_at_100_std
value: -6.17206367606794
- type: nauc_ndcg_at_10_diff1
value: 50.303282528711016
- type: nauc_ndcg_at_10_max
value: 40.231987371813275
- type: nauc_ndcg_at_10_std
value: -7.639018988100839
- type: nauc_ndcg_at_1_diff1
value: 54.273269231030376
- type: nauc_ndcg_at_1_max
value: 35.215199363709694
- type: nauc_ndcg_at_1_std
value: -11.475700374314476
- type: nauc_ndcg_at_20_diff1
value: 50.356050127103714
- type: nauc_ndcg_at_20_max
value: 40.55568084242222
- type: nauc_ndcg_at_20_std
value: -6.483107726038491
- type: nauc_ndcg_at_3_diff1
value: 51.05296014104886
- type: nauc_ndcg_at_3_max
value: 38.43234794308373
- type: nauc_ndcg_at_3_std
value: -10.439005270644946
- type: nauc_ndcg_at_5_diff1
value: 50.910744514124396
- type: nauc_ndcg_at_5_max
value: 39.65997793063013
- type: nauc_ndcg_at_5_std
value: -9.301232437151493
- type: nauc_precision_at_1000_diff1
value: -20.181933493165733
- type: nauc_precision_at_1000_max
value: 2.578307678316095
- type: nauc_precision_at_1000_std
value: 15.686799365012833
- type: nauc_precision_at_100_diff1
value: -13.795727875316347
- type: nauc_precision_at_100_max
value: 9.709062354686774
- type: nauc_precision_at_100_std
value: 18.961613263814677
- type: nauc_precision_at_10_diff1
value: 7.40872143060594
- type: nauc_precision_at_10_max
value: 26.809993041042556
- type: nauc_precision_at_10_std
value: 10.236067383032058
- type: nauc_precision_at_1_diff1
value: 54.273269231030376
- type: nauc_precision_at_1_max
value: 35.215199363709694
- type: nauc_precision_at_1_std
value: -11.475700374314476
- type: nauc_precision_at_20_diff1
value: -1.688941886501611
- type: nauc_precision_at_20_max
value: 21.268201038992522
- type: nauc_precision_at_20_std
value: 16.07376773498563
- type: nauc_precision_at_3_diff1
value: 28.74741840390366
- type: nauc_precision_at_3_max
value: 35.76072260864896
- type: nauc_precision_at_3_std
value: -3.417692124530744
- type: nauc_precision_at_5_diff1
value: 19.548619556271156
- type: nauc_precision_at_5_max
value: 31.886919665943346
- type: nauc_precision_at_5_std
value: 1.862934756145585
- type: nauc_recall_at_1000_diff1
value: 31.041694793670338
- type: nauc_recall_at_1000_max
value: 63.91892534071412
- type: nauc_recall_at_1000_std
value: 69.14154944882482
- type: nauc_recall_at_100_diff1
value: 43.49542559947028
- type: nauc_recall_at_100_max
value: 56.03185734090638
- type: nauc_recall_at_100_std
value: 22.095792306102354
- type: nauc_recall_at_10_diff1
value: 43.14512549298462
- type: nauc_recall_at_10_max
value: 45.22069238009228
- type: nauc_recall_at_10_std
value: -1.2112961961367767
- type: nauc_recall_at_1_diff1
value: 55.367152126889216
- type: nauc_recall_at_1_max
value: 31.488529193663776
- type: nauc_recall_at_1_std
value: -11.70055580794173
- type: nauc_recall_at_20_diff1
value: 41.80793189392197
- type: nauc_recall_at_20_max
value: 48.68496142311243
- type: nauc_recall_at_20_std
value: 7.150814199044829
- type: nauc_recall_at_3_diff1
value: 47.569484872499665
- type: nauc_recall_at_3_max
value: 39.60379791030235
- type: nauc_recall_at_3_std
value: -9.958304202022761
- type: nauc_recall_at_5_diff1
value: 46.3357445159555
- type: nauc_recall_at_5_max
value: 42.69508638941086
- type: nauc_recall_at_5_std
value: -6.991079788988482
- type: ndcg_at_1
value: 47.461
- type: ndcg_at_10
value: 61.763999999999996
- type: ndcg_at_100
value: 65.613
- type: ndcg_at_1000
value: 66.435
- type: ndcg_at_20
value: 63.577
- type: ndcg_at_3
value: 56.119
- type: ndcg_at_5
value: 58.897
- type: precision_at_1
value: 47.461
- type: precision_at_10
value: 9.925
- type: precision_at_100
value: 1.283
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_20
value: 5.542
- type: precision_at_3
value: 25.119999999999997
- type: precision_at_5
value: 17.204
- type: recall_at_1
value: 41.738
- type: recall_at_10
value: 76.78399999999999
- type: recall_at_100
value: 92.917
- type: recall_at_1000
value: 98.63499999999999
- type: recall_at_20
value: 83.313
- type: recall_at_3
value: 61.803
- type: recall_at_5
value: 68.49199999999999
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: main_score
value: 37.997
- type: map_at_1
value: 24.316
- type: map_at_10
value: 32.673
- type: map_at_100
value: 33.757
- type: map_at_1000
value: 33.839999999999996
- type: map_at_20
value: 33.289
- type: map_at_3
value: 29.705
- type: map_at_5
value: 31.258999999999997
- type: mrr_at_1
value: 26.55367231638418
- type: mrr_at_10
value: 34.95045287418165
- type: mrr_at_100
value: 35.88860620376054
- type: mrr_at_1000
value: 35.94690680526854
- type: mrr_at_20
value: 35.51689167162481
- type: mrr_at_3
value: 32.090395480226
- type: mrr_at_5
value: 33.59887005649716
- type: nauc_map_at_1000_diff1
value: 40.05626085462073
- type: nauc_map_at_1000_max
value: 27.805616301644108
- type: nauc_map_at_1000_std
value: 2.70246695251992
- type: nauc_map_at_100_diff1
value: 40.059278877458546
- type: nauc_map_at_100_max
value: 27.77648271649888
- type: nauc_map_at_100_std
value: 2.722441305955515
- type: nauc_map_at_10_diff1
value: 40.31968856988776
- type: nauc_map_at_10_max
value: 27.476489831549973
- type: nauc_map_at_10_std
value: 2.317366284056495
- type: nauc_map_at_1_diff1
value: 44.48148871072693
- type: nauc_map_at_1_max
value: 28.919146703924675
- type: nauc_map_at_1_std
value: -0.1434376879249071
- type: nauc_map_at_20_diff1
value: 40.06730497906938
- type: nauc_map_at_20_max
value: 27.668823515524004
- type: nauc_map_at_20_std
value: 2.493103019008483
- type: nauc_map_at_3_diff1
value: 41.12772700221662
- type: nauc_map_at_3_max
value: 27.174803787199824
- type: nauc_map_at_3_std
value: -0.10118635015762467
- type: nauc_map_at_5_diff1
value: 40.77458823783091
- type: nauc_map_at_5_max
value: 27.080426477470642
- type: nauc_map_at_5_std
value: 1.485466402750173
- type: nauc_mrr_at_1000_diff1
value: 38.312224992745385
- type: nauc_mrr_at_1000_max
value: 28.950414700386702
- type: nauc_mrr_at_1000_std
value: 4.633122302505108
- type: nauc_mrr_at_100_diff1
value: 38.293568602643354
- type: nauc_mrr_at_100_max
value: 28.935077067979293
- type: nauc_mrr_at_100_std
value: 4.6507547334542005
- type: nauc_mrr_at_10_diff1
value: 38.43539906942557
- type: nauc_mrr_at_10_max
value: 28.740524868553607
- type: nauc_mrr_at_10_std
value: 4.465395711794246
- type: nauc_mrr_at_1_diff1
value: 42.806114694868
- type: nauc_mrr_at_1_max
value: 30.818773809580115
- type: nauc_mrr_at_1_std
value: 3.132175800569368
- type: nauc_mrr_at_20_diff1
value: 38.28878516887039
- type: nauc_mrr_at_20_max
value: 28.88291682526864
- type: nauc_mrr_at_20_std
value: 4.5635678164546
- type: nauc_mrr_at_3_diff1
value: 38.92127952259694
- type: nauc_mrr_at_3_max
value: 28.807748404698803
- type: nauc_mrr_at_3_std
value: 2.849609058088602
- type: nauc_mrr_at_5_diff1
value: 38.75107428963604
- type: nauc_mrr_at_5_max
value: 28.497437908040883
- type: nauc_mrr_at_5_std
value: 4.014347384415091
- type: nauc_ndcg_at_1000_diff1
value: 37.76456270291222
- type: nauc_ndcg_at_1000_max
value: 28.89838003177218
- type: nauc_ndcg_at_1000_std
value: 5.749873835705088
- type: nauc_ndcg_at_100_diff1
value: 37.364173569182555
- type: nauc_ndcg_at_100_max
value: 28.188496756099386
- type: nauc_ndcg_at_100_std
value: 6.336162952356489
- type: nauc_ndcg_at_10_diff1
value: 37.99346022671752
- type: nauc_ndcg_at_10_max
value: 27.216283907868817
- type: nauc_ndcg_at_10_std
value: 4.675349793835876
- type: nauc_ndcg_at_1_diff1
value: 42.806114694868
- type: nauc_ndcg_at_1_max
value: 30.818773809580115
- type: nauc_ndcg_at_1_std
value: 3.132175800569368
- type: nauc_ndcg_at_20_diff1
value: 37.15938715631981
- type: nauc_ndcg_at_20_max
value: 27.79557864495994
- type: nauc_ndcg_at_20_std
value: 5.100109928397954
- type: nauc_ndcg_at_3_diff1
value: 39.48583283953628
- type: nauc_ndcg_at_3_max
value: 27.134700120340693
- type: nauc_ndcg_at_3_std
value: 0.5675585179642199
- type: nauc_ndcg_at_5_diff1
value: 38.95882101952427
- type: nauc_ndcg_at_5_max
value: 26.610181412750727
- type: nauc_ndcg_at_5_std
value: 3.148006615861485
- type: nauc_precision_at_1000_diff1
value: -7.764948775245091
- type: nauc_precision_at_1000_max
value: 20.155338612433443
- type: nauc_precision_at_1000_std
value: 17.83459760938805
- type: nauc_precision_at_100_diff1
value: 6.237678147150076
- type: nauc_precision_at_100_max
value: 23.771296767151856
- type: nauc_precision_at_100_std
value: 22.753492059234574
- type: nauc_precision_at_10_diff1
value: 24.993500697049335
- type: nauc_precision_at_10_max
value: 27.990139005076152
- type: nauc_precision_at_10_std
value: 15.431533372397558
- type: nauc_precision_at_1_diff1
value: 42.806114694868
- type: nauc_precision_at_1_max
value: 30.818773809580115
- type: nauc_precision_at_1_std
value: 3.132175800569368
- type: nauc_precision_at_20_diff1
value: 17.590012469188235
- type: nauc_precision_at_20_max
value: 29.169967468169116
- type: nauc_precision_at_20_std
value: 17.493501613866094
- type: nauc_precision_at_3_diff1
value: 34.08623278149959
- type: nauc_precision_at_3_max
value: 27.285348347045286
- type: nauc_precision_at_3_std
value: 3.5484785893106574
- type: nauc_precision_at_5_diff1
value: 31.448816122094613
- type: nauc_precision_at_5_max
value: 26.885293174661605
- type: nauc_precision_at_5_std
value: 11.257484431730946
- type: nauc_recall_at_1000_diff1
value: 28.46487014213398
- type: nauc_recall_at_1000_max
value: 44.900835555926356
- type: nauc_recall_at_1000_std
value: 31.16409093849983
- type: nauc_recall_at_100_diff1
value: 26.72900863714146
- type: nauc_recall_at_100_max
value: 26.941137208153993
- type: nauc_recall_at_100_std
value: 22.621547900809624
- type: nauc_recall_at_10_diff1
value: 31.133823078109412
- type: nauc_recall_at_10_max
value: 23.89984601851163
- type: nauc_recall_at_10_std
value: 9.445198373476424
- type: nauc_recall_at_1_diff1
value: 44.48148871072693
- type: nauc_recall_at_1_max
value: 28.919146703924675
- type: nauc_recall_at_1_std
value: -0.1434376879249071
- type: nauc_recall_at_20_diff1
value: 27.26129142150393
- type: nauc_recall_at_20_max
value: 25.6868355894244
- type: nauc_recall_at_20_std
value: 11.26722787869625
- type: nauc_recall_at_3_diff1
value: 36.67176156769862
- type: nauc_recall_at_3_max
value: 24.517784284441092
- type: nauc_recall_at_3_std
value: -0.06621021628144753
- type: nauc_recall_at_5_diff1
value: 34.52566897138122
- type: nauc_recall_at_5_max
value: 22.720135055519073
- type: nauc_recall_at_5_std
value: 5.15363865803676
- type: ndcg_at_1
value: 26.554
- type: ndcg_at_10
value: 37.997
- type: ndcg_at_100
value: 43.305
- type: ndcg_at_1000
value: 45.282
- type: ndcg_at_20
value: 40.129
- type: ndcg_at_3
value: 32.057
- type: ndcg_at_5
value: 34.758
- type: precision_at_1
value: 26.554
- type: precision_at_10
value: 6.023
- type: precision_at_100
value: 0.918
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 3.514
- type: precision_at_3
value: 13.559
- type: precision_at_5
value: 9.672
- type: recall_at_1
value: 24.316
- type: recall_at_10
value: 52.413
- type: recall_at_100
value: 76.80399999999999
- type: recall_at_1000
value: 91.623
- type: recall_at_20
value: 60.462
- type: recall_at_3
value: 36.351
- type: recall_at_5
value: 42.858000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: main_score
value: 28.412
- type: map_at_1
value: 14.859
- type: map_at_10
value: 22.944
- type: map_at_100
value: 24.301000000000002
- type: map_at_1000
value: 24.422
- type: map_at_20
value: 23.699
- type: map_at_3
value: 19.88
- type: map_at_5
value: 21.617
- type: mrr_at_1
value: 18.781094527363184
- type: mrr_at_10
value: 27.092316196793792
- type: mrr_at_100
value: 28.237861305761868
- type: mrr_at_1000
value: 28.309422454313843
- type: mrr_at_20
value: 27.796436582724766
- type: mrr_at_3
value: 24.191542288557226
- type: mrr_at_5
value: 25.97014925373134
- type: nauc_map_at_1000_diff1
value: 31.282762294834683
- type: nauc_map_at_1000_max
value: 22.10753198129143
- type: nauc_map_at_1000_std
value: 7.464766818611464
- type: nauc_map_at_100_diff1
value: 31.20876547623262
- type: nauc_map_at_100_max
value: 22.04855783261337
- type: nauc_map_at_100_std
value: 7.46756154956561
- type: nauc_map_at_10_diff1
value: 32.063025777530946
- type: nauc_map_at_10_max
value: 22.192839864708276
- type: nauc_map_at_10_std
value: 6.935246733242942
- type: nauc_map_at_1_diff1
value: 37.124675662048645
- type: nauc_map_at_1_max
value: 21.705513335758486
- type: nauc_map_at_1_std
value: 5.125960085146019
- type: nauc_map_at_20_diff1
value: 31.460350111051543
- type: nauc_map_at_20_max
value: 22.01600381936477
- type: nauc_map_at_20_std
value: 7.320346261837271
- type: nauc_map_at_3_diff1
value: 33.549284246016946
- type: nauc_map_at_3_max
value: 21.3496504436454
- type: nauc_map_at_3_std
value: 5.629135047549884
- type: nauc_map_at_5_diff1
value: 33.40126100368468
- type: nauc_map_at_5_max
value: 22.07074975303988
- type: nauc_map_at_5_std
value: 6.0009506331816915
- type: nauc_mrr_at_1000_diff1
value: 31.676659452959417
- type: nauc_mrr_at_1000_max
value: 22.893987786799595
- type: nauc_mrr_at_1000_std
value: 6.023049236283401
- type: nauc_mrr_at_100_diff1
value: 31.61103328375909
- type: nauc_mrr_at_100_max
value: 22.868698340353365
- type: nauc_mrr_at_100_std
value: 6.017352015320805
- type: nauc_mrr_at_10_diff1
value: 31.953429710735765
- type: nauc_mrr_at_10_max
value: 22.88953587703519
- type: nauc_mrr_at_10_std
value: 5.736962509390694
- type: nauc_mrr_at_1_diff1
value: 35.97635527682404
- type: nauc_mrr_at_1_max
value: 22.800448037132163
- type: nauc_mrr_at_1_std
value: 3.2117385280672455
- type: nauc_mrr_at_20_diff1
value: 31.595235519229487
- type: nauc_mrr_at_20_max
value: 22.799886818509123
- type: nauc_mrr_at_20_std
value: 6.072525408593461
- type: nauc_mrr_at_3_diff1
value: 33.18342375116275
- type: nauc_mrr_at_3_max
value: 22.52374592963976
- type: nauc_mrr_at_3_std
value: 4.767522697706218
- type: nauc_mrr_at_5_diff1
value: 33.119779061591515
- type: nauc_mrr_at_5_max
value: 23.003248125501745
- type: nauc_mrr_at_5_std
value: 4.976805747506817
- type: nauc_ndcg_at_1000_diff1
value: 28.292015382102793
- type: nauc_ndcg_at_1000_max
value: 22.68404765768237
- type: nauc_ndcg_at_1000_std
value: 9.589972055962098
- type: nauc_ndcg_at_100_diff1
value: 26.96479405167567
- type: nauc_ndcg_at_100_max
value: 21.991567834408762
- type: nauc_ndcg_at_100_std
value: 10.039949830937676
- type: nauc_ndcg_at_10_diff1
value: 29.467288216868713
- type: nauc_ndcg_at_10_max
value: 22.44104565858907
- type: nauc_ndcg_at_10_std
value: 8.461186039677754
- type: nauc_ndcg_at_1_diff1
value: 35.97635527682404
- type: nauc_ndcg_at_1_max
value: 22.800448037132163
- type: nauc_ndcg_at_1_std
value: 3.2117385280672455
- type: nauc_ndcg_at_20_diff1
value: 27.651039113853848
- type: nauc_ndcg_at_20_max
value: 21.865976465118173
- type: nauc_ndcg_at_20_std
value: 9.612409644962762
- type: nauc_ndcg_at_3_diff1
value: 32.261234884088516
- type: nauc_ndcg_at_3_max
value: 21.569892122182054
- type: nauc_ndcg_at_3_std
value: 5.934094272513952
- type: nauc_ndcg_at_5_diff1
value: 32.177187585868275
- type: nauc_ndcg_at_5_max
value: 22.501692436415365
- type: nauc_ndcg_at_5_std
value: 6.628292970421619
- type: nauc_precision_at_1000_diff1
value: -3.119953273272669
- type: nauc_precision_at_1000_max
value: 1.1513386014161908
- type: nauc_precision_at_1000_std
value: -2.164470131685831
- type: nauc_precision_at_100_diff1
value: 0.5849985774022525
- type: nauc_precision_at_100_max
value: 10.237261683711365
- type: nauc_precision_at_100_std
value: 9.57755547972335
- type: nauc_precision_at_10_diff1
value: 15.246412164216192
- type: nauc_precision_at_10_max
value: 19.899416826328565
- type: nauc_precision_at_10_std
value: 10.003123363456073
- type: nauc_precision_at_1_diff1
value: 35.97635527682404
- type: nauc_precision_at_1_max
value: 22.800448037132163
- type: nauc_precision_at_1_std
value: 3.2117385280672455
- type: nauc_precision_at_20_diff1
value: 7.606434579256874
- type: nauc_precision_at_20_max
value: 15.445346072441597
- type: nauc_precision_at_20_std
value: 11.538639325143942
- type: nauc_precision_at_3_diff1
value: 25.28573060963354
- type: nauc_precision_at_3_max
value: 20.11025294163431
- type: nauc_precision_at_3_std
value: 5.4367185562279525
- type: nauc_precision_at_5_diff1
value: 23.428693353532925
- type: nauc_precision_at_5_max
value: 21.87288793778549
- type: nauc_precision_at_5_std
value: 6.350278856507092
- type: nauc_recall_at_1000_diff1
value: 11.030800804748713
- type: nauc_recall_at_1000_max
value: 28.207037540270484
- type: nauc_recall_at_1000_std
value: 26.53322787470092
- type: nauc_recall_at_100_diff1
value: 9.45619750103627
- type: nauc_recall_at_100_max
value: 18.641295313722722
- type: nauc_recall_at_100_std
value: 19.89094444759181
- type: nauc_recall_at_10_diff1
value: 21.59965548683592
- type: nauc_recall_at_10_max
value: 20.983235462917357
- type: nauc_recall_at_10_std
value: 12.421019075877183
- type: nauc_recall_at_1_diff1
value: 37.124675662048645
- type: nauc_recall_at_1_max
value: 21.705513335758486
- type: nauc_recall_at_1_std
value: 5.125960085146019
- type: nauc_recall_at_20_diff1
value: 15.356277525370507
- type: nauc_recall_at_20_max
value: 18.853996115586888
- type: nauc_recall_at_20_std
value: 16.118805288983083
- type: nauc_recall_at_3_diff1
value: 28.945843357597685
- type: nauc_recall_at_3_max
value: 19.8912702523286
- type: nauc_recall_at_3_std
value: 7.5851361764687795
- type: nauc_recall_at_5_diff1
value: 28.36471699123168
- type: nauc_recall_at_5_max
value: 21.17015525566982
- type: nauc_recall_at_5_std
value: 8.24163064970665
- type: ndcg_at_1
value: 18.781
- type: ndcg_at_10
value: 28.412
- type: ndcg_at_100
value: 34.782999999999994
- type: ndcg_at_1000
value: 37.518
- type: ndcg_at_20
value: 30.962
- type: ndcg_at_3
value: 22.782
- type: ndcg_at_5
value: 25.568
- type: precision_at_1
value: 18.781
- type: precision_at_10
value: 5.498
- type: precision_at_100
value: 0.9979999999999999
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_20
value: 3.4389999999999996
- type: precision_at_3
value: 11.193999999999999
- type: precision_at_5
value: 8.607
- type: recall_at_1
value: 14.859
- type: recall_at_10
value: 41.229
- type: recall_at_100
value: 68.853
- type: recall_at_1000
value: 87.86
- type: recall_at_20
value: 50.333000000000006
- type: recall_at_3
value: 25.889
- type: recall_at_5
value: 32.798
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: main_score
value: 46.627
- type: map_at_1
value: 29.110999999999997
- type: map_at_10
value: 40.157
- type: map_at_100
value: 41.5
- type: map_at_1000
value: 41.615
- type: map_at_20
value: 40.907
- type: map_at_3
value: 36.741
- type: map_at_5
value: 38.532
- type: mrr_at_1
value: 35.899903753609244
- type: mrr_at_10
value: 45.89913989336511
- type: mrr_at_100
value: 46.66580649720437
- type: mrr_at_1000
value: 46.71327306556841
- type: mrr_at_20
value: 46.35048991522675
- type: mrr_at_3
value: 43.10234199550849
- type: mrr_at_5
value: 44.623034969521925
- type: nauc_map_at_1000_diff1
value: 48.819197227113
- type: nauc_map_at_1000_max
value: 30.225193936185452
- type: nauc_map_at_1000_std
value: -0.11387170703748546
- type: nauc_map_at_100_diff1
value: 48.81653586975879
- type: nauc_map_at_100_max
value: 30.18941718252035
- type: nauc_map_at_100_std
value: -0.16136876140004403
- type: nauc_map_at_10_diff1
value: 49.02711545619007
- type: nauc_map_at_10_max
value: 29.54513048209343
- type: nauc_map_at_10_std
value: -1.0721344424269519
- type: nauc_map_at_1_diff1
value: 54.55373479956459
- type: nauc_map_at_1_max
value: 28.68525621187728
- type: nauc_map_at_1_std
value: -3.828505921327198
- type: nauc_map_at_20_diff1
value: 48.80329695009258
- type: nauc_map_at_20_max
value: 29.98470278569913
- type: nauc_map_at_20_std
value: -0.4907024448684188
- type: nauc_map_at_3_diff1
value: 49.49325346627698
- type: nauc_map_at_3_max
value: 30.001118629451362
- type: nauc_map_at_3_std
value: -1.8332855957955085
- type: nauc_map_at_5_diff1
value: 49.15308703989204
- type: nauc_map_at_5_max
value: 29.9743736651634
- type: nauc_map_at_5_std
value: -1.471848560457071
- type: nauc_mrr_at_1000_diff1
value: 49.6267405356935
- type: nauc_mrr_at_1000_max
value: 31.775511464032213
- type: nauc_mrr_at_1000_std
value: 2.1941676606625573
- type: nauc_mrr_at_100_diff1
value: 49.60865287375136
- type: nauc_mrr_at_100_max
value: 31.766711114897124
- type: nauc_mrr_at_100_std
value: 2.1958339273429597
- type: nauc_mrr_at_10_diff1
value: 49.731748265273836
- type: nauc_mrr_at_10_max
value: 31.510802716434373
- type: nauc_mrr_at_10_std
value: 1.850952038635735
- type: nauc_mrr_at_1_diff1
value: 54.326742857864915
- type: nauc_mrr_at_1_max
value: 31.714793704362155
- type: nauc_mrr_at_1_std
value: 1.4094420435868311
- type: nauc_mrr_at_20_diff1
value: 49.582036904653584
- type: nauc_mrr_at_20_max
value: 31.71211967406404
- type: nauc_mrr_at_20_std
value: 2.1307901281304202
- type: nauc_mrr_at_3_diff1
value: 49.99569893552195
- type: nauc_mrr_at_3_max
value: 32.010092946562025
- type: nauc_mrr_at_3_std
value: 1.4910063885459364
- type: nauc_mrr_at_5_diff1
value: 49.40329460354263
- type: nauc_mrr_at_5_max
value: 31.990047727579483
- type: nauc_mrr_at_5_std
value: 1.663734759562975
- type: nauc_ndcg_at_1000_diff1
value: 47.146065393209135
- type: nauc_ndcg_at_1000_max
value: 31.637365672232075
- type: nauc_ndcg_at_1000_std
value: 3.2425314915817105
- type: nauc_ndcg_at_100_diff1
value: 46.96953007559477
- type: nauc_ndcg_at_100_max
value: 31.16768307276679
- type: nauc_ndcg_at_100_std
value: 2.942488981572898
- type: nauc_ndcg_at_10_diff1
value: 47.63345306694598
- type: nauc_ndcg_at_10_max
value: 29.371578333227998
- type: nauc_ndcg_at_10_std
value: 0.06472978934137909
- type: nauc_ndcg_at_1_diff1
value: 54.326742857864915
- type: nauc_ndcg_at_1_max
value: 31.714793704362155
- type: nauc_ndcg_at_1_std
value: 1.4094420435868311
- type: nauc_ndcg_at_20_diff1
value: 46.81989380207635
- type: nauc_ndcg_at_20_max
value: 30.412570241892183
- type: nauc_ndcg_at_20_std
value: 1.5075658935703282
- type: nauc_ndcg_at_3_diff1
value: 48.410857274941726
- type: nauc_ndcg_at_3_max
value: 31.365778148874384
- type: nauc_ndcg_at_3_std
value: -0.3887448200634908
- type: nauc_ndcg_at_5_diff1
value: 47.65943245882207
- type: nauc_ndcg_at_5_max
value: 30.786802287608232
- type: nauc_ndcg_at_5_std
value: -0.3340427915788538
- type: nauc_precision_at_1000_diff1
value: -13.616360194561903
- type: nauc_precision_at_1000_max
value: 4.606458024282346
- type: nauc_precision_at_1000_std
value: 20.097753702338583
- type: nauc_precision_at_100_diff1
value: -3.8203411621014363
- type: nauc_precision_at_100_max
value: 12.195338438332039
- type: nauc_precision_at_100_std
value: 21.277772831047834
- type: nauc_precision_at_10_diff1
value: 17.41015815840667
- type: nauc_precision_at_10_max
value: 20.49327554673419
- type: nauc_precision_at_10_std
value: 14.317393694887748
- type: nauc_precision_at_1_diff1
value: 54.326742857864915
- type: nauc_precision_at_1_max
value: 31.714793704362155
- type: nauc_precision_at_1_std
value: 1.4094420435868311
- type: nauc_precision_at_20_diff1
value: 8.063727537918783
- type: nauc_precision_at_20_max
value: 19.39335288125252
- type: nauc_precision_at_20_std
value: 18.93106122331836
- type: nauc_precision_at_3_diff1
value: 32.705924980475146
- type: nauc_precision_at_3_max
value: 30.24641865632296
- type: nauc_precision_at_3_std
value: 7.195922370578724
- type: nauc_precision_at_5_diff1
value: 25.471170302890012
- type: nauc_precision_at_5_max
value: 27.2559781097725
- type: nauc_precision_at_5_std
value: 10.423480799933591
- type: nauc_recall_at_1000_diff1
value: 15.871912487469162
- type: nauc_recall_at_1000_max
value: 41.69115237346833
- type: nauc_recall_at_1000_std
value: 44.74346531949558
- type: nauc_recall_at_100_diff1
value: 32.150465708991376
- type: nauc_recall_at_100_max
value: 28.9450065694084
- type: nauc_recall_at_100_std
value: 16.12971379538094
- type: nauc_recall_at_10_diff1
value: 40.42003119650161
- type: nauc_recall_at_10_max
value: 23.798461011276167
- type: nauc_recall_at_10_std
value: -0.8906910654707625
- type: nauc_recall_at_1_diff1
value: 54.55373479956459
- type: nauc_recall_at_1_max
value: 28.68525621187728
- type: nauc_recall_at_1_std
value: -3.828505921327198
- type: nauc_recall_at_20_diff1
value: 36.08908544861558
- type: nauc_recall_at_20_max
value: 26.51340931742042
- type: nauc_recall_at_20_std
value: 4.67558978611164
- type: nauc_recall_at_3_diff1
value: 44.109094420929466
- type: nauc_recall_at_3_max
value: 29.817084024730185
- type: nauc_recall_at_3_std
value: -1.9280901477621615
- type: nauc_recall_at_5_diff1
value: 41.53929190979217
- type: nauc_recall_at_5_max
value: 28.682740378721512
- type: nauc_recall_at_5_std
value: -2.1436179905847705
- type: ndcg_at_1
value: 35.9
- type: ndcg_at_10
value: 46.627
- type: ndcg_at_100
value: 52.03
- type: ndcg_at_1000
value: 53.982
- type: ndcg_at_20
value: 48.748999999999995
- type: ndcg_at_3
value: 40.96
- type: ndcg_at_5
value: 43.389
- type: precision_at_1
value: 35.9
- type: precision_at_10
value: 8.652999999999999
- type: precision_at_100
value: 1.324
- type: precision_at_1000
value: 0.168
- type: precision_at_20
value: 5.053
- type: precision_at_3
value: 19.666
- type: precision_at_5
value: 13.879
- type: recall_at_1
value: 29.110999999999997
- type: recall_at_10
value: 60.21300000000001
- type: recall_at_100
value: 82.829
- type: recall_at_1000
value: 95.236
- type: recall_at_20
value: 67.506
- type: recall_at_3
value: 44.198
- type: recall_at_5
value: 50.62
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: main_score
value: 42.711
- type: map_at_1
value: 25.912000000000003
- type: map_at_10
value: 36.827
- type: map_at_100
value: 38.323
- type: map_at_1000
value: 38.426
- type: map_at_20
value: 37.674
- type: map_at_3
value: 33.815
- type: map_at_5
value: 35.253
- type: mrr_at_1
value: 31.621004566210047
- type: mrr_at_10
value: 41.63106110023917
- type: mrr_at_100
value: 42.68788468525227
- type: mrr_at_1000
value: 42.737936476792896
- type: mrr_at_20
value: 42.3034469946844
- type: mrr_at_3
value: 39.44063926940638
- type: mrr_at_5
value: 40.479452054794486
- type: nauc_map_at_1000_diff1
value: 41.21238459815453
- type: nauc_map_at_1000_max
value: 31.731913362155538
- type: nauc_map_at_1000_std
value: 4.095602573199812
- type: nauc_map_at_100_diff1
value: 41.2386060670619
- type: nauc_map_at_100_max
value: 31.745863964229752
- type: nauc_map_at_100_std
value: 4.152539294264819
- type: nauc_map_at_10_diff1
value: 41.06730435812859
- type: nauc_map_at_10_max
value: 31.154866667403546
- type: nauc_map_at_10_std
value: 3.352195309556991
- type: nauc_map_at_1_diff1
value: 46.719436307788634
- type: nauc_map_at_1_max
value: 27.23331305118017
- type: nauc_map_at_1_std
value: -3.294310698511136
- type: nauc_map_at_20_diff1
value: 41.02754767769435
- type: nauc_map_at_20_max
value: 31.360864488023783
- type: nauc_map_at_20_std
value: 3.738456116200237
- type: nauc_map_at_3_diff1
value: 41.6933203031956
- type: nauc_map_at_3_max
value: 29.89624455457615
- type: nauc_map_at_3_std
value: -0.01536463182866681
- type: nauc_map_at_5_diff1
value: 40.94567456109745
- type: nauc_map_at_5_max
value: 30.458349943583702
- type: nauc_map_at_5_std
value: 1.9655221641608267
- type: nauc_mrr_at_1000_diff1
value: 40.652351064681724
- type: nauc_mrr_at_1000_max
value: 33.01007429614183
- type: nauc_mrr_at_1000_std
value: 6.26143705110491
- type: nauc_mrr_at_100_diff1
value: 40.65741819780518
- type: nauc_mrr_at_100_max
value: 33.01722581370414
- type: nauc_mrr_at_100_std
value: 6.302551967295325
- type: nauc_mrr_at_10_diff1
value: 40.60567647703471
- type: nauc_mrr_at_10_max
value: 32.94692660407874
- type: nauc_mrr_at_10_std
value: 6.082085894261765
- type: nauc_mrr_at_1_diff1
value: 46.11518802989986
- type: nauc_mrr_at_1_max
value: 31.625471357672307
- type: nauc_mrr_at_1_std
value: 1.234566602020697
- type: nauc_mrr_at_20_diff1
value: 40.558484630555064
- type: nauc_mrr_at_20_max
value: 32.97107821653968
- type: nauc_mrr_at_20_std
value: 6.265323697745393
- type: nauc_mrr_at_3_diff1
value: 40.68096006055527
- type: nauc_mrr_at_3_max
value: 32.53822188043154
- type: nauc_mrr_at_3_std
value: 4.345818715177205
- type: nauc_mrr_at_5_diff1
value: 40.23796517179139
- type: nauc_mrr_at_5_max
value: 32.56979439355811
- type: nauc_mrr_at_5_std
value: 5.595951651809914
- type: nauc_ndcg_at_1000_diff1
value: 39.7027614173243
- type: nauc_ndcg_at_1000_max
value: 33.498346699070375
- type: nauc_ndcg_at_1000_std
value: 8.559325736291138
- type: nauc_ndcg_at_100_diff1
value: 39.97452504741169
- type: nauc_ndcg_at_100_max
value: 33.89577471481737
- type: nauc_ndcg_at_100_std
value: 10.167129337536283
- type: nauc_ndcg_at_10_diff1
value: 39.16788466313522
- type: nauc_ndcg_at_10_max
value: 32.47905308816861
- type: nauc_ndcg_at_10_std
value: 7.295048419911472
- type: nauc_ndcg_at_1_diff1
value: 46.11518802989986
- type: nauc_ndcg_at_1_max
value: 31.625471357672307
- type: nauc_ndcg_at_1_std
value: 1.234566602020697
- type: nauc_ndcg_at_20_diff1
value: 38.859039216458626
- type: nauc_ndcg_at_20_max
value: 32.741280842100274
- type: nauc_ndcg_at_20_std
value: 8.532519680049697
- type: nauc_ndcg_at_3_diff1
value: 39.50414846792753
- type: nauc_ndcg_at_3_max
value: 31.436293574105246
- type: nauc_ndcg_at_3_std
value: 2.7912054661515513
- type: nauc_ndcg_at_5_diff1
value: 38.70681148905142
- type: nauc_ndcg_at_5_max
value: 31.437135456835662
- type: nauc_ndcg_at_5_std
value: 5.162466911691187
- type: nauc_precision_at_1000_diff1
value: -3.3602607374185633
- type: nauc_precision_at_1000_max
value: 4.971880762242277
- type: nauc_precision_at_1000_std
value: 9.19452758668974
- type: nauc_precision_at_100_diff1
value: 7.510065324630119
- type: nauc_precision_at_100_max
value: 20.08725395064176
- type: nauc_precision_at_100_std
value: 24.3347599479104
- type: nauc_precision_at_10_diff1
value: 17.288987492657895
- type: nauc_precision_at_10_max
value: 30.523796629978005
- type: nauc_precision_at_10_std
value: 21.72855091830218
- type: nauc_precision_at_1_diff1
value: 46.11518802989986
- type: nauc_precision_at_1_max
value: 31.625471357672307
- type: nauc_precision_at_1_std
value: 1.234566602020697
- type: nauc_precision_at_20_diff1
value: 12.228489950055032
- type: nauc_precision_at_20_max
value: 27.04368010402764
- type: nauc_precision_at_20_std
value: 24.15754031166108
- type: nauc_precision_at_3_diff1
value: 26.83713388263207
- type: nauc_precision_at_3_max
value: 33.23777507125749
- type: nauc_precision_at_3_std
value: 10.323356806632543
- type: nauc_precision_at_5_diff1
value: 21.61560839260508
- type: nauc_precision_at_5_max
value: 32.66946145310579
- type: nauc_precision_at_5_std
value: 16.353775624744003
- type: nauc_recall_at_1000_diff1
value: 18.969678611942875
- type: nauc_recall_at_1000_max
value: 44.65492230931943
- type: nauc_recall_at_1000_std
value: 57.57661658969986
- type: nauc_recall_at_100_diff1
value: 32.144682780578435
- type: nauc_recall_at_100_max
value: 39.039873233473685
- type: nauc_recall_at_100_std
value: 41.27073159300163
- type: nauc_recall_at_10_diff1
value: 32.15567564970661
- type: nauc_recall_at_10_max
value: 32.11964259760779
- type: nauc_recall_at_10_std
value: 15.891022254121328
- type: nauc_recall_at_1_diff1
value: 46.719436307788634
- type: nauc_recall_at_1_max
value: 27.23331305118017
- type: nauc_recall_at_1_std
value: -3.294310698511136
- type: nauc_recall_at_20_diff1
value: 28.851896672624644
- type: nauc_recall_at_20_max
value: 32.287799296155114
- type: nauc_recall_at_20_std
value: 21.67937291007234
- type: nauc_recall_at_3_diff1
value: 34.39542239770237
- type: nauc_recall_at_3_max
value: 28.587385654425223
- type: nauc_recall_at_3_std
value: 3.1462139418981865
- type: nauc_recall_at_5_diff1
value: 31.662335151844633
- type: nauc_recall_at_5_max
value: 29.169339984865907
- type: nauc_recall_at_5_std
value: 9.423550205691733
- type: ndcg_at_1
value: 31.621
- type: ndcg_at_10
value: 42.711
- type: ndcg_at_100
value: 49.033
- type: ndcg_at_1000
value: 51.085
- type: ndcg_at_20
value: 45.443
- type: ndcg_at_3
value: 38.005
- type: ndcg_at_5
value: 39.751999999999995
- type: precision_at_1
value: 31.621
- type: precision_at_10
value: 7.968
- type: precision_at_100
value: 1.2890000000000001
- type: precision_at_1000
value: 0.163
- type: precision_at_20
value: 4.795
- type: precision_at_3
value: 18.379
- type: precision_at_5
value: 12.740000000000002
- type: recall_at_1
value: 25.912000000000003
- type: recall_at_10
value: 55.08
- type: recall_at_100
value: 81.922
- type: recall_at_1000
value: 95.543
- type: recall_at_20
value: 65.082
- type: recall_at_3
value: 41.899
- type: recall_at_5
value: 46.708
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 40.85841666666668
- type: ndcg_at_10
value: 40.85841666666668
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: main_score
value: 35.053
- type: map_at_1
value: 23.291999999999998
- type: map_at_10
value: 30.61
- type: map_at_100
value: 31.549
- type: map_at_1000
value: 31.644
- type: map_at_20
value: 31.041999999999998
- type: map_at_3
value: 28.011999999999997
- type: map_at_5
value: 29.425
- type: mrr_at_1
value: 26.07361963190184
- type: mrr_at_10
value: 33.167421365274116
- type: mrr_at_100
value: 34.029277736438495
- type: mrr_at_1000
value: 34.09235069536584
- type: mrr_at_20
value: 33.59034373634008
- type: mrr_at_3
value: 30.7515337423313
- type: mrr_at_5
value: 32.08588957055215
- type: nauc_map_at_1000_diff1
value: 43.481986624980415
- type: nauc_map_at_1000_max
value: 28.952163698686732
- type: nauc_map_at_1000_std
value: 10.782598183324414
- type: nauc_map_at_100_diff1
value: 43.45584335416967
- type: nauc_map_at_100_max
value: 28.911137574377232
- type: nauc_map_at_100_std
value: 10.76701853563041
- type: nauc_map_at_10_diff1
value: 43.47116890578832
- type: nauc_map_at_10_max
value: 28.653166569212946
- type: nauc_map_at_10_std
value: 10.17426104854042
- type: nauc_map_at_1_diff1
value: 49.75958213376796
- type: nauc_map_at_1_max
value: 24.470618320089454
- type: nauc_map_at_1_std
value: 6.492564751094104
- type: nauc_map_at_20_diff1
value: 43.35481926885264
- type: nauc_map_at_20_max
value: 28.699469771138414
- type: nauc_map_at_20_std
value: 10.45940778146071
- type: nauc_map_at_3_diff1
value: 44.485234854591035
- type: nauc_map_at_3_max
value: 28.38719705365597
- type: nauc_map_at_3_std
value: 9.000376354032333
- type: nauc_map_at_5_diff1
value: 43.44946037663669
- type: nauc_map_at_5_max
value: 28.476659272609623
- type: nauc_map_at_5_std
value: 9.703474173706583
- type: nauc_mrr_at_1000_diff1
value: 45.954395007886525
- type: nauc_mrr_at_1000_max
value: 31.50968463706721
- type: nauc_mrr_at_1000_std
value: 13.707444407915146
- type: nauc_mrr_at_100_diff1
value: 45.93279568895946
- type: nauc_mrr_at_100_max
value: 31.49035735663133
- type: nauc_mrr_at_100_std
value: 13.696695107846951
- type: nauc_mrr_at_10_diff1
value: 46.00075381149564
- type: nauc_mrr_at_10_max
value: 31.35587522300911
- type: nauc_mrr_at_10_std
value: 13.319928784978059
- type: nauc_mrr_at_1_diff1
value: 53.86601247498458
- type: nauc_mrr_at_1_max
value: 29.05934941003339
- type: nauc_mrr_at_1_std
value: 10.991599490187589
- type: nauc_mrr_at_20_diff1
value: 45.86633939971638
- type: nauc_mrr_at_20_max
value: 31.355545429804543
- type: nauc_mrr_at_20_std
value: 13.461168244272576
- type: nauc_mrr_at_3_diff1
value: 47.46632656927442
- type: nauc_mrr_at_3_max
value: 31.868101191363152
- type: nauc_mrr_at_3_std
value: 13.134952192744528
- type: nauc_mrr_at_5_diff1
value: 46.216287976414655
- type: nauc_mrr_at_5_max
value: 31.22808984287798
- type: nauc_mrr_at_5_std
value: 13.052212637671804
- type: nauc_ndcg_at_1000_diff1
value: 41.636814427170584
- type: nauc_ndcg_at_1000_max
value: 31.493143528814294
- type: nauc_ndcg_at_1000_std
value: 14.770912529263397
- type: nauc_ndcg_at_100_diff1
value: 41.12015328320773
- type: nauc_ndcg_at_100_max
value: 30.74936949964077
- type: nauc_ndcg_at_100_std
value: 14.126317942292099
- type: nauc_ndcg_at_10_diff1
value: 41.363853256357004
- type: nauc_ndcg_at_10_max
value: 29.967593685883593
- type: nauc_ndcg_at_10_std
value: 11.745736297343958
- type: nauc_ndcg_at_1_diff1
value: 53.86601247498458
- type: nauc_ndcg_at_1_max
value: 29.05934941003339
- type: nauc_ndcg_at_1_std
value: 10.991599490187589
- type: nauc_ndcg_at_20_diff1
value: 40.75029632252196
- type: nauc_ndcg_at_20_max
value: 29.8909640874289
- type: nauc_ndcg_at_20_std
value: 12.454934718956409
- type: nauc_ndcg_at_3_diff1
value: 43.63306400143029
- type: nauc_ndcg_at_3_max
value: 30.487292567301395
- type: nauc_ndcg_at_3_std
value: 11.38385449149101
- type: nauc_ndcg_at_5_diff1
value: 41.60699357804944
- type: nauc_ndcg_at_5_max
value: 29.677122670631594
- type: nauc_ndcg_at_5_std
value: 11.219704931901058
- type: nauc_precision_at_1000_diff1
value: 14.098873228986914
- type: nauc_precision_at_1000_max
value: 24.17087547157802
- type: nauc_precision_at_1000_std
value: 19.888193749463685
- type: nauc_precision_at_100_diff1
value: 23.179467074556886
- type: nauc_precision_at_100_max
value: 31.865564772690984
- type: nauc_precision_at_100_std
value: 25.13985731761706
- type: nauc_precision_at_10_diff1
value: 32.107718641883146
- type: nauc_precision_at_10_max
value: 34.91859600075913
- type: nauc_precision_at_10_std
value: 22.79400955617237
- type: nauc_precision_at_1_diff1
value: 53.86601247498458
- type: nauc_precision_at_1_max
value: 29.05934941003339
- type: nauc_precision_at_1_std
value: 10.991599490187589
- type: nauc_precision_at_20_diff1
value: 29.993188469468002
- type: nauc_precision_at_20_max
value: 35.296458769573086
- type: nauc_precision_at_20_std
value: 24.20327572204019
- type: nauc_precision_at_3_diff1
value: 38.99151580407392
- type: nauc_precision_at_3_max
value: 36.357023065975284
- type: nauc_precision_at_3_std
value: 19.43463406590944
- type: nauc_precision_at_5_diff1
value: 34.334835167755124
- type: nauc_precision_at_5_max
value: 35.54403568911307
- type: nauc_precision_at_5_std
value: 21.297076675377635
- type: nauc_recall_at_1000_diff1
value: 21.37160644447469
- type: nauc_recall_at_1000_max
value: 42.69368632941223
- type: nauc_recall_at_1000_std
value: 44.69786965651591
- type: nauc_recall_at_100_diff1
value: 26.1829124199152
- type: nauc_recall_at_100_max
value: 31.05778051148635
- type: nauc_recall_at_100_std
value: 24.13788905724134
- type: nauc_recall_at_10_diff1
value: 32.277913345812316
- type: nauc_recall_at_10_max
value: 29.95426768325743
- type: nauc_recall_at_10_std
value: 12.182289596195755
- type: nauc_recall_at_1_diff1
value: 49.75958213376796
- type: nauc_recall_at_1_max
value: 24.470618320089454
- type: nauc_recall_at_1_std
value: 6.492564751094104
- type: nauc_recall_at_20_diff1
value: 28.594583651409373
- type: nauc_recall_at_20_max
value: 28.61050190860186
- type: nauc_recall_at_20_std
value: 14.453928140032604
- type: nauc_recall_at_3_diff1
value: 37.26827475373021
- type: nauc_recall_at_3_max
value: 30.24664533196025
- type: nauc_recall_at_3_std
value: 10.088814497838317
- type: nauc_recall_at_5_diff1
value: 33.012511168504346
- type: nauc_recall_at_5_max
value: 28.863956457849227
- type: nauc_recall_at_5_std
value: 10.866060080770383
- type: ndcg_at_1
value: 26.074
- type: ndcg_at_10
value: 35.053
- type: ndcg_at_100
value: 39.877
- type: ndcg_at_1000
value: 42.219
- type: ndcg_at_20
value: 36.553999999999995
- type: ndcg_at_3
value: 30.25
- type: ndcg_at_5
value: 32.46
- type: precision_at_1
value: 26.074
- type: precision_at_10
value: 5.675
- type: precision_at_100
value: 0.88
- type: precision_at_1000
value: 0.116
- type: precision_at_20
value: 3.213
- type: precision_at_3
value: 13.088
- type: precision_at_5
value: 9.325
- type: recall_at_1
value: 23.291999999999998
- type: recall_at_10
value: 46.148
- type: recall_at_100
value: 68.24799999999999
- type: recall_at_1000
value: 85.455
- type: recall_at_20
value: 51.734
- type: recall_at_3
value: 33.131
- type: recall_at_5
value: 38.546
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: main_score
value: 27.525
- type: map_at_1
value: 15.812999999999999
- type: map_at_10
value: 22.878999999999998
- type: map_at_100
value: 23.992
- type: map_at_1000
value: 24.127000000000002
- type: map_at_20
value: 23.452
- type: map_at_3
value: 20.467
- type: map_at_5
value: 21.767
- type: mrr_at_1
value: 19.201651754989676
- type: mrr_at_10
value: 26.47224133975686
- type: mrr_at_100
value: 27.412766979166342
- type: mrr_at_1000
value: 27.49631476670978
- type: mrr_at_20
value: 26.9691663879413
- type: mrr_at_3
value: 24.013535214498745
- type: mrr_at_5
value: 25.441615049323303
- type: nauc_map_at_1000_diff1
value: 33.697813145909535
- type: nauc_map_at_1000_max
value: 26.509494140027996
- type: nauc_map_at_1000_std
value: 2.993849542775133
- type: nauc_map_at_100_diff1
value: 33.671087749349674
- type: nauc_map_at_100_max
value: 26.472678055525336
- type: nauc_map_at_100_std
value: 2.956494527720355
- type: nauc_map_at_10_diff1
value: 33.914740537035435
- type: nauc_map_at_10_max
value: 26.5349486074814
- type: nauc_map_at_10_std
value: 2.3474576992114304
- type: nauc_map_at_1_diff1
value: 39.451484530341254
- type: nauc_map_at_1_max
value: 25.790802427354205
- type: nauc_map_at_1_std
value: -1.8340911432347162
- type: nauc_map_at_20_diff1
value: 33.766215747904695
- type: nauc_map_at_20_max
value: 26.440032024795805
- type: nauc_map_at_20_std
value: 2.6591992745156485
- type: nauc_map_at_3_diff1
value: 34.80477662436832
- type: nauc_map_at_3_max
value: 26.232579057821294
- type: nauc_map_at_3_std
value: 1.0628053044692038
- type: nauc_map_at_5_diff1
value: 34.44953511091354
- type: nauc_map_at_5_max
value: 26.329117036695354
- type: nauc_map_at_5_std
value: 1.6829673952842554
- type: nauc_mrr_at_1000_diff1
value: 33.13732180476133
- type: nauc_mrr_at_1000_max
value: 27.911825182206524
- type: nauc_mrr_at_1000_std
value: 3.570486982023914
- type: nauc_mrr_at_100_diff1
value: 33.112653270534636
- type: nauc_mrr_at_100_max
value: 27.897770062852732
- type: nauc_mrr_at_100_std
value: 3.5920129247128028
- type: nauc_mrr_at_10_diff1
value: 33.27584578509099
- type: nauc_mrr_at_10_max
value: 28.123344470902044
- type: nauc_mrr_at_10_std
value: 3.1806023776161005
- type: nauc_mrr_at_1_diff1
value: 38.697906401251565
- type: nauc_mrr_at_1_max
value: 27.526788964221176
- type: nauc_mrr_at_1_std
value: -0.3872399197836332
- type: nauc_mrr_at_20_diff1
value: 33.14710189298942
- type: nauc_mrr_at_20_max
value: 27.925418071214477
- type: nauc_mrr_at_20_std
value: 3.410762781508218
- type: nauc_mrr_at_3_diff1
value: 33.87772552463924
- type: nauc_mrr_at_3_max
value: 28.007003297502216
- type: nauc_mrr_at_3_std
value: 1.9486591805981224
- type: nauc_mrr_at_5_diff1
value: 33.62067092202846
- type: nauc_mrr_at_5_max
value: 28.14249070532696
- type: nauc_mrr_at_5_std
value: 2.6447040667824218
- type: nauc_ndcg_at_1000_diff1
value: 31.23455010115525
- type: nauc_ndcg_at_1000_max
value: 26.928025566178913
- type: nauc_ndcg_at_1000_std
value: 6.941305960469611
- type: nauc_ndcg_at_100_diff1
value: 30.584344786502747
- type: nauc_ndcg_at_100_max
value: 26.404821521795537
- type: nauc_ndcg_at_100_std
value: 7.0334275625510925
- type: nauc_ndcg_at_10_diff1
value: 31.53451395934299
- type: nauc_ndcg_at_10_max
value: 27.05918031675037
- type: nauc_ndcg_at_10_std
value: 4.439717091540959
- type: nauc_ndcg_at_1_diff1
value: 38.697906401251565
- type: nauc_ndcg_at_1_max
value: 27.526788964221176
- type: nauc_ndcg_at_1_std
value: -0.3872399197836332
- type: nauc_ndcg_at_20_diff1
value: 31.12144557343197
- type: nauc_ndcg_at_20_max
value: 26.542119575357965
- type: nauc_ndcg_at_20_std
value: 5.3406069749732525
- type: nauc_ndcg_at_3_diff1
value: 33.01724233874462
- type: nauc_ndcg_at_3_max
value: 27.140135730286946
- type: nauc_ndcg_at_3_std
value: 1.9208853678075062
- type: nauc_ndcg_at_5_diff1
value: 32.55051796045806
- type: nauc_ndcg_at_5_max
value: 26.955239421636346
- type: nauc_ndcg_at_5_std
value: 3.0379868805913652
- type: nauc_precision_at_1000_diff1
value: 4.618759880285172
- type: nauc_precision_at_1000_max
value: 15.135402391589992
- type: nauc_precision_at_1000_std
value: 17.641125584501353
- type: nauc_precision_at_100_diff1
value: 10.39883535965785
- type: nauc_precision_at_100_max
value: 20.08846103789256
- type: nauc_precision_at_100_std
value: 19.449422467727224
- type: nauc_precision_at_10_diff1
value: 22.298962818126192
- type: nauc_precision_at_10_max
value: 28.89863016237585
- type: nauc_precision_at_10_std
value: 11.063401323032155
- type: nauc_precision_at_1_diff1
value: 38.697906401251565
- type: nauc_precision_at_1_max
value: 27.526788964221176
- type: nauc_precision_at_1_std
value: -0.3872399197836332
- type: nauc_precision_at_20_diff1
value: 19.176385926878414
- type: nauc_precision_at_20_max
value: 25.917593281871675
- type: nauc_precision_at_20_std
value: 13.11450466413103
- type: nauc_precision_at_3_diff1
value: 28.031695189128474
- type: nauc_precision_at_3_max
value: 28.9642194082244
- type: nauc_precision_at_3_std
value: 4.347834807504182
- type: nauc_precision_at_5_diff1
value: 26.272317529418892
- type: nauc_precision_at_5_max
value: 29.150315424317114
- type: nauc_precision_at_5_std
value: 6.880885398540699
- type: nauc_recall_at_1000_diff1
value: 17.4273150148978
- type: nauc_recall_at_1000_max
value: 24.306401198860677
- type: nauc_recall_at_1000_std
value: 29.662613615698568
- type: nauc_recall_at_100_diff1
value: 18.43107428764886
- type: nauc_recall_at_100_max
value: 20.971000173192305
- type: nauc_recall_at_100_std
value: 19.71647423515453
- type: nauc_recall_at_10_diff1
value: 24.16733448276029
- type: nauc_recall_at_10_max
value: 24.352699469715134
- type: nauc_recall_at_10_std
value: 8.209628518853242
- type: nauc_recall_at_1_diff1
value: 39.451484530341254
- type: nauc_recall_at_1_max
value: 25.790802427354205
- type: nauc_recall_at_1_std
value: -1.8340911432347162
- type: nauc_recall_at_20_diff1
value: 22.67002641081412
- type: nauc_recall_at_20_max
value: 22.634810976567632
- type: nauc_recall_at_20_std
value: 11.08185078231441
- type: nauc_recall_at_3_diff1
value: 28.883409519249298
- type: nauc_recall_at_3_max
value: 25.08426193015333
- type: nauc_recall_at_3_std
value: 3.332702402821052
- type: nauc_recall_at_5_diff1
value: 27.248817428767353
- type: nauc_recall_at_5_max
value: 24.488697770907862
- type: nauc_recall_at_5_std
value: 5.150559322926742
- type: ndcg_at_1
value: 19.201999999999998
- type: ndcg_at_10
value: 27.525
- type: ndcg_at_100
value: 32.917
- type: ndcg_at_1000
value: 36.071999999999996
- type: ndcg_at_20
value: 29.369
- type: ndcg_at_3
value: 22.997999999999998
- type: ndcg_at_5
value: 25.089
- type: precision_at_1
value: 19.201999999999998
- type: precision_at_10
value: 5.114
- type: precision_at_100
value: 0.914
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_20
value: 3.068
- type: precision_at_3
value: 10.84
- type: precision_at_5
value: 8.039
- type: recall_at_1
value: 15.812999999999999
- type: recall_at_10
value: 38.011
- type: recall_at_100
value: 62.316
- type: recall_at_1000
value: 84.787
- type: recall_at_20
value: 44.796
- type: recall_at_3
value: 25.534000000000002
- type: recall_at_5
value: 30.869000000000003
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: main_score
value: 40.521
- type: map_at_1
value: 25.471
- type: map_at_10
value: 35.022
- type: map_at_100
value: 36.189
- type: map_at_1000
value: 36.307
- type: map_at_20
value: 35.669000000000004
- type: map_at_3
value: 32.106
- type: map_at_5
value: 33.77
- type: mrr_at_1
value: 30.50373134328358
- type: mrr_at_10
value: 39.24503227908077
- type: mrr_at_100
value: 40.151748706499774
- type: mrr_at_1000
value: 40.22220003252721
- type: mrr_at_20
value: 39.8059758148897
- type: mrr_at_3
value: 36.73818407960197
- type: mrr_at_5
value: 38.1467661691542
- type: nauc_map_at_1000_diff1
value: 46.16248622121721
- type: nauc_map_at_1000_max
value: 40.52646385518007
- type: nauc_map_at_1000_std
value: 3.148266275747802
- type: nauc_map_at_100_diff1
value: 46.17396178097105
- type: nauc_map_at_100_max
value: 40.54391828366793
- type: nauc_map_at_100_std
value: 3.1465539515114047
- type: nauc_map_at_10_diff1
value: 46.235749959339614
- type: nauc_map_at_10_max
value: 40.440734073263016
- type: nauc_map_at_10_std
value: 2.8300771576177626
- type: nauc_map_at_1_diff1
value: 52.31836017894301
- type: nauc_map_at_1_max
value: 39.98411755588766
- type: nauc_map_at_1_std
value: -1.3807664175034557
- type: nauc_map_at_20_diff1
value: 46.22956225666944
- type: nauc_map_at_20_max
value: 40.38149532254275
- type: nauc_map_at_20_std
value: 2.9376913527139608
- type: nauc_map_at_3_diff1
value: 46.66513417112219
- type: nauc_map_at_3_max
value: 39.42343560398367
- type: nauc_map_at_3_std
value: 1.2211402555017814
- type: nauc_map_at_5_diff1
value: 46.458786087674014
- type: nauc_map_at_5_max
value: 40.55062568009025
- type: nauc_map_at_5_std
value: 2.874713984722366
- type: nauc_mrr_at_1000_diff1
value: 45.02880964596229
- type: nauc_mrr_at_1000_max
value: 40.54670837151151
- type: nauc_mrr_at_1000_std
value: 1.9361943758959246
- type: nauc_mrr_at_100_diff1
value: 45.0141231687371
- type: nauc_mrr_at_100_max
value: 40.563093939846254
- type: nauc_mrr_at_100_std
value: 1.95631717346565
- type: nauc_mrr_at_10_diff1
value: 45.02510345908053
- type: nauc_mrr_at_10_max
value: 40.65201686211006
- type: nauc_mrr_at_10_std
value: 1.765797491494287
- type: nauc_mrr_at_1_diff1
value: 50.97368399162673
- type: nauc_mrr_at_1_max
value: 40.90768065197206
- type: nauc_mrr_at_1_std
value: -1.4950717729817018
- type: nauc_mrr_at_20_diff1
value: 45.01757033486232
- type: nauc_mrr_at_20_max
value: 40.469096874526066
- type: nauc_mrr_at_20_std
value: 1.8814650823309433
- type: nauc_mrr_at_3_diff1
value: 45.41619994832078
- type: nauc_mrr_at_3_max
value: 39.97134246014811
- type: nauc_mrr_at_3_std
value: 0.351963662304222
- type: nauc_mrr_at_5_diff1
value: 45.1751735123411
- type: nauc_mrr_at_5_max
value: 40.78799409404439
- type: nauc_mrr_at_5_std
value: 1.9642777530569973
- type: nauc_ndcg_at_1000_diff1
value: 43.718675542961904
- type: nauc_ndcg_at_1000_max
value: 40.77838921628359
- type: nauc_ndcg_at_1000_std
value: 5.566597131514415
- type: nauc_ndcg_at_100_diff1
value: 43.60801649469792
- type: nauc_ndcg_at_100_max
value: 41.178769387330796
- type: nauc_ndcg_at_100_std
value: 6.049517999609993
- type: nauc_ndcg_at_10_diff1
value: 43.842412361059004
- type: nauc_ndcg_at_10_max
value: 40.6519609548175
- type: nauc_ndcg_at_10_std
value: 4.201266898997162
- type: nauc_ndcg_at_1_diff1
value: 50.97368399162673
- type: nauc_ndcg_at_1_max
value: 40.90768065197206
- type: nauc_ndcg_at_1_std
value: -1.4950717729817018
- type: nauc_ndcg_at_20_diff1
value: 43.85304850871846
- type: nauc_ndcg_at_20_max
value: 40.32052013131906
- type: nauc_ndcg_at_20_std
value: 4.728903608087234
- type: nauc_ndcg_at_3_diff1
value: 44.21918974277671
- type: nauc_ndcg_at_3_max
value: 38.960642621790456
- type: nauc_ndcg_at_3_std
value: 1.5413581396590283
- type: nauc_ndcg_at_5_diff1
value: 44.17111959292946
- type: nauc_ndcg_at_5_max
value: 40.879393486870796
- type: nauc_ndcg_at_5_std
value: 4.292430322369627
- type: nauc_precision_at_1000_diff1
value: -15.217116951096473
- type: nauc_precision_at_1000_max
value: -3.2195266520788293
- type: nauc_precision_at_1000_std
value: 3.9128797066726846
- type: nauc_precision_at_100_diff1
value: 0.3739578597713093
- type: nauc_precision_at_100_max
value: 16.020214815116475
- type: nauc_precision_at_100_std
value: 12.407216133940173
- type: nauc_precision_at_10_diff1
value: 22.78622694355213
- type: nauc_precision_at_10_max
value: 30.934571158762775
- type: nauc_precision_at_10_std
value: 7.387132441153662
- type: nauc_precision_at_1_diff1
value: 50.97368399162673
- type: nauc_precision_at_1_max
value: 40.90768065197206
- type: nauc_precision_at_1_std
value: -1.4950717729817018
- type: nauc_precision_at_20_diff1
value: 15.851699766979477
- type: nauc_precision_at_20_max
value: 25.760376623349373
- type: nauc_precision_at_20_std
value: 8.843769866250064
- type: nauc_precision_at_3_diff1
value: 33.40916192309544
- type: nauc_precision_at_3_max
value: 34.62137182252703
- type: nauc_precision_at_3_std
value: 2.6723118388566376
- type: nauc_precision_at_5_diff1
value: 29.839568032323736
- type: nauc_precision_at_5_max
value: 35.79411746926457
- type: nauc_precision_at_5_std
value: 8.075263629982045
- type: nauc_recall_at_1000_diff1
value: 22.684337017050314
- type: nauc_recall_at_1000_max
value: 38.75083488225343
- type: nauc_recall_at_1000_std
value: 46.20014728505404
- type: nauc_recall_at_100_diff1
value: 32.16637906784691
- type: nauc_recall_at_100_max
value: 41.16460712003215
- type: nauc_recall_at_100_std
value: 22.666195059036536
- type: nauc_recall_at_10_diff1
value: 35.53872376778553
- type: nauc_recall_at_10_max
value: 38.239674930598554
- type: nauc_recall_at_10_std
value: 8.764170731037375
- type: nauc_recall_at_1_diff1
value: 52.31836017894301
- type: nauc_recall_at_1_max
value: 39.98411755588766
- type: nauc_recall_at_1_std
value: -1.3807664175034557
- type: nauc_recall_at_20_diff1
value: 34.77159952615243
- type: nauc_recall_at_20_max
value: 35.99268561688956
- type: nauc_recall_at_20_std
value: 11.063781846789626
- type: nauc_recall_at_3_diff1
value: 38.59836732978252
- type: nauc_recall_at_3_max
value: 36.14336770585555
- type: nauc_recall_at_3_std
value: 3.330194066081952
- type: nauc_recall_at_5_diff1
value: 37.471534644016785
- type: nauc_recall_at_5_max
value: 39.941421167584906
- type: nauc_recall_at_5_std
value: 9.330375158059901
- type: ndcg_at_1
value: 30.503999999999998
- type: ndcg_at_10
value: 40.521
- type: ndcg_at_100
value: 45.869
- type: ndcg_at_1000
value: 48.381
- type: ndcg_at_20
value: 42.664
- type: ndcg_at_3
value: 35.537
- type: ndcg_at_5
value: 37.874
- type: precision_at_1
value: 30.503999999999998
- type: precision_at_10
value: 6.922000000000001
- type: precision_at_100
value: 1.087
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_20
value: 4.062
- type: precision_at_3
value: 16.448999999999998
- type: precision_at_5
value: 11.53
- type: recall_at_1
value: 25.471
- type: recall_at_10
value: 53.115
- type: recall_at_100
value: 76.247
- type: recall_at_1000
value: 93.633
- type: recall_at_20
value: 60.856
- type: recall_at_3
value: 39.149
- type: recall_at_5
value: 45.355000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: main_score
value: 40.083999999999996
- type: map_at_1
value: 23.916
- type: map_at_10
value: 33.898
- type: map_at_100
value: 35.524
- type: map_at_1000
value: 35.763
- type: map_at_20
value: 34.699999999999996
- type: map_at_3
value: 30.72
- type: map_at_5
value: 32.444
- type: mrr_at_1
value: 27.865612648221344
- type: mrr_at_10
value: 38.110373925591325
- type: mrr_at_100
value: 39.103867355603136
- type: mrr_at_1000
value: 39.155682308778616
- type: mrr_at_20
value: 38.674497071725696
- type: mrr_at_3
value: 35.210803689064576
- type: mrr_at_5
value: 36.99934123847168
- type: nauc_map_at_1000_diff1
value: 43.04370425444575
- type: nauc_map_at_1000_max
value: 30.664333341508517
- type: nauc_map_at_1000_std
value: 13.255841990616501
- type: nauc_map_at_100_diff1
value: 43.30950288942624
- type: nauc_map_at_100_max
value: 30.88701122881409
- type: nauc_map_at_100_std
value: 13.044875063416047
- type: nauc_map_at_10_diff1
value: 43.13368196505275
- type: nauc_map_at_10_max
value: 30.510777038103758
- type: nauc_map_at_10_std
value: 11.718306205503097
- type: nauc_map_at_1_diff1
value: 51.34182005448936
- type: nauc_map_at_1_max
value: 29.964954096304396
- type: nauc_map_at_1_std
value: 7.929661027160745
- type: nauc_map_at_20_diff1
value: 43.31624587145438
- type: nauc_map_at_20_max
value: 30.74154334111207
- type: nauc_map_at_20_std
value: 12.32652647361836
- type: nauc_map_at_3_diff1
value: 43.1491545591217
- type: nauc_map_at_3_max
value: 29.448225669130128
- type: nauc_map_at_3_std
value: 9.735131796506169
- type: nauc_map_at_5_diff1
value: 43.33647018722699
- type: nauc_map_at_5_max
value: 29.82004211927872
- type: nauc_map_at_5_std
value: 10.811941747327253
- type: nauc_mrr_at_1000_diff1
value: 42.09165265772457
- type: nauc_mrr_at_1000_max
value: 32.05875923131647
- type: nauc_mrr_at_1000_std
value: 15.019814870801303
- type: nauc_mrr_at_100_diff1
value: 42.08967964203582
- type: nauc_mrr_at_100_max
value: 32.07299417006864
- type: nauc_mrr_at_100_std
value: 15.057319380447614
- type: nauc_mrr_at_10_diff1
value: 41.841369406148246
- type: nauc_mrr_at_10_max
value: 31.767693589635538
- type: nauc_mrr_at_10_std
value: 14.602638735669798
- type: nauc_mrr_at_1_diff1
value: 50.062677615419304
- type: nauc_mrr_at_1_max
value: 33.35584104516006
- type: nauc_mrr_at_1_std
value: 11.42115012466949
- type: nauc_mrr_at_20_diff1
value: 41.93352325907799
- type: nauc_mrr_at_20_max
value: 32.015602545857945
- type: nauc_mrr_at_20_std
value: 15.048275956047814
- type: nauc_mrr_at_3_diff1
value: 41.918393480229014
- type: nauc_mrr_at_3_max
value: 31.253629045078224
- type: nauc_mrr_at_3_std
value: 13.577771791747217
- type: nauc_mrr_at_5_diff1
value: 42.020303609879015
- type: nauc_mrr_at_5_max
value: 31.71276631449414
- type: nauc_mrr_at_5_std
value: 14.160071868742637
- type: nauc_ndcg_at_1000_diff1
value: 41.073313917406516
- type: nauc_ndcg_at_1000_max
value: 31.874785583667343
- type: nauc_ndcg_at_1000_std
value: 17.392846103885827
- type: nauc_ndcg_at_100_diff1
value: 41.36609192671821
- type: nauc_ndcg_at_100_max
value: 32.1429966230732
- type: nauc_ndcg_at_100_std
value: 17.635443742312578
- type: nauc_ndcg_at_10_diff1
value: 40.16969739206176
- type: nauc_ndcg_at_10_max
value: 30.655050133517907
- type: nauc_ndcg_at_10_std
value: 15.31416270805731
- type: nauc_ndcg_at_1_diff1
value: 50.062677615419304
- type: nauc_ndcg_at_1_max
value: 33.35584104516006
- type: nauc_ndcg_at_1_std
value: 11.42115012466949
- type: nauc_ndcg_at_20_diff1
value: 40.65149703452073
- type: nauc_ndcg_at_20_max
value: 31.49158572383702
- type: nauc_ndcg_at_20_std
value: 16.515600802503588
- type: nauc_ndcg_at_3_diff1
value: 40.978434285347326
- type: nauc_ndcg_at_3_max
value: 30.152983643295965
- type: nauc_ndcg_at_3_std
value: 12.216265569919356
- type: nauc_ndcg_at_5_diff1
value: 41.08935148839345
- type: nauc_ndcg_at_5_max
value: 30.270289469266555
- type: nauc_ndcg_at_5_std
value: 13.872257416203936
- type: nauc_precision_at_1000_diff1
value: -23.49105492946047
- type: nauc_precision_at_1000_max
value: -14.82348334333618
- type: nauc_precision_at_1000_std
value: 25.58547404406785
- type: nauc_precision_at_100_diff1
value: -7.981292902854982
- type: nauc_precision_at_100_max
value: 0.3216310748533712
- type: nauc_precision_at_100_std
value: 30.619279987080606
- type: nauc_precision_at_10_diff1
value: 16.699669745243195
- type: nauc_precision_at_10_max
value: 24.848221992404866
- type: nauc_precision_at_10_std
value: 25.483080484054128
- type: nauc_precision_at_1_diff1
value: 50.062677615419304
- type: nauc_precision_at_1_max
value: 33.35584104516006
- type: nauc_precision_at_1_std
value: 11.42115012466949
- type: nauc_precision_at_20_diff1
value: 9.661364668172661
- type: nauc_precision_at_20_max
value: 18.15490912668976
- type: nauc_precision_at_20_std
value: 28.942530404656207
- type: nauc_precision_at_3_diff1
value: 28.173149805964336
- type: nauc_precision_at_3_max
value: 29.125517533363045
- type: nauc_precision_at_3_std
value: 16.440247682256874
- type: nauc_precision_at_5_diff1
value: 26.337016666473417
- type: nauc_precision_at_5_max
value: 27.91482399852503
- type: nauc_precision_at_5_std
value: 20.584790906600297
- type: nauc_recall_at_1000_diff1
value: 25.27962582492483
- type: nauc_recall_at_1000_max
value: 53.4157087239144
- type: nauc_recall_at_1000_std
value: 64.84320824589436
- type: nauc_recall_at_100_diff1
value: 32.52503833916644
- type: nauc_recall_at_100_max
value: 34.43578471306039
- type: nauc_recall_at_100_std
value: 37.12451201750556
- type: nauc_recall_at_10_diff1
value: 30.854734920106758
- type: nauc_recall_at_10_max
value: 27.70071769548424
- type: nauc_recall_at_10_std
value: 18.679668303532377
- type: nauc_recall_at_1_diff1
value: 51.34182005448936
- type: nauc_recall_at_1_max
value: 29.964954096304396
- type: nauc_recall_at_1_std
value: 7.929661027160745
- type: nauc_recall_at_20_diff1
value: 31.67584335957749
- type: nauc_recall_at_20_max
value: 30.819782365046017
- type: nauc_recall_at_20_std
value: 24.91327729486532
- type: nauc_recall_at_3_diff1
value: 34.07385889318035
- type: nauc_recall_at_3_max
value: 26.55094252259986
- type: nauc_recall_at_3_std
value: 10.867282036873508
- type: nauc_recall_at_5_diff1
value: 33.23389303702456
- type: nauc_recall_at_5_max
value: 26.993134299145368
- type: nauc_recall_at_5_std
value: 14.066236376235505
- type: ndcg_at_1
value: 27.866000000000003
- type: ndcg_at_10
value: 40.083999999999996
- type: ndcg_at_100
value: 46.267
- type: ndcg_at_1000
value: 48.701
- type: ndcg_at_20
value: 42.34
- type: ndcg_at_3
value: 34.583999999999996
- type: ndcg_at_5
value: 37.264
- type: precision_at_1
value: 27.866000000000003
- type: precision_at_10
value: 7.707999999999999
- type: precision_at_100
value: 1.569
- type: precision_at_1000
value: 0.247
- type: precision_at_20
value: 4.852
- type: precision_at_3
value: 16.337
- type: precision_at_5
value: 12.055
- type: recall_at_1
value: 23.916
- type: recall_at_10
value: 52.903
- type: recall_at_100
value: 79.777
- type: recall_at_1000
value: 94.72
- type: recall_at_20
value: 61.312
- type: recall_at_3
value: 37.711
- type: recall_at_5
value: 44.603
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 29.973
- type: map_at_1
value: 17.23
- type: map_at_10
value: 25.097
- type: map_at_100
value: 26.264
- type: map_at_1000
value: 26.369
- type: map_at_20
value: 25.796000000000003
- type: map_at_3
value: 22.487
- type: map_at_5
value: 23.977999999999998
- type: mrr_at_1
value: 19.038817005545287
- type: mrr_at_10
value: 27.142857142857142
- type: mrr_at_100
value: 28.18400454920016
- type: mrr_at_1000
value: 28.261243392575775
- type: mrr_at_20
value: 27.772863922037278
- type: mrr_at_3
value: 24.645717806531106
- type: mrr_at_5
value: 26.05052372150338
- type: nauc_map_at_1000_diff1
value: 30.011176313385096
- type: nauc_map_at_1000_max
value: 30.68572568741437
- type: nauc_map_at_1000_std
value: 6.891720154828985
- type: nauc_map_at_100_diff1
value: 30.0320356281249
- type: nauc_map_at_100_max
value: 30.721766519272826
- type: nauc_map_at_100_std
value: 6.887771590804904
- type: nauc_map_at_10_diff1
value: 30.18218019028145
- type: nauc_map_at_10_max
value: 30.676695850605086
- type: nauc_map_at_10_std
value: 6.35931077390129
- type: nauc_map_at_1_diff1
value: 36.65613803562446
- type: nauc_map_at_1_max
value: 34.41372061280891
- type: nauc_map_at_1_std
value: 5.643263116945109
- type: nauc_map_at_20_diff1
value: 29.97325431788116
- type: nauc_map_at_20_max
value: 30.6373674319881
- type: nauc_map_at_20_std
value: 6.627175965630369
- type: nauc_map_at_3_diff1
value: 30.86131371052504
- type: nauc_map_at_3_max
value: 31.15523969829247
- type: nauc_map_at_3_std
value: 5.567555712000783
- type: nauc_map_at_5_diff1
value: 30.848087000113118
- type: nauc_map_at_5_max
value: 31.459896541460697
- type: nauc_map_at_5_std
value: 5.518271061275222
- type: nauc_mrr_at_1000_diff1
value: 29.453047003985
- type: nauc_mrr_at_1000_max
value: 30.19882876836656
- type: nauc_mrr_at_1000_std
value: 6.626130218002384
- type: nauc_mrr_at_100_diff1
value: 29.44273618213682
- type: nauc_mrr_at_100_max
value: 30.20792006793222
- type: nauc_mrr_at_100_std
value: 6.6326270055928225
- type: nauc_mrr_at_10_diff1
value: 29.481500991416937
- type: nauc_mrr_at_10_max
value: 30.166282832131248
- type: nauc_mrr_at_10_std
value: 6.194497427521731
- type: nauc_mrr_at_1_diff1
value: 35.00165816992082
- type: nauc_mrr_at_1_max
value: 33.779777100720864
- type: nauc_mrr_at_1_std
value: 5.621116520393843
- type: nauc_mrr_at_20_diff1
value: 29.420661046476237
- type: nauc_mrr_at_20_max
value: 30.096026694199697
- type: nauc_mrr_at_20_std
value: 6.418490136892468
- type: nauc_mrr_at_3_diff1
value: 30.15562602647593
- type: nauc_mrr_at_3_max
value: 31.24169802519362
- type: nauc_mrr_at_3_std
value: 5.292177214159827
- type: nauc_mrr_at_5_diff1
value: 29.85812493582057
- type: nauc_mrr_at_5_max
value: 30.84309432039849
- type: nauc_mrr_at_5_std
value: 5.17373327205622
- type: nauc_ndcg_at_1000_diff1
value: 27.06661442385399
- type: nauc_ndcg_at_1000_max
value: 28.96911571800487
- type: nauc_ndcg_at_1000_std
value: 10.418806432871733
- type: nauc_ndcg_at_100_diff1
value: 27.146281316839314
- type: nauc_ndcg_at_100_max
value: 29.044799456854186
- type: nauc_ndcg_at_100_std
value: 10.508336096486618
- type: nauc_ndcg_at_10_diff1
value: 27.420874599878342
- type: nauc_ndcg_at_10_max
value: 28.714090994664755
- type: nauc_ndcg_at_10_std
value: 7.652695188853375
- type: nauc_ndcg_at_1_diff1
value: 35.00165816992082
- type: nauc_ndcg_at_1_max
value: 33.779777100720864
- type: nauc_ndcg_at_1_std
value: 5.621116520393843
- type: nauc_ndcg_at_20_diff1
value: 26.854270351760974
- type: nauc_ndcg_at_20_max
value: 28.52303486745037
- type: nauc_ndcg_at_20_std
value: 8.34449264443146
- type: nauc_ndcg_at_3_diff1
value: 28.683665095071454
- type: nauc_ndcg_at_3_max
value: 30.21167815580974
- type: nauc_ndcg_at_3_std
value: 5.57510161196495
- type: nauc_ndcg_at_5_diff1
value: 28.568200018893215
- type: nauc_ndcg_at_5_max
value: 30.268878618614377
- type: nauc_ndcg_at_5_std
value: 5.561108887007736
- type: nauc_precision_at_1000_diff1
value: -15.949370649937453
- type: nauc_precision_at_1000_max
value: -12.55230242997234
- type: nauc_precision_at_1000_std
value: 7.964001054475982
- type: nauc_precision_at_100_diff1
value: 3.8015059641621365
- type: nauc_precision_at_100_max
value: 9.502394070121735
- type: nauc_precision_at_100_std
value: 17.651392778848304
- type: nauc_precision_at_10_diff1
value: 18.272370317932598
- type: nauc_precision_at_10_max
value: 22.250936689177696
- type: nauc_precision_at_10_std
value: 11.326091089478126
- type: nauc_precision_at_1_diff1
value: 35.00165816992082
- type: nauc_precision_at_1_max
value: 33.779777100720864
- type: nauc_precision_at_1_std
value: 5.621116520393843
- type: nauc_precision_at_20_diff1
value: 14.701205402696422
- type: nauc_precision_at_20_max
value: 19.479826509253293
- type: nauc_precision_at_20_std
value: 11.944454432741377
- type: nauc_precision_at_3_diff1
value: 24.240226319020405
- type: nauc_precision_at_3_max
value: 28.68870471669554
- type: nauc_precision_at_3_std
value: 6.574024673506498
- type: nauc_precision_at_5_diff1
value: 23.17004836875319
- type: nauc_precision_at_5_max
value: 28.191016385192867
- type: nauc_precision_at_5_std
value: 6.514807345015352
- type: nauc_recall_at_1000_diff1
value: 3.893631175061775
- type: nauc_recall_at_1000_max
value: 19.271373005950228
- type: nauc_recall_at_1000_std
value: 45.08461198752793
- type: nauc_recall_at_100_diff1
value: 16.56155043674209
- type: nauc_recall_at_100_max
value: 22.519466525026544
- type: nauc_recall_at_100_std
value: 27.062281302347973
- type: nauc_recall_at_10_diff1
value: 19.666472561806202
- type: nauc_recall_at_10_max
value: 22.619769621626244
- type: nauc_recall_at_10_std
value: 11.00062407965151
- type: nauc_recall_at_1_diff1
value: 36.65613803562446
- type: nauc_recall_at_1_max
value: 34.41372061280891
- type: nauc_recall_at_1_std
value: 5.643263116945109
- type: nauc_recall_at_20_diff1
value: 16.971894573394206
- type: nauc_recall_at_20_max
value: 21.44001516902887
- type: nauc_recall_at_20_std
value: 13.106111366241002
- type: nauc_recall_at_3_diff1
value: 23.337485705564454
- type: nauc_recall_at_3_max
value: 26.926134944792864
- type: nauc_recall_at_3_std
value: 6.142956932796485
- type: nauc_recall_at_5_diff1
value: 23.052394072882375
- type: nauc_recall_at_5_max
value: 27.026444224445406
- type: nauc_recall_at_5_std
value: 5.735439526218693
- type: ndcg_at_1
value: 19.039
- type: ndcg_at_10
value: 29.973
- type: ndcg_at_100
value: 35.538
- type: ndcg_at_1000
value: 38.196999999999996
- type: ndcg_at_20
value: 32.352
- type: ndcg_at_3
value: 24.89
- type: ndcg_at_5
value: 27.427
- type: precision_at_1
value: 19.039
- type: precision_at_10
value: 5.009
- type: precision_at_100
value: 0.843
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_20
value: 3.05
- type: precision_at_3
value: 10.906
- type: precision_at_5
value: 8.059
- type: recall_at_1
value: 17.23
- type: recall_at_10
value: 42.886
- type: recall_at_100
value: 68.309
- type: recall_at_1000
value: 88.263
- type: recall_at_20
value: 52.039
- type: recall_at_3
value: 29.559
- type: recall_at_5
value: 35.49
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 23.837
- type: map_at_1
value: 9.273000000000001
- type: map_at_10
value: 16.492
- type: map_at_100
value: 18.236
- type: map_at_1000
value: 18.423000000000002
- type: map_at_20
value: 17.395
- type: map_at_3
value: 13.533999999999999
- type: map_at_5
value: 15.012
- type: mrr_at_1
value: 20.521172638436482
- type: mrr_at_10
value: 31.445194147148513
- type: mrr_at_100
value: 32.61483800330437
- type: mrr_at_1000
value: 32.664329496819654
- type: mrr_at_20
value: 32.17294028439281
- type: mrr_at_3
value: 28.013029315960875
- type: mrr_at_5
value: 29.863192182410366
- type: nauc_map_at_1000_diff1
value: 18.01650517854619
- type: nauc_map_at_1000_max
value: 35.00555751580392
- type: nauc_map_at_1000_std
value: 9.786398826312832
- type: nauc_map_at_100_diff1
value: 18.03109714032031
- type: nauc_map_at_100_max
value: 35.02293343117481
- type: nauc_map_at_100_std
value: 9.71347278319927
- type: nauc_map_at_10_diff1
value: 18.123527260203605
- type: nauc_map_at_10_max
value: 34.59737571933771
- type: nauc_map_at_10_std
value: 7.985244526477989
- type: nauc_map_at_1_diff1
value: 24.20116611812359
- type: nauc_map_at_1_max
value: 30.142503127773175
- type: nauc_map_at_1_std
value: 1.7528279249714371
- type: nauc_map_at_20_diff1
value: 17.92941292676869
- type: nauc_map_at_20_max
value: 34.90561535201822
- type: nauc_map_at_20_std
value: 8.806983271002245
- type: nauc_map_at_3_diff1
value: 19.621278199026627
- type: nauc_map_at_3_max
value: 33.04953696007031
- type: nauc_map_at_3_std
value: 4.743775272044947
- type: nauc_map_at_5_diff1
value: 17.84852616035865
- type: nauc_map_at_5_max
value: 33.918937290902676
- type: nauc_map_at_5_std
value: 6.43805539088188
- type: nauc_mrr_at_1000_diff1
value: 15.347525245361156
- type: nauc_mrr_at_1000_max
value: 30.984286548888416
- type: nauc_mrr_at_1000_std
value: 10.51729403704548
- type: nauc_mrr_at_100_diff1
value: 15.35190671644279
- type: nauc_mrr_at_100_max
value: 30.991582390051992
- type: nauc_mrr_at_100_std
value: 10.528113181960542
- type: nauc_mrr_at_10_diff1
value: 15.421448994451428
- type: nauc_mrr_at_10_max
value: 31.13167396372901
- type: nauc_mrr_at_10_std
value: 10.405474460265241
- type: nauc_mrr_at_1_diff1
value: 19.91098871041916
- type: nauc_mrr_at_1_max
value: 28.199940386873457
- type: nauc_mrr_at_1_std
value: 5.155228094170121
- type: nauc_mrr_at_20_diff1
value: 15.299643109767583
- type: nauc_mrr_at_20_max
value: 31.01811956006181
- type: nauc_mrr_at_20_std
value: 10.489072164322263
- type: nauc_mrr_at_3_diff1
value: 15.366450166527843
- type: nauc_mrr_at_3_max
value: 30.34857432681673
- type: nauc_mrr_at_3_std
value: 9.006900103817772
- type: nauc_mrr_at_5_diff1
value: 14.887486492755764
- type: nauc_mrr_at_5_max
value: 31.064197475112508
- type: nauc_mrr_at_5_std
value: 10.031368604363431
- type: nauc_ndcg_at_1000_diff1
value: 15.488355020463965
- type: nauc_ndcg_at_1000_max
value: 35.599964683193356
- type: nauc_ndcg_at_1000_std
value: 17.060985301144974
- type: nauc_ndcg_at_100_diff1
value: 15.854159478255767
- type: nauc_ndcg_at_100_max
value: 35.68620327215392
- type: nauc_ndcg_at_100_std
value: 16.291640368302122
- type: nauc_ndcg_at_10_diff1
value: 16.078556057593055
- type: nauc_ndcg_at_10_max
value: 35.16683300045305
- type: nauc_ndcg_at_10_std
value: 11.600026114771842
- type: nauc_ndcg_at_1_diff1
value: 19.91098871041916
- type: nauc_ndcg_at_1_max
value: 28.199940386873457
- type: nauc_ndcg_at_1_std
value: 5.155228094170121
- type: nauc_ndcg_at_20_diff1
value: 15.488844425483514
- type: nauc_ndcg_at_20_max
value: 35.56107040983233
- type: nauc_ndcg_at_20_std
value: 13.251910512661198
- type: nauc_ndcg_at_3_diff1
value: 16.74489883121594
- type: nauc_ndcg_at_3_max
value: 32.389819879059544
- type: nauc_ndcg_at_3_std
value: 7.493628842692248
- type: nauc_ndcg_at_5_diff1
value: 15.113032176867607
- type: nauc_ndcg_at_5_max
value: 34.3779074616743
- type: nauc_ndcg_at_5_std
value: 9.451124063087098
- type: nauc_precision_at_1000_diff1
value: -3.0336791429010397
- type: nauc_precision_at_1000_max
value: 7.186757791081503
- type: nauc_precision_at_1000_std
value: 24.207475517567993
- type: nauc_precision_at_100_diff1
value: 4.1799378860106025
- type: nauc_precision_at_100_max
value: 19.734149092069195
- type: nauc_precision_at_100_std
value: 27.14752823725515
- type: nauc_precision_at_10_diff1
value: 9.757385921354574
- type: nauc_precision_at_10_max
value: 31.63967138734393
- type: nauc_precision_at_10_std
value: 20.941862722792937
- type: nauc_precision_at_1_diff1
value: 19.91098871041916
- type: nauc_precision_at_1_max
value: 28.199940386873457
- type: nauc_precision_at_1_std
value: 5.155228094170121
- type: nauc_precision_at_20_diff1
value: 6.041242795339366
- type: nauc_precision_at_20_max
value: 28.346626059960002
- type: nauc_precision_at_20_std
value: 23.557255218471095
- type: nauc_precision_at_3_diff1
value: 12.29833478679591
- type: nauc_precision_at_3_max
value: 32.28472659370561
- type: nauc_precision_at_3_std
value: 12.302338064297853
- type: nauc_precision_at_5_diff1
value: 7.992994907910815
- type: nauc_precision_at_5_max
value: 32.957822083112525
- type: nauc_precision_at_5_std
value: 17.171509203185707
- type: nauc_recall_at_1000_diff1
value: 6.546403888329451
- type: nauc_recall_at_1000_max
value: 30.05169708532201
- type: nauc_recall_at_1000_std
value: 33.1025025789684
- type: nauc_recall_at_100_diff1
value: 10.063690002072539
- type: nauc_recall_at_100_max
value: 30.33645832268982
- type: nauc_recall_at_100_std
value: 24.88750198752349
- type: nauc_recall_at_10_diff1
value: 11.557048975359223
- type: nauc_recall_at_10_max
value: 32.570077522651765
- type: nauc_recall_at_10_std
value: 13.351992240284844
- type: nauc_recall_at_1_diff1
value: 24.20116611812359
- type: nauc_recall_at_1_max
value: 30.142503127773175
- type: nauc_recall_at_1_std
value: 1.7528279249714371
- type: nauc_recall_at_20_diff1
value: 10.023860910712143
- type: nauc_recall_at_20_max
value: 31.966797882093502
- type: nauc_recall_at_20_std
value: 16.292044481984295
- type: nauc_recall_at_3_diff1
value: 14.118820470249613
- type: nauc_recall_at_3_max
value: 32.864946121706126
- type: nauc_recall_at_3_std
value: 7.699657726962808
- type: nauc_recall_at_5_diff1
value: 10.13729414622558
- type: nauc_recall_at_5_max
value: 33.482336846118045
- type: nauc_recall_at_5_std
value: 10.497701399887017
- type: ndcg_at_1
value: 20.521
- type: ndcg_at_10
value: 23.837
- type: ndcg_at_100
value: 31.278
- type: ndcg_at_1000
value: 34.852
- type: ndcg_at_20
value: 26.653
- type: ndcg_at_3
value: 18.778
- type: ndcg_at_5
value: 20.535999999999998
- type: precision_at_1
value: 20.521
- type: precision_at_10
value: 7.582999999999999
- type: precision_at_100
value: 1.545
- type: precision_at_1000
value: 0.22100000000000003
- type: precision_at_20
value: 4.974
- type: precision_at_3
value: 13.941
- type: precision_at_5
value: 10.866000000000001
- type: recall_at_1
value: 9.273000000000001
- type: recall_at_10
value: 29.961
- type: recall_at_100
value: 55.855999999999995
- type: recall_at_1000
value: 75.972
- type: recall_at_20
value: 38.045
- type: recall_at_3
value: 17.666
- type: recall_at_5
value: 22.539
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 36.77
- type: map_at_1
value: 7.879
- type: map_at_10
value: 17.448
- type: map_at_100
value: 24.615000000000002
- type: map_at_1000
value: 26.32
- type: map_at_20
value: 20.115
- type: map_at_3
value: 12.607
- type: map_at_5
value: 14.757000000000001
- type: mrr_at_1
value: 60.75000000000001
- type: mrr_at_10
value: 70.04662698412697
- type: mrr_at_100
value: 70.48374853904342
- type: mrr_at_1000
value: 70.48974912019449
- type: mrr_at_20
value: 70.35767608079914
- type: mrr_at_3
value: 68.04166666666667
- type: mrr_at_5
value: 69.39166666666667
- type: nauc_map_at_1000_diff1
value: 27.22615670354747
- type: nauc_map_at_1000_max
value: 23.117379231999642
- type: nauc_map_at_1000_std
value: 15.590590587924877
- type: nauc_map_at_100_diff1
value: 27.637835658039805
- type: nauc_map_at_100_max
value: 19.836155567809612
- type: nauc_map_at_100_std
value: 11.900741405093758
- type: nauc_map_at_10_diff1
value: 30.728419563300395
- type: nauc_map_at_10_max
value: 6.106892959682543
- type: nauc_map_at_10_std
value: -9.11825174887402
- type: nauc_map_at_1_diff1
value: 39.34845843129211
- type: nauc_map_at_1_max
value: -2.7536297297258354
- type: nauc_map_at_1_std
value: -21.149652784081006
- type: nauc_map_at_20_diff1
value: 29.37489889563395
- type: nauc_map_at_20_max
value: 11.068671486589691
- type: nauc_map_at_20_std
value: -1.9024556480454369
- type: nauc_map_at_3_diff1
value: 35.58217022040217
- type: nauc_map_at_3_max
value: 0.2641479206106634
- type: nauc_map_at_3_std
value: -17.942087104722955
- type: nauc_map_at_5_diff1
value: 32.07485536680787
- type: nauc_map_at_5_max
value: 2.132142953478948
- type: nauc_map_at_5_std
value: -13.959336639125317
- type: nauc_mrr_at_1000_diff1
value: 43.561171278954866
- type: nauc_mrr_at_1000_max
value: 46.86561252904832
- type: nauc_mrr_at_1000_std
value: 25.189090212812044
- type: nauc_mrr_at_100_diff1
value: 43.56311857767914
- type: nauc_mrr_at_100_max
value: 46.87364039655639
- type: nauc_mrr_at_100_std
value: 25.20188703419532
- type: nauc_mrr_at_10_diff1
value: 43.554694361118905
- type: nauc_mrr_at_10_max
value: 46.728242258941464
- type: nauc_mrr_at_10_std
value: 25.25356257708155
- type: nauc_mrr_at_1_diff1
value: 46.435352817539524
- type: nauc_mrr_at_1_max
value: 46.0413071187664
- type: nauc_mrr_at_1_std
value: 20.350129155245682
- type: nauc_mrr_at_20_diff1
value: 43.544595900767
- type: nauc_mrr_at_20_max
value: 46.93717450668172
- type: nauc_mrr_at_20_std
value: 25.25597416021791
- type: nauc_mrr_at_3_diff1
value: 42.553383214077115
- type: nauc_mrr_at_3_max
value: 46.56975257676068
- type: nauc_mrr_at_3_std
value: 24.70327599709596
- type: nauc_mrr_at_5_diff1
value: 43.33215737862213
- type: nauc_mrr_at_5_max
value: 46.97620970583296
- type: nauc_mrr_at_5_std
value: 25.529521260210203
- type: nauc_ndcg_at_1000_diff1
value: 27.589730901498775
- type: nauc_ndcg_at_1000_max
value: 34.18730626989723
- type: nauc_ndcg_at_1000_std
value: 27.79208958504551
- type: nauc_ndcg_at_100_diff1
value: 28.099956032480257
- type: nauc_ndcg_at_100_max
value: 25.076317763406653
- type: nauc_ndcg_at_100_std
value: 19.3393302641812
- type: nauc_ndcg_at_10_diff1
value: 28.10040050055288
- type: nauc_ndcg_at_10_max
value: 27.463719470301168
- type: nauc_ndcg_at_10_std
value: 13.569605959220086
- type: nauc_ndcg_at_1_diff1
value: 39.92817671769714
- type: nauc_ndcg_at_1_max
value: 34.44662945106997
- type: nauc_ndcg_at_1_std
value: 13.388099467140332
- type: nauc_ndcg_at_20_diff1
value: 27.800968512396306
- type: nauc_ndcg_at_20_max
value: 23.78719275004937
- type: nauc_ndcg_at_20_std
value: 11.933811285502157
- type: nauc_ndcg_at_3_diff1
value: 30.362495467731133
- type: nauc_ndcg_at_3_max
value: 31.470527935112507
- type: nauc_ndcg_at_3_std
value: 13.5264322754454
- type: nauc_ndcg_at_5_diff1
value: 27.596193051135042
- type: nauc_ndcg_at_5_max
value: 28.879553439188545
- type: nauc_ndcg_at_5_std
value: 14.002675908790085
- type: nauc_precision_at_1000_diff1
value: -5.902001497187656
- type: nauc_precision_at_1000_max
value: 31.506103503010614
- type: nauc_precision_at_1000_std
value: 30.37757126360957
- type: nauc_precision_at_100_diff1
value: -7.078812736371486
- type: nauc_precision_at_100_max
value: 40.0935402905799
- type: nauc_precision_at_100_std
value: 48.350060964069996
- type: nauc_precision_at_10_diff1
value: 2.9397070998315495
- type: nauc_precision_at_10_max
value: 41.427281680892975
- type: nauc_precision_at_10_std
value: 41.568474216601494
- type: nauc_precision_at_1_diff1
value: 46.435352817539524
- type: nauc_precision_at_1_max
value: 46.0413071187664
- type: nauc_precision_at_1_std
value: 20.350129155245682
- type: nauc_precision_at_20_diff1
value: -0.5003867750646896
- type: nauc_precision_at_20_max
value: 43.11320479268452
- type: nauc_precision_at_20_std
value: 46.31414266215817
- type: nauc_precision_at_3_diff1
value: 16.843701906002153
- type: nauc_precision_at_3_max
value: 39.14348289333492
- type: nauc_precision_at_3_std
value: 28.97286018704868
- type: nauc_precision_at_5_diff1
value: 7.4678851421555255
- type: nauc_precision_at_5_max
value: 39.44725843015022
- type: nauc_precision_at_5_std
value: 36.07126271213125
- type: nauc_recall_at_1000_diff1
value: 12.918659968294232
- type: nauc_recall_at_1000_max
value: 18.912793350749517
- type: nauc_recall_at_1000_std
value: 34.58765147591728
- type: nauc_recall_at_100_diff1
value: 17.75168890570515
- type: nauc_recall_at_100_max
value: 9.431103175972714
- type: nauc_recall_at_100_std
value: 18.236704585602688
- type: nauc_recall_at_10_diff1
value: 22.428401923490217
- type: nauc_recall_at_10_max
value: -2.0581844217543095
- type: nauc_recall_at_10_std
value: -12.095753965206086
- type: nauc_recall_at_1_diff1
value: 39.34845843129211
- type: nauc_recall_at_1_max
value: -2.7536297297258354
- type: nauc_recall_at_1_std
value: -21.149652784081006
- type: nauc_recall_at_20_diff1
value: 19.029969489215137
- type: nauc_recall_at_20_max
value: 0.4313311185111767
- type: nauc_recall_at_20_std
value: -4.001252650460747
- type: nauc_recall_at_3_diff1
value: 32.40881022483858
- type: nauc_recall_at_3_max
value: -2.2448786906703293
- type: nauc_recall_at_3_std
value: -18.736548322855686
- type: nauc_recall_at_5_diff1
value: 25.908532046267744
- type: nauc_recall_at_5_max
value: -2.4645406246201174
- type: nauc_recall_at_5_std
value: -14.819488134588758
- type: ndcg_at_1
value: 47.25
- type: ndcg_at_10
value: 36.77
- type: ndcg_at_100
value: 42.33
- type: ndcg_at_1000
value: 50.382000000000005
- type: ndcg_at_20
value: 36.51
- type: ndcg_at_3
value: 40.128
- type: ndcg_at_5
value: 38.031
- type: precision_at_1
value: 60.75000000000001
- type: precision_at_10
value: 29.549999999999997
- type: precision_at_100
value: 9.62
- type: precision_at_1000
value: 2.0580000000000003
- type: precision_at_20
value: 22.125
- type: precision_at_3
value: 44.833
- type: precision_at_5
value: 38.25
- type: recall_at_1
value: 7.879
- type: recall_at_10
value: 23.783
- type: recall_at_100
value: 51.193
- type: recall_at_1000
value: 75.995
- type: recall_at_20
value: 31.05
- type: recall_at_3
value: 14.16
- type: recall_at_5
value: 17.727
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 53.94500000000001
- type: f1
value: 46.74955162106079
- type: f1_weighted
value: 55.44564710432288
- type: main_score
value: 53.94500000000001
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 84.127
- type: map_at_1
value: 69.831
- type: map_at_10
value: 79.589
- type: map_at_100
value: 79.77499999999999
- type: map_at_1000
value: 79.788
- type: map_at_20
value: 79.706
- type: map_at_3
value: 78.42099999999999
- type: map_at_5
value: 79.239
- type: mrr_at_1
value: 75.05250525052504
- type: mrr_at_10
value: 84.58987565423183
- type: mrr_at_100
value: 84.65851795351881
- type: mrr_at_1000
value: 84.65972718436838
- type: mrr_at_20
value: 84.64833916172947
- type: mrr_at_3
value: 83.64336433643345
- type: mrr_at_5
value: 84.34018401840153
- type: nauc_map_at_1000_diff1
value: 49.23229610937116
- type: nauc_map_at_1000_max
value: 2.538940503744293
- type: nauc_map_at_1000_std
value: -28.281666551373885
- type: nauc_map_at_100_diff1
value: 49.206748439493715
- type: nauc_map_at_100_max
value: 2.5306616051352426
- type: nauc_map_at_100_std
value: -28.278850840258357
- type: nauc_map_at_10_diff1
value: 49.09546754806344
- type: nauc_map_at_10_max
value: 2.6113492488760803
- type: nauc_map_at_10_std
value: -28.33173942793787
- type: nauc_map_at_1_diff1
value: 54.03823845678141
- type: nauc_map_at_1_max
value: 0.7813055695400233
- type: nauc_map_at_1_std
value: -29.69082254949428
- type: nauc_map_at_20_diff1
value: 49.13309291472015
- type: nauc_map_at_20_max
value: 2.527699255933495
- type: nauc_map_at_20_std
value: -28.273378648376767
- type: nauc_map_at_3_diff1
value: 49.16418319489923
- type: nauc_map_at_3_max
value: 2.4530562838038668
- type: nauc_map_at_3_std
value: -29.749466711737117
- type: nauc_map_at_5_diff1
value: 49.105002115323174
- type: nauc_map_at_5_max
value: 2.730159330614642
- type: nauc_map_at_5_std
value: -28.624757813540224
- type: nauc_mrr_at_1000_diff1
value: 63.27335919243411
- type: nauc_mrr_at_1000_max
value: 4.374350066360141
- type: nauc_mrr_at_1000_std
value: -39.057765474275875
- type: nauc_mrr_at_100_diff1
value: 63.27201389539822
- type: nauc_mrr_at_100_max
value: 4.380072421865697
- type: nauc_mrr_at_100_std
value: -39.05368757884141
- type: nauc_mrr_at_10_diff1
value: 63.24639295001365
- type: nauc_mrr_at_10_max
value: 4.512012375528155
- type: nauc_mrr_at_10_std
value: -39.12854460658675
- type: nauc_mrr_at_1_diff1
value: 65.10605165757288
- type: nauc_mrr_at_1_max
value: 1.9283900321068632
- type: nauc_mrr_at_1_std
value: -36.73128263177301
- type: nauc_mrr_at_20_diff1
value: 63.25714175532876
- type: nauc_mrr_at_20_max
value: 4.401641881007041
- type: nauc_mrr_at_20_std
value: -39.06295724502164
- type: nauc_mrr_at_3_diff1
value: 62.74870913078454
- type: nauc_mrr_at_3_max
value: 4.451662631818057
- type: nauc_mrr_at_3_std
value: -40.362052318194905
- type: nauc_mrr_at_5_diff1
value: 63.15462728579158
- type: nauc_mrr_at_5_max
value: 4.651205798352267
- type: nauc_mrr_at_5_std
value: -39.39561481114499
- type: nauc_ndcg_at_1000_diff1
value: 50.05516269906709
- type: nauc_ndcg_at_1000_max
value: 3.402171494055581
- type: nauc_ndcg_at_1000_std
value: -28.03925061760615
- type: nauc_ndcg_at_100_diff1
value: 49.3532420182713
- type: nauc_ndcg_at_100_max
value: 3.2254197563689253
- type: nauc_ndcg_at_100_std
value: -27.790242243156303
- type: nauc_ndcg_at_10_diff1
value: 48.83916695200456
- type: nauc_ndcg_at_10_max
value: 3.526631254510631
- type: nauc_ndcg_at_10_std
value: -28.107233038143935
- type: nauc_ndcg_at_1_diff1
value: 65.10605165757288
- type: nauc_ndcg_at_1_max
value: 1.9283900321068632
- type: nauc_ndcg_at_1_std
value: -36.73128263177301
- type: nauc_ndcg_at_20_diff1
value: 48.89391205041084
- type: nauc_ndcg_at_20_max
value: 3.193109099886884
- type: nauc_ndcg_at_20_std
value: -27.746898107657486
- type: nauc_ndcg_at_3_diff1
value: 49.700478041463256
- type: nauc_ndcg_at_3_max
value: 3.5597079593645837
- type: nauc_ndcg_at_3_std
value: -31.8276627401069
- type: nauc_ndcg_at_5_diff1
value: 49.13817289744641
- type: nauc_ndcg_at_5_max
value: 3.9842988788044162
- type: nauc_ndcg_at_5_std
value: -29.128133914203897
- type: nauc_precision_at_1000_diff1
value: -5.8168043702291445
- type: nauc_precision_at_1000_max
value: 8.661081932948386
- type: nauc_precision_at_1000_std
value: 7.898154314108613
- type: nauc_precision_at_100_diff1
value: -7.622708807398312
- type: nauc_precision_at_100_max
value: 7.573802349665375
- type: nauc_precision_at_100_std
value: 7.548940358658417
- type: nauc_precision_at_10_diff1
value: 3.651203107718887
- type: nauc_precision_at_10_max
value: 12.027476444641824
- type: nauc_precision_at_10_std
value: -3.8701414226488393
- type: nauc_precision_at_1_diff1
value: 65.10605165757288
- type: nauc_precision_at_1_max
value: 1.9283900321068632
- type: nauc_precision_at_1_std
value: -36.73128263177301
- type: nauc_precision_at_20_diff1
value: -4.51338283591896
- type: nauc_precision_at_20_max
value: 8.574478979483608
- type: nauc_precision_at_20_std
value: 3.8001684359605457
- type: nauc_precision_at_3_diff1
value: 35.12229883441577
- type: nauc_precision_at_3_max
value: 11.461666197502227
- type: nauc_precision_at_3_std
value: -34.430950046529375
- type: nauc_precision_at_5_diff1
value: 19.750032706257066
- type: nauc_precision_at_5_max
value: 15.700101161283891
- type: nauc_precision_at_5_std
value: -17.01470586200846
- type: nauc_recall_at_1000_diff1
value: 5.677803043632773
- type: nauc_recall_at_1000_max
value: 6.013417206823954
- type: nauc_recall_at_1000_std
value: 28.095710500813787
- type: nauc_recall_at_100_diff1
value: 6.062697689760903
- type: nauc_recall_at_100_max
value: 2.918708091666672
- type: nauc_recall_at_100_std
value: 15.009661326828391
- type: nauc_recall_at_10_diff1
value: 15.51901323813468
- type: nauc_recall_at_10_max
value: 5.695538162226332
- type: nauc_recall_at_10_std
value: -1.6573979540762098
- type: nauc_recall_at_1_diff1
value: 54.03823845678141
- type: nauc_recall_at_1_max
value: 0.7813055695400233
- type: nauc_recall_at_1_std
value: -29.69082254949428
- type: nauc_recall_at_20_diff1
value: 9.37823741228587
- type: nauc_recall_at_20_max
value: 3.0566017916814943
- type: nauc_recall_at_20_std
value: 6.9796184911386545
- type: nauc_recall_at_3_diff1
value: 32.07387343667272
- type: nauc_recall_at_3_max
value: 4.789923667382424
- type: nauc_recall_at_3_std
value: -24.74706115680205
- type: nauc_recall_at_5_diff1
value: 24.39694752709738
- type: nauc_recall_at_5_max
value: 7.271133287879929
- type: nauc_recall_at_5_std
value: -12.628276788882612
- type: ndcg_at_1
value: 75.053
- type: ndcg_at_10
value: 84.127
- type: ndcg_at_100
value: 84.77900000000001
- type: ndcg_at_1000
value: 85.028
- type: ndcg_at_20
value: 84.465
- type: ndcg_at_3
value: 82.179
- type: ndcg_at_5
value: 83.42399999999999
- type: precision_at_1
value: 75.053
- type: precision_at_10
value: 10.189
- type: precision_at_100
value: 1.068
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_20
value: 5.188000000000001
- type: precision_at_3
value: 31.813000000000002
- type: precision_at_5
value: 19.829
- type: recall_at_1
value: 69.831
- type: recall_at_10
value: 93.119
- type: recall_at_100
value: 95.649
- type: recall_at_1000
value: 97.245
- type: recall_at_20
value: 94.313
- type: recall_at_3
value: 87.787
- type: recall_at_5
value: 90.989
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 46.018
- type: map_at_1
value: 23.239
- type: map_at_10
value: 37.785000000000004
- type: map_at_100
value: 39.78
- type: map_at_1000
value: 39.947
- type: map_at_20
value: 38.873999999999995
- type: map_at_3
value: 32.686
- type: map_at_5
value: 35.725
- type: mrr_at_1
value: 45.21604938271605
- type: mrr_at_10
value: 53.81534146580441
- type: mrr_at_100
value: 54.57479873400386
- type: mrr_at_1000
value: 54.60767741375167
- type: mrr_at_20
value: 54.32374740680479
- type: mrr_at_3
value: 51.02880658436213
- type: mrr_at_5
value: 52.91152263374482
- type: nauc_map_at_1000_diff1
value: 37.39674307076189
- type: nauc_map_at_1000_max
value: 29.499416637029057
- type: nauc_map_at_1000_std
value: -3.159386284834724
- type: nauc_map_at_100_diff1
value: 37.38267938834233
- type: nauc_map_at_100_max
value: 29.450591895687317
- type: nauc_map_at_100_std
value: -3.189530866402903
- type: nauc_map_at_10_diff1
value: 37.202309092714685
- type: nauc_map_at_10_max
value: 27.98261677114554
- type: nauc_map_at_10_std
value: -4.0144873973773985
- type: nauc_map_at_1_diff1
value: 42.42289155172154
- type: nauc_map_at_1_max
value: 20.126387750613056
- type: nauc_map_at_1_std
value: -8.558059645904228
- type: nauc_map_at_20_diff1
value: 36.940935486049106
- type: nauc_map_at_20_max
value: 28.790226950120985
- type: nauc_map_at_20_std
value: -3.5487603793931752
- type: nauc_map_at_3_diff1
value: 38.447143857375835
- type: nauc_map_at_3_max
value: 23.92233021843042
- type: nauc_map_at_3_std
value: -7.139129825565484
- type: nauc_map_at_5_diff1
value: 38.516472169319144
- type: nauc_map_at_5_max
value: 26.413918646667977
- type: nauc_map_at_5_std
value: -5.636728555199194
- type: nauc_mrr_at_1000_diff1
value: 47.74750871610032
- type: nauc_mrr_at_1000_max
value: 40.19499238606483
- type: nauc_mrr_at_1000_std
value: 0.36032080608776107
- type: nauc_mrr_at_100_diff1
value: 47.73322151755956
- type: nauc_mrr_at_100_max
value: 40.20877044107413
- type: nauc_mrr_at_100_std
value: 0.3930328752369529
- type: nauc_mrr_at_10_diff1
value: 47.62649164813202
- type: nauc_mrr_at_10_max
value: 40.31590127628367
- type: nauc_mrr_at_10_std
value: 0.3376782526921225
- type: nauc_mrr_at_1_diff1
value: 50.71224023839513
- type: nauc_mrr_at_1_max
value: 38.12334760187021
- type: nauc_mrr_at_1_std
value: -3.744748522252006
- type: nauc_mrr_at_20_diff1
value: 47.65883289781366
- type: nauc_mrr_at_20_max
value: 40.19386589459899
- type: nauc_mrr_at_20_std
value: 0.3300453619949638
- type: nauc_mrr_at_3_diff1
value: 48.15037455271594
- type: nauc_mrr_at_3_max
value: 39.63517811079612
- type: nauc_mrr_at_3_std
value: -1.2604715431363336
- type: nauc_mrr_at_5_diff1
value: 47.82905935425148
- type: nauc_mrr_at_5_max
value: 40.14477449232483
- type: nauc_mrr_at_5_std
value: -0.6387351420113502
- type: nauc_ndcg_at_1000_diff1
value: 39.62042242051141
- type: nauc_ndcg_at_1000_max
value: 34.95065768372776
- type: nauc_ndcg_at_1000_std
value: 1.2093906933233651
- type: nauc_ndcg_at_100_diff1
value: 39.52715708377756
- type: nauc_ndcg_at_100_max
value: 34.8176627511724
- type: nauc_ndcg_at_100_std
value: 1.8417866916566914
- type: nauc_ndcg_at_10_diff1
value: 38.400363035149454
- type: nauc_ndcg_at_10_max
value: 31.63896107204925
- type: nauc_ndcg_at_10_std
value: -0.8705252027316186
- type: nauc_ndcg_at_1_diff1
value: 50.71224023839513
- type: nauc_ndcg_at_1_max
value: 38.12334760187021
- type: nauc_ndcg_at_1_std
value: -3.744748522252006
- type: nauc_ndcg_at_20_diff1
value: 38.12907512053514
- type: nauc_ndcg_at_20_max
value: 32.497748011049474
- type: nauc_ndcg_at_20_std
value: -0.1752936914305571
- type: nauc_ndcg_at_3_diff1
value: 39.46177721859432
- type: nauc_ndcg_at_3_max
value: 31.939511307389072
- type: nauc_ndcg_at_3_std
value: -3.0727677367802775
- type: nauc_ndcg_at_5_diff1
value: 39.58629354813809
- type: nauc_ndcg_at_5_max
value: 31.534911396228782
- type: nauc_ndcg_at_5_std
value: -2.8301665715597277
- type: nauc_precision_at_1000_diff1
value: -0.8786446062773204
- type: nauc_precision_at_1000_max
value: 29.25589660407707
- type: nauc_precision_at_1000_std
value: 17.455591524848746
- type: nauc_precision_at_100_diff1
value: 5.066275950497446
- type: nauc_precision_at_100_max
value: 35.90713282516485
- type: nauc_precision_at_100_std
value: 19.899761019511562
- type: nauc_precision_at_10_diff1
value: 14.251592016383505
- type: nauc_precision_at_10_max
value: 38.742155587347575
- type: nauc_precision_at_10_std
value: 14.243815134657725
- type: nauc_precision_at_1_diff1
value: 50.71224023839513
- type: nauc_precision_at_1_max
value: 38.12334760187021
- type: nauc_precision_at_1_std
value: -3.744748522252006
- type: nauc_precision_at_20_diff1
value: 9.33294574281467
- type: nauc_precision_at_20_max
value: 37.78712899843252
- type: nauc_precision_at_20_std
value: 15.69120289561787
- type: nauc_precision_at_3_diff1
value: 28.27816983802183
- type: nauc_precision_at_3_max
value: 36.45541405683364
- type: nauc_precision_at_3_std
value: 3.7608923567232626
- type: nauc_precision_at_5_diff1
value: 22.57043202085106
- type: nauc_precision_at_5_max
value: 39.101539898099766
- type: nauc_precision_at_5_std
value: 9.027858223250995
- type: nauc_recall_at_1000_diff1
value: 17.5612669956746
- type: nauc_recall_at_1000_max
value: 25.889529932227624
- type: nauc_recall_at_1000_std
value: 19.57316948655149
- type: nauc_recall_at_100_diff1
value: 28.46905271419406
- type: nauc_recall_at_100_max
value: 31.153388889792833
- type: nauc_recall_at_100_std
value: 17.27258409078373
- type: nauc_recall_at_10_diff1
value: 28.126929700808944
- type: nauc_recall_at_10_max
value: 23.181744909761907
- type: nauc_recall_at_10_std
value: 1.968185972587066
- type: nauc_recall_at_1_diff1
value: 42.42289155172154
- type: nauc_recall_at_1_max
value: 20.126387750613056
- type: nauc_recall_at_1_std
value: -8.558059645904228
- type: nauc_recall_at_20_diff1
value: 26.479542294303787
- type: nauc_recall_at_20_max
value: 24.732180999052623
- type: nauc_recall_at_20_std
value: 4.561070039093053
- type: nauc_recall_at_3_diff1
value: 33.630231249403565
- type: nauc_recall_at_3_max
value: 19.866536816100318
- type: nauc_recall_at_3_std
value: -6.902891630424277
- type: nauc_recall_at_5_diff1
value: 32.374300069152945
- type: nauc_recall_at_5_max
value: 21.609786350615863
- type: nauc_recall_at_5_std
value: -4.250570794176765
- type: ndcg_at_1
value: 45.216
- type: ndcg_at_10
value: 46.018
- type: ndcg_at_100
value: 52.81
- type: ndcg_at_1000
value: 55.437000000000005
- type: ndcg_at_20
value: 48.752
- type: ndcg_at_3
value: 41.143
- type: ndcg_at_5
value: 43.428
- type: precision_at_1
value: 45.216
- type: precision_at_10
value: 12.747
- type: precision_at_100
value: 1.9980000000000002
- type: precision_at_1000
value: 0.246
- type: precision_at_20
value: 7.523000000000001
- type: precision_at_3
value: 26.749000000000002
- type: precision_at_5
value: 20.617
- type: recall_at_1
value: 23.239
- type: recall_at_10
value: 53.64
- type: recall_at_100
value: 78.316
- type: recall_at_1000
value: 94.132
- type: recall_at_20
value: 62.17700000000001
- type: recall_at_3
value: 37.559
- type: recall_at_5
value: 45.605000000000004
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 67.836
- type: map_at_1
value: 38.292
- type: map_at_10
value: 58.48
- type: map_at_100
value: 59.382999999999996
- type: map_at_1000
value: 59.447
- type: map_at_20
value: 59.016999999999996
- type: map_at_3
value: 54.617000000000004
- type: map_at_5
value: 57.043
- type: mrr_at_1
value: 76.58338960162052
- type: mrr_at_10
value: 83.47652808591329
- type: mrr_at_100
value: 83.63380014525882
- type: mrr_at_1000
value: 83.63933777767011
- type: mrr_at_20
value: 83.57772328539731
- type: mrr_at_3
value: 82.44654512716605
- type: mrr_at_5
value: 83.17240603195998
- type: nauc_map_at_1000_diff1
value: 16.09417706349051
- type: nauc_map_at_1000_max
value: 22.82046255671306
- type: nauc_map_at_1000_std
value: -0.06797864025553367
- type: nauc_map_at_100_diff1
value: 16.05272819609321
- type: nauc_map_at_100_max
value: 22.80861981190222
- type: nauc_map_at_100_std
value: -0.05071783771856927
- type: nauc_map_at_10_diff1
value: 15.997779294340559
- type: nauc_map_at_10_max
value: 22.615988267544513
- type: nauc_map_at_10_std
value: -0.7600035230743971
- type: nauc_map_at_1_diff1
value: 69.24726718948668
- type: nauc_map_at_1_max
value: 43.958413687770644
- type: nauc_map_at_1_std
value: -12.056753426789658
- type: nauc_map_at_20_diff1
value: 15.939881445060319
- type: nauc_map_at_20_max
value: 22.692668502577643
- type: nauc_map_at_20_std
value: -0.283868450708954
- type: nauc_map_at_3_diff1
value: 18.213734472436414
- type: nauc_map_at_3_max
value: 23.0443805721617
- type: nauc_map_at_3_std
value: -3.327751624422928
- type: nauc_map_at_5_diff1
value: 16.680008500993083
- type: nauc_map_at_5_max
value: 22.517396255963348
- type: nauc_map_at_5_std
value: -1.98531389655906
- type: nauc_mrr_at_1000_diff1
value: 67.90848983786418
- type: nauc_mrr_at_1000_max
value: 46.450918836314216
- type: nauc_mrr_at_1000_std
value: -10.897096706171377
- type: nauc_mrr_at_100_diff1
value: 67.90978153374142
- type: nauc_mrr_at_100_max
value: 46.45801498811678
- type: nauc_mrr_at_100_std
value: -10.889452971557144
- type: nauc_mrr_at_10_diff1
value: 67.85232774207358
- type: nauc_mrr_at_10_max
value: 46.519322725477366
- type: nauc_mrr_at_10_std
value: -10.850819066119888
- type: nauc_mrr_at_1_diff1
value: 69.24726718948668
- type: nauc_mrr_at_1_max
value: 43.958413687770644
- type: nauc_mrr_at_1_std
value: -12.056753426789658
- type: nauc_mrr_at_20_diff1
value: 67.89964178495697
- type: nauc_mrr_at_20_max
value: 46.511653631886404
- type: nauc_mrr_at_20_std
value: -10.839214368831332
- type: nauc_mrr_at_3_diff1
value: 67.5836395057384
- type: nauc_mrr_at_3_max
value: 46.669184506889465
- type: nauc_mrr_at_3_std
value: -11.179530780325097
- type: nauc_mrr_at_5_diff1
value: 67.77665440172093
- type: nauc_mrr_at_5_max
value: 46.573672833105725
- type: nauc_mrr_at_5_std
value: -10.982788041572968
- type: nauc_ndcg_at_1000_diff1
value: 21.116945524743244
- type: nauc_ndcg_at_1000_max
value: 26.331821580979415
- type: nauc_ndcg_at_1000_std
value: 2.2115411230013993
- type: nauc_ndcg_at_100_diff1
value: 19.998679336096366
- type: nauc_ndcg_at_100_max
value: 25.965625801662146
- type: nauc_ndcg_at_100_std
value: 2.828817915487286
- type: nauc_ndcg_at_10_diff1
value: 19.806466897776797
- type: nauc_ndcg_at_10_max
value: 25.419244862350304
- type: nauc_ndcg_at_10_std
value: 0.2155926935521766
- type: nauc_ndcg_at_1_diff1
value: 69.24726718948668
- type: nauc_ndcg_at_1_max
value: 43.958413687770644
- type: nauc_ndcg_at_1_std
value: -12.056753426789658
- type: nauc_ndcg_at_20_diff1
value: 19.547932237059364
- type: nauc_ndcg_at_20_max
value: 25.539888431109336
- type: nauc_ndcg_at_20_std
value: 1.6229496555874041
- type: nauc_ndcg_at_3_diff1
value: 23.915468237770344
- type: nauc_ndcg_at_3_max
value: 26.483987322133835
- type: nauc_ndcg_at_3_std
value: -3.927672975648966
- type: nauc_ndcg_at_5_diff1
value: 21.285580255116123
- type: nauc_ndcg_at_5_max
value: 25.39329283776291
- type: nauc_ndcg_at_5_std
value: -1.9981992190798898
- type: nauc_precision_at_1000_diff1
value: -16.397996018930517
- type: nauc_precision_at_1000_max
value: 12.038228696443355
- type: nauc_precision_at_1000_std
value: 30.699566406872442
- type: nauc_precision_at_100_diff1
value: -11.55484201940981
- type: nauc_precision_at_100_max
value: 13.542075140974724
- type: nauc_precision_at_100_std
value: 24.606150356117055
- type: nauc_precision_at_10_diff1
value: -3.0258154194368907
- type: nauc_precision_at_10_max
value: 15.656448807768248
- type: nauc_precision_at_10_std
value: 8.819867674731508
- type: nauc_precision_at_1_diff1
value: 69.24726718948668
- type: nauc_precision_at_1_max
value: 43.958413687770644
- type: nauc_precision_at_1_std
value: -12.056753426789658
- type: nauc_precision_at_20_diff1
value: -6.346117648054698
- type: nauc_precision_at_20_max
value: 14.67028697593907
- type: nauc_precision_at_20_std
value: 14.430033095760397
- type: nauc_precision_at_3_diff1
value: 9.012431714387436
- type: nauc_precision_at_3_max
value: 20.29633246829934
- type: nauc_precision_at_3_std
value: -0.8697076229386467
- type: nauc_precision_at_5_diff1
value: 2.5992309960691435
- type: nauc_precision_at_5_max
value: 16.960051232392598
- type: nauc_precision_at_5_std
value: 3.0677906197565945
- type: nauc_recall_at_1000_diff1
value: -16.397996018930495
- type: nauc_recall_at_1000_max
value: 12.038228696443342
- type: nauc_recall_at_1000_std
value: 30.69956640687237
- type: nauc_recall_at_100_diff1
value: -11.55484201940982
- type: nauc_recall_at_100_max
value: 13.542075140974749
- type: nauc_recall_at_100_std
value: 24.60615035611708
- type: nauc_recall_at_10_diff1
value: -3.025815419436788
- type: nauc_recall_at_10_max
value: 15.656448807768314
- type: nauc_recall_at_10_std
value: 8.819867674731574
- type: nauc_recall_at_1_diff1
value: 69.24726718948668
- type: nauc_recall_at_1_max
value: 43.958413687770644
- type: nauc_recall_at_1_std
value: -12.056753426789658
- type: nauc_recall_at_20_diff1
value: -6.346117648054507
- type: nauc_recall_at_20_max
value: 14.670286975939165
- type: nauc_recall_at_20_std
value: 14.430033095760383
- type: nauc_recall_at_3_diff1
value: 9.012431714387384
- type: nauc_recall_at_3_max
value: 20.296332468299312
- type: nauc_recall_at_3_std
value: -0.8697076229386763
- type: nauc_recall_at_5_diff1
value: 2.599230996069216
- type: nauc_recall_at_5_max
value: 16.960051232392622
- type: nauc_recall_at_5_std
value: 3.0677906197565834
- type: ndcg_at_1
value: 76.583
- type: ndcg_at_10
value: 67.836
- type: ndcg_at_100
value: 70.884
- type: ndcg_at_1000
value: 72.085
- type: ndcg_at_20
value: 69.149
- type: ndcg_at_3
value: 62.434
- type: ndcg_at_5
value: 65.508
- type: precision_at_1
value: 76.583
- type: precision_at_10
value: 14.282
- type: precision_at_100
value: 1.6650000000000003
- type: precision_at_1000
value: 0.182
- type: precision_at_20
value: 7.564
- type: precision_at_3
value: 39.684999999999995
- type: precision_at_5
value: 26.239
- type: recall_at_1
value: 38.292
- type: recall_at_10
value: 71.411
- type: recall_at_100
value: 83.255
- type: recall_at_1000
value: 91.182
- type: recall_at_20
value: 75.645
- type: recall_at_3
value: 59.526999999999994
- type: recall_at_5
value: 65.598
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 91.6012
- type: ap
value: 88.68235390495911
- type: ap_weighted
value: 88.68235390495911
- type: f1
value: 91.59668455015077
- type: f1_weighted
value: 91.59668455015077
- type: main_score
value: 91.6012
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 34.216
- type: map_at_1
value: 15.038000000000002
- type: map_at_10
value: 27.046
- type: map_at_100
value: 28.389999999999997
- type: map_at_1000
value: 28.444999999999997
- type: map_at_20
value: 27.872000000000003
- type: map_at_3
value: 22.834
- type: map_at_5
value: 25.153
- type: mrr_at_1
value: 15.4297994269341
- type: mrr_at_10
value: 27.478492973120332
- type: mrr_at_100
value: 28.777080396786463
- type: mrr_at_1000
value: 28.825658730635972
- type: mrr_at_20
value: 28.286636068476597
- type: mrr_at_3
value: 23.33333333333318
- type: mrr_at_5
value: 25.614851957975105
- type: nauc_map_at_1000_diff1
value: 27.54679600584162
- type: nauc_map_at_1000_max
value: 0.41510056128863393
- type: nauc_map_at_1000_std
value: -21.25666818469523
- type: nauc_map_at_100_diff1
value: 27.549865152926362
- type: nauc_map_at_100_max
value: 0.41049620236650397
- type: nauc_map_at_100_std
value: -21.23460305948801
- type: nauc_map_at_10_diff1
value: 27.46238928310728
- type: nauc_map_at_10_max
value: 0.3112462662068356
- type: nauc_map_at_10_std
value: -22.07687152339386
- type: nauc_map_at_1_diff1
value: 30.7476883639058
- type: nauc_map_at_1_max
value: -0.5565808781243076
- type: nauc_map_at_1_std
value: -19.834927817494012
- type: nauc_map_at_20_diff1
value: 27.545155440501322
- type: nauc_map_at_20_max
value: 0.3473346558072676
- type: nauc_map_at_20_std
value: -21.61961934965919
- type: nauc_map_at_3_diff1
value: 27.39879856077741
- type: nauc_map_at_3_max
value: 0.06402240126581103
- type: nauc_map_at_3_std
value: -21.617551469899993
- type: nauc_map_at_5_diff1
value: 27.301329953007926
- type: nauc_map_at_5_max
value: 0.06942838790190704
- type: nauc_map_at_5_std
value: -22.27190645444131
- type: nauc_mrr_at_1000_diff1
value: 27.270571100450564
- type: nauc_mrr_at_1000_max
value: 0.5200299838701339
- type: nauc_mrr_at_1000_std
value: -21.00132445753325
- type: nauc_mrr_at_100_diff1
value: 27.270120718986174
- type: nauc_mrr_at_100_max
value: 0.522377923623997
- type: nauc_mrr_at_100_std
value: -20.974058126628332
- type: nauc_mrr_at_10_diff1
value: 27.170393202051947
- type: nauc_mrr_at_10_max
value: 0.48873943205852266
- type: nauc_mrr_at_10_std
value: -21.738471675337966
- type: nauc_mrr_at_1_diff1
value: 30.283202962075705
- type: nauc_mrr_at_1_max
value: -0.5898023407161855
- type: nauc_mrr_at_1_std
value: -19.75269473049021
- type: nauc_mrr_at_20_diff1
value: 27.274300680490825
- type: nauc_mrr_at_20_max
value: 0.5104058227528672
- type: nauc_mrr_at_20_std
value: -21.30268935462482
- type: nauc_mrr_at_3_diff1
value: 27.10789072891654
- type: nauc_mrr_at_3_max
value: 0.17628020950576678
- type: nauc_mrr_at_3_std
value: -21.472874492804447
- type: nauc_mrr_at_5_diff1
value: 27.042048354996385
- type: nauc_mrr_at_5_max
value: 0.20508452891098314
- type: nauc_mrr_at_5_std
value: -22.006377363109006
- type: nauc_ndcg_at_1000_diff1
value: 27.150914472847965
- type: nauc_ndcg_at_1000_max
value: 1.5041133804769482
- type: nauc_ndcg_at_1000_std
value: -19.524926037821043
- type: nauc_ndcg_at_100_diff1
value: 27.228817990238145
- type: nauc_ndcg_at_100_max
value: 1.5569549852164712
- type: nauc_ndcg_at_100_std
value: -18.37783977195916
- type: nauc_ndcg_at_10_diff1
value: 26.974908852930785
- type: nauc_ndcg_at_10_max
value: 0.9865201816077211
- type: nauc_ndcg_at_10_std
value: -22.744315865574556
- type: nauc_ndcg_at_1_diff1
value: 30.283202962075705
- type: nauc_ndcg_at_1_max
value: -0.5898023407161855
- type: nauc_ndcg_at_1_std
value: -19.75269473049021
- type: nauc_ndcg_at_20_diff1
value: 27.256057260883644
- type: nauc_ndcg_at_20_max
value: 1.1507498856530942
- type: nauc_ndcg_at_20_std
value: -21.119059014816134
- type: nauc_ndcg_at_3_diff1
value: 26.65932420136448
- type: nauc_ndcg_at_3_max
value: 0.36047390996708306
- type: nauc_ndcg_at_3_std
value: -22.129146087673426
- type: nauc_ndcg_at_5_diff1
value: 26.553136747559307
- type: nauc_ndcg_at_5_max
value: 0.3914050774004603
- type: nauc_ndcg_at_5_std
value: -23.162245106694787
- type: nauc_precision_at_1000_diff1
value: -3.219536411196315
- type: nauc_precision_at_1000_max
value: 18.58643056260195
- type: nauc_precision_at_1000_std
value: 13.96483533268961
- type: nauc_precision_at_100_diff1
value: 15.240824308438475
- type: nauc_precision_at_100_max
value: 12.873759519468777
- type: nauc_precision_at_100_std
value: 12.669885011350335
- type: nauc_precision_at_10_diff1
value: 24.02551103443631
- type: nauc_precision_at_10_max
value: 3.3412304054256636
- type: nauc_precision_at_10_std
value: -23.53436237582242
- type: nauc_precision_at_1_diff1
value: 30.283202962075705
- type: nauc_precision_at_1_max
value: -0.5898023407161855
- type: nauc_precision_at_1_std
value: -19.75269473049021
- type: nauc_precision_at_20_diff1
value: 23.383618639354207
- type: nauc_precision_at_20_max
value: 5.1273224302435505
- type: nauc_precision_at_20_std
value: -16.069542485279715
- type: nauc_precision_at_3_diff1
value: 24.289430079622484
- type: nauc_precision_at_3_max
value: 1.0047590622521345
- type: nauc_precision_at_3_std
value: -23.3073066696005
- type: nauc_precision_at_5_diff1
value: 23.91964787477001
- type: nauc_precision_at_5_max
value: 1.503705757938403
- type: nauc_precision_at_5_std
value: -25.080465306807003
- type: nauc_recall_at_1000_diff1
value: 18.559018331553045
- type: nauc_recall_at_1000_max
value: 41.916214927217126
- type: nauc_recall_at_1000_std
value: 59.856708470758704
- type: nauc_recall_at_100_diff1
value: 26.471212604023354
- type: nauc_recall_at_100_max
value: 10.077350060389897
- type: nauc_recall_at_100_std
value: 14.153565507764215
- type: nauc_recall_at_10_diff1
value: 26.05741155724461
- type: nauc_recall_at_10_max
value: 2.6492884997120534
- type: nauc_recall_at_10_std
value: -24.546907108105746
- type: nauc_recall_at_1_diff1
value: 30.7476883639058
- type: nauc_recall_at_1_max
value: -0.5565808781243076
- type: nauc_recall_at_1_std
value: -19.834927817494012
- type: nauc_recall_at_20_diff1
value: 26.95859513457893
- type: nauc_recall_at_20_max
value: 3.521141192333191
- type: nauc_recall_at_20_std
value: -18.30474468147818
- type: nauc_recall_at_3_diff1
value: 25.01086599052385
- type: nauc_recall_at_3_max
value: 0.9901526603339225
- type: nauc_recall_at_3_std
value: -23.299664759244102
- type: nauc_recall_at_5_diff1
value: 24.792290263748747
- type: nauc_recall_at_5_max
value: 0.9968092335084938
- type: nauc_recall_at_5_std
value: -25.345195391263754
- type: ndcg_at_1
value: 15.43
- type: ndcg_at_10
value: 34.216
- type: ndcg_at_100
value: 40.815
- type: ndcg_at_1000
value: 42.202
- type: ndcg_at_20
value: 37.179
- type: ndcg_at_3
value: 25.588
- type: ndcg_at_5
value: 29.724
- type: precision_at_1
value: 15.43
- type: precision_at_10
value: 5.918
- type: precision_at_100
value: 0.922
- type: precision_at_1000
value: 0.104
- type: precision_at_20
value: 3.5700000000000003
- type: precision_at_3
value: 11.442
- type: precision_at_5
value: 8.966000000000001
- type: recall_at_1
value: 15.038000000000002
- type: recall_at_10
value: 56.627
- type: recall_at_100
value: 87.399
- type: recall_at_1000
value: 98.009
- type: recall_at_20
value: 68.176
- type: recall_at_3
value: 33.056000000000004
- type: recall_at_5
value: 42.995
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.54172366621066
- type: f1
value: 88.86345617269791
- type: f1_weighted
value: 89.39824737643146
- type: main_score
value: 89.54172366621066
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 62.08162334701323
- type: f1
value: 43.12730019766516
- type: f1_weighted
value: 63.781545502237925
- type: main_score
value: 62.08162334701323
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 70.35642232683254
- type: f1
value: 68.72302949991845
- type: f1_weighted
value: 69.3283349884127
- type: main_score
value: 70.35642232683254
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 75.72965702757229
- type: f1
value: 75.45057853223203
- type: f1_weighted
value: 75.51989582351723
- type: main_score
value: 75.72965702757229
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: main_score
value: 33.84359193475579
- type: v_measure
value: 33.84359193475579
- type: v_measure_std
value: 1.206510814601397
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: main_score
value: 32.43240060668634
- type: v_measure
value: 32.43240060668634
- type: v_measure_std
value: 1.4462915088372668
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: main_score
value: 32.17562277399934
- type: map
value: 32.17562277399934
- type: mrr
value: 33.359132186523716
- type: nAUC_map_diff1
value: 9.64301950935433
- type: nAUC_map_max
value: -21.474489295623783
- type: nAUC_map_std
value: -2.9044953039946035
- type: nAUC_mrr_diff1
value: 9.376542394215578
- type: nAUC_mrr_max
value: -15.773926504219354
- type: nAUC_mrr_std
value: -0.751930669185602
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 33.816
- type: map_at_1
value: 4.893
- type: map_at_10
value: 12.154
- type: map_at_100
value: 15.486
- type: map_at_1000
value: 16.952
- type: map_at_20
value: 13.424
- type: map_at_3
value: 8.819
- type: map_at_5
value: 10.238999999999999
- type: mrr_at_1
value: 42.10526315789473
- type: mrr_at_10
value: 52.01742100348912
- type: mrr_at_100
value: 52.6554997087846
- type: mrr_at_1000
value: 52.69599552159355
- type: mrr_at_20
value: 52.51069271775405
- type: mrr_at_3
value: 49.79360165118682
- type: mrr_at_5
value: 50.86171310629517
- type: nauc_map_at_1000_diff1
value: 22.910384139189237
- type: nauc_map_at_1000_max
value: 30.904545032635593
- type: nauc_map_at_1000_std
value: 13.256381971531022
- type: nauc_map_at_100_diff1
value: 23.657922060794174
- type: nauc_map_at_100_max
value: 30.463171555444095
- type: nauc_map_at_100_std
value: 9.403207435293652
- type: nauc_map_at_10_diff1
value: 26.99577933867989
- type: nauc_map_at_10_max
value: 25.74855919514706
- type: nauc_map_at_10_std
value: -1.946481502724064
- type: nauc_map_at_1_diff1
value: 40.87773635213689
- type: nauc_map_at_1_max
value: 18.50327114064488
- type: nauc_map_at_1_std
value: -12.884353353702357
- type: nauc_map_at_20_diff1
value: 25.182212498762404
- type: nauc_map_at_20_max
value: 27.726995459601568
- type: nauc_map_at_20_std
value: 2.265717944376315
- type: nauc_map_at_3_diff1
value: 32.24473894835545
- type: nauc_map_at_3_max
value: 19.73101542872105
- type: nauc_map_at_3_std
value: -10.159375851390948
- type: nauc_map_at_5_diff1
value: 30.660429521421523
- type: nauc_map_at_5_max
value: 22.777642402610702
- type: nauc_map_at_5_std
value: -6.784458070696157
- type: nauc_mrr_at_1000_diff1
value: 35.540967575378694
- type: nauc_mrr_at_1000_max
value: 43.94574660779749
- type: nauc_mrr_at_1000_std
value: 24.857915852637742
- type: nauc_mrr_at_100_diff1
value: 35.54094740404627
- type: nauc_mrr_at_100_max
value: 43.9872938663598
- type: nauc_mrr_at_100_std
value: 24.908343520366564
- type: nauc_mrr_at_10_diff1
value: 35.499666044876456
- type: nauc_mrr_at_10_max
value: 43.372579438993235
- type: nauc_mrr_at_10_std
value: 24.55532928065396
- type: nauc_mrr_at_1_diff1
value: 38.71056728463544
- type: nauc_mrr_at_1_max
value: 39.77501110624803
- type: nauc_mrr_at_1_std
value: 18.0097891637449
- type: nauc_mrr_at_20_diff1
value: 35.4778364740954
- type: nauc_mrr_at_20_max
value: 43.861500828057984
- type: nauc_mrr_at_20_std
value: 24.844940828191785
- type: nauc_mrr_at_3_diff1
value: 36.14951749215073
- type: nauc_mrr_at_3_max
value: 43.66290737939861
- type: nauc_mrr_at_3_std
value: 23.797433124588736
- type: nauc_mrr_at_5_diff1
value: 35.43660972677152
- type: nauc_mrr_at_5_max
value: 43.45685670163132
- type: nauc_mrr_at_5_std
value: 24.304648467662023
- type: nauc_ndcg_at_1000_diff1
value: 22.759045127619025
- type: nauc_ndcg_at_1000_max
value: 44.41137470197231
- type: nauc_ndcg_at_1000_std
value: 31.38899922811944
- type: nauc_ndcg_at_100_diff1
value: 21.163726384696464
- type: nauc_ndcg_at_100_max
value: 39.3884922679833
- type: nauc_ndcg_at_100_std
value: 25.839289801954113
- type: nauc_ndcg_at_10_diff1
value: 22.897812670264933
- type: nauc_ndcg_at_10_max
value: 36.65843413176893
- type: nauc_ndcg_at_10_std
value: 24.11394501649861
- type: nauc_ndcg_at_1_diff1
value: 39.06334823564591
- type: nauc_ndcg_at_1_max
value: 39.06248799073769
- type: nauc_ndcg_at_1_std
value: 18.05518784959287
- type: nauc_ndcg_at_20_diff1
value: 21.898686330422414
- type: nauc_ndcg_at_20_max
value: 35.78404933092488
- type: nauc_ndcg_at_20_std
value: 24.304058306037895
- type: nauc_ndcg_at_3_diff1
value: 29.999089941995827
- type: nauc_ndcg_at_3_max
value: 38.55806893862189
- type: nauc_ndcg_at_3_std
value: 20.82150155152541
- type: nauc_ndcg_at_5_diff1
value: 26.920523658582933
- type: nauc_ndcg_at_5_max
value: 37.903305784392835
- type: nauc_ndcg_at_5_std
value: 22.36973654091273
- type: nauc_precision_at_1000_diff1
value: -4.736357828440193
- type: nauc_precision_at_1000_max
value: 5.778552685188162
- type: nauc_precision_at_1000_std
value: 36.06941146251687
- type: nauc_precision_at_100_diff1
value: -3.915151057855969
- type: nauc_precision_at_100_max
value: 18.188180874141302
- type: nauc_precision_at_100_std
value: 44.921932315349935
- type: nauc_precision_at_10_diff1
value: 6.335673291245972
- type: nauc_precision_at_10_max
value: 33.54781851431339
- type: nauc_precision_at_10_std
value: 36.77684118708833
- type: nauc_precision_at_1_diff1
value: 38.71056728463544
- type: nauc_precision_at_1_max
value: 39.77501110624803
- type: nauc_precision_at_1_std
value: 18.0097891637449
- type: nauc_precision_at_20_diff1
value: 2.937163642087222
- type: nauc_precision_at_20_max
value: 28.379243786948336
- type: nauc_precision_at_20_std
value: 40.35532758983976
- type: nauc_precision_at_3_diff1
value: 20.784494867231487
- type: nauc_precision_at_3_max
value: 38.495138401646045
- type: nauc_precision_at_3_std
value: 25.482915117972993
- type: nauc_precision_at_5_diff1
value: 15.127184520975657
- type: nauc_precision_at_5_max
value: 37.30602533471322
- type: nauc_precision_at_5_std
value: 29.930880073455175
- type: nauc_recall_at_1000_diff1
value: 2.3913140928424705
- type: nauc_recall_at_1000_max
value: 20.737140424377333
- type: nauc_recall_at_1000_std
value: 18.01670749520214
- type: nauc_recall_at_100_diff1
value: 7.687164842123094
- type: nauc_recall_at_100_max
value: 23.62069259941976
- type: nauc_recall_at_100_std
value: 14.411637818706472
- type: nauc_recall_at_10_diff1
value: 18.678074331558783
- type: nauc_recall_at_10_max
value: 19.514135963995347
- type: nauc_recall_at_10_std
value: -2.8989513830052713
- type: nauc_recall_at_1_diff1
value: 40.87773635213689
- type: nauc_recall_at_1_max
value: 18.50327114064488
- type: nauc_recall_at_1_std
value: -12.884353353702357
- type: nauc_recall_at_20_diff1
value: 14.926936076283534
- type: nauc_recall_at_20_max
value: 22.342969389987594
- type: nauc_recall_at_20_std
value: 2.6680867208648666
- type: nauc_recall_at_3_diff1
value: 26.592132793572855
- type: nauc_recall_at_3_max
value: 16.71686152308387
- type: nauc_recall_at_3_std
value: -10.161239210194816
- type: nauc_recall_at_5_diff1
value: 24.899494230211914
- type: nauc_recall_at_5_max
value: 19.59649962842324
- type: nauc_recall_at_5_std
value: -6.76370389227844
- type: ndcg_at_1
value: 40.867
- type: ndcg_at_10
value: 33.816
- type: ndcg_at_100
value: 31.239
- type: ndcg_at_1000
value: 39.879
- type: ndcg_at_20
value: 31.423000000000002
- type: ndcg_at_3
value: 38.911
- type: ndcg_at_5
value: 36.61
- type: precision_at_1
value: 42.105
- type: precision_at_10
value: 25.635
- type: precision_at_100
value: 8.176
- type: precision_at_1000
value: 2.092
- type: precision_at_20
value: 18.823999999999998
- type: precision_at_3
value: 37.461
- type: precision_at_5
value: 32.507999999999996
- type: recall_at_1
value: 4.893
- type: recall_at_10
value: 16.773
- type: recall_at_100
value: 32.958999999999996
- type: recall_at_1000
value: 64.094
- type: recall_at_20
value: 20.557
- type: recall_at_3
value: 10.263
- type: recall_at_5
value: 12.388
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 47.705999999999996
- type: map_at_1
value: 24.09
- type: map_at_10
value: 39.287
- type: map_at_100
value: 40.567
- type: map_at_1000
value: 40.6
- type: map_at_20
value: 40.148
- type: map_at_3
value: 34.302
- type: map_at_5
value: 37.206
- type: mrr_at_1
value: 27.28852838933951
- type: mrr_at_10
value: 41.73792740348356
- type: mrr_at_100
value: 42.700956318341376
- type: mrr_at_1000
value: 42.721500078814096
- type: mrr_at_20
value: 42.39774668731353
- type: mrr_at_3
value: 37.35032831208959
- type: mrr_at_5
value: 40.00965623792975
- type: nauc_map_at_1000_diff1
value: 26.995052198015408
- type: nauc_map_at_1000_max
value: 15.20926829878716
- type: nauc_map_at_1000_std
value: -7.419434404678649
- type: nauc_map_at_100_diff1
value: 26.98675665686633
- type: nauc_map_at_100_max
value: 15.232441822080464
- type: nauc_map_at_100_std
value: -7.3860325680943655
- type: nauc_map_at_10_diff1
value: 27.2055488472847
- type: nauc_map_at_10_max
value: 15.22405773845232
- type: nauc_map_at_10_std
value: -7.997911271237045
- type: nauc_map_at_1_diff1
value: 28.974098579091123
- type: nauc_map_at_1_max
value: 11.321507460392628
- type: nauc_map_at_1_std
value: -7.640518561754067
- type: nauc_map_at_20_diff1
value: 26.975519720067403
- type: nauc_map_at_20_max
value: 15.270333199937241
- type: nauc_map_at_20_std
value: -7.593162904909118
- type: nauc_map_at_3_diff1
value: 26.196529957905334
- type: nauc_map_at_3_max
value: 13.478166583287848
- type: nauc_map_at_3_std
value: -9.053865282739968
- type: nauc_map_at_5_diff1
value: 26.79122911875148
- type: nauc_map_at_5_max
value: 14.282446217191469
- type: nauc_map_at_5_std
value: -9.094186973353946
- type: nauc_mrr_at_1000_diff1
value: 26.759927337618993
- type: nauc_mrr_at_1000_max
value: 14.825954255654228
- type: nauc_mrr_at_1000_std
value: -6.105406137980129
- type: nauc_mrr_at_100_diff1
value: 26.74960844122087
- type: nauc_mrr_at_100_max
value: 14.843683127357762
- type: nauc_mrr_at_100_std
value: -6.076356380149935
- type: nauc_mrr_at_10_diff1
value: 26.944765214641325
- type: nauc_mrr_at_10_max
value: 14.94642107131636
- type: nauc_mrr_at_10_std
value: -6.336027654512049
- type: nauc_mrr_at_1_diff1
value: 28.63557135887537
- type: nauc_mrr_at_1_max
value: 11.997480919271911
- type: nauc_mrr_at_1_std
value: -6.415779575057592
- type: nauc_mrr_at_20_diff1
value: 26.707684527732884
- type: nauc_mrr_at_20_max
value: 14.891955656316206
- type: nauc_mrr_at_20_std
value: -6.170926409650526
- type: nauc_mrr_at_3_diff1
value: 26.09833571219951
- type: nauc_mrr_at_3_max
value: 13.619335397303093
- type: nauc_mrr_at_3_std
value: -6.99260621640241
- type: nauc_mrr_at_5_diff1
value: 26.509106156499758
- type: nauc_mrr_at_5_max
value: 14.309307369143232
- type: nauc_mrr_at_5_std
value: -7.036129929142912
- type: nauc_ndcg_at_1000_diff1
value: 26.58998518885675
- type: nauc_ndcg_at_1000_max
value: 16.730704716377872
- type: nauc_ndcg_at_1000_std
value: -5.39551318704605
- type: nauc_ndcg_at_100_diff1
value: 26.367304449158542
- type: nauc_ndcg_at_100_max
value: 17.497911381186437
- type: nauc_ndcg_at_100_std
value: -4.274806854701229
- type: nauc_ndcg_at_10_diff1
value: 27.275827813350823
- type: nauc_ndcg_at_10_max
value: 17.61502848669633
- type: nauc_ndcg_at_10_std
value: -6.706786953638304
- type: nauc_ndcg_at_1_diff1
value: 28.73750705322627
- type: nauc_ndcg_at_1_max
value: 12.034842420318594
- type: nauc_ndcg_at_1_std
value: -6.331175328355812
- type: nauc_ndcg_at_20_diff1
value: 26.334025198409822
- type: nauc_ndcg_at_20_max
value: 17.855473370518965
- type: nauc_ndcg_at_20_std
value: -5.403020940844481
- type: nauc_ndcg_at_3_diff1
value: 25.45388148358677
- type: nauc_ndcg_at_3_max
value: 14.079983701064627
- type: nauc_ndcg_at_3_std
value: -8.890083252778314
- type: nauc_ndcg_at_5_diff1
value: 26.33612130048854
- type: nauc_ndcg_at_5_max
value: 15.450244767383477
- type: nauc_ndcg_at_5_std
value: -9.054428820466049
- type: nauc_precision_at_1000_diff1
value: -5.4513464358643935
- type: nauc_precision_at_1000_max
value: 5.371939619810606
- type: nauc_precision_at_1000_std
value: 14.8654667034019
- type: nauc_precision_at_100_diff1
value: -1.3987377525099691
- type: nauc_precision_at_100_max
value: 13.911794092689838
- type: nauc_precision_at_100_std
value: 21.429657983736398
- type: nauc_precision_at_10_diff1
value: 17.11455042469293
- type: nauc_precision_at_10_max
value: 22.09155979887235
- type: nauc_precision_at_10_std
value: 4.5779383691575335
- type: nauc_precision_at_1_diff1
value: 28.73750705322627
- type: nauc_precision_at_1_max
value: 12.034842420318594
- type: nauc_precision_at_1_std
value: -6.331175328355812
- type: nauc_precision_at_20_diff1
value: 8.866920301402327
- type: nauc_precision_at_20_max
value: 20.465524038064146
- type: nauc_precision_at_20_std
value: 11.77414197569535
- type: nauc_precision_at_3_diff1
value: 20.723368404844305
- type: nauc_precision_at_3_max
value: 16.257890926808553
- type: nauc_precision_at_3_std
value: -6.290754270412709
- type: nauc_precision_at_5_diff1
value: 20.209421398374488
- type: nauc_precision_at_5_max
value: 18.627423971893325
- type: nauc_precision_at_5_std
value: -4.6989054258140355
- type: nauc_recall_at_1000_diff1
value: 16.326550389848265
- type: nauc_recall_at_1000_max
value: 72.55345747292822
- type: nauc_recall_at_1000_std
value: 63.7692611505317
- type: nauc_recall_at_100_diff1
value: 16.03698346212984
- type: nauc_recall_at_100_max
value: 50.432030846802064
- type: nauc_recall_at_100_std
value: 43.37937315409283
- type: nauc_recall_at_10_diff1
value: 26.91743922623231
- type: nauc_recall_at_10_max
value: 26.28334350051652
- type: nauc_recall_at_10_std
value: -3.6769327984943248
- type: nauc_recall_at_1_diff1
value: 28.974098579091123
- type: nauc_recall_at_1_max
value: 11.321507460392628
- type: nauc_recall_at_1_std
value: -7.640518561754067
- type: nauc_recall_at_20_diff1
value: 21.32293933043855
- type: nauc_recall_at_20_max
value: 31.996089227364994
- type: nauc_recall_at_20_std
value: 5.0730478086085995
- type: nauc_recall_at_3_diff1
value: 22.708520483632753
- type: nauc_recall_at_3_max
value: 14.897940279836913
- type: nauc_recall_at_3_std
value: -10.081304729280403
- type: nauc_recall_at_5_diff1
value: 24.140285353276628
- type: nauc_recall_at_5_max
value: 17.99130898455
- type: nauc_recall_at_5_std
value: -11.006510541854203
- type: ndcg_at_1
value: 27.26
- type: ndcg_at_10
value: 47.705999999999996
- type: ndcg_at_100
value: 53.016
- type: ndcg_at_1000
value: 53.715
- type: ndcg_at_20
value: 50.498
- type: ndcg_at_3
value: 38.124
- type: ndcg_at_5
value: 43.097
- type: precision_at_1
value: 27.26
- type: precision_at_10
value: 8.447000000000001
- type: precision_at_100
value: 1.139
- type: precision_at_1000
value: 0.121
- type: precision_at_20
value: 4.874
- type: precision_at_3
value: 17.835
- type: precision_at_5
value: 13.517000000000001
- type: recall_at_1
value: 24.09
- type: recall_at_10
value: 71.10600000000001
- type: recall_at_100
value: 93.953
- type: recall_at_1000
value: 99.073
- type: recall_at_20
value: 81.523
- type: recall_at_3
value: 46.174
- type: recall_at_5
value: 57.677
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 89.676
- type: map_at_1
value: 72.103
- type: map_at_10
value: 86.14500000000001
- type: map_at_100
value: 86.765
- type: map_at_1000
value: 86.776
- type: map_at_20
value: 86.562
- type: map_at_3
value: 83.214
- type: map_at_5
value: 85.103
- type: mrr_at_1
value: 83.05
- type: mrr_at_10
value: 88.93702380952368
- type: mrr_at_100
value: 89.01863878447548
- type: mrr_at_1000
value: 89.01885795102484
- type: mrr_at_20
value: 88.99974718680856
- type: mrr_at_3
value: 88.08333333333313
- type: mrr_at_5
value: 88.71633333333311
- type: nauc_map_at_1000_diff1
value: 78.13997479130329
- type: nauc_map_at_1000_max
value: 33.16799361159121
- type: nauc_map_at_1000_std
value: -55.1863277755837
- type: nauc_map_at_100_diff1
value: 78.14023553984367
- type: nauc_map_at_100_max
value: 33.13369714413867
- type: nauc_map_at_100_std
value: -55.23540842004624
- type: nauc_map_at_10_diff1
value: 78.37080186192892
- type: nauc_map_at_10_max
value: 32.57134371768262
- type: nauc_map_at_10_std
value: -57.373890318858635
- type: nauc_map_at_1_diff1
value: 81.43018798912361
- type: nauc_map_at_1_max
value: 25.19409927583946
- type: nauc_map_at_1_std
value: -48.22311263550707
- type: nauc_map_at_20_diff1
value: 78.2531228519997
- type: nauc_map_at_20_max
value: 32.93544556033276
- type: nauc_map_at_20_std
value: -56.1055098795547
- type: nauc_map_at_3_diff1
value: 78.87676183243428
- type: nauc_map_at_3_max
value: 30.20611964511498
- type: nauc_map_at_3_std
value: -58.43976419533779
- type: nauc_map_at_5_diff1
value: 78.74187209420451
- type: nauc_map_at_5_max
value: 31.54047365144067
- type: nauc_map_at_5_std
value: -58.97219700125237
- type: nauc_mrr_at_1000_diff1
value: 78.95748141758239
- type: nauc_mrr_at_1000_max
value: 35.915215848182335
- type: nauc_mrr_at_1000_std
value: -51.60783225234237
- type: nauc_mrr_at_100_diff1
value: 78.95727688352294
- type: nauc_mrr_at_100_max
value: 35.915856450202206
- type: nauc_mrr_at_100_std
value: -51.60782742807526
- type: nauc_mrr_at_10_diff1
value: 78.97062716064038
- type: nauc_mrr_at_10_max
value: 35.98944352252478
- type: nauc_mrr_at_10_std
value: -51.77952280125023
- type: nauc_mrr_at_1_diff1
value: 79.56130369111403
- type: nauc_mrr_at_1_max
value: 35.942655751158995
- type: nauc_mrr_at_1_std
value: -48.53333294529543
- type: nauc_mrr_at_20_diff1
value: 78.96215019750328
- type: nauc_mrr_at_20_max
value: 35.91684162704735
- type: nauc_mrr_at_20_std
value: -51.67122079763854
- type: nauc_mrr_at_3_diff1
value: 78.70330923531215
- type: nauc_mrr_at_3_max
value: 35.87542341241571
- type: nauc_mrr_at_3_std
value: -51.87635339239034
- type: nauc_mrr_at_5_diff1
value: 78.99544950827739
- type: nauc_mrr_at_5_max
value: 35.965125484837266
- type: nauc_mrr_at_5_std
value: -52.11029578138711
- type: nauc_ndcg_at_1000_diff1
value: 78.10303471223646
- type: nauc_ndcg_at_1000_max
value: 34.72596142439839
- type: nauc_ndcg_at_1000_std
value: -53.2962525848089
- type: nauc_ndcg_at_100_diff1
value: 78.06267135641467
- type: nauc_ndcg_at_100_max
value: 34.54419033520112
- type: nauc_ndcg_at_100_std
value: -53.5392586501254
- type: nauc_ndcg_at_10_diff1
value: 78.17567073559658
- type: nauc_ndcg_at_10_max
value: 33.787109792594144
- type: nauc_ndcg_at_10_std
value: -57.23628218329926
- type: nauc_ndcg_at_1_diff1
value: 79.5420688434198
- type: nauc_ndcg_at_1_max
value: 36.07066857529557
- type: nauc_ndcg_at_1_std
value: -48.48781152561791
- type: nauc_ndcg_at_20_diff1
value: 78.21739679352075
- type: nauc_ndcg_at_20_max
value: 34.04005309785922
- type: nauc_ndcg_at_20_std
value: -55.65001368252659
- type: nauc_ndcg_at_3_diff1
value: 77.47445949226606
- type: nauc_ndcg_at_3_max
value: 32.77007174469541
- type: nauc_ndcg_at_3_std
value: -56.260910342535894
- type: nauc_ndcg_at_5_diff1
value: 78.15994882398387
- type: nauc_ndcg_at_5_max
value: 33.11497252066444
- type: nauc_ndcg_at_5_std
value: -58.346472568678664
- type: nauc_precision_at_1000_diff1
value: -45.22108856190449
- type: nauc_precision_at_1000_max
value: -3.769158876252231
- type: nauc_precision_at_1000_std
value: 43.723870330086925
- type: nauc_precision_at_100_diff1
value: -45.23758967194308
- type: nauc_precision_at_100_max
value: -4.363166810337138
- type: nauc_precision_at_100_std
value: 42.94820379534783
- type: nauc_precision_at_10_diff1
value: -40.752163951230585
- type: nauc_precision_at_10_max
value: -1.6169274191392247
- type: nauc_precision_at_10_std
value: 29.249486658726266
- type: nauc_precision_at_1_diff1
value: 79.5420688434198
- type: nauc_precision_at_1_max
value: 36.07066857529557
- type: nauc_precision_at_1_std
value: -48.48781152561791
- type: nauc_precision_at_20_diff1
value: -43.52965345142954
- type: nauc_precision_at_20_max
value: -3.410765512192599
- type: nauc_precision_at_20_std
value: 36.265002036696245
- type: nauc_precision_at_3_diff1
value: -21.947123522182608
- type: nauc_precision_at_3_max
value: 6.055908914766165
- type: nauc_precision_at_3_std
value: 6.408586281581511
- type: nauc_precision_at_5_diff1
value: -34.130820418059265
- type: nauc_precision_at_5_max
value: 1.1109424247006825
- type: nauc_precision_at_5_std
value: 18.488513018473114
- type: nauc_recall_at_1000_diff1
value: 47.996662934260556
- type: nauc_recall_at_1000_max
value: 11.574413075464337
- type: nauc_recall_at_1000_std
value: -39.2955614699843
- type: nauc_recall_at_100_diff1
value: 64.12162282642701
- type: nauc_recall_at_100_max
value: 17.595341249984035
- type: nauc_recall_at_100_std
value: -74.41045136381057
- type: nauc_recall_at_10_diff1
value: 75.16961616005102
- type: nauc_recall_at_10_max
value: 28.68309207235788
- type: nauc_recall_at_10_std
value: -82.81198733010936
- type: nauc_recall_at_1_diff1
value: 81.43018798912361
- type: nauc_recall_at_1_max
value: 25.19409927583946
- type: nauc_recall_at_1_std
value: -48.22311263550707
- type: nauc_recall_at_20_diff1
value: 75.94655772120838
- type: nauc_recall_at_20_max
value: 26.033082267707137
- type: nauc_recall_at_20_std
value: -87.8035845729173
- type: nauc_recall_at_3_diff1
value: 75.18135051463966
- type: nauc_recall_at_3_max
value: 25.829788998048713
- type: nauc_recall_at_3_std
value: -66.40001628991527
- type: nauc_recall_at_5_diff1
value: 75.32388475941752
- type: nauc_recall_at_5_max
value: 26.600470217631152
- type: nauc_recall_at_5_std
value: -76.75029218302441
- type: ndcg_at_1
value: 83.06
- type: ndcg_at_10
value: 89.676
- type: ndcg_at_100
value: 90.745
- type: ndcg_at_1000
value: 90.802
- type: ndcg_at_20
value: 90.293
- type: ndcg_at_3
value: 87.01299999999999
- type: ndcg_at_5
value: 88.578
- type: precision_at_1
value: 83.06
- type: precision_at_10
value: 13.599
- type: precision_at_100
value: 1.54
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.2139999999999995
- type: precision_at_3
value: 38.067
- type: precision_at_5
value: 25.06
- type: recall_at_1
value: 72.103
- type: recall_at_10
value: 96.269
- type: recall_at_100
value: 99.776
- type: recall_at_1000
value: 99.995
- type: recall_at_20
value: 98.20400000000001
- type: recall_at_3
value: 88.59700000000001
- type: recall_at_5
value: 93.015
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: main_score
value: 57.6315484268519
- type: v_measure
value: 57.6315484268519
- type: v_measure_std
value: 4.96160605448604
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: main_score
value: 65.10459556169661
- type: v_measure
value: 65.10459556169661
- type: v_measure_std
value: 12.297830143436506
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 20.241
- type: map_at_1
value: 4.585
- type: map_at_10
value: 12.179
- type: map_at_100
value: 14.185
- type: map_at_1000
value: 14.485999999999999
- type: map_at_20
value: 13.211
- type: map_at_3
value: 8.671
- type: map_at_5
value: 10.312000000000001
- type: mrr_at_1
value: 22.7
- type: mrr_at_10
value: 33.75805555555551
- type: mrr_at_100
value: 34.817297940294345
- type: mrr_at_1000
value: 34.883397077676406
- type: mrr_at_20
value: 34.38700212283411
- type: mrr_at_3
value: 30.483333333333306
- type: mrr_at_5
value: 32.408333333333275
- type: nauc_map_at_1000_diff1
value: 14.799522136525983
- type: nauc_map_at_1000_max
value: 34.787460217244785
- type: nauc_map_at_1000_std
value: 18.09344563882231
- type: nauc_map_at_100_diff1
value: 14.768945434423111
- type: nauc_map_at_100_max
value: 34.7296008481421
- type: nauc_map_at_100_std
value: 17.862302470008842
- type: nauc_map_at_10_diff1
value: 14.144901666255635
- type: nauc_map_at_10_max
value: 32.717524928702204
- type: nauc_map_at_10_std
value: 14.61297873647561
- type: nauc_map_at_1_diff1
value: 24.110400950369463
- type: nauc_map_at_1_max
value: 28.717709149236846
- type: nauc_map_at_1_std
value: 9.47019097868293
- type: nauc_map_at_20_diff1
value: 14.60910237598006
- type: nauc_map_at_20_max
value: 34.41168874995483
- type: nauc_map_at_20_std
value: 16.8281730049661
- type: nauc_map_at_3_diff1
value: 16.927638840219913
- type: nauc_map_at_3_max
value: 30.943529346638215
- type: nauc_map_at_3_std
value: 8.770011702871889
- type: nauc_map_at_5_diff1
value: 15.149404949142397
- type: nauc_map_at_5_max
value: 32.21505246043176
- type: nauc_map_at_5_std
value: 11.327982631457365
- type: nauc_mrr_at_1000_diff1
value: 20.74353214383309
- type: nauc_mrr_at_1000_max
value: 32.03632971500104
- type: nauc_mrr_at_1000_std
value: 13.888511855973434
- type: nauc_mrr_at_100_diff1
value: 20.729669159574993
- type: nauc_mrr_at_100_max
value: 32.04616144275277
- type: nauc_mrr_at_100_std
value: 13.909503435758552
- type: nauc_mrr_at_10_diff1
value: 20.68902799696533
- type: nauc_mrr_at_10_max
value: 32.06338386152125
- type: nauc_mrr_at_10_std
value: 13.774587429590262
- type: nauc_mrr_at_1_diff1
value: 23.923563127598772
- type: nauc_mrr_at_1_max
value: 28.66045286040102
- type: nauc_mrr_at_1_std
value: 9.324543818990804
- type: nauc_mrr_at_20_diff1
value: 20.75062648249425
- type: nauc_mrr_at_20_max
value: 32.07720087059192
- type: nauc_mrr_at_20_std
value: 13.99626011275507
- type: nauc_mrr_at_3_diff1
value: 21.28016610687942
- type: nauc_mrr_at_3_max
value: 31.378222612242958
- type: nauc_mrr_at_3_std
value: 11.873532774618438
- type: nauc_mrr_at_5_diff1
value: 20.553867571063165
- type: nauc_mrr_at_5_max
value: 32.0086355849153
- type: nauc_mrr_at_5_std
value: 13.390002782582572
- type: nauc_ndcg_at_1000_diff1
value: 16.18725835208729
- type: nauc_ndcg_at_1000_max
value: 36.31956949239469
- type: nauc_ndcg_at_1000_std
value: 24.60962249502986
- type: nauc_ndcg_at_100_diff1
value: 16.080952256468766
- type: nauc_ndcg_at_100_max
value: 36.836773125169934
- type: nauc_ndcg_at_100_std
value: 23.486496647173155
- type: nauc_ndcg_at_10_diff1
value: 14.992050388748346
- type: nauc_ndcg_at_10_max
value: 33.69147398978967
- type: nauc_ndcg_at_10_std
value: 17.50282505569243
- type: nauc_ndcg_at_1_diff1
value: 23.923563127598772
- type: nauc_ndcg_at_1_max
value: 28.66045286040102
- type: nauc_ndcg_at_1_std
value: 9.324543818990804
- type: nauc_ndcg_at_20_diff1
value: 15.823547784233455
- type: nauc_ndcg_at_20_max
value: 36.18197091556912
- type: nauc_ndcg_at_20_std
value: 20.836130350813587
- type: nauc_ndcg_at_3_diff1
value: 17.463404815086445
- type: nauc_ndcg_at_3_max
value: 31.775390145640543
- type: nauc_ndcg_at_3_std
value: 10.613295919918224
- type: nauc_ndcg_at_5_diff1
value: 15.58999290484695
- type: nauc_ndcg_at_5_max
value: 32.98927404083336
- type: nauc_ndcg_at_5_std
value: 13.95090164575397
- type: nauc_precision_at_1000_diff1
value: 8.606689567686072
- type: nauc_precision_at_1000_max
value: 25.80568112038825
- type: nauc_precision_at_1000_std
value: 33.49354016345421
- type: nauc_precision_at_100_diff1
value: 11.096364034281708
- type: nauc_precision_at_100_max
value: 33.095554194808315
- type: nauc_precision_at_100_std
value: 30.31514346435903
- type: nauc_precision_at_10_diff1
value: 10.362661293325996
- type: nauc_precision_at_10_max
value: 32.23480074406134
- type: nauc_precision_at_10_std
value: 21.320659854598354
- type: nauc_precision_at_1_diff1
value: 23.923563127598772
- type: nauc_precision_at_1_max
value: 28.66045286040102
- type: nauc_precision_at_1_std
value: 9.324543818990804
- type: nauc_precision_at_20_diff1
value: 11.731217258112276
- type: nauc_precision_at_20_max
value: 35.49265680709476
- type: nauc_precision_at_20_std
value: 26.68721816769851
- type: nauc_precision_at_3_diff1
value: 14.622634083058628
- type: nauc_precision_at_3_max
value: 32.8256707695311
- type: nauc_precision_at_3_std
value: 11.441812061728767
- type: nauc_precision_at_5_diff1
value: 11.382590357991592
- type: nauc_precision_at_5_max
value: 33.40649468969605
- type: nauc_precision_at_5_std
value: 16.422568951127378
- type: nauc_recall_at_1000_diff1
value: 8.277183806243393
- type: nauc_recall_at_1000_max
value: 25.520354250846594
- type: nauc_recall_at_1000_std
value: 34.48676735616856
- type: nauc_recall_at_100_diff1
value: 10.8973527517937
- type: nauc_recall_at_100_max
value: 32.78606622733229
- type: nauc_recall_at_100_std
value: 30.54756167683916
- type: nauc_recall_at_10_diff1
value: 10.241195369539595
- type: nauc_recall_at_10_max
value: 31.93427995053164
- type: nauc_recall_at_10_std
value: 21.22066565209421
- type: nauc_recall_at_1_diff1
value: 24.110400950369463
- type: nauc_recall_at_1_max
value: 28.717709149236846
- type: nauc_recall_at_1_std
value: 9.47019097868293
- type: nauc_recall_at_20_diff1
value: 11.486528161594357
- type: nauc_recall_at_20_max
value: 35.08150781519915
- type: nauc_recall_at_20_std
value: 26.533619286721965
- type: nauc_recall_at_3_diff1
value: 14.409769092274422
- type: nauc_recall_at_3_max
value: 32.60821765433334
- type: nauc_recall_at_3_std
value: 11.348744265520075
- type: nauc_recall_at_5_diff1
value: 11.156286383427009
- type: nauc_recall_at_5_max
value: 33.060053009570325
- type: nauc_recall_at_5_std
value: 16.305557433000203
- type: ndcg_at_1
value: 22.7
- type: ndcg_at_10
value: 20.241
- type: ndcg_at_100
value: 28.005000000000003
- type: ndcg_at_1000
value: 33.337
- type: ndcg_at_20
value: 23.035
- type: ndcg_at_3
value: 19.225
- type: ndcg_at_5
value: 16.73
- type: precision_at_1
value: 22.7
- type: precision_at_10
value: 10.58
- type: precision_at_100
value: 2.176
- type: precision_at_1000
value: 0.345
- type: precision_at_20
value: 6.9
- type: precision_at_3
value: 18.2
- type: precision_at_5
value: 14.799999999999999
- type: recall_at_1
value: 4.585
- type: recall_at_10
value: 21.462
- type: recall_at_100
value: 44.196999999999996
- type: recall_at_1000
value: 70.1
- type: recall_at_20
value: 28.006999999999998
- type: recall_at_3
value: 11.078000000000001
- type: recall_at_5
value: 15.018
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 84.36926725932263
- type: cosine_spearman
value: 79.92986896006748
- type: euclidean_pearson
value: 81.60738350267255
- type: euclidean_spearman
value: 79.92986857077926
- type: main_score
value: 79.92986896006748
- type: manhattan_pearson
value: 81.5923069536872
- type: manhattan_spearman
value: 79.73172626220187
- type: pearson
value: 84.36926725932263
- type: spearman
value: 79.92986896006748
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 85.34145297379273
- type: cosine_spearman
value: 76.66847347731301
- type: euclidean_pearson
value: 81.43408805079034
- type: euclidean_spearman
value: 76.6680945379484
- type: main_score
value: 76.66847347731301
- type: manhattan_pearson
value: 81.69812210080966
- type: manhattan_spearman
value: 77.00962684551284
- type: pearson
value: 85.34145297379273
- type: spearman
value: 76.66847347731301
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 84.5234167909779
- type: cosine_spearman
value: 84.86841413445535
- type: euclidean_pearson
value: 84.17741655183796
- type: euclidean_spearman
value: 84.86841405901674
- type: main_score
value: 84.86841413445535
- type: manhattan_pearson
value: 84.15491829147086
- type: manhattan_spearman
value: 84.93066841323679
- type: pearson
value: 84.5234167909779
- type: spearman
value: 84.86841413445535
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 83.42559938022957
- type: cosine_spearman
value: 80.10636060670153
- type: euclidean_pearson
value: 82.31695543050009
- type: euclidean_spearman
value: 80.10637586616073
- type: main_score
value: 80.10636060670153
- type: manhattan_pearson
value: 82.15731596876633
- type: manhattan_spearman
value: 80.02499151302123
- type: pearson
value: 83.42559938022957
- type: spearman
value: 80.10636060670153
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 87.98708135949613
- type: cosine_spearman
value: 88.69670049389599
- type: euclidean_pearson
value: 87.73091071499016
- type: euclidean_spearman
value: 88.69669966606001
- type: main_score
value: 88.69670049389599
- type: manhattan_pearson
value: 87.52276751048582
- type: manhattan_spearman
value: 88.5214230554986
- type: pearson
value: 87.98708135949613
- type: spearman
value: 88.69670049389599
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 83.38330950325803
- type: cosine_spearman
value: 84.62194600310691
- type: euclidean_pearson
value: 83.4921014845454
- type: euclidean_spearman
value: 84.62194539439683
- type: main_score
value: 84.62194600310691
- type: manhattan_pearson
value: 83.27754689500482
- type: manhattan_spearman
value: 84.37797144965002
- type: pearson
value: 83.38330950325803
- type: spearman
value: 84.62194600310691
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 64.3970938916265
- type: cosine_spearman
value: 64.20857293171593
- type: euclidean_pearson
value: 64.70484646950464
- type: euclidean_spearman
value: 64.20857293171593
- type: main_score
value: 64.20857293171593
- type: manhattan_pearson
value: 63.61585574374933
- type: manhattan_spearman
value: 62.52898030084564
- type: pearson
value: 64.3970938916265
- type: spearman
value: 64.20857293171593
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 78.3035787778662
- type: cosine_spearman
value: 78.85326338385796
- type: euclidean_pearson
value: 78.59090666313418
- type: euclidean_spearman
value: 78.85326338385796
- type: main_score
value: 78.85326338385796
- type: manhattan_pearson
value: 78.4961035895383
- type: manhattan_spearman
value: 78.42104373908565
- type: pearson
value: 78.3035787778662
- type: spearman
value: 78.85326338385796
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 88.20922919233338
- type: cosine_spearman
value: 87.94347302365394
- type: euclidean_pearson
value: 87.98965741145625
- type: euclidean_spearman
value: 87.94347302365394
- type: main_score
value: 87.94347302365394
- type: manhattan_pearson
value: 87.94636580768939
- type: manhattan_spearman
value: 87.82077364455115
- type: pearson
value: 88.20922919233338
- type: spearman
value: 87.94347302365394
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 58.50589296592958
- type: cosine_spearman
value: 57.045627811103
- type: euclidean_pearson
value: 58.54066429107441
- type: euclidean_spearman
value: 57.045627811103
- type: main_score
value: 57.045627811103
- type: manhattan_pearson
value: 57.77923152721202
- type: manhattan_spearman
value: 55.832507020505886
- type: pearson
value: 58.50589296592958
- type: spearman
value: 57.045627811103
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 79.01593420315352
- type: cosine_spearman
value: 79.86309144376173
- type: euclidean_pearson
value: 78.85136309334905
- type: euclidean_spearman
value: 79.86309144376173
- type: main_score
value: 79.86309144376173
- type: manhattan_pearson
value: 78.87419337945624
- type: manhattan_spearman
value: 80.0980944874198
- type: pearson
value: 79.01593420315352
- type: spearman
value: 79.86309144376173
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 79.67432399995894
- type: cosine_spearman
value: 79.12303288340163
- type: euclidean_pearson
value: 79.721668775324
- type: euclidean_spearman
value: 79.12303288340163
- type: main_score
value: 79.12303288340163
- type: manhattan_pearson
value: 79.33800466555394
- type: manhattan_spearman
value: 78.30603645374914
- type: pearson
value: 79.67432399995894
- type: spearman
value: 79.12303288340163
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 78.92024449526863
- type: cosine_spearman
value: 79.06471992660374
- type: euclidean_pearson
value: 78.85388657114522
- type: euclidean_spearman
value: 79.06471992660374
- type: main_score
value: 79.06471992660374
- type: manhattan_pearson
value: 78.56658857806735
- type: manhattan_spearman
value: 78.5908742980949
- type: pearson
value: 78.92024449526863
- type: spearman
value: 79.06471992660374
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 76.64708509569135
- type: cosine_spearman
value: 75.76775070804274
- type: euclidean_pearson
value: 76.69358579979829
- type: euclidean_spearman
value: 75.76775070804274
- type: main_score
value: 75.76775070804274
- type: manhattan_pearson
value: 76.28750520391006
- type: manhattan_spearman
value: 75.30493726054976
- type: pearson
value: 76.64708509569135
- type: spearman
value: 75.76775070804274
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 69.07403446182418
- type: cosine_spearman
value: 68.99668192503603
- type: euclidean_pearson
value: 70.82685591260719
- type: euclidean_spearman
value: 68.99668192503603
- type: main_score
value: 68.99668192503603
- type: manhattan_pearson
value: 70.94201332797343
- type: manhattan_spearman
value: 68.98821773218067
- type: pearson
value: 69.07403446182418
- type: spearman
value: 68.99668192503603
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 65.95032307094047
- type: cosine_spearman
value: 63.15571038787516
- type: euclidean_pearson
value: 68.31815956207403
- type: euclidean_spearman
value: 63.15571038787516
- type: main_score
value: 63.15571038787516
- type: manhattan_pearson
value: 69.57471678363024
- type: manhattan_spearman
value: 63.78770917466211
- type: pearson
value: 65.95032307094047
- type: spearman
value: 63.15571038787516
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 76.57985370197574
- type: cosine_spearman
value: 78.61171041249278
- type: euclidean_pearson
value: 77.64916374513423
- type: euclidean_spearman
value: 78.61182871621082
- type: main_score
value: 78.61171041249278
- type: manhattan_pearson
value: 79.45516154600577
- type: manhattan_spearman
value: 79.81770224017768
- type: pearson
value: 76.57985370197574
- type: spearman
value: 78.61171041249278
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 78.66979183071325
- type: cosine_spearman
value: 76.74899167835852
- type: euclidean_pearson
value: 78.89780095637012
- type: euclidean_spearman
value: 76.74899167835852
- type: main_score
value: 76.74899167835852
- type: manhattan_pearson
value: 79.18536398264527
- type: manhattan_spearman
value: 77.8533686712189
- type: pearson
value: 78.66979183071325
- type: spearman
value: 76.74899167835852
- type: cosine_pearson
value: 78.67129157333113
- type: cosine_spearman
value: 77.17497249706467
- type: euclidean_pearson
value: 78.93527680834069
- type: euclidean_spearman
value: 77.17497249706467
- type: main_score
value: 77.17497249706467
- type: manhattan_pearson
value: 79.17117078125075
- type: manhattan_spearman
value: 77.98920639910075
- type: pearson
value: 78.67129157333113
- type: spearman
value: 77.17497249706467
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 75.65018415517595
- type: cosine_spearman
value: 74.96983110528109
- type: euclidean_pearson
value: 77.0199252096022
- type: euclidean_spearman
value: 75.05313744822759
- type: main_score
value: 74.96983110528109
- type: manhattan_pearson
value: 77.28747618528581
- type: manhattan_spearman
value: 74.95188542213391
- type: pearson
value: 75.65018415517595
- type: spearman
value: 74.96983110528109
- type: cosine_pearson
value: 75.65018415517595
- type: cosine_spearman
value: 74.96983110528109
- type: euclidean_pearson
value: 77.0199252096022
- type: euclidean_spearman
value: 75.05313744822759
- type: main_score
value: 74.96983110528109
- type: manhattan_pearson
value: 77.28747618528581
- type: manhattan_spearman
value: 74.95188542213391
- type: pearson
value: 75.65018415517595
- type: spearman
value: 74.96983110528109
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 84.89952732150343
- type: cosine_spearman
value: 86.06896054399277
- type: euclidean_pearson
value: 85.69195853460913
- type: euclidean_spearman
value: 86.06896054399277
- type: main_score
value: 86.06896054399277
- type: manhattan_pearson
value: 85.56550688049849
- type: manhattan_spearman
value: 85.96422284827248
- type: pearson
value: 84.89952732150343
- type: spearman
value: 86.06896054399277
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 81.89447973144247
- type: map
value: 81.89447973144247
- type: mrr
value: 95.02511830943203
- type: nAUC_map_diff1
value: 3.3432260393863147
- type: nAUC_map_max
value: 54.252667154593915
- type: nAUC_map_std
value: 68.86046114121041
- type: nAUC_mrr_diff1
value: 48.53496653582678
- type: nAUC_mrr_max
value: 85.71793394587537
- type: nAUC_mrr_std
value: 80.13736591117815
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 73.055
- type: map_at_1
value: 57.760999999999996
- type: map_at_10
value: 68.73700000000001
- type: map_at_100
value: 69.248
- type: map_at_1000
value: 69.271
- type: map_at_20
value: 69.059
- type: map_at_3
value: 66.235
- type: map_at_5
value: 67.843
- type: mrr_at_1
value: 60.66666666666667
- type: mrr_at_10
value: 69.7063492063492
- type: mrr_at_100
value: 70.13874332314896
- type: mrr_at_1000
value: 70.16105806682286
- type: mrr_at_20
value: 69.97925265738732
- type: mrr_at_3
value: 68.0
- type: mrr_at_5
value: 69.16666666666667
- type: nauc_map_at_1000_diff1
value: 70.43790903123511
- type: nauc_map_at_1000_max
value: 54.58438799194478
- type: nauc_map_at_1000_std
value: -2.3233833924225875
- type: nauc_map_at_100_diff1
value: 70.43647328927425
- type: nauc_map_at_100_max
value: 54.60393233697298
- type: nauc_map_at_100_std
value: -2.296496281894915
- type: nauc_map_at_10_diff1
value: 70.36871958614046
- type: nauc_map_at_10_max
value: 54.67011099551128
- type: nauc_map_at_10_std
value: -2.7009625352656426
- type: nauc_map_at_1_diff1
value: 74.99352374397856
- type: nauc_map_at_1_max
value: 50.00344836993502
- type: nauc_map_at_1_std
value: -8.698012201837718
- type: nauc_map_at_20_diff1
value: 70.28211747093155
- type: nauc_map_at_20_max
value: 54.553120080500996
- type: nauc_map_at_20_std
value: -2.5857819931480246
- type: nauc_map_at_3_diff1
value: 71.42267536616798
- type: nauc_map_at_3_max
value: 54.14853872152404
- type: nauc_map_at_3_std
value: -3.3672073293896654
- type: nauc_map_at_5_diff1
value: 70.5522364898511
- type: nauc_map_at_5_max
value: 53.82183956625946
- type: nauc_map_at_5_std
value: -3.8112884869905086
- type: nauc_mrr_at_1000_diff1
value: 70.31304494231345
- type: nauc_mrr_at_1000_max
value: 55.634864405262206
- type: nauc_mrr_at_1000_std
value: -0.9073602724006471
- type: nauc_mrr_at_100_diff1
value: 70.31169722312256
- type: nauc_mrr_at_100_max
value: 55.653794547616464
- type: nauc_mrr_at_100_std
value: -0.8812919296154862
- type: nauc_mrr_at_10_diff1
value: 70.20728957800745
- type: nauc_mrr_at_10_max
value: 55.82409315449895
- type: nauc_mrr_at_10_std
value: -1.075930464035488
- type: nauc_mrr_at_1_diff1
value: 74.42858144028513
- type: nauc_mrr_at_1_max
value: 54.28150936595816
- type: nauc_mrr_at_1_std
value: -2.2125887288127233
- type: nauc_mrr_at_20_diff1
value: 70.12751951178618
- type: nauc_mrr_at_20_max
value: 55.646395586345186
- type: nauc_mrr_at_20_std
value: -1.0679937201638918
- type: nauc_mrr_at_3_diff1
value: 70.83694438588687
- type: nauc_mrr_at_3_max
value: 56.13927732102838
- type: nauc_mrr_at_3_std
value: -0.7791089874218045
- type: nauc_mrr_at_5_diff1
value: 70.10204767208957
- type: nauc_mrr_at_5_max
value: 55.42591427914719
- type: nauc_mrr_at_5_std
value: -1.4764758924309185
- type: nauc_ndcg_at_1000_diff1
value: 69.51940238503862
- type: nauc_ndcg_at_1000_max
value: 55.49401934363413
- type: nauc_ndcg_at_1000_std
value: -0.6435033619960048
- type: nauc_ndcg_at_100_diff1
value: 69.42773837942757
- type: nauc_ndcg_at_100_max
value: 56.08697787789855
- type: nauc_ndcg_at_100_std
value: 0.34308668749330745
- type: nauc_ndcg_at_10_diff1
value: 68.78081835695725
- type: nauc_ndcg_at_10_max
value: 56.23279741387973
- type: nauc_ndcg_at_10_std
value: -1.6400901664189715
- type: nauc_ndcg_at_1_diff1
value: 74.42858144028513
- type: nauc_ndcg_at_1_max
value: 54.28150936595816
- type: nauc_ndcg_at_1_std
value: -2.2125887288127233
- type: nauc_ndcg_at_20_diff1
value: 68.4553683006882
- type: nauc_ndcg_at_20_max
value: 55.74277759291753
- type: nauc_ndcg_at_20_std
value: -1.3736010194196164
- type: nauc_ndcg_at_3_diff1
value: 70.04684155763836
- type: nauc_ndcg_at_3_max
value: 56.23593815133674
- type: nauc_ndcg_at_3_std
value: -1.2617917976885795
- type: nauc_ndcg_at_5_diff1
value: 68.88128875602627
- type: nauc_ndcg_at_5_max
value: 54.62301571910928
- type: nauc_ndcg_at_5_std
value: -3.5841002369184762
- type: nauc_precision_at_1000_diff1
value: -27.57874055213611
- type: nauc_precision_at_1000_max
value: 10.69254261980662
- type: nauc_precision_at_1000_std
value: 41.58262996451408
- type: nauc_precision_at_100_diff1
value: -12.950536107683561
- type: nauc_precision_at_100_max
value: 21.16371708839723
- type: nauc_precision_at_100_std
value: 40.951527751953684
- type: nauc_precision_at_10_diff1
value: 8.091679678786514
- type: nauc_precision_at_10_max
value: 33.20925347609484
- type: nauc_precision_at_10_std
value: 25.770968101717557
- type: nauc_precision_at_1_diff1
value: 74.42858144028513
- type: nauc_precision_at_1_max
value: 54.28150936595816
- type: nauc_precision_at_1_std
value: -2.2125887288127233
- type: nauc_precision_at_20_diff1
value: -1.0200005991193168
- type: nauc_precision_at_20_max
value: 27.432174703186323
- type: nauc_precision_at_20_std
value: 29.095729277961407
- type: nauc_precision_at_3_diff1
value: 38.35291080418228
- type: nauc_precision_at_3_max
value: 49.66103007615846
- type: nauc_precision_at_3_std
value: 20.088808571059758
- type: nauc_precision_at_5_diff1
value: 21.518579003608927
- type: nauc_precision_at_5_max
value: 38.7296114841025
- type: nauc_precision_at_5_std
value: 19.47619911691762
- type: nauc_recall_at_1000_diff1
value: 42.25023342670368
- type: nauc_recall_at_1000_max
value: 21.825396825396062
- type: nauc_recall_at_1000_std
value: 33.84687208216713
- type: nauc_recall_at_100_diff1
value: 62.536570183629024
- type: nauc_recall_at_100_max
value: 70.01867413632091
- type: nauc_recall_at_100_std
value: 37.06504824151885
- type: nauc_recall_at_10_diff1
value: 61.1644854039766
- type: nauc_recall_at_10_max
value: 61.074517296862396
- type: nauc_recall_at_10_std
value: -0.5423227215261704
- type: nauc_recall_at_1_diff1
value: 74.99352374397856
- type: nauc_recall_at_1_max
value: 50.00344836993502
- type: nauc_recall_at_1_std
value: -8.698012201837718
- type: nauc_recall_at_20_diff1
value: 56.37978951869162
- type: nauc_recall_at_20_max
value: 58.84099235231809
- type: nauc_recall_at_20_std
value: 1.2224630005733186
- type: nauc_recall_at_3_diff1
value: 66.74850639308315
- type: nauc_recall_at_3_max
value: 58.157377341361084
- type: nauc_recall_at_3_std
value: -1.8661963986343983
- type: nauc_recall_at_5_diff1
value: 61.806012486501395
- type: nauc_recall_at_5_max
value: 54.41470702166602
- type: nauc_recall_at_5_std
value: -7.114468350278654
- type: ndcg_at_1
value: 60.667
- type: ndcg_at_10
value: 73.055
- type: ndcg_at_100
value: 75.312
- type: ndcg_at_1000
value: 75.874
- type: ndcg_at_20
value: 74.166
- type: ndcg_at_3
value: 69.211
- type: ndcg_at_5
value: 71.438
- type: precision_at_1
value: 60.667
- type: precision_at_10
value: 9.700000000000001
- type: precision_at_100
value: 1.08
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 5.083
- type: precision_at_3
value: 27.444000000000003
- type: precision_at_5
value: 18.0
- type: recall_at_1
value: 57.760999999999996
- type: recall_at_10
value: 84.88900000000001
- type: recall_at_100
value: 95.0
- type: recall_at_1000
value: 99.333
- type: recall_at_20
value: 89.22200000000001
- type: recall_at_3
value: 74.933
- type: recall_at_5
value: 80.511
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.8029702970297
- type: cosine_accuracy_threshold
value: 74.40159320831299
- type: cosine_ap
value: 94.58107371506443
- type: cosine_f1
value: 90.01505268439539
- type: cosine_f1_threshold
value: 74.40159320831299
- type: cosine_precision
value: 90.33232628398792
- type: cosine_recall
value: 89.7
- type: dot_accuracy
value: 99.8029702970297
- type: dot_accuracy_threshold
value: 74.40159320831299
- type: dot_ap
value: 94.58108694234896
- type: dot_f1
value: 90.01505268439539
- type: dot_f1_threshold
value: 74.40159320831299
- type: dot_precision
value: 90.33232628398792
- type: dot_recall
value: 89.7
- type: euclidean_accuracy
value: 99.8029702970297
- type: euclidean_accuracy_threshold
value: 71.55194282531738
- type: euclidean_ap
value: 94.58107371506446
- type: euclidean_f1
value: 90.01505268439539
- type: euclidean_f1_threshold
value: 71.55194282531738
- type: euclidean_precision
value: 90.33232628398792
- type: euclidean_recall
value: 89.7
- type: main_score
value: 94.91386698713322
- type: manhattan_accuracy
value: 99.8108910891089
- type: manhattan_accuracy_threshold
value: 1696.7340469360352
- type: manhattan_ap
value: 94.91386698713322
- type: manhattan_f1
value: 90.4927824788452
- type: manhattan_f1_threshold
value: 1696.7340469360352
- type: manhattan_precision
value: 90.08919722497522
- type: manhattan_recall
value: 90.9
- type: max_ap
value: 94.91386698713322
- type: max_f1
value: 90.4927824788452
- type: max_precision
value: 90.33232628398792
- type: max_recall
value: 90.9
- type: similarity_accuracy
value: 99.8029702970297
- type: similarity_accuracy_threshold
value: 74.40159320831299
- type: similarity_ap
value: 94.58107371506443
- type: similarity_f1
value: 90.01505268439539
- type: similarity_f1_threshold
value: 74.40159320831299
- type: similarity_precision
value: 90.33232628398792
- type: similarity_recall
value: 89.7
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: main_score
value: 67.22104632684339
- type: v_measure
value: 67.22104632684339
- type: v_measure_std
value: 4.510073189377009
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: main_score
value: 33.69502959609247
- type: v_measure
value: 33.69502959609247
- type: v_measure_std
value: 1.7351941868223697
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 49.33572386600858
- type: map
value: 49.33572386600858
- type: mrr
value: 50.25399743230625
- type: nAUC_map_diff1
value: 36.68702916524911
- type: nAUC_map_max
value: 15.78050039369413
- type: nAUC_map_std
value: 9.735729247790866
- type: nAUC_mrr_diff1
value: 36.82154498603323
- type: nAUC_mrr_max
value: 16.371339214758713
- type: nAUC_mrr_std
value: 9.929514279072379
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 28.78169000462832
- type: cosine_spearman
value: 29.152425546074824
- type: dot_pearson
value: 28.781692477370914
- type: dot_spearman
value: 29.152370579886423
- type: main_score
value: 29.152425546074824
- type: pearson
value: 28.78169000462832
- type: spearman
value: 29.152425546074824
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 78.374
- type: map_at_1
value: 0.22100000000000003
- type: map_at_10
value: 1.9980000000000002
- type: map_at_100
value: 12.812000000000001
- type: map_at_1000
value: 31.823
- type: map_at_20
value: 3.6859999999999995
- type: map_at_3
value: 0.656
- type: map_at_5
value: 1.0670000000000002
- type: mrr_at_1
value: 84.0
- type: mrr_at_10
value: 90.56666666666666
- type: mrr_at_100
value: 90.56666666666666
- type: mrr_at_1000
value: 90.56666666666666
- type: mrr_at_20
value: 90.56666666666666
- type: mrr_at_3
value: 89.66666666666667
- type: mrr_at_5
value: 90.56666666666666
- type: nauc_map_at_1000_diff1
value: 2.825877135411271
- type: nauc_map_at_1000_max
value: 40.607799285634
- type: nauc_map_at_1000_std
value: 75.56929127733711
- type: nauc_map_at_100_diff1
value: 17.09931837591714
- type: nauc_map_at_100_max
value: 26.017672927390556
- type: nauc_map_at_100_std
value: 47.97065512030576
- type: nauc_map_at_10_diff1
value: 18.2493061824924
- type: nauc_map_at_10_max
value: 14.631430140768051
- type: nauc_map_at_10_std
value: 6.843536754351145
- type: nauc_map_at_1_diff1
value: 22.577139455591702
- type: nauc_map_at_1_max
value: 0.15518062954687648
- type: nauc_map_at_1_std
value: 4.518832555249529
- type: nauc_map_at_20_diff1
value: 13.380363593233845
- type: nauc_map_at_20_max
value: 14.364050402931303
- type: nauc_map_at_20_std
value: 14.97367017439393
- type: nauc_map_at_3_diff1
value: 15.885210137428182
- type: nauc_map_at_3_max
value: 3.562057528491576
- type: nauc_map_at_3_std
value: 2.378758614671768
- type: nauc_map_at_5_diff1
value: 14.49860277826242
- type: nauc_map_at_5_max
value: 7.729805934487601
- type: nauc_map_at_5_std
value: 1.4105962147738722
- type: nauc_mrr_at_1000_diff1
value: 56.881060817300266
- type: nauc_mrr_at_1000_max
value: 41.11734189808372
- type: nauc_mrr_at_1000_std
value: 50.43684357282267
- type: nauc_mrr_at_100_diff1
value: 56.881060817300266
- type: nauc_mrr_at_100_max
value: 41.11734189808372
- type: nauc_mrr_at_100_std
value: 50.43684357282267
- type: nauc_mrr_at_10_diff1
value: 56.881060817300266
- type: nauc_mrr_at_10_max
value: 41.11734189808372
- type: nauc_mrr_at_10_std
value: 50.43684357282267
- type: nauc_mrr_at_1_diff1
value: 58.64629356897393
- type: nauc_mrr_at_1_max
value: 32.48649975454101
- type: nauc_mrr_at_1_std
value: 43.955571919489394
- type: nauc_mrr_at_20_diff1
value: 56.881060817300266
- type: nauc_mrr_at_20_max
value: 41.11734189808372
- type: nauc_mrr_at_20_std
value: 50.43684357282267
- type: nauc_mrr_at_3_diff1
value: 53.77571146801908
- type: nauc_mrr_at_3_max
value: 45.26470680316847
- type: nauc_mrr_at_3_std
value: 53.000845308537706
- type: nauc_mrr_at_5_diff1
value: 56.881060817300266
- type: nauc_mrr_at_5_max
value: 41.11734189808372
- type: nauc_mrr_at_5_std
value: 50.43684357282267
- type: nauc_ndcg_at_1000_diff1
value: 5.706304837276804
- type: nauc_ndcg_at_1000_max
value: 40.29128039047473
- type: nauc_ndcg_at_1000_std
value: 71.00623045997143
- type: nauc_ndcg_at_100_diff1
value: 5.781640210958165
- type: nauc_ndcg_at_100_max
value: 43.91454038788984
- type: nauc_ndcg_at_100_std
value: 73.38353180392235
- type: nauc_ndcg_at_10_diff1
value: 26.9639013902839
- type: nauc_ndcg_at_10_max
value: 54.33014371697244
- type: nauc_ndcg_at_10_std
value: 47.792741117341144
- type: nauc_ndcg_at_1_diff1
value: 54.66632834306011
- type: nauc_ndcg_at_1_max
value: 30.289266683582845
- type: nauc_ndcg_at_1_std
value: 33.96599847754379
- type: nauc_ndcg_at_20_diff1
value: 17.30631583279515
- type: nauc_ndcg_at_20_max
value: 51.11318537065157
- type: nauc_ndcg_at_20_std
value: 58.77421488656353
- type: nauc_ndcg_at_3_diff1
value: 29.77344612486348
- type: nauc_ndcg_at_3_max
value: 37.42364187792375
- type: nauc_ndcg_at_3_std
value: 41.1907099151911
- type: nauc_ndcg_at_5_diff1
value: 26.050198501250804
- type: nauc_ndcg_at_5_max
value: 47.51636664318881
- type: nauc_ndcg_at_5_std
value: 42.27162971112885
- type: nauc_precision_at_1000_diff1
value: -5.147193986603446
- type: nauc_precision_at_1000_max
value: 35.2107091684719
- type: nauc_precision_at_1000_std
value: 46.18948291863976
- type: nauc_precision_at_100_diff1
value: 8.820554100487717
- type: nauc_precision_at_100_max
value: 45.45756541797819
- type: nauc_precision_at_100_std
value: 76.13204940288823
- type: nauc_precision_at_10_diff1
value: 24.200964449927067
- type: nauc_precision_at_10_max
value: 63.97368322679529
- type: nauc_precision_at_10_std
value: 51.453029793278795
- type: nauc_precision_at_1_diff1
value: 58.64629356897393
- type: nauc_precision_at_1_max
value: 32.48649975454101
- type: nauc_precision_at_1_std
value: 43.955571919489394
- type: nauc_precision_at_20_diff1
value: 9.308587936619213
- type: nauc_precision_at_20_max
value: 48.79243631270248
- type: nauc_precision_at_20_std
value: 62.069859056289864
- type: nauc_precision_at_3_diff1
value: 33.581669226830584
- type: nauc_precision_at_3_max
value: 56.22119815668209
- type: nauc_precision_at_3_std
value: 51.94572452636975
- type: nauc_precision_at_5_diff1
value: 27.412098506105657
- type: nauc_precision_at_5_max
value: 62.44729045506555
- type: nauc_precision_at_5_std
value: 44.765099619080445
- type: nauc_recall_at_1000_diff1
value: -1.1672849905619294
- type: nauc_recall_at_1000_max
value: 30.24145654488767
- type: nauc_recall_at_1000_std
value: 59.841775004234165
- type: nauc_recall_at_100_diff1
value: 14.955315589973456
- type: nauc_recall_at_100_max
value: 14.182437740698777
- type: nauc_recall_at_100_std
value: 34.85010900316272
- type: nauc_recall_at_10_diff1
value: 13.823849163501494
- type: nauc_recall_at_10_max
value: 7.576291042005819
- type: nauc_recall_at_10_std
value: 1.4227650589393714
- type: nauc_recall_at_1_diff1
value: 22.577139455591702
- type: nauc_recall_at_1_max
value: 0.15518062954687648
- type: nauc_recall_at_1_std
value: 4.518832555249529
- type: nauc_recall_at_20_diff1
value: 9.577895424349496
- type: nauc_recall_at_20_max
value: 4.326841788680218
- type: nauc_recall_at_20_std
value: 8.40592602308462
- type: nauc_recall_at_3_diff1
value: 11.099599191623701
- type: nauc_recall_at_3_max
value: 1.8660565345942584
- type: nauc_recall_at_3_std
value: -0.5969085344249611
- type: nauc_recall_at_5_diff1
value: 8.674608384913736
- type: nauc_recall_at_5_max
value: 3.730380788869587
- type: nauc_recall_at_5_std
value: -3.4877352049852024
- type: ndcg_at_1
value: 80.0
- type: ndcg_at_10
value: 78.374
- type: ndcg_at_100
value: 63.385000000000005
- type: ndcg_at_1000
value: 57.406
- type: ndcg_at_20
value: 75.795
- type: ndcg_at_3
value: 80.419
- type: ndcg_at_5
value: 80.157
- type: precision_at_1
value: 84.0
- type: precision_at_10
value: 84.0
- type: precision_at_100
value: 65.88000000000001
- type: precision_at_1000
value: 25.502000000000002
- type: precision_at_20
value: 80.30000000000001
- type: precision_at_3
value: 86.667
- type: precision_at_5
value: 86.4
- type: recall_at_1
value: 0.22100000000000003
- type: recall_at_10
value: 2.179
- type: recall_at_100
value: 15.934000000000001
- type: recall_at_1000
value: 54.458
- type: recall_at_20
value: 4.144
- type: recall_at_3
value: 0.6859999999999999
- type: recall_at_5
value: 1.1320000000000001
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 28.907
- type: map_at_1
value: 2.675
- type: map_at_10
value: 12.215
- type: map_at_100
value: 18.7
- type: map_at_1000
value: 20.398
- type: map_at_20
value: 15.078
- type: map_at_3
value: 6.241
- type: map_at_5
value: 8.289
- type: mrr_at_1
value: 32.6530612244898
- type: mrr_at_10
value: 50.01133786848071
- type: mrr_at_100
value: 50.77517365675259
- type: mrr_at_1000
value: 50.77517365675259
- type: mrr_at_20
value: 50.588814902724664
- type: mrr_at_3
value: 45.578231292517
- type: mrr_at_5
value: 48.53741496598638
- type: nauc_map_at_1000_diff1
value: -5.684538294981354
- type: nauc_map_at_1000_max
value: -33.46305720843361
- type: nauc_map_at_1000_std
value: 1.9671166101260358
- type: nauc_map_at_100_diff1
value: -3.9527668773790374
- type: nauc_map_at_100_max
value: -33.547343271958304
- type: nauc_map_at_100_std
value: -1.4543726200894687
- type: nauc_map_at_10_diff1
value: -3.6912102827982975
- type: nauc_map_at_10_max
value: -37.051501400243644
- type: nauc_map_at_10_std
value: -18.58369649223091
- type: nauc_map_at_1_diff1
value: 8.542642521750217
- type: nauc_map_at_1_max
value: -42.118453460843014
- type: nauc_map_at_1_std
value: -21.4477651608444
- type: nauc_map_at_20_diff1
value: -4.1294483682157335
- type: nauc_map_at_20_max
value: -32.055300714683774
- type: nauc_map_at_20_std
value: -13.633460827906779
- type: nauc_map_at_3_diff1
value: 4.166012812499575
- type: nauc_map_at_3_max
value: -44.421760913346375
- type: nauc_map_at_3_std
value: -22.934729762627693
- type: nauc_map_at_5_diff1
value: 5.0705280599427285
- type: nauc_map_at_5_max
value: -39.880207516910055
- type: nauc_map_at_5_std
value: -19.089070592204358
- type: nauc_mrr_at_1000_diff1
value: 8.136502099178854
- type: nauc_mrr_at_1000_max
value: -54.053135657703564
- type: nauc_mrr_at_1000_std
value: 0.8410793475356224
- type: nauc_mrr_at_100_diff1
value: 8.136502099178854
- type: nauc_mrr_at_100_max
value: -54.053135657703564
- type: nauc_mrr_at_100_std
value: 0.8410793475356224
- type: nauc_mrr_at_10_diff1
value: 7.021058071372796
- type: nauc_mrr_at_10_max
value: -55.576671480124475
- type: nauc_mrr_at_10_std
value: 2.659844175871393
- type: nauc_mrr_at_1_diff1
value: 21.763874961879942
- type: nauc_mrr_at_1_max
value: -42.10185605661237
- type: nauc_mrr_at_1_std
value: -6.492292167140558
- type: nauc_mrr_at_20_diff1
value: 8.441891181402887
- type: nauc_mrr_at_20_max
value: -54.466795585812235
- type: nauc_mrr_at_20_std
value: 0.916114699709143
- type: nauc_mrr_at_3_diff1
value: 7.551389256661414
- type: nauc_mrr_at_3_max
value: -46.97364074837694
- type: nauc_mrr_at_3_std
value: 1.0411397370775466
- type: nauc_mrr_at_5_diff1
value: 5.235804734715955
- type: nauc_mrr_at_5_max
value: -54.37509495435838
- type: nauc_mrr_at_5_std
value: 2.779654633655762
- type: nauc_ndcg_at_1000_diff1
value: -15.397449719696779
- type: nauc_ndcg_at_1000_max
value: -43.619552110596665
- type: nauc_ndcg_at_1000_std
value: 26.3557588044005
- type: nauc_ndcg_at_100_diff1
value: -8.064551008407328
- type: nauc_ndcg_at_100_max
value: -45.62898014606384
- type: nauc_ndcg_at_100_std
value: 19.02252139372526
- type: nauc_ndcg_at_10_diff1
value: -4.128778098656938
- type: nauc_ndcg_at_10_max
value: -47.533595647961825
- type: nauc_ndcg_at_10_std
value: -3.3387983790901616
- type: nauc_ndcg_at_1_diff1
value: 15.241311807512584
- type: nauc_ndcg_at_1_max
value: -41.98413041761103
- type: nauc_ndcg_at_1_std
value: -1.7966111564973624
- type: nauc_ndcg_at_20_diff1
value: -5.70487127711277
- type: nauc_ndcg_at_20_max
value: -43.296928773082485
- type: nauc_ndcg_at_20_std
value: -4.953768651191041
- type: nauc_ndcg_at_3_diff1
value: 10.059341497787937
- type: nauc_ndcg_at_3_max
value: -40.68501908879975
- type: nauc_ndcg_at_3_std
value: -3.6931074797187877
- type: nauc_ndcg_at_5_diff1
value: 7.526983752941929
- type: nauc_ndcg_at_5_max
value: -43.365397576700275
- type: nauc_ndcg_at_5_std
value: 0.32616836825174683
- type: nauc_precision_at_1000_diff1
value: -7.438317571660842
- type: nauc_precision_at_1000_max
value: 34.73241001748508
- type: nauc_precision_at_1000_std
value: 36.25365158109604
- type: nauc_precision_at_100_diff1
value: -4.627005077446657
- type: nauc_precision_at_100_max
value: -15.93628289282409
- type: nauc_precision_at_100_std
value: 68.61386525027707
- type: nauc_precision_at_10_diff1
value: -10.52039936457346
- type: nauc_precision_at_10_max
value: -43.34615042118174
- type: nauc_precision_at_10_std
value: 9.318534549691767
- type: nauc_precision_at_1_diff1
value: 21.763874961879942
- type: nauc_precision_at_1_max
value: -42.10185605661237
- type: nauc_precision_at_1_std
value: -6.492292167140558
- type: nauc_precision_at_20_diff1
value: -2.287812706503246
- type: nauc_precision_at_20_max
value: -28.10959274429549
- type: nauc_precision_at_20_std
value: 16.788667831779485
- type: nauc_precision_at_3_diff1
value: 11.569650243424755
- type: nauc_precision_at_3_max
value: -41.668998559185844
- type: nauc_precision_at_3_std
value: -0.3803285872339615
- type: nauc_precision_at_5_diff1
value: 7.598490650206377
- type: nauc_precision_at_5_max
value: -41.68148813885381
- type: nauc_precision_at_5_std
value: 7.354258555131649
- type: nauc_recall_at_1000_diff1
value: -50.220542196994636
- type: nauc_recall_at_1000_max
value: -16.95193388500635
- type: nauc_recall_at_1000_std
value: 69.28134193017735
- type: nauc_recall_at_100_diff1
value: -15.415419361213853
- type: nauc_recall_at_100_max
value: -33.60910097372997
- type: nauc_recall_at_100_std
value: 35.403748730364256
- type: nauc_recall_at_10_diff1
value: -14.144822663337028
- type: nauc_recall_at_10_max
value: -38.11986778901871
- type: nauc_recall_at_10_std
value: -13.87707926888663
- type: nauc_recall_at_1_diff1
value: 8.542642521750217
- type: nauc_recall_at_1_max
value: -42.118453460843014
- type: nauc_recall_at_1_std
value: -21.4477651608444
- type: nauc_recall_at_20_diff1
value: -12.3394417307943
- type: nauc_recall_at_20_max
value: -32.75019884128939
- type: nauc_recall_at_20_std
value: -6.875770812126497
- type: nauc_recall_at_3_diff1
value: -0.907011119452535
- type: nauc_recall_at_3_max
value: -42.06461204250678
- type: nauc_recall_at_3_std
value: -18.765470997666945
- type: nauc_recall_at_5_diff1
value: -1.063588562013453
- type: nauc_recall_at_5_max
value: -39.15779594344513
- type: nauc_recall_at_5_std
value: -14.839683507905466
- type: ndcg_at_1
value: 29.592000000000002
- type: ndcg_at_10
value: 28.907
- type: ndcg_at_100
value: 40.211000000000006
- type: ndcg_at_1000
value: 51.482000000000006
- type: ndcg_at_20
value: 29.804000000000002
- type: ndcg_at_3
value: 30.802000000000003
- type: ndcg_at_5
value: 29.511
- type: precision_at_1
value: 32.653
- type: precision_at_10
value: 26.531
- type: precision_at_100
value: 8.224
- type: precision_at_1000
value: 1.576
- type: precision_at_20
value: 20.102
- type: precision_at_3
value: 34.014
- type: precision_at_5
value: 30.203999999999997
- type: recall_at_1
value: 2.675
- type: recall_at_10
value: 19.750999999999998
- type: recall_at_100
value: 50.365
- type: recall_at_1000
value: 84.773
- type: recall_at_20
value: 27.632
- type: recall_at_3
value: 7.578
- type: recall_at_5
value: 11.346
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 70.810546875
- type: ap
value: 14.252152092007437
- type: ap_weighted
value: 14.252152092007437
- type: f1
value: 54.48430687519361
- type: f1_weighted
value: 77.28107973539473
- type: main_score
value: 70.810546875
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 62.66553480475382
- type: f1
value: 62.053566222838384
- type: f1_weighted
value: 60.48069640139468
- type: main_score
value: 62.66553480475382
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: main_score
value: 49.676842982432774
- type: v_measure
value: 49.676842982432774
- type: v_measure_std
value: 1.3041225457855343
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 85.07480479227513
- type: cosine_accuracy_threshold
value: 78.39158177375793
- type: cosine_ap
value: 70.92737526837412
- type: cosine_f1
value: 66.1954959271682
- type: cosine_f1_threshold
value: 74.12481307983398
- type: cosine_precision
value: 60.61869240895129
- type: cosine_recall
value: 72.9023746701847
- type: dot_accuracy
value: 85.07480479227513
- type: dot_accuracy_threshold
value: 78.39158773422241
- type: dot_ap
value: 70.92737601494514
- type: dot_f1
value: 66.1954959271682
- type: dot_f1_threshold
value: 74.12482500076294
- type: dot_precision
value: 60.61869240895129
- type: dot_recall
value: 72.9023746701847
- type: euclidean_accuracy
value: 85.07480479227513
- type: euclidean_accuracy_threshold
value: 65.73951244354248
- type: euclidean_ap
value: 70.92738137519932
- type: euclidean_f1
value: 66.1954959271682
- type: euclidean_f1_threshold
value: 71.93772792816162
- type: euclidean_precision
value: 60.61869240895129
- type: euclidean_recall
value: 72.9023746701847
- type: main_score
value: 70.92738137519932
- type: manhattan_accuracy
value: 84.89002801454372
- type: manhattan_accuracy_threshold
value: 1543.7227249145508
- type: manhattan_ap
value: 70.45819704836475
- type: manhattan_f1
value: 65.75607397558322
- type: manhattan_f1_threshold
value: 1691.067886352539
- type: manhattan_precision
value: 60.673656033905864
- type: manhattan_recall
value: 71.76781002638522
- type: max_ap
value: 70.92738137519932
- type: max_f1
value: 66.1954959271682
- type: max_precision
value: 60.673656033905864
- type: max_recall
value: 72.9023746701847
- type: similarity_accuracy
value: 85.07480479227513
- type: similarity_accuracy_threshold
value: 78.39158177375793
- type: similarity_ap
value: 70.92737526837412
- type: similarity_f1
value: 66.1954959271682
- type: similarity_f1_threshold
value: 74.12481307983398
- type: similarity_precision
value: 60.61869240895129
- type: similarity_recall
value: 72.9023746701847
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 89.32355338223309
- type: cosine_accuracy_threshold
value: 72.50972986221313
- type: cosine_ap
value: 86.74895762701595
- type: cosine_f1
value: 79.21738810635873
- type: cosine_f1_threshold
value: 69.94493007659912
- type: cosine_precision
value: 75.82905020066183
- type: cosine_recall
value: 82.9226978749615
- type: dot_accuracy
value: 89.32355338223309
- type: dot_accuracy_threshold
value: 72.50974178314209
- type: dot_ap
value: 86.74894970312789
- type: dot_f1
value: 79.21738810635873
- type: dot_f1_threshold
value: 69.94493007659912
- type: dot_precision
value: 75.82905020066183
- type: dot_recall
value: 82.9226978749615
- type: euclidean_accuracy
value: 89.32355338223309
- type: euclidean_accuracy_threshold
value: 74.14885759353638
- type: euclidean_ap
value: 86.74893799074754
- type: euclidean_f1
value: 79.21738810635873
- type: euclidean_f1_threshold
value: 77.53072381019592
- type: euclidean_precision
value: 75.82905020066183
- type: euclidean_recall
value: 82.9226978749615
- type: main_score
value: 86.74895762701595
- type: manhattan_accuracy
value: 89.28474405247022
- type: manhattan_accuracy_threshold
value: 1725.102424621582
- type: manhattan_ap
value: 86.69699016049593
- type: manhattan_f1
value: 79.00847425990219
- type: manhattan_f1_threshold
value: 1807.0615768432617
- type: manhattan_precision
value: 76.68671642872673
- type: manhattan_recall
value: 81.4752078842008
- type: max_ap
value: 86.74895762701595
- type: max_f1
value: 79.21738810635873
- type: max_precision
value: 76.68671642872673
- type: max_recall
value: 82.9226978749615
- type: similarity_accuracy
value: 89.32355338223309
- type: similarity_accuracy_threshold
value: 72.50972986221313
- type: similarity_ap
value: 86.74895762701595
- type: similarity_f1
value: 79.21738810635873
- type: similarity_f1_threshold
value: 69.94493007659912
- type: similarity_precision
value: 75.82905020066183
- type: similarity_recall
value: 82.9226978749615
- task:
type: STS
dataset:
name: MTEB AFQMC
type: C-MTEB/AFQMC
config: default
split: validation
revision: b44c3b011063adb25877c13823db83bb193913c4
metrics:
- type: cosine_pearson
value: 38.29145368837485
- type: cosine_spearman
value: 39.41056570139273
- type: euclidean_pearson
value: 38.0651461534699
- type: euclidean_spearman
value: 39.41056569992215
- type: main_score
value: 39.41056570139273
- type: manhattan_pearson
value: 37.70876309636298
- type: manhattan_spearman
value: 39.04864822187025
- type: pearson
value: 38.29145368837485
- type: spearman
value: 39.41056570139273
- task:
type: STS
dataset:
name: MTEB ATEC
type: C-MTEB/ATEC
config: default
split: test
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
metrics:
- type: cosine_pearson
value: 46.47704725371303
- type: cosine_spearman
value: 46.9183608596495
- type: euclidean_pearson
value: 49.36420417260176
- type: euclidean_spearman
value: 46.91835860770197
- type: main_score
value: 46.9183608596495
- type: manhattan_pearson
value: 49.124318954541145
- type: manhattan_spearman
value: 46.69432997494852
- type: pearson
value: 46.47704725371303
- type: spearman
value: 46.9183608596495
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 41.858000000000004
- type: f1
value: 38.04731113109237
- type: f1_weighted
value: 38.04731113109237
- type: main_score
value: 41.858000000000004
- task:
type: STS
dataset:
name: MTEB BQ
type: C-MTEB/BQ
config: default
split: test
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
metrics:
- type: cosine_pearson
value: 51.2270285721989
- type: cosine_spearman
value: 51.53381532349815
- type: euclidean_pearson
value: 50.83672339980501
- type: euclidean_spearman
value: 51.53382225123762
- type: main_score
value: 51.53381532349815
- type: manhattan_pearson
value: 50.481897254555655
- type: manhattan_spearman
value: 51.165938122581764
- type: pearson
value: 51.2270285721989
- type: spearman
value: 51.53381532349815
- task:
type: Clustering
dataset:
name: MTEB CLSClusteringP2P
type: C-MTEB/CLSClusteringP2P
config: default
split: test
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
metrics:
- type: main_score
value: 42.6351765343486
- type: v_measure
value: 42.6351765343486
- type: v_measure_std
value: 0.8266776246358534
- task:
type: Clustering
dataset:
name: MTEB CLSClusteringS2S
type: C-MTEB/CLSClusteringS2S
config: default
split: test
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
metrics:
- type: main_score
value: 39.14026434895999
- type: v_measure
value: 39.14026434895999
- type: v_measure_std
value: 0.8843326244130124
- task:
type: Reranking
dataset:
name: MTEB CMedQAv1
type: C-MTEB/CMedQAv1-reranking
config: default
split: test
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
metrics:
- type: main_score
value: 81.62649518330059
- type: map
value: 81.62649518330059
- type: mrr
value: 84.59920634920634
- type: nAUC_map_diff1
value: 57.57622865226385
- type: nAUC_map_max
value: 64.24578070815535
- type: nAUC_map_std
value: 25.825835637398292
- type: nAUC_mrr_diff1
value: 64.506555321586
- type: nAUC_mrr_max
value: 73.72849839805279
- type: nAUC_mrr_std
value: 33.50231715071016
- task:
type: Reranking
dataset:
name: MTEB CMedQAv2
type: C-MTEB/CMedQAv2-reranking
config: default
split: test
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
metrics:
- type: main_score
value: 82.6884842555647
- type: map
value: 82.6884842555647
- type: mrr
value: 85.7413492063492
- type: nAUC_map_diff1
value: 62.227875149480674
- type: nAUC_map_max
value: 65.39899447833739
- type: nAUC_map_std
value: 22.232770911289762
- type: nAUC_mrr_diff1
value: 71.02339957841794
- type: nAUC_mrr_max
value: 75.79106833222022
- type: nAUC_mrr_std
value: 31.922312297325313
- task:
type: Retrieval
dataset:
name: MTEB CmedqaRetrieval
type: C-MTEB/CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: main_score
value: 41.912
- type: map_at_1
value: 24.154
- type: map_at_10
value: 35.771
- type: map_at_100
value: 37.361
- type: map_at_1000
value: 37.501
- type: map_at_20
value: 36.614000000000004
- type: map_at_3
value: 32.208999999999996
- type: map_at_5
value: 34.135
- type: mrr_at_1
value: 36.959239809952486
- type: mrr_at_10
value: 44.68076344482939
- type: mrr_at_100
value: 45.58051326135588
- type: mrr_at_1000
value: 45.63875894256334
- type: mrr_at_20
value: 45.18303299514746
- type: mrr_at_3
value: 42.55230474285231
- type: mrr_at_5
value: 43.73134950404267
- type: nauc_map_at_1000_diff1
value: 48.19593787339997
- type: nauc_map_at_1000_max
value: 45.80793623720016
- type: nauc_map_at_1000_std
value: -4.498738770651924
- type: nauc_map_at_100_diff1
value: 48.14822061537294
- type: nauc_map_at_100_max
value: 45.766276109027565
- type: nauc_map_at_100_std
value: -4.531921171029137
- type: nauc_map_at_10_diff1
value: 48.056275142802576
- type: nauc_map_at_10_max
value: 44.86133659352232
- type: nauc_map_at_10_std
value: -5.678734969973419
- type: nauc_map_at_1_diff1
value: 54.126770601702304
- type: nauc_map_at_1_max
value: 36.294268209121014
- type: nauc_map_at_1_std
value: -8.314309694617984
- type: nauc_map_at_20_diff1
value: 48.040597097872464
- type: nauc_map_at_20_max
value: 45.361480980577554
- type: nauc_map_at_20_std
value: -5.1056219220416414
- type: nauc_map_at_3_diff1
value: 48.824963816099306
- type: nauc_map_at_3_max
value: 42.59637253351721
- type: nauc_map_at_3_std
value: -7.142494643007989
- type: nauc_map_at_5_diff1
value: 48.39295465854973
- type: nauc_map_at_5_max
value: 43.81282348287875
- type: nauc_map_at_5_std
value: -6.551989013310646
- type: nauc_mrr_at_1000_diff1
value: 55.254016903996884
- type: nauc_mrr_at_1000_max
value: 53.09878029734
- type: nauc_mrr_at_1000_std
value: -0.71508532680536
- type: nauc_mrr_at_100_diff1
value: 55.22345420339283
- type: nauc_mrr_at_100_max
value: 53.09592092707568
- type: nauc_mrr_at_100_std
value: -0.6931227079570508
- type: nauc_mrr_at_10_diff1
value: 55.18285620712305
- type: nauc_mrr_at_10_max
value: 53.0128131412299
- type: nauc_mrr_at_10_std
value: -0.9419014092991297
- type: nauc_mrr_at_1_diff1
value: 61.53750424643732
- type: nauc_mrr_at_1_max
value: 54.24674408902589
- type: nauc_mrr_at_1_std
value: -1.9080737950338242
- type: nauc_mrr_at_20_diff1
value: 55.1955850013467
- type: nauc_mrr_at_20_max
value: 53.04094140836042
- type: nauc_mrr_at_20_std
value: -0.8063521557954811
- type: nauc_mrr_at_3_diff1
value: 56.11946877115898
- type: nauc_mrr_at_3_max
value: 53.46308123387505
- type: nauc_mrr_at_3_std
value: -1.25039802843073
- type: nauc_mrr_at_5_diff1
value: 55.59945526594265
- type: nauc_mrr_at_5_max
value: 53.094458463158546
- type: nauc_mrr_at_5_std
value: -1.1485696186251675
- type: nauc_ndcg_at_1000_diff1
value: 48.630394030057936
- type: nauc_ndcg_at_1000_max
value: 49.067370003850804
- type: nauc_ndcg_at_1000_std
value: -0.6379826555665533
- type: nauc_ndcg_at_100_diff1
value: 47.4242704726565
- type: nauc_ndcg_at_100_max
value: 48.72472432340327
- type: nauc_ndcg_at_100_std
value: -0.16567922191922693
- type: nauc_ndcg_at_10_diff1
value: 47.16820763109196
- type: nauc_ndcg_at_10_max
value: 46.69185085844686
- type: nauc_ndcg_at_10_std
value: -3.793946471519526
- type: nauc_ndcg_at_1_diff1
value: 61.53750424643732
- type: nauc_ndcg_at_1_max
value: 54.24674408902589
- type: nauc_ndcg_at_1_std
value: -1.9080737950338242
- type: nauc_ndcg_at_20_diff1
value: 47.062085251805165
- type: nauc_ndcg_at_20_max
value: 47.36804459443504
- type: nauc_ndcg_at_20_std
value: -2.6790807434003154
- type: nauc_ndcg_at_3_diff1
value: 49.37353194021333
- type: nauc_ndcg_at_3_max
value: 48.35156335077874
- type: nauc_ndcg_at_3_std
value: -3.3398102492848656
- type: nauc_ndcg_at_5_diff1
value: 48.0947159130794
- type: nauc_ndcg_at_5_max
value: 46.680994331148504
- type: nauc_ndcg_at_5_std
value: -4.043874632127286
- type: nauc_precision_at_1000_diff1
value: 6.109079873705322
- type: nauc_precision_at_1000_max
value: 29.504954981504778
- type: nauc_precision_at_1000_std
value: 22.93941750032271
- type: nauc_precision_at_100_diff1
value: 11.927597721886762
- type: nauc_precision_at_100_max
value: 39.33748646673334
- type: nauc_precision_at_100_std
value: 23.95901745749321
- type: nauc_precision_at_10_diff1
value: 24.82917619008383
- type: nauc_precision_at_10_max
value: 48.25909614877216
- type: nauc_precision_at_10_std
value: 10.250143723179713
- type: nauc_precision_at_1_diff1
value: 61.53750424643732
- type: nauc_precision_at_1_max
value: 54.24674408902589
- type: nauc_precision_at_1_std
value: -1.9080737950338242
- type: nauc_precision_at_20_diff1
value: 20.46788631872044
- type: nauc_precision_at_20_max
value: 45.80722239546835
- type: nauc_precision_at_20_std
value: 14.720113784118633
- type: nauc_precision_at_3_diff1
value: 36.57074097596536
- type: nauc_precision_at_3_max
value: 52.82030883151323
- type: nauc_precision_at_3_std
value: 3.9283920700632526
- type: nauc_precision_at_5_diff1
value: 31.217047808074472
- type: nauc_precision_at_5_max
value: 51.092762871371654
- type: nauc_precision_at_5_std
value: 6.51063180919143
- type: nauc_recall_at_1000_diff1
value: 31.30321342816756
- type: nauc_recall_at_1000_max
value: 55.469754854393486
- type: nauc_recall_at_1000_std
value: 46.627360786810655
- type: nauc_recall_at_100_diff1
value: 26.36814612505595
- type: nauc_recall_at_100_max
value: 41.98698104560196
- type: nauc_recall_at_100_std
value: 16.01155635795268
- type: nauc_recall_at_10_diff1
value: 34.230500025598566
- type: nauc_recall_at_10_max
value: 38.46622774541338
- type: nauc_recall_at_10_std
value: -3.5976451821598636
- type: nauc_recall_at_1_diff1
value: 54.126770601702304
- type: nauc_recall_at_1_max
value: 36.294268209121014
- type: nauc_recall_at_1_std
value: -8.314309694617984
- type: nauc_recall_at_20_diff1
value: 31.92600233159853
- type: nauc_recall_at_20_max
value: 39.151276414762634
- type: nauc_recall_at_20_std
value: -0.008185757782290744
- type: nauc_recall_at_3_diff1
value: 40.983135298326175
- type: nauc_recall_at_3_max
value: 39.282144240448105
- type: nauc_recall_at_3_std
value: -6.478558331383442
- type: nauc_recall_at_5_diff1
value: 37.96561121548906
- type: nauc_recall_at_5_max
value: 38.25573176800016
- type: nauc_recall_at_5_std
value: -5.896110553981627
- type: ndcg_at_1
value: 36.958999999999996
- type: ndcg_at_10
value: 41.912
- type: ndcg_at_100
value: 48.412
- type: ndcg_at_1000
value: 51.076
- type: ndcg_at_20
value: 44.237
- type: ndcg_at_3
value: 37.596000000000004
- type: ndcg_at_5
value: 39.257
- type: precision_at_1
value: 36.958999999999996
- type: precision_at_10
value: 9.222
- type: precision_at_100
value: 1.456
- type: precision_at_1000
value: 0.18
- type: precision_at_20
value: 5.404
- type: precision_at_3
value: 21.346999999999998
- type: precision_at_5
value: 15.204
- type: recall_at_1
value: 24.154
- type: recall_at_10
value: 51.13799999999999
- type: recall_at_100
value: 78.44200000000001
- type: recall_at_1000
value: 96.607
- type: recall_at_20
value: 59.01499999999999
- type: recall_at_3
value: 37.645
- type: recall_at_5
value: 43.24
- task:
type: PairClassification
dataset:
name: MTEB Cmnli
type: C-MTEB/CMNLI
config: default
split: validation
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
metrics:
- type: cosine_accuracy
value: 70.24654239326519
- type: cosine_accuracy_threshold
value: 65.65687656402588
- type: cosine_ap
value: 76.97337656087815
- type: cosine_f1
value: 72.89293849658314
- type: cosine_f1_threshold
value: 58.187782764434814
- type: cosine_precision
value: 63.230240549828174
- type: cosine_recall
value: 86.04161795651157
- type: dot_accuracy
value: 70.24654239326519
- type: dot_accuracy_threshold
value: 65.65687656402588
- type: dot_ap
value: 76.99306253217402
- type: dot_f1
value: 72.89293849658314
- type: dot_f1_threshold
value: 58.18778872489929
- type: dot_precision
value: 63.230240549828174
- type: dot_recall
value: 86.04161795651157
- type: euclidean_accuracy
value: 70.24654239326519
- type: euclidean_accuracy_threshold
value: 82.8771710395813
- type: euclidean_ap
value: 76.97337656087815
- type: euclidean_f1
value: 72.89293849658314
- type: euclidean_f1_threshold
value: 91.44638776779175
- type: euclidean_precision
value: 63.230240549828174
- type: euclidean_recall
value: 86.04161795651157
- type: main_score
value: 76.99306253217402
- type: manhattan_accuracy
value: 69.74143114852676
- type: manhattan_accuracy_threshold
value: 1963.1107330322266
- type: manhattan_ap
value: 76.44289061856252
- type: manhattan_f1
value: 72.70526528142021
- type: manhattan_f1_threshold
value: 2121.240234375
- type: manhattan_precision
value: 63.93471704807522
- type: manhattan_recall
value: 84.26467149871405
- type: max_ap
value: 76.99306253217402
- type: max_f1
value: 72.89293849658314
- type: max_precision
value: 63.93471704807522
- type: max_recall
value: 86.04161795651157
- type: similarity_accuracy
value: 70.24654239326519
- type: similarity_accuracy_threshold
value: 65.65687656402588
- type: similarity_ap
value: 76.97337656087815
- type: similarity_f1
value: 72.89293849658314
- type: similarity_f1_threshold
value: 58.187782764434814
- type: similarity_precision
value: 63.230240549828174
- type: similarity_recall
value: 86.04161795651157
- task:
type: Retrieval
dataset:
name: MTEB CovidRetrieval
type: C-MTEB/CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: main_score
value: 82.09100000000001
- type: map_at_1
value: 69.679
- type: map_at_10
value: 78.188
- type: map_at_100
value: 78.432
- type: map_at_1000
value: 78.435
- type: map_at_20
value: 78.358
- type: map_at_3
value: 76.458
- type: map_at_5
value: 77.525
- type: mrr_at_1
value: 69.86301369863014
- type: mrr_at_10
value: 78.1891966481008
- type: mrr_at_100
value: 78.43100887014927
- type: mrr_at_1000
value: 78.43409905944281
- type: mrr_at_20
value: 78.3583713625236
- type: mrr_at_3
value: 76.5015806111697
- type: mrr_at_5
value: 77.5816649104321
- type: nauc_map_at_1000_diff1
value: 78.7565094457952
- type: nauc_map_at_1000_max
value: 43.44153271106606
- type: nauc_map_at_1000_std
value: -43.35643127411659
- type: nauc_map_at_100_diff1
value: 78.75464512949722
- type: nauc_map_at_100_max
value: 43.44614729899657
- type: nauc_map_at_100_std
value: -43.35662894001264
- type: nauc_map_at_10_diff1
value: 78.6150484744859
- type: nauc_map_at_10_max
value: 43.22212591985456
- type: nauc_map_at_10_std
value: -43.68204084683379
- type: nauc_map_at_1_diff1
value: 81.86147718901591
- type: nauc_map_at_1_max
value: 43.27595769557031
- type: nauc_map_at_1_std
value: -40.832434398434316
- type: nauc_map_at_20_diff1
value: 78.72313916367459
- type: nauc_map_at_20_max
value: 43.527065459801754
- type: nauc_map_at_20_std
value: -43.299315170766626
- type: nauc_map_at_3_diff1
value: 78.6799910684285
- type: nauc_map_at_3_max
value: 42.319407684110274
- type: nauc_map_at_3_std
value: -45.537423149362695
- type: nauc_map_at_5_diff1
value: 78.25825961555257
- type: nauc_map_at_5_max
value: 42.66902641451189
- type: nauc_map_at_5_std
value: -44.2482231636208
- type: nauc_mrr_at_1000_diff1
value: 78.77840881732628
- type: nauc_mrr_at_1000_max
value: 43.75052183199315
- type: nauc_mrr_at_1000_std
value: -42.89324434781183
- type: nauc_mrr_at_100_diff1
value: 78.7765411998645
- type: nauc_mrr_at_100_max
value: 43.755086077231056
- type: nauc_mrr_at_100_std
value: -42.89351661301109
- type: nauc_mrr_at_10_diff1
value: 78.63610310385711
- type: nauc_mrr_at_10_max
value: 43.52324483162967
- type: nauc_mrr_at_10_std
value: -43.23477882995708
- type: nauc_mrr_at_1_diff1
value: 81.65699303519479
- type: nauc_mrr_at_1_max
value: 44.202391758796914
- type: nauc_mrr_at_1_std
value: -39.36327383599781
- type: nauc_mrr_at_20_diff1
value: 78.7443733650774
- type: nauc_mrr_at_20_max
value: 43.83081490577578
- type: nauc_mrr_at_20_std
value: -42.848142406550764
- type: nauc_mrr_at_3_diff1
value: 78.64356391070008
- type: nauc_mrr_at_3_max
value: 42.76861798176099
- type: nauc_mrr_at_3_std
value: -44.84496156914284
- type: nauc_mrr_at_5_diff1
value: 78.22192606452634
- type: nauc_mrr_at_5_max
value: 43.12757659228294
- type: nauc_mrr_at_5_std
value: -43.471573840955344
- type: nauc_ndcg_at_1000_diff1
value: 78.1838616987732
- type: nauc_ndcg_at_1000_max
value: 43.859382162396884
- type: nauc_ndcg_at_1000_std
value: -43.30653697283926
- type: nauc_ndcg_at_100_diff1
value: 78.13119295479274
- type: nauc_ndcg_at_100_max
value: 44.01086911321529
- type: nauc_ndcg_at_100_std
value: -43.24874302093996
- type: nauc_ndcg_at_10_diff1
value: 77.48152464096923
- type: nauc_ndcg_at_10_max
value: 43.264264169510504
- type: nauc_ndcg_at_10_std
value: -44.580175112852835
- type: nauc_ndcg_at_1_diff1
value: 81.43455985468403
- type: nauc_ndcg_at_1_max
value: 44.252000550874484
- type: nauc_ndcg_at_1_std
value: -39.38237995087698
- type: nauc_ndcg_at_20_diff1
value: 77.85410963490207
- type: nauc_ndcg_at_20_max
value: 44.68578065287876
- type: nauc_ndcg_at_20_std
value: -42.87046493321746
- type: nauc_ndcg_at_3_diff1
value: 77.55400028908774
- type: nauc_ndcg_at_3_max
value: 41.47690499246867
- type: nauc_ndcg_at_3_std
value: -47.96239510251043
- type: nauc_ndcg_at_5_diff1
value: 76.55817027861454
- type: nauc_ndcg_at_5_max
value: 42.01696124525059
- type: nauc_ndcg_at_5_std
value: -45.6385058409844
- type: nauc_precision_at_1000_diff1
value: -28.009627138628257
- type: nauc_precision_at_1000_max
value: 29.24459991455739
- type: nauc_precision_at_1000_std
value: 58.852174419737146
- type: nauc_precision_at_100_diff1
value: -6.814208555904227
- type: nauc_precision_at_100_max
value: 38.58450802218331
- type: nauc_precision_at_100_std
value: 39.48885778925581
- type: nauc_precision_at_10_diff1
value: 42.69404009383913
- type: nauc_precision_at_10_max
value: 39.72607044424161
- type: nauc_precision_at_10_std
value: -22.31713351851116
- type: nauc_precision_at_1_diff1
value: 81.43455985468403
- type: nauc_precision_at_1_max
value: 44.252000550874484
- type: nauc_precision_at_1_std
value: -39.38237995087698
- type: nauc_precision_at_20_diff1
value: 31.218498932644845
- type: nauc_precision_at_20_max
value: 55.11413173622635
- type: nauc_precision_at_20_std
value: 7.702910966907561
- type: nauc_precision_at_3_diff1
value: 67.07260136293569
- type: nauc_precision_at_3_max
value: 37.464338835123904
- type: nauc_precision_at_3_std
value: -51.72773522807322
- type: nauc_precision_at_5_diff1
value: 57.11817879149
- type: nauc_precision_at_5_max
value: 37.78607913838418
- type: nauc_precision_at_5_std
value: -41.3489934177573
- type: nauc_recall_at_1000_diff1
value: 58.37811197433529
- type: nauc_recall_at_1000_max
value: 77.70125019980898
- type: nauc_recall_at_1000_std
value: -7.415635097287519
- type: nauc_recall_at_100_diff1
value: 64.57899134001917
- type: nauc_recall_at_100_max
value: 74.20013410570942
- type: nauc_recall_at_100_std
value: -20.672136729747088
- type: nauc_recall_at_10_diff1
value: 67.93094200727559
- type: nauc_recall_at_10_max
value: 43.42164333462216
- type: nauc_recall_at_10_std
value: -53.33541950399078
- type: nauc_recall_at_1_diff1
value: 81.86147718901591
- type: nauc_recall_at_1_max
value: 43.27595769557031
- type: nauc_recall_at_1_std
value: -40.832434398434316
- type: nauc_recall_at_20_diff1
value: 67.50567004840833
- type: nauc_recall_at_20_max
value: 68.28046074793383
- type: nauc_recall_at_20_std
value: -29.574869314866653
- type: nauc_recall_at_3_diff1
value: 73.0577497285433
- type: nauc_recall_at_3_max
value: 36.948110275313425
- type: nauc_recall_at_3_std
value: -59.30189498397615
- type: nauc_recall_at_5_diff1
value: 66.98956370201739
- type: nauc_recall_at_5_max
value: 37.16579792310329
- type: nauc_recall_at_5_std
value: -54.60597345402122
- type: ndcg_at_1
value: 69.968
- type: ndcg_at_10
value: 82.09100000000001
- type: ndcg_at_100
value: 83.177
- type: ndcg_at_1000
value: 83.258
- type: ndcg_at_20
value: 82.68799999999999
- type: ndcg_at_3
value: 78.666
- type: ndcg_at_5
value: 80.613
- type: precision_at_1
value: 69.968
- type: precision_at_10
value: 9.504999999999999
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.101
- type: precision_at_20
value: 4.868
- type: precision_at_3
value: 28.486
- type: precision_at_5
value: 18.082
- type: recall_at_1
value: 69.679
- type: recall_at_10
value: 94.099
- type: recall_at_100
value: 98.946
- type: recall_at_1000
value: 99.579
- type: recall_at_20
value: 96.417
- type: recall_at_3
value: 84.958
- type: recall_at_5
value: 89.726
- task:
type: Retrieval
dataset:
name: MTEB DuRetrieval
type: C-MTEB/DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: main_score
value: 82.093
- type: map_at_1
value: 23.294
- type: map_at_10
value: 73.087
- type: map_at_100
value: 76.378
- type: map_at_1000
value: 76.429
- type: map_at_20
value: 75.645
- type: map_at_3
value: 49.49
- type: map_at_5
value: 62.79900000000001
- type: mrr_at_1
value: 82.65
- type: mrr_at_10
value: 88.56652777777776
- type: mrr_at_100
value: 88.65106019759902
- type: mrr_at_1000
value: 88.65548524359767
- type: mrr_at_20
value: 88.62234385196844
- type: mrr_at_3
value: 88.0333333333333
- type: mrr_at_5
value: 88.43083333333333
- type: nauc_map_at_1000_diff1
value: 3.017682068149073
- type: nauc_map_at_1000_max
value: 43.31894144534087
- type: nauc_map_at_1000_std
value: 14.103477261758462
- type: nauc_map_at_100_diff1
value: 3.01786018428549
- type: nauc_map_at_100_max
value: 43.304578781010584
- type: nauc_map_at_100_std
value: 14.104821995278524
- type: nauc_map_at_10_diff1
value: 6.00776493567358
- type: nauc_map_at_10_max
value: 40.050232117264265
- type: nauc_map_at_10_std
value: 3.8907867883058964
- type: nauc_map_at_1_diff1
value: 40.656271709573616
- type: nauc_map_at_1_max
value: -6.665245760519005
- type: nauc_map_at_1_std
value: -29.384443787821894
- type: nauc_map_at_20_diff1
value: 3.462215302112235
- type: nauc_map_at_20_max
value: 42.97592478608055
- type: nauc_map_at_20_std
value: 11.923153462330815
- type: nauc_map_at_3_diff1
value: 24.857326825495797
- type: nauc_map_at_3_max
value: 7.79715123136744
- type: nauc_map_at_3_std
value: -24.158608608669
- type: nauc_map_at_5_diff1
value: 16.134527943963175
- type: nauc_map_at_5_max
value: 21.945455683828534
- type: nauc_map_at_5_std
value: -15.417311822489824
- type: nauc_mrr_at_1000_diff1
value: 22.608720258580345
- type: nauc_mrr_at_1000_max
value: 57.14809743855488
- type: nauc_mrr_at_1000_std
value: 26.500042115342154
- type: nauc_mrr_at_100_diff1
value: 22.60822245173703
- type: nauc_mrr_at_100_max
value: 57.16085387711407
- type: nauc_mrr_at_100_std
value: 26.52114951859548
- type: nauc_mrr_at_10_diff1
value: 22.698266613067958
- type: nauc_mrr_at_10_max
value: 57.405277806586454
- type: nauc_mrr_at_10_std
value: 26.753463349560942
- type: nauc_mrr_at_1_diff1
value: 25.116149229327394
- type: nauc_mrr_at_1_max
value: 50.18786123051239
- type: nauc_mrr_at_1_std
value: 17.896523926314035
- type: nauc_mrr_at_20_diff1
value: 22.63109662240636
- type: nauc_mrr_at_20_max
value: 57.25789480886964
- type: nauc_mrr_at_20_std
value: 26.628848293894535
- type: nauc_mrr_at_3_diff1
value: 22.29030169026751
- type: nauc_mrr_at_3_max
value: 57.78690245871875
- type: nauc_mrr_at_3_std
value: 26.961874143079275
- type: nauc_mrr_at_5_diff1
value: 22.539256613417436
- type: nauc_mrr_at_5_max
value: 57.640952298152946
- type: nauc_mrr_at_5_std
value: 27.166131522241564
- type: nauc_ndcg_at_1000_diff1
value: 4.335459030896887
- type: nauc_ndcg_at_1000_max
value: 51.40790109857344
- type: nauc_ndcg_at_1000_std
value: 25.223663033428558
- type: nauc_ndcg_at_100_diff1
value: 3.756968920629851
- type: nauc_ndcg_at_100_max
value: 51.23131481991569
- type: nauc_ndcg_at_100_std
value: 25.896007604039635
- type: nauc_ndcg_at_10_diff1
value: 3.7299699790096703
- type: nauc_ndcg_at_10_max
value: 47.98647382256022
- type: nauc_ndcg_at_10_std
value: 17.025514680687277
- type: nauc_ndcg_at_1_diff1
value: 25.116149229327394
- type: nauc_ndcg_at_1_max
value: 50.18786123051239
- type: nauc_ndcg_at_1_std
value: 17.896523926314035
- type: nauc_ndcg_at_20_diff1
value: 3.692033975506179
- type: nauc_ndcg_at_20_max
value: 50.70003527682141
- type: nauc_ndcg_at_20_std
value: 22.512279629260227
- type: nauc_ndcg_at_3_diff1
value: 5.101141943602369
- type: nauc_ndcg_at_3_max
value: 44.526033252737705
- type: nauc_ndcg_at_3_std
value: 17.21985170533644
- type: nauc_ndcg_at_5_diff1
value: 5.128269340707157
- type: nauc_ndcg_at_5_max
value: 40.74953442421861
- type: nauc_ndcg_at_5_std
value: 10.54615337986913
- type: nauc_precision_at_1000_diff1
value: -28.088666590713135
- type: nauc_precision_at_1000_max
value: 23.005522720304104
- type: nauc_precision_at_1000_std
value: 50.173926122648524
- type: nauc_precision_at_100_diff1
value: -28.968645059600682
- type: nauc_precision_at_100_max
value: 25.04622827770351
- type: nauc_precision_at_100_std
value: 52.230491589978115
- type: nauc_precision_at_10_diff1
value: -30.253268763729245
- type: nauc_precision_at_10_max
value: 38.44381775116214
- type: nauc_precision_at_10_std
value: 47.93579661356217
- type: nauc_precision_at_1_diff1
value: 25.116149229327394
- type: nauc_precision_at_1_max
value: 50.18786123051239
- type: nauc_precision_at_1_std
value: 17.896523926314035
- type: nauc_precision_at_20_diff1
value: -29.78333017605082
- type: nauc_precision_at_20_max
value: 30.724852767715742
- type: nauc_precision_at_20_std
value: 51.556480994031176
- type: nauc_precision_at_3_diff1
value: -19.839530913679052
- type: nauc_precision_at_3_max
value: 46.97201811029464
- type: nauc_precision_at_3_std
value: 32.763601276627426
- type: nauc_precision_at_5_diff1
value: -26.491574031749167
- type: nauc_precision_at_5_max
value: 43.298145808496955
- type: nauc_precision_at_5_std
value: 37.30863792820846
- type: nauc_recall_at_1000_diff1
value: -30.13364129325676
- type: nauc_recall_at_1000_max
value: 73.24128272106563
- type: nauc_recall_at_1000_std
value: 78.93831159982587
- type: nauc_recall_at_100_diff1
value: -18.765607920053267
- type: nauc_recall_at_100_max
value: 54.712120419339364
- type: nauc_recall_at_100_std
value: 57.767960027082566
- type: nauc_recall_at_10_diff1
value: -0.6052835404182173
- type: nauc_recall_at_10_max
value: 39.946898924388954
- type: nauc_recall_at_10_std
value: 4.709923580866511
- type: nauc_recall_at_1_diff1
value: 40.656271709573616
- type: nauc_recall_at_1_max
value: -6.665245760519005
- type: nauc_recall_at_1_std
value: -29.384443787821894
- type: nauc_recall_at_20_diff1
value: -5.962280989061532
- type: nauc_recall_at_20_max
value: 50.09170736630004
- type: nauc_recall_at_20_std
value: 29.458350383857574
- type: nauc_recall_at_3_diff1
value: 22.545894407841793
- type: nauc_recall_at_3_max
value: 2.6193977834875533
- type: nauc_recall_at_3_std
value: -26.87014769293195
- type: nauc_recall_at_5_diff1
value: 13.352272138382745
- type: nauc_recall_at_5_max
value: 14.75948274133919
- type: nauc_recall_at_5_std
value: -20.70760567642474
- type: ndcg_at_1
value: 82.65
- type: ndcg_at_10
value: 82.093
- type: ndcg_at_100
value: 85.75500000000001
- type: ndcg_at_1000
value: 86.247
- type: ndcg_at_20
value: 84.218
- type: ndcg_at_3
value: 79.259
- type: ndcg_at_5
value: 78.691
- type: precision_at_1
value: 82.65
- type: precision_at_10
value: 40.21
- type: precision_at_100
value: 4.761
- type: precision_at_1000
value: 0.488
- type: precision_at_20
value: 22.303
- type: precision_at_3
value: 71.48299999999999
- type: precision_at_5
value: 60.83
- type: recall_at_1
value: 23.294
- type: recall_at_10
value: 84.98599999999999
- type: recall_at_100
value: 96.441
- type: recall_at_1000
value: 99.005
- type: recall_at_20
value: 91.263
- type: recall_at_3
value: 52.888000000000005
- type: recall_at_5
value: 69.48100000000001
- task:
type: Retrieval
dataset:
name: MTEB EcomRetrieval
type: C-MTEB/EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: main_score
value: 62.514
- type: map_at_1
value: 46.800000000000004
- type: map_at_10
value: 57.108000000000004
- type: map_at_100
value: 57.665
- type: map_at_1000
value: 57.68600000000001
- type: map_at_20
value: 57.469
- type: map_at_3
value: 54.167
- type: map_at_5
value: 56.077
- type: mrr_at_1
value: 46.800000000000004
- type: mrr_at_10
value: 57.10785714285714
- type: mrr_at_100
value: 57.66479182756831
- type: mrr_at_1000
value: 57.685955034269185
- type: mrr_at_20
value: 57.46916307505702
- type: mrr_at_3
value: 54.16666666666663
- type: mrr_at_5
value: 56.07666666666664
- type: nauc_map_at_1000_diff1
value: 61.542672828066
- type: nauc_map_at_1000_max
value: 31.85700200032805
- type: nauc_map_at_1000_std
value: -11.620181705591662
- type: nauc_map_at_100_diff1
value: 61.53813237491788
- type: nauc_map_at_100_max
value: 31.874036133018084
- type: nauc_map_at_100_std
value: -11.59724786321096
- type: nauc_map_at_10_diff1
value: 61.38313778334582
- type: nauc_map_at_10_max
value: 31.740467380708182
- type: nauc_map_at_10_std
value: -12.100842206709821
- type: nauc_map_at_1_diff1
value: 63.66949701943299
- type: nauc_map_at_1_max
value: 28.133811910672573
- type: nauc_map_at_1_std
value: -14.453510006377535
- type: nauc_map_at_20_diff1
value: 61.5638057215127
- type: nauc_map_at_20_max
value: 31.904214948036756
- type: nauc_map_at_20_std
value: -11.719473194737628
- type: nauc_map_at_3_diff1
value: 61.19354745729959
- type: nauc_map_at_3_max
value: 29.813217610060548
- type: nauc_map_at_3_std
value: -13.883839488771295
- type: nauc_map_at_5_diff1
value: 61.08733612041498
- type: nauc_map_at_5_max
value: 31.255100654464012
- type: nauc_map_at_5_std
value: -12.09065665533858
- type: nauc_mrr_at_1000_diff1
value: 61.542672828066
- type: nauc_mrr_at_1000_max
value: 31.85700200032805
- type: nauc_mrr_at_1000_std
value: -11.620181705591662
- type: nauc_mrr_at_100_diff1
value: 61.53813237491788
- type: nauc_mrr_at_100_max
value: 31.874036133018084
- type: nauc_mrr_at_100_std
value: -11.59724786321096
- type: nauc_mrr_at_10_diff1
value: 61.38313778334582
- type: nauc_mrr_at_10_max
value: 31.740467380708182
- type: nauc_mrr_at_10_std
value: -12.100842206709821
- type: nauc_mrr_at_1_diff1
value: 63.66949701943299
- type: nauc_mrr_at_1_max
value: 28.133811910672573
- type: nauc_mrr_at_1_std
value: -14.453510006377535
- type: nauc_mrr_at_20_diff1
value: 61.5638057215127
- type: nauc_mrr_at_20_max
value: 31.904214948036756
- type: nauc_mrr_at_20_std
value: -11.719473194737628
- type: nauc_mrr_at_3_diff1
value: 61.19354745729959
- type: nauc_mrr_at_3_max
value: 29.813217610060548
- type: nauc_mrr_at_3_std
value: -13.883839488771295
- type: nauc_mrr_at_5_diff1
value: 61.08733612041498
- type: nauc_mrr_at_5_max
value: 31.255100654464012
- type: nauc_mrr_at_5_std
value: -12.09065665533858
- type: nauc_ndcg_at_1000_diff1
value: 61.404354519031024
- type: nauc_ndcg_at_1000_max
value: 34.5568056709905
- type: nauc_ndcg_at_1000_std
value: -8.194258261068375
- type: nauc_ndcg_at_100_diff1
value: 61.31111013617605
- type: nauc_ndcg_at_100_max
value: 35.081274620942295
- type: nauc_ndcg_at_100_std
value: -7.567587216846379
- type: nauc_ndcg_at_10_diff1
value: 60.796642472721004
- type: nauc_ndcg_at_10_max
value: 34.413253540105245
- type: nauc_ndcg_at_10_std
value: -10.263251244353334
- type: nauc_ndcg_at_1_diff1
value: 63.66949701943299
- type: nauc_ndcg_at_1_max
value: 28.133811910672573
- type: nauc_ndcg_at_1_std
value: -14.453510006377535
- type: nauc_ndcg_at_20_diff1
value: 61.439123475952975
- type: nauc_ndcg_at_20_max
value: 35.038091592005536
- type: nauc_ndcg_at_20_std
value: -8.792780272975662
- type: nauc_ndcg_at_3_diff1
value: 60.2950660942529
- type: nauc_ndcg_at_3_max
value: 30.257013442417087
- type: nauc_ndcg_at_3_std
value: -13.671873921177202
- type: nauc_ndcg_at_5_diff1
value: 60.04926753266181
- type: nauc_ndcg_at_5_max
value: 33.00050110783418
- type: nauc_ndcg_at_5_std
value: -10.293915982801868
- type: nauc_precision_at_1000_diff1
value: 65.86104527280983
- type: nauc_precision_at_1000_max
value: 92.22150398620967
- type: nauc_precision_at_1000_std
value: 80.3718068423948
- type: nauc_precision_at_100_diff1
value: 61.343931511998676
- type: nauc_precision_at_100_max
value: 77.89479428134884
- type: nauc_precision_at_100_std
value: 53.242509124861904
- type: nauc_precision_at_10_diff1
value: 58.498529223685814
- type: nauc_precision_at_10_max
value: 48.5105315454464
- type: nauc_precision_at_10_std
value: -0.8844333821952514
- type: nauc_precision_at_1_diff1
value: 63.66949701943299
- type: nauc_precision_at_1_max
value: 28.133811910672573
- type: nauc_precision_at_1_std
value: -14.453510006377535
- type: nauc_precision_at_20_diff1
value: 62.21692302833121
- type: nauc_precision_at_20_max
value: 56.42904519756148
- type: nauc_precision_at_20_std
value: 11.768421717570398
- type: nauc_precision_at_3_diff1
value: 57.386050314704676
- type: nauc_precision_at_3_max
value: 31.63922112989413
- type: nauc_precision_at_3_std
value: -12.983862277916117
- type: nauc_precision_at_5_diff1
value: 56.111301892551865
- type: nauc_precision_at_5_max
value: 39.97271825396829
- type: nauc_precision_at_5_std
value: -2.9622634310133646
- type: nauc_recall_at_1000_diff1
value: 65.86104527280992
- type: nauc_recall_at_1000_max
value: 92.22150398620987
- type: nauc_recall_at_1000_std
value: 80.37180684239502
- type: nauc_recall_at_100_diff1
value: 61.34393151199862
- type: nauc_recall_at_100_max
value: 77.89479428134887
- type: nauc_recall_at_100_std
value: 53.242509124862025
- type: nauc_recall_at_10_diff1
value: 58.49852922368592
- type: nauc_recall_at_10_max
value: 48.51053154544651
- type: nauc_recall_at_10_std
value: -0.8844333821952685
- type: nauc_recall_at_1_diff1
value: 63.66949701943299
- type: nauc_recall_at_1_max
value: 28.133811910672573
- type: nauc_recall_at_1_std
value: -14.453510006377535
- type: nauc_recall_at_20_diff1
value: 62.216923028331315
- type: nauc_recall_at_20_max
value: 56.429045197561635
- type: nauc_recall_at_20_std
value: 11.768421717570599
- type: nauc_recall_at_3_diff1
value: 57.38605031470464
- type: nauc_recall_at_3_max
value: 31.639221129894047
- type: nauc_recall_at_3_std
value: -12.983862277916192
- type: nauc_recall_at_5_diff1
value: 56.111301892551865
- type: nauc_recall_at_5_max
value: 39.97271825396825
- type: nauc_recall_at_5_std
value: -2.962263431013432
- type: ndcg_at_1
value: 46.800000000000004
- type: ndcg_at_10
value: 62.514
- type: ndcg_at_100
value: 65.22
- type: ndcg_at_1000
value: 65.717
- type: ndcg_at_20
value: 63.778999999999996
- type: ndcg_at_3
value: 56.58800000000001
- type: ndcg_at_5
value: 60.039
- type: precision_at_1
value: 46.800000000000004
- type: precision_at_10
value: 7.960000000000001
- type: precision_at_100
value: 0.923
- type: precision_at_1000
value: 0.096
- type: precision_at_20
value: 4.2250000000000005
- type: precision_at_3
value: 21.2
- type: precision_at_5
value: 14.399999999999999
- type: recall_at_1
value: 46.800000000000004
- type: recall_at_10
value: 79.60000000000001
- type: recall_at_100
value: 92.30000000000001
- type: recall_at_1000
value: 96.1
- type: recall_at_20
value: 84.5
- type: recall_at_3
value: 63.6
- type: recall_at_5
value: 72.0
- task:
type: Classification
dataset:
name: MTEB IFlyTek
type: C-MTEB/IFlyTek-classification
config: default
split: validation
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
metrics:
- type: accuracy
value: 49.018853405155824
- type: f1
value: 36.34797570897239
- type: f1_weighted
value: 46.595946626038284
- type: main_score
value: 49.018853405155824
- task:
type: Classification
dataset:
name: MTEB JDReview
type: C-MTEB/JDReview-classification
config: default
split: test
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
metrics:
- type: accuracy
value: 80.76923076923077
- type: ap
value: 43.91219315273788
- type: ap_weighted
value: 43.91219315273788
- type: f1
value: 74.3959076760867
- type: f1_weighted
value: 82.41054854790659
- type: main_score
value: 80.76923076923077
- task:
type: STS
dataset:
name: MTEB LCQMC
type: C-MTEB/LCQMC
config: default
split: test
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
metrics:
- type: cosine_pearson
value: 66.42169614903062
- type: cosine_spearman
value: 69.6209380589209
- type: euclidean_pearson
value: 68.13684291689385
- type: euclidean_spearman
value: 69.62093584082648
- type: main_score
value: 69.6209380589209
- type: manhattan_pearson
value: 67.98872700847923
- type: manhattan_spearman
value: 69.46732039256112
- type: pearson
value: 66.42169614903062
- type: spearman
value: 69.6209380589209
- task:
type: Reranking
dataset:
name: MTEB MMarcoReranking
type: C-MTEB/Mmarco-reranking
config: default
split: dev
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
metrics:
- type: main_score
value: 28.40392786552284
- type: map
value: 28.40392786552284
- type: mrr
value: 26.729761904761908
- type: nAUC_map_diff1
value: 11.013649297702722
- type: nAUC_map_max
value: 10.17419646298121
- type: nAUC_map_std
value: -0.8563449479185579
- type: nAUC_mrr_diff1
value: 10.279159084348438
- type: nAUC_mrr_max
value: 9.945986054772508
- type: nAUC_mrr_std
value: -0.7829405326492496
- task:
type: Retrieval
dataset:
name: MTEB MMarcoRetrieval
type: C-MTEB/MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: main_score
value: 78.527
- type: map_at_1
value: 65.179
- type: map_at_10
value: 74.603
- type: map_at_100
value: 74.957
- type: map_at_1000
value: 74.967
- type: map_at_20
value: 74.857
- type: map_at_3
value: 72.611
- type: map_at_5
value: 73.916
- type: mrr_at_1
value: 67.44985673352436
- type: mrr_at_10
value: 75.1962125346795
- type: mrr_at_100
value: 75.50889677029757
- type: mrr_at_1000
value: 75.51801374083685
- type: mrr_at_20
value: 75.42326193241115
- type: mrr_at_3
value: 73.4670487106018
- type: mrr_at_5
value: 74.58166189111732
- type: nauc_map_at_1000_diff1
value: 77.3975532985191
- type: nauc_map_at_1000_max
value: 38.64013999373193
- type: nauc_map_at_1000_std
value: -18.151216910688003
- type: nauc_map_at_100_diff1
value: 77.39458303918599
- type: nauc_map_at_100_max
value: 38.65525502999619
- type: nauc_map_at_100_std
value: -18.12441923873744
- type: nauc_map_at_10_diff1
value: 77.23576973574656
- type: nauc_map_at_10_max
value: 38.79698916303308
- type: nauc_map_at_10_std
value: -18.205472833807896
- type: nauc_map_at_1_diff1
value: 79.56817309653695
- type: nauc_map_at_1_max
value: 30.973318622760697
- type: nauc_map_at_1_std
value: -24.193358631119697
- type: nauc_map_at_20_diff1
value: 77.345553469177
- type: nauc_map_at_20_max
value: 38.72033702371551
- type: nauc_map_at_20_std
value: -18.10235546630277
- type: nauc_map_at_3_diff1
value: 77.1519821962318
- type: nauc_map_at_3_max
value: 37.252293129620995
- type: nauc_map_at_3_std
value: -19.84875198107134
- type: nauc_map_at_5_diff1
value: 77.2287177052444
- type: nauc_map_at_5_max
value: 38.476432730452075
- type: nauc_map_at_5_std
value: -18.833903805578974
- type: nauc_mrr_at_1000_diff1
value: 77.60661485922789
- type: nauc_mrr_at_1000_max
value: 39.26857638609446
- type: nauc_mrr_at_1000_std
value: -17.210038373130672
- type: nauc_mrr_at_100_diff1
value: 77.6047988273367
- type: nauc_mrr_at_100_max
value: 39.28361327448562
- type: nauc_mrr_at_100_std
value: -17.182790454560294
- type: nauc_mrr_at_10_diff1
value: 77.44371207652814
- type: nauc_mrr_at_10_max
value: 39.432881586168236
- type: nauc_mrr_at_10_std
value: -17.187536228701045
- type: nauc_mrr_at_1_diff1
value: 80.1195041268915
- type: nauc_mrr_at_1_max
value: 34.89315898346597
- type: nauc_mrr_at_1_std
value: -22.677099986196357
- type: nauc_mrr_at_20_diff1
value: 77.56988644291731
- type: nauc_mrr_at_20_max
value: 39.36167345604126
- type: nauc_mrr_at_20_std
value: -17.145663178457347
- type: nauc_mrr_at_3_diff1
value: 77.39068122320302
- type: nauc_mrr_at_3_max
value: 38.47661490489044
- type: nauc_mrr_at_3_std
value: -18.43635735134857
- type: nauc_mrr_at_5_diff1
value: 77.4281674181642
- type: nauc_mrr_at_5_max
value: 39.25097124947119
- type: nauc_mrr_at_5_std
value: -17.602522743868
- type: nauc_ndcg_at_1000_diff1
value: 76.95670356559812
- type: nauc_ndcg_at_1000_max
value: 40.6770789376407
- type: nauc_ndcg_at_1000_std
value: -14.94643027722271
- type: nauc_ndcg_at_100_diff1
value: 76.87957397912506
- type: nauc_ndcg_at_100_max
value: 41.19597481618689
- type: nauc_ndcg_at_100_std
value: -13.986176551639787
- type: nauc_ndcg_at_10_diff1
value: 76.10924614757609
- type: nauc_ndcg_at_10_max
value: 41.944551608825854
- type: nauc_ndcg_at_10_std
value: -14.226261266280796
- type: nauc_ndcg_at_1_diff1
value: 80.1195041268915
- type: nauc_ndcg_at_1_max
value: 34.89315898346597
- type: nauc_ndcg_at_1_std
value: -22.677099986196357
- type: nauc_ndcg_at_20_diff1
value: 76.54328645801156
- type: nauc_ndcg_at_20_max
value: 41.74852133446564
- type: nauc_ndcg_at_20_std
value: -13.721836426277093
- type: nauc_ndcg_at_3_diff1
value: 76.10773063555531
- type: nauc_ndcg_at_3_max
value: 38.87928533895388
- type: nauc_ndcg_at_3_std
value: -17.814064081229805
- type: nauc_ndcg_at_5_diff1
value: 76.12333455766735
- type: nauc_ndcg_at_5_max
value: 41.0111924070866
- type: nauc_ndcg_at_5_std
value: -15.867928392632393
- type: nauc_precision_at_1000_diff1
value: -16.14969196445021
- type: nauc_precision_at_1000_max
value: 19.73159766274731
- type: nauc_precision_at_1000_std
value: 27.142682237659233
- type: nauc_precision_at_100_diff1
value: -2.7404602427028384
- type: nauc_precision_at_100_max
value: 29.32737928846563
- type: nauc_precision_at_100_std
value: 31.47152367892466
- type: nauc_precision_at_10_diff1
value: 22.989404353424035
- type: nauc_precision_at_10_max
value: 41.47175896072229
- type: nauc_precision_at_10_std
value: 17.23968993050545
- type: nauc_precision_at_1_diff1
value: 80.1195041268915
- type: nauc_precision_at_1_max
value: 34.89315898346597
- type: nauc_precision_at_1_std
value: -22.677099986196357
- type: nauc_precision_at_20_diff1
value: 11.7431142315164
- type: nauc_precision_at_20_max
value: 37.384349885824264
- type: nauc_precision_at_20_std
value: 25.87695876238002
- type: nauc_precision_at_3_diff1
value: 47.30485784652924
- type: nauc_precision_at_3_max
value: 39.30794798179377
- type: nauc_precision_at_3_std
value: -3.0460303025064817
- type: nauc_precision_at_5_diff1
value: 35.666358661107026
- type: nauc_precision_at_5_max
value: 41.154619102386434
- type: nauc_precision_at_5_std
value: 6.165343239340201
- type: nauc_recall_at_1000_diff1
value: 70.47489516037629
- type: nauc_recall_at_1000_max
value: 86.38892936750754
- type: nauc_recall_at_1000_std
value: 71.41939627488728
- type: nauc_recall_at_100_diff1
value: 71.35454604674862
- type: nauc_recall_at_100_max
value: 78.8056119793468
- type: nauc_recall_at_100_std
value: 56.673602022438885
- type: nauc_recall_at_10_diff1
value: 68.01157430899912
- type: nauc_recall_at_10_max
value: 61.03890280082228
- type: nauc_recall_at_10_std
value: 10.215903390979168
- type: nauc_recall_at_1_diff1
value: 79.56817309653695
- type: nauc_recall_at_1_max
value: 30.973318622760697
- type: nauc_recall_at_1_std
value: -24.193358631119697
- type: nauc_recall_at_20_diff1
value: 68.89627277773923
- type: nauc_recall_at_20_max
value: 68.37263311017512
- type: nauc_recall_at_20_std
value: 26.936453327892735
- type: nauc_recall_at_3_diff1
value: 71.48557875771924
- type: nauc_recall_at_3_max
value: 42.86820384579516
- type: nauc_recall_at_3_std
value: -12.098244840151215
- type: nauc_recall_at_5_diff1
value: 70.2043239041581
- type: nauc_recall_at_5_max
value: 51.32402340231743
- type: nauc_recall_at_5_std
value: -3.7213044749573516
- type: ndcg_at_1
value: 67.45
- type: ndcg_at_10
value: 78.527
- type: ndcg_at_100
value: 80.022
- type: ndcg_at_1000
value: 80.295
- type: ndcg_at_20
value: 79.387
- type: ndcg_at_3
value: 74.775
- type: ndcg_at_5
value: 76.955
- type: precision_at_1
value: 67.45
- type: precision_at_10
value: 9.576
- type: precision_at_100
value: 1.03
- type: precision_at_1000
value: 0.105
- type: precision_at_20
value: 4.968
- type: precision_at_3
value: 28.247
- type: precision_at_5
value: 18.12
- type: recall_at_1
value: 65.179
- type: recall_at_10
value: 90.059
- type: recall_at_100
value: 96.612
- type: recall_at_1000
value: 98.761
- type: recall_at_20
value: 93.345
- type: recall_at_3
value: 80.158
- type: recall_at_5
value: 85.33
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 66.3987895090787
- type: f1
value: 64.01687665476737
- type: f1_weighted
value: 65.22982874187167
- type: main_score
value: 66.3987895090787
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-TW)
type: mteb/amazon_massive_intent
config: zh-TW
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 57.36045729657027
- type: f1
value: 56.21747468274314
- type: f1_weighted
value: 55.328390649701
- type: main_score
value: 57.36045729657027
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 72.56893073301949
- type: f1
value: 72.51154136026366
- type: f1_weighted
value: 72.06311963012884
- type: main_score
value: 72.56893073301949
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-TW)
type: mteb/amazon_massive_scenario
config: zh-TW
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 65.85406859448555
- type: f1
value: 66.48372498308458
- type: f1_weighted
value: 64.55871847643539
- type: main_score
value: 65.85406859448555
- task:
type: Retrieval
dataset:
name: MTEB MedicalRetrieval
type: C-MTEB/MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: main_score
value: 56.908
- type: map_at_1
value: 48.9
- type: map_at_10
value: 54.25
- type: map_at_100
value: 54.83
- type: map_at_1000
value: 54.882
- type: map_at_20
value: 54.56100000000001
- type: map_at_3
value: 52.849999999999994
- type: map_at_5
value: 53.68000000000001
- type: mrr_at_1
value: 48.8
- type: mrr_at_10
value: 54.199801587301565
- type: mrr_at_100
value: 54.77998734976407
- type: mrr_at_1000
value: 54.83211631195485
- type: mrr_at_20
value: 54.5113749215181
- type: mrr_at_3
value: 52.79999999999999
- type: mrr_at_5
value: 53.62999999999998
- type: nauc_map_at_1000_diff1
value: 77.0640933059526
- type: nauc_map_at_1000_max
value: 63.16274968632399
- type: nauc_map_at_1000_std
value: 18.619837049196065
- type: nauc_map_at_100_diff1
value: 77.04445583336185
- type: nauc_map_at_100_max
value: 63.15706393184247
- type: nauc_map_at_100_std
value: 18.64155998589979
- type: nauc_map_at_10_diff1
value: 77.22712088218655
- type: nauc_map_at_10_max
value: 63.30058912930664
- type: nauc_map_at_10_std
value: 18.160155214919893
- type: nauc_map_at_1_diff1
value: 80.61224354354235
- type: nauc_map_at_1_max
value: 62.572123712325435
- type: nauc_map_at_1_std
value: 14.871521237919676
- type: nauc_map_at_20_diff1
value: 77.07286173147263
- type: nauc_map_at_20_max
value: 63.202977088050595
- type: nauc_map_at_20_std
value: 18.57384319939196
- type: nauc_map_at_3_diff1
value: 77.7109995359582
- type: nauc_map_at_3_max
value: 63.78258137206212
- type: nauc_map_at_3_std
value: 18.042684958317746
- type: nauc_map_at_5_diff1
value: 77.5173268034033
- type: nauc_map_at_5_max
value: 63.60896273345633
- type: nauc_map_at_5_std
value: 18.337375109892935
- type: nauc_mrr_at_1000_diff1
value: 77.20209036966065
- type: nauc_mrr_at_1000_max
value: 62.97580811011348
- type: nauc_mrr_at_1000_std
value: 18.44115737398761
- type: nauc_mrr_at_100_diff1
value: 77.18226388841661
- type: nauc_mrr_at_100_max
value: 62.97038456010131
- type: nauc_mrr_at_100_std
value: 18.463125747032876
- type: nauc_mrr_at_10_diff1
value: 77.36328933490991
- type: nauc_mrr_at_10_max
value: 63.11563976266347
- type: nauc_mrr_at_10_std
value: 17.9835435088557
- type: nauc_mrr_at_1_diff1
value: 80.86832719436983
- type: nauc_mrr_at_1_max
value: 62.2229505238464
- type: nauc_mrr_at_1_std
value: 14.538993917649432
- type: nauc_mrr_at_20_diff1
value: 77.2097698787093
- type: nauc_mrr_at_20_max
value: 63.017080064318556
- type: nauc_mrr_at_20_std
value: 18.39623244159318
- type: nauc_mrr_at_3_diff1
value: 77.84444444444445
- type: nauc_mrr_at_3_max
value: 63.60112488521577
- type: nauc_mrr_at_3_std
value: 17.869513314967858
- type: nauc_mrr_at_5_diff1
value: 77.65216072112915
- type: nauc_mrr_at_5_max
value: 63.425697442969195
- type: nauc_mrr_at_5_std
value: 18.162393013741234
- type: nauc_ndcg_at_1000_diff1
value: 75.47130124736644
- type: nauc_ndcg_at_1000_max
value: 62.72720721246217
- type: nauc_ndcg_at_1000_std
value: 21.168388385323816
- type: nauc_ndcg_at_100_diff1
value: 74.89812399955154
- type: nauc_ndcg_at_100_max
value: 62.474891176235936
- type: nauc_ndcg_at_100_std
value: 21.705385352598352
- type: nauc_ndcg_at_10_diff1
value: 75.69785924655157
- type: nauc_ndcg_at_10_max
value: 62.99877901137755
- type: nauc_ndcg_at_10_std
value: 19.277137244210792
- type: nauc_ndcg_at_1_diff1
value: 80.61224354354235
- type: nauc_ndcg_at_1_max
value: 62.572123712325435
- type: nauc_ndcg_at_1_std
value: 14.871521237919676
- type: nauc_ndcg_at_20_diff1
value: 75.0990592321159
- type: nauc_ndcg_at_20_max
value: 62.6109408298258
- type: nauc_ndcg_at_20_std
value: 20.860473361161567
- type: nauc_ndcg_at_3_diff1
value: 76.8207938549394
- type: nauc_ndcg_at_3_max
value: 64.06713431084022
- type: nauc_ndcg_at_3_std
value: 19.115482194273362
- type: nauc_ndcg_at_5_diff1
value: 76.46349661203512
- type: nauc_ndcg_at_5_max
value: 63.75385264512038
- type: nauc_ndcg_at_5_std
value: 19.66201253273682
- type: nauc_precision_at_1000_diff1
value: 59.81158632607264
- type: nauc_precision_at_1000_max
value: 59.760023412349916
- type: nauc_precision_at_1000_std
value: 62.485193082207935
- type: nauc_precision_at_100_diff1
value: 62.08543769977759
- type: nauc_precision_at_100_max
value: 57.926010729102806
- type: nauc_precision_at_100_std
value: 43.01747151823387
- type: nauc_precision_at_10_diff1
value: 70.17035828112795
- type: nauc_precision_at_10_max
value: 61.55881019301375
- type: nauc_precision_at_10_std
value: 22.977660426034763
- type: nauc_precision_at_1_diff1
value: 80.61224354354235
- type: nauc_precision_at_1_max
value: 62.572123712325435
- type: nauc_precision_at_1_std
value: 14.871521237919676
- type: nauc_precision_at_20_diff1
value: 66.83361017733561
- type: nauc_precision_at_20_max
value: 59.54232843146045
- type: nauc_precision_at_20_std
value: 30.852559940015073
- type: nauc_precision_at_3_diff1
value: 74.15534470940514
- type: nauc_precision_at_3_max
value: 64.88848804069414
- type: nauc_precision_at_3_std
value: 22.362855802878954
- type: nauc_precision_at_5_diff1
value: 73.13872413328627
- type: nauc_precision_at_5_max
value: 64.11963501694296
- type: nauc_precision_at_5_std
value: 23.897642502455515
- type: nauc_recall_at_1000_diff1
value: 59.81158632607252
- type: nauc_recall_at_1000_max
value: 59.76002341234993
- type: nauc_recall_at_1000_std
value: 62.48519308220787
- type: nauc_recall_at_100_diff1
value: 62.08543769977762
- type: nauc_recall_at_100_max
value: 57.92601072910286
- type: nauc_recall_at_100_std
value: 43.01747151823391
- type: nauc_recall_at_10_diff1
value: 70.170358281128
- type: nauc_recall_at_10_max
value: 61.55881019301381
- type: nauc_recall_at_10_std
value: 22.97766042603487
- type: nauc_recall_at_1_diff1
value: 80.61224354354235
- type: nauc_recall_at_1_max
value: 62.572123712325435
- type: nauc_recall_at_1_std
value: 14.871521237919676
- type: nauc_recall_at_20_diff1
value: 66.83361017733564
- type: nauc_recall_at_20_max
value: 59.54232843146045
- type: nauc_recall_at_20_std
value: 30.85255994001517
- type: nauc_recall_at_3_diff1
value: 74.15534470940513
- type: nauc_recall_at_3_max
value: 64.88848804069413
- type: nauc_recall_at_3_std
value: 22.362855802878926
- type: nauc_recall_at_5_diff1
value: 73.13872413328633
- type: nauc_recall_at_5_max
value: 64.11963501694305
- type: nauc_recall_at_5_std
value: 23.897642502455604
- type: ndcg_at_1
value: 48.9
- type: ndcg_at_10
value: 56.908
- type: ndcg_at_100
value: 59.992999999999995
- type: ndcg_at_1000
value: 61.583
- type: ndcg_at_20
value: 58.044
- type: ndcg_at_3
value: 54.051
- type: ndcg_at_5
value: 55.54
- type: precision_at_1
value: 48.9
- type: precision_at_10
value: 6.529999999999999
- type: precision_at_100
value: 0.803
- type: precision_at_1000
value: 0.093
- type: precision_at_20
value: 3.49
- type: precision_at_3
value: 19.167
- type: precision_at_5
value: 12.22
- type: recall_at_1
value: 48.9
- type: recall_at_10
value: 65.3
- type: recall_at_100
value: 80.30000000000001
- type: recall_at_1000
value: 93.30000000000001
- type: recall_at_20
value: 69.8
- type: recall_at_3
value: 57.49999999999999
- type: recall_at_5
value: 61.1
- task:
type: Classification
dataset:
name: MTEB MultilingualSentiment
type: C-MTEB/MultilingualSentiment-classification
config: default
split: test
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
metrics:
- type: accuracy
value: 73.31666666666668
- type: f1
value: 72.28836634231243
- type: f1_weighted
value: 72.28836634231241
- type: main_score
value: 73.31666666666668
- task:
type: PairClassification
dataset:
name: MTEB Ocnli
type: C-MTEB/OCNLI
config: default
split: validation
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
metrics:
- type: cosine_accuracy
value: 67.02761234434217
- type: cosine_accuracy_threshold
value: 65.14335870742798
- type: cosine_ap
value: 69.4885294263304
- type: cosine_f1
value: 71.27996381727725
- type: cosine_f1_threshold
value: 58.83575081825256
- type: cosine_precision
value: 62.34177215189873
- type: cosine_recall
value: 83.21013727560718
- type: dot_accuracy
value: 67.02761234434217
- type: dot_accuracy_threshold
value: 65.14337062835693
- type: dot_ap
value: 69.4885294263304
- type: dot_f1
value: 71.27996381727725
- type: dot_f1_threshold
value: 58.83575677871704
- type: dot_precision
value: 62.34177215189873
- type: dot_recall
value: 83.21013727560718
- type: euclidean_accuracy
value: 67.02761234434217
- type: euclidean_accuracy_threshold
value: 83.49447250366211
- type: euclidean_ap
value: 69.4885294263304
- type: euclidean_f1
value: 71.27996381727725
- type: euclidean_f1_threshold
value: 90.7350480556488
- type: euclidean_precision
value: 62.34177215189873
- type: euclidean_recall
value: 83.21013727560718
- type: main_score
value: 69.4885294263304
- type: manhattan_accuracy
value: 66.91932864103953
- type: manhattan_accuracy_threshold
value: 1951.8356323242188
- type: manhattan_ap
value: 69.02432804239183
- type: manhattan_f1
value: 70.89991589571069
- type: manhattan_f1_threshold
value: 2201.4184951782227
- type: manhattan_precision
value: 58.909853249475894
- type: manhattan_recall
value: 89.01795142555439
- type: max_ap
value: 69.4885294263304
- type: max_f1
value: 71.27996381727725
- type: max_precision
value: 62.34177215189873
- type: max_recall
value: 89.01795142555439
- type: similarity_accuracy
value: 67.02761234434217
- type: similarity_accuracy_threshold
value: 65.14335870742798
- type: similarity_ap
value: 69.4885294263304
- type: similarity_f1
value: 71.27996381727725
- type: similarity_f1_threshold
value: 58.83575081825256
- type: similarity_precision
value: 62.34177215189873
- type: similarity_recall
value: 83.21013727560718
- task:
type: Classification
dataset:
name: MTEB OnlineShopping
type: C-MTEB/OnlineShopping-classification
config: default
split: test
revision: e610f2ebd179a8fda30ae534c3878750a96db120
metrics:
- type: accuracy
value: 90.09
- type: ap
value: 88.76450265603408
- type: ap_weighted
value: 88.76450265603408
- type: f1
value: 90.08779175324347
- type: f1_weighted
value: 90.08719838771795
- type: main_score
value: 90.09
- task:
type: STS
dataset:
name: MTEB PAWSX
type: C-MTEB/PAWSX
config: default
split: test
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
metrics:
- type: cosine_pearson
value: 14.271650876491588
- type: cosine_spearman
value: 15.088934657692937
- type: euclidean_pearson
value: 17.64991910323611
- type: euclidean_spearman
value: 15.11015719401991
- type: main_score
value: 15.088934657692937
- type: manhattan_pearson
value: 17.627416265380024
- type: manhattan_spearman
value: 15.186102501045864
- type: pearson
value: 14.271650876491588
- type: spearman
value: 15.088934657692937
- task:
type: STS
dataset:
name: MTEB QBQTC
type: C-MTEB/QBQTC
config: default
split: test
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
metrics:
- type: cosine_pearson
value: 31.42374000164117
- type: cosine_spearman
value: 34.11139115201034
- type: euclidean_pearson
value: 31.86846452982553
- type: euclidean_spearman
value: 34.11160345676575
- type: main_score
value: 34.11139115201034
- type: manhattan_pearson
value: 31.78171047507477
- type: manhattan_spearman
value: 34.03769440675436
- type: pearson
value: 31.42374000164117
- type: spearman
value: 34.11139115201034
- task:
type: STS
dataset:
name: MTEB STS22 (zh)
type: mteb/sts22-crosslingual-sts
config: zh
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 70.18092147138205
- type: cosine_spearman
value: 69.90638729067848
- type: euclidean_pearson
value: 68.5214594150794
- type: euclidean_spearman
value: 69.8926146345444
- type: main_score
value: 69.90638729067848
- type: manhattan_pearson
value: 68.96098064777406
- type: manhattan_spearman
value: 70.49810937340672
- type: pearson
value: 70.18092147138205
- type: spearman
value: 69.90638729067848
- task:
type: STS
dataset:
name: MTEB STSB
type: C-MTEB/STSB
config: default
split: test
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
metrics:
- type: cosine_pearson
value: 78.99516686642797
- type: cosine_spearman
value: 79.32633637626917
- type: euclidean_pearson
value: 78.21051836357536
- type: euclidean_spearman
value: 79.32612616365205
- type: main_score
value: 79.32633637626917
- type: manhattan_pearson
value: 78.18343539953231
- type: manhattan_spearman
value: 79.33355463587682
- type: pearson
value: 78.99516686642797
- type: spearman
value: 79.32633637626917
- task:
type: Reranking
dataset:
name: MTEB T2Reranking
type: C-MTEB/T2Reranking
config: default
split: dev
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
metrics:
- type: main_score
value: 66.50583475592573
- type: map
value: 66.50583475592573
- type: mrr
value: 76.66814435094733
- type: nAUC_map_diff1
value: -7.531687895205624
- type: nAUC_map_max
value: 31.536810866173976
- type: nAUC_map_std
value: 0.584045198013492
- type: nAUC_mrr_diff1
value: -5.20389538556461
- type: nAUC_mrr_max
value: 26.230205943854155
- type: nAUC_mrr_std
value: -2.321422405480513
- task:
type: Retrieval
dataset:
name: MTEB T2Retrieval
type: C-MTEB/T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: main_score
value: 84.048
- type: map_at_1
value: 27.250000000000004
- type: map_at_10
value: 76.43799999999999
- type: map_at_100
value: 80.066
- type: map_at_1000
value: 80.136
- type: map_at_20
value: 79.194
- type: map_at_3
value: 53.787
- type: map_at_5
value: 66.06
- type: mrr_at_1
value: 89.4660704892162
- type: mrr_at_10
value: 92.02673022274553
- type: mrr_at_100
value: 92.11951616133179
- type: mrr_at_1000
value: 92.12325682782645
- type: mrr_at_20
value: 92.08937202287764
- type: mrr_at_3
value: 91.55853644280776
- type: mrr_at_5
value: 91.85947454556089
- type: nauc_map_at_1000_diff1
value: 14.991306664519879
- type: nauc_map_at_1000_max
value: 50.14205870015166
- type: nauc_map_at_1000_std
value: 20.531935138410972
- type: nauc_map_at_100_diff1
value: 14.981377145101368
- type: nauc_map_at_100_max
value: 50.0447401180562
- type: nauc_map_at_100_std
value: 20.47654947572488
- type: nauc_map_at_10_diff1
value: 18.790069500020213
- type: nauc_map_at_10_max
value: 37.18636615175541
- type: nauc_map_at_10_std
value: 4.309216124710264
- type: nauc_map_at_1_diff1
value: 50.94702228516873
- type: nauc_map_at_1_max
value: -23.434673439743328
- type: nauc_map_at_1_std
value: -36.270013046647115
- type: nauc_map_at_20_diff1
value: 15.442991212547918
- type: nauc_map_at_20_max
value: 47.53165224906053
- type: nauc_map_at_20_std
value: 17.091479886176085
- type: nauc_map_at_3_diff1
value: 37.34355641131019
- type: nauc_map_at_3_max
value: -9.627767798276931
- type: nauc_map_at_3_std
value: -33.623788261136816
- type: nauc_map_at_5_diff1
value: 30.08255691506382
- type: nauc_map_at_5_max
value: 7.523532625631027
- type: nauc_map_at_5_std
value: -22.873284280648562
- type: nauc_mrr_at_1000_diff1
value: 48.948136368672685
- type: nauc_mrr_at_1000_max
value: 79.31242146814085
- type: nauc_mrr_at_1000_std
value: 42.09118789494853
- type: nauc_mrr_at_100_diff1
value: 48.95105601935127
- type: nauc_mrr_at_100_max
value: 79.31972489396628
- type: nauc_mrr_at_100_std
value: 42.10749180847621
- type: nauc_mrr_at_10_diff1
value: 48.909737017066334
- type: nauc_mrr_at_10_max
value: 79.438878924473
- type: nauc_mrr_at_10_std
value: 42.22609309864849
- type: nauc_mrr_at_1_diff1
value: 49.17057164590014
- type: nauc_mrr_at_1_max
value: 75.50607518284367
- type: nauc_mrr_at_1_std
value: 36.14082103331818
- type: nauc_mrr_at_20_diff1
value: 48.972145239401705
- type: nauc_mrr_at_20_max
value: 79.37286170468568
- type: nauc_mrr_at_20_std
value: 42.15361640253828
- type: nauc_mrr_at_3_diff1
value: 48.73407413089388
- type: nauc_mrr_at_3_max
value: 79.31526640124694
- type: nauc_mrr_at_3_std
value: 41.87832848049768
- type: nauc_mrr_at_5_diff1
value: 48.92974709753988
- type: nauc_mrr_at_5_max
value: 79.52029263445817
- type: nauc_mrr_at_5_std
value: 42.2387927929394
- type: nauc_ndcg_at_1000_diff1
value: 19.852159219940212
- type: nauc_ndcg_at_1000_max
value: 61.78867818911231
- type: nauc_ndcg_at_1000_std
value: 33.12786556649802
- type: nauc_ndcg_at_100_diff1
value: 19.3709781000508
- type: nauc_ndcg_at_100_max
value: 60.84802300919614
- type: nauc_ndcg_at_100_std
value: 33.09600270707079
- type: nauc_ndcg_at_10_diff1
value: 18.890624683095215
- type: nauc_ndcg_at_10_max
value: 52.07035400648073
- type: nauc_ndcg_at_10_std
value: 21.215632742092755
- type: nauc_ndcg_at_1_diff1
value: 49.17057164590014
- type: nauc_ndcg_at_1_max
value: 75.50607518284367
- type: nauc_ndcg_at_1_std
value: 36.14082103331818
- type: nauc_ndcg_at_20_diff1
value: 19.15746849253811
- type: nauc_ndcg_at_20_max
value: 55.82176951048079
- type: nauc_ndcg_at_20_std
value: 26.477040534373803
- type: nauc_ndcg_at_3_diff1
value: 15.61757086504063
- type: nauc_ndcg_at_3_max
value: 66.07148250075376
- type: nauc_ndcg_at_3_std
value: 33.08315717230347
- type: nauc_ndcg_at_5_diff1
value: 15.934068427718106
- type: nauc_ndcg_at_5_max
value: 59.64275100530712
- type: nauc_ndcg_at_5_std
value: 28.197929106012136
- type: nauc_precision_at_1000_diff1
value: -32.14239275674187
- type: nauc_precision_at_1000_max
value: 49.003598734673425
- type: nauc_precision_at_1000_std
value: 60.77307108185476
- type: nauc_precision_at_100_diff1
value: -32.110716229470334
- type: nauc_precision_at_100_max
value: 50.85328281382415
- type: nauc_precision_at_100_std
value: 62.32808109717699
- type: nauc_precision_at_10_diff1
value: -31.837193489485628
- type: nauc_precision_at_10_max
value: 55.83705208493232
- type: nauc_precision_at_10_std
value: 57.50283019666919
- type: nauc_precision_at_1_diff1
value: 49.17057164590014
- type: nauc_precision_at_1_max
value: 75.50607518284367
- type: nauc_precision_at_1_std
value: 36.14082103331818
- type: nauc_precision_at_20_diff1
value: -32.044968169611735
- type: nauc_precision_at_20_max
value: 53.82174008549685
- type: nauc_precision_at_20_std
value: 61.46528672131028
- type: nauc_precision_at_3_diff1
value: -26.261125878602332
- type: nauc_precision_at_3_max
value: 66.0859983928659
- type: nauc_precision_at_3_std
value: 48.83715827055477
- type: nauc_precision_at_5_diff1
value: -31.13291937399241
- type: nauc_precision_at_5_max
value: 61.01429282172497
- type: nauc_precision_at_5_std
value: 52.76320524351461
- type: nauc_recall_at_1000_diff1
value: 6.214349212436889
- type: nauc_recall_at_1000_max
value: 59.08096875098299
- type: nauc_recall_at_1000_std
value: 62.01528677223324
- type: nauc_recall_at_100_diff1
value: 9.456254682836157
- type: nauc_recall_at_100_max
value: 53.09669357470267
- type: nauc_recall_at_100_std
value: 47.19170803245384
- type: nauc_recall_at_10_diff1
value: 17.067819451151244
- type: nauc_recall_at_10_max
value: 26.995954619298562
- type: nauc_recall_at_10_std
value: -1.358304137922756
- type: nauc_recall_at_1_diff1
value: 50.94702228516873
- type: nauc_recall_at_1_max
value: -23.434673439743328
- type: nauc_recall_at_1_std
value: -36.270013046647115
- type: nauc_recall_at_20_diff1
value: 12.166170322330789
- type: nauc_recall_at_20_max
value: 41.98372262379903
- type: nauc_recall_at_20_std
value: 21.231284446488473
- type: nauc_recall_at_3_diff1
value: 35.585610972927654
- type: nauc_recall_at_3_max
value: -14.184820983265075
- type: nauc_recall_at_3_std
value: -36.14847855262556
- type: nauc_recall_at_5_diff1
value: 29.050625754040084
- type: nauc_recall_at_5_max
value: -1.0410932842186966
- type: nauc_recall_at_5_std
value: -28.261646321102425
- type: ndcg_at_1
value: 89.46600000000001
- type: ndcg_at_10
value: 84.048
- type: ndcg_at_100
value: 87.69
- type: ndcg_at_1000
value: 88.369
- type: ndcg_at_20
value: 85.819
- type: ndcg_at_3
value: 85.473
- type: ndcg_at_5
value: 84.048
- type: precision_at_1
value: 89.46600000000001
- type: precision_at_10
value: 41.772
- type: precision_at_100
value: 4.993
- type: precision_at_1000
value: 0.515
- type: precision_at_20
value: 23.202
- type: precision_at_3
value: 74.779
- type: precision_at_5
value: 62.63999999999999
- type: recall_at_1
value: 27.250000000000004
- type: recall_at_10
value: 82.934
- type: recall_at_100
value: 94.815
- type: recall_at_1000
value: 98.294
- type: recall_at_20
value: 88.883
- type: recall_at_3
value: 55.458
- type: recall_at_5
value: 69.465
- task:
type: Classification
dataset:
name: MTEB TNews
type: C-MTEB/TNews-classification
config: default
split: validation
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
metrics:
- type: accuracy
value: 51.577000000000005
- type: f1
value: 49.3938790995325
- type: f1_weighted
value: 51.49872910589875
- type: main_score
value: 51.577000000000005
- task:
type: Clustering
dataset:
name: MTEB ThuNewsClusteringP2P
type: C-MTEB/ThuNewsClusteringP2P
config: default
split: test
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
metrics:
- type: main_score
value: 61.3311446133969
- type: v_measure
value: 61.3311446133969
- type: v_measure_std
value: 1.4292037065102101
- task:
type: Clustering
dataset:
name: MTEB ThuNewsClusteringS2S
type: C-MTEB/ThuNewsClusteringS2S
config: default
split: test
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
metrics:
- type: main_score
value: 56.41668748695762
- type: v_measure
value: 56.41668748695762
- type: v_measure_std
value: 1.096715523512711
- task:
type: Retrieval
dataset:
name: MTEB VideoRetrieval
type: C-MTEB/VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: main_score
value: 70.078
- type: map_at_1
value: 55.60000000000001
- type: map_at_10
value: 65.45100000000001
- type: map_at_100
value: 65.972
- type: map_at_1000
value: 65.983
- type: map_at_20
value: 65.807
- type: map_at_3
value: 63.233
- type: map_at_5
value: 64.66300000000001
- type: mrr_at_1
value: 55.60000000000001
- type: mrr_at_10
value: 65.4510714285715
- type: mrr_at_100
value: 65.97165962076099
- type: mrr_at_1000
value: 65.98320753283919
- type: mrr_at_20
value: 65.80718845439051
- type: mrr_at_3
value: 63.23333333333338
- type: mrr_at_5
value: 64.6633333333334
- type: nauc_map_at_1000_diff1
value: 61.870954535069615
- type: nauc_map_at_1000_max
value: 23.090300594918375
- type: nauc_map_at_1000_std
value: -37.76103949466824
- type: nauc_map_at_100_diff1
value: 61.86086531015621
- type: nauc_map_at_100_max
value: 23.103916177822935
- type: nauc_map_at_100_std
value: -37.754472602108585
- type: nauc_map_at_10_diff1
value: 61.95721168001316
- type: nauc_map_at_10_max
value: 22.895572163222226
- type: nauc_map_at_10_std
value: -38.336243891701066
- type: nauc_map_at_1_diff1
value: 64.2441219535636
- type: nauc_map_at_1_max
value: 20.64015444888544
- type: nauc_map_at_1_std
value: -35.13259877775077
- type: nauc_map_at_20_diff1
value: 61.843808986063124
- type: nauc_map_at_20_max
value: 23.043585376021333
- type: nauc_map_at_20_std
value: -37.96548127355041
- type: nauc_map_at_3_diff1
value: 61.69619207556679
- type: nauc_map_at_3_max
value: 23.42210304941044
- type: nauc_map_at_3_std
value: -38.25191353860321
- type: nauc_map_at_5_diff1
value: 61.86402019020591
- type: nauc_map_at_5_max
value: 22.978407043164168
- type: nauc_map_at_5_std
value: -38.543794878087006
- type: nauc_mrr_at_1000_diff1
value: 61.870954535069615
- type: nauc_mrr_at_1000_max
value: 23.090300594918375
- type: nauc_mrr_at_1000_std
value: -37.76103949466824
- type: nauc_mrr_at_100_diff1
value: 61.86086531015621
- type: nauc_mrr_at_100_max
value: 23.103916177822935
- type: nauc_mrr_at_100_std
value: -37.754472602108585
- type: nauc_mrr_at_10_diff1
value: 61.95721168001316
- type: nauc_mrr_at_10_max
value: 22.895572163222226
- type: nauc_mrr_at_10_std
value: -38.336243891701066
- type: nauc_mrr_at_1_diff1
value: 64.2441219535636
- type: nauc_mrr_at_1_max
value: 20.64015444888544
- type: nauc_mrr_at_1_std
value: -35.13259877775077
- type: nauc_mrr_at_20_diff1
value: 61.843808986063124
- type: nauc_mrr_at_20_max
value: 23.043585376021333
- type: nauc_mrr_at_20_std
value: -37.96548127355041
- type: nauc_mrr_at_3_diff1
value: 61.69619207556679
- type: nauc_mrr_at_3_max
value: 23.42210304941044
- type: nauc_mrr_at_3_std
value: -38.25191353860321
- type: nauc_mrr_at_5_diff1
value: 61.86402019020591
- type: nauc_mrr_at_5_max
value: 22.978407043164168
- type: nauc_mrr_at_5_std
value: -38.543794878087006
- type: nauc_ndcg_at_1000_diff1
value: 61.29794077219897
- type: nauc_ndcg_at_1000_max
value: 24.418905186535554
- type: nauc_ndcg_at_1000_std
value: -36.38675333575123
- type: nauc_ndcg_at_100_diff1
value: 61.01225965851154
- type: nauc_ndcg_at_100_max
value: 24.921415589027195
- type: nauc_ndcg_at_100_std
value: -36.16549229025807
- type: nauc_ndcg_at_10_diff1
value: 61.49476150514672
- type: nauc_ndcg_at_10_max
value: 23.679233291979195
- type: nauc_ndcg_at_10_std
value: -39.526250662147326
- type: nauc_ndcg_at_1_diff1
value: 64.2441219535636
- type: nauc_ndcg_at_1_max
value: 20.64015444888544
- type: nauc_ndcg_at_1_std
value: -35.13259877775077
- type: nauc_ndcg_at_20_diff1
value: 61.056344259506254
- type: nauc_ndcg_at_20_max
value: 24.4681696774435
- type: nauc_ndcg_at_20_std
value: -38.002129299338705
- type: nauc_ndcg_at_3_diff1
value: 60.9695336204443
- type: nauc_ndcg_at_3_max
value: 24.561743086278764
- type: nauc_ndcg_at_3_std
value: -39.34620193890538
- type: nauc_ndcg_at_5_diff1
value: 61.28536259871331
- type: nauc_ndcg_at_5_max
value: 23.821597091549947
- type: nauc_ndcg_at_5_std
value: -39.921602604282256
- type: nauc_precision_at_1000_diff1
value: 47.896936552397904
- type: nauc_precision_at_1000_max
value: 66.38433151038132
- type: nauc_precision_at_1000_std
value: 60.53532524120673
- type: nauc_precision_at_100_diff1
value: 44.28363938167843
- type: nauc_precision_at_100_max
value: 64.24732856105429
- type: nauc_precision_at_100_std
value: 17.97489366116728
- type: nauc_precision_at_10_diff1
value: 59.41726414200426
- type: nauc_precision_at_10_max
value: 27.71264331511937
- type: nauc_precision_at_10_std
value: -45.74776538959631
- type: nauc_precision_at_1_diff1
value: 64.2441219535636
- type: nauc_precision_at_1_max
value: 20.64015444888544
- type: nauc_precision_at_1_std
value: -35.13259877775077
- type: nauc_precision_at_20_diff1
value: 54.97651111807045
- type: nauc_precision_at_20_max
value: 36.89454610531955
- type: nauc_precision_at_20_std
value: -34.89329336495018
- type: nauc_precision_at_3_diff1
value: 58.51696906840075
- type: nauc_precision_at_3_max
value: 28.574341882931513
- type: nauc_precision_at_3_std
value: -43.137791865257384
- type: nauc_precision_at_5_diff1
value: 59.104993686253025
- type: nauc_precision_at_5_max
value: 27.228062999541013
- type: nauc_precision_at_5_std
value: -45.6178316381737
- type: nauc_recall_at_1000_diff1
value: 47.89693655239931
- type: nauc_recall_at_1000_max
value: 66.38433151038168
- type: nauc_recall_at_1000_std
value: 60.53532524120724
- type: nauc_recall_at_100_diff1
value: 44.28363938167848
- type: nauc_recall_at_100_max
value: 64.24732856105405
- type: nauc_recall_at_100_std
value: 17.974893661168153
- type: nauc_recall_at_10_diff1
value: 59.417264142004434
- type: nauc_recall_at_10_max
value: 27.7126433151196
- type: nauc_recall_at_10_std
value: -45.74776538959598
- type: nauc_recall_at_1_diff1
value: 64.2441219535636
- type: nauc_recall_at_1_max
value: 20.64015444888544
- type: nauc_recall_at_1_std
value: -35.13259877775077
- type: nauc_recall_at_20_diff1
value: 54.97651111807084
- type: nauc_recall_at_20_max
value: 36.89454610531971
- type: nauc_recall_at_20_std
value: -34.89329336495006
- type: nauc_recall_at_3_diff1
value: 58.51696906840065
- type: nauc_recall_at_3_max
value: 28.574341882931524
- type: nauc_recall_at_3_std
value: -43.13779186525737
- type: nauc_recall_at_5_diff1
value: 59.104993686253046
- type: nauc_recall_at_5_max
value: 27.228062999540985
- type: nauc_recall_at_5_std
value: -45.617831638173556
- type: ndcg_at_1
value: 55.60000000000001
- type: ndcg_at_10
value: 70.078
- type: ndcg_at_100
value: 72.489
- type: ndcg_at_1000
value: 72.794
- type: ndcg_at_20
value: 71.354
- type: ndcg_at_3
value: 65.645
- type: ndcg_at_5
value: 68.189
- type: precision_at_1
value: 55.60000000000001
- type: precision_at_10
value: 8.450000000000001
- type: precision_at_100
value: 0.955
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 4.475
- type: precision_at_3
value: 24.2
- type: precision_at_5
value: 15.740000000000002
- type: recall_at_1
value: 55.60000000000001
- type: recall_at_10
value: 84.5
- type: recall_at_100
value: 95.5
- type: recall_at_1000
value: 97.89999999999999
- type: recall_at_20
value: 89.5
- type: recall_at_3
value: 72.6
- type: recall_at_5
value: 78.7
- task:
type: Classification
dataset:
name: MTEB Waimai
type: C-MTEB/waimai-classification
config: default
split: test
revision: 339287def212450dcaa9df8c22bf93e9980c7023
metrics:
- type: accuracy
value: 85.75999999999999
- type: ap
value: 68.22514159752903
- type: ap_weighted
value: 68.22514159752903
- type: f1
value: 83.93158616293009
- type: f1_weighted
value: 85.8229689427759
- type: main_score
value: 85.75999999999999
- task:
type: Clustering
dataset:
name: MTEB AlloProfClusteringP2P
type: lyon-nlp/alloprof
config: default
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: main_score
value: 66.69235568790974
- type: v_measure
value: 66.69235568790974
- type: v_measure_std
value: 2.537794350741746
- type: main_score
value: 49.27280056656315
- type: v_measure
value: 49.27280056656315
- type: v_measure_std
value: 3.2810861239751716
- task:
type: Reranking
dataset:
name: MTEB AlloprofReranking
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
config: default
split: test
revision: 65393d0d7a08a10b4e348135e824f385d420b0fd
metrics:
- type: main_score
value: 74.05051363767075
- type: map
value: 74.05051363767075
- type: mrr
value: 75.32834046111249
- type: nAUC_map_diff1
value: 53.43142734542149
- type: nAUC_map_max
value: 10.45363593380914
- type: nAUC_map_std
value: 18.04797969501808
- type: nAUC_mrr_diff1
value: 52.84895215306421
- type: nAUC_mrr_max
value: 11.161569184920731
- type: nAUC_mrr_std
value: 18.116278051231706
- task:
type: Retrieval
dataset:
name: MTEB AlloprofRetrieval
type: lyon-nlp/alloprof
config: default
split: test
revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd
metrics:
- type: main_score
value: 46.752
- type: map_at_1
value: 29.404000000000003
- type: map_at_10
value: 40.695
- type: map_at_100
value: 41.638999999999996
- type: map_at_1000
value: 41.686
- type: map_at_20
value: 41.293
- type: map_at_3
value: 37.464
- type: map_at_5
value: 39.314
- type: mrr_at_1
value: 29.404145077720205
- type: mrr_at_10
value: 40.69454724895149
- type: mrr_at_100
value: 41.6387718358502
- type: mrr_at_1000
value: 41.686352032537386
- type: mrr_at_20
value: 41.29302173047876
- type: mrr_at_3
value: 37.46401842256771
- type: mrr_at_5
value: 39.314191134139456
- type: nauc_map_at_1000_diff1
value: 36.81140646424009
- type: nauc_map_at_1000_max
value: 32.558382675482015
- type: nauc_map_at_1000_std
value: 1.3209245482601717
- type: nauc_map_at_100_diff1
value: 36.80623533104676
- type: nauc_map_at_100_max
value: 32.58259240121919
- type: nauc_map_at_100_std
value: 1.3357049662565006
- type: nauc_map_at_10_diff1
value: 36.701137264179415
- type: nauc_map_at_10_max
value: 32.39187216040168
- type: nauc_map_at_10_std
value: 1.080168559171855
- type: nauc_map_at_1_diff1
value: 41.17578040220583
- type: nauc_map_at_1_max
value: 29.250697582326456
- type: nauc_map_at_1_std
value: 0.015878420007215115
- type: nauc_map_at_20_diff1
value: 36.78320606729714
- type: nauc_map_at_20_max
value: 32.62394229122364
- type: nauc_map_at_20_std
value: 1.2875500759697867
- type: nauc_map_at_3_diff1
value: 36.61724743709236
- type: nauc_map_at_3_max
value: 31.439128101338948
- type: nauc_map_at_3_std
value: 0.6643615364760862
- type: nauc_map_at_5_diff1
value: 36.51290373132519
- type: nauc_map_at_5_max
value: 32.06362001986431
- type: nauc_map_at_5_std
value: 1.0077803528775056
- type: nauc_mrr_at_1000_diff1
value: 36.81140646424009
- type: nauc_mrr_at_1000_max
value: 32.558382675482015
- type: nauc_mrr_at_1000_std
value: 1.3209245482601717
- type: nauc_mrr_at_100_diff1
value: 36.80623533104676
- type: nauc_mrr_at_100_max
value: 32.58259240121919
- type: nauc_mrr_at_100_std
value: 1.3357049662565006
- type: nauc_mrr_at_10_diff1
value: 36.701137264179415
- type: nauc_mrr_at_10_max
value: 32.39187216040168
- type: nauc_mrr_at_10_std
value: 1.080168559171855
- type: nauc_mrr_at_1_diff1
value: 41.17578040220583
- type: nauc_mrr_at_1_max
value: 29.250697582326456
- type: nauc_mrr_at_1_std
value: 0.015878420007215115
- type: nauc_mrr_at_20_diff1
value: 36.78320606729714
- type: nauc_mrr_at_20_max
value: 32.62394229122364
- type: nauc_mrr_at_20_std
value: 1.2875500759697867
- type: nauc_mrr_at_3_diff1
value: 36.61724743709236
- type: nauc_mrr_at_3_max
value: 31.439128101338948
- type: nauc_mrr_at_3_std
value: 0.6643615364760862
- type: nauc_mrr_at_5_diff1
value: 36.51290373132519
- type: nauc_mrr_at_5_max
value: 32.06362001986431
- type: nauc_mrr_at_5_std
value: 1.0077803528775056
- type: nauc_ndcg_at_1000_diff1
value: 36.24076511538488
- type: nauc_ndcg_at_1000_max
value: 34.064413351133496
- type: nauc_ndcg_at_1000_std
value: 2.4530947188501884
- type: nauc_ndcg_at_100_diff1
value: 36.0927603024548
- type: nauc_ndcg_at_100_max
value: 34.98071528431376
- type: nauc_ndcg_at_100_std
value: 3.2048812019743806
- type: nauc_ndcg_at_10_diff1
value: 35.48231357450575
- type: nauc_ndcg_at_10_max
value: 34.23901754126376
- type: nauc_ndcg_at_10_std
value: 1.8216358086555313
- type: nauc_ndcg_at_1_diff1
value: 41.17578040220583
- type: nauc_ndcg_at_1_max
value: 29.250697582326456
- type: nauc_ndcg_at_1_std
value: 0.015878420007215115
- type: nauc_ndcg_at_20_diff1
value: 35.762077351924866
- type: nauc_ndcg_at_20_max
value: 35.131282428172504
- type: nauc_ndcg_at_20_std
value: 2.6314418022317088
- type: nauc_ndcg_at_3_diff1
value: 35.20458098278931
- type: nauc_ndcg_at_3_max
value: 32.10452974167028
- type: nauc_ndcg_at_3_std
value: 0.8794682266965334
- type: nauc_ndcg_at_5_diff1
value: 34.98508114807989
- type: nauc_ndcg_at_5_max
value: 33.262089912366264
- type: nauc_ndcg_at_5_std
value: 1.5319350722125793
- type: nauc_precision_at_1000_diff1
value: 44.666620982624345
- type: nauc_precision_at_1000_max
value: 75.29393255580452
- type: nauc_precision_at_1000_std
value: 55.59900299317424
- type: nauc_precision_at_100_diff1
value: 34.231014793455486
- type: nauc_precision_at_100_max
value: 57.643182221569056
- type: nauc_precision_at_100_std
value: 24.69069946083384
- type: nauc_precision_at_10_diff1
value: 31.574888849159986
- type: nauc_precision_at_10_max
value: 41.421761956959116
- type: nauc_precision_at_10_std
value: 4.763962617424729
- type: nauc_precision_at_1_diff1
value: 41.17578040220583
- type: nauc_precision_at_1_max
value: 29.250697582326456
- type: nauc_precision_at_1_std
value: 0.015878420007215115
- type: nauc_precision_at_20_diff1
value: 32.180018178061836
- type: nauc_precision_at_20_max
value: 47.75245184649933
- type: nauc_precision_at_20_std
value: 9.788615791772633
- type: nauc_precision_at_3_diff1
value: 31.174995495672274
- type: nauc_precision_at_3_max
value: 33.99858581358525
- type: nauc_precision_at_3_std
value: 1.4974582520924251
- type: nauc_precision_at_5_diff1
value: 30.35676602203525
- type: nauc_precision_at_5_max
value: 37.047443567623354
- type: nauc_precision_at_5_std
value: 3.2312689286293024
- type: nauc_recall_at_1000_diff1
value: 44.666620982624515
- type: nauc_recall_at_1000_max
value: 75.29393255580267
- type: nauc_recall_at_1000_std
value: 55.59900299317372
- type: nauc_recall_at_100_diff1
value: 34.23101479345545
- type: nauc_recall_at_100_max
value: 57.64318222156907
- type: nauc_recall_at_100_std
value: 24.690699460833915
- type: nauc_recall_at_10_diff1
value: 31.574888849159976
- type: nauc_recall_at_10_max
value: 41.42176195695914
- type: nauc_recall_at_10_std
value: 4.763962617424782
- type: nauc_recall_at_1_diff1
value: 41.17578040220583
- type: nauc_recall_at_1_max
value: 29.250697582326456
- type: nauc_recall_at_1_std
value: 0.015878420007215115
- type: nauc_recall_at_20_diff1
value: 32.18001817806187
- type: nauc_recall_at_20_max
value: 47.75245184649934
- type: nauc_recall_at_20_std
value: 9.788615791772733
- type: nauc_recall_at_3_diff1
value: 31.17499549567227
- type: nauc_recall_at_3_max
value: 33.99858581358531
- type: nauc_recall_at_3_std
value: 1.4974582520924073
- type: nauc_recall_at_5_diff1
value: 30.356766022035238
- type: nauc_recall_at_5_max
value: 37.047443567623354
- type: nauc_recall_at_5_std
value: 3.2312689286292806
- type: ndcg_at_1
value: 29.404000000000003
- type: ndcg_at_10
value: 46.752
- type: ndcg_at_100
value: 51.43
- type: ndcg_at_1000
value: 52.76499999999999
- type: ndcg_at_20
value: 48.92
- type: ndcg_at_3
value: 40.106
- type: ndcg_at_5
value: 43.445
- type: precision_at_1
value: 29.404000000000003
- type: precision_at_10
value: 6.601999999999999
- type: precision_at_100
value: 0.881
- type: precision_at_1000
value: 0.099
- type: precision_at_20
value: 3.728
- type: precision_at_3
value: 15.918
- type: precision_at_5
value: 11.174000000000001
- type: recall_at_1
value: 29.404000000000003
- type: recall_at_10
value: 66.019
- type: recall_at_100
value: 88.126
- type: recall_at_1000
value: 98.791
- type: recall_at_20
value: 74.568
- type: recall_at_3
value: 47.754999999999995
- type: recall_at_5
value: 55.872
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 44.847999999999985
- type: f1
value: 41.93605853189159
- type: f1_weighted
value: 41.93605853189159
- type: main_score
value: 44.847999999999985
- task:
type: Retrieval
dataset:
name: MTEB BSARDRetrieval
type: maastrichtlawtech/bsard
config: default
split: test
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
metrics:
- type: main_score
value: 58.559000000000005
- type: map_at_1
value: 10.36
- type: map_at_10
value: 16.758
- type: map_at_100
value: 17.716
- type: map_at_1000
value: 17.816000000000003
- type: map_at_20
value: 17.221
- type: map_at_3
value: 14.565
- type: map_at_5
value: 15.870999999999999
- type: mrr_at_1
value: 10.36036036036036
- type: mrr_at_10
value: 16.758186758186753
- type: mrr_at_100
value: 17.715800685239955
- type: mrr_at_1000
value: 17.816056728488995
- type: mrr_at_20
value: 17.221227569524782
- type: mrr_at_3
value: 14.564564564564561
- type: mrr_at_5
value: 15.870870870870865
- type: nauc_map_at_1000_diff1
value: 13.581189454277641
- type: nauc_map_at_1000_max
value: 23.489691228117813
- type: nauc_map_at_1000_std
value: 5.6307865456405395
- type: nauc_map_at_100_diff1
value: 13.454198011114709
- type: nauc_map_at_100_max
value: 23.45922415373145
- type: nauc_map_at_100_std
value: 5.616848031628102
- type: nauc_map_at_10_diff1
value: 13.320234520737017
- type: nauc_map_at_10_max
value: 23.234237599237463
- type: nauc_map_at_10_std
value: 4.544384095472259
- type: nauc_map_at_1_diff1
value: 19.723683325024975
- type: nauc_map_at_1_max
value: 20.464053097615416
- type: nauc_map_at_1_std
value: 2.099858103167991
- type: nauc_map_at_20_diff1
value: 13.743084308870731
- type: nauc_map_at_20_max
value: 23.529304709994932
- type: nauc_map_at_20_std
value: 5.326637193786957
- type: nauc_map_at_3_diff1
value: 11.829713917206632
- type: nauc_map_at_3_max
value: 20.982180859889315
- type: nauc_map_at_3_std
value: 2.6604076449483416
- type: nauc_map_at_5_diff1
value: 13.25993802690841
- type: nauc_map_at_5_max
value: 21.63314647686895
- type: nauc_map_at_5_std
value: 2.762539517745844
- type: nauc_mrr_at_1000_diff1
value: 13.581189454277641
- type: nauc_mrr_at_1000_max
value: 23.489691228117813
- type: nauc_mrr_at_1000_std
value: 5.6307865456405395
- type: nauc_mrr_at_100_diff1
value: 13.454198011114709
- type: nauc_mrr_at_100_max
value: 23.45922415373145
- type: nauc_mrr_at_100_std
value: 5.616848031628102
- type: nauc_mrr_at_10_diff1
value: 13.320234520737017
- type: nauc_mrr_at_10_max
value: 23.234237599237463
- type: nauc_mrr_at_10_std
value: 4.544384095472259
- type: nauc_mrr_at_1_diff1
value: 19.723683325024975
- type: nauc_mrr_at_1_max
value: 20.464053097615416
- type: nauc_mrr_at_1_std
value: 2.099858103167991
- type: nauc_mrr_at_20_diff1
value: 13.743084308870731
- type: nauc_mrr_at_20_max
value: 23.529304709994932
- type: nauc_mrr_at_20_std
value: 5.326637193786957
- type: nauc_mrr_at_3_diff1
value: 11.829713917206632
- type: nauc_mrr_at_3_max
value: 20.982180859889315
- type: nauc_mrr_at_3_std
value: 2.6604076449483416
- type: nauc_mrr_at_5_diff1
value: 13.25993802690841
- type: nauc_mrr_at_5_max
value: 21.63314647686895
- type: nauc_mrr_at_5_std
value: 2.762539517745844
- type: nauc_ndcg_at_1000_diff1
value: 13.707503108989783
- type: nauc_ndcg_at_1000_max
value: 25.949859334474194
- type: nauc_ndcg_at_1000_std
value: 11.30077185095291
- type: nauc_ndcg_at_100_diff1
value: 11.488652396242538
- type: nauc_ndcg_at_100_max
value: 25.577496900047457
- type: nauc_ndcg_at_100_std
value: 11.594574152798417
- type: nauc_ndcg_at_10_diff1
value: 12.238261856743057
- type: nauc_ndcg_at_10_max
value: 25.70940084264975
- type: nauc_ndcg_at_10_std
value: 6.674709323258127
- type: nauc_ndcg_at_1_diff1
value: 19.723683325024975
- type: nauc_ndcg_at_1_max
value: 20.464053097615416
- type: nauc_ndcg_at_1_std
value: 2.099858103167991
- type: nauc_ndcg_at_20_diff1
value: 13.554982508741379
- type: nauc_ndcg_at_20_max
value: 26.121920197241778
- type: nauc_ndcg_at_20_std
value: 8.855936872536278
- type: nauc_ndcg_at_3_diff1
value: 9.59924858769597
- type: nauc_ndcg_at_3_max
value: 21.202502594505308
- type: nauc_ndcg_at_3_std
value: 2.9122811723533566
- type: nauc_ndcg_at_5_diff1
value: 12.117243393169327
- type: nauc_ndcg_at_5_max
value: 22.382086327774463
- type: nauc_ndcg_at_5_std
value: 3.068185747546371
- type: nauc_precision_at_1000_diff1
value: 21.314687056528214
- type: nauc_precision_at_1000_max
value: 35.85736416644202
- type: nauc_precision_at_1000_std
value: 41.215589583356014
- type: nauc_precision_at_100_diff1
value: 4.841538567838315
- type: nauc_precision_at_100_max
value: 29.796025601556465
- type: nauc_precision_at_100_std
value: 31.66461426950881
- type: nauc_precision_at_10_diff1
value: 10.2769925656981
- type: nauc_precision_at_10_max
value: 31.610465042792512
- type: nauc_precision_at_10_std
value: 11.729838363348398
- type: nauc_precision_at_1_diff1
value: 19.723683325024975
- type: nauc_precision_at_1_max
value: 20.464053097615416
- type: nauc_precision_at_1_std
value: 2.099858103167991
- type: nauc_precision_at_20_diff1
value: 14.122666091725545
- type: nauc_precision_at_20_max
value: 31.813794575630656
- type: nauc_precision_at_20_std
value: 17.44031269111964
- type: nauc_precision_at_3_diff1
value: 4.41887012868526
- type: nauc_precision_at_3_max
value: 21.73037689396608
- type: nauc_precision_at_3_std
value: 3.5177146563010777
- type: nauc_precision_at_5_diff1
value: 9.911736958870145
- type: nauc_precision_at_5_max
value: 24.17828887763417
- type: nauc_precision_at_5_std
value: 3.758711226096333
- type: nauc_recall_at_1000_diff1
value: 21.314687056528154
- type: nauc_recall_at_1000_max
value: 35.85736416644197
- type: nauc_recall_at_1000_std
value: 41.21558958335586
- type: nauc_recall_at_100_diff1
value: 4.841538567838269
- type: nauc_recall_at_100_max
value: 29.79602560155637
- type: nauc_recall_at_100_std
value: 31.66461426950869
- type: nauc_recall_at_10_diff1
value: 10.276992565698032
- type: nauc_recall_at_10_max
value: 31.610465042792473
- type: nauc_recall_at_10_std
value: 11.729838363348378
- type: nauc_recall_at_1_diff1
value: 19.723683325024975
- type: nauc_recall_at_1_max
value: 20.464053097615416
- type: nauc_recall_at_1_std
value: 2.099858103167991
- type: nauc_recall_at_20_diff1
value: 14.122666091725526
- type: nauc_recall_at_20_max
value: 31.813794575630638
- type: nauc_recall_at_20_std
value: 17.440312691119587
- type: nauc_recall_at_3_diff1
value: 4.4188701286852785
- type: nauc_recall_at_3_max
value: 21.7303768939661
- type: nauc_recall_at_3_std
value: 3.5177146563010853
- type: nauc_recall_at_5_diff1
value: 9.911736958870106
- type: nauc_recall_at_5_max
value: 24.178288877634106
- type: nauc_recall_at_5_std
value: 3.758711226096281
- type: ndcg_at_1
value: 10.36
- type: ndcg_at_10
value: 20.471
- type: ndcg_at_100
value: 25.777
- type: ndcg_at_1000
value: 28.593000000000004
- type: ndcg_at_20
value: 22.246
- type: ndcg_at_3
value: 15.916
- type: ndcg_at_5
value: 18.3
- type: precision_at_1
value: 10.36
- type: precision_at_10
value: 3.243
- type: precision_at_100
value: 0.586
- type: precision_at_1000
value: 0.08099999999999999
- type: precision_at_20
value: 1.982
- type: precision_at_3
value: 6.607
- type: precision_at_5
value: 5.135
- type: recall_at_1
value: 10.36
- type: recall_at_10
value: 32.432
- type: recall_at_100
value: 58.559000000000005
- type: recall_at_1000
value: 81.081
- type: recall_at_20
value: 39.64
- type: recall_at_3
value: 19.82
- type: recall_at_5
value: 25.676
- task:
type: Clustering
dataset:
name: MTEB HALClusteringS2S
type: lyon-nlp/clustering-hal-s2s
config: default
split: test
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
metrics:
- type: main_score
value: 26.918470641446472
- type: v_measure
value: 26.918470641446472
- type: v_measure_std
value: 2.717665658348912
- task:
type: Clustering
dataset:
name: MTEB MLSUMClusteringP2P (fr)
type: reciTAL/mlsum
config: fr
split: test
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
metrics:
- type: main_score
value: 45.581413658149
- type: v_measure
value: 45.581413658149
- type: v_measure_std
value: 1.646260736751199
- type: main_score
value: 44.45455749734905
- type: v_measure
value: 44.45455749734905
- type: v_measure_std
value: 1.935205028548908
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 80.14719699342312
- type: f1
value: 79.68802657402165
- type: f1_weighted
value: 79.85763712873417
- type: main_score
value: 80.14719699342312
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 50.241152521139995
- type: f1
value: 34.39524038805554
- type: f1_weighted
value: 53.93775073819592
- type: main_score
value: 50.241152521139995
- task:
type: Classification
dataset:
name: MTEB MasakhaNEWSClassification (fra)
type: mteb/masakhanews
config: fra
split: test
revision: 18193f187b92da67168c655c9973a165ed9593dd
metrics:
- type: accuracy
value: 83.34123222748818
- type: f1
value: 79.48624508308065
- type: f1_weighted
value: 83.20210238500908
- type: main_score
value: 83.34123222748818
- task:
type: Clustering
dataset:
name: MTEB MasakhaNEWSClusteringP2P (fra)
type: masakhane/masakhanews
config: fra
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: main_score
value: 71.51218291988776
- type: v_measure
value: 71.51218291988776
- type: v_measure_std
value: 35.6439739308977
- type: main_score
value: 60.155743100795725
- type: v_measure
value: 60.155743100795725
- type: v_measure_std
value: 28.180226808833797
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 59.048419636852735
- type: f1
value: 55.77513997227217
- type: f1_weighted
value: 57.65743868976365
- type: main_score
value: 59.048419636852735
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 67.2932078009415
- type: f1
value: 66.85444841091169
- type: f1_weighted
value: 66.78952167770717
- type: main_score
value: 67.2932078009415
- task:
type: Retrieval
dataset:
name: MTEB MintakaRetrieval (fr)
type: jinaai/mintakaqa
config: fr
split: test
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
metrics:
- type: main_score
value: 27.400000000000002
- type: map_at_1
value: 15.479000000000001
- type: map_at_10
value: 23.213
- type: map_at_100
value: 24.285
- type: map_at_1000
value: 24.397
- type: map_at_20
value: 23.741
- type: map_at_3
value: 20.973
- type: map_at_5
value: 22.212
- type: mrr_at_1
value: 15.47911547911548
- type: mrr_at_10
value: 23.21331071331073
- type: mrr_at_100
value: 24.28515184787565
- type: mrr_at_1000
value: 24.396606382776362
- type: mrr_at_20
value: 23.74068872679202
- type: mrr_at_3
value: 20.973245973245938
- type: mrr_at_5
value: 22.211984711984677
- type: nauc_map_at_1000_diff1
value: 23.49190518969821
- type: nauc_map_at_1000_max
value: 21.816535185868748
- type: nauc_map_at_1000_std
value: 7.898426575861743
- type: nauc_map_at_100_diff1
value: 23.455942061154243
- type: nauc_map_at_100_max
value: 21.80945301878854
- type: nauc_map_at_100_std
value: 7.903289282168091
- type: nauc_map_at_10_diff1
value: 23.674951138068714
- type: nauc_map_at_10_max
value: 21.969792385911845
- type: nauc_map_at_10_std
value: 7.889585005426794
- type: nauc_map_at_1_diff1
value: 29.069568522388433
- type: nauc_map_at_1_max
value: 19.942608291469913
- type: nauc_map_at_1_std
value: 3.1283142332992635
- type: nauc_map_at_20_diff1
value: 23.45502400622297
- type: nauc_map_at_20_max
value: 21.830527331051552
- type: nauc_map_at_20_std
value: 7.994053361768913
- type: nauc_map_at_3_diff1
value: 24.982668301358444
- type: nauc_map_at_3_max
value: 21.883837899231867
- type: nauc_map_at_3_std
value: 6.615976792964795
- type: nauc_map_at_5_diff1
value: 24.09866390229764
- type: nauc_map_at_5_max
value: 21.614008493220986
- type: nauc_map_at_5_std
value: 7.272332396807288
- type: nauc_mrr_at_1000_diff1
value: 23.49190518969821
- type: nauc_mrr_at_1000_max
value: 21.816535185868748
- type: nauc_mrr_at_1000_std
value: 7.898426575861743
- type: nauc_mrr_at_100_diff1
value: 23.455942061154243
- type: nauc_mrr_at_100_max
value: 21.80945301878854
- type: nauc_mrr_at_100_std
value: 7.903289282168091
- type: nauc_mrr_at_10_diff1
value: 23.674951138068714
- type: nauc_mrr_at_10_max
value: 21.969792385911845
- type: nauc_mrr_at_10_std
value: 7.889585005426794
- type: nauc_mrr_at_1_diff1
value: 29.069568522388433
- type: nauc_mrr_at_1_max
value: 19.942608291469913
- type: nauc_mrr_at_1_std
value: 3.1283142332992635
- type: nauc_mrr_at_20_diff1
value: 23.45502400622297
- type: nauc_mrr_at_20_max
value: 21.830527331051552
- type: nauc_mrr_at_20_std
value: 7.994053361768913
- type: nauc_mrr_at_3_diff1
value: 24.982668301358444
- type: nauc_mrr_at_3_max
value: 21.883837899231867
- type: nauc_mrr_at_3_std
value: 6.615976792964795
- type: nauc_mrr_at_5_diff1
value: 24.09866390229764
- type: nauc_mrr_at_5_max
value: 21.614008493220986
- type: nauc_mrr_at_5_std
value: 7.272332396807288
- type: nauc_ndcg_at_1000_diff1
value: 21.92872678950541
- type: nauc_ndcg_at_1000_max
value: 22.388970258338958
- type: nauc_ndcg_at_1000_std
value: 9.807006541293186
- type: nauc_ndcg_at_100_diff1
value: 20.903304276761364
- type: nauc_ndcg_at_100_max
value: 22.209897726716065
- type: nauc_ndcg_at_100_std
value: 10.075543107880176
- type: nauc_ndcg_at_10_diff1
value: 21.508944950669097
- type: nauc_ndcg_at_10_max
value: 22.709862035037514
- type: nauc_ndcg_at_10_std
value: 10.00450608801698
- type: nauc_ndcg_at_1_diff1
value: 29.069568522388433
- type: nauc_ndcg_at_1_max
value: 19.942608291469913
- type: nauc_ndcg_at_1_std
value: 3.1283142332992635
- type: nauc_ndcg_at_20_diff1
value: 20.803145422787512
- type: nauc_ndcg_at_20_max
value: 22.310429618526772
- type: nauc_ndcg_at_20_std
value: 10.366058782551438
- type: nauc_ndcg_at_3_diff1
value: 23.913619145125207
- type: nauc_ndcg_at_3_max
value: 22.441574203993245
- type: nauc_ndcg_at_3_std
value: 7.691311158754716
- type: nauc_ndcg_at_5_diff1
value: 22.4840009470751
- type: nauc_ndcg_at_5_max
value: 22.024641703222514
- type: nauc_ndcg_at_5_std
value: 8.803747702599477
- type: nauc_precision_at_1000_diff1
value: 17.037870101460467
- type: nauc_precision_at_1000_max
value: 42.30306938098229
- type: nauc_precision_at_1000_std
value: 54.251307689225115
- type: nauc_precision_at_100_diff1
value: 12.076659360813839
- type: nauc_precision_at_100_max
value: 23.254576247061777
- type: nauc_precision_at_100_std
value: 17.80398606936446
- type: nauc_precision_at_10_diff1
value: 16.05902741145243
- type: nauc_precision_at_10_max
value: 24.536458909415416
- type: nauc_precision_at_10_std
value: 15.281423796153165
- type: nauc_precision_at_1_diff1
value: 29.069568522388433
- type: nauc_precision_at_1_max
value: 19.942608291469913
- type: nauc_precision_at_1_std
value: 3.1283142332992635
- type: nauc_precision_at_20_diff1
value: 13.618514792543918
- type: nauc_precision_at_20_max
value: 23.357417389310335
- type: nauc_precision_at_20_std
value: 16.6297119945886
- type: nauc_precision_at_3_diff1
value: 21.3058697791068
- type: nauc_precision_at_3_max
value: 23.815582518552716
- type: nauc_precision_at_3_std
value: 10.358496834243757
- type: nauc_precision_at_5_diff1
value: 18.54677328441144
- type: nauc_precision_at_5_max
value: 22.987289739937104
- type: nauc_precision_at_5_std
value: 12.591593599364307
- type: nauc_recall_at_1000_diff1
value: 17.03787010146031
- type: nauc_recall_at_1000_max
value: 42.303069380982336
- type: nauc_recall_at_1000_std
value: 54.25130768922508
- type: nauc_recall_at_100_diff1
value: 12.076659360813771
- type: nauc_recall_at_100_max
value: 23.254576247061777
- type: nauc_recall_at_100_std
value: 17.80398606936441
- type: nauc_recall_at_10_diff1
value: 16.05902741145243
- type: nauc_recall_at_10_max
value: 24.536458909415412
- type: nauc_recall_at_10_std
value: 15.281423796153174
- type: nauc_recall_at_1_diff1
value: 29.069568522388433
- type: nauc_recall_at_1_max
value: 19.942608291469913
- type: nauc_recall_at_1_std
value: 3.1283142332992635
- type: nauc_recall_at_20_diff1
value: 13.618514792543923
- type: nauc_recall_at_20_max
value: 23.3574173893104
- type: nauc_recall_at_20_std
value: 16.629711994588593
- type: nauc_recall_at_3_diff1
value: 21.305869779106818
- type: nauc_recall_at_3_max
value: 23.815582518552738
- type: nauc_recall_at_3_std
value: 10.358496834243747
- type: nauc_recall_at_5_diff1
value: 18.546773284411426
- type: nauc_recall_at_5_max
value: 22.987289739937083
- type: nauc_recall_at_5_std
value: 12.591593599364312
- type: ndcg_at_1
value: 15.479000000000001
- type: ndcg_at_10
value: 27.400000000000002
- type: ndcg_at_100
value: 33.382
- type: ndcg_at_1000
value: 36.691
- type: ndcg_at_20
value: 29.352
- type: ndcg_at_3
value: 22.759999999999998
- type: ndcg_at_5
value: 25.006
- type: precision_at_1
value: 15.479000000000001
- type: precision_at_10
value: 4.075
- type: precision_at_100
value: 0.7040000000000001
- type: precision_at_1000
value: 0.097
- type: precision_at_20
value: 2.426
- type: precision_at_3
value: 9.309000000000001
- type: precision_at_5
value: 6.683
- type: recall_at_1
value: 15.479000000000001
- type: recall_at_10
value: 40.745
- type: recall_at_100
value: 70.434
- type: recall_at_1000
value: 97.21499999999999
- type: recall_at_20
value: 48.526
- type: recall_at_3
value: 27.927999999999997
- type: recall_at_5
value: 33.415
- task:
type: PairClassification
dataset:
name: MTEB OpusparcusPC (fr)
type: GEM/opusparcus
config: fr
split: test
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
metrics:
- type: cosine_accuracy
value: 82.42506811989101
- type: cosine_accuracy_threshold
value: 59.91581678390503
- type: cosine_ap
value: 92.86245135331164
- type: cosine_f1
value: 88.0
- type: cosine_f1_threshold
value: 59.91581678390503
- type: cosine_precision
value: 82.76465441819772
- type: cosine_recall
value: 93.94240317775571
- type: dot_accuracy
value: 82.42506811989101
- type: dot_accuracy_threshold
value: 59.91581678390503
- type: dot_ap
value: 92.86245135331164
- type: dot_f1
value: 88.0
- type: dot_f1_threshold
value: 59.91581678390503
- type: dot_precision
value: 82.76465441819772
- type: dot_recall
value: 93.94240317775571
- type: euclidean_accuracy
value: 82.42506811989101
- type: euclidean_accuracy_threshold
value: 89.53677415847778
- type: euclidean_ap
value: 92.86245135331164
- type: euclidean_f1
value: 88.0
- type: euclidean_f1_threshold
value: 89.53677415847778
- type: euclidean_precision
value: 82.76465441819772
- type: euclidean_recall
value: 93.94240317775571
- type: main_score
value: 92.86245135331164
- type: manhattan_accuracy
value: 82.28882833787466
- type: manhattan_accuracy_threshold
value: 2091.843032836914
- type: manhattan_ap
value: 92.84258977975239
- type: manhattan_f1
value: 87.88443616029824
- type: manhattan_f1_threshold
value: 2091.843032836914
- type: manhattan_precision
value: 82.79192273924495
- type: manhattan_recall
value: 93.64448857994041
- type: max_ap
value: 92.86245135331164
- type: max_f1
value: 88.0
- type: max_precision
value: 82.79192273924495
- type: max_recall
value: 93.94240317775571
- type: similarity_accuracy
value: 82.42506811989101
- type: similarity_accuracy_threshold
value: 59.91581678390503
- type: similarity_ap
value: 92.86245135331164
- type: similarity_f1
value: 88.0
- type: similarity_f1_threshold
value: 59.91581678390503
- type: similarity_precision
value: 82.76465441819772
- type: similarity_recall
value: 93.94240317775571
- task:
type: PairClassification
dataset:
name: MTEB PawsXPairClassification (fr)
type: google-research-datasets/paws-x
config: fr
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cosine_accuracy
value: 61.050000000000004
- type: cosine_accuracy_threshold
value: 98.11633825302124
- type: cosine_ap
value: 60.385395031891264
- type: cosine_f1
value: 62.60428001450852
- type: cosine_f1_threshold
value: 89.5184874534607
- type: cosine_precision
value: 46.54800431499461
- type: cosine_recall
value: 95.5703211517165
- type: dot_accuracy
value: 61.050000000000004
- type: dot_accuracy_threshold
value: 98.11633825302124
- type: dot_ap
value: 60.37120015758097
- type: dot_f1
value: 62.60428001450852
- type: dot_f1_threshold
value: 89.5184874534607
- type: dot_precision
value: 46.54800431499461
- type: dot_recall
value: 95.5703211517165
- type: euclidean_accuracy
value: 61.050000000000004
- type: euclidean_accuracy_threshold
value: 19.409586489200592
- type: euclidean_ap
value: 60.385395031891264
- type: euclidean_f1
value: 62.60428001450852
- type: euclidean_f1_threshold
value: 45.78540325164795
- type: euclidean_precision
value: 46.54800431499461
- type: euclidean_recall
value: 95.5703211517165
- type: main_score
value: 60.61779879922903
- type: manhattan_accuracy
value: 61.0
- type: manhattan_accuracy_threshold
value: 455.7579040527344
- type: manhattan_ap
value: 60.61779879922903
- type: manhattan_f1
value: 62.56448047162859
- type: manhattan_f1_threshold
value: 1030.442714691162
- type: manhattan_precision
value: 46.880176697956934
- type: manhattan_recall
value: 94.01993355481729
- type: max_ap
value: 60.61779879922903
- type: max_f1
value: 62.60428001450852
- type: max_precision
value: 46.880176697956934
- type: max_recall
value: 95.5703211517165
- type: similarity_accuracy
value: 61.050000000000004
- type: similarity_accuracy_threshold
value: 98.11633825302124
- type: similarity_ap
value: 60.385395031891264
- type: similarity_f1
value: 62.60428001450852
- type: similarity_f1_threshold
value: 89.5184874534607
- type: similarity_precision
value: 46.54800431499461
- type: similarity_recall
value: 95.5703211517165
- task:
type: STS
dataset:
name: MTEB SICKFr
type: Lajavaness/SICK-fr
config: default
split: test
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
metrics:
- type: cosine_pearson
value: 81.36950266249254
- type: cosine_spearman
value: 77.4306890341242
- type: euclidean_pearson
value: 77.47472965962992
- type: euclidean_spearman
value: 77.431649040768
- type: main_score
value: 77.4306890341242
- type: manhattan_pearson
value: 77.44468465408777
- type: manhattan_spearman
value: 77.25503240591341
- type: pearson
value: 81.36950266249254
- type: spearman
value: 77.4306890341242
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 81.48671869348665
- type: cosine_spearman
value: 82.57396913836067
- type: euclidean_pearson
value: 81.71206012505978
- type: euclidean_spearman
value: 82.64978141643995
- type: main_score
value: 82.57396913836067
- type: manhattan_pearson
value: 82.22351352342636
- type: manhattan_spearman
value: 83.04856400618516
- type: pearson
value: 81.48671869348665
- type: spearman
value: 82.57396913836067
- task:
type: STS
dataset:
name: MTEB STS22 (de-fr)
type: mteb/sts22-crosslingual-sts
config: de-fr
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 60.45418014677442
- type: cosine_spearman
value: 64.66584550775643
- type: euclidean_pearson
value: 60.042908719941124
- type: euclidean_spearman
value: 64.66584550775643
- type: main_score
value: 64.66584550775643
- type: manhattan_pearson
value: 58.56106956676841
- type: manhattan_spearman
value: 64.07469227945803
- type: pearson
value: 60.45418014677442
- type: spearman
value: 64.66584550775643
- task:
type: STS
dataset:
name: MTEB STS22 (fr-pl)
type: mteb/sts22-crosslingual-sts
config: fr-pl
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 83.39169883126554
- type: cosine_spearman
value: 84.51542547285167
- type: euclidean_pearson
value: 83.79128537281704
- type: euclidean_spearman
value: 84.51542547285167
- type: main_score
value: 84.51542547285167
- type: manhattan_pearson
value: 82.282109060827
- type: manhattan_spearman
value: 84.51542547285167
- type: pearson
value: 83.39169883126554
- type: spearman
value: 84.51542547285167
- type: cosine_pearson
value: 83.39168516605531
- type: cosine_spearman
value: 84.51542547285167
- type: euclidean_pearson
value: 83.7912731376875
- type: euclidean_spearman
value: 84.51542547285167
- type: main_score
value: 84.51542547285167
- type: manhattan_pearson
value: 82.28209868239296
- type: manhattan_spearman
value: 84.51542547285167
- type: pearson
value: 83.39168516605531
- type: spearman
value: 84.51542547285167
- task:
type: STS
dataset:
name: MTEB STSBenchmarkMultilingualSTS (fr)
type: mteb/stsb_multi_mt
config: fr
split: test
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
metrics:
- type: cosine_pearson
value: 81.23994381619546
- type: cosine_spearman
value: 81.55923116292537
- type: euclidean_pearson
value: 79.95507984767936
- type: euclidean_spearman
value: 81.55780186152964
- type: main_score
value: 81.55923116292537
- type: manhattan_pearson
value: 79.85599761287939
- type: manhattan_spearman
value: 81.47864706229939
- type: pearson
value: 81.23994381619546
- type: spearman
value: 81.55923116292537
- task:
type: Summarization
dataset:
name: MTEB SummEvalFr
type: lyon-nlp/summarization-summeval-fr-p2p
config: default
split: test
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
metrics:
- type: cosine_pearson
value: 32.15173983476866
- type: cosine_spearman
value: 30.52126378106083
- type: dot_pearson
value: 32.15174076737564
- type: dot_spearman
value: 30.5195596882719
- type: main_score
value: 30.52126378106083
- type: pearson
value: 32.15173983476866
- type: spearman
value: 30.52126378106083
- task:
type: Reranking
dataset:
name: MTEB SyntecReranking
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
config: default
split: test
revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad
metrics:
- type: main_score
value: 87.26666666666667
- type: map
value: 87.26666666666667
- type: mrr
value: 87.26666666666667
- type: nAUC_map_diff1
value: 61.78899094665834
- type: nAUC_map_max
value: -2.2012304949668993
- type: nAUC_map_std
value: 37.30593860183502
- type: nAUC_mrr_diff1
value: 61.78899094665834
- type: nAUC_mrr_max
value: -2.2012304949668993
- type: nAUC_mrr_std
value: 37.30593860183502
- task:
type: Retrieval
dataset:
name: MTEB SyntecRetrieval
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
config: default
split: test
revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9
metrics:
- type: main_score
value: 82.43599999999999
- type: map_at_1
value: 64.0
- type: map_at_10
value: 76.996
- type: map_at_100
value: 77.013
- type: map_at_1000
value: 77.013
- type: map_at_20
value: 76.996
- type: map_at_3
value: 75.333
- type: map_at_5
value: 76.283
- type: mrr_at_1
value: 64.0
- type: mrr_at_10
value: 76.99563492063493
- type: mrr_at_100
value: 77.01349206349207
- type: mrr_at_1000
value: 77.01349206349207
- type: mrr_at_20
value: 76.99563492063493
- type: mrr_at_3
value: 75.33333333333334
- type: mrr_at_5
value: 76.28333333333335
- type: nauc_map_at_1000_diff1
value: 52.30753137123808
- type: nauc_map_at_1000_max
value: 17.29347799374363
- type: nauc_map_at_1000_std
value: -24.365180584916605
- type: nauc_map_at_100_diff1
value: 52.30753137123808
- type: nauc_map_at_100_max
value: 17.29347799374363
- type: nauc_map_at_100_std
value: -24.365180584916605
- type: nauc_map_at_10_diff1
value: 52.32585614998896
- type: nauc_map_at_10_max
value: 17.261799514404697
- type: nauc_map_at_10_std
value: -24.30981171513401
- type: nauc_map_at_1_diff1
value: 56.0129007536084
- type: nauc_map_at_1_max
value: 18.50970749776472
- type: nauc_map_at_1_std
value: -25.554029888874723
- type: nauc_map_at_20_diff1
value: 52.32585614998896
- type: nauc_map_at_20_max
value: 17.261799514404697
- type: nauc_map_at_20_std
value: -24.30981171513401
- type: nauc_map_at_3_diff1
value: 51.22942949153543
- type: nauc_map_at_3_max
value: 15.992554731586273
- type: nauc_map_at_3_std
value: -25.091588619375383
- type: nauc_map_at_5_diff1
value: 51.96750082957349
- type: nauc_map_at_5_max
value: 17.158674012807587
- type: nauc_map_at_5_std
value: -23.657966651531893
- type: nauc_mrr_at_1000_diff1
value: 52.30753137123808
- type: nauc_mrr_at_1000_max
value: 17.29347799374363
- type: nauc_mrr_at_1000_std
value: -24.365180584916605
- type: nauc_mrr_at_100_diff1
value: 52.30753137123808
- type: nauc_mrr_at_100_max
value: 17.29347799374363
- type: nauc_mrr_at_100_std
value: -24.365180584916605
- type: nauc_mrr_at_10_diff1
value: 52.32585614998896
- type: nauc_mrr_at_10_max
value: 17.261799514404697
- type: nauc_mrr_at_10_std
value: -24.30981171513401
- type: nauc_mrr_at_1_diff1
value: 56.0129007536084
- type: nauc_mrr_at_1_max
value: 18.50970749776472
- type: nauc_mrr_at_1_std
value: -25.554029888874723
- type: nauc_mrr_at_20_diff1
value: 52.32585614998896
- type: nauc_mrr_at_20_max
value: 17.261799514404697
- type: nauc_mrr_at_20_std
value: -24.30981171513401
- type: nauc_mrr_at_3_diff1
value: 51.22942949153543
- type: nauc_mrr_at_3_max
value: 15.992554731586273
- type: nauc_mrr_at_3_std
value: -25.091588619375383
- type: nauc_mrr_at_5_diff1
value: 51.96750082957349
- type: nauc_mrr_at_5_max
value: 17.158674012807587
- type: nauc_mrr_at_5_std
value: -23.657966651531893
- type: nauc_ndcg_at_1000_diff1
value: 52.25936013546259
- type: nauc_ndcg_at_1000_max
value: 17.156377900614427
- type: nauc_ndcg_at_1000_std
value: -23.860918956976775
- type: nauc_ndcg_at_100_diff1
value: 52.25936013546259
- type: nauc_ndcg_at_100_max
value: 17.156377900614427
- type: nauc_ndcg_at_100_std
value: -23.860918956976775
- type: nauc_ndcg_at_10_diff1
value: 52.48908784081352
- type: nauc_ndcg_at_10_max
value: 16.761778191196626
- type: nauc_ndcg_at_10_std
value: -23.1742676723163
- type: nauc_ndcg_at_1_diff1
value: 56.0129007536084
- type: nauc_ndcg_at_1_max
value: 18.50970749776472
- type: nauc_ndcg_at_1_std
value: -25.554029888874723
- type: nauc_ndcg_at_20_diff1
value: 52.48908784081352
- type: nauc_ndcg_at_20_max
value: 16.761778191196626
- type: nauc_ndcg_at_20_std
value: -23.1742676723163
- type: nauc_ndcg_at_3_diff1
value: 50.39571507644849
- type: nauc_ndcg_at_3_max
value: 14.796226924105916
- type: nauc_ndcg_at_3_std
value: -24.55184971150951
- type: nauc_ndcg_at_5_diff1
value: 51.764690566839796
- type: nauc_ndcg_at_5_max
value: 17.064884477394884
- type: nauc_ndcg_at_5_std
value: -21.11624960412319
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_100_diff1
value: .nan
- type: nauc_precision_at_100_max
value: .nan
- type: nauc_precision_at_100_std
value: .nan
- type: nauc_precision_at_10_diff1
value: 72.22222222222277
- type: nauc_precision_at_10_max
value: -17.133520074696808
- type: nauc_precision_at_10_std
value: 35.80765639589114
- type: nauc_precision_at_1_diff1
value: 56.0129007536084
- type: nauc_precision_at_1_max
value: 18.50970749776472
- type: nauc_precision_at_1_std
value: -25.554029888874723
- type: nauc_precision_at_20_diff1
value: 72.22222222222277
- type: nauc_precision_at_20_max
value: -17.133520074696808
- type: nauc_precision_at_20_std
value: 35.80765639589114
- type: nauc_precision_at_3_diff1
value: 46.23716153127904
- type: nauc_precision_at_3_max
value: 7.563025210083932
- type: nauc_precision_at_3_std
value: -21.092436974790093
- type: nauc_precision_at_5_diff1
value: 51.618425147836945
- type: nauc_precision_at_5_max
value: 16.923436041083008
- type: nauc_precision_at_5_std
value: 5.765639589169112
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_100_diff1
value: .nan
- type: nauc_recall_at_100_max
value: .nan
- type: nauc_recall_at_100_std
value: .nan
- type: nauc_recall_at_10_diff1
value: 72.22222222222202
- type: nauc_recall_at_10_max
value: -17.133520074696147
- type: nauc_recall_at_10_std
value: 35.80765639589109
- type: nauc_recall_at_1_diff1
value: 56.0129007536084
- type: nauc_recall_at_1_max
value: 18.50970749776472
- type: nauc_recall_at_1_std
value: -25.554029888874723
- type: nauc_recall_at_20_diff1
value: 72.22222222222202
- type: nauc_recall_at_20_max
value: -17.133520074696147
- type: nauc_recall_at_20_std
value: 35.80765639589109
- type: nauc_recall_at_3_diff1
value: 46.23716153127918
- type: nauc_recall_at_3_max
value: 7.563025210084062
- type: nauc_recall_at_3_std
value: -21.092436974789898
- type: nauc_recall_at_5_diff1
value: 51.618425147837044
- type: nauc_recall_at_5_max
value: 16.923436041083242
- type: nauc_recall_at_5_std
value: 5.765639589169263
- type: ndcg_at_1
value: 64.0
- type: ndcg_at_10
value: 82.43599999999999
- type: ndcg_at_100
value: 82.607
- type: ndcg_at_1000
value: 82.607
- type: ndcg_at_20
value: 82.43599999999999
- type: ndcg_at_3
value: 79.095
- type: ndcg_at_5
value: 80.774
- type: precision_at_1
value: 64.0
- type: precision_at_10
value: 9.9
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.95
- type: precision_at_3
value: 30.0
- type: precision_at_5
value: 18.8
- type: recall_at_1
value: 64.0
- type: recall_at_10
value: 99.0
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 99.0
- type: recall_at_3
value: 90.0
- type: recall_at_5
value: 94.0
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (fr)
type: jinaai/xpqa
config: fra-fra
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: main_score
value: 62.190999999999995
- type: map_at_1
value: 35.412
- type: map_at_10
value: 55.372
- type: map_at_100
value: 56.835
- type: map_at_1000
value: 56.913000000000004
- type: map_at_20
value: 56.221
- type: map_at_3
value: 48.903
- type: map_at_5
value: 53.238
- type: mrr_at_1
value: 57.009345794392516
- type: mrr_at_10
value: 64.78569309343675
- type: mrr_at_100
value: 65.37729406210731
- type: mrr_at_1000
value: 65.40232200760255
- type: mrr_at_20
value: 65.19512187170714
- type: mrr_at_3
value: 62.305295950155745
- type: mrr_at_5
value: 63.97418780596347
- type: nauc_map_at_1000_diff1
value: 51.293436542919736
- type: nauc_map_at_1000_max
value: 52.70558085897355
- type: nauc_map_at_1000_std
value: 4.042307291430875
- type: nauc_map_at_100_diff1
value: 51.26892284346969
- type: nauc_map_at_100_max
value: 52.68013316306771
- type: nauc_map_at_100_std
value: 4.026915747351222
- type: nauc_map_at_10_diff1
value: 50.8543852249949
- type: nauc_map_at_10_max
value: 52.15208348725869
- type: nauc_map_at_10_std
value: 3.6915190933761437
- type: nauc_map_at_1_diff1
value: 59.961175322517725
- type: nauc_map_at_1_max
value: 37.84020048887668
- type: nauc_map_at_1_std
value: -1.716395538164829
- type: nauc_map_at_20_diff1
value: 51.07739560575918
- type: nauc_map_at_20_max
value: 52.37861214759321
- type: nauc_map_at_20_std
value: 3.6707917482294397
- type: nauc_map_at_3_diff1
value: 52.519227595940954
- type: nauc_map_at_3_max
value: 48.64938894035591
- type: nauc_map_at_3_std
value: 2.670992373225412
- type: nauc_map_at_5_diff1
value: 51.66705458189757
- type: nauc_map_at_5_max
value: 51.74913250220439
- type: nauc_map_at_5_std
value: 3.987564394588077
- type: nauc_mrr_at_1000_diff1
value: 58.90292049458316
- type: nauc_mrr_at_1000_max
value: 59.02377527770008
- type: nauc_mrr_at_1000_std
value: 6.15239522914937
- type: nauc_mrr_at_100_diff1
value: 58.88627703402866
- type: nauc_mrr_at_100_max
value: 59.01733085707039
- type: nauc_mrr_at_100_std
value: 6.149383764160973
- type: nauc_mrr_at_10_diff1
value: 58.787561655079315
- type: nauc_mrr_at_10_max
value: 58.883901063919616
- type: nauc_mrr_at_10_std
value: 5.955816839989
- type: nauc_mrr_at_1_diff1
value: 61.493169979051274
- type: nauc_mrr_at_1_max
value: 60.26766809318437
- type: nauc_mrr_at_1_std
value: 7.9345773661140555
- type: nauc_mrr_at_20_diff1
value: 58.88172676495632
- type: nauc_mrr_at_20_max
value: 59.01063084619932
- type: nauc_mrr_at_20_std
value: 5.999917023489485
- type: nauc_mrr_at_3_diff1
value: 59.328585273714765
- type: nauc_mrr_at_3_max
value: 59.138843933099984
- type: nauc_mrr_at_3_std
value: 5.867564048529799
- type: nauc_mrr_at_5_diff1
value: 59.01605585266293
- type: nauc_mrr_at_5_max
value: 59.35576576264414
- type: nauc_mrr_at_5_std
value: 6.4159398933971294
- type: nauc_ndcg_at_1000_diff1
value: 52.72831771372173
- type: nauc_ndcg_at_1000_max
value: 55.00758519121888
- type: nauc_ndcg_at_1000_std
value: 4.985669533881848
- type: nauc_ndcg_at_100_diff1
value: 52.108377732208176
- type: nauc_ndcg_at_100_max
value: 54.48165097844046
- type: nauc_ndcg_at_100_std
value: 4.90669931060551
- type: nauc_ndcg_at_10_diff1
value: 50.664291148529664
- type: nauc_ndcg_at_10_max
value: 52.99267789451465
- type: nauc_ndcg_at_10_std
value: 3.2476865951979432
- type: nauc_ndcg_at_1_diff1
value: 61.493169979051274
- type: nauc_ndcg_at_1_max
value: 60.26766809318437
- type: nauc_ndcg_at_1_std
value: 7.9345773661140555
- type: nauc_ndcg_at_20_diff1
value: 51.18525105808147
- type: nauc_ndcg_at_20_max
value: 53.43688504608144
- type: nauc_ndcg_at_20_std
value: 3.0898823820531667
- type: nauc_ndcg_at_3_diff1
value: 51.86574900383314
- type: nauc_ndcg_at_3_max
value: 54.590246592806615
- type: nauc_ndcg_at_3_std
value: 4.145862812422975
- type: nauc_ndcg_at_5_diff1
value: 52.02045236842261
- type: nauc_ndcg_at_5_max
value: 53.32018698876075
- type: nauc_ndcg_at_5_std
value: 4.253069053649545
- type: nauc_precision_at_1000_diff1
value: -15.302260566955942
- type: nauc_precision_at_1000_max
value: 12.78016543871415
- type: nauc_precision_at_1000_std
value: 9.650613541206308
- type: nauc_precision_at_100_diff1
value: -11.169900642295536
- type: nauc_precision_at_100_max
value: 17.997775654873607
- type: nauc_precision_at_100_std
value: 10.335855037587864
- type: nauc_precision_at_10_diff1
value: -0.7223213004392349
- type: nauc_precision_at_10_max
value: 30.1027627113279
- type: nauc_precision_at_10_std
value: 8.226673861581954
- type: nauc_precision_at_1_diff1
value: 61.493169979051274
- type: nauc_precision_at_1_max
value: 60.26766809318437
- type: nauc_precision_at_1_std
value: 7.9345773661140555
- type: nauc_precision_at_20_diff1
value: -4.815929448858574
- type: nauc_precision_at_20_max
value: 25.356128631092655
- type: nauc_precision_at_20_std
value: 7.647974758815793
- type: nauc_precision_at_3_diff1
value: 14.618447863791332
- type: nauc_precision_at_3_max
value: 42.347601836456704
- type: nauc_precision_at_3_std
value: 9.351508502457152
- type: nauc_precision_at_5_diff1
value: 6.989536536316584
- type: nauc_precision_at_5_max
value: 37.43282182319603
- type: nauc_precision_at_5_std
value: 10.294650747748632
- type: nauc_recall_at_1000_diff1
value: 66.00655448172738
- type: nauc_recall_at_1000_max
value: 71.84347765996883
- type: nauc_recall_at_1000_std
value: 50.90067212878784
- type: nauc_recall_at_100_diff1
value: 36.14296627142933
- type: nauc_recall_at_100_max
value: 41.197429505920766
- type: nauc_recall_at_100_std
value: 7.431041060310201
- type: nauc_recall_at_10_diff1
value: 37.65270595753883
- type: nauc_recall_at_10_max
value: 41.691362683452276
- type: nauc_recall_at_10_std
value: -2.3254949626448083
- type: nauc_recall_at_1_diff1
value: 59.961175322517725
- type: nauc_recall_at_1_max
value: 37.84020048887668
- type: nauc_recall_at_1_std
value: -1.716395538164829
- type: nauc_recall_at_20_diff1
value: 36.92285554147242
- type: nauc_recall_at_20_max
value: 40.480804692339525
- type: nauc_recall_at_20_std
value: -4.660293872779451
- type: nauc_recall_at_3_diff1
value: 47.84172346809966
- type: nauc_recall_at_3_max
value: 45.05790681661395
- type: nauc_recall_at_3_std
value: 0.48589911004729147
- type: nauc_recall_at_5_diff1
value: 43.57123230477339
- type: nauc_recall_at_5_max
value: 45.95815692338621
- type: nauc_recall_at_5_std
value: 2.026516305217224
- type: ndcg_at_1
value: 57.009
- type: ndcg_at_10
value: 62.190999999999995
- type: ndcg_at_100
value: 67.174
- type: ndcg_at_1000
value: 68.446
- type: ndcg_at_20
value: 64.348
- type: ndcg_at_3
value: 56.233999999999995
- type: ndcg_at_5
value: 58.709999999999994
- type: precision_at_1
value: 57.009
- type: precision_at_10
value: 14.673
- type: precision_at_100
value: 1.8950000000000002
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_20
value: 8.091
- type: precision_at_3
value: 34.624
- type: precision_at_5
value: 25.394
- type: recall_at_1
value: 35.412
- type: recall_at_10
value: 72.214
- type: recall_at_100
value: 91.415
- type: recall_at_1000
value: 99.533
- type: recall_at_20
value: 79.103
- type: recall_at_3
value: 53.529
- type: recall_at_5
value: 63.62
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (eng-fra)
type: jinaai/xpqa
config: eng-fra
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: main_score
value: 31.380000000000003
- type: map_at_1
value: 11.257
- type: map_at_10
value: 24.596
- type: map_at_100
value: 27.267000000000003
- type: map_at_1000
value: 27.412999999999997
- type: map_at_20
value: 26.107999999999997
- type: map_at_3
value: 19.236
- type: map_at_5
value: 22.076999999999998
- type: mrr_at_1
value: 23.76502002670227
- type: mrr_at_10
value: 32.646120753597366
- type: mrr_at_100
value: 34.021717341570096
- type: mrr_at_1000
value: 34.08123584522526
- type: mrr_at_20
value: 33.488454614873945
- type: mrr_at_3
value: 29.439252336448607
- type: mrr_at_5
value: 30.97463284379172
- type: nauc_map_at_1000_diff1
value: 23.090590573188127
- type: nauc_map_at_1000_max
value: 37.736493247159515
- type: nauc_map_at_1000_std
value: 10.98069893040178
- type: nauc_map_at_100_diff1
value: 23.08559086307178
- type: nauc_map_at_100_max
value: 37.72263314123226
- type: nauc_map_at_100_std
value: 11.042922887319614
- type: nauc_map_at_10_diff1
value: 22.919253103936867
- type: nauc_map_at_10_max
value: 37.11680228717991
- type: nauc_map_at_10_std
value: 9.851990888901907
- type: nauc_map_at_1_diff1
value: 26.479314334323384
- type: nauc_map_at_1_max
value: 24.606099049654016
- type: nauc_map_at_1_std
value: 7.368843855661875
- type: nauc_map_at_20_diff1
value: 22.84865788594623
- type: nauc_map_at_20_max
value: 37.35013174420624
- type: nauc_map_at_20_std
value: 10.38206527259999
- type: nauc_map_at_3_diff1
value: 24.422040907804902
- type: nauc_map_at_3_max
value: 34.1407580102983
- type: nauc_map_at_3_std
value: 6.90072751192396
- type: nauc_map_at_5_diff1
value: 23.679285267333217
- type: nauc_map_at_5_max
value: 36.69505551539262
- type: nauc_map_at_5_std
value: 9.071400025204603
- type: nauc_mrr_at_1000_diff1
value: 23.91122464190796
- type: nauc_mrr_at_1000_max
value: 38.00739859980611
- type: nauc_mrr_at_1000_std
value: 12.603177305247423
- type: nauc_mrr_at_100_diff1
value: 23.926489219810712
- type: nauc_mrr_at_100_max
value: 38.01653317102498
- type: nauc_mrr_at_100_std
value: 12.631657383704397
- type: nauc_mrr_at_10_diff1
value: 23.793536028816924
- type: nauc_mrr_at_10_max
value: 37.731699667898546
- type: nauc_mrr_at_10_std
value: 12.519721615734111
- type: nauc_mrr_at_1_diff1
value: 26.560927789365497
- type: nauc_mrr_at_1_max
value: 39.34339331908778
- type: nauc_mrr_at_1_std
value: 11.755625469925857
- type: nauc_mrr_at_20_diff1
value: 23.785050335795756
- type: nauc_mrr_at_20_max
value: 37.70507807708539
- type: nauc_mrr_at_20_std
value: 12.401310290425641
- type: nauc_mrr_at_3_diff1
value: 24.760339690704274
- type: nauc_mrr_at_3_max
value: 38.97081556411779
- type: nauc_mrr_at_3_std
value: 12.403416856601224
- type: nauc_mrr_at_5_diff1
value: 24.16786185395756
- type: nauc_mrr_at_5_max
value: 38.675901959087064
- type: nauc_mrr_at_5_std
value: 12.328016386544244
- type: nauc_ndcg_at_1000_diff1
value: 22.575525759807498
- type: nauc_ndcg_at_1000_max
value: 38.08756303764784
- type: nauc_ndcg_at_1000_std
value: 12.993082901884351
- type: nauc_ndcg_at_100_diff1
value: 22.84247295232495
- type: nauc_ndcg_at_100_max
value: 38.07376875349487
- type: nauc_ndcg_at_100_std
value: 14.670272841790322
- type: nauc_ndcg_at_10_diff1
value: 21.851855665665028
- type: nauc_ndcg_at_10_max
value: 36.30808033173574
- type: nauc_ndcg_at_10_std
value: 10.754345146682587
- type: nauc_ndcg_at_1_diff1
value: 26.560927789365497
- type: nauc_ndcg_at_1_max
value: 39.34339331908778
- type: nauc_ndcg_at_1_std
value: 11.755625469925857
- type: nauc_ndcg_at_20_diff1
value: 21.85222563105362
- type: nauc_ndcg_at_20_max
value: 36.49693582912162
- type: nauc_ndcg_at_20_std
value: 11.462407172413222
- type: nauc_ndcg_at_3_diff1
value: 23.835148821074096
- type: nauc_ndcg_at_3_max
value: 37.21286292761239
- type: nauc_ndcg_at_3_std
value: 8.965675045214653
- type: nauc_ndcg_at_5_diff1
value: 22.94941035043304
- type: nauc_ndcg_at_5_max
value: 37.116308712473725
- type: nauc_ndcg_at_5_std
value: 9.96746473363745
- type: nauc_precision_at_1000_diff1
value: 4.391641883500156
- type: nauc_precision_at_1000_max
value: 22.960724719570653
- type: nauc_precision_at_1000_std
value: 9.90771833324347
- type: nauc_precision_at_100_diff1
value: 9.398103008957907
- type: nauc_precision_at_100_max
value: 29.966107038070213
- type: nauc_precision_at_100_std
value: 18.246515814298206
- type: nauc_precision_at_10_diff1
value: 14.642013509002073
- type: nauc_precision_at_10_max
value: 39.865916483254914
- type: nauc_precision_at_10_std
value: 16.389751433271922
- type: nauc_precision_at_1_diff1
value: 26.560927789365497
- type: nauc_precision_at_1_max
value: 39.34339331908778
- type: nauc_precision_at_1_std
value: 11.755625469925857
- type: nauc_precision_at_20_diff1
value: 12.328250607495741
- type: nauc_precision_at_20_max
value: 36.609492322958076
- type: nauc_precision_at_20_std
value: 16.186393097514785
- type: nauc_precision_at_3_diff1
value: 21.43869193024236
- type: nauc_precision_at_3_max
value: 44.92920554318338
- type: nauc_precision_at_3_std
value: 12.93524236487951
- type: nauc_precision_at_5_diff1
value: 17.980792540844075
- type: nauc_precision_at_5_max
value: 44.67180132719046
- type: nauc_precision_at_5_std
value: 15.44379773164089
- type: nauc_recall_at_1000_diff1
value: -18.599562189867928
- type: nauc_recall_at_1000_max
value: -1.233438302856996
- type: nauc_recall_at_1000_std
value: 60.504773500458754
- type: nauc_recall_at_100_diff1
value: 21.73131824226728
- type: nauc_recall_at_100_max
value: 33.813071564297644
- type: nauc_recall_at_100_std
value: 31.938349559054004
- type: nauc_recall_at_10_diff1
value: 17.11887766943705
- type: nauc_recall_at_10_max
value: 28.89674920890047
- type: nauc_recall_at_10_std
value: 7.773984628905876
- type: nauc_recall_at_1_diff1
value: 26.479314334323384
- type: nauc_recall_at_1_max
value: 24.606099049654016
- type: nauc_recall_at_1_std
value: 7.368843855661875
- type: nauc_recall_at_20_diff1
value: 17.295953047798886
- type: nauc_recall_at_20_max
value: 28.434654095893304
- type: nauc_recall_at_20_std
value: 9.427920198911856
- type: nauc_recall_at_3_diff1
value: 21.272960191663262
- type: nauc_recall_at_3_max
value: 30.445386445037144
- type: nauc_recall_at_3_std
value: 4.74984017701616
- type: nauc_recall_at_5_diff1
value: 19.423326866459472
- type: nauc_recall_at_5_max
value: 32.51726362019113
- type: nauc_recall_at_5_std
value: 7.7878756846006185
- type: ndcg_at_1
value: 23.765
- type: ndcg_at_10
value: 31.380000000000003
- type: ndcg_at_100
value: 41.426
- type: ndcg_at_1000
value: 44.168
- type: ndcg_at_20
value: 35.449000000000005
- type: ndcg_at_3
value: 24.845
- type: ndcg_at_5
value: 26.705000000000002
- type: precision_at_1
value: 23.765
- type: precision_at_10
value: 9.879999999999999
- type: precision_at_100
value: 1.865
- type: precision_at_1000
value: 0.22300000000000003
- type: precision_at_20
value: 6.449000000000001
- type: precision_at_3
value: 18.024
- type: precision_at_5
value: 14.472999999999999
- type: recall_at_1
value: 11.257
- type: recall_at_10
value: 42.345
- type: recall_at_100
value: 81.159
- type: recall_at_1000
value: 99.29
- type: recall_at_20
value: 54.989
- type: recall_at_3
value: 23.687
- type: recall_at_5
value: 30.823
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (fra-eng)
type: jinaai/xpqa
config: fra-eng
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: main_score
value: 56.635999999999996
- type: map_at_1
value: 31.4
- type: map_at_10
value: 50.056
- type: map_at_100
value: 51.663000000000004
- type: map_at_1000
value: 51.761
- type: map_at_20
value: 50.927
- type: map_at_3
value: 44.529999999999994
- type: map_at_5
value: 47.894
- type: mrr_at_1
value: 50.467289719626166
- type: mrr_at_10
value: 58.950823319982185
- type: mrr_at_100
value: 59.70354953666045
- type: mrr_at_1000
value: 59.734711425279755
- type: mrr_at_20
value: 59.40583228190128
- type: mrr_at_3
value: 56.875834445927886
- type: mrr_at_5
value: 58.21762349799728
- type: nauc_map_at_1000_diff1
value: 48.15648920144338
- type: nauc_map_at_1000_max
value: 46.702778511311514
- type: nauc_map_at_1000_std
value: -2.8986084054302346
- type: nauc_map_at_100_diff1
value: 48.07320124865117
- type: nauc_map_at_100_max
value: 46.66060865870994
- type: nauc_map_at_100_std
value: -2.898261800096327
- type: nauc_map_at_10_diff1
value: 48.02406723579077
- type: nauc_map_at_10_max
value: 46.41839190788124
- type: nauc_map_at_10_std
value: -3.2566313465012535
- type: nauc_map_at_1_diff1
value: 54.13992707642448
- type: nauc_map_at_1_max
value: 34.04660478197247
- type: nauc_map_at_1_std
value: -4.558752037228464
- type: nauc_map_at_20_diff1
value: 48.046199789059344
- type: nauc_map_at_20_max
value: 46.720705370675915
- type: nauc_map_at_20_std
value: -3.033997271677673
- type: nauc_map_at_3_diff1
value: 50.009783024030185
- type: nauc_map_at_3_max
value: 42.35942421403899
- type: nauc_map_at_3_std
value: -5.2762823138538515
- type: nauc_map_at_5_diff1
value: 48.8354268056224
- type: nauc_map_at_5_max
value: 45.655213495860814
- type: nauc_map_at_5_std
value: -3.7884263147862267
- type: nauc_mrr_at_1000_diff1
value: 53.36845252957243
- type: nauc_mrr_at_1000_max
value: 51.36922708038703
- type: nauc_mrr_at_1000_std
value: -1.4510764030641954
- type: nauc_mrr_at_100_diff1
value: 53.3537222476053
- type: nauc_mrr_at_100_max
value: 51.38049608859829
- type: nauc_mrr_at_100_std
value: -1.4191780664448506
- type: nauc_mrr_at_10_diff1
value: 53.305802521069
- type: nauc_mrr_at_10_max
value: 51.21960893720018
- type: nauc_mrr_at_10_std
value: -1.6724093244930498
- type: nauc_mrr_at_1_diff1
value: 55.70120557955961
- type: nauc_mrr_at_1_max
value: 53.01658211876319
- type: nauc_mrr_at_1_std
value: -0.6423359202704497
- type: nauc_mrr_at_20_diff1
value: 53.34768541161141
- type: nauc_mrr_at_20_max
value: 51.352620113317805
- type: nauc_mrr_at_20_std
value: -1.5006800933364013
- type: nauc_mrr_at_3_diff1
value: 53.39969881700113
- type: nauc_mrr_at_3_max
value: 50.89022404206973
- type: nauc_mrr_at_3_std
value: -3.1275962557855412
- type: nauc_mrr_at_5_diff1
value: 53.6906061507349
- type: nauc_mrr_at_5_max
value: 51.45261103925232
- type: nauc_mrr_at_5_std
value: -1.7795696130396883
- type: nauc_ndcg_at_1000_diff1
value: 48.95637773496826
- type: nauc_ndcg_at_1000_max
value: 48.197622067566826
- type: nauc_ndcg_at_1000_std
value: -1.4607313404789106
- type: nauc_ndcg_at_100_diff1
value: 47.71577524982021
- type: nauc_ndcg_at_100_max
value: 47.883023532341504
- type: nauc_ndcg_at_100_std
value: -0.6132109059243465
- type: nauc_ndcg_at_10_diff1
value: 47.5329600424363
- type: nauc_ndcg_at_10_max
value: 47.498459285878575
- type: nauc_ndcg_at_10_std
value: -2.330121342823272
- type: nauc_ndcg_at_1_diff1
value: 55.70120557955961
- type: nauc_ndcg_at_1_max
value: 53.01658211876319
- type: nauc_ndcg_at_1_std
value: -0.6423359202704497
- type: nauc_ndcg_at_20_diff1
value: 47.6173989193167
- type: nauc_ndcg_at_20_max
value: 48.19865615901621
- type: nauc_ndcg_at_20_std
value: -1.6128175051145877
- type: nauc_ndcg_at_3_diff1
value: 48.78930092666264
- type: nauc_ndcg_at_3_max
value: 46.4431323615495
- type: nauc_ndcg_at_3_std
value: -5.431496363976204
- type: nauc_ndcg_at_5_diff1
value: 49.11424543999915
- type: nauc_ndcg_at_5_max
value: 47.05648749366126
- type: nauc_ndcg_at_5_std
value: -3.330885962532834
- type: nauc_precision_at_1000_diff1
value: -10.880765837183755
- type: nauc_precision_at_1000_max
value: 8.572817422349692
- type: nauc_precision_at_1000_std
value: 4.766982235965037
- type: nauc_precision_at_100_diff1
value: -8.679642859295267
- type: nauc_precision_at_100_max
value: 13.715180395886897
- type: nauc_precision_at_100_std
value: 6.946301090207475
- type: nauc_precision_at_10_diff1
value: 4.944045819175594
- type: nauc_precision_at_10_max
value: 30.760105361109925
- type: nauc_precision_at_10_std
value: 3.6068920141401626
- type: nauc_precision_at_1_diff1
value: 55.70120557955961
- type: nauc_precision_at_1_max
value: 53.01658211876319
- type: nauc_precision_at_1_std
value: -0.6423359202704497
- type: nauc_precision_at_20_diff1
value: 0.8043591939583385
- type: nauc_precision_at_20_max
value: 26.360434462685422
- type: nauc_precision_at_20_std
value: 4.739891658844582
- type: nauc_precision_at_3_diff1
value: 19.013124811719553
- type: nauc_precision_at_3_max
value: 38.42804762790048
- type: nauc_precision_at_3_std
value: -1.4085959010900053
- type: nauc_precision_at_5_diff1
value: 12.360123599205414
- type: nauc_precision_at_5_max
value: 37.08361417845578
- type: nauc_precision_at_5_std
value: 1.9104788050916797
- type: nauc_recall_at_1000_diff1
value: 64.46395887603528
- type: nauc_recall_at_1000_max
value: 25.40689664838346
- type: nauc_recall_at_1000_std
value: 64.91673770650863
- type: nauc_recall_at_100_diff1
value: 23.04629413894431
- type: nauc_recall_at_100_max
value: 37.70267898773106
- type: nauc_recall_at_100_std
value: 19.483375935785805
- type: nauc_recall_at_10_diff1
value: 37.89470563650895
- type: nauc_recall_at_10_max
value: 41.88446616509962
- type: nauc_recall_at_10_std
value: -0.5968285599827128
- type: nauc_recall_at_1_diff1
value: 54.13992707642448
- type: nauc_recall_at_1_max
value: 34.04660478197247
- type: nauc_recall_at_1_std
value: -4.558752037228464
- type: nauc_recall_at_20_diff1
value: 36.41725409411871
- type: nauc_recall_at_20_max
value: 43.570833102022796
- type: nauc_recall_at_20_std
value: 2.4475141353956724
- type: nauc_recall_at_3_diff1
value: 44.46469511434876
- type: nauc_recall_at_3_max
value: 36.60941837529587
- type: nauc_recall_at_3_std
value: -8.466344004251715
- type: nauc_recall_at_5_diff1
value: 43.140961160644444
- type: nauc_recall_at_5_max
value: 42.12923427424881
- type: nauc_recall_at_5_std
value: -3.2514274060186428
- type: ndcg_at_1
value: 50.467
- type: ndcg_at_10
value: 56.635999999999996
- type: ndcg_at_100
value: 62.575
- type: ndcg_at_1000
value: 64.153
- type: ndcg_at_20
value: 58.909
- type: ndcg_at_3
value: 51.636
- type: ndcg_at_5
value: 53.252
- type: precision_at_1
value: 50.467
- type: precision_at_10
value: 13.458
- type: precision_at_100
value: 1.8530000000000002
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_20
value: 7.582999999999999
- type: precision_at_3
value: 31.865
- type: precision_at_5
value: 22.884
- type: recall_at_1
value: 31.4
- type: recall_at_10
value: 66.19
- type: recall_at_100
value: 89.577
- type: recall_at_1000
value: 99.695
- type: recall_at_20
value: 73.213
- type: recall_at_3
value: 50.699000000000005
- type: recall_at_5
value: 58.158
- task:
type: Classification
dataset:
name: MTEB AllegroReviews
type: PL-MTEB/allegro-reviews
config: default
split: test
revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6
metrics:
- type: accuracy
value: 49.22465208747514
- type: f1
value: 35.68158330115517
- type: f1_weighted
value: 44.81425765760541
- type: main_score
value: 49.22465208747514
- task:
type: Retrieval
dataset:
name: MTEB ArguAna-PL
type: clarin-knext/arguana-pl
config: default
split: test
revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
metrics:
- type: main_score
value: 49.668
- type: map_at_1
value: 24.751
- type: map_at_10
value: 40.36
- type: map_at_100
value: 41.368
- type: map_at_1000
value: 41.379
- type: map_at_20
value: 41.134
- type: map_at_3
value: 34.945
- type: map_at_5
value: 38.043
- type: mrr_at_1
value: 25.03556187766714
- type: mrr_at_10
value: 40.47856126803494
- type: mrr_at_100
value: 41.49280025917654
- type: mrr_at_1000
value: 41.50319481040459
- type: mrr_at_20
value: 41.25788030596975
- type: mrr_at_3
value: 35.0521574205784
- type: mrr_at_5
value: 38.167377904219954
- type: nauc_map_at_1000_diff1
value: 7.731653729111241
- type: nauc_map_at_1000_max
value: -6.3011371446014115
- type: nauc_map_at_1000_std
value: -6.06100995003556
- type: nauc_map_at_100_diff1
value: 7.740664698795466
- type: nauc_map_at_100_max
value: -6.278576653918305
- type: nauc_map_at_100_std
value: -6.048854855804748
- type: nauc_map_at_10_diff1
value: 7.58994360921921
- type: nauc_map_at_10_max
value: -6.486918896565689
- type: nauc_map_at_10_std
value: -6.590603504257126
- type: nauc_map_at_1_diff1
value: 10.018749983163797
- type: nauc_map_at_1_max
value: -9.286741407015537
- type: nauc_map_at_1_std
value: -6.604729499204554
- type: nauc_map_at_20_diff1
value: 7.706256252764164
- type: nauc_map_at_20_max
value: -6.168914547814974
- type: nauc_map_at_20_std
value: -6.083566639755691
- type: nauc_map_at_3_diff1
value: 7.033893231381659
- type: nauc_map_at_3_max
value: -6.945660103296161
- type: nauc_map_at_3_std
value: -6.0565345896842135
- type: nauc_map_at_5_diff1
value: 7.205099657249722
- type: nauc_map_at_5_max
value: -6.776921990255051
- type: nauc_map_at_5_std
value: -5.907533989245036
- type: nauc_mrr_at_1000_diff1
value: 6.668270267618491
- type: nauc_mrr_at_1000_max
value: -6.803645974646868
- type: nauc_mrr_at_1000_std
value: -6.110358020715999
- type: nauc_mrr_at_100_diff1
value: 6.677624675636143
- type: nauc_mrr_at_100_max
value: -6.78097136036329
- type: nauc_mrr_at_100_std
value: -6.098217879471153
- type: nauc_mrr_at_10_diff1
value: 6.468832159598689
- type: nauc_mrr_at_10_max
value: -7.0315355572474925
- type: nauc_mrr_at_10_std
value: -6.601932672455336
- type: nauc_mrr_at_1_diff1
value: 9.07223439791323
- type: nauc_mrr_at_1_max
value: -9.264510377291506
- type: nauc_mrr_at_1_std
value: -6.764808343700734
- type: nauc_mrr_at_20_diff1
value: 6.65302226067872
- type: nauc_mrr_at_20_max
value: -6.666040499900585
- type: nauc_mrr_at_20_std
value: -6.132351790646591
- type: nauc_mrr_at_3_diff1
value: 5.824560443333769
- type: nauc_mrr_at_3_max
value: -7.573354775954246
- type: nauc_mrr_at_3_std
value: -6.106371480222379
- type: nauc_mrr_at_5_diff1
value: 6.209821468263958
- type: nauc_mrr_at_5_max
value: -7.271141379552105
- type: nauc_mrr_at_5_std
value: -5.938481110932588
- type: nauc_ndcg_at_1000_diff1
value: 7.773930949495924
- type: nauc_ndcg_at_1000_max
value: -5.1914799213542535
- type: nauc_ndcg_at_1000_std
value: -5.443963700763181
- type: nauc_ndcg_at_100_diff1
value: 8.057028087355645
- type: nauc_ndcg_at_100_max
value: -4.531668964685114
- type: nauc_ndcg_at_100_std
value: -5.043531367158232
- type: nauc_ndcg_at_10_diff1
value: 7.464635855577513
- type: nauc_ndcg_at_10_max
value: -4.878234464633695
- type: nauc_ndcg_at_10_std
value: -7.040243622992924
- type: nauc_ndcg_at_1_diff1
value: 10.018749983163797
- type: nauc_ndcg_at_1_max
value: -9.286741407015537
- type: nauc_ndcg_at_1_std
value: -6.604729499204554
- type: nauc_ndcg_at_20_diff1
value: 7.927592870050634
- type: nauc_ndcg_at_20_max
value: -3.5850025129078804
- type: nauc_ndcg_at_20_std
value: -5.171152516248472
- type: nauc_ndcg_at_3_diff1
value: 6.2883775843899485
- type: nauc_ndcg_at_3_max
value: -6.088799255371655
- type: nauc_ndcg_at_3_std
value: -5.718514280311179
- type: nauc_ndcg_at_5_diff1
value: 6.560041121192067
- type: nauc_ndcg_at_5_max
value: -5.667390479730649
- type: nauc_ndcg_at_5_std
value: -5.345467266005971
- type: nauc_precision_at_1000_diff1
value: 3.3584681799320566
- type: nauc_precision_at_1000_max
value: 27.67410378535401
- type: nauc_precision_at_1000_std
value: 73.59018487762006
- type: nauc_precision_at_100_diff1
value: 31.86229567780328
- type: nauc_precision_at_100_max
value: 57.759019425342615
- type: nauc_precision_at_100_std
value: 45.17932914356757
- type: nauc_precision_at_10_diff1
value: 7.59135628113755
- type: nauc_precision_at_10_max
value: 3.3516129835437254
- type: nauc_precision_at_10_std
value: -9.981248425456624
- type: nauc_precision_at_1_diff1
value: 10.018749983163797
- type: nauc_precision_at_1_max
value: -9.286741407015537
- type: nauc_precision_at_1_std
value: -6.604729499204554
- type: nauc_precision_at_20_diff1
value: 12.340895595423683
- type: nauc_precision_at_20_max
value: 22.834947429467178
- type: nauc_precision_at_20_std
value: 5.3105422687851425
- type: nauc_precision_at_3_diff1
value: 4.279842180460012
- type: nauc_precision_at_3_max
value: -3.6828818164493162
- type: nauc_precision_at_3_std
value: -4.735859463411824
- type: nauc_precision_at_5_diff1
value: 4.654912773566626
- type: nauc_precision_at_5_max
value: -2.0537304325752452
- type: nauc_precision_at_5_std
value: -3.419667795061248
- type: nauc_recall_at_1000_diff1
value: 3.358468179927671
- type: nauc_recall_at_1000_max
value: 27.674103785350603
- type: nauc_recall_at_1000_std
value: 73.59018487761793
- type: nauc_recall_at_100_diff1
value: 31.862295677802706
- type: nauc_recall_at_100_max
value: 57.75901942534214
- type: nauc_recall_at_100_std
value: 45.17932914356684
- type: nauc_recall_at_10_diff1
value: 7.591356281137633
- type: nauc_recall_at_10_max
value: 3.351612983543776
- type: nauc_recall_at_10_std
value: -9.981248425456481
- type: nauc_recall_at_1_diff1
value: 10.018749983163797
- type: nauc_recall_at_1_max
value: -9.286741407015537
- type: nauc_recall_at_1_std
value: -6.604729499204554
- type: nauc_recall_at_20_diff1
value: 12.340895595423826
- type: nauc_recall_at_20_max
value: 22.834947429467274
- type: nauc_recall_at_20_std
value: 5.310542268785199
- type: nauc_recall_at_3_diff1
value: 4.279842180460059
- type: nauc_recall_at_3_max
value: -3.682881816449298
- type: nauc_recall_at_3_std
value: -4.735859463411806
- type: nauc_recall_at_5_diff1
value: 4.6549127735666795
- type: nauc_recall_at_5_max
value: -2.0537304325752013
- type: nauc_recall_at_5_std
value: -3.419667795061247
- type: ndcg_at_1
value: 24.751
- type: ndcg_at_10
value: 49.668
- type: ndcg_at_100
value: 53.867
- type: ndcg_at_1000
value: 54.102
- type: ndcg_at_20
value: 52.34799999999999
- type: ndcg_at_3
value: 38.451
- type: ndcg_at_5
value: 44.069
- type: precision_at_1
value: 24.751
- type: precision_at_10
value: 7.965999999999999
- type: precision_at_100
value: 0.9780000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.4990000000000006
- type: precision_at_3
value: 16.216
- type: precision_at_5
value: 12.475
- type: recall_at_1
value: 24.751
- type: recall_at_10
value: 79.659
- type: recall_at_100
value: 97.795
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_20
value: 89.972
- type: recall_at_3
value: 48.649
- type: recall_at_5
value: 62.376
- task:
type: Classification
dataset:
name: MTEB CBD
type: PL-MTEB/cbd
config: default
split: test
revision: 36ddb419bcffe6a5374c3891957912892916f28d
metrics:
- type: accuracy
value: 62.85999999999999
- type: ap
value: 18.744713128220596
- type: ap_weighted
value: 18.744713128220596
- type: f1
value: 53.296341093646696
- type: f1_weighted
value: 68.61665005768842
- type: main_score
value: 62.85999999999999
- task:
type: PairClassification
dataset:
name: MTEB CDSC-E
type: PL-MTEB/cdsce-pairclassification
config: default
split: test
revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d
metrics:
- type: cosine_accuracy
value: 87.3
- type: cosine_accuracy_threshold
value: 95.8031415939331
- type: cosine_ap
value: 69.77225668650979
- type: cosine_f1
value: 63.04909560723513
- type: cosine_f1_threshold
value: 86.9259238243103
- type: cosine_precision
value: 61.92893401015228
- type: cosine_recall
value: 64.21052631578948
- type: dot_accuracy
value: 87.3
- type: dot_accuracy_threshold
value: 95.8031415939331
- type: dot_ap
value: 69.77225668650979
- type: dot_f1
value: 63.04909560723513
- type: dot_f1_threshold
value: 86.9259238243103
- type: dot_precision
value: 61.92893401015228
- type: dot_recall
value: 64.21052631578948
- type: euclidean_accuracy
value: 87.3
- type: euclidean_accuracy_threshold
value: 28.971904516220093
- type: euclidean_ap
value: 69.77225668650979
- type: euclidean_f1
value: 63.04909560723513
- type: euclidean_f1_threshold
value: 51.135218143463135
- type: euclidean_precision
value: 61.92893401015228
- type: euclidean_recall
value: 64.21052631578948
- type: main_score
value: 70.04616767691698
- type: manhattan_accuracy
value: 87.5
- type: manhattan_accuracy_threshold
value: 790.4520988464355
- type: manhattan_ap
value: 70.04616767691698
- type: manhattan_f1
value: 63.54166666666667
- type: manhattan_f1_threshold
value: 1195.075511932373
- type: manhattan_precision
value: 62.88659793814433
- type: manhattan_recall
value: 64.21052631578948
- type: max_ap
value: 70.04616767691698
- type: max_f1
value: 63.54166666666667
- type: max_precision
value: 62.88659793814433
- type: max_recall
value: 64.21052631578948
- type: similarity_accuracy
value: 87.3
- type: similarity_accuracy_threshold
value: 95.8031415939331
- type: similarity_ap
value: 69.77225668650979
- type: similarity_f1
value: 63.04909560723513
- type: similarity_f1_threshold
value: 86.9259238243103
- type: similarity_precision
value: 61.92893401015228
- type: similarity_recall
value: 64.21052631578948
- task:
type: STS
dataset:
name: MTEB CDSC-R
type: PL-MTEB/cdscr-sts
config: default
split: test
revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd
metrics:
- type: cosine_pearson
value: 90.1467539156439
- type: cosine_spearman
value: 90.37983178422222
- type: euclidean_pearson
value: 87.54100647769168
- type: euclidean_spearman
value: 90.37983178422222
- type: main_score
value: 90.37983178422222
- type: manhattan_pearson
value: 87.6231001602879
- type: manhattan_spearman
value: 90.52798044659546
- type: pearson
value: 90.1467539156439
- type: spearman
value: 90.37983178422222
- task:
type: Retrieval
dataset:
name: MTEB DBPedia-PL
type: clarin-knext/dbpedia-pl
config: default
split: test
revision: 76afe41d9af165cc40999fcaa92312b8b012064a
metrics:
- type: main_score
value: 24.287
- type: map_at_1
value: 5.225
- type: map_at_10
value: 10.774000000000001
- type: map_at_100
value: 14.748
- type: map_at_1000
value: 15.836
- type: map_at_20
value: 12.27
- type: map_at_3
value: 7.724
- type: map_at_5
value: 9.246
- type: mrr_at_1
value: 39.25
- type: mrr_at_10
value: 50.17480158730157
- type: mrr_at_100
value: 50.8519822068327
- type: mrr_at_1000
value: 50.879556078064134
- type: mrr_at_20
value: 50.58405713438607
- type: mrr_at_3
value: 47.250000000000014
- type: mrr_at_5
value: 49.175000000000004
- type: nauc_map_at_1000_diff1
value: 20.045024346779645
- type: nauc_map_at_1000_max
value: 30.337666854953092
- type: nauc_map_at_1000_std
value: 26.557075239939543
- type: nauc_map_at_100_diff1
value: 19.9252316411722
- type: nauc_map_at_100_max
value: 28.226642852584742
- type: nauc_map_at_100_std
value: 22.914021046648696
- type: nauc_map_at_10_diff1
value: 26.566241524936572
- type: nauc_map_at_10_max
value: 21.748824204804716
- type: nauc_map_at_10_std
value: 8.638991435098609
- type: nauc_map_at_1_diff1
value: 36.393726837054814
- type: nauc_map_at_1_max
value: 16.477605805271057
- type: nauc_map_at_1_std
value: 0.5753087963352366
- type: nauc_map_at_20_diff1
value: 23.401102079878182
- type: nauc_map_at_20_max
value: 23.065898894709402
- type: nauc_map_at_20_std
value: 13.423353653712915
- type: nauc_map_at_3_diff1
value: 30.91796624589218
- type: nauc_map_at_3_max
value: 16.45545569680709
- type: nauc_map_at_3_std
value: 0.6366650378026352
- type: nauc_map_at_5_diff1
value: 28.80351568065496
- type: nauc_map_at_5_max
value: 19.084673921482615
- type: nauc_map_at_5_std
value: 4.139131073579019
- type: nauc_mrr_at_1000_diff1
value: 20.16962170000775
- type: nauc_mrr_at_1000_max
value: 38.15430502575843
- type: nauc_mrr_at_1000_std
value: 32.440668939436264
- type: nauc_mrr_at_100_diff1
value: 20.15910246738786
- type: nauc_mrr_at_100_max
value: 38.15774234365609
- type: nauc_mrr_at_100_std
value: 32.44872216192449
- type: nauc_mrr_at_10_diff1
value: 20.049148781541064
- type: nauc_mrr_at_10_max
value: 37.97309789914626
- type: nauc_mrr_at_10_std
value: 32.418004097599166
- type: nauc_mrr_at_1_diff1
value: 23.9620307539266
- type: nauc_mrr_at_1_max
value: 33.83610178961887
- type: nauc_mrr_at_1_std
value: 28.58448609419965
- type: nauc_mrr_at_20_diff1
value: 20.06080688488365
- type: nauc_mrr_at_20_max
value: 38.06868785040665
- type: nauc_mrr_at_20_std
value: 32.22384606323392
- type: nauc_mrr_at_3_diff1
value: 20.71531876285696
- type: nauc_mrr_at_3_max
value: 37.54485901132759
- type: nauc_mrr_at_3_std
value: 31.77679862739285
- type: nauc_mrr_at_5_diff1
value: 20.003442037824826
- type: nauc_mrr_at_5_max
value: 38.37916584335752
- type: nauc_mrr_at_5_std
value: 32.091488996264154
- type: nauc_ndcg_at_1000_diff1
value: 18.932875904116358
- type: nauc_ndcg_at_1000_max
value: 37.69461269411873
- type: nauc_ndcg_at_1000_std
value: 40.49355007241307
- type: nauc_ndcg_at_100_diff1
value: 18.62868572859794
- type: nauc_ndcg_at_100_max
value: 32.5251773358776
- type: nauc_ndcg_at_100_std
value: 34.17298333080795
- type: nauc_ndcg_at_10_diff1
value: 21.33571858413017
- type: nauc_ndcg_at_10_max
value: 32.95411878498034
- type: nauc_ndcg_at_10_std
value: 30.26350297086653
- type: nauc_ndcg_at_1_diff1
value: 25.698485822118034
- type: nauc_ndcg_at_1_max
value: 27.751178850383283
- type: nauc_ndcg_at_1_std
value: 25.499914018590097
- type: nauc_ndcg_at_20_diff1
value: 20.564620650130962
- type: nauc_ndcg_at_20_max
value: 29.636273615266877
- type: nauc_ndcg_at_20_std
value: 29.0657094246048
- type: nauc_ndcg_at_3_diff1
value: 21.331262925027644
- type: nauc_ndcg_at_3_max
value: 32.3211075722955
- type: nauc_ndcg_at_3_std
value: 29.30569912466711
- type: nauc_ndcg_at_5_diff1
value: 20.906573479242933
- type: nauc_ndcg_at_5_max
value: 33.817640032948255
- type: nauc_ndcg_at_5_std
value: 30.210587907489593
- type: nauc_precision_at_1000_diff1
value: 7.9336700303824905
- type: nauc_precision_at_1000_max
value: 25.382181071880133
- type: nauc_precision_at_1000_std
value: 45.03790857159645
- type: nauc_precision_at_100_diff1
value: -2.1616719372797286
- type: nauc_precision_at_100_max
value: 38.41562489705835
- type: nauc_precision_at_100_std
value: 51.0132959449221
- type: nauc_precision_at_10_diff1
value: 2.3699655796458936
- type: nauc_precision_at_10_max
value: 38.87889003229129
- type: nauc_precision_at_10_std
value: 43.071785955076145
- type: nauc_precision_at_1_diff1
value: 23.9620307539266
- type: nauc_precision_at_1_max
value: 33.83610178961887
- type: nauc_precision_at_1_std
value: 28.58448609419965
- type: nauc_precision_at_20_diff1
value: -0.5466417961649375
- type: nauc_precision_at_20_max
value: 36.55638995946497
- type: nauc_precision_at_20_std
value: 46.90182951874849
- type: nauc_precision_at_3_diff1
value: 9.180998281598255
- type: nauc_precision_at_3_max
value: 35.97368107639076
- type: nauc_precision_at_3_std
value: 34.362776108183525
- type: nauc_precision_at_5_diff1
value: 6.188700805809966
- type: nauc_precision_at_5_max
value: 39.69905715436714
- type: nauc_precision_at_5_std
value: 37.630912034924016
- type: nauc_recall_at_1000_diff1
value: 12.957700393477442
- type: nauc_recall_at_1000_max
value: 30.999439787327205
- type: nauc_recall_at_1000_std
value: 39.191755156518575
- type: nauc_recall_at_100_diff1
value: 12.761105551850163
- type: nauc_recall_at_100_max
value: 26.695898719215045
- type: nauc_recall_at_100_std
value: 29.150806165495208
- type: nauc_recall_at_10_diff1
value: 19.097397019523825
- type: nauc_recall_at_10_max
value: 18.259583702998956
- type: nauc_recall_at_10_std
value: 8.897590380469557
- type: nauc_recall_at_1_diff1
value: 36.393726837054814
- type: nauc_recall_at_1_max
value: 16.477605805271057
- type: nauc_recall_at_1_std
value: 0.5753087963352366
- type: nauc_recall_at_20_diff1
value: 14.751462451918885
- type: nauc_recall_at_20_max
value: 17.17387812389538
- type: nauc_recall_at_20_std
value: 11.686450060418395
- type: nauc_recall_at_3_diff1
value: 28.2693968902148
- type: nauc_recall_at_3_max
value: 15.503661857890341
- type: nauc_recall_at_3_std
value: -0.6006615114775526
- type: nauc_recall_at_5_diff1
value: 21.69553199450905
- type: nauc_recall_at_5_max
value: 16.68339699974409
- type: nauc_recall_at_5_std
value: 4.201309425242677
- type: ndcg_at_1
value: 29.375
- type: ndcg_at_10
value: 24.287
- type: ndcg_at_100
value: 28.457
- type: ndcg_at_1000
value: 35.412
- type: ndcg_at_20
value: 24.189
- type: ndcg_at_3
value: 25.813000000000002
- type: ndcg_at_5
value: 25.374999999999996
- type: precision_at_1
value: 39.25
- type: precision_at_10
value: 19.6
- type: precision_at_100
value: 6.2700000000000005
- type: precision_at_1000
value: 1.452
- type: precision_at_20
value: 14.499999999999998
- type: precision_at_3
value: 29.083
- type: precision_at_5
value: 25.75
- type: recall_at_1
value: 5.225
- type: recall_at_10
value: 16.258
- type: recall_at_100
value: 35.569
- type: recall_at_1000
value: 57.958
- type: recall_at_20
value: 21.178
- type: recall_at_3
value: 8.866999999999999
- type: recall_at_5
value: 12.404
- task:
type: Clustering
dataset:
name: MTEB 8TagsClustering
type: PL-MTEB/8tags-clustering
config: default
split: test
revision: 78b962b130c6690659c65abf67bf1c2f030606b6
metrics:
- type: main_score
value: 37.96267113583295
- type: v_measure
value: 37.96267113583295
- type: v_measure_std
value: 2.6597621214046576
- task:
type: Retrieval
dataset:
name: MTEB FiQA-PL
type: clarin-knext/fiqa-pl
config: default
split: test
revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
metrics:
- type: main_score
value: 24.374000000000002
- type: map_at_1
value: 11.362
- type: map_at_10
value: 18.464
- type: map_at_100
value: 19.791
- type: map_at_1000
value: 19.994
- type: map_at_20
value: 19.156000000000002
- type: map_at_3
value: 15.937000000000001
- type: map_at_5
value: 17.127
- type: mrr_at_1
value: 22.376543209876544
- type: mrr_at_10
value: 30.046724965706435
- type: mrr_at_100
value: 30.99706976191228
- type: mrr_at_1000
value: 31.076490053822308
- type: mrr_at_20
value: 30.59052580100912
- type: mrr_at_3
value: 27.854938271604944
- type: mrr_at_5
value: 28.912037037037035
- type: nauc_map_at_1000_diff1
value: 34.07557471766689
- type: nauc_map_at_1000_max
value: 24.91982727448087
- type: nauc_map_at_1000_std
value: 12.494927606505051
- type: nauc_map_at_100_diff1
value: 34.06635556229055
- type: nauc_map_at_100_max
value: 24.777935848367225
- type: nauc_map_at_100_std
value: 12.362066428153456
- type: nauc_map_at_10_diff1
value: 34.3306140967635
- type: nauc_map_at_10_max
value: 24.086194195608087
- type: nauc_map_at_10_std
value: 11.127465863787245
- type: nauc_map_at_1_diff1
value: 38.942215866162314
- type: nauc_map_at_1_max
value: 23.63998402727614
- type: nauc_map_at_1_std
value: 9.728241161220097
- type: nauc_map_at_20_diff1
value: 34.04736858130041
- type: nauc_map_at_20_max
value: 24.30446046409803
- type: nauc_map_at_20_std
value: 11.82019676487291
- type: nauc_map_at_3_diff1
value: 34.99965810997492
- type: nauc_map_at_3_max
value: 22.472906083967082
- type: nauc_map_at_3_std
value: 9.698945379216992
- type: nauc_map_at_5_diff1
value: 34.42282748114895
- type: nauc_map_at_5_max
value: 23.633268720383512
- type: nauc_map_at_5_std
value: 10.382815603500871
- type: nauc_mrr_at_1000_diff1
value: 34.704948586037965
- type: nauc_mrr_at_1000_max
value: 28.94016888494416
- type: nauc_mrr_at_1000_std
value: 13.914193825823684
- type: nauc_mrr_at_100_diff1
value: 34.67910995484378
- type: nauc_mrr_at_100_max
value: 28.90011297894453
- type: nauc_mrr_at_100_std
value: 13.870339909485788
- type: nauc_mrr_at_10_diff1
value: 34.97862910055978
- type: nauc_mrr_at_10_max
value: 28.891213481314647
- type: nauc_mrr_at_10_std
value: 13.632668727631797
- type: nauc_mrr_at_1_diff1
value: 36.9016752358079
- type: nauc_mrr_at_1_max
value: 30.89530420046735
- type: nauc_mrr_at_1_std
value: 14.386684064942584
- type: nauc_mrr_at_20_diff1
value: 34.73839610262596
- type: nauc_mrr_at_20_max
value: 28.705251186157255
- type: nauc_mrr_at_20_std
value: 13.753299339901334
- type: nauc_mrr_at_3_diff1
value: 34.76877538539127
- type: nauc_mrr_at_3_max
value: 28.77723698514852
- type: nauc_mrr_at_3_std
value: 13.717153469537122
- type: nauc_mrr_at_5_diff1
value: 34.32426309461695
- type: nauc_mrr_at_5_max
value: 28.620967773156714
- type: nauc_mrr_at_5_std
value: 13.382881213134276
- type: nauc_ndcg_at_1000_diff1
value: 32.77974173034191
- type: nauc_ndcg_at_1000_max
value: 28.36858648028177
- type: nauc_ndcg_at_1000_std
value: 17.55654423858263
- type: nauc_ndcg_at_100_diff1
value: 32.632483073737255
- type: nauc_ndcg_at_100_max
value: 26.296829067224515
- type: nauc_ndcg_at_100_std
value: 15.901063315847802
- type: nauc_ndcg_at_10_diff1
value: 33.951354557048134
- type: nauc_ndcg_at_10_max
value: 24.502438497165578
- type: nauc_ndcg_at_10_std
value: 12.270853057785972
- type: nauc_ndcg_at_1_diff1
value: 36.9016752358079
- type: nauc_ndcg_at_1_max
value: 30.89530420046735
- type: nauc_ndcg_at_1_std
value: 14.386684064942584
- type: nauc_ndcg_at_20_diff1
value: 33.28593916274325
- type: nauc_ndcg_at_20_max
value: 24.5380040373484
- type: nauc_ndcg_at_20_std
value: 13.863409012751617
- type: nauc_ndcg_at_3_diff1
value: 34.03004915907343
- type: nauc_ndcg_at_3_max
value: 25.366810943178187
- type: nauc_ndcg_at_3_std
value: 11.99466470963204
- type: nauc_ndcg_at_5_diff1
value: 33.75108435164904
- type: nauc_ndcg_at_5_max
value: 24.89793255411985
- type: nauc_ndcg_at_5_std
value: 11.213101565189755
- type: nauc_precision_at_1000_diff1
value: 8.88694146912782
- type: nauc_precision_at_1000_max
value: 28.194369745942677
- type: nauc_precision_at_1000_std
value: 15.075895083755153
- type: nauc_precision_at_100_diff1
value: 17.33142606816351
- type: nauc_precision_at_100_max
value: 30.560210907187134
- type: nauc_precision_at_100_std
value: 20.006767151320354
- type: nauc_precision_at_10_diff1
value: 27.325474826111495
- type: nauc_precision_at_10_max
value: 28.37196490647728
- type: nauc_precision_at_10_std
value: 14.398272703295254
- type: nauc_precision_at_1_diff1
value: 36.9016752358079
- type: nauc_precision_at_1_max
value: 30.89530420046735
- type: nauc_precision_at_1_std
value: 14.386684064942584
- type: nauc_precision_at_20_diff1
value: 24.927890600833123
- type: nauc_precision_at_20_max
value: 28.6077759408292
- type: nauc_precision_at_20_std
value: 16.922212691823013
- type: nauc_precision_at_3_diff1
value: 30.157161086783603
- type: nauc_precision_at_3_max
value: 27.80088080445145
- type: nauc_precision_at_3_std
value: 13.767444960442354
- type: nauc_precision_at_5_diff1
value: 27.22177598160483
- type: nauc_precision_at_5_max
value: 28.126925412497698
- type: nauc_precision_at_5_std
value: 12.668302840263246
- type: nauc_recall_at_1000_diff1
value: 13.021138171238658
- type: nauc_recall_at_1000_max
value: 29.086331163283578
- type: nauc_recall_at_1000_std
value: 40.165920815231445
- type: nauc_recall_at_100_diff1
value: 20.32032544663283
- type: nauc_recall_at_100_max
value: 19.52693905173919
- type: nauc_recall_at_100_std
value: 21.472521389265815
- type: nauc_recall_at_10_diff1
value: 27.863602171901302
- type: nauc_recall_at_10_max
value: 17.4718078150182
- type: nauc_recall_at_10_std
value: 11.474638155937823
- type: nauc_recall_at_1_diff1
value: 38.942215866162314
- type: nauc_recall_at_1_max
value: 23.63998402727614
- type: nauc_recall_at_1_std
value: 9.728241161220097
- type: nauc_recall_at_20_diff1
value: 24.72857110907966
- type: nauc_recall_at_20_max
value: 16.357016524448234
- type: nauc_recall_at_20_std
value: 15.437317261627213
- type: nauc_recall_at_3_diff1
value: 29.883191548110638
- type: nauc_recall_at_3_max
value: 16.895714663542783
- type: nauc_recall_at_3_std
value: 8.976963489103756
- type: nauc_recall_at_5_diff1
value: 28.877062029269666
- type: nauc_recall_at_5_max
value: 18.25013882823951
- type: nauc_recall_at_5_std
value: 9.760614924170874
- type: ndcg_at_1
value: 22.377
- type: ndcg_at_10
value: 24.374000000000002
- type: ndcg_at_100
value: 30.166999999999998
- type: ndcg_at_1000
value: 34.443
- type: ndcg_at_20
value: 26.457000000000004
- type: ndcg_at_3
value: 21.248
- type: ndcg_at_5
value: 21.976000000000003
- type: precision_at_1
value: 22.377
- type: precision_at_10
value: 6.851999999999999
- type: precision_at_100
value: 1.269
- type: precision_at_1000
value: 0.2
- type: precision_at_20
value: 4.252000000000001
- type: precision_at_3
value: 14.146
- type: precision_at_5
value: 10.432
- type: recall_at_1
value: 11.362
- type: recall_at_10
value: 30.416999999999998
- type: recall_at_100
value: 52.547
- type: recall_at_1000
value: 79.107
- type: recall_at_20
value: 36.927
- type: recall_at_3
value: 19.888
- type: recall_at_5
value: 23.294
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA-PL
type: clarin-knext/hotpotqa-pl
config: default
split: test
revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
metrics:
- type: main_score
value: 60.289
- type: map_at_1
value: 35.522999999999996
- type: map_at_10
value: 51.18000000000001
- type: map_at_100
value: 52.051
- type: map_at_1000
value: 52.122
- type: map_at_20
value: 51.673
- type: map_at_3
value: 48.246
- type: map_at_5
value: 50.019999999999996
- type: mrr_at_1
value: 71.04659014179609
- type: mrr_at_10
value: 77.46602467230403
- type: mrr_at_100
value: 77.71701045856283
- type: mrr_at_1000
value: 77.73109333465572
- type: mrr_at_20
value: 77.61606030291657
- type: mrr_at_3
value: 76.2975467026782
- type: mrr_at_5
value: 77.01530497411626
- type: nauc_map_at_1000_diff1
value: 27.072398495156897
- type: nauc_map_at_1000_max
value: 29.92494925850584
- type: nauc_map_at_1000_std
value: 6.122920064016644
- type: nauc_map_at_100_diff1
value: 27.045953237574043
- type: nauc_map_at_100_max
value: 29.91135310131925
- type: nauc_map_at_100_std
value: 6.102830174452808
- type: nauc_map_at_10_diff1
value: 27.14260536879246
- type: nauc_map_at_10_max
value: 29.786180574275033
- type: nauc_map_at_10_std
value: 5.48071498058778
- type: nauc_map_at_1_diff1
value: 71.43831250406643
- type: nauc_map_at_1_max
value: 50.69918783298206
- type: nauc_map_at_1_std
value: 4.065732274269463
- type: nauc_map_at_20_diff1
value: 26.985158932169607
- type: nauc_map_at_20_max
value: 29.769499559141337
- type: nauc_map_at_20_std
value: 5.7846108079403225
- type: nauc_map_at_3_diff1
value: 28.726407496616453
- type: nauc_map_at_3_max
value: 30.257904231332596
- type: nauc_map_at_3_std
value: 4.176791477760867
- type: nauc_map_at_5_diff1
value: 27.599671019792364
- type: nauc_map_at_5_max
value: 29.837459984143866
- type: nauc_map_at_5_std
value: 4.724857569088119
- type: nauc_mrr_at_1000_diff1
value: 69.74462431507696
- type: nauc_mrr_at_1000_max
value: 53.47426820826111
- type: nauc_mrr_at_1000_std
value: 7.017278438144492
- type: nauc_mrr_at_100_diff1
value: 69.7417920598051
- type: nauc_mrr_at_100_max
value: 53.48046534979321
- type: nauc_mrr_at_100_std
value: 7.024164329244427
- type: nauc_mrr_at_10_diff1
value: 69.67042683609824
- type: nauc_mrr_at_10_max
value: 53.481642001920314
- type: nauc_mrr_at_10_std
value: 6.916088911861879
- type: nauc_mrr_at_1_diff1
value: 71.43831250406643
- type: nauc_mrr_at_1_max
value: 50.69918783298206
- type: nauc_mrr_at_1_std
value: 4.065732274269463
- type: nauc_mrr_at_20_diff1
value: 69.69097669322561
- type: nauc_mrr_at_20_max
value: 53.48254877660139
- type: nauc_mrr_at_20_std
value: 6.954450273756836
- type: nauc_mrr_at_3_diff1
value: 69.65550049564045
- type: nauc_mrr_at_3_max
value: 53.423078677284806
- type: nauc_mrr_at_3_std
value: 6.824360632333201
- type: nauc_mrr_at_5_diff1
value: 69.85902124700681
- type: nauc_mrr_at_5_max
value: 53.71608187586825
- type: nauc_mrr_at_5_std
value: 6.90332690250169
- type: nauc_ndcg_at_1000_diff1
value: 32.371178459639395
- type: nauc_ndcg_at_1000_max
value: 34.193107156520355
- type: nauc_ndcg_at_1000_std
value: 9.981416864706453
- type: nauc_ndcg_at_100_diff1
value: 31.65178281180327
- type: nauc_ndcg_at_100_max
value: 33.88863515144708
- type: nauc_ndcg_at_100_std
value: 9.675400500125894
- type: nauc_ndcg_at_10_diff1
value: 32.09701979495255
- type: nauc_ndcg_at_10_max
value: 33.50276312450072
- type: nauc_ndcg_at_10_std
value: 7.191084522028669
- type: nauc_ndcg_at_1_diff1
value: 71.43831250406643
- type: nauc_ndcg_at_1_max
value: 50.69918783298206
- type: nauc_ndcg_at_1_std
value: 4.065732274269463
- type: nauc_ndcg_at_20_diff1
value: 31.562637576493692
- type: nauc_ndcg_at_20_max
value: 33.34017245498174
- type: nauc_ndcg_at_20_std
value: 7.969235939844162
- type: nauc_ndcg_at_3_diff1
value: 35.18977207313904
- type: nauc_ndcg_at_3_max
value: 34.673975073641905
- type: nauc_ndcg_at_3_std
value: 5.325459274582688
- type: nauc_ndcg_at_5_diff1
value: 33.38000278537343
- type: nauc_ndcg_at_5_max
value: 33.97918169254012
- type: nauc_ndcg_at_5_std
value: 5.978030273125264
- type: nauc_precision_at_1000_diff1
value: 2.024497553431021
- type: nauc_precision_at_1000_max
value: 19.574506433204107
- type: nauc_precision_at_1000_std
value: 28.192550360040663
- type: nauc_precision_at_100_diff1
value: 5.188258524609947
- type: nauc_precision_at_100_max
value: 21.306662841801312
- type: nauc_precision_at_100_std
value: 20.7260402080751
- type: nauc_precision_at_10_diff1
value: 12.855802595061384
- type: nauc_precision_at_10_max
value: 23.683240963949206
- type: nauc_precision_at_10_std
value: 9.888003594834135
- type: nauc_precision_at_1_diff1
value: 71.43831250406643
- type: nauc_precision_at_1_max
value: 50.69918783298206
- type: nauc_precision_at_1_std
value: 4.065732274269463
- type: nauc_precision_at_20_diff1
value: 9.630280191534592
- type: nauc_precision_at_20_max
value: 21.779527509411878
- type: nauc_precision_at_20_std
value: 12.159865759201564
- type: nauc_precision_at_3_diff1
value: 21.486219885493664
- type: nauc_precision_at_3_max
value: 28.180666352570384
- type: nauc_precision_at_3_std
value: 5.975796262301398
- type: nauc_precision_at_5_diff1
value: 16.91219034941122
- type: nauc_precision_at_5_max
value: 25.631420440783632
- type: nauc_precision_at_5_std
value: 7.008210555798029
- type: nauc_recall_at_1000_diff1
value: 2.0244975534313734
- type: nauc_recall_at_1000_max
value: 19.574506433204146
- type: nauc_recall_at_1000_std
value: 28.192550360040826
- type: nauc_recall_at_100_diff1
value: 5.188258524609966
- type: nauc_recall_at_100_max
value: 21.306662841801195
- type: nauc_recall_at_100_std
value: 20.72604020807505
- type: nauc_recall_at_10_diff1
value: 12.85580259506137
- type: nauc_recall_at_10_max
value: 23.68324096394915
- type: nauc_recall_at_10_std
value: 9.888003594834109
- type: nauc_recall_at_1_diff1
value: 71.43831250406643
- type: nauc_recall_at_1_max
value: 50.69918783298206
- type: nauc_recall_at_1_std
value: 4.065732274269463
- type: nauc_recall_at_20_diff1
value: 9.630280191534691
- type: nauc_recall_at_20_max
value: 21.779527509411942
- type: nauc_recall_at_20_std
value: 12.159865759201631
- type: nauc_recall_at_3_diff1
value: 21.486219885493682
- type: nauc_recall_at_3_max
value: 28.18066635257036
- type: nauc_recall_at_3_std
value: 5.975796262301328
- type: nauc_recall_at_5_diff1
value: 16.912190349411212
- type: nauc_recall_at_5_max
value: 25.631420440783636
- type: nauc_recall_at_5_std
value: 7.00821055579809
- type: ndcg_at_1
value: 71.04700000000001
- type: ndcg_at_10
value: 60.289
- type: ndcg_at_100
value: 63.499
- type: ndcg_at_1000
value: 64.97500000000001
- type: ndcg_at_20
value: 61.550000000000004
- type: ndcg_at_3
value: 55.901999999999994
- type: ndcg_at_5
value: 58.25
- type: precision_at_1
value: 71.04700000000001
- type: precision_at_10
value: 12.44
- type: precision_at_100
value: 1.498
- type: precision_at_1000
value: 0.169
- type: precision_at_20
value: 6.626
- type: precision_at_3
value: 34.976
- type: precision_at_5
value: 22.839000000000002
- type: recall_at_1
value: 35.522999999999996
- type: recall_at_10
value: 62.20099999999999
- type: recall_at_100
value: 74.91600000000001
- type: recall_at_1000
value: 84.74000000000001
- type: recall_at_20
value: 66.259
- type: recall_at_3
value: 52.464999999999996
- type: recall_at_5
value: 57.096999999999994
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO-PL
type: clarin-knext/msmarco-pl
config: default
split: test
revision: 8634c07806d5cce3a6138e260e59b81760a0a640
metrics:
- type: main_score
value: 35.347
- type: map_at_1
value: 1.469
- type: map_at_10
value: 6.271
- type: map_at_100
value: 15.82
- type: map_at_1000
value: 19.756999999999998
- type: map_at_20
value: 9.132
- type: map_at_3
value: 3.075
- type: map_at_5
value: 4.191000000000001
- type: mrr_at_1
value: 51.162790697674424
- type: mrr_at_10
value: 61.57253599114064
- type: mrr_at_100
value: 61.70237312252635
- type: mrr_at_1000
value: 61.721282111697384
- type: mrr_at_20
value: 61.57253599114064
- type: mrr_at_3
value: 58.52713178294573
- type: mrr_at_5
value: 60.62015503875969
- type: nauc_map_at_1000_diff1
value: -6.26148455784313
- type: nauc_map_at_1000_max
value: 70.23579046863748
- type: nauc_map_at_1000_std
value: 77.42651490963746
- type: nauc_map_at_100_diff1
value: -1.4053806773143986
- type: nauc_map_at_100_max
value: 66.71686830976711
- type: nauc_map_at_100_std
value: 67.38852619857126
- type: nauc_map_at_10_diff1
value: 12.864067292274589
- type: nauc_map_at_10_max
value: 41.38716748783301
- type: nauc_map_at_10_std
value: 32.51689180198407
- type: nauc_map_at_1_diff1
value: -1.536748365124193
- type: nauc_map_at_1_max
value: -6.088587734229212
- type: nauc_map_at_1_std
value: -18.068863144899694
- type: nauc_map_at_20_diff1
value: 8.54318633682049
- type: nauc_map_at_20_max
value: 51.46280940802795
- type: nauc_map_at_20_std
value: 43.84995568398171
- type: nauc_map_at_3_diff1
value: 15.549945155617095
- type: nauc_map_at_3_max
value: 16.423852501631057
- type: nauc_map_at_3_std
value: 1.6301262698881138
- type: nauc_map_at_5_diff1
value: 17.143995737313784
- type: nauc_map_at_5_max
value: 25.892894000158563
- type: nauc_map_at_5_std
value: 13.91119386484427
- type: nauc_mrr_at_1000_diff1
value: 20.75486837047241
- type: nauc_mrr_at_1000_max
value: 48.77384161141147
- type: nauc_mrr_at_1000_std
value: 39.42169406046163
- type: nauc_mrr_at_100_diff1
value: 20.75098937410054
- type: nauc_mrr_at_100_max
value: 48.8055136010899
- type: nauc_mrr_at_100_std
value: 39.44826676492212
- type: nauc_mrr_at_10_diff1
value: 20.55168287172998
- type: nauc_mrr_at_10_max
value: 48.92605606155999
- type: nauc_mrr_at_10_std
value: 39.56397190201471
- type: nauc_mrr_at_1_diff1
value: 27.952914840599213
- type: nauc_mrr_at_1_max
value: 43.02872038128348
- type: nauc_mrr_at_1_std
value: 30.72899446812769
- type: nauc_mrr_at_20_diff1
value: 20.55168287172998
- type: nauc_mrr_at_20_max
value: 48.92605606155999
- type: nauc_mrr_at_20_std
value: 39.56397190201471
- type: nauc_mrr_at_3_diff1
value: 18.318386717289272
- type: nauc_mrr_at_3_max
value: 47.44180800437328
- type: nauc_mrr_at_3_std
value: 38.74641539481817
- type: nauc_mrr_at_5_diff1
value: 21.683568755627515
- type: nauc_mrr_at_5_max
value: 48.05001286700342
- type: nauc_mrr_at_5_std
value: 38.244355740197555
- type: nauc_ndcg_at_1000_diff1
value: -2.468906090162698
- type: nauc_ndcg_at_1000_max
value: 65.57871617608374
- type: nauc_ndcg_at_1000_std
value: 73.3847445547649
- type: nauc_ndcg_at_100_diff1
value: -2.586690833939304
- type: nauc_ndcg_at_100_max
value: 64.70786040635376
- type: nauc_ndcg_at_100_std
value: 70.64166116490425
- type: nauc_ndcg_at_10_diff1
value: 8.118353402716513
- type: nauc_ndcg_at_10_max
value: 49.844180236352955
- type: nauc_ndcg_at_10_std
value: 50.131893853105936
- type: nauc_ndcg_at_1_diff1
value: 29.009521103694098
- type: nauc_ndcg_at_1_max
value: 27.087717021875612
- type: nauc_ndcg_at_1_std
value: 12.6909059627947
- type: nauc_ndcg_at_20_diff1
value: 2.598718647600475
- type: nauc_ndcg_at_20_max
value: 53.91164998936515
- type: nauc_ndcg_at_20_std
value: 56.516639941588664
- type: nauc_ndcg_at_3_diff1
value: 23.836185343273044
- type: nauc_ndcg_at_3_max
value: 36.263454561458765
- type: nauc_ndcg_at_3_std
value: 28.43323538514256
- type: nauc_ndcg_at_5_diff1
value: 16.77391181835752
- type: nauc_ndcg_at_5_max
value: 43.296899586211104
- type: nauc_ndcg_at_5_std
value: 39.1824699044313
- type: nauc_precision_at_1000_diff1
value: -15.186803611287433
- type: nauc_precision_at_1000_max
value: 46.85780719962127
- type: nauc_precision_at_1000_std
value: 70.3960638613034
- type: nauc_precision_at_100_diff1
value: -15.422155872405632
- type: nauc_precision_at_100_max
value: 55.72313908696537
- type: nauc_precision_at_100_std
value: 76.82533899336994
- type: nauc_precision_at_10_diff1
value: -3.067825687414238
- type: nauc_precision_at_10_max
value: 56.91434531209
- type: nauc_precision_at_10_std
value: 66.04691744928004
- type: nauc_precision_at_1_diff1
value: 27.952914840599213
- type: nauc_precision_at_1_max
value: 43.02872038128348
- type: nauc_precision_at_1_std
value: 30.72899446812769
- type: nauc_precision_at_20_diff1
value: -5.544645405468878
- type: nauc_precision_at_20_max
value: 57.8695034639674
- type: nauc_precision_at_20_std
value: 68.93286041931582
- type: nauc_precision_at_3_diff1
value: 20.19348967585854
- type: nauc_precision_at_3_max
value: 45.597437337579386
- type: nauc_precision_at_3_std
value: 42.03959265688183
- type: nauc_precision_at_5_diff1
value: 9.23998523103908
- type: nauc_precision_at_5_max
value: 49.25574086871373
- type: nauc_precision_at_5_std
value: 52.88526969215077
- type: nauc_recall_at_1000_diff1
value: -8.862740141707581
- type: nauc_recall_at_1000_max
value: 55.712545242253256
- type: nauc_recall_at_1000_std
value: 67.30648023155955
- type: nauc_recall_at_100_diff1
value: -3.1881977191212036
- type: nauc_recall_at_100_max
value: 51.673275503044906
- type: nauc_recall_at_100_std
value: 54.48134578839626
- type: nauc_recall_at_10_diff1
value: 13.364983119491827
- type: nauc_recall_at_10_max
value: 36.25593546742792
- type: nauc_recall_at_10_std
value: 27.09713611846276
- type: nauc_recall_at_1_diff1
value: -1.536748365124193
- type: nauc_recall_at_1_max
value: -6.088587734229212
- type: nauc_recall_at_1_std
value: -18.068863144899694
- type: nauc_recall_at_20_diff1
value: 7.510007055555984
- type: nauc_recall_at_20_max
value: 38.09054135617318
- type: nauc_recall_at_20_std
value: 30.40674848457391
- type: nauc_recall_at_3_diff1
value: 14.714490489795676
- type: nauc_recall_at_3_max
value: 13.456002270727083
- type: nauc_recall_at_3_std
value: -1.5169948432854514
- type: nauc_recall_at_5_diff1
value: 15.54314759180975
- type: nauc_recall_at_5_max
value: 21.228461904073818
- type: nauc_recall_at_5_std
value: 9.414065747326763
- type: ndcg_at_1
value: 40.31
- type: ndcg_at_10
value: 35.347
- type: ndcg_at_100
value: 33.467
- type: ndcg_at_1000
value: 40.681
- type: ndcg_at_20
value: 34.001
- type: ndcg_at_3
value: 37.366
- type: ndcg_at_5
value: 36.394
- type: precision_at_1
value: 51.163000000000004
- type: precision_at_10
value: 44.186
- type: precision_at_100
value: 20.837
- type: precision_at_1000
value: 4.2299999999999995
- type: precision_at_20
value: 37.442
- type: precision_at_3
value: 50.388
- type: precision_at_5
value: 48.837
- type: recall_at_1
value: 1.469
- type: recall_at_10
value: 7.9479999999999995
- type: recall_at_100
value: 28.733999999999998
- type: recall_at_1000
value: 50.297000000000004
- type: recall_at_20
value: 12.948
- type: recall_at_3
value: 3.4259999999999997
- type: recall_at_5
value: 4.9110000000000005
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 51.19031607262945
- type: f1
value: 46.10258936993461
- type: f1_weighted
value: 50.901181253035034
- type: main_score
value: 51.19031607262945
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 60.645595158036315
- type: f1
value: 59.44482127439026
- type: f1_weighted
value: 60.168807528534984
- type: main_score
value: 60.645595158036315
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus-PL
type: clarin-knext/nfcorpus-pl
config: default
split: test
revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
metrics:
- type: main_score
value: 25.395
- type: map_at_1
value: 4.162
- type: map_at_10
value: 8.706
- type: map_at_100
value: 10.825
- type: map_at_1000
value: 11.882
- type: map_at_20
value: 9.699
- type: map_at_3
value: 6.370000000000001
- type: map_at_5
value: 7.392
- type: mrr_at_1
value: 36.22291021671827
- type: mrr_at_10
value: 43.31662489557226
- type: mrr_at_100
value: 44.034094585948445
- type: mrr_at_1000
value: 44.08497362710692
- type: mrr_at_20
value: 43.73522641310121
- type: mrr_at_3
value: 41.17647058823529
- type: mrr_at_5
value: 42.19814241486068
- type: nauc_map_at_1000_diff1
value: 20.409989638127485
- type: nauc_map_at_1000_max
value: 21.313793692439358
- type: nauc_map_at_1000_std
value: 26.453432767218242
- type: nauc_map_at_100_diff1
value: 21.1324476885251
- type: nauc_map_at_100_max
value: 20.162732858714488
- type: nauc_map_at_100_std
value: 23.299208899543444
- type: nauc_map_at_10_diff1
value: 25.356667770298184
- type: nauc_map_at_10_max
value: 14.593319794998328
- type: nauc_map_at_10_std
value: 14.307985847242206
- type: nauc_map_at_1_diff1
value: 49.48663924597492
- type: nauc_map_at_1_max
value: 6.253498999289057
- type: nauc_map_at_1_std
value: -1.0237763936348632
- type: nauc_map_at_20_diff1
value: 23.25076257190515
- type: nauc_map_at_20_max
value: 18.067585719861558
- type: nauc_map_at_20_std
value: 18.661482884581616
- type: nauc_map_at_3_diff1
value: 36.09641802781903
- type: nauc_map_at_3_max
value: 10.438404957893699
- type: nauc_map_at_3_std
value: 6.545314741707626
- type: nauc_map_at_5_diff1
value: 31.563017185316582
- type: nauc_map_at_5_max
value: 10.624857568430182
- type: nauc_map_at_5_std
value: 8.071135835564556
- type: nauc_mrr_at_1000_diff1
value: 25.914988046957298
- type: nauc_mrr_at_1000_max
value: 29.500178958357004
- type: nauc_mrr_at_1000_std
value: 30.007836859386217
- type: nauc_mrr_at_100_diff1
value: 25.909334138328415
- type: nauc_mrr_at_100_max
value: 29.52338779009421
- type: nauc_mrr_at_100_std
value: 30.04513581497261
- type: nauc_mrr_at_10_diff1
value: 25.8265466125622
- type: nauc_mrr_at_10_max
value: 29.190136722031696
- type: nauc_mrr_at_10_std
value: 29.91591104432339
- type: nauc_mrr_at_1_diff1
value: 28.59348773396338
- type: nauc_mrr_at_1_max
value: 24.8079752457763
- type: nauc_mrr_at_1_std
value: 23.91126072409742
- type: nauc_mrr_at_20_diff1
value: 25.802689022704183
- type: nauc_mrr_at_20_max
value: 29.530951070963336
- type: nauc_mrr_at_20_std
value: 30.174133821321725
- type: nauc_mrr_at_3_diff1
value: 27.20001662389779
- type: nauc_mrr_at_3_max
value: 27.937268010329507
- type: nauc_mrr_at_3_std
value: 28.192212081421474
- type: nauc_mrr_at_5_diff1
value: 25.808760122402813
- type: nauc_mrr_at_5_max
value: 28.320555828208317
- type: nauc_mrr_at_5_std
value: 28.94783269529472
- type: nauc_ndcg_at_1000_diff1
value: 18.382064145005554
- type: nauc_ndcg_at_1000_max
value: 37.682973683950046
- type: nauc_ndcg_at_1000_std
value: 41.50740480181961
- type: nauc_ndcg_at_100_diff1
value: 17.064373462803946
- type: nauc_ndcg_at_100_max
value: 31.68841170112502
- type: nauc_ndcg_at_100_std
value: 36.129889624470515
- type: nauc_ndcg_at_10_diff1
value: 13.4115588783113
- type: nauc_ndcg_at_10_max
value: 25.02525617768273
- type: nauc_ndcg_at_10_std
value: 34.6721573881345
- type: nauc_ndcg_at_1_diff1
value: 29.894042590382835
- type: nauc_ndcg_at_1_max
value: 20.74535829394909
- type: nauc_ndcg_at_1_std
value: 22.120360699896317
- type: nauc_ndcg_at_20_diff1
value: 15.634409370114245
- type: nauc_ndcg_at_20_max
value: 26.50893784943651
- type: nauc_ndcg_at_20_std
value: 35.038198867324475
- type: nauc_ndcg_at_3_diff1
value: 18.96300171211221
- type: nauc_ndcg_at_3_max
value: 23.33029230184083
- type: nauc_ndcg_at_3_std
value: 29.920377781867707
- type: nauc_ndcg_at_5_diff1
value: 15.79868149715457
- type: nauc_ndcg_at_5_max
value: 22.579264404978712
- type: nauc_ndcg_at_5_std
value: 30.211799699921738
- type: nauc_precision_at_1000_diff1
value: -6.199888311259285
- type: nauc_precision_at_1000_max
value: 9.309794448376303
- type: nauc_precision_at_1000_std
value: 31.78959217396635
- type: nauc_precision_at_100_diff1
value: -6.136903664719646
- type: nauc_precision_at_100_max
value: 22.013385001054626
- type: nauc_precision_at_100_std
value: 48.14689780650813
- type: nauc_precision_at_10_diff1
value: -4.853429266457739
- type: nauc_precision_at_10_max
value: 27.509406452527795
- type: nauc_precision_at_10_std
value: 46.374536894242596
- type: nauc_precision_at_1_diff1
value: 28.59348773396338
- type: nauc_precision_at_1_max
value: 24.8079752457763
- type: nauc_precision_at_1_std
value: 23.91126072409742
- type: nauc_precision_at_20_diff1
value: -3.1905789371666917
- type: nauc_precision_at_20_max
value: 27.176658491295246
- type: nauc_precision_at_20_std
value: 48.18584487920634
- type: nauc_precision_at_3_diff1
value: 8.3848103781276
- type: nauc_precision_at_3_max
value: 27.892039299948824
- type: nauc_precision_at_3_std
value: 36.43253708925813
- type: nauc_precision_at_5_diff1
value: 2.196790718752423
- type: nauc_precision_at_5_max
value: 25.498636373099792
- type: nauc_precision_at_5_std
value: 37.223277286205686
- type: nauc_recall_at_1000_diff1
value: 9.6168415443447
- type: nauc_recall_at_1000_max
value: 30.81068257150451
- type: nauc_recall_at_1000_std
value: 31.23012946206547
- type: nauc_recall_at_100_diff1
value: 8.288803190895507
- type: nauc_recall_at_100_max
value: 28.5985358200399
- type: nauc_recall_at_100_std
value: 29.264243501743554
- type: nauc_recall_at_10_diff1
value: 15.538928611457752
- type: nauc_recall_at_10_max
value: 16.507431812158853
- type: nauc_recall_at_10_std
value: 14.357359644755332
- type: nauc_recall_at_1_diff1
value: 49.48663924597492
- type: nauc_recall_at_1_max
value: 6.253498999289057
- type: nauc_recall_at_1_std
value: -1.0237763936348632
- type: nauc_recall_at_20_diff1
value: 12.33220171683594
- type: nauc_recall_at_20_max
value: 21.401205102336334
- type: nauc_recall_at_20_std
value: 19.894796654272344
- type: nauc_recall_at_3_diff1
value: 32.92453106017296
- type: nauc_recall_at_3_max
value: 12.154084693905993
- type: nauc_recall_at_3_std
value: 7.874826452646235
- type: nauc_recall_at_5_diff1
value: 24.83900378186163
- type: nauc_recall_at_5_max
value: 10.618063467740885
- type: nauc_recall_at_5_std
value: 7.700886647757196
- type: ndcg_at_1
value: 34.83
- type: ndcg_at_10
value: 25.395
- type: ndcg_at_100
value: 23.294
- type: ndcg_at_1000
value: 31.655
- type: ndcg_at_20
value: 23.961
- type: ndcg_at_3
value: 29.720000000000002
- type: ndcg_at_5
value: 27.687
- type: precision_at_1
value: 36.223
- type: precision_at_10
value: 18.884999999999998
- type: precision_at_100
value: 5.944
- type: precision_at_1000
value: 1.757
- type: precision_at_20
value: 14.427000000000001
- type: precision_at_3
value: 27.761000000000003
- type: precision_at_5
value: 23.839
- type: recall_at_1
value: 4.162
- type: recall_at_10
value: 12.139999999999999
- type: recall_at_100
value: 24.006
- type: recall_at_1000
value: 53.617000000000004
- type: recall_at_20
value: 15.412
- type: recall_at_3
value: 7.097
- type: recall_at_5
value: 8.933
- task:
type: Retrieval
dataset:
name: MTEB NQ-PL
type: clarin-knext/nq-pl
config: default
split: test
revision: f171245712cf85dd4700b06bef18001578d0ca8d
metrics:
- type: main_score
value: 22.603
- type: map_at_1
value: 9.948
- type: map_at_10
value: 17.845
- type: map_at_100
value: 18.959
- type: map_at_1000
value: 19.048000000000002
- type: map_at_20
value: 18.455
- type: map_at_3
value: 15.132000000000001
- type: map_at_5
value: 16.601
- type: mrr_at_1
value: 11.674391657010428
- type: mrr_at_10
value: 19.470320862991787
- type: mrr_at_100
value: 20.446877601173824
- type: mrr_at_1000
value: 20.522814299465214
- type: mrr_at_20
value: 20.008110000836435
- type: mrr_at_3
value: 16.840478949401305
- type: mrr_at_5
value: 18.30484743144072
- type: nauc_map_at_1000_diff1
value: 18.26172777698686
- type: nauc_map_at_1000_max
value: 31.552551452692246
- type: nauc_map_at_1000_std
value: 22.212928434695396
- type: nauc_map_at_100_diff1
value: 18.24688938509314
- type: nauc_map_at_100_max
value: 31.53817410525147
- type: nauc_map_at_100_std
value: 22.17330126384622
- type: nauc_map_at_10_diff1
value: 18.447992786558256
- type: nauc_map_at_10_max
value: 30.60350408504903
- type: nauc_map_at_10_std
value: 20.755467147228096
- type: nauc_map_at_1_diff1
value: 22.418576585549367
- type: nauc_map_at_1_max
value: 25.037598941208795
- type: nauc_map_at_1_std
value: 14.90958753798771
- type: nauc_map_at_20_diff1
value: 18.340722439154305
- type: nauc_map_at_20_max
value: 31.196838529305232
- type: nauc_map_at_20_std
value: 21.552426519419058
- type: nauc_map_at_3_diff1
value: 17.940689608351526
- type: nauc_map_at_3_max
value: 28.32670652769566
- type: nauc_map_at_3_std
value: 18.933678775214837
- type: nauc_map_at_5_diff1
value: 18.391656882948464
- type: nauc_map_at_5_max
value: 29.442343951102085
- type: nauc_map_at_5_std
value: 19.52289104922354
- type: nauc_mrr_at_1000_diff1
value: 17.527174397586858
- type: nauc_mrr_at_1000_max
value: 31.602488727319578
- type: nauc_mrr_at_1000_std
value: 22.93577716482068
- type: nauc_mrr_at_100_diff1
value: 17.522315985248973
- type: nauc_mrr_at_100_max
value: 31.59648863674416
- type: nauc_mrr_at_100_std
value: 22.91993463994322
- type: nauc_mrr_at_10_diff1
value: 17.576986591026188
- type: nauc_mrr_at_10_max
value: 31.004768241816667
- type: nauc_mrr_at_10_std
value: 21.965789582568895
- type: nauc_mrr_at_1_diff1
value: 21.13678758908292
- type: nauc_mrr_at_1_max
value: 26.011414032723156
- type: nauc_mrr_at_1_std
value: 16.254994138259015
- type: nauc_mrr_at_20_diff1
value: 17.53035779699737
- type: nauc_mrr_at_20_max
value: 31.388046420817066
- type: nauc_mrr_at_20_std
value: 22.542621346666966
- type: nauc_mrr_at_3_diff1
value: 17.10815729544247
- type: nauc_mrr_at_3_max
value: 29.09795467526024
- type: nauc_mrr_at_3_std
value: 20.212196884709975
- type: nauc_mrr_at_5_diff1
value: 17.508485448153106
- type: nauc_mrr_at_5_max
value: 30.051730901603225
- type: nauc_mrr_at_5_std
value: 20.812623893192008
- type: nauc_ndcg_at_1000_diff1
value: 17.42831835054262
- type: nauc_ndcg_at_1000_max
value: 36.852823471922896
- type: nauc_ndcg_at_1000_std
value: 29.5092221137645
- type: nauc_ndcg_at_100_diff1
value: 17.18145786352413
- type: nauc_ndcg_at_100_max
value: 36.68127658612261
- type: nauc_ndcg_at_100_std
value: 29.070246776560733
- type: nauc_ndcg_at_10_diff1
value: 17.650254435216336
- type: nauc_ndcg_at_10_max
value: 32.9711852272957
- type: nauc_ndcg_at_10_std
value: 23.33796255600112
- type: nauc_ndcg_at_1_diff1
value: 21.13678758908292
- type: nauc_ndcg_at_1_max
value: 26.011414032723156
- type: nauc_ndcg_at_1_std
value: 16.254994138259015
- type: nauc_ndcg_at_20_diff1
value: 17.41646581029652
- type: nauc_ndcg_at_20_max
value: 34.56260516594143
- type: nauc_ndcg_at_20_std
value: 25.560816497093715
- type: nauc_ndcg_at_3_diff1
value: 16.72984648539772
- type: nauc_ndcg_at_3_max
value: 29.165578029472623
- type: nauc_ndcg_at_3_std
value: 20.016518044505823
- type: nauc_ndcg_at_5_diff1
value: 17.531443204854625
- type: nauc_ndcg_at_5_max
value: 30.813625874766686
- type: nauc_ndcg_at_5_std
value: 20.89999189522855
- type: nauc_precision_at_1000_diff1
value: 8.023671491885642
- type: nauc_precision_at_1000_max
value: 38.57244285086915
- type: nauc_precision_at_1000_std
value: 42.75950436813853
- type: nauc_precision_at_100_diff1
value: 10.533355130718231
- type: nauc_precision_at_100_max
value: 43.7116482300273
- type: nauc_precision_at_100_std
value: 44.060964750358266
- type: nauc_precision_at_10_diff1
value: 14.972903054044348
- type: nauc_precision_at_10_max
value: 38.05240735938072
- type: nauc_precision_at_10_std
value: 29.648310668280097
- type: nauc_precision_at_1_diff1
value: 21.13678758908292
- type: nauc_precision_at_1_max
value: 26.011414032723156
- type: nauc_precision_at_1_std
value: 16.254994138259015
- type: nauc_precision_at_20_diff1
value: 13.554472011508237
- type: nauc_precision_at_20_max
value: 41.02208151220986
- type: nauc_precision_at_20_std
value: 34.85824745823735
- type: nauc_precision_at_3_diff1
value: 14.116040804511186
- type: nauc_precision_at_3_max
value: 31.682445198182435
- type: nauc_precision_at_3_std
value: 23.62076223063366
- type: nauc_precision_at_5_diff1
value: 15.243710801321306
- type: nauc_precision_at_5_max
value: 34.19548751195127
- type: nauc_precision_at_5_std
value: 24.721994359051823
- type: nauc_recall_at_1000_diff1
value: 16.364726224776085
- type: nauc_recall_at_1000_max
value: 61.50384743818951
- type: nauc_recall_at_1000_std
value: 64.05244001475157
- type: nauc_recall_at_100_diff1
value: 14.842800608772844
- type: nauc_recall_at_100_max
value: 51.09642253042941
- type: nauc_recall_at_100_std
value: 48.974514602283755
- type: nauc_recall_at_10_diff1
value: 16.295810264449052
- type: nauc_recall_at_10_max
value: 36.62230075893423
- type: nauc_recall_at_10_std
value: 27.091531221220855
- type: nauc_recall_at_1_diff1
value: 22.418576585549367
- type: nauc_recall_at_1_max
value: 25.037598941208795
- type: nauc_recall_at_1_std
value: 14.90958753798771
- type: nauc_recall_at_20_diff1
value: 15.663708298579454
- type: nauc_recall_at_20_max
value: 40.669425710354055
- type: nauc_recall_at_20_std
value: 32.92105064475319
- type: nauc_recall_at_3_diff1
value: 14.248164870616547
- type: nauc_recall_at_3_max
value: 29.788818279139523
- type: nauc_recall_at_3_std
value: 20.94235306703937
- type: nauc_recall_at_5_diff1
value: 16.12430269320114
- type: nauc_recall_at_5_max
value: 32.56849460357168
- type: nauc_recall_at_5_std
value: 22.28933193164056
- type: ndcg_at_1
value: 11.674
- type: ndcg_at_10
value: 22.603
- type: ndcg_at_100
value: 28.094
- type: ndcg_at_1000
value: 30.489
- type: ndcg_at_20
value: 24.697
- type: ndcg_at_3
value: 17.104
- type: ndcg_at_5
value: 19.708000000000002
- type: precision_at_1
value: 11.674
- type: precision_at_10
value: 4.287
- type: precision_at_100
value: 0.743
- type: precision_at_1000
value: 0.097
- type: precision_at_20
value: 2.64
- type: precision_at_3
value: 8.324
- type: precision_at_5
value: 6.483
- type: recall_at_1
value: 9.948
- type: recall_at_10
value: 35.772
- type: recall_at_100
value: 60.989000000000004
- type: recall_at_1000
value: 79.321
- type: recall_at_20
value: 43.608000000000004
- type: recall_at_3
value: 21.125
- type: recall_at_5
value: 27.211000000000002
- task:
type: Classification
dataset:
name: MTEB PAC
type: laugustyniak/abusive-clauses-pl
config: default
split: test
revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543
metrics:
- type: accuracy
value: 65.58934260063714
- type: ap
value: 74.96037603906956
- type: ap_weighted
value: 74.96037603906956
- type: f1
value: 62.46883531701779
- type: f1_weighted
value: 65.87422072252049
- type: main_score
value: 65.58934260063714
- task:
type: PairClassification
dataset:
name: MTEB PSC
type: PL-MTEB/psc-pairclassification
config: default
split: test
revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669
metrics:
- type: cosine_accuracy
value: 97.49536178107606
- type: cosine_accuracy_threshold
value: 64.87605571746826
- type: cosine_ap
value: 99.41573082613479
- type: cosine_f1
value: 95.98811292719166
- type: cosine_f1_threshold
value: 62.816452980041504
- type: cosine_precision
value: 93.6231884057971
- type: cosine_recall
value: 98.47560975609755
- type: dot_accuracy
value: 97.49536178107606
- type: dot_accuracy_threshold
value: 64.87605571746826
- type: dot_ap
value: 99.41573082613479
- type: dot_f1
value: 95.98811292719166
- type: dot_f1_threshold
value: 62.81645894050598
- type: dot_precision
value: 93.6231884057971
- type: dot_recall
value: 98.47560975609755
- type: euclidean_accuracy
value: 97.49536178107606
- type: euclidean_accuracy_threshold
value: 83.81399512290955
- type: euclidean_ap
value: 99.41573082613479
- type: euclidean_f1
value: 95.98811292719166
- type: euclidean_f1_threshold
value: 86.23623847961426
- type: euclidean_precision
value: 93.6231884057971
- type: euclidean_recall
value: 98.47560975609755
- type: main_score
value: 99.4366325576277
- type: manhattan_accuracy
value: 97.49536178107606
- type: manhattan_accuracy_threshold
value: 1991.1922454833984
- type: manhattan_ap
value: 99.4366325576277
- type: manhattan_f1
value: 95.95202398800599
- type: manhattan_f1_threshold
value: 2005.5305480957031
- type: manhattan_precision
value: 94.3952802359882
- type: manhattan_recall
value: 97.5609756097561
- type: max_ap
value: 99.4366325576277
- type: max_f1
value: 95.98811292719166
- type: max_precision
value: 94.3952802359882
- type: max_recall
value: 98.47560975609755
- type: similarity_accuracy
value: 97.49536178107606
- type: similarity_accuracy_threshold
value: 64.87605571746826
- type: similarity_ap
value: 99.41573082613479
- type: similarity_f1
value: 95.98811292719166
- type: similarity_f1_threshold
value: 62.816452980041504
- type: similarity_precision
value: 93.6231884057971
- type: similarity_recall
value: 98.47560975609755
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-IN
type: PL-MTEB/polemo2_in
config: default
split: test
revision: d90724373c70959f17d2331ad51fb60c71176b03
metrics:
- type: accuracy
value: 73.49030470914128
- type: f1
value: 64.44026912860524
- type: f1_weighted
value: 70.76142496919624
- type: main_score
value: 73.49030470914128
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-OUT
type: PL-MTEB/polemo2_out
config: default
split: test
revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4
metrics:
- type: accuracy
value: 56.1336032388664
- type: f1
value: 40.10783686862694
- type: f1_weighted
value: 52.57241968032103
- type: main_score
value: 56.1336032388664
- task:
type: PairClassification
dataset:
name: MTEB PPC
type: PL-MTEB/ppc-pairclassification
config: default
split: test
revision: 2c7d2df57801a591f6b1e3aaf042e7a04ec7d9f2
metrics:
- type: cosine_accuracy
value: 75.7
- type: cosine_accuracy_threshold
value: 82.45353102684021
- type: cosine_ap
value: 87.18435695095992
- type: cosine_f1
value: 80.79877112135176
- type: cosine_f1_threshold
value: 80.05339503288269
- type: cosine_precision
value: 75.35816618911176
- type: cosine_recall
value: 87.08609271523179
- type: dot_accuracy
value: 75.7
- type: dot_accuracy_threshold
value: 82.45352506637573
- type: dot_ap
value: 87.18435695095992
- type: dot_f1
value: 80.79877112135176
- type: dot_f1_threshold
value: 80.05340099334717
- type: dot_precision
value: 75.35816618911176
- type: dot_recall
value: 87.08609271523179
- type: euclidean_accuracy
value: 75.7
- type: euclidean_accuracy_threshold
value: 59.23929214477539
- type: euclidean_ap
value: 87.18435695095992
- type: euclidean_f1
value: 80.79877112135176
- type: euclidean_f1_threshold
value: 63.16102743148804
- type: euclidean_precision
value: 75.35816618911176
- type: euclidean_recall
value: 87.08609271523179
- type: main_score
value: 87.18435695095992
- type: manhattan_accuracy
value: 75.2
- type: manhattan_accuracy_threshold
value: 1350.9596824645996
- type: manhattan_ap
value: 86.98837530998256
- type: manhattan_f1
value: 80.67226890756302
- type: manhattan_f1_threshold
value: 1481.105613708496
- type: manhattan_precision
value: 74.8936170212766
- type: manhattan_recall
value: 87.41721854304636
- type: max_ap
value: 87.18435695095992
- type: max_f1
value: 80.79877112135176
- type: max_precision
value: 75.35816618911176
- type: max_recall
value: 87.41721854304636
- type: similarity_accuracy
value: 75.7
- type: similarity_accuracy_threshold
value: 82.45353102684021
- type: similarity_ap
value: 87.18435695095992
- type: similarity_f1
value: 80.79877112135176
- type: similarity_f1_threshold
value: 80.05339503288269
- type: similarity_precision
value: 75.35816618911176
- type: similarity_recall
value: 87.08609271523179
- task:
type: Retrieval
dataset:
name: MTEB Quora-PL
type: clarin-knext/quora-pl
config: default
split: test
revision: 0be27e93455051e531182b85e85e425aba12e9d4
metrics:
- type: main_score
value: 76.998
- type: map_at_1
value: 59.391000000000005
- type: map_at_10
value: 72.16900000000001
- type: map_at_100
value: 73.032
- type: map_at_1000
value: 73.06899999999999
- type: map_at_20
value: 72.714
- type: map_at_3
value: 69.15299999999999
- type: map_at_5
value: 70.987
- type: mrr_at_1
value: 68.42
- type: mrr_at_10
value: 76.16671428571387
- type: mrr_at_100
value: 76.47829123882859
- type: mrr_at_1000
value: 76.48677359771172
- type: mrr_at_20
value: 76.37813270222156
- type: mrr_at_3
value: 74.58166666666627
- type: mrr_at_5
value: 75.55716666666603
- type: nauc_map_at_1000_diff1
value: 69.61188513700026
- type: nauc_map_at_1000_max
value: 35.048941479907754
- type: nauc_map_at_1000_std
value: -20.0870344911168
- type: nauc_map_at_100_diff1
value: 69.61947691592164
- type: nauc_map_at_100_max
value: 35.033733604763725
- type: nauc_map_at_100_std
value: -20.139480957962718
- type: nauc_map_at_10_diff1
value: 69.66441777665835
- type: nauc_map_at_10_max
value: 34.37685681869468
- type: nauc_map_at_10_std
value: -21.444655375177106
- type: nauc_map_at_1_diff1
value: 73.03533775469124
- type: nauc_map_at_1_max
value: 28.361321068177816
- type: nauc_map_at_1_std
value: -23.44707326868221
- type: nauc_map_at_20_diff1
value: 69.62828183867681
- type: nauc_map_at_20_max
value: 34.81438496306748
- type: nauc_map_at_20_std
value: -20.70392332573099
- type: nauc_map_at_3_diff1
value: 69.68889489109979
- type: nauc_map_at_3_max
value: 32.46102571539603
- type: nauc_map_at_3_std
value: -23.38999293723788
- type: nauc_map_at_5_diff1
value: 69.78892096736786
- type: nauc_map_at_5_max
value: 33.538196855782914
- type: nauc_map_at_5_std
value: -22.484473756616644
- type: nauc_mrr_at_1000_diff1
value: 70.86605266935713
- type: nauc_mrr_at_1000_max
value: 39.23012904807791
- type: nauc_mrr_at_1000_std
value: -15.7945348852456
- type: nauc_mrr_at_100_diff1
value: 70.86280901414926
- type: nauc_mrr_at_100_max
value: 39.23362334217244
- type: nauc_mrr_at_100_std
value: -15.782514659328978
- type: nauc_mrr_at_10_diff1
value: 70.75755399509156
- type: nauc_mrr_at_10_max
value: 39.272495418437686
- type: nauc_mrr_at_10_std
value: -15.781106645439996
- type: nauc_mrr_at_1_diff1
value: 72.85504028372341
- type: nauc_mrr_at_1_max
value: 37.99685495245659
- type: nauc_mrr_at_1_std
value: -17.459649186396685
- type: nauc_mrr_at_20_diff1
value: 70.82261857160199
- type: nauc_mrr_at_20_max
value: 39.25660219447417
- type: nauc_mrr_at_20_std
value: -15.807365557200281
- type: nauc_mrr_at_3_diff1
value: 70.79376444174159
- type: nauc_mrr_at_3_max
value: 38.97623690163996
- type: nauc_mrr_at_3_std
value: -16.393842407269872
- type: nauc_mrr_at_5_diff1
value: 70.77811077343011
- type: nauc_mrr_at_5_max
value: 39.066661862996334
- type: nauc_mrr_at_5_std
value: -16.06138623512058
- type: nauc_ndcg_at_1000_diff1
value: 69.38432460176631
- type: nauc_ndcg_at_1000_max
value: 37.41326409294141
- type: nauc_ndcg_at_1000_std
value: -16.567106335363547
- type: nauc_ndcg_at_100_diff1
value: 69.33661321994221
- type: nauc_ndcg_at_100_max
value: 37.40443590169158
- type: nauc_ndcg_at_100_std
value: -16.35403457343329
- type: nauc_ndcg_at_10_diff1
value: 68.94489912960861
- type: nauc_ndcg_at_10_max
value: 36.2506071214321
- type: nauc_ndcg_at_10_std
value: -18.82069883161433
- type: nauc_ndcg_at_1_diff1
value: 72.72133417454367
- type: nauc_ndcg_at_1_max
value: 38.331224491505104
- type: nauc_ndcg_at_1_std
value: -17.16079633961818
- type: nauc_ndcg_at_20_diff1
value: 69.15086421535133
- type: nauc_ndcg_at_20_max
value: 36.89767798755098
- type: nauc_ndcg_at_20_std
value: -17.86958697698032
- type: nauc_ndcg_at_3_diff1
value: 68.70396833880102
- type: nauc_ndcg_at_3_max
value: 35.03484635918643
- type: nauc_ndcg_at_3_std
value: -20.273396524173844
- type: nauc_ndcg_at_5_diff1
value: 68.93056915501342
- type: nauc_ndcg_at_5_max
value: 35.38497733312458
- type: nauc_ndcg_at_5_std
value: -19.840947709262004
- type: nauc_precision_at_1000_diff1
value: -34.14718697098016
- type: nauc_precision_at_1000_max
value: 3.6293313781394763
- type: nauc_precision_at_1000_std
value: 35.18150366797986
- type: nauc_precision_at_100_diff1
value: -30.4027079095321
- type: nauc_precision_at_100_max
value: 6.809907739167871
- type: nauc_precision_at_100_std
value: 34.540918468349126
- type: nauc_precision_at_10_diff1
value: -13.640657282621275
- type: nauc_precision_at_10_max
value: 15.027602319886368
- type: nauc_precision_at_10_std
value: 19.99864404314453
- type: nauc_precision_at_1_diff1
value: 72.72133417454367
- type: nauc_precision_at_1_max
value: 38.331224491505104
- type: nauc_precision_at_1_std
value: -17.16079633961818
- type: nauc_precision_at_20_diff1
value: -22.04518115519088
- type: nauc_precision_at_20_max
value: 11.694911426947577
- type: nauc_precision_at_20_std
value: 27.0383781477066
- type: nauc_precision_at_3_diff1
value: 13.551932989888382
- type: nauc_precision_at_3_max
value: 23.434121945030604
- type: nauc_precision_at_3_std
value: 2.691762192244095
- type: nauc_precision_at_5_diff1
value: -0.530904057361583
- type: nauc_precision_at_5_max
value: 19.274513974074186
- type: nauc_precision_at_5_std
value: 11.166696219691481
- type: nauc_recall_at_1000_diff1
value: 57.69646260925434
- type: nauc_recall_at_1000_max
value: 45.515450558710825
- type: nauc_recall_at_1000_std
value: 33.3128999778333
- type: nauc_recall_at_100_diff1
value: 59.44993252237884
- type: nauc_recall_at_100_max
value: 41.168864107589144
- type: nauc_recall_at_100_std
value: 13.174320315241195
- type: nauc_recall_at_10_diff1
value: 61.74029254342778
- type: nauc_recall_at_10_max
value: 33.83885249812004
- type: nauc_recall_at_10_std
value: -17.974403452647497
- type: nauc_recall_at_1_diff1
value: 73.03533775469124
- type: nauc_recall_at_1_max
value: 28.361321068177816
- type: nauc_recall_at_1_std
value: -23.44707326868221
- type: nauc_recall_at_20_diff1
value: 60.43007696085838
- type: nauc_recall_at_20_max
value: 35.90250935704539
- type: nauc_recall_at_20_std
value: -12.539813163606686
- type: nauc_recall_at_3_diff1
value: 64.87577464206726
- type: nauc_recall_at_3_max
value: 30.325674554926348
- type: nauc_recall_at_3_std
value: -24.050361392480443
- type: nauc_recall_at_5_diff1
value: 63.71726415589154
- type: nauc_recall_at_5_max
value: 31.365393247615298
- type: nauc_recall_at_5_std
value: -22.097544116643387
- type: ndcg_at_1
value: 68.47999999999999
- type: ndcg_at_10
value: 76.998
- type: ndcg_at_100
value: 79.45400000000001
- type: ndcg_at_1000
value: 79.935
- type: ndcg_at_20
value: 78.22
- type: ndcg_at_3
value: 73.127
- type: ndcg_at_5
value: 75.13499999999999
- type: precision_at_1
value: 68.47999999999999
- type: precision_at_10
value: 11.821
- type: precision_at_100
value: 1.438
- type: precision_at_1000
value: 0.154
- type: precision_at_20
value: 6.4350000000000005
- type: precision_at_3
value: 31.96
- type: precision_at_5
value: 21.279999999999998
- type: recall_at_1
value: 59.391000000000005
- type: recall_at_10
value: 86.722
- type: recall_at_100
value: 96.143
- type: recall_at_1000
value: 99.092
- type: recall_at_20
value: 90.88300000000001
- type: recall_at_3
value: 75.81400000000001
- type: recall_at_5
value: 81.19800000000001
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS-PL
type: clarin-knext/scidocs-pl
config: default
split: test
revision: 45452b03f05560207ef19149545f168e596c9337
metrics:
- type: main_score
value: 13.038
- type: map_at_1
value: 2.785
- type: map_at_10
value: 7.24
- type: map_at_100
value: 8.751000000000001
- type: map_at_1000
value: 9.001000000000001
- type: map_at_20
value: 7.997999999999999
- type: map_at_3
value: 5.139
- type: map_at_5
value: 6.142
- type: mrr_at_1
value: 13.700000000000001
- type: mrr_at_10
value: 22.60158730158729
- type: mrr_at_100
value: 23.72791508184251
- type: mrr_at_1000
value: 23.810527360772817
- type: mrr_at_20
value: 23.241815149075197
- type: mrr_at_3
value: 19.60000000000002
- type: mrr_at_5
value: 21.224999999999998
- type: nauc_map_at_1000_diff1
value: 14.792227224924506
- type: nauc_map_at_1000_max
value: 32.301641383960124
- type: nauc_map_at_1000_std
value: 23.083104358905977
- type: nauc_map_at_100_diff1
value: 14.803863271383166
- type: nauc_map_at_100_max
value: 32.24680252823908
- type: nauc_map_at_100_std
value: 22.748086109451773
- type: nauc_map_at_10_diff1
value: 15.795155883364743
- type: nauc_map_at_10_max
value: 30.944058206585463
- type: nauc_map_at_10_std
value: 18.708078547726842
- type: nauc_map_at_1_diff1
value: 21.132398215573865
- type: nauc_map_at_1_max
value: 29.19592327750959
- type: nauc_map_at_1_std
value: 13.996493176089015
- type: nauc_map_at_20_diff1
value: 15.077937784358452
- type: nauc_map_at_20_max
value: 31.657769880494403
- type: nauc_map_at_20_std
value: 20.60155411885354
- type: nauc_map_at_3_diff1
value: 18.674857148125
- type: nauc_map_at_3_max
value: 30.693417190589383
- type: nauc_map_at_3_std
value: 16.47059364780481
- type: nauc_map_at_5_diff1
value: 16.575681500234854
- type: nauc_map_at_5_max
value: 30.082817752366125
- type: nauc_map_at_5_std
value: 16.662663606573776
- type: nauc_mrr_at_1000_diff1
value: 16.522679131105793
- type: nauc_mrr_at_1000_max
value: 27.23085993594398
- type: nauc_mrr_at_1000_std
value: 17.51392936535595
- type: nauc_mrr_at_100_diff1
value: 16.530117282112702
- type: nauc_mrr_at_100_max
value: 27.21672480216746
- type: nauc_mrr_at_100_std
value: 17.537026259653445
- type: nauc_mrr_at_10_diff1
value: 16.487235038131733
- type: nauc_mrr_at_10_max
value: 27.225450717843323
- type: nauc_mrr_at_10_std
value: 17.148693690389308
- type: nauc_mrr_at_1_diff1
value: 21.500757577390356
- type: nauc_mrr_at_1_max
value: 29.155414361425848
- type: nauc_mrr_at_1_std
value: 14.066153856101241
- type: nauc_mrr_at_20_diff1
value: 16.35982399761223
- type: nauc_mrr_at_20_max
value: 27.222179685954384
- type: nauc_mrr_at_20_std
value: 17.446818156563065
- type: nauc_mrr_at_3_diff1
value: 17.458713266374655
- type: nauc_mrr_at_3_max
value: 26.24442929157636
- type: nauc_mrr_at_3_std
value: 15.474103091301044
- type: nauc_mrr_at_5_diff1
value: 16.5126045582872
- type: nauc_mrr_at_5_max
value: 26.997210926210446
- type: nauc_mrr_at_5_std
value: 16.704873410048148
- type: nauc_ndcg_at_1000_diff1
value: 12.907773784346746
- type: nauc_ndcg_at_1000_max
value: 33.34766220820817
- type: nauc_ndcg_at_1000_std
value: 30.482401904164757
- type: nauc_ndcg_at_100_diff1
value: 13.232279099200772
- type: nauc_ndcg_at_100_max
value: 32.36971943877284
- type: nauc_ndcg_at_100_std
value: 28.885308987810603
- type: nauc_ndcg_at_10_diff1
value: 14.263079852214009
- type: nauc_ndcg_at_10_max
value: 29.756761364913597
- type: nauc_ndcg_at_10_std
value: 20.083627271228888
- type: nauc_ndcg_at_1_diff1
value: 21.500757577390356
- type: nauc_ndcg_at_1_max
value: 29.155414361425848
- type: nauc_ndcg_at_1_std
value: 14.066153856101241
- type: nauc_ndcg_at_20_diff1
value: 12.922160932922422
- type: nauc_ndcg_at_20_max
value: 30.932912450602785
- type: nauc_ndcg_at_20_std
value: 23.182250500209516
- type: nauc_ndcg_at_3_diff1
value: 17.21918294663663
- type: nauc_ndcg_at_3_max
value: 28.662429889428637
- type: nauc_ndcg_at_3_std
value: 16.8401928942087
- type: nauc_ndcg_at_5_diff1
value: 15.024056520905358
- type: nauc_ndcg_at_5_max
value: 28.783882370742838
- type: nauc_ndcg_at_5_std
value: 17.956997691110093
- type: nauc_precision_at_1000_diff1
value: 4.853325331972668
- type: nauc_precision_at_1000_max
value: 30.15694152384708
- type: nauc_precision_at_1000_std
value: 38.55692767533825
- type: nauc_precision_at_100_diff1
value: 8.113117956423707
- type: nauc_precision_at_100_max
value: 30.579313799148494
- type: nauc_precision_at_100_std
value: 37.078327072376624
- type: nauc_precision_at_10_diff1
value: 10.323074186311555
- type: nauc_precision_at_10_max
value: 29.267955393045213
- type: nauc_precision_at_10_std
value: 22.493435993948
- type: nauc_precision_at_1_diff1
value: 21.500757577390356
- type: nauc_precision_at_1_max
value: 29.155414361425848
- type: nauc_precision_at_1_std
value: 14.066153856101241
- type: nauc_precision_at_20_diff1
value: 7.296113998064506
- type: nauc_precision_at_20_max
value: 29.990871534639396
- type: nauc_precision_at_20_std
value: 27.109509055275005
- type: nauc_precision_at_3_diff1
value: 15.390787042974221
- type: nauc_precision_at_3_max
value: 28.84488812625923
- type: nauc_precision_at_3_std
value: 18.32236552735027
- type: nauc_precision_at_5_diff1
value: 11.503698423183337
- type: nauc_precision_at_5_max
value: 28.057493966763282
- type: nauc_precision_at_5_std
value: 19.611698266221076
- type: nauc_recall_at_1000_diff1
value: 5.664077565322699
- type: nauc_recall_at_1000_max
value: 30.448757418101447
- type: nauc_recall_at_1000_std
value: 39.27731310660493
- type: nauc_recall_at_100_diff1
value: 8.425909931770086
- type: nauc_recall_at_100_max
value: 30.68171063121248
- type: nauc_recall_at_100_std
value: 37.184544204955074
- type: nauc_recall_at_10_diff1
value: 10.47166367371188
- type: nauc_recall_at_10_max
value: 29.14586678828798
- type: nauc_recall_at_10_std
value: 22.111878920453464
- type: nauc_recall_at_1_diff1
value: 21.132398215573865
- type: nauc_recall_at_1_max
value: 29.19592327750959
- type: nauc_recall_at_1_std
value: 13.996493176089015
- type: nauc_recall_at_20_diff1
value: 7.4486268209490465
- type: nauc_recall_at_20_max
value: 29.759399489054555
- type: nauc_recall_at_20_std
value: 26.731517559908852
- type: nauc_recall_at_3_diff1
value: 15.400192355820627
- type: nauc_recall_at_3_max
value: 28.572542534889312
- type: nauc_recall_at_3_std
value: 17.816298041992443
- type: nauc_recall_at_5_diff1
value: 11.600069164989952
- type: nauc_recall_at_5_max
value: 27.974947140469958
- type: nauc_recall_at_5_std
value: 19.139625890938866
- type: ndcg_at_1
value: 13.700000000000001
- type: ndcg_at_10
value: 13.038
- type: ndcg_at_100
value: 19.628
- type: ndcg_at_1000
value: 24.892
- type: ndcg_at_20
value: 15.296999999999999
- type: ndcg_at_3
value: 11.828
- type: ndcg_at_5
value: 10.532
- type: precision_at_1
value: 13.700000000000001
- type: precision_at_10
value: 6.99
- type: precision_at_100
value: 1.659
- type: precision_at_1000
value: 0.294
- type: precision_at_20
value: 4.8
- type: precision_at_3
value: 11.233
- type: precision_at_5
value: 9.44
- type: recall_at_1
value: 2.785
- type: recall_at_10
value: 14.198
- type: recall_at_100
value: 33.768
- type: recall_at_1000
value: 59.821999999999996
- type: recall_at_20
value: 19.497999999999998
- type: recall_at_3
value: 6.877999999999999
- type: recall_at_5
value: 9.613
- task:
type: PairClassification
dataset:
name: MTEB SICK-E-PL
type: PL-MTEB/sicke-pl-pairclassification
config: default
split: test
revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9
metrics:
- type: cosine_accuracy
value: 77.45617611088463
- type: cosine_accuracy_threshold
value: 88.67492079734802
- type: cosine_ap
value: 62.798198995025665
- type: cosine_f1
value: 60.74950690335306
- type: cosine_f1_threshold
value: 80.56387305259705
- type: cosine_precision
value: 50.256410256410255
- type: cosine_recall
value: 76.78062678062678
- type: dot_accuracy
value: 77.45617611088463
- type: dot_accuracy_threshold
value: 88.6749267578125
- type: dot_ap
value: 62.798159152951385
- type: dot_f1
value: 60.74950690335306
- type: dot_f1_threshold
value: 80.56387305259705
- type: dot_precision
value: 50.256410256410255
- type: dot_recall
value: 76.78062678062678
- type: euclidean_accuracy
value: 77.45617611088463
- type: euclidean_accuracy_threshold
value: 47.592175006866455
- type: euclidean_ap
value: 62.79814750094985
- type: euclidean_f1
value: 60.74950690335306
- type: euclidean_f1_threshold
value: 62.347614765167236
- type: euclidean_precision
value: 50.256410256410255
- type: euclidean_recall
value: 76.78062678062678
- type: main_score
value: 62.798198995025665
- type: manhattan_accuracy
value: 77.27272727272727
- type: manhattan_accuracy_threshold
value: 975.9557723999023
- type: manhattan_ap
value: 62.33701490592974
- type: manhattan_f1
value: 60.3921568627451
- type: manhattan_f1_threshold
value: 1475.3839492797852
- type: manhattan_precision
value: 49.769159741458914
- type: manhattan_recall
value: 76.78062678062678
- type: max_ap
value: 62.798198995025665
- type: max_f1
value: 60.74950690335306
- type: max_precision
value: 50.256410256410255
- type: max_recall
value: 76.78062678062678
- type: similarity_accuracy
value: 77.45617611088463
- type: similarity_accuracy_threshold
value: 88.67492079734802
- type: similarity_ap
value: 62.798198995025665
- type: similarity_f1
value: 60.74950690335306
- type: similarity_f1_threshold
value: 80.56387305259705
- type: similarity_precision
value: 50.256410256410255
- type: similarity_recall
value: 76.78062678062678
- task:
type: STS
dataset:
name: MTEB SICK-R-PL
type: PL-MTEB/sickr-pl-sts
config: default
split: test
revision: fd5c2441b7eeff8676768036142af4cfa42c1339
metrics:
- type: cosine_pearson
value: 72.36287255590445
- type: cosine_spearman
value: 66.30825825122318
- type: euclidean_pearson
value: 68.92313932419128
- type: euclidean_spearman
value: 66.30826006369618
- type: main_score
value: 66.30825825122318
- type: manhattan_pearson
value: 68.66991543703946
- type: manhattan_spearman
value: 66.0242047018923
- type: pearson
value: 72.36287255590445
- type: spearman
value: 66.30825825122318
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 41.56662243222903
- type: cosine_spearman
value: 44.94984671604992
- type: euclidean_pearson
value: 27.88886658631932
- type: euclidean_spearman
value: 44.94984671604992
- type: main_score
value: 44.94984671604992
- type: manhattan_pearson
value: 27.467462847157798
- type: manhattan_spearman
value: 44.990280944902125
- type: pearson
value: 41.56662243222903
- type: spearman
value: 44.94984671604992
- task:
type: STS
dataset:
name: MTEB STS22 (de-pl)
type: mteb/sts22-crosslingual-sts
config: de-pl
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 38.70216637556677
- type: cosine_spearman
value: 55.768121437825556
- type: euclidean_pearson
value: 41.389482428930485
- type: euclidean_spearman
value: 55.768121437825556
- type: main_score
value: 55.768121437825556
- type: manhattan_pearson
value: 42.7616496232802
- type: manhattan_spearman
value: 54.44397498734157
- type: pearson
value: 38.70216637556677
- type: spearman
value: 55.768121437825556
- task:
type: Retrieval
dataset:
name: MTEB SciFact-PL
type: clarin-knext/scifact-pl
config: default
split: test
revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
metrics:
- type: main_score
value: 57.827
- type: map_at_1
value: 45.083
- type: map_at_10
value: 53.83
- type: map_at_100
value: 54.577
- type: map_at_1000
value: 54.623
- type: map_at_20
value: 54.211
- type: map_at_3
value: 51.304
- type: map_at_5
value: 52.851000000000006
- type: mrr_at_1
value: 47.333333333333336
- type: mrr_at_10
value: 55.07949735449736
- type: mrr_at_100
value: 55.710506477168956
- type: mrr_at_1000
value: 55.748401782889445
- type: mrr_at_20
value: 55.409548920578345
- type: mrr_at_3
value: 53.055555555555564
- type: mrr_at_5
value: 54.422222222222224
- type: nauc_map_at_1000_diff1
value: 56.75114793396484
- type: nauc_map_at_1000_max
value: 45.557101118136366
- type: nauc_map_at_1000_std
value: 21.122840914857495
- type: nauc_map_at_100_diff1
value: 56.738747688350024
- type: nauc_map_at_100_max
value: 45.55491958094813
- type: nauc_map_at_100_std
value: 21.12266632389643
- type: nauc_map_at_10_diff1
value: 56.926041668030855
- type: nauc_map_at_10_max
value: 45.2382783831653
- type: nauc_map_at_10_std
value: 20.922255034211766
- type: nauc_map_at_1_diff1
value: 60.98838903764472
- type: nauc_map_at_1_max
value: 43.22668392792625
- type: nauc_map_at_1_std
value: 17.29004046426385
- type: nauc_map_at_20_diff1
value: 56.848541422173795
- type: nauc_map_at_20_max
value: 45.59725008207042
- type: nauc_map_at_20_std
value: 21.177613569735655
- type: nauc_map_at_3_diff1
value: 58.23995403356206
- type: nauc_map_at_3_max
value: 44.76675994666382
- type: nauc_map_at_3_std
value: 18.839553176727783
- type: nauc_map_at_5_diff1
value: 56.99049510687553
- type: nauc_map_at_5_max
value: 44.71681163401595
- type: nauc_map_at_5_std
value: 19.453824672770455
- type: nauc_mrr_at_1000_diff1
value: 57.4953870158563
- type: nauc_mrr_at_1000_max
value: 46.79551970939633
- type: nauc_mrr_at_1000_std
value: 23.71693511404122
- type: nauc_mrr_at_100_diff1
value: 57.482272276265235
- type: nauc_mrr_at_100_max
value: 46.79105970491737
- type: nauc_mrr_at_100_std
value: 23.705546007429124
- type: nauc_mrr_at_10_diff1
value: 57.630280158288926
- type: nauc_mrr_at_10_max
value: 46.646619843739465
- type: nauc_mrr_at_10_std
value: 23.642389853421577
- type: nauc_mrr_at_1_diff1
value: 61.903420841877356
- type: nauc_mrr_at_1_max
value: 46.95318894276891
- type: nauc_mrr_at_1_std
value: 23.19343113872584
- type: nauc_mrr_at_20_diff1
value: 57.574039026825815
- type: nauc_mrr_at_20_max
value: 46.825490821786545
- type: nauc_mrr_at_20_std
value: 23.747309823079746
- type: nauc_mrr_at_3_diff1
value: 58.634726160884576
- type: nauc_mrr_at_3_max
value: 46.68634348254961
- type: nauc_mrr_at_3_std
value: 22.9939558189414
- type: nauc_mrr_at_5_diff1
value: 57.43527378441584
- type: nauc_mrr_at_5_max
value: 46.82233838319152
- type: nauc_mrr_at_5_std
value: 23.407766325712398
- type: nauc_ndcg_at_1000_diff1
value: 55.303289773692676
- type: nauc_ndcg_at_1000_max
value: 46.703610191621145
- type: nauc_ndcg_at_1000_std
value: 23.57730795756405
- type: nauc_ndcg_at_100_diff1
value: 54.38572710219233
- type: nauc_ndcg_at_100_max
value: 46.37493158024567
- type: nauc_ndcg_at_100_std
value: 23.314588126884324
- type: nauc_ndcg_at_10_diff1
value: 55.21850729666301
- type: nauc_ndcg_at_10_max
value: 45.58511788479343
- type: nauc_ndcg_at_10_std
value: 22.8531636189787
- type: nauc_ndcg_at_1_diff1
value: 61.903420841877356
- type: nauc_ndcg_at_1_max
value: 46.95318894276891
- type: nauc_ndcg_at_1_std
value: 23.19343113872584
- type: nauc_ndcg_at_20_diff1
value: 54.96359325487391
- type: nauc_ndcg_at_20_max
value: 46.525071413272975
- type: nauc_ndcg_at_20_std
value: 23.416022310286206
- type: nauc_ndcg_at_3_diff1
value: 57.33303538179732
- type: nauc_ndcg_at_3_max
value: 45.60081314229553
- type: nauc_ndcg_at_3_std
value: 20.311802683707644
- type: nauc_ndcg_at_5_diff1
value: 55.09370926297347
- type: nauc_ndcg_at_5_max
value: 45.11375173156922
- type: nauc_ndcg_at_5_std
value: 20.676971796560167
- type: nauc_precision_at_1000_diff1
value: -8.792997673585157
- type: nauc_precision_at_1000_max
value: 26.985804617599456
- type: nauc_precision_at_1000_std
value: 38.32145829157333
- type: nauc_precision_at_100_diff1
value: 3.448830291824138
- type: nauc_precision_at_100_max
value: 33.3751058104728
- type: nauc_precision_at_100_std
value: 36.07155861781976
- type: nauc_precision_at_10_diff1
value: 27.905538531066256
- type: nauc_precision_at_10_max
value: 41.57287780821485
- type: nauc_precision_at_10_std
value: 36.11165069712307
- type: nauc_precision_at_1_diff1
value: 61.903420841877356
- type: nauc_precision_at_1_max
value: 46.95318894276891
- type: nauc_precision_at_1_std
value: 23.19343113872584
- type: nauc_precision_at_20_diff1
value: 21.945937631553438
- type: nauc_precision_at_20_max
value: 42.8503772546226
- type: nauc_precision_at_20_std
value: 37.54978789546971
- type: nauc_precision_at_3_diff1
value: 44.695453949094684
- type: nauc_precision_at_3_max
value: 46.25836394647075
- type: nauc_precision_at_3_std
value: 25.448947126738393
- type: nauc_precision_at_5_diff1
value: 34.21739846774853
- type: nauc_precision_at_5_max
value: 43.36271521542134
- type: nauc_precision_at_5_std
value: 28.863168300518954
- type: nauc_recall_at_1000_diff1
value: 50.866272434900374
- type: nauc_recall_at_1000_max
value: 77.90745928000882
- type: nauc_recall_at_1000_std
value: 82.21288515406151
- type: nauc_recall_at_100_diff1
value: 35.307317119527056
- type: nauc_recall_at_100_max
value: 46.922433638935956
- type: nauc_recall_at_100_std
value: 31.814942138236262
- type: nauc_recall_at_10_diff1
value: 47.8121533413515
- type: nauc_recall_at_10_max
value: 43.310991487523246
- type: nauc_recall_at_10_std
value: 25.903501909176917
- type: nauc_recall_at_1_diff1
value: 60.98838903764472
- type: nauc_recall_at_1_max
value: 43.22668392792625
- type: nauc_recall_at_1_std
value: 17.29004046426385
- type: nauc_recall_at_20_diff1
value: 45.83142943406739
- type: nauc_recall_at_20_max
value: 46.73030342771932
- type: nauc_recall_at_20_std
value: 28.07957120284036
- type: nauc_recall_at_3_diff1
value: 54.187633219194495
- type: nauc_recall_at_3_max
value: 43.672283626861066
- type: nauc_recall_at_3_std
value: 18.136469354114993
- type: nauc_recall_at_5_diff1
value: 47.4292849527445
- type: nauc_recall_at_5_max
value: 42.22276792180875
- type: nauc_recall_at_5_std
value: 19.22371392434811
- type: ndcg_at_1
value: 47.333
- type: ndcg_at_10
value: 57.827
- type: ndcg_at_100
value: 61.551
- type: ndcg_at_1000
value: 62.865
- type: ndcg_at_20
value: 59.03699999999999
- type: ndcg_at_3
value: 53.554
- type: ndcg_at_5
value: 55.949000000000005
- type: precision_at_1
value: 47.333
- type: precision_at_10
value: 7.767
- type: precision_at_100
value: 0.987
- type: precision_at_1000
value: 0.11
- type: precision_at_20
value: 4.167
- type: precision_at_3
value: 21.111
- type: precision_at_5
value: 14.133000000000001
- type: recall_at_1
value: 45.083
- type: recall_at_10
value: 68.667
- type: recall_at_100
value: 86.433
- type: recall_at_1000
value: 97.0
- type: recall_at_20
value: 73.078
- type: recall_at_3
value: 57.477999999999994
- type: recall_at_5
value: 63.322
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID-PL
type: clarin-knext/trec-covid-pl
config: default
split: test
revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
metrics:
- type: main_score
value: 56.919
- type: map_at_1
value: 0.17600000000000002
- type: map_at_10
value: 1.352
- type: map_at_100
value: 7.253
- type: map_at_1000
value: 18.698
- type: map_at_20
value: 2.313
- type: map_at_3
value: 0.496
- type: map_at_5
value: 0.775
- type: mrr_at_1
value: 68.0
- type: mrr_at_10
value: 80.26904761904761
- type: mrr_at_100
value: 80.26904761904761
- type: mrr_at_1000
value: 80.26904761904761
- type: mrr_at_20
value: 80.26904761904761
- type: mrr_at_3
value: 78.33333333333333
- type: mrr_at_5
value: 79.73333333333332
- type: nauc_map_at_1000_diff1
value: 6.574463369141221
- type: nauc_map_at_1000_max
value: 53.38255229751684
- type: nauc_map_at_1000_std
value: 80.05902957099651
- type: nauc_map_at_100_diff1
value: 11.446821053406707
- type: nauc_map_at_100_max
value: 44.68607496071329
- type: nauc_map_at_100_std
value: 72.78356846807002
- type: nauc_map_at_10_diff1
value: 19.670014556837902
- type: nauc_map_at_10_max
value: 34.81097303843686
- type: nauc_map_at_10_std
value: 33.674183618423335
- type: nauc_map_at_1_diff1
value: 21.506439684761883
- type: nauc_map_at_1_max
value: 28.484715735575577
- type: nauc_map_at_1_std
value: 9.63153171871658
- type: nauc_map_at_20_diff1
value: 21.0792619485704
- type: nauc_map_at_20_max
value: 42.16963284469341
- type: nauc_map_at_20_std
value: 40.700515917035524
- type: nauc_map_at_3_diff1
value: 26.981672835550295
- type: nauc_map_at_3_max
value: 32.974693063997506
- type: nauc_map_at_3_std
value: 16.6022898528941
- type: nauc_map_at_5_diff1
value: 27.87549872058613
- type: nauc_map_at_5_max
value: 33.80977925406638
- type: nauc_map_at_5_std
value: 19.902109058910966
- type: nauc_mrr_at_1000_diff1
value: 12.46327367923585
- type: nauc_mrr_at_1000_max
value: 36.671369778214725
- type: nauc_mrr_at_1000_std
value: 29.65039484236962
- type: nauc_mrr_at_100_diff1
value: 12.46327367923585
- type: nauc_mrr_at_100_max
value: 36.671369778214725
- type: nauc_mrr_at_100_std
value: 29.65039484236962
- type: nauc_mrr_at_10_diff1
value: 12.46327367923585
- type: nauc_mrr_at_10_max
value: 36.671369778214725
- type: nauc_mrr_at_10_std
value: 29.65039484236962
- type: nauc_mrr_at_1_diff1
value: 6.319535622970017
- type: nauc_mrr_at_1_max
value: 33.71225209038767
- type: nauc_mrr_at_1_std
value: 25.834427475640904
- type: nauc_mrr_at_20_diff1
value: 12.46327367923585
- type: nauc_mrr_at_20_max
value: 36.671369778214725
- type: nauc_mrr_at_20_std
value: 29.65039484236962
- type: nauc_mrr_at_3_diff1
value: 14.027551353113887
- type: nauc_mrr_at_3_max
value: 38.329801108575204
- type: nauc_mrr_at_3_std
value: 29.922562764916822
- type: nauc_mrr_at_5_diff1
value: 14.272859057946812
- type: nauc_mrr_at_5_max
value: 36.26521327614547
- type: nauc_mrr_at_5_std
value: 30.35143151694706
- type: nauc_ndcg_at_1000_diff1
value: 11.430252629811264
- type: nauc_ndcg_at_1000_max
value: 54.72660044236807
- type: nauc_ndcg_at_1000_std
value: 78.30081415388416
- type: nauc_ndcg_at_100_diff1
value: 0.3033147120555255
- type: nauc_ndcg_at_100_max
value: 44.79981966050289
- type: nauc_ndcg_at_100_std
value: 70.8722962407257
- type: nauc_ndcg_at_10_diff1
value: 13.708493191967316
- type: nauc_ndcg_at_10_max
value: 45.58714259949
- type: nauc_ndcg_at_10_std
value: 54.25312608750681
- type: nauc_ndcg_at_1_diff1
value: 14.13764957725658
- type: nauc_ndcg_at_1_max
value: 35.89238137772783
- type: nauc_ndcg_at_1_std
value: 26.159271864845252
- type: nauc_ndcg_at_20_diff1
value: 10.821994469339833
- type: nauc_ndcg_at_20_max
value: 49.655194522856874
- type: nauc_ndcg_at_20_std
value: 59.38126671218269
- type: nauc_ndcg_at_3_diff1
value: 21.715565312196077
- type: nauc_ndcg_at_3_max
value: 43.75654188258407
- type: nauc_ndcg_at_3_std
value: 43.06565426451109
- type: nauc_ndcg_at_5_diff1
value: 23.655719788636784
- type: nauc_ndcg_at_5_max
value: 43.918620576813254
- type: nauc_ndcg_at_5_std
value: 43.25044045865146
- type: nauc_precision_at_1000_diff1
value: -7.801822177721561
- type: nauc_precision_at_1000_max
value: 39.258818089435316
- type: nauc_precision_at_1000_std
value: 51.66205821260089
- type: nauc_precision_at_100_diff1
value: -4.119704756180739
- type: nauc_precision_at_100_max
value: 39.712338903322255
- type: nauc_precision_at_100_std
value: 72.21641244608408
- type: nauc_precision_at_10_diff1
value: 8.444233068337487
- type: nauc_precision_at_10_max
value: 42.4676899985165
- type: nauc_precision_at_10_std
value: 56.826333196617604
- type: nauc_precision_at_1_diff1
value: 6.319535622970017
- type: nauc_precision_at_1_max
value: 33.71225209038767
- type: nauc_precision_at_1_std
value: 25.834427475640904
- type: nauc_precision_at_20_diff1
value: 5.9351451055270665
- type: nauc_precision_at_20_max
value: 48.44119310018816
- type: nauc_precision_at_20_std
value: 59.5595391474413
- type: nauc_precision_at_3_diff1
value: 20.49183589553138
- type: nauc_precision_at_3_max
value: 43.97209215954164
- type: nauc_precision_at_3_std
value: 43.38846811953682
- type: nauc_precision_at_5_diff1
value: 23.91193541491969
- type: nauc_precision_at_5_max
value: 42.89037965109586
- type: nauc_precision_at_5_std
value: 43.85307223071737
- type: nauc_recall_at_1000_diff1
value: 14.852243091307962
- type: nauc_recall_at_1000_max
value: 52.716143146467246
- type: nauc_recall_at_1000_std
value: 75.96395414412834
- type: nauc_recall_at_100_diff1
value: 15.714854209882853
- type: nauc_recall_at_100_max
value: 36.02809107498271
- type: nauc_recall_at_100_std
value: 69.13542905710189
- type: nauc_recall_at_10_diff1
value: 21.595214483052263
- type: nauc_recall_at_10_max
value: 30.858824962274056
- type: nauc_recall_at_10_std
value: 32.41949976903557
- type: nauc_recall_at_1_diff1
value: 21.506439684761883
- type: nauc_recall_at_1_max
value: 28.484715735575577
- type: nauc_recall_at_1_std
value: 9.63153171871658
- type: nauc_recall_at_20_diff1
value: 26.088109678326145
- type: nauc_recall_at_20_max
value: 39.30741232084537
- type: nauc_recall_at_20_std
value: 35.63530214277264
- type: nauc_recall_at_3_diff1
value: 30.069120349407143
- type: nauc_recall_at_3_max
value: 30.61753190304264
- type: nauc_recall_at_3_std
value: 18.336355866759682
- type: nauc_recall_at_5_diff1
value: 31.512613211529615
- type: nauc_recall_at_5_max
value: 30.43538310477602
- type: nauc_recall_at_5_std
value: 19.67467281491149
- type: ndcg_at_1
value: 61.0
- type: ndcg_at_10
value: 56.919
- type: ndcg_at_100
value: 44.4
- type: ndcg_at_1000
value: 42.588
- type: ndcg_at_20
value: 54.266999999999996
- type: ndcg_at_3
value: 58.765
- type: ndcg_at_5
value: 58.553
- type: precision_at_1
value: 68.0
- type: precision_at_10
value: 62.0
- type: precision_at_100
value: 45.839999999999996
- type: precision_at_1000
value: 19.31
- type: precision_at_20
value: 58.199999999999996
- type: precision_at_3
value: 66.667
- type: precision_at_5
value: 64.8
- type: recall_at_1
value: 0.17600000000000002
- type: recall_at_10
value: 1.637
- type: recall_at_100
value: 10.764999999999999
- type: recall_at_1000
value: 40.766999999999996
- type: recall_at_20
value: 2.983
- type: recall_at_3
value: 0.5519999999999999
- type: recall_at_5
value: 0.8829999999999999
- task:
type: MultilabelClassification
dataset:
name: MTEB CEDRClassification
type: ai-forever/cedr-classification
config: default
split: test
revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4
metrics:
- type: accuracy
value: 42.15727948990436
- type: f1
value: 39.09194730362947
- type: lrap
value: 71.07199787460253
- type: main_score
value: 42.15727948990436
- task:
type: Classification
dataset:
name: MTEB GeoreviewClassification
type: ai-forever/georeview-classification
config: default
split: test
revision: 3765c0d1de6b7d264bc459433c45e5a75513839c
metrics:
- type: accuracy
value: 47.685546875
- type: f1
value: 42.201867616479085
- type: f1_weighted
value: 42.20127250813618
- type: main_score
value: 47.685546875
- task:
type: Clustering
dataset:
name: MTEB GeoreviewClusteringP2P
type: ai-forever/georeview-clustering-p2p
config: default
split: test
revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec
metrics:
- type: main_score
value: 63.39849666467603
- type: v_measure
value: 63.39849666467603
- type: v_measure_std
value: 0.4433669974776044
- task:
type: Classification
dataset:
name: MTEB HeadlineClassification
type: ai-forever/headline-classification
config: default
split: test
revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb
metrics:
- type: accuracy
value: 83.45703125
- type: f1
value: 83.44147121320216
- type: f1_weighted
value: 83.43953816781061
- type: main_score
value: 83.45703125
- task:
type: Classification
dataset:
name: MTEB InappropriatenessClassification
type: ai-forever/inappropriateness-classification
config: default
split: test
revision: 601651fdc45ef243751676e62dd7a19f491c0285
metrics:
- type: accuracy
value: 61.318359375
- type: ap
value: 57.103049962056815
- type: ap_weighted
value: 57.103049962056815
- type: f1
value: 60.69364450664112
- type: f1_weighted
value: 60.69364450664112
- type: main_score
value: 61.318359375
- task:
type: Classification
dataset:
name: MTEB KinopoiskClassification
type: ai-forever/kinopoisk-sentiment-classification
config: default
split: test
revision: 5911f26666ac11af46cb9c6849d0dc80a378af24
metrics:
- type: accuracy
value: 59.040000000000006
- type: f1
value: 55.63433742720159
- type: f1_weighted
value: 55.63433742720159
- type: main_score
value: 59.040000000000006
- task:
type: Reranking
dataset:
name: MTEB MIRACLReranking (ru)
type: miracl/mmteb-miracl-reranking
config: ru
split: dev
revision: 6d1962c527217f8927fca80f890f14f36b2802af
metrics:
- type: MAP@1(MIRACL)
value: 29.729
- type: MAP@10(MIRACL)
value: 48.713
- type: MAP@100(MIRACL)
value: 50.792
- type: MAP@1000(MIRACL)
value: 50.792
- type: MAP@20(MIRACL)
value: 50.197
- type: MAP@3(MIRACL)
value: 41.8
- type: MAP@5(MIRACL)
value: 45.706
- type: NDCG@1(MIRACL)
value: 49.158
- type: NDCG@10(MIRACL)
value: 56.550999999999995
- type: NDCG@100(MIRACL)
value: 60.829
- type: NDCG@1000(MIRACL)
value: 60.829
- type: NDCG@20(MIRACL)
value: 59.229
- type: NDCG@3(MIRACL)
value: 50.397000000000006
- type: NDCG@5(MIRACL)
value: 53.105000000000004
- type: P@1(MIRACL)
value: 49.158
- type: P@10(MIRACL)
value: 14.908
- type: P@100(MIRACL)
value: 1.9529999999999998
- type: P@1000(MIRACL)
value: 0.19499999999999998
- type: P@20(MIRACL)
value: 8.753
- type: P@3(MIRACL)
value: 31.061
- type: P@5(MIRACL)
value: 23.785
- type: Recall@1(MIRACL)
value: 29.729
- type: Recall@10(MIRACL)
value: 67.223
- type: Recall@100(MIRACL)
value: 79.952
- type: Recall@1000(MIRACL)
value: 79.952
- type: Recall@20(MIRACL)
value: 74.417
- type: Recall@3(MIRACL)
value: 49.073
- type: Recall@5(MIRACL)
value: 58.094
- type: main_score
value: 56.550999999999995
- type: nAUC_MAP@1000_diff1(MIRACL)
value: 19.222716664871324
- type: nAUC_MAP@1000_max(MIRACL)
value: 28.91315309273525
- type: nAUC_MAP@1000_std(MIRACL)
value: 15.773770301363973
- type: nAUC_MAP@100_diff1(MIRACL)
value: 19.222716664871324
- type: nAUC_MAP@100_max(MIRACL)
value: 28.91315309273525
- type: nAUC_MAP@100_std(MIRACL)
value: 15.773770301363973
- type: nAUC_MAP@10_diff1(MIRACL)
value: 21.16716217839532
- type: nAUC_MAP@10_max(MIRACL)
value: 26.58073750952478
- type: nAUC_MAP@10_std(MIRACL)
value: 14.98546699381452
- type: nAUC_MAP@1_diff1(MIRACL)
value: 37.50928508734578
- type: nAUC_MAP@1_max(MIRACL)
value: 13.158704351998995
- type: nAUC_MAP@1_std(MIRACL)
value: 4.422878276220556
- type: nAUC_MAP@20_diff1(MIRACL)
value: 19.951045759045467
- type: nAUC_MAP@20_max(MIRACL)
value: 28.25165991244302
- type: nAUC_MAP@20_std(MIRACL)
value: 15.850363419877105
- type: nAUC_MAP@3_diff1(MIRACL)
value: 27.774164479669988
- type: nAUC_MAP@3_max(MIRACL)
value: 20.738889611307496
- type: nAUC_MAP@3_std(MIRACL)
value: 9.22491952318088
- type: nAUC_MAP@5_diff1(MIRACL)
value: 23.86089217267443
- type: nAUC_MAP@5_max(MIRACL)
value: 23.19878810494586
- type: nAUC_MAP@5_std(MIRACL)
value: 11.851875808858123
- type: nAUC_NDCG@1000_diff1(MIRACL)
value: 9.459016218726891
- type: nAUC_NDCG@1000_max(MIRACL)
value: 38.018030050210896
- type: nAUC_NDCG@1000_std(MIRACL)
value: 20.555997574199246
- type: nAUC_NDCG@100_diff1(MIRACL)
value: 9.459016218726891
- type: nAUC_NDCG@100_max(MIRACL)
value: 38.018030050210896
- type: nAUC_NDCG@100_std(MIRACL)
value: 20.555997574199246
- type: nAUC_NDCG@10_diff1(MIRACL)
value: 14.2494195957649
- type: nAUC_NDCG@10_max(MIRACL)
value: 32.87676976986289
- type: nAUC_NDCG@10_std(MIRACL)
value: 19.469852065776976
- type: nAUC_NDCG@1_diff1(MIRACL)
value: 23.312659021070818
- type: nAUC_NDCG@1_max(MIRACL)
value: 31.554119919664593
- type: nAUC_NDCG@1_std(MIRACL)
value: 17.533789813864466
- type: nAUC_NDCG@20_diff1(MIRACL)
value: 11.694064829915717
- type: nAUC_NDCG@20_max(MIRACL)
value: 36.12122229242797
- type: nAUC_NDCG@20_std(MIRACL)
value: 20.886325245384313
- type: nAUC_NDCG@3_diff1(MIRACL)
value: 19.70964037059834
- type: nAUC_NDCG@3_max(MIRACL)
value: 28.271224651385758
- type: nAUC_NDCG@3_std(MIRACL)
value: 14.182889320426757
- type: nAUC_NDCG@5_diff1(MIRACL)
value: 17.143482434537635
- type: nAUC_NDCG@5_max(MIRACL)
value: 28.911278684121744
- type: nAUC_NDCG@5_std(MIRACL)
value: 15.83019582479379
- type: nAUC_P@1000_diff1(MIRACL)
value: -28.806220159210838
- type: nAUC_P@1000_max(MIRACL)
value: 30.19137414854295
- type: nAUC_P@1000_std(MIRACL)
value: 15.577217138606922
- type: nAUC_P@100_diff1(MIRACL)
value: -28.8062201592108
- type: nAUC_P@100_max(MIRACL)
value: 30.191374148543016
- type: nAUC_P@100_std(MIRACL)
value: 15.577217138606963
- type: nAUC_P@10_diff1(MIRACL)
value: -23.950963396253567
- type: nAUC_P@10_max(MIRACL)
value: 32.31620562041691
- type: nAUC_P@10_std(MIRACL)
value: 22.76652888514141
- type: nAUC_P@1_diff1(MIRACL)
value: 23.312659021070818
- type: nAUC_P@1_max(MIRACL)
value: 31.554119919664593
- type: nAUC_P@1_std(MIRACL)
value: 17.533789813864466
- type: nAUC_P@20_diff1(MIRACL)
value: -26.522109242426172
- type: nAUC_P@20_max(MIRACL)
value: 31.490097667881027
- type: nAUC_P@20_std(MIRACL)
value: 20.51757471839622
- type: nAUC_P@3_diff1(MIRACL)
value: -8.494670555442749
- type: nAUC_P@3_max(MIRACL)
value: 33.197306356212295
- type: nAUC_P@3_std(MIRACL)
value: 18.96447162170764
- type: nAUC_P@5_diff1(MIRACL)
value: -19.15325386641154
- type: nAUC_P@5_max(MIRACL)
value: 31.846463690427683
- type: nAUC_P@5_std(MIRACL)
value: 20.914296846825028
- type: nAUC_Recall@1000_diff1(MIRACL)
value: -22.62644777038629
- type: nAUC_Recall@1000_max(MIRACL)
value: 63.09417027858301
- type: nAUC_Recall@1000_std(MIRACL)
value: 31.96936126619333
- type: nAUC_Recall@100_diff1(MIRACL)
value: -22.62644777038629
- type: nAUC_Recall@100_max(MIRACL)
value: 63.09417027858301
- type: nAUC_Recall@100_std(MIRACL)
value: 31.96936126619333
- type: nAUC_Recall@10_diff1(MIRACL)
value: 1.389536667314163
- type: nAUC_Recall@10_max(MIRACL)
value: 36.80168430587649
- type: nAUC_Recall@10_std(MIRACL)
value: 24.6096121100626
- type: nAUC_Recall@1_diff1(MIRACL)
value: 37.50928508734578
- type: nAUC_Recall@1_max(MIRACL)
value: 13.158704351998995
- type: nAUC_Recall@1_std(MIRACL)
value: 4.422878276220556
- type: nAUC_Recall@20_diff1(MIRACL)
value: -8.586661617880036
- type: nAUC_Recall@20_max(MIRACL)
value: 48.977640900606715
- type: nAUC_Recall@20_std(MIRACL)
value: 30.787733282193763
- type: nAUC_Recall@3_diff1(MIRACL)
value: 20.85452801657472
- type: nAUC_Recall@3_max(MIRACL)
value: 20.457796008702196
- type: nAUC_Recall@3_std(MIRACL)
value: 10.422494162066547
- type: nAUC_Recall@5_diff1(MIRACL)
value: 11.294860119295114
- type: nAUC_Recall@5_max(MIRACL)
value: 24.55554040640634
- type: nAUC_Recall@5_std(MIRACL)
value: 15.07523755007524
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (ru)
type: miracl/mmteb-miracl
config: ru
split: dev
revision: main
metrics:
- type: main_score
value: 53.33
- type: map_at_1
value: 23.51
- type: map_at_10
value: 42.506
- type: map_at_100
value: 45.727000000000004
- type: map_at_1000
value: 45.824
- type: map_at_20
value: 44.482
- type: map_at_3
value: 34.903
- type: map_at_5
value: 38.924
- type: mrr_at_1
value: 47.52396166134185
- type: mrr_at_10
value: 60.53929585678796
- type: mrr_at_100
value: 61.08405013111772
- type: mrr_at_1000
value: 61.090960329457786
- type: mrr_at_20
value: 60.942355859942886
- type: mrr_at_3
value: 57.21512247071355
- type: mrr_at_5
value: 59.423588924387715
- type: nauc_map_at_1000_diff1
value: 27.9258851452338
- type: nauc_map_at_1000_max
value: 23.91526202439492
- type: nauc_map_at_1000_std
value: 1.9886186316328294
- type: nauc_map_at_100_diff1
value: 27.950443502043935
- type: nauc_map_at_100_max
value: 23.91952747895155
- type: nauc_map_at_100_std
value: 1.9828664117240875
- type: nauc_map_at_10_diff1
value: 28.591900542084257
- type: nauc_map_at_10_max
value: 22.26715273276218
- type: nauc_map_at_10_std
value: -0.2905582006620209
- type: nauc_map_at_1_diff1
value: 36.29159533442582
- type: nauc_map_at_1_max
value: 14.017798723971604
- type: nauc_map_at_1_std
value: -4.135744714942541
- type: nauc_map_at_20_diff1
value: 28.227642002703888
- type: nauc_map_at_20_max
value: 23.31288716904143
- type: nauc_map_at_20_std
value: 0.8608305708684871
- type: nauc_map_at_3_diff1
value: 31.25854158298961
- type: nauc_map_at_3_max
value: 19.94828898205679
- type: nauc_map_at_3_std
value: -3.055128116323982
- type: nauc_map_at_5_diff1
value: 29.569541485869138
- type: nauc_map_at_5_max
value: 20.295566102579233
- type: nauc_map_at_5_std
value: -2.0623859574064496
- type: nauc_mrr_at_1000_diff1
value: 27.361661005387717
- type: nauc_mrr_at_1000_max
value: 29.835566057491185
- type: nauc_mrr_at_1000_std
value: 9.18992468804867
- type: nauc_mrr_at_100_diff1
value: 27.364549933483367
- type: nauc_mrr_at_100_max
value: 29.841000191685662
- type: nauc_mrr_at_100_std
value: 9.201936238611633
- type: nauc_mrr_at_10_diff1
value: 27.091315668645876
- type: nauc_mrr_at_10_max
value: 30.083804137944814
- type: nauc_mrr_at_10_std
value: 9.295940302357145
- type: nauc_mrr_at_1_diff1
value: 30.096520602983773
- type: nauc_mrr_at_1_max
value: 25.92117667316542
- type: nauc_mrr_at_1_std
value: 6.628159094331555
- type: nauc_mrr_at_20_diff1
value: 27.26907735403706
- type: nauc_mrr_at_20_max
value: 29.91703823542895
- type: nauc_mrr_at_20_std
value: 9.220168448561815
- type: nauc_mrr_at_3_diff1
value: 27.132416524688672
- type: nauc_mrr_at_3_max
value: 29.879006809416147
- type: nauc_mrr_at_3_std
value: 8.495778638777473
- type: nauc_mrr_at_5_diff1
value: 27.164544736044938
- type: nauc_mrr_at_5_max
value: 29.756896839148844
- type: nauc_mrr_at_5_std
value: 8.697141135185072
- type: nauc_ndcg_at_1000_diff1
value: 25.711789502779325
- type: nauc_ndcg_at_1000_max
value: 28.742258668080943
- type: nauc_ndcg_at_1000_std
value: 8.197781962071534
- type: nauc_ndcg_at_100_diff1
value: 25.844850932804846
- type: nauc_ndcg_at_100_max
value: 29.043525248699453
- type: nauc_ndcg_at_100_std
value: 8.810501750069859
- type: nauc_ndcg_at_10_diff1
value: 26.47161747010468
- type: nauc_ndcg_at_10_max
value: 25.36709975989015
- type: nauc_ndcg_at_10_std
value: 3.070985924814878
- type: nauc_ndcg_at_1_diff1
value: 30.096520602983773
- type: nauc_ndcg_at_1_max
value: 25.92117667316542
- type: nauc_ndcg_at_1_std
value: 6.628159094331555
- type: nauc_ndcg_at_20_diff1
value: 26.329559310197325
- type: nauc_ndcg_at_20_max
value: 27.252374736353723
- type: nauc_ndcg_at_20_std
value: 5.279499913033636
- type: nauc_ndcg_at_3_diff1
value: 26.382469083855774
- type: nauc_ndcg_at_3_max
value: 25.667817557434446
- type: nauc_ndcg_at_3_std
value: 2.722781380568278
- type: nauc_ndcg_at_5_diff1
value: 26.63587958392066
- type: nauc_ndcg_at_5_max
value: 24.012746599673562
- type: nauc_ndcg_at_5_std
value: 1.875533584617588
- type: nauc_precision_at_1000_diff1
value: -16.886796017740146
- type: nauc_precision_at_1000_max
value: 13.452350695770388
- type: nauc_precision_at_1000_std
value: 20.253057030417295
- type: nauc_precision_at_100_diff1
value: -15.676681024836736
- type: nauc_precision_at_100_max
value: 17.21039273342314
- type: nauc_precision_at_100_std
value: 23.503219057796482
- type: nauc_precision_at_10_diff1
value: -7.353821346474632
- type: nauc_precision_at_10_max
value: 22.963099870525657
- type: nauc_precision_at_10_std
value: 16.75138999512155
- type: nauc_precision_at_1_diff1
value: 30.096520602983773
- type: nauc_precision_at_1_max
value: 25.92117667316542
- type: nauc_precision_at_1_std
value: 6.628159094331555
- type: nauc_precision_at_20_diff1
value: -11.020811644697545
- type: nauc_precision_at_20_max
value: 21.625978665259115
- type: nauc_precision_at_20_std
value: 20.005095685790348
- type: nauc_precision_at_3_diff1
value: 7.003507657338856
- type: nauc_precision_at_3_max
value: 27.73371213700131
- type: nauc_precision_at_3_std
value: 9.668915001732463
- type: nauc_precision_at_5_diff1
value: -1.715206180870653
- type: nauc_precision_at_5_max
value: 24.29609734679536
- type: nauc_precision_at_5_std
value: 13.402584423111977
- type: nauc_recall_at_1000_diff1
value: 17.28590002253731
- type: nauc_recall_at_1000_max
value: 68.10425916894825
- type: nauc_recall_at_1000_std
value: 73.8411367347451
- type: nauc_recall_at_100_diff1
value: 18.442237799863165
- type: nauc_recall_at_100_max
value: 39.59374558744695
- type: nauc_recall_at_100_std
value: 38.54186929047189
- type: nauc_recall_at_10_diff1
value: 19.243325372129107
- type: nauc_recall_at_10_max
value: 19.111906153501202
- type: nauc_recall_at_10_std
value: 0.8737992988209908
- type: nauc_recall_at_1_diff1
value: 36.29159533442582
- type: nauc_recall_at_1_max
value: 14.017798723971604
- type: nauc_recall_at_1_std
value: -4.135744714942541
- type: nauc_recall_at_20_diff1
value: 19.01527783708535
- type: nauc_recall_at_20_max
value: 22.731910630901435
- type: nauc_recall_at_20_std
value: 5.981218642323668
- type: nauc_recall_at_3_diff1
value: 25.892436310762985
- type: nauc_recall_at_3_max
value: 18.9097432217694
- type: nauc_recall_at_3_std
value: -3.8494373478485033
- type: nauc_recall_at_5_diff1
value: 22.032856212342626
- type: nauc_recall_at_5_max
value: 16.22066351445006
- type: nauc_recall_at_5_std
value: -3.416429358868604
- type: ndcg_at_1
value: 47.524
- type: ndcg_at_10
value: 53.33
- type: ndcg_at_100
value: 61.746
- type: ndcg_at_1000
value: 62.803
- type: ndcg_at_20
value: 57.498000000000005
- type: ndcg_at_3
value: 46.204
- type: ndcg_at_5
value: 48.824
- type: precision_at_1
value: 47.524
- type: precision_at_10
value: 16.478
- type: precision_at_100
value: 2.5860000000000003
- type: precision_at_1000
value: 0.27799999999999997
- type: precision_at_20
value: 10.12
- type: precision_at_3
value: 31.735999999999997
- type: precision_at_5
value: 24.951999999999998
- type: recall_at_1
value: 23.51
- type: recall_at_10
value: 64.98899999999999
- type: recall_at_100
value: 92.241
- type: recall_at_1000
value: 97.929
- type: recall_at_20
value: 76.822
- type: recall_at_3
value: 42.126000000000005
- type: recall_at_5
value: 52.449
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 60.08069939475453
- type: f1
value: 56.18556634916303
- type: f1_weighted
value: 58.60322135027107
- type: main_score
value: 60.08069939475453
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 66.43913920645595
- type: f1
value: 66.11191203959372
- type: f1_weighted
value: 65.72977001101279
- type: main_score
value: 66.43913920645595
- task:
type: STS
dataset:
name: MTEB RUParaPhraserSTS
type: merionum/ru_paraphraser
config: default
split: test
revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4
metrics:
- type: cosine_pearson
value: 61.89012659088028
- type: cosine_spearman
value: 68.53279563915628
- type: euclidean_pearson
value: 65.64255392938036
- type: euclidean_spearman
value: 68.53279561028907
- type: main_score
value: 68.53279563915628
- type: manhattan_pearson
value: 65.52758148688461
- type: manhattan_spearman
value: 68.32426605891132
- type: pearson
value: 61.89012659088028
- type: spearman
value: 68.53279563915628
- task:
type: Retrieval
dataset:
name: MTEB RiaNewsRetrieval
type: ai-forever/ria-news-retrieval
config: default
split: test
revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7
metrics:
- type: main_score
value: 77.425
- type: map_at_1
value: 64.92
- type: map_at_10
value: 73.646
- type: map_at_100
value: 73.978
- type: map_at_1000
value: 73.988
- type: map_at_20
value: 73.872
- type: map_at_3
value: 72.128
- type: map_at_5
value: 73.083
- type: mrr_at_1
value: 64.92
- type: mrr_at_10
value: 73.64593650793611
- type: mrr_at_100
value: 73.97838585882688
- type: mrr_at_1000
value: 73.98842757843987
- type: mrr_at_20
value: 73.87221333104404
- type: mrr_at_3
value: 72.12833333333288
- type: mrr_at_5
value: 73.08333333333267
- type: nauc_map_at_1000_diff1
value: 70.38564962754138
- type: nauc_map_at_1000_max
value: 30.718444075784006
- type: nauc_map_at_1000_std
value: -10.69552302626205
- type: nauc_map_at_100_diff1
value: 70.37997156234715
- type: nauc_map_at_100_max
value: 30.725651745932925
- type: nauc_map_at_100_std
value: -10.685708218531655
- type: nauc_map_at_10_diff1
value: 70.3374861437528
- type: nauc_map_at_10_max
value: 30.749168340301246
- type: nauc_map_at_10_std
value: -10.799483498655107
- type: nauc_map_at_1_diff1
value: 73.9192388165348
- type: nauc_map_at_1_max
value: 28.442543674061532
- type: nauc_map_at_1_std
value: -11.831889393493318
- type: nauc_map_at_20_diff1
value: 70.34741729027523
- type: nauc_map_at_20_max
value: 30.734754088899564
- type: nauc_map_at_20_std
value: -10.686749277585324
- type: nauc_map_at_3_diff1
value: 70.21568887706891
- type: nauc_map_at_3_max
value: 30.467074420623437
- type: nauc_map_at_3_std
value: -11.472218305675923
- type: nauc_map_at_5_diff1
value: 70.34594531547204
- type: nauc_map_at_5_max
value: 30.754996331475464
- type: nauc_map_at_5_std
value: -11.084635295739732
- type: nauc_mrr_at_1000_diff1
value: 70.38565025595047
- type: nauc_mrr_at_1000_max
value: 30.718444183775805
- type: nauc_mrr_at_1000_std
value: -10.695523162874768
- type: nauc_mrr_at_100_diff1
value: 70.37997156234715
- type: nauc_mrr_at_100_max
value: 30.725651745932925
- type: nauc_mrr_at_100_std
value: -10.685708218531655
- type: nauc_mrr_at_10_diff1
value: 70.3374861437528
- type: nauc_mrr_at_10_max
value: 30.749168340301246
- type: nauc_mrr_at_10_std
value: -10.799483498655107
- type: nauc_mrr_at_1_diff1
value: 73.9192388165348
- type: nauc_mrr_at_1_max
value: 28.442543674061532
- type: nauc_mrr_at_1_std
value: -11.831889393493318
- type: nauc_mrr_at_20_diff1
value: 70.34741729027523
- type: nauc_mrr_at_20_max
value: 30.734754088899564
- type: nauc_mrr_at_20_std
value: -10.686749277585324
- type: nauc_mrr_at_3_diff1
value: 70.21568887706891
- type: nauc_mrr_at_3_max
value: 30.467074420623437
- type: nauc_mrr_at_3_std
value: -11.472218305675923
- type: nauc_mrr_at_5_diff1
value: 70.34594531547204
- type: nauc_mrr_at_5_max
value: 30.754996331475464
- type: nauc_mrr_at_5_std
value: -11.084635295739732
- type: nauc_ndcg_at_1000_diff1
value: 69.33016198036992
- type: nauc_ndcg_at_1000_max
value: 31.609803090952298
- type: nauc_ndcg_at_1000_std
value: -9.411221613110152
- type: nauc_ndcg_at_100_diff1
value: 69.13191582084188
- type: nauc_ndcg_at_100_max
value: 31.83693487089778
- type: nauc_ndcg_at_100_std
value: -9.0400895558464
- type: nauc_ndcg_at_10_diff1
value: 68.89462773551026
- type: nauc_ndcg_at_10_max
value: 31.87478936924236
- type: nauc_ndcg_at_10_std
value: -9.671029388622948
- type: nauc_ndcg_at_1_diff1
value: 73.9192388165348
- type: nauc_ndcg_at_1_max
value: 28.442543674061532
- type: nauc_ndcg_at_1_std
value: -11.831889393493318
- type: nauc_ndcg_at_20_diff1
value: 68.90205731804
- type: nauc_ndcg_at_20_max
value: 31.912656813093044
- type: nauc_ndcg_at_20_std
value: -9.090090804963808
- type: nauc_ndcg_at_3_diff1
value: 68.80670610482917
- type: nauc_ndcg_at_3_max
value: 31.18044464719784
- type: nauc_ndcg_at_3_std
value: -11.278491578164681
- type: nauc_ndcg_at_5_diff1
value: 68.97187216493903
- type: nauc_ndcg_at_5_max
value: 31.793607228058047
- type: nauc_ndcg_at_5_std
value: -10.481133374672472
- type: nauc_precision_at_1000_diff1
value: 43.78852990471418
- type: nauc_precision_at_1000_max
value: 56.047346474821055
- type: nauc_precision_at_1000_std
value: 35.73168397793686
- type: nauc_precision_at_100_diff1
value: 51.06009588636826
- type: nauc_precision_at_100_max
value: 50.40359839963674
- type: nauc_precision_at_100_std
value: 24.17139567398634
- type: nauc_precision_at_10_diff1
value: 60.308720843343444
- type: nauc_precision_at_10_max
value: 38.88883129762611
- type: nauc_precision_at_10_std
value: -1.9703986668774758
- type: nauc_precision_at_1_diff1
value: 73.9192388165348
- type: nauc_precision_at_1_max
value: 28.442543674061532
- type: nauc_precision_at_1_std
value: -11.831889393493318
- type: nauc_precision_at_20_diff1
value: 57.12901999287673
- type: nauc_precision_at_20_max
value: 42.275260619711744
- type: nauc_precision_at_20_std
value: 6.8998045953777165
- type: nauc_precision_at_3_diff1
value: 63.444192537561285
- type: nauc_precision_at_3_max
value: 33.87173673943739
- type: nauc_precision_at_3_std
value: -10.51740059765903
- type: nauc_precision_at_5_diff1
value: 62.70100972326122
- type: nauc_precision_at_5_max
value: 36.67473042882081
- type: nauc_precision_at_5_std
value: -7.4730688523228785
- type: nauc_recall_at_1000_diff1
value: 43.788529904715695
- type: nauc_recall_at_1000_max
value: 56.04734647482148
- type: nauc_recall_at_1000_std
value: 35.731683977938125
- type: nauc_recall_at_100_diff1
value: 51.06009588636825
- type: nauc_recall_at_100_max
value: 50.40359839963603
- type: nauc_recall_at_100_std
value: 24.171395673986428
- type: nauc_recall_at_10_diff1
value: 60.30872084334343
- type: nauc_recall_at_10_max
value: 38.88883129762609
- type: nauc_recall_at_10_std
value: -1.9703986668774112
- type: nauc_recall_at_1_diff1
value: 73.9192388165348
- type: nauc_recall_at_1_max
value: 28.442543674061532
- type: nauc_recall_at_1_std
value: -11.831889393493318
- type: nauc_recall_at_20_diff1
value: 57.12901999287683
- type: nauc_recall_at_20_max
value: 42.27526061971189
- type: nauc_recall_at_20_std
value: 6.899804595377761
- type: nauc_recall_at_3_diff1
value: 63.444192537561136
- type: nauc_recall_at_3_max
value: 33.87173673943714
- type: nauc_recall_at_3_std
value: -10.517400597659156
- type: nauc_recall_at_5_diff1
value: 62.70100972326114
- type: nauc_recall_at_5_max
value: 36.6747304288208
- type: nauc_recall_at_5_std
value: -7.473068852322717
- type: ndcg_at_1
value: 64.92
- type: ndcg_at_10
value: 77.425
- type: ndcg_at_100
value: 78.97
- type: ndcg_at_1000
value: 79.252
- type: ndcg_at_20
value: 78.23400000000001
- type: ndcg_at_3
value: 74.36399999999999
- type: ndcg_at_5
value: 76.081
- type: precision_at_1
value: 64.92
- type: precision_at_10
value: 8.907
- type: precision_at_100
value: 0.9610000000000001
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 4.612
- type: precision_at_3
value: 26.933
- type: precision_at_5
value: 16.991999999999997
- type: recall_at_1
value: 64.92
- type: recall_at_10
value: 89.07000000000001
- type: recall_at_100
value: 96.14
- type: recall_at_1000
value: 98.39
- type: recall_at_20
value: 92.24
- type: recall_at_3
value: 80.80000000000001
- type: recall_at_5
value: 84.96000000000001
- task:
type: Reranking
dataset:
name: MTEB RuBQReranking
type: ai-forever/rubq-reranking
config: default
split: test
revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2
metrics:
- type: main_score
value: 69.76660332457352
- type: map
value: 69.76660332457352
- type: mrr
value: 74.91840901415368
- type: nAUC_map_diff1
value: 40.77717577386574
- type: nAUC_map_max
value: 16.449821304849507
- type: nAUC_map_std
value: 5.464849678667512
- type: nAUC_mrr_diff1
value: 44.622323940651256
- type: nAUC_mrr_max
value: 20.915686008960645
- type: nAUC_mrr_std
value: 7.742740250688379
- task:
type: Retrieval
dataset:
name: MTEB RuBQRetrieval
type: ai-forever/rubq-retrieval
config: default
split: test
revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b
metrics:
- type: main_score
value: 67.753
- type: map_at_1
value: 38.111
- type: map_at_10
value: 59.25
- type: map_at_100
value: 60.291
- type: map_at_1000
value: 60.31999999999999
- type: map_at_20
value: 60.007
- type: map_at_3
value: 53.39699999999999
- type: map_at_5
value: 57.021
- type: mrr_at_1
value: 54.60992907801418
- type: mrr_at_10
value: 67.53055930804169
- type: mrr_at_100
value: 67.88621490413858
- type: mrr_at_1000
value: 67.89435419716948
- type: mrr_at_20
value: 67.80457820326059
- type: mrr_at_3
value: 64.98226950354619
- type: mrr_at_5
value: 66.6991725768323
- type: nauc_map_at_1000_diff1
value: 38.61460560253499
- type: nauc_map_at_1000_max
value: 24.238741006152296
- type: nauc_map_at_1000_std
value: -12.553887111841771
- type: nauc_map_at_100_diff1
value: 38.604995328219836
- type: nauc_map_at_100_max
value: 24.25372744693149
- type: nauc_map_at_100_std
value: -12.525907529455832
- type: nauc_map_at_10_diff1
value: 38.2802363146203
- type: nauc_map_at_10_max
value: 24.148397487087742
- type: nauc_map_at_10_std
value: -13.02462313254209
- type: nauc_map_at_1_diff1
value: 42.20333973944006
- type: nauc_map_at_1_max
value: 16.04455015933995
- type: nauc_map_at_1_std
value: -11.426950122484298
- type: nauc_map_at_20_diff1
value: 38.49874303734095
- type: nauc_map_at_20_max
value: 24.27079948779279
- type: nauc_map_at_20_std
value: -12.643735833974782
- type: nauc_map_at_3_diff1
value: 38.393442128336126
- type: nauc_map_at_3_max
value: 21.120395203124264
- type: nauc_map_at_3_std
value: -14.57118408415527
- type: nauc_map_at_5_diff1
value: 37.98874776320297
- type: nauc_map_at_5_max
value: 22.75390581241078
- type: nauc_map_at_5_std
value: -13.871096120655116
- type: nauc_mrr_at_1000_diff1
value: 45.08121396075722
- type: nauc_mrr_at_1000_max
value: 27.331313499687486
- type: nauc_mrr_at_1000_std
value: -13.114787616167014
- type: nauc_mrr_at_100_diff1
value: 45.082808269851654
- type: nauc_mrr_at_100_max
value: 27.343021375586257
- type: nauc_mrr_at_100_std
value: -13.104901642101272
- type: nauc_mrr_at_10_diff1
value: 44.89445664817906
- type: nauc_mrr_at_10_max
value: 27.483504407572795
- type: nauc_mrr_at_10_std
value: -13.116664114214782
- type: nauc_mrr_at_1_diff1
value: 47.43773937564259
- type: nauc_mrr_at_1_max
value: 24.3996512246477
- type: nauc_mrr_at_1_std
value: -13.283010969155859
- type: nauc_mrr_at_20_diff1
value: 45.08382953390109
- type: nauc_mrr_at_20_max
value: 27.418666231602508
- type: nauc_mrr_at_20_std
value: -13.101239027782416
- type: nauc_mrr_at_3_diff1
value: 44.695558812456625
- type: nauc_mrr_at_3_max
value: 26.75153207261083
- type: nauc_mrr_at_3_std
value: -14.019251949468694
- type: nauc_mrr_at_5_diff1
value: 44.84929587390349
- type: nauc_mrr_at_5_max
value: 27.508337265101257
- type: nauc_mrr_at_5_std
value: -13.748841022127815
- type: nauc_ndcg_at_1000_diff1
value: 39.706451835474724
- type: nauc_ndcg_at_1000_max
value: 26.633343785995507
- type: nauc_ndcg_at_1000_std
value: -11.207900377782707
- type: nauc_ndcg_at_100_diff1
value: 39.49574863029789
- type: nauc_ndcg_at_100_max
value: 27.03615356082193
- type: nauc_ndcg_at_100_std
value: -10.456416625790485
- type: nauc_ndcg_at_10_diff1
value: 38.36118560524438
- type: nauc_ndcg_at_10_max
value: 27.29115954765498
- type: nauc_ndcg_at_10_std
value: -12.026533782516182
- type: nauc_ndcg_at_1_diff1
value: 47.43773937564259
- type: nauc_ndcg_at_1_max
value: 24.3996512246477
- type: nauc_ndcg_at_1_std
value: -13.283010969155859
- type: nauc_ndcg_at_20_diff1
value: 39.11328986667616
- type: nauc_ndcg_at_20_max
value: 27.48803343585931
- type: nauc_ndcg_at_20_std
value: -11.061481936299867
- type: nauc_ndcg_at_3_diff1
value: 38.09080511583124
- type: nauc_ndcg_at_3_max
value: 22.960624575385577
- type: nauc_ndcg_at_3_std
value: -15.162532187246452
- type: nauc_ndcg_at_5_diff1
value: 37.84051905054443
- type: nauc_ndcg_at_5_max
value: 24.859831442018766
- type: nauc_ndcg_at_5_std
value: -14.208813731290032
- type: nauc_precision_at_1000_diff1
value: -8.235293550747457
- type: nauc_precision_at_1000_max
value: 7.564714965839937
- type: nauc_precision_at_1000_std
value: 5.160867910754626
- type: nauc_precision_at_100_diff1
value: -6.654255562369982
- type: nauc_precision_at_100_max
value: 10.671679751630798
- type: nauc_precision_at_100_std
value: 7.057997024307852
- type: nauc_precision_at_10_diff1
value: 0.4759476932076396
- type: nauc_precision_at_10_max
value: 18.705407595194696
- type: nauc_precision_at_10_std
value: 1.1284269201001864
- type: nauc_precision_at_1_diff1
value: 47.43773937564259
- type: nauc_precision_at_1_max
value: 24.3996512246477
- type: nauc_precision_at_1_std
value: -13.283010969155859
- type: nauc_precision_at_20_diff1
value: -3.1830019504133027
- type: nauc_precision_at_20_max
value: 15.311012950383418
- type: nauc_precision_at_20_std
value: 4.411311445012971
- type: nauc_precision_at_3_diff1
value: 14.900799832530298
- type: nauc_precision_at_3_max
value: 21.59448854239842
- type: nauc_precision_at_3_std
value: -10.383301518031464
- type: nauc_precision_at_5_diff1
value: 6.129583634729085
- type: nauc_precision_at_5_max
value: 19.764705099171525
- type: nauc_precision_at_5_std
value: -4.931119926816597
- type: nauc_recall_at_1000_diff1
value: 7.393009712112532
- type: nauc_recall_at_1000_max
value: 49.79443106358621
- type: nauc_recall_at_1000_std
value: 74.80255240755591
- type: nauc_recall_at_100_diff1
value: 19.35257139711146
- type: nauc_recall_at_100_max
value: 42.80851742013903
- type: nauc_recall_at_100_std
value: 37.546560048377444
- type: nauc_recall_at_10_diff1
value: 24.621169385136398
- type: nauc_recall_at_10_max
value: 33.22268204638332
- type: nauc_recall_at_10_std
value: -4.7401788730268235
- type: nauc_recall_at_1_diff1
value: 42.20333973944006
- type: nauc_recall_at_1_max
value: 16.04455015933995
- type: nauc_recall_at_1_std
value: -11.426950122484298
- type: nauc_recall_at_20_diff1
value: 24.927652532242657
- type: nauc_recall_at_20_max
value: 38.260344944664766
- type: nauc_recall_at_20_std
value: 5.423281114042867
- type: nauc_recall_at_3_diff1
value: 30.44227595912427
- type: nauc_recall_at_3_max
value: 19.94976153694003
- type: nauc_recall_at_3_std
value: -15.928733556196534
- type: nauc_recall_at_5_diff1
value: 27.044814357935724
- type: nauc_recall_at_5_max
value: 23.824668491154366
- type: nauc_recall_at_5_std
value: -13.992845356113314
- type: ndcg_at_1
value: 54.61
- type: ndcg_at_10
value: 67.753
- type: ndcg_at_100
value: 70.926
- type: ndcg_at_1000
value: 71.41
- type: ndcg_at_20
value: 69.61500000000001
- type: ndcg_at_3
value: 59.678
- type: ndcg_at_5
value: 64.012
- type: precision_at_1
value: 54.61
- type: precision_at_10
value: 13.747000000000002
- type: precision_at_100
value: 1.601
- type: precision_at_1000
value: 0.166
- type: precision_at_20
value: 7.446999999999999
- type: precision_at_3
value: 33.255
- type: precision_at_5
value: 23.747
- type: recall_at_1
value: 38.111
- type: recall_at_10
value: 83.878
- type: recall_at_100
value: 95.84899999999999
- type: recall_at_1000
value: 99.05199999999999
- type: recall_at_20
value: 90.048
- type: recall_at_3
value: 64.126
- type: recall_at_5
value: 74.295
- task:
type: Classification
dataset:
name: MTEB RuReviewsClassification
type: ai-forever/ru-reviews-classification
config: default
split: test
revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a
metrics:
- type: accuracy
value: 66.0888671875
- type: f1
value: 63.79342584872498
- type: f1_weighted
value: 63.79112620928187
- type: main_score
value: 66.0888671875
- task:
type: STS
dataset:
name: MTEB RuSTSBenchmarkSTS
type: ai-forever/ru-stsbenchmark-sts
config: default
split: test
revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018
metrics:
- type: cosine_pearson
value: 78.40381860532754
- type: cosine_spearman
value: 78.44128247246344
- type: euclidean_pearson
value: 77.03436669125563
- type: euclidean_spearman
value: 78.44009017152538
- type: main_score
value: 78.44128247246344
- type: manhattan_pearson
value: 77.084766201637
- type: manhattan_spearman
value: 78.46899044600028
- type: pearson
value: 78.40381860532754
- type: spearman
value: 78.44128247246344
- task:
type: Classification
dataset:
name: MTEB RuSciBenchGRNTIClassification
type: ai-forever/ru-scibench-grnti-classification
config: default
split: test
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1
metrics:
- type: accuracy
value: 61.4111328125
- type: f1
value: 59.604229603854044
- type: f1_weighted
value: 59.61906710038802
- type: main_score
value: 61.4111328125
- task:
type: Clustering
dataset:
name: MTEB RuSciBenchGRNTIClusteringP2P
type: ai-forever/ru-scibench-grnti-classification
config: default
split: test
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1
metrics:
- type: main_score
value: 55.660781672610625
- type: v_measure
value: 55.660781672610625
- type: v_measure_std
value: 1.0880487214373578
- task:
type: Classification
dataset:
name: MTEB RuSciBenchOECDClassification
type: ai-forever/ru-scibench-oecd-classification
config: default
split: test
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471
metrics:
- type: accuracy
value: 48.6669921875
- type: f1
value: 46.24529719568694
- type: f1_weighted
value: 46.24736172369365
- type: main_score
value: 48.6669921875
- task:
type: Clustering
dataset:
name: MTEB RuSciBenchOECDClusteringP2P
type: ai-forever/ru-scibench-oecd-classification
config: default
split: test
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471
metrics:
- type: main_score
value: 47.95513383500326
- type: v_measure
value: 47.95513383500326
- type: v_measure_std
value: 0.9391146092620886
- task:
type: STS
dataset:
name: MTEB STS22 (ru)
type: mteb/sts22-crosslingual-sts
config: ru
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 65.27471390704719
- type: cosine_spearman
value: 68.12010913287949
- type: euclidean_pearson
value: 65.60124415285192
- type: euclidean_spearman
value: 68.12010913287949
- type: main_score
value: 68.12010913287949
- type: manhattan_pearson
value: 65.21850751060232
- type: manhattan_spearman
value: 67.85162022914248
- type: pearson
value: 65.27471390704719
- type: spearman
value: 68.12010913287949
- task:
type: MultilabelClassification
dataset:
name: MTEB SensitiveTopicsClassification
type: ai-forever/sensitive-topics-classification
config: default
split: test
revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2
metrics:
- type: accuracy
value: 30.0537109375
- type: f1
value: 35.12028781898003
- type: lrap
value: 45.91071234808953
- type: main_score
value: 30.0537109375
- task:
type: PairClassification
dataset:
name: MTEB TERRa
type: ai-forever/terra-pairclassification
config: default
split: dev
revision: 7b58f24536063837d644aab9a023c62199b2a612
metrics:
- type: cosine_accuracy
value: 60.91205211726385
- type: cosine_accuracy_threshold
value: 68.15387606620789
- type: cosine_ap
value: 57.705995373862805
- type: cosine_f1
value: 67.57990867579909
- type: cosine_f1_threshold
value: 54.87680435180664
- type: cosine_precision
value: 51.92982456140351
- type: cosine_recall
value: 96.73202614379085
- type: dot_accuracy
value: 60.91205211726385
- type: dot_accuracy_threshold
value: 68.15387010574341
- type: dot_ap
value: 57.705995373862805
- type: dot_f1
value: 67.57990867579909
- type: dot_f1_threshold
value: 54.87680435180664
- type: dot_precision
value: 51.92982456140351
- type: dot_recall
value: 96.73202614379085
- type: euclidean_accuracy
value: 60.91205211726385
- type: euclidean_accuracy_threshold
value: 79.80742454528809
- type: euclidean_ap
value: 57.705995373862805
- type: euclidean_f1
value: 67.57990867579909
- type: euclidean_f1_threshold
value: 94.99809741973877
- type: euclidean_precision
value: 51.92982456140351
- type: euclidean_recall
value: 96.73202614379085
- type: main_score
value: 57.705995373862805
- type: manhattan_accuracy
value: 60.586319218241044
- type: manhattan_accuracy_threshold
value: 1858.333969116211
- type: manhattan_ap
value: 57.53277048517774
- type: manhattan_f1
value: 67.59259259259261
- type: manhattan_f1_threshold
value: 2154.4769287109375
- type: manhattan_precision
value: 52.32974910394266
- type: manhattan_recall
value: 95.42483660130719
- type: max_ap
value: 57.705995373862805
- type: max_f1
value: 67.59259259259261
- type: max_precision
value: 52.32974910394266
- type: max_recall
value: 96.73202614379085
- type: similarity_accuracy
value: 60.91205211726385
- type: similarity_accuracy_threshold
value: 68.15387606620789
- type: similarity_ap
value: 57.705995373862805
- type: similarity_f1
value: 67.57990867579909
- type: similarity_f1_threshold
value: 54.87680435180664
- type: similarity_precision
value: 51.92982456140351
- type: similarity_recall
value: 96.73202614379085
---
-
<h1 align="center">KaLM-Embedding</h1>
**KaLM-Embedding** is a series of embedding models adapted from auto-regressive LLMs with superior training data.
KaLM-embedding-multilingual-mini is trained from [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) with massive weakly-supervised pre-training and supervised fine-tuning data.
## 📑 Open-source Plan
- [x] Model Checkpoint
- [x] [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1)
- [x] [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1)
- [x] [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5)
- [ ] KaLM-embedding-multilingual-max-v1
- [x] Training and Evaluation Code: [HITsz-TMG/KaLM-Embedding](https://github.com/HITsz-TMG/KaLM-Embedding)
- [x] Technical Report: [KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model](https://arxiv.org/abs/2501.01028)
- [ ] Training Data
## Evaluation
| Model Name | Model Size | C-MTEB(35) | MTEB(56) | avg
|:----:|:---:|:---:|:---:|:---:|
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 560M | 58.81 | 61.5 | 60.16
| [bge-m3 (dense)](https://huggingface.co/BAAI/bge-m3) | 560M | 60.80 | 59.84 | 60.32
| [gte-multilingual-base (dense)](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) | **305M** | 62.72 | 61.40 | 62.06
| [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1) | 494M | 62.31 | 61.87 | 62.09
| [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1) | 494M | 63.57 | 64.74 | 64.16
| [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5) | 494M | **64.13** | **64.94** | **64.53**
## Requirements
Since we have used the Qwen2 model, we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
```
KeyError: 'qwen2'
```
## Usage
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME_OR_PATH}') # Do NOT set trust_remote_code
model.max_seq_length = 512
embeddings = model.encode(
sentences,
normalize_embeddings=True,
batch_size=256,
show_progress_bar=True
)
print(embeddings)
```
<!-- We add instruction for asymmetric tasks: retrieval, reranking, classification and clustering. -->
We add instruction for classification and clustering.
If you want to add instruction to the query (no instruction for the corpus), you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME_OR_PATH}') # Do NOT set trust_remote_code
model.max_seq_length = 512
prompt = "Instruct: Classifying the category of french news. \n Query: "
embeddings = model.encode(
sentences,
prompt=prompt,
normalize_embeddings=True,
batch_size=256,
show_progress_bar=True
)
print(embeddings)
```
## Contact
If you encounter any issue, feel free to contact us via the email: [email protected]
| [
"BIOSSES",
"SCIFACT"
] |
sdadas/mmlw-roberta-large | sdadas | sentence-similarity | [
"sentence-transformers",
"pytorch",
"safetensors",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"mteb",
"pl",
"arxiv:2402.13350",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2023-11-17T19:08:47Z" | 2024-10-25T04:30:01+00:00 | 7,993 | 13 | ---
language: pl
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
widget:
- source_sentence: 'zapytanie: Jak dożyć 100 lat?'
sentences:
- Trzeba zdrowo się odżywiać i uprawiać sport.
- Trzeba pić alkohol, imprezować i jeździć szybkimi autami.
- Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego
handlu.
model-index:
- name: mmlw-roberta-large
results:
- task:
type: Clustering
dataset:
name: MTEB 8TagsClustering
type: PL-MTEB/8tags-clustering
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 31.16472823814849
- task:
type: Classification
dataset:
name: MTEB AllegroReviews
type: PL-MTEB/allegro-reviews
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 47.48508946322067
- type: f1
value: 42.33327527584009
- task:
type: Retrieval
dataset:
name: MTEB ArguAna-PL
type: arguana-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.834
- type: map_at_10
value: 55.22899999999999
- type: map_at_100
value: 55.791999999999994
- type: map_at_1000
value: 55.794
- type: map_at_3
value: 51.233
- type: map_at_5
value: 53.772
- type: mrr_at_1
value: 39.687
- type: mrr_at_10
value: 55.596000000000004
- type: mrr_at_100
value: 56.157000000000004
- type: mrr_at_1000
value: 56.157999999999994
- type: mrr_at_3
value: 51.66
- type: mrr_at_5
value: 54.135
- type: ndcg_at_1
value: 38.834
- type: ndcg_at_10
value: 63.402
- type: ndcg_at_100
value: 65.78
- type: ndcg_at_1000
value: 65.816
- type: ndcg_at_3
value: 55.349000000000004
- type: ndcg_at_5
value: 59.892
- type: precision_at_1
value: 38.834
- type: precision_at_10
value: 8.905000000000001
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 22.428
- type: precision_at_5
value: 15.647
- type: recall_at_1
value: 38.834
- type: recall_at_10
value: 89.047
- type: recall_at_100
value: 99.36
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 67.283
- type: recall_at_5
value: 78.236
- task:
type: Classification
dataset:
name: MTEB CBD
type: PL-MTEB/cbd
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 69.33
- type: ap
value: 22.972409521444508
- type: f1
value: 58.91072163784952
- task:
type: PairClassification
dataset:
name: MTEB CDSC-E
type: PL-MTEB/cdsce-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 89.8
- type: cos_sim_ap
value: 79.87039801032493
- type: cos_sim_f1
value: 68.53932584269663
- type: cos_sim_precision
value: 73.49397590361446
- type: cos_sim_recall
value: 64.21052631578948
- type: dot_accuracy
value: 86.1
- type: dot_ap
value: 63.684975861694035
- type: dot_f1
value: 63.61746361746362
- type: dot_precision
value: 52.57731958762887
- type: dot_recall
value: 80.52631578947368
- type: euclidean_accuracy
value: 89.8
- type: euclidean_ap
value: 79.7527126811392
- type: euclidean_f1
value: 68.46361185983827
- type: euclidean_precision
value: 70.1657458563536
- type: euclidean_recall
value: 66.84210526315789
- type: manhattan_accuracy
value: 89.7
- type: manhattan_ap
value: 79.64632771093657
- type: manhattan_f1
value: 68.4931506849315
- type: manhattan_precision
value: 71.42857142857143
- type: manhattan_recall
value: 65.78947368421053
- type: max_accuracy
value: 89.8
- type: max_ap
value: 79.87039801032493
- type: max_f1
value: 68.53932584269663
- task:
type: STS
dataset:
name: MTEB CDSC-R
type: PL-MTEB/cdscr-sts
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 92.1088892402831
- type: cos_sim_spearman
value: 92.54126377343101
- type: euclidean_pearson
value: 91.99022371986013
- type: euclidean_spearman
value: 92.55235973775511
- type: manhattan_pearson
value: 91.92170171331357
- type: manhattan_spearman
value: 92.47797623672449
- task:
type: Retrieval
dataset:
name: MTEB DBPedia-PL
type: dbpedia-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.683
- type: map_at_10
value: 18.9
- type: map_at_100
value: 26.933
- type: map_at_1000
value: 28.558
- type: map_at_3
value: 13.638
- type: map_at_5
value: 15.9
- type: mrr_at_1
value: 63.74999999999999
- type: mrr_at_10
value: 73.566
- type: mrr_at_100
value: 73.817
- type: mrr_at_1000
value: 73.824
- type: mrr_at_3
value: 71.875
- type: mrr_at_5
value: 73.2
- type: ndcg_at_1
value: 53.125
- type: ndcg_at_10
value: 40.271
- type: ndcg_at_100
value: 45.51
- type: ndcg_at_1000
value: 52.968
- type: ndcg_at_3
value: 45.122
- type: ndcg_at_5
value: 42.306
- type: precision_at_1
value: 63.74999999999999
- type: precision_at_10
value: 31.55
- type: precision_at_100
value: 10.440000000000001
- type: precision_at_1000
value: 2.01
- type: precision_at_3
value: 48.333
- type: precision_at_5
value: 40.5
- type: recall_at_1
value: 8.683
- type: recall_at_10
value: 24.63
- type: recall_at_100
value: 51.762
- type: recall_at_1000
value: 75.64999999999999
- type: recall_at_3
value: 15.136
- type: recall_at_5
value: 18.678
- task:
type: Retrieval
dataset:
name: MTEB FiQA-PL
type: fiqa-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.872999999999998
- type: map_at_10
value: 32.923
- type: map_at_100
value: 34.819
- type: map_at_1000
value: 34.99
- type: map_at_3
value: 28.500999999999998
- type: map_at_5
value: 31.087999999999997
- type: mrr_at_1
value: 40.432
- type: mrr_at_10
value: 49.242999999999995
- type: mrr_at_100
value: 50.014
- type: mrr_at_1000
value: 50.05500000000001
- type: mrr_at_3
value: 47.144999999999996
- type: mrr_at_5
value: 48.171
- type: ndcg_at_1
value: 40.586
- type: ndcg_at_10
value: 40.887
- type: ndcg_at_100
value: 47.701
- type: ndcg_at_1000
value: 50.624
- type: ndcg_at_3
value: 37.143
- type: ndcg_at_5
value: 38.329
- type: precision_at_1
value: 40.586
- type: precision_at_10
value: 11.497
- type: precision_at_100
value: 1.838
- type: precision_at_1000
value: 0.23700000000000002
- type: precision_at_3
value: 25.0
- type: precision_at_5
value: 18.549
- type: recall_at_1
value: 19.872999999999998
- type: recall_at_10
value: 48.073
- type: recall_at_100
value: 73.473
- type: recall_at_1000
value: 90.94
- type: recall_at_3
value: 33.645
- type: recall_at_5
value: 39.711
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA-PL
type: hotpotqa-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 39.399
- type: map_at_10
value: 62.604000000000006
- type: map_at_100
value: 63.475
- type: map_at_1000
value: 63.534
- type: map_at_3
value: 58.870999999999995
- type: map_at_5
value: 61.217
- type: mrr_at_1
value: 78.758
- type: mrr_at_10
value: 84.584
- type: mrr_at_100
value: 84.753
- type: mrr_at_1000
value: 84.759
- type: mrr_at_3
value: 83.65700000000001
- type: mrr_at_5
value: 84.283
- type: ndcg_at_1
value: 78.798
- type: ndcg_at_10
value: 71.04
- type: ndcg_at_100
value: 74.048
- type: ndcg_at_1000
value: 75.163
- type: ndcg_at_3
value: 65.862
- type: ndcg_at_5
value: 68.77600000000001
- type: precision_at_1
value: 78.798
- type: precision_at_10
value: 14.949000000000002
- type: precision_at_100
value: 1.7309999999999999
- type: precision_at_1000
value: 0.188
- type: precision_at_3
value: 42.237
- type: precision_at_5
value: 27.634999999999998
- type: recall_at_1
value: 39.399
- type: recall_at_10
value: 74.747
- type: recall_at_100
value: 86.529
- type: recall_at_1000
value: 93.849
- type: recall_at_3
value: 63.356
- type: recall_at_5
value: 69.08800000000001
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO-PL
type: msmarco-pl
config: default
split: validation
revision: None
metrics:
- type: map_at_1
value: 19.598
- type: map_at_10
value: 30.453999999999997
- type: map_at_100
value: 31.601000000000003
- type: map_at_1000
value: 31.66
- type: map_at_3
value: 27.118
- type: map_at_5
value: 28.943
- type: mrr_at_1
value: 20.1
- type: mrr_at_10
value: 30.978
- type: mrr_at_100
value: 32.057
- type: mrr_at_1000
value: 32.112
- type: mrr_at_3
value: 27.679
- type: mrr_at_5
value: 29.493000000000002
- type: ndcg_at_1
value: 20.158
- type: ndcg_at_10
value: 36.63
- type: ndcg_at_100
value: 42.291000000000004
- type: ndcg_at_1000
value: 43.828
- type: ndcg_at_3
value: 29.744999999999997
- type: ndcg_at_5
value: 33.024
- type: precision_at_1
value: 20.158
- type: precision_at_10
value: 5.811999999999999
- type: precision_at_100
value: 0.868
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 12.689
- type: precision_at_5
value: 9.295
- type: recall_at_1
value: 19.598
- type: recall_at_10
value: 55.596999999999994
- type: recall_at_100
value: 82.143
- type: recall_at_1000
value: 94.015
- type: recall_at_3
value: 36.720000000000006
- type: recall_at_5
value: 44.606
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.8117014122394
- type: f1
value: 72.0259730121889
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.84465366509752
- type: f1
value: 77.73439218970051
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus-PL
type: nfcorpus-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.604
- type: map_at_10
value: 12.684000000000001
- type: map_at_100
value: 16.274
- type: map_at_1000
value: 17.669
- type: map_at_3
value: 9.347
- type: map_at_5
value: 10.752
- type: mrr_at_1
value: 43.963
- type: mrr_at_10
value: 52.94
- type: mrr_at_100
value: 53.571000000000005
- type: mrr_at_1000
value: 53.613
- type: mrr_at_3
value: 51.032
- type: mrr_at_5
value: 52.193
- type: ndcg_at_1
value: 41.486000000000004
- type: ndcg_at_10
value: 33.937
- type: ndcg_at_100
value: 31.726
- type: ndcg_at_1000
value: 40.331
- type: ndcg_at_3
value: 39.217
- type: ndcg_at_5
value: 36.521
- type: precision_at_1
value: 43.034
- type: precision_at_10
value: 25.324999999999996
- type: precision_at_100
value: 8.022
- type: precision_at_1000
value: 2.0629999999999997
- type: precision_at_3
value: 36.945
- type: precision_at_5
value: 31.517
- type: recall_at_1
value: 5.604
- type: recall_at_10
value: 16.554
- type: recall_at_100
value: 33.113
- type: recall_at_1000
value: 62.832
- type: recall_at_3
value: 10.397
- type: recall_at_5
value: 12.629999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ-PL
type: nq-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.642
- type: map_at_10
value: 40.367999999999995
- type: map_at_100
value: 41.487
- type: map_at_1000
value: 41.528
- type: map_at_3
value: 36.292
- type: map_at_5
value: 38.548
- type: mrr_at_1
value: 30.156
- type: mrr_at_10
value: 42.853
- type: mrr_at_100
value: 43.742
- type: mrr_at_1000
value: 43.772
- type: mrr_at_3
value: 39.47
- type: mrr_at_5
value: 41.366
- type: ndcg_at_1
value: 30.214000000000002
- type: ndcg_at_10
value: 47.620000000000005
- type: ndcg_at_100
value: 52.486
- type: ndcg_at_1000
value: 53.482
- type: ndcg_at_3
value: 39.864
- type: ndcg_at_5
value: 43.645
- type: precision_at_1
value: 30.214000000000002
- type: precision_at_10
value: 8.03
- type: precision_at_100
value: 1.0739999999999998
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 18.183
- type: precision_at_5
value: 13.105
- type: recall_at_1
value: 26.642
- type: recall_at_10
value: 67.282
- type: recall_at_100
value: 88.632
- type: recall_at_1000
value: 96.109
- type: recall_at_3
value: 47.048
- type: recall_at_5
value: 55.791000000000004
- task:
type: Classification
dataset:
name: MTEB PAC
type: laugustyniak/abusive-clauses-pl
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 64.69446857804807
- type: ap
value: 75.58028779280512
- type: f1
value: 62.3610392963539
- task:
type: PairClassification
dataset:
name: MTEB PPC
type: PL-MTEB/ppc-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 88.4
- type: cos_sim_ap
value: 93.56462741831817
- type: cos_sim_f1
value: 90.73634204275535
- type: cos_sim_precision
value: 86.94992412746586
- type: cos_sim_recall
value: 94.86754966887418
- type: dot_accuracy
value: 75.3
- type: dot_ap
value: 83.06945936688015
- type: dot_f1
value: 81.50887573964496
- type: dot_precision
value: 73.66310160427807
- type: dot_recall
value: 91.22516556291392
- type: euclidean_accuracy
value: 88.8
- type: euclidean_ap
value: 93.53974198044985
- type: euclidean_f1
value: 90.87947882736157
- type: euclidean_precision
value: 89.42307692307693
- type: euclidean_recall
value: 92.3841059602649
- type: manhattan_accuracy
value: 88.8
- type: manhattan_ap
value: 93.54209967780366
- type: manhattan_f1
value: 90.85072231139645
- type: manhattan_precision
value: 88.1619937694704
- type: manhattan_recall
value: 93.70860927152319
- type: max_accuracy
value: 88.8
- type: max_ap
value: 93.56462741831817
- type: max_f1
value: 90.87947882736157
- task:
type: PairClassification
dataset:
name: MTEB PSC
type: PL-MTEB/psc-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 97.03153988868274
- type: cos_sim_ap
value: 98.63208302459417
- type: cos_sim_f1
value: 95.06172839506173
- type: cos_sim_precision
value: 96.25
- type: cos_sim_recall
value: 93.90243902439023
- type: dot_accuracy
value: 86.82745825602969
- type: dot_ap
value: 83.77450133931302
- type: dot_f1
value: 79.3053545586107
- type: dot_precision
value: 75.48209366391184
- type: dot_recall
value: 83.53658536585365
- type: euclidean_accuracy
value: 97.03153988868274
- type: euclidean_ap
value: 98.80678168225653
- type: euclidean_f1
value: 95.20958083832335
- type: euclidean_precision
value: 93.52941176470588
- type: euclidean_recall
value: 96.95121951219512
- type: manhattan_accuracy
value: 97.21706864564007
- type: manhattan_ap
value: 98.82279484224186
- type: manhattan_f1
value: 95.44072948328268
- type: manhattan_precision
value: 95.15151515151516
- type: manhattan_recall
value: 95.73170731707317
- type: max_accuracy
value: 97.21706864564007
- type: max_ap
value: 98.82279484224186
- type: max_f1
value: 95.44072948328268
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-IN
type: PL-MTEB/polemo2_in
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 76.84210526315789
- type: f1
value: 75.49713789106988
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-OUT
type: PL-MTEB/polemo2_out
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 53.7246963562753
- type: f1
value: 43.060592194322986
- task:
type: Retrieval
dataset:
name: MTEB Quora-PL
type: quora-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 67.021
- type: map_at_10
value: 81.362
- type: map_at_100
value: 82.06700000000001
- type: map_at_1000
value: 82.084
- type: map_at_3
value: 78.223
- type: map_at_5
value: 80.219
- type: mrr_at_1
value: 77.17
- type: mrr_at_10
value: 84.222
- type: mrr_at_100
value: 84.37599999999999
- type: mrr_at_1000
value: 84.379
- type: mrr_at_3
value: 83.003
- type: mrr_at_5
value: 83.834
- type: ndcg_at_1
value: 77.29
- type: ndcg_at_10
value: 85.506
- type: ndcg_at_100
value: 87.0
- type: ndcg_at_1000
value: 87.143
- type: ndcg_at_3
value: 82.17
- type: ndcg_at_5
value: 84.057
- type: precision_at_1
value: 77.29
- type: precision_at_10
value: 13.15
- type: precision_at_100
value: 1.522
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 36.173
- type: precision_at_5
value: 23.988
- type: recall_at_1
value: 67.021
- type: recall_at_10
value: 93.943
- type: recall_at_100
value: 99.167
- type: recall_at_1000
value: 99.929
- type: recall_at_3
value: 84.55799999999999
- type: recall_at_5
value: 89.697
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS-PL
type: scidocs-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.523
- type: map_at_10
value: 11.584
- type: map_at_100
value: 13.705
- type: map_at_1000
value: 14.038999999999998
- type: map_at_3
value: 8.187999999999999
- type: map_at_5
value: 9.922
- type: mrr_at_1
value: 22.1
- type: mrr_at_10
value: 32.946999999999996
- type: mrr_at_100
value: 34.11
- type: mrr_at_1000
value: 34.163
- type: mrr_at_3
value: 29.633
- type: mrr_at_5
value: 31.657999999999998
- type: ndcg_at_1
value: 22.2
- type: ndcg_at_10
value: 19.466
- type: ndcg_at_100
value: 27.725
- type: ndcg_at_1000
value: 33.539
- type: ndcg_at_3
value: 18.26
- type: ndcg_at_5
value: 16.265
- type: precision_at_1
value: 22.2
- type: precision_at_10
value: 10.11
- type: precision_at_100
value: 2.204
- type: precision_at_1000
value: 0.36
- type: precision_at_3
value: 17.1
- type: precision_at_5
value: 14.44
- type: recall_at_1
value: 4.523
- type: recall_at_10
value: 20.497
- type: recall_at_100
value: 44.757000000000005
- type: recall_at_1000
value: 73.14699999999999
- type: recall_at_3
value: 10.413
- type: recall_at_5
value: 14.638000000000002
- task:
type: PairClassification
dataset:
name: MTEB SICK-E-PL
type: PL-MTEB/sicke-pl-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 87.4235629841011
- type: cos_sim_ap
value: 84.46531935663157
- type: cos_sim_f1
value: 77.18910963944077
- type: cos_sim_precision
value: 79.83257229832572
- type: cos_sim_recall
value: 74.71509971509973
- type: dot_accuracy
value: 81.10476966979209
- type: dot_ap
value: 71.12231750543143
- type: dot_f1
value: 68.13455657492355
- type: dot_precision
value: 59.69989281886387
- type: dot_recall
value: 79.34472934472934
- type: euclidean_accuracy
value: 87.21973094170403
- type: euclidean_ap
value: 84.33077991405355
- type: euclidean_f1
value: 76.81931132410365
- type: euclidean_precision
value: 76.57466383581033
- type: euclidean_recall
value: 77.06552706552706
- type: manhattan_accuracy
value: 87.21973094170403
- type: manhattan_ap
value: 84.35651252115137
- type: manhattan_f1
value: 76.87004481213376
- type: manhattan_precision
value: 74.48229792919172
- type: manhattan_recall
value: 79.41595441595442
- type: max_accuracy
value: 87.4235629841011
- type: max_ap
value: 84.46531935663157
- type: max_f1
value: 77.18910963944077
- task:
type: STS
dataset:
name: MTEB SICK-R-PL
type: PL-MTEB/sickr-pl-sts
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 83.05629619004273
- type: cos_sim_spearman
value: 79.90632583043678
- type: euclidean_pearson
value: 81.56426663515931
- type: euclidean_spearman
value: 80.05439220131294
- type: manhattan_pearson
value: 81.52958181013108
- type: manhattan_spearman
value: 80.0387467163383
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 35.93847200513348
- type: cos_sim_spearman
value: 39.31543525546526
- type: euclidean_pearson
value: 30.19743936591465
- type: euclidean_spearman
value: 39.966612599252095
- type: manhattan_pearson
value: 30.195614462473387
- type: manhattan_spearman
value: 39.822552043685754
- task:
type: Retrieval
dataset:
name: MTEB SciFact-PL
type: scifact-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 56.05
- type: map_at_10
value: 65.93299999999999
- type: map_at_100
value: 66.571
- type: map_at_1000
value: 66.60000000000001
- type: map_at_3
value: 63.489
- type: map_at_5
value: 64.91799999999999
- type: mrr_at_1
value: 59.0
- type: mrr_at_10
value: 67.026
- type: mrr_at_100
value: 67.559
- type: mrr_at_1000
value: 67.586
- type: mrr_at_3
value: 65.444
- type: mrr_at_5
value: 66.278
- type: ndcg_at_1
value: 59.0
- type: ndcg_at_10
value: 70.233
- type: ndcg_at_100
value: 72.789
- type: ndcg_at_1000
value: 73.637
- type: ndcg_at_3
value: 66.40700000000001
- type: ndcg_at_5
value: 68.206
- type: precision_at_1
value: 59.0
- type: precision_at_10
value: 9.367
- type: precision_at_100
value: 1.06
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.222
- type: precision_at_5
value: 17.067
- type: recall_at_1
value: 56.05
- type: recall_at_10
value: 82.089
- type: recall_at_100
value: 93.167
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 71.822
- type: recall_at_5
value: 76.483
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID-PL
type: trec-covid-pl
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.21
- type: map_at_10
value: 1.7680000000000002
- type: map_at_100
value: 9.447999999999999
- type: map_at_1000
value: 21.728
- type: map_at_3
value: 0.603
- type: map_at_5
value: 0.9610000000000001
- type: mrr_at_1
value: 80.0
- type: mrr_at_10
value: 88.667
- type: mrr_at_100
value: 88.667
- type: mrr_at_1000
value: 88.667
- type: mrr_at_3
value: 87.667
- type: mrr_at_5
value: 88.667
- type: ndcg_at_1
value: 77.0
- type: ndcg_at_10
value: 70.814
- type: ndcg_at_100
value: 52.532000000000004
- type: ndcg_at_1000
value: 45.635999999999996
- type: ndcg_at_3
value: 76.542
- type: ndcg_at_5
value: 73.24000000000001
- type: precision_at_1
value: 80.0
- type: precision_at_10
value: 75.0
- type: precision_at_100
value: 53.879999999999995
- type: precision_at_1000
value: 20.002
- type: precision_at_3
value: 80.0
- type: precision_at_5
value: 76.4
- type: recall_at_1
value: 0.21
- type: recall_at_10
value: 2.012
- type: recall_at_100
value: 12.781999999999998
- type: recall_at_1000
value: 42.05
- type: recall_at_3
value: 0.644
- type: recall_at_5
value: 1.04
---
<h1 align="center">MMLW-roberta-large</h1>
MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish.
This is a distilled model that can be used to generate embeddings applicable to many tasks such as semantic similarity, clustering, information retrieval. The model can also serve as a base for further fine-tuning.
It transforms texts to 1024 dimensional vectors.
The model was initialized with Polish RoBERTa checkpoint, and then trained with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) on a diverse corpus of 60 million Polish-English text pairs. We utilised [English FlagEmbeddings (BGE)](https://huggingface.co/BAAI/bge-base-en) as teacher models for distillation.
## Usage (Sentence-Transformers)
⚠️ Our embedding models require the use of specific prefixes and suffixes when encoding texts. For this model, each query should be preceded by the prefix **"zapytanie: "** ⚠️
You can use the model like this with [sentence-transformers](https://www.SBERT.net):
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
query_prefix = "zapytanie: "
answer_prefix = ""
queries = [query_prefix + "Jak dożyć 100 lat?"]
answers = [
answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
model = SentenceTransformer("sdadas/mmlw-roberta-large")
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)
best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
print(answers[best_answer])
# Trzeba zdrowo się odżywiać i uprawiać sport.
```
## Evaluation Results
- The model achieves an **Average Score** of **63.23** on the Polish Massive Text Embedding Benchmark (MTEB). See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for detailed results.
- The model achieves **NDCG@10** of **55.95** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results.
## Acknowledgements
This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.
## Citation
```bibtex
@article{dadas2024pirb,
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
year={2024},
eprint={2402.13350},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
"SCIFACT"
] |
microsoft/Phi-3-small-128k-instruct | microsoft | text-generation | [
"transformers",
"safetensors",
"phi3small",
"text-generation",
"nlp",
"code",
"conversational",
"custom_code",
"multilingual",
"license:mit",
"autotrain_compatible",
"region:us"
] | "2024-05-07T15:29:20Z" | 2024-09-12T18:24:31+00:00 | 7,849 | 175 | ---
language:
- multilingual
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-small-128k-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- code
inference:
parameters:
temperature: 0.7
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
---
🎉 **Phi-3.5**: [[mini-instruct]](https://huggingface.co/microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)
## Model Summary
The Phi-3-Small-128K-Instruct is a 7B parameters, lightweight, state-of-the-art open model trained with the Phi-3 datasets that includes both synthetic data and the filtered publicly available websites data with a focus on high-quality and reasoning dense properties.
The model belongs to the Phi-3 family with the Small version in two variants [8K](https://huggingface.co/microsoft/Phi-3-small-8k-instruct) and [128K](https://huggingface.co/microsoft/Phi-3-small-128k-instruct) which is the context length (in tokens) that it can support.
The model has underwent a post-training process that incorporates both supervised fine-tuning and direct preference optimization for the instruction following and safety measures.
When assessed against benchmarks testing common sense, language understanding, math, code, long context and logical reasoning, Phi-3-Small-128K-Instruct showcased a robust and state-of-the-art performance among models of the same-size and next-size-up.
Resources and Technical Documentation:
+ [Phi-3 Microsoft Blog](https://aka.ms/Phi-3Build2024)
+ [Phi-3 Technical Report](https://aka.ms/phi3-tech-report)
+ [Phi-3 on Azure AI Studio](https://aka.ms/phi3-azure-ai)
+ [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook)
| | Short Context | Long Context |
| ------- | ------------- | ------------ |
| Mini | 4K [[HF]](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-onnx) ; [[GGUF]](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf) | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct-onnx)|
| Small | 8K [[HF]](https://huggingface.co/microsoft/Phi-3-small-8k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-small-8k-instruct-onnx-cuda) | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-small-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-small-128k-instruct-onnx-cuda)|
| Medium | 4K [[HF]](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct-onnx-cuda) | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-cuda)|
| Vision | | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct-onnx-cuda)|
## Intended Uses
**Primary use cases**
The model is intended for broad commercial and research use in English. The model provides uses for general purpose AI systems and applications which require :
1) Memory/compute constrained environments
2) Latency bound scenarios
3) Strong reasoning (especially code, math and logic)
Our model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
**Use case considerations**
Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fariness before using within a specific downstream use case, particularly for high risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
## How to Use
Phi-3-Small-128K-Instruct has been integrated in the development version (4.40.2) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
* Install tiktoken (0.6.0) ans triton (2.3.0)
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
The current `transformers` version can be verified with: `pip list | grep transformers`.
Phi-3-Small-128K-Instruct is also available in [Azure AI](https://ai.azure.com/explore/models?&selectedCollection=phi).
### Tokenizer
Phi-3-Small-128K-Instruct supports a vocabulary size of up to `100352` tokens.
### Chat Format
Given the nature of the training data, the Phi-3-Small-128K-Instruct model is best suited for prompts using the chat format as follows.
You can provide the prompt as a question with a generic template as follow:
```markdown
<|endoftext|><|user|>\nQuestion <|end|>\n<|assistant|>
```
For example:
```markdown
<|endoftext|><|user|>
How to explain Internet for a medieval knight?<|end|>
<|assistant|>
```
where the model generates the text after `<|assistant|>` . In case of few-shots prompt, the prompt can be formatted as the following:
```markdown
<|endoftext|><|user|>
I am going to Paris, what should I see?<|end|>
<|assistant|>
Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris:\n\n1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city.\n2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa.\n3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows.\n\nThese are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world."<|end|>
<|user|>
What is so great about #1?<|end|>
<|assistant|>
```
### Sample inference code
This code snippets show how to get quickly started with running the model on a GPU:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model_id = "microsoft/Phi-3-small-128k-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
trust_remote_code=True,
)
assert torch.cuda.is_available(), "This model needs a GPU to run ..."
device = torch.cuda.current_device()
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=device
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
*Some applications/frameworks might not include a BOS token (`<|endoftext|>`) at the start of the conversation. Please ensure that it is included since it provides more reliable results.*
## Responsible AI Considerations
Like other language models, the Phi series models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: the Phi models are trained primarily on English text. Languages other than English will experience worse performance. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: these models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the use case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
Developers should apply responsible AI best practices and are responsible for ensuring that a specific use case complies with relevant laws and regulations (e.g. privacy, trade, etc.). Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
## Training
### Model
* Architecture: Phi-3 Small-128K-Instruct has 7B parameters and is a dense decoder-only Transformer model with alternating dense and blocksparse attentions. The model is fine-tuned with Supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) to ensure alignment with human preferences and safety guidlines.
* Inputs: Text. It is best suited for prompts using chat format.
* Context length: 128K tokens
* GPUs: 1024 H100-80G
* Training time: 18 days
* Training data: 4.8T tokens
* Outputs: Generated text in response to the input
* Dates: Our models were trained between February and April 2024
* Status: This is a static model trained on an offline dataset with cutoff date October 2023. Future versions of the tuned models may be released as we improve models.
* Release dates The model weight is released on May 21, 2024.
### Datasets
Our training data includes a wide variety of sources, totaling 4.8 trillion tokens (including 10% multilingual), and is a combination of
1) Publicly available documents filtered rigorously for quality, selected high-quality educational data, and code;
2) Newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.);
3) High quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness.
We are focusing on the quality of data that could potentially improve the reasoning ability for the model, and we filter the publicly available documents to contain the correct level of knowledge. As an example, the result of a game in premier league in a particular day might be good training data for frontier models, but we need to remove such information to leave more model capacity for reasoning for the small size models. More details about data can be found in the [Phi-3 Technical Report](https://aka.ms/phi3-tech-report).
## Benchmarks
We report the results for Phi-3-Small-128K-Instruct on standard open-source benchmarks measuring the model's reasoning ability (both common sense reasoning and logical reasoning). We compare to Mixtral-8x7b, Gemini-Pro, Gemma 7B, Llama-3-8B-Instruct, GPT-3.5-Turbo-1106, and GPT-4-Turbo-1106.
All the reported numbers are produced with the exact same pipeline to ensure that the numbers are comparable. These numbers might differ from other published numbers due to slightly different choices in the evaluation.
As is now standard, we use few-shot prompts to evaluate the models, at temperature 0.
The prompts and number of shots are part of a Microsoft internal tool to evaluate language models, and in particular we did no optimization to the pipeline for Phi-3.
More specifically, we do not change prompts, pick different few-shot examples, change prompt format, or do any other form of optimization for the model.
The number of k–shot examples is listed per-benchmark.
|Benchmark|Phi-3-Small-128K-Instruct<br>7b|Gemma<br>7B|Mixtral<br>8x7B|Llama-3-Instruct<br>8b|GPT-3.5-Turbo<br>version 1106|Gemini<br>Pro|GPT-4-Turbo<br>version 1106 (Chat)|
|---------|-------------------------------|----------|-------------|-------------------------|---------------------------|------------|--------------------------------|
|AGI Eval<br>5-shot|43.9|42.1|45.2|42.0|48.4|49.0|59.6|
|MMLU<br>5-shot|75.5|63.6|70.5|66.5|71.4|66.7|84.0|
|BigBench Hard<br>3-shot|77.6|59.6|69.7|51.5|68.3|75.6|87.7|
|ANLI<br>7-shot|55.8|48.7|55.2|57.3|58.1|64.2|71.7|
|HellaSwag<br>5-shot|79.6|49.8|70.4|71.1|78.8|76.2|88.3|
|ARC Challenge<br>10-shot|90.8|78.3|87.3|82.8|87.4|88.3|95.6|
|ARC Easy<br>10-shot|97.3|91.4|95.6|93.4|96.3|96.1|98.8|
|BoolQ<br>2-shot|83.7|66.0|76.6|80.9|79.1|86.4|91.3|
|CommonsenseQA<br>10-shot|80.8|76.2|78.1|79.0|79.6|81.8|86.7|
|MedQA<br>2-shot|46.3|49.6|62.2|60.5|63.4|58.2|83.7|
|OpenBookQA<br>10-shot|87.8|78.6|85.8|82.6|86.0|86.4|93.4|
|PIQA<br>5-shot|88.1|78.1|86.0|75.7|86.6|86.2|90.1|
|Social IQA<br>5-shot|78.7|65.5|75.9|73.9|68.3|75.4|81.7|
|TruthfulQA (MC2)<br>10-shot|69.6|52.1|60.1|63.2|67.7|72.6|85.2|
|WinoGrande<br>5-shot|80.1|55.6|62.0|65.0|68.8|72.2|86.7|
|TriviaQA<br>5-shot|66.0|72.3|82.2|67.7|85.8|80.2|73.3|
|GSM8K Chain of Thought<br>8-shot|87.3|59.8|64.7|77.4|78.1|80.4|94.2|
|HumanEval<br>0-shot|59.1|34.1|37.8|60.4|62.2|64.4|79.9|
|MBPP<br>3-shot|70.3|51.5|60.2|67.7|77.8|73.2|86.7|
|Average|74.6|61.8|69.8|69.4|74.3|75.4|85.2|
We take a closer look at different categories across 80 public benchmark datasets at the table below:
|Benchmark|Phi-3-Small-128K-Instruct<br>7b|Gemma<br>7B|Mixtral<br>8x7B|Llama-3-Instruct<br>8b|GPT-3.5-Turbo<br>version 1106|Gemini<br>Pro|GPT-4-Turbo<br>version 1106 (Chat)|
|--------|--------------------------|--------|-------------|-------------------|-------------------|----------|------------------------|
|Popular aggregated benchmark|70.6|59.4|66.2|59.9|67.0|67.5|80.5|
|Reasoning|80.3|69.1|77.0|75.7|78.3|80.4|89.3|
|Language understanding|67.4|58.4|64.9|65.4|70.4|75.3|81.6|
|Code generation|60.0|45.6|52.7|56.4|70.4|66.7|76.1|
|Math|48.1|35.8|40.3|41.1|52.8|50.9|67.1|
|Factual knowledge|41.7|46.7|58.6|43.1|63.4|54.6|45.9|
|Multilingual|62.6|63.2|63.4|65.0|69.1|76.5|82.0|
|Robustness|68.7|38.4|51.0|64.5|69.3|69.7|84.6|
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [DeepSpeed](https://github.com/microsoft/DeepSpeed)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
* [Tiktoken](https://github.com/openai/tiktoken)
* [Triton](https://github.com/openai/triton)
## Hardware
Note that by default, the Phi-3-Small model uses flash attention 2 and Triton blocksparse attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
If you want to run the model on:
+ Optimized inference on GPU, CPU, and Mobile: use the **ONNX** models [128K](https://huggingface.co/microsoft/Phi-3-small-128k-instruct-onnx-cuda)
## Cross Platform Support
ONNX runtime ecosystem now supports Phi3 small models across platforms and hardware.
Optimized phi-3 models are also published here in ONNX format, to run with ONNX Runtime on CPU and GPU across devices, including server platforms, Windows, Linux and Mac desktops, and mobile CPUs, with the precision best suited to each of these targets. DirectML GPU acceleration is supported for Windows desktops GPUs (AMD, Intel, and NVIDIA).
Along with DML, ONNX Runtime provides cross platform support for Phi3 Small across a range of devices CPU, GPU, and mobile.
Here are some of the optimized configurations we have added:
1. ONNX models for int4 DML: Quantized to int4 via AWQ
2. ONNX model for fp16 CUDA
3. ONNX model for int4 CUDA: Quantized to int4 via RTN
4. ONNX model for int4 CPU and Mobile: Quantized to int4 via RTN
## License
The model is licensed under the [MIT license](https://huggingface.co/microsoft/Phi-3-small-128k/resolve/main/LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
| [
"MEDQA"
] |
CLTL/MedRoBERTa.nl | CLTL | fill-mask | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"nl",
"doi:10.57967/hf/0960",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2022-03-02T23:29:04Z" | 2024-10-14T15:36:04+00:00 | 7,826 | 11 | ---
language: nl
license: mit
---
# MedRoBERTa.nl
## Description
This model is a RoBERTa-based model pre-trained from scratch on Dutch hospital notes sourced from Electronic Health Records. The model is not fine-tuned. All code used for the creation of MedRoBERTa.nl can be found at https://github.com/cltl-students/verkijk_stella_rma_thesis_dutch_medical_language_model.
## Intended use
The model can be fine-tuned on any type of task. Since it is a domain-specific model trained on medical data, it is meant to be used on medical NLP tasks for Dutch.
## Data
The model was trained on nearly 10 million hospital notes from the Amsterdam University Medical Centres. The training data was anonymized before starting the pre-training procedure.
## Privacy
By anonymizing the training data we made sure the model did not learn any representative associations linked to names. Apart from the training data, the model's vocabulary was also anonymized. This ensures that the model can not predict any names in the generative fill-mask task.
For more information on the model's anonymization see our publication:
Verkijk, S., & Vossen, P. (2022). Efficiently and thoroughly anonymizing a transformer language model for Dutch electronic health records: a two-step method. In Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 1098-1103).
## Authors
Stella Verkijk, Piek Vossen
## Reference
Paper: Verkijk, S. & Vossen, P. (2022) MedRoBERTa.nl: A Language Model for Dutch Electronic Health Records. Computational Linguistics in the Netherlands Journal, 11. | [
"MEDICAL DATA"
] |
michiyasunaga/BioLinkBERT-large | michiyasunaga | text-classification | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"exbert",
"linkbert",
"biolinkbert",
"fill-mask",
"question-answering",
"text-classification",
"token-classification",
"en",
"dataset:pubmed",
"arxiv:2203.15827",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | "2022-03-08T06:20:38Z" | 2022-03-31T00:54:57+00:00 | 7,776 | 33 | ---
datasets:
- pubmed
language: en
license: apache-2.0
tags:
- bert
- exbert
- linkbert
- biolinkbert
- feature-extraction
- fill-mask
- question-answering
- text-classification
- token-classification
widget:
- text: Sunitinib is a tyrosine kinase inhibitor
---
## BioLinkBERT-large
BioLinkBERT-large model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT).
This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA).
## Model description
LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document.
LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval).
## Intended uses & limitations
The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification.
You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text).
### How to use
To use the model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large')
model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large')
inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases.
## Evaluation results
When fine-tuned on downstream tasks, LinkBERT achieves the following results.
**Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art.
| | BLURB score | PubMedQA | BioASQ | MedQA-USMLE |
| ---------------------- | -------- | -------- | ------- | -------- |
| PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 |
| **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** |
| **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** |
| | MMLU-professional medicine |
| ---------------------- | -------- |
| GPT-3 (175 params) | 38.7 |
| UnifiedQA (11B params) | 43.2 |
| **BioLinkBERT-large (340M params)** | **50.7** |
## Citation
If you find LinkBERT useful in your project, please cite the following:
```bibtex
@InProceedings{yasunaga2022linkbert,
author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
title = {LinkBERT: Pretraining Language Models with Document Links},
year = {2022},
booktitle = {Association for Computational Linguistics (ACL)},
}
```
| [
"BLURB",
"MEDQA",
"PUBMEDQA"
] |
ai-sage/Giga-Embeddings-instruct | ai-sage | feature-extraction | [
"safetensors",
"gigarembed",
"mteb",
"feature-extraction",
"custom_code",
"ru",
"en",
"license:mit",
"model-index",
"region:us"
] | "2024-12-11T12:25:30Z" | 2025-02-04T09:21:03+00:00 | 7,701 | 43 | ---
language:
- ru
- en
license: mit
pipeline_tag: feature-extraction
tags:
- mteb
model-index:
- name: giga-embeddings-instruct
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 94.5352323838081
- type: ap
value: 62.422648408367344
- type: ap_weighted
value: 62.422648408367344
- type: f1
value: 87.13103677336655
- type: f1_weighted
value: 94.85637995412655
- type: main_score
value: 94.5352323838081
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 90.31343283582089
- type: ap
value: 63.42364739316405
- type: ap_weighted
value: 63.42364739316405
- type: f1
value: 85.54214552412623
- type: f1_weighted
value: 90.59539168268289
- type: main_score
value: 90.31343283582089
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 94.29605000000001
- type: ap
value: 91.30887530384256
- type: ap_weighted
value: 91.30887530384256
- type: f1
value: 94.29070662237378
- type: f1_weighted
value: 94.29070662237378
- type: main_score
value: 94.29605000000001
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 53.227999999999994
- type: map_at_1
value: 27.595999999999997
- type: map_at_10
value: 43.756
- type: map_at_100
value: 44.674
- type: map_at_1000
value: 44.675
- type: map_at_20
value: 44.511
- type: map_at_3
value: 38.312000000000005
- type: map_at_5
value: 41.271
- type: mrr_at_1
value: 27.951635846372692
- type: mrr_at_10
value: 43.8683138025244
- type: mrr_at_100
value: 44.79916793634115
- type: mrr_at_1000
value: 44.800641832434614
- type: mrr_at_20
value: 44.63636850959653
- type: mrr_at_3
value: 38.383119962067305
- type: mrr_at_5
value: 41.41299193930774
- type: nauc_map_at_1000_diff1
value: 6.936710279308449
- type: nauc_map_at_1000_max
value: -16.426102328143827
- type: nauc_map_at_1000_std
value: -18.408713623781154
- type: nauc_map_at_100_diff1
value: 6.936900325690782
- type: nauc_map_at_100_max
value: -16.424599448813982
- type: nauc_map_at_100_std
value: -18.41002427519262
- type: nauc_map_at_10_diff1
value: 6.686089466049945
- type: nauc_map_at_10_max
value: -16.277854443721235
- type: nauc_map_at_10_std
value: -18.533367246025183
- type: nauc_map_at_1_diff1
value: 10.048892770421086
- type: nauc_map_at_1_max
value: -18.88033774058785
- type: nauc_map_at_1_std
value: -18.950654138263662
- type: nauc_map_at_20_diff1
value: 6.896257398324564
- type: nauc_map_at_20_max
value: -16.28720522758851
- type: nauc_map_at_20_std
value: -18.463554340157874
- type: nauc_map_at_3_diff1
value: 6.996349008138944
- type: nauc_map_at_3_max
value: -16.895326699141894
- type: nauc_map_at_3_std
value: -18.550696483491105
- type: nauc_map_at_5_diff1
value: 6.652257808997529
- type: nauc_map_at_5_max
value: -16.616340120756664
- type: nauc_map_at_5_std
value: -18.750380766744815
- type: nauc_mrr_at_1000_diff1
value: 5.675242976111991
- type: nauc_mrr_at_1000_max
value: -16.992812047837067
- type: nauc_mrr_at_1000_std
value: -18.32929497132872
- type: nauc_mrr_at_100_diff1
value: 5.6754937777142835
- type: nauc_mrr_at_100_max
value: -16.991287123334946
- type: nauc_mrr_at_100_std
value: -18.330604638796043
- type: nauc_mrr_at_10_diff1
value: 5.392768177635316
- type: nauc_mrr_at_10_max
value: -16.891663162548255
- type: nauc_mrr_at_10_std
value: -18.471864534496945
- type: nauc_mrr_at_1_diff1
value: 8.923777873913467
- type: nauc_mrr_at_1_max
value: -18.81665268664494
- type: nauc_mrr_at_1_std
value: -18.819665466571674
- type: nauc_mrr_at_20_diff1
value: 5.641752338928701
- type: nauc_mrr_at_20_max
value: -16.85136568990159
- type: nauc_mrr_at_20_std
value: -18.384362648232546
- type: nauc_mrr_at_3_diff1
value: 5.524316132813568
- type: nauc_mrr_at_3_max
value: -17.723568343459988
- type: nauc_mrr_at_3_std
value: -18.372688451025656
- type: nauc_mrr_at_5_diff1
value: 5.414405183203325
- type: nauc_mrr_at_5_max
value: -17.288127460794154
- type: nauc_mrr_at_5_std
value: -18.71123050851349
- type: nauc_ndcg_at_1000_diff1
value: 6.487802962417493
- type: nauc_ndcg_at_1000_max
value: -15.76159401306176
- type: nauc_ndcg_at_1000_std
value: -18.15838595665605
- type: nauc_ndcg_at_100_diff1
value: 6.48323468898899
- type: nauc_ndcg_at_100_max
value: -15.728467477722477
- type: nauc_ndcg_at_100_std
value: -18.197384218078643
- type: nauc_ndcg_at_10_diff1
value: 5.423448018411026
- type: nauc_ndcg_at_10_max
value: -14.673502378215453
- type: nauc_ndcg_at_10_std
value: -18.837931889895316
- type: nauc_ndcg_at_1_diff1
value: 10.048892770421086
- type: nauc_ndcg_at_1_max
value: -18.88033774058785
- type: nauc_ndcg_at_1_std
value: -18.950654138263662
- type: nauc_ndcg_at_20_diff1
value: 6.369954849420038
- type: nauc_ndcg_at_20_max
value: -14.443991776264713
- type: nauc_ndcg_at_20_std
value: -18.416264332865836
- type: nauc_ndcg_at_3_diff1
value: 6.224331563078568
- type: nauc_ndcg_at_3_max
value: -16.183370694913553
- type: nauc_ndcg_at_3_std
value: -18.559481650690337
- type: nauc_ndcg_at_5_diff1
value: 5.659342042143408
- type: nauc_ndcg_at_5_max
value: -15.510631438356693
- type: nauc_ndcg_at_5_std
value: -18.909647623269873
- type: nauc_precision_at_1000_diff1
value: -45.740924328524436
- type: nauc_precision_at_1000_max
value: -4.436745319184523
- type: nauc_precision_at_1000_std
value: 57.94428979357973
- type: nauc_precision_at_100_diff1
value: -23.751971897164438
- type: nauc_precision_at_100_max
value: 0.5109176204949021
- type: nauc_precision_at_100_std
value: 14.133130213074722
- type: nauc_precision_at_10_diff1
value: -2.2741922400170953
- type: nauc_precision_at_10_max
value: -4.695134136659869
- type: nauc_precision_at_10_std
value: -21.566024184206757
- type: nauc_precision_at_1_diff1
value: 10.048892770421086
- type: nauc_precision_at_1_max
value: -18.88033774058785
- type: nauc_precision_at_1_std
value: -18.950654138263662
- type: nauc_precision_at_20_diff1
value: 2.366832261816588
- type: nauc_precision_at_20_max
value: 17.078759245976265
- type: nauc_precision_at_20_std
value: -17.573684824976628
- type: nauc_precision_at_3_diff1
value: 4.062538060385958
- type: nauc_precision_at_3_max
value: -14.10949953336873
- type: nauc_precision_at_3_std
value: -18.626114079282416
- type: nauc_precision_at_5_diff1
value: 2.425834990396102
- type: nauc_precision_at_5_max
value: -11.600278541101094
- type: nauc_precision_at_5_std
value: -19.53326796179894
- type: nauc_recall_at_1000_diff1
value: -45.740924328527974
- type: nauc_recall_at_1000_max
value: -4.4367453191877555
- type: nauc_recall_at_1000_std
value: 57.9442897935769
- type: nauc_recall_at_100_diff1
value: -23.751971897160466
- type: nauc_recall_at_100_max
value: 0.5109176204928446
- type: nauc_recall_at_100_std
value: 14.133130213071956
- type: nauc_recall_at_10_diff1
value: -2.2741922400170527
- type: nauc_recall_at_10_max
value: -4.695134136659742
- type: nauc_recall_at_10_std
value: -21.566024184206647
- type: nauc_recall_at_1_diff1
value: 10.048892770421086
- type: nauc_recall_at_1_max
value: -18.88033774058785
- type: nauc_recall_at_1_std
value: -18.950654138263662
- type: nauc_recall_at_20_diff1
value: 2.366832261816872
- type: nauc_recall_at_20_max
value: 17.078759245976432
- type: nauc_recall_at_20_std
value: -17.57368482497646
- type: nauc_recall_at_3_diff1
value: 4.0625380603860055
- type: nauc_recall_at_3_max
value: -14.10949953336872
- type: nauc_recall_at_3_std
value: -18.626114079282395
- type: nauc_recall_at_5_diff1
value: 2.425834990396135
- type: nauc_recall_at_5_max
value: -11.60027854110106
- type: nauc_recall_at_5_std
value: -19.533267961798924
- type: ndcg_at_1
value: 27.595999999999997
- type: ndcg_at_10
value: 53.227999999999994
- type: ndcg_at_100
value: 56.931
- type: ndcg_at_1000
value: 56.967999999999996
- type: ndcg_at_20
value: 55.921
- type: ndcg_at_3
value: 41.908
- type: ndcg_at_5
value: 47.285
- type: precision_at_1
value: 27.595999999999997
- type: precision_at_10
value: 8.371
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.712000000000001
- type: precision_at_3
value: 17.449
- type: precision_at_5
value: 13.100999999999999
- type: recall_at_1
value: 27.595999999999997
- type: recall_at_10
value: 83.71300000000001
- type: recall_at_100
value: 99.36
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 94.23899999999999
- type: recall_at_3
value: 52.347
- type: recall_at_5
value: 65.505
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 58.18725222465893
- type: map
value: 58.18725222465893
- type: mrr
value: 69.84335839598998
- type: nAUC_map_diff1
value: 19.11598989756231
- type: nAUC_map_max
value: 15.695053858587466
- type: nAUC_map_std
value: 22.147773436080342
- type: nAUC_mrr_diff1
value: 25.38427130339339
- type: nAUC_mrr_max
value: 24.2962940173052
- type: nAUC_mrr_std
value: 20.846599304343176
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 87.40814966131607
- type: cosine_spearman
value: 84.21758160533057
- type: euclidean_pearson
value: 86.68087011664755
- type: euclidean_spearman
value: 84.21758160533057
- type: main_score
value: 84.21758160533057
- type: manhattan_pearson
value: 86.8885717540405
- type: manhattan_spearman
value: 84.69409848718736
- type: pearson
value: 87.40814966131607
- type: spearman
value: 84.21758160533057
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 87.78571428571429
- type: f1
value: 87.55183393575304
- type: f1_weighted
value: 87.55183393575307
- type: main_score
value: 87.78571428571429
- task:
type: MultilabelClassification
dataset:
name: MTEB CEDRClassification (default)
type: ai-forever/cedr-classification
config: default
split: test
revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4
metrics:
- type: accuracy
value: 59.6894792773645
- type: f1
value: 59.07371458842751
- type: lrap
value: 84.46838469713137
- type: main_score
value: 59.6894792773645
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: main_score
value: 36.264
- type: map_at_1
value: 21.54
- type: map_at_10
value: 30.146
- type: map_at_100
value: 31.733
- type: map_at_1000
value: 31.909
- type: map_at_20
value: 30.973
- type: map_at_3
value: 27.021
- type: map_at_5
value: 28.444000000000003
- type: mrr_at_1
value: 27.181688125894134
- type: mrr_at_10
value: 36.026636691872724
- type: mrr_at_100
value: 37.03343694715993
- type: mrr_at_1000
value: 37.089502279951105
- type: mrr_at_20
value: 36.575238947911984
- type: mrr_at_3
value: 33.07105388650455
- type: mrr_at_5
value: 34.50882212684788
- type: nauc_map_at_1000_diff1
value: 40.00591947815747
- type: nauc_map_at_1000_max
value: 24.149847825797917
- type: nauc_map_at_1000_std
value: 3.2086670255845404
- type: nauc_map_at_100_diff1
value: 40.00441108717158
- type: nauc_map_at_100_max
value: 24.055155307330164
- type: nauc_map_at_100_std
value: 3.2204001395328916
- type: nauc_map_at_10_diff1
value: 39.92034196847358
- type: nauc_map_at_10_max
value: 23.481367728480564
- type: nauc_map_at_10_std
value: 2.46524430460527
- type: nauc_map_at_1_diff1
value: 45.210951522814256
- type: nauc_map_at_1_max
value: 23.426091924328706
- type: nauc_map_at_1_std
value: -2.7839519807285074
- type: nauc_map_at_20_diff1
value: 39.765141613442495
- type: nauc_map_at_20_max
value: 23.8640869346293
- type: nauc_map_at_20_std
value: 2.9991581054265746
- type: nauc_map_at_3_diff1
value: 40.6459399697723
- type: nauc_map_at_3_max
value: 23.680185542835098
- type: nauc_map_at_3_std
value: 0.29419617901594664
- type: nauc_map_at_5_diff1
value: 39.93079810788306
- type: nauc_map_at_5_max
value: 23.524497440705254
- type: nauc_map_at_5_std
value: 1.7962358900605613
- type: nauc_mrr_at_1000_diff1
value: 39.10944438111878
- type: nauc_mrr_at_1000_max
value: 24.778123336724732
- type: nauc_mrr_at_1000_std
value: 3.0165840634640846
- type: nauc_mrr_at_100_diff1
value: 39.10734982136307
- type: nauc_mrr_at_100_max
value: 24.766616675099815
- type: nauc_mrr_at_100_std
value: 3.0334155163562615
- type: nauc_mrr_at_10_diff1
value: 39.037151411366814
- type: nauc_mrr_at_10_max
value: 24.599134492259704
- type: nauc_mrr_at_10_std
value: 2.978930527526268
- type: nauc_mrr_at_1_diff1
value: 44.96218824994712
- type: nauc_mrr_at_1_max
value: 25.591689538899846
- type: nauc_mrr_at_1_std
value: -1.3310616968087603
- type: nauc_mrr_at_20_diff1
value: 38.909044438924994
- type: nauc_mrr_at_20_max
value: 24.621874344604244
- type: nauc_mrr_at_20_std
value: 2.965642154907867
- type: nauc_mrr_at_3_diff1
value: 39.36364809687436
- type: nauc_mrr_at_3_max
value: 24.843395616218665
- type: nauc_mrr_at_3_std
value: 1.3819897830014731
- type: nauc_mrr_at_5_diff1
value: 38.863436520404
- type: nauc_mrr_at_5_max
value: 24.90556151740949
- type: nauc_mrr_at_5_std
value: 2.7820696970598653
- type: nauc_ndcg_at_1000_diff1
value: 38.83322428704425
- type: nauc_ndcg_at_1000_max
value: 25.27156294182745
- type: nauc_ndcg_at_1000_std
value: 6.973933838132665
- type: nauc_ndcg_at_100_diff1
value: 38.40151337957579
- type: nauc_ndcg_at_100_max
value: 24.160017604166402
- type: nauc_ndcg_at_100_std
value: 7.235920148334983
- type: nauc_ndcg_at_10_diff1
value: 37.50309281936751
- type: nauc_ndcg_at_10_max
value: 23.024367502884033
- type: nauc_ndcg_at_10_std
value: 4.995596569024126
- type: nauc_ndcg_at_1_diff1
value: 44.96218824994712
- type: nauc_ndcg_at_1_max
value: 25.591689538899846
- type: nauc_ndcg_at_1_std
value: -1.3310616968087603
- type: nauc_ndcg_at_20_diff1
value: 36.84316736441035
- type: nauc_ndcg_at_20_max
value: 23.35930351746899
- type: nauc_ndcg_at_20_std
value: 5.764156579665355
- type: nauc_ndcg_at_3_diff1
value: 39.00520993808036
- type: nauc_ndcg_at_3_max
value: 24.336089017831654
- type: nauc_ndcg_at_3_std
value: 1.9558269186682105
- type: nauc_ndcg_at_5_diff1
value: 37.76541751097454
- type: nauc_ndcg_at_5_max
value: 23.93546553994223
- type: nauc_ndcg_at_5_std
value: 4.178781488281662
- type: nauc_precision_at_1000_diff1
value: -10.372529546949247
- type: nauc_precision_at_1000_max
value: 3.594993364396436
- type: nauc_precision_at_1000_std
value: -3.360438126279742
- type: nauc_precision_at_100_diff1
value: 3.5552491090605667
- type: nauc_precision_at_100_max
value: 13.448701405797095
- type: nauc_precision_at_100_std
value: 12.621615292982941
- type: nauc_precision_at_10_diff1
value: 19.337662094452096
- type: nauc_precision_at_10_max
value: 22.307700535828424
- type: nauc_precision_at_10_std
value: 14.350516411235187
- type: nauc_precision_at_1_diff1
value: 44.96218824994712
- type: nauc_precision_at_1_max
value: 25.591689538899846
- type: nauc_precision_at_1_std
value: -1.3310616968087603
- type: nauc_precision_at_20_diff1
value: 12.196602490339437
- type: nauc_precision_at_20_max
value: 21.283209534212133
- type: nauc_precision_at_20_std
value: 15.740621879710156
- type: nauc_precision_at_3_diff1
value: 31.369103118497083
- type: nauc_precision_at_3_max
value: 25.298131418390064
- type: nauc_precision_at_3_std
value: 6.505279304669079
- type: nauc_precision_at_5_diff1
value: 26.088097622906997
- type: nauc_precision_at_5_max
value: 25.166926352778273
- type: nauc_precision_at_5_std
value: 12.204299883327282
- type: nauc_recall_at_1000_diff1
value: 34.255882215302044
- type: nauc_recall_at_1000_max
value: 27.835351170558503
- type: nauc_recall_at_1000_std
value: 59.56089209650579
- type: nauc_recall_at_100_diff1
value: 28.507339884100354
- type: nauc_recall_at_100_max
value: 16.4950314804097
- type: nauc_recall_at_100_std
value: 23.991797968783846
- type: nauc_recall_at_10_diff1
value: 29.44195661453061
- type: nauc_recall_at_10_max
value: 16.630540783772904
- type: nauc_recall_at_10_std
value: 10.542317179779532
- type: nauc_recall_at_1_diff1
value: 45.210951522814256
- type: nauc_recall_at_1_max
value: 23.426091924328706
- type: nauc_recall_at_1_std
value: -2.7839519807285074
- type: nauc_recall_at_20_diff1
value: 25.291470975834052
- type: nauc_recall_at_20_max
value: 16.973739781631583
- type: nauc_recall_at_20_std
value: 12.628456973580771
- type: nauc_recall_at_3_diff1
value: 34.530232948887644
- type: nauc_recall_at_3_max
value: 21.410528878364
- type: nauc_recall_at_3_std
value: 3.3335643912576365
- type: nauc_recall_at_5_diff1
value: 31.549298686623896
- type: nauc_recall_at_5_max
value: 20.019545741301524
- type: nauc_recall_at_5_std
value: 8.638769848309126
- type: ndcg_at_1
value: 27.182000000000002
- type: ndcg_at_10
value: 36.264
- type: ndcg_at_100
value: 42.935
- type: ndcg_at_1000
value: 45.64
- type: ndcg_at_20
value: 38.619
- type: ndcg_at_3
value: 30.971
- type: ndcg_at_5
value: 32.799
- type: precision_at_1
value: 27.182000000000002
- type: precision_at_10
value: 7.396
- type: precision_at_100
value: 1.375
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_20
value: 4.571
- type: precision_at_3
value: 15.068999999999999
- type: precision_at_5
value: 10.959000000000001
- type: recall_at_1
value: 21.54
- type: recall_at_10
value: 48.304
- type: recall_at_100
value: 77.24
- type: recall_at_1000
value: 94.405
- type: recall_at_20
value: 56.845
- type: recall_at_3
value: 32.828
- type: recall_at_5
value: 38.029
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: main_score
value: 32.666000000000004
- type: map_at_1
value: 19.496
- type: map_at_10
value: 27.708
- type: map_at_100
value: 28.884999999999998
- type: map_at_1000
value: 29.03
- type: map_at_20
value: 28.347
- type: map_at_3
value: 25.188
- type: map_at_5
value: 26.756999999999998
- type: mrr_at_1
value: 24.14012738853503
- type: mrr_at_10
value: 32.26827418865631
- type: mrr_at_100
value: 33.191905671640306
- type: mrr_at_1000
value: 33.25234496385887
- type: mrr_at_20
value: 32.83671423953111
- type: mrr_at_3
value: 29.893842887473426
- type: mrr_at_5
value: 31.419320594479768
- type: nauc_map_at_1000_diff1
value: 41.76617526166196
- type: nauc_map_at_1000_max
value: 32.36105298409472
- type: nauc_map_at_1000_std
value: 3.6495511496519155
- type: nauc_map_at_100_diff1
value: 41.78018349925877
- type: nauc_map_at_100_max
value: 32.28108511470037
- type: nauc_map_at_100_std
value: 3.5129991248899075
- type: nauc_map_at_10_diff1
value: 41.98486116566451
- type: nauc_map_at_10_max
value: 32.047237898567715
- type: nauc_map_at_10_std
value: 2.7440607363035925
- type: nauc_map_at_1_diff1
value: 47.14494297512505
- type: nauc_map_at_1_max
value: 30.729904533725882
- type: nauc_map_at_1_std
value: -1.4748123251677638
- type: nauc_map_at_20_diff1
value: 41.87357825935804
- type: nauc_map_at_20_max
value: 32.074571884360616
- type: nauc_map_at_20_std
value: 3.0650478802649506
- type: nauc_map_at_3_diff1
value: 43.44660277541162
- type: nauc_map_at_3_max
value: 31.5736965905546
- type: nauc_map_at_3_std
value: 1.2023760907565173
- type: nauc_map_at_5_diff1
value: 42.63344243739587
- type: nauc_map_at_5_max
value: 31.67816525700815
- type: nauc_map_at_5_std
value: 2.0332027700373905
- type: nauc_mrr_at_1000_diff1
value: 40.21948167058019
- type: nauc_mrr_at_1000_max
value: 33.42753771790736
- type: nauc_mrr_at_1000_std
value: 5.933854401399415
- type: nauc_mrr_at_100_diff1
value: 40.207921855075405
- type: nauc_mrr_at_100_max
value: 33.40962655654419
- type: nauc_mrr_at_100_std
value: 5.9276614649538395
- type: nauc_mrr_at_10_diff1
value: 40.24913874148852
- type: nauc_mrr_at_10_max
value: 33.44670144717516
- type: nauc_mrr_at_10_std
value: 5.676393545620746
- type: nauc_mrr_at_1_diff1
value: 46.38319251926657
- type: nauc_mrr_at_1_max
value: 34.74359913713124
- type: nauc_mrr_at_1_std
value: 3.082081961113807
- type: nauc_mrr_at_20_diff1
value: 40.126314085897654
- type: nauc_mrr_at_20_max
value: 33.37213958773027
- type: nauc_mrr_at_20_std
value: 5.861425354325102
- type: nauc_mrr_at_3_diff1
value: 41.76392677686872
- type: nauc_mrr_at_3_max
value: 33.75783375631955
- type: nauc_mrr_at_3_std
value: 5.242263033695973
- type: nauc_mrr_at_5_diff1
value: 40.66128066488706
- type: nauc_mrr_at_5_max
value: 33.22364679237956
- type: nauc_mrr_at_5_std
value: 5.430528733486765
- type: nauc_ndcg_at_1000_diff1
value: 38.63357657667927
- type: nauc_ndcg_at_1000_max
value: 33.52315610562187
- type: nauc_ndcg_at_1000_std
value: 8.432732805029033
- type: nauc_ndcg_at_100_diff1
value: 38.603550373052855
- type: nauc_ndcg_at_100_max
value: 32.78553003015518
- type: nauc_ndcg_at_100_std
value: 7.665142929815671
- type: nauc_ndcg_at_10_diff1
value: 39.17218005607024
- type: nauc_ndcg_at_10_max
value: 32.37648122534756
- type: nauc_ndcg_at_10_std
value: 5.229213836558875
- type: nauc_ndcg_at_1_diff1
value: 46.38319251926657
- type: nauc_ndcg_at_1_max
value: 34.74359913713124
- type: nauc_ndcg_at_1_std
value: 3.082081961113807
- type: nauc_ndcg_at_20_diff1
value: 38.839733199852226
- type: nauc_ndcg_at_20_max
value: 32.16751688681974
- type: nauc_ndcg_at_20_std
value: 5.9529585154962
- type: nauc_ndcg_at_3_diff1
value: 41.44525877654365
- type: nauc_ndcg_at_3_max
value: 32.42707626231848
- type: nauc_ndcg_at_3_std
value: 3.5522432042425214
- type: nauc_ndcg_at_5_diff1
value: 40.20334324643417
- type: nauc_ndcg_at_5_max
value: 31.866704090360177
- type: nauc_ndcg_at_5_std
value: 4.129311453116482
- type: nauc_precision_at_1000_diff1
value: -2.7079160999067655
- type: nauc_precision_at_1000_max
value: 13.96843551636217
- type: nauc_precision_at_1000_std
value: 22.67619361153759
- type: nauc_precision_at_100_diff1
value: 5.367108735367731
- type: nauc_precision_at_100_max
value: 23.261316733202513
- type: nauc_precision_at_100_std
value: 26.503281683469794
- type: nauc_precision_at_10_diff1
value: 21.861845852630704
- type: nauc_precision_at_10_max
value: 33.035047051487695
- type: nauc_precision_at_10_std
value: 17.695093243551263
- type: nauc_precision_at_1_diff1
value: 46.38319251926657
- type: nauc_precision_at_1_max
value: 34.74359913713124
- type: nauc_precision_at_1_std
value: 3.082081961113807
- type: nauc_precision_at_20_diff1
value: 16.086225605250913
- type: nauc_precision_at_20_max
value: 29.111406274685685
- type: nauc_precision_at_20_std
value: 20.16047627291658
- type: nauc_precision_at_3_diff1
value: 34.87770156593762
- type: nauc_precision_at_3_max
value: 34.36598800372885
- type: nauc_precision_at_3_std
value: 9.713422411448411
- type: nauc_precision_at_5_diff1
value: 28.556995540691215
- type: nauc_precision_at_5_max
value: 32.41775704590351
- type: nauc_precision_at_5_std
value: 12.526037082673245
- type: nauc_recall_at_1000_diff1
value: 22.518923633684242
- type: nauc_recall_at_1000_max
value: 34.77756797992028
- type: nauc_recall_at_1000_std
value: 30.96602342569516
- type: nauc_recall_at_100_diff1
value: 26.977344899465066
- type: nauc_recall_at_100_max
value: 29.25577591297841
- type: nauc_recall_at_100_std
value: 18.53329327689213
- type: nauc_recall_at_10_diff1
value: 31.833116167561254
- type: nauc_recall_at_10_max
value: 29.53270517235027
- type: nauc_recall_at_10_std
value: 7.5765043210495655
- type: nauc_recall_at_1_diff1
value: 47.14494297512505
- type: nauc_recall_at_1_max
value: 30.729904533725882
- type: nauc_recall_at_1_std
value: -1.4748123251677638
- type: nauc_recall_at_20_diff1
value: 29.522302969072467
- type: nauc_recall_at_20_max
value: 27.881678480167693
- type: nauc_recall_at_20_std
value: 10.0707944266602
- type: nauc_recall_at_3_diff1
value: 38.57308910390624
- type: nauc_recall_at_3_max
value: 29.974741414471616
- type: nauc_recall_at_3_std
value: 3.2396834673176493
- type: nauc_recall_at_5_diff1
value: 35.39828204400043
- type: nauc_recall_at_5_max
value: 29.029908154639784
- type: nauc_recall_at_5_std
value: 5.034024931108196
- type: ndcg_at_1
value: 24.14
- type: ndcg_at_10
value: 32.666000000000004
- type: ndcg_at_100
value: 37.734
- type: ndcg_at_1000
value: 40.511
- type: ndcg_at_20
value: 34.628
- type: ndcg_at_3
value: 28.509
- type: ndcg_at_5
value: 30.813000000000002
- type: precision_at_1
value: 24.14
- type: precision_at_10
value: 6.248
- type: precision_at_100
value: 1.113
- type: precision_at_1000
value: 0.169
- type: precision_at_20
value: 3.803
- type: precision_at_3
value: 13.736999999999998
- type: precision_at_5
value: 10.241999999999999
- type: recall_at_1
value: 19.496
- type: recall_at_10
value: 42.402
- type: recall_at_100
value: 64.252
- type: recall_at_1000
value: 82.32199999999999
- type: recall_at_20
value: 49.65
- type: recall_at_3
value: 30.927
- type: recall_at_5
value: 36.829
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: main_score
value: 39.403
- type: map_at_1
value: 23.953
- type: map_at_10
value: 33.771
- type: map_at_100
value: 35.095
- type: map_at_1000
value: 35.184
- type: map_at_20
value: 34.531
- type: map_at_3
value: 30.705
- type: map_at_5
value: 32.468
- type: mrr_at_1
value: 27.711598746081506
- type: mrr_at_10
value: 36.88045479424789
- type: mrr_at_100
value: 37.97990481560263
- type: mrr_at_1000
value: 38.02816011291392
- type: mrr_at_20
value: 37.55076085643743
- type: mrr_at_3
value: 34.19017763845347
- type: mrr_at_5
value: 35.70741901776383
- type: nauc_map_at_1000_diff1
value: 36.00981920501309
- type: nauc_map_at_1000_max
value: 22.095524568873014
- type: nauc_map_at_1000_std
value: -2.8665621594465307
- type: nauc_map_at_100_diff1
value: 36.002011911243976
- type: nauc_map_at_100_max
value: 22.104565543592557
- type: nauc_map_at_100_std
value: -2.867602396981025
- type: nauc_map_at_10_diff1
value: 35.78951669531971
- type: nauc_map_at_10_max
value: 21.454593639617812
- type: nauc_map_at_10_std
value: -3.6974855600540453
- type: nauc_map_at_1_diff1
value: 40.53477828363302
- type: nauc_map_at_1_max
value: 18.46790643899047
- type: nauc_map_at_1_std
value: -7.22165065662934
- type: nauc_map_at_20_diff1
value: 36.010838525304834
- type: nauc_map_at_20_max
value: 21.885046883123593
- type: nauc_map_at_20_std
value: -3.210375937430325
- type: nauc_map_at_3_diff1
value: 37.418022634214516
- type: nauc_map_at_3_max
value: 21.073669021006832
- type: nauc_map_at_3_std
value: -4.679404664686778
- type: nauc_map_at_5_diff1
value: 36.6795123593822
- type: nauc_map_at_5_max
value: 21.389015358073685
- type: nauc_map_at_5_std
value: -4.325648408069168
- type: nauc_mrr_at_1000_diff1
value: 34.95611640945783
- type: nauc_mrr_at_1000_max
value: 23.928491774707165
- type: nauc_mrr_at_1000_std
value: -1.338791971396386
- type: nauc_mrr_at_100_diff1
value: 34.929193528403616
- type: nauc_mrr_at_100_max
value: 23.939943348709594
- type: nauc_mrr_at_100_std
value: -1.3082650041533628
- type: nauc_mrr_at_10_diff1
value: 34.69031733385043
- type: nauc_mrr_at_10_max
value: 23.59274582738218
- type: nauc_mrr_at_10_std
value: -1.8289688836101456
- type: nauc_mrr_at_1_diff1
value: 39.34734143208132
- type: nauc_mrr_at_1_max
value: 21.50394761714022
- type: nauc_mrr_at_1_std
value: -5.387089032695643
- type: nauc_mrr_at_20_diff1
value: 34.91303250313781
- type: nauc_mrr_at_20_max
value: 23.847491555315674
- type: nauc_mrr_at_20_std
value: -1.4304205162891497
- type: nauc_mrr_at_3_diff1
value: 36.18259864668598
- type: nauc_mrr_at_3_max
value: 23.887811503907034
- type: nauc_mrr_at_3_std
value: -2.464439729797598
- type: nauc_mrr_at_5_diff1
value: 35.33437531845849
- type: nauc_mrr_at_5_max
value: 23.765452586249292
- type: nauc_mrr_at_5_std
value: -2.1851855395426263
- type: nauc_ndcg_at_1000_diff1
value: 34.09418742679263
- type: nauc_ndcg_at_1000_max
value: 24.55238871231702
- type: nauc_ndcg_at_1000_std
value: 1.3417861971730751
- type: nauc_ndcg_at_100_diff1
value: 33.50605572479613
- type: nauc_ndcg_at_100_max
value: 24.788837094333715
- type: nauc_ndcg_at_100_std
value: 1.94905635328888
- type: nauc_ndcg_at_10_diff1
value: 32.99617129249672
- type: nauc_ndcg_at_10_max
value: 22.373041946409547
- type: nauc_ndcg_at_10_std
value: -1.6123251442731485
- type: nauc_ndcg_at_1_diff1
value: 39.34734143208132
- type: nauc_ndcg_at_1_max
value: 21.50394761714022
- type: nauc_ndcg_at_1_std
value: -5.387089032695643
- type: nauc_ndcg_at_20_diff1
value: 33.76153285165386
- type: nauc_ndcg_at_20_max
value: 23.66281236035479
- type: nauc_ndcg_at_20_std
value: 0.1314652340010358
- type: nauc_ndcg_at_3_diff1
value: 36.215628862018875
- type: nauc_ndcg_at_3_max
value: 22.23728810221821
- type: nauc_ndcg_at_3_std
value: -3.375324547297835
- type: nauc_ndcg_at_5_diff1
value: 34.869980250497065
- type: nauc_ndcg_at_5_max
value: 22.375617254550175
- type: nauc_ndcg_at_5_std
value: -2.8765947297571595
- type: nauc_precision_at_1000_diff1
value: -5.477133135940843
- type: nauc_precision_at_1000_max
value: 11.714063664418656
- type: nauc_precision_at_1000_std
value: 14.803511361321767
- type: nauc_precision_at_100_diff1
value: 1.190308506686791
- type: nauc_precision_at_100_max
value: 20.879498285480025
- type: nauc_precision_at_100_std
value: 19.864715556174225
- type: nauc_precision_at_10_diff1
value: 16.690689283041117
- type: nauc_precision_at_10_max
value: 23.615626182492825
- type: nauc_precision_at_10_std
value: 6.9604996221038755
- type: nauc_precision_at_1_diff1
value: 39.34734143208132
- type: nauc_precision_at_1_max
value: 21.50394761714022
- type: nauc_precision_at_1_std
value: -5.387089032695643
- type: nauc_precision_at_20_diff1
value: 13.941370133262929
- type: nauc_precision_at_20_max
value: 25.0983395906178
- type: nauc_precision_at_20_std
value: 12.863365250801706
- type: nauc_precision_at_3_diff1
value: 29.70706108250014
- type: nauc_precision_at_3_max
value: 25.97857880896327
- type: nauc_precision_at_3_std
value: 0.4671634667547243
- type: nauc_precision_at_5_diff1
value: 24.26712316402683
- type: nauc_precision_at_5_max
value: 24.994467132277265
- type: nauc_precision_at_5_std
value: 2.1020033045283952
- type: nauc_recall_at_1000_diff1
value: 21.036527285628885
- type: nauc_recall_at_1000_max
value: 46.359454397435925
- type: nauc_recall_at_1000_std
value: 47.68561830236934
- type: nauc_recall_at_100_diff1
value: 19.685774418991592
- type: nauc_recall_at_100_max
value: 34.82581080838536
- type: nauc_recall_at_100_std
value: 27.585463129717606
- type: nauc_recall_at_10_diff1
value: 23.74918228033508
- type: nauc_recall_at_10_max
value: 21.23054148890896
- type: nauc_recall_at_10_std
value: 2.5379471535492675
- type: nauc_recall_at_1_diff1
value: 40.53477828363302
- type: nauc_recall_at_1_max
value: 18.46790643899047
- type: nauc_recall_at_1_std
value: -7.22165065662934
- type: nauc_recall_at_20_diff1
value: 25.739859302267693
- type: nauc_recall_at_20_max
value: 25.552244146602355
- type: nauc_recall_at_20_std
value: 9.719380851403539
- type: nauc_recall_at_3_diff1
value: 33.44976234422277
- type: nauc_recall_at_3_max
value: 22.10543969450477
- type: nauc_recall_at_3_std
value: -1.7497643333208013
- type: nauc_recall_at_5_diff1
value: 29.95702802348527
- type: nauc_recall_at_5_max
value: 21.90857504616491
- type: nauc_recall_at_5_std
value: -0.6634375310704549
- type: ndcg_at_1
value: 27.711999999999996
- type: ndcg_at_10
value: 39.403
- type: ndcg_at_100
value: 45.327
- type: ndcg_at_1000
value: 47.221000000000004
- type: ndcg_at_20
value: 41.921
- type: ndcg_at_3
value: 33.657
- type: ndcg_at_5
value: 36.463
- type: precision_at_1
value: 27.711999999999996
- type: precision_at_10
value: 6.715
- type: precision_at_100
value: 1.068
- type: precision_at_1000
value: 0.13
- type: precision_at_20
value: 4.034
- type: precision_at_3
value: 15.360999999999999
- type: precision_at_5
value: 11.06
- type: recall_at_1
value: 23.953
- type: recall_at_10
value: 53.554
- type: recall_at_100
value: 79.39699999999999
- type: recall_at_1000
value: 92.85900000000001
- type: recall_at_20
value: 62.90599999999999
- type: recall_at_3
value: 38.074000000000005
- type: recall_at_5
value: 44.869
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: main_score
value: 20.723
- type: map_at_1
value: 11.454
- type: map_at_10
value: 16.933
- type: map_at_100
value: 17.931
- type: map_at_1000
value: 18.066
- type: map_at_20
value: 17.444000000000003
- type: map_at_3
value: 14.821000000000002
- type: map_at_5
value: 15.847
- type: mrr_at_1
value: 12.88135593220339
- type: mrr_at_10
value: 18.568648551699386
- type: mrr_at_100
value: 19.519728948766964
- type: mrr_at_1000
value: 19.629818718309142
- type: mrr_at_20
value: 19.04251586406436
- type: mrr_at_3
value: 16.38418079096045
- type: mrr_at_5
value: 17.446327683615817
- type: nauc_map_at_1000_diff1
value: 31.00971211104956
- type: nauc_map_at_1000_max
value: 13.850017784244987
- type: nauc_map_at_1000_std
value: 8.963659587175178
- type: nauc_map_at_100_diff1
value: 30.974620576122003
- type: nauc_map_at_100_max
value: 13.853314356539528
- type: nauc_map_at_100_std
value: 8.954247164461094
- type: nauc_map_at_10_diff1
value: 31.109975868798433
- type: nauc_map_at_10_max
value: 13.51348567087792
- type: nauc_map_at_10_std
value: 8.550888012900435
- type: nauc_map_at_1_diff1
value: 39.84333952813111
- type: nauc_map_at_1_max
value: 16.068746301688737
- type: nauc_map_at_1_std
value: 4.093189268230556
- type: nauc_map_at_20_diff1
value: 30.85752130769573
- type: nauc_map_at_20_max
value: 13.63962555746682
- type: nauc_map_at_20_std
value: 8.709432284644775
- type: nauc_map_at_3_diff1
value: 32.80973726691313
- type: nauc_map_at_3_max
value: 14.284720966613204
- type: nauc_map_at_3_std
value: 6.1608525290902385
- type: nauc_map_at_5_diff1
value: 31.808730696207004
- type: nauc_map_at_5_max
value: 13.834242310684614
- type: nauc_map_at_5_std
value: 6.835723601421637
- type: nauc_mrr_at_1000_diff1
value: 29.759046423357933
- type: nauc_mrr_at_1000_max
value: 14.951338971704445
- type: nauc_mrr_at_1000_std
value: 10.113349487019041
- type: nauc_mrr_at_100_diff1
value: 29.71206355838227
- type: nauc_mrr_at_100_max
value: 14.9588343997006
- type: nauc_mrr_at_100_std
value: 10.147966222836807
- type: nauc_mrr_at_10_diff1
value: 29.626989847475798
- type: nauc_mrr_at_10_max
value: 14.74042625656872
- type: nauc_mrr_at_10_std
value: 9.839974138708314
- type: nauc_mrr_at_1_diff1
value: 38.38214921179599
- type: nauc_mrr_at_1_max
value: 16.904444938773945
- type: nauc_mrr_at_1_std
value: 5.461433614362911
- type: nauc_mrr_at_20_diff1
value: 29.582744417399258
- type: nauc_mrr_at_20_max
value: 14.873525526797792
- type: nauc_mrr_at_20_std
value: 10.02659346294331
- type: nauc_mrr_at_3_diff1
value: 31.3488783212548
- type: nauc_mrr_at_3_max
value: 15.483058306281643
- type: nauc_mrr_at_3_std
value: 8.200409977944425
- type: nauc_mrr_at_5_diff1
value: 30.16593682015114
- type: nauc_mrr_at_5_max
value: 14.859820711531091
- type: nauc_mrr_at_5_std
value: 8.185908135154364
- type: nauc_ndcg_at_1000_diff1
value: 28.18547695388205
- type: nauc_ndcg_at_1000_max
value: 14.005327206216434
- type: nauc_ndcg_at_1000_std
value: 12.589669560088968
- type: nauc_ndcg_at_100_diff1
value: 27.758324300357984
- type: nauc_ndcg_at_100_max
value: 14.341133555972089
- type: nauc_ndcg_at_100_std
value: 13.31250167325408
- type: nauc_ndcg_at_10_diff1
value: 27.905796760757134
- type: nauc_ndcg_at_10_max
value: 12.96750126038255
- type: nauc_ndcg_at_10_std
value: 11.252396272365992
- type: nauc_ndcg_at_1_diff1
value: 38.38214921179599
- type: nauc_ndcg_at_1_max
value: 16.904444938773945
- type: nauc_ndcg_at_1_std
value: 5.461433614362911
- type: nauc_ndcg_at_20_diff1
value: 27.349876344089957
- type: nauc_ndcg_at_20_max
value: 13.320914532200256
- type: nauc_ndcg_at_20_std
value: 11.867410167033551
- type: nauc_ndcg_at_3_diff1
value: 30.343259237299268
- type: nauc_ndcg_at_3_max
value: 14.201276650661434
- type: nauc_ndcg_at_3_std
value: 7.12523611875583
- type: nauc_ndcg_at_5_diff1
value: 28.801943226027753
- type: nauc_ndcg_at_5_max
value: 13.338551217810954
- type: nauc_ndcg_at_5_std
value: 7.801128464664271
- type: nauc_precision_at_1000_diff1
value: 2.001268152281262
- type: nauc_precision_at_1000_max
value: 10.612211087722672
- type: nauc_precision_at_1000_std
value: 18.232225350370506
- type: nauc_precision_at_100_diff1
value: 12.999552197478135
- type: nauc_precision_at_100_max
value: 16.33859747515745
- type: nauc_precision_at_100_std
value: 26.45969466756656
- type: nauc_precision_at_10_diff1
value: 18.117672151473986
- type: nauc_precision_at_10_max
value: 12.306841727543809
- type: nauc_precision_at_10_std
value: 19.224817620570555
- type: nauc_precision_at_1_diff1
value: 38.38214921179599
- type: nauc_precision_at_1_max
value: 16.904444938773945
- type: nauc_precision_at_1_std
value: 5.461433614362911
- type: nauc_precision_at_20_diff1
value: 15.115529221920223
- type: nauc_precision_at_20_max
value: 12.89077612414914
- type: nauc_precision_at_20_std
value: 20.414316524315318
- type: nauc_precision_at_3_diff1
value: 25.03722914022995
- type: nauc_precision_at_3_max
value: 15.709378585870356
- type: nauc_precision_at_3_std
value: 10.010187249834738
- type: nauc_precision_at_5_diff1
value: 21.525625871418207
- type: nauc_precision_at_5_max
value: 13.497803642649473
- type: nauc_precision_at_5_std
value: 11.075155507096765
- type: nauc_recall_at_1000_diff1
value: 18.280987536015267
- type: nauc_recall_at_1000_max
value: 9.574683101626952
- type: nauc_recall_at_1000_std
value: 23.448036040224913
- type: nauc_recall_at_100_diff1
value: 20.578493216367274
- type: nauc_recall_at_100_max
value: 14.56962816210217
- type: nauc_recall_at_100_std
value: 23.41963721799639
- type: nauc_recall_at_10_diff1
value: 21.583257614269808
- type: nauc_recall_at_10_max
value: 10.242354988584784
- type: nauc_recall_at_10_std
value: 15.98063513181825
- type: nauc_recall_at_1_diff1
value: 39.84333952813111
- type: nauc_recall_at_1_max
value: 16.068746301688737
- type: nauc_recall_at_1_std
value: 4.093189268230556
- type: nauc_recall_at_20_diff1
value: 20.352337875547352
- type: nauc_recall_at_20_max
value: 11.292402190116817
- type: nauc_recall_at_20_std
value: 17.604505218199172
- type: nauc_recall_at_3_diff1
value: 26.04480028663088
- type: nauc_recall_at_3_max
value: 12.75221283182816
- type: nauc_recall_at_3_std
value: 7.771755623504322
- type: nauc_recall_at_5_diff1
value: 22.67971113828535
- type: nauc_recall_at_5_max
value: 10.998067327387378
- type: nauc_recall_at_5_std
value: 8.733032345555438
- type: ndcg_at_1
value: 12.881
- type: ndcg_at_10
value: 20.723
- type: ndcg_at_100
value: 26.068
- type: ndcg_at_1000
value: 29.593999999999998
- type: ndcg_at_20
value: 22.462
- type: ndcg_at_3
value: 16.351
- type: ndcg_at_5
value: 18.119
- type: precision_at_1
value: 12.881
- type: precision_at_10
value: 3.6380000000000003
- type: precision_at_100
value: 0.675
- type: precision_at_1000
value: 0.10200000000000001
- type: precision_at_20
value: 2.22
- type: precision_at_3
value: 7.269
- type: precision_at_5
value: 5.379
- type: recall_at_1
value: 11.454
- type: recall_at_10
value: 31.119000000000003
- type: recall_at_100
value: 56.64900000000001
- type: recall_at_1000
value: 83.599
- type: recall_at_20
value: 37.657000000000004
- type: recall_at_3
value: 19.035
- type: recall_at_5
value: 23.307
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: main_score
value: 18.602
- type: map_at_1
value: 8.233
- type: map_at_10
value: 14.263
- type: map_at_100
value: 15.634999999999998
- type: map_at_1000
value: 15.781999999999998
- type: map_at_20
value: 14.959
- type: map_at_3
value: 11.889
- type: map_at_5
value: 13.067
- type: mrr_at_1
value: 9.950248756218906
- type: mrr_at_10
value: 16.84430032377793
- type: mrr_at_100
value: 18.059357585498777
- type: mrr_at_1000
value: 18.154524917526423
- type: mrr_at_20
value: 17.474440783148786
- type: mrr_at_3
value: 14.510779436152562
- type: mrr_at_5
value: 15.667495854063018
- type: nauc_map_at_1000_diff1
value: 18.23217746190047
- type: nauc_map_at_1000_max
value: 20.49022753078953
- type: nauc_map_at_1000_std
value: 14.846867678528303
- type: nauc_map_at_100_diff1
value: 18.222951182346726
- type: nauc_map_at_100_max
value: 20.462428579695047
- type: nauc_map_at_100_std
value: 14.801451610995041
- type: nauc_map_at_10_diff1
value: 18.806998168246512
- type: nauc_map_at_10_max
value: 20.346327683018394
- type: nauc_map_at_10_std
value: 14.781486965673698
- type: nauc_map_at_1_diff1
value: 24.90271842269989
- type: nauc_map_at_1_max
value: 20.605821895768834
- type: nauc_map_at_1_std
value: 13.654354962612034
- type: nauc_map_at_20_diff1
value: 18.30322394754611
- type: nauc_map_at_20_max
value: 20.25406227052277
- type: nauc_map_at_20_std
value: 14.33873197584387
- type: nauc_map_at_3_diff1
value: 20.17446716046726
- type: nauc_map_at_3_max
value: 19.11985380269457
- type: nauc_map_at_3_std
value: 12.503935147559375
- type: nauc_map_at_5_diff1
value: 18.687432760432813
- type: nauc_map_at_5_max
value: 19.87068913715553
- type: nauc_map_at_5_std
value: 14.10119379199484
- type: nauc_mrr_at_1000_diff1
value: 15.686926847621882
- type: nauc_mrr_at_1000_max
value: 20.41838504194867
- type: nauc_mrr_at_1000_std
value: 14.601678542982032
- type: nauc_mrr_at_100_diff1
value: 15.649148415618786
- type: nauc_mrr_at_100_max
value: 20.390471061201453
- type: nauc_mrr_at_100_std
value: 14.570935730839452
- type: nauc_mrr_at_10_diff1
value: 15.799150500411855
- type: nauc_mrr_at_10_max
value: 20.575744858600387
- type: nauc_mrr_at_10_std
value: 14.768268932423927
- type: nauc_mrr_at_1_diff1
value: 23.367444138495525
- type: nauc_mrr_at_1_max
value: 20.695137503965665
- type: nauc_mrr_at_1_std
value: 14.72157770136156
- type: nauc_mrr_at_20_diff1
value: 15.69282182722306
- type: nauc_mrr_at_20_max
value: 20.496725287008648
- type: nauc_mrr_at_20_std
value: 14.388349301754728
- type: nauc_mrr_at_3_diff1
value: 16.552667983195963
- type: nauc_mrr_at_3_max
value: 19.30089479846865
- type: nauc_mrr_at_3_std
value: 12.419365827975918
- type: nauc_mrr_at_5_diff1
value: 15.2021345488141
- type: nauc_mrr_at_5_max
value: 19.863155583605863
- type: nauc_mrr_at_5_std
value: 13.981416058831526
- type: nauc_ndcg_at_1000_diff1
value: 15.496613143969418
- type: nauc_ndcg_at_1000_max
value: 22.093806024787852
- type: nauc_ndcg_at_1000_std
value: 17.766995355844745
- type: nauc_ndcg_at_100_diff1
value: 15.256710001281315
- type: nauc_ndcg_at_100_max
value: 21.85870766599504
- type: nauc_ndcg_at_100_std
value: 17.06357990658541
- type: nauc_ndcg_at_10_diff1
value: 16.645396625915108
- type: nauc_ndcg_at_10_max
value: 21.533816489312795
- type: nauc_ndcg_at_10_std
value: 16.29564024579396
- type: nauc_ndcg_at_1_diff1
value: 23.367444138495525
- type: nauc_ndcg_at_1_max
value: 20.695137503965665
- type: nauc_ndcg_at_1_std
value: 14.72157770136156
- type: nauc_ndcg_at_20_diff1
value: 15.5570017125561
- type: nauc_ndcg_at_20_max
value: 21.359185072455986
- type: nauc_ndcg_at_20_std
value: 15.057162550772377
- type: nauc_ndcg_at_3_diff1
value: 18.148078513804155
- type: nauc_ndcg_at_3_max
value: 19.413219163942884
- type: nauc_ndcg_at_3_std
value: 12.206859061209872
- type: nauc_ndcg_at_5_diff1
value: 15.946387582108482
- type: nauc_ndcg_at_5_max
value: 20.614438981415713
- type: nauc_ndcg_at_5_std
value: 14.956938588009589
- type: nauc_precision_at_1000_diff1
value: -6.338405284332406
- type: nauc_precision_at_1000_max
value: 6.367574020314142
- type: nauc_precision_at_1000_std
value: 3.2948111384908634
- type: nauc_precision_at_100_diff1
value: 2.5963271076466286
- type: nauc_precision_at_100_max
value: 17.195718920975406
- type: nauc_precision_at_100_std
value: 13.44480018562989
- type: nauc_precision_at_10_diff1
value: 9.894164875058406
- type: nauc_precision_at_10_max
value: 22.607176912959513
- type: nauc_precision_at_10_std
value: 16.602991509521992
- type: nauc_precision_at_1_diff1
value: 23.367444138495525
- type: nauc_precision_at_1_max
value: 20.695137503965665
- type: nauc_precision_at_1_std
value: 14.72157770136156
- type: nauc_precision_at_20_diff1
value: 7.479617555395287
- type: nauc_precision_at_20_max
value: 20.646048773417565
- type: nauc_precision_at_20_std
value: 12.587065342832732
- type: nauc_precision_at_3_diff1
value: 13.549141346398994
- type: nauc_precision_at_3_max
value: 19.096896253669218
- type: nauc_precision_at_3_std
value: 10.98636215569535
- type: nauc_precision_at_5_diff1
value: 9.308854693332993
- type: nauc_precision_at_5_max
value: 20.614038596547594
- type: nauc_precision_at_5_std
value: 14.519366227680033
- type: nauc_recall_at_1000_diff1
value: 11.6542815361156
- type: nauc_recall_at_1000_max
value: 32.692947390599
- type: nauc_recall_at_1000_std
value: 44.65436374659935
- type: nauc_recall_at_100_diff1
value: 10.060501930914468
- type: nauc_recall_at_100_max
value: 23.909265280968484
- type: nauc_recall_at_100_std
value: 23.0879660121024
- type: nauc_recall_at_10_diff1
value: 14.302911670798506
- type: nauc_recall_at_10_max
value: 22.85869910411015
- type: nauc_recall_at_10_std
value: 18.963781625147185
- type: nauc_recall_at_1_diff1
value: 24.90271842269989
- type: nauc_recall_at_1_max
value: 20.605821895768834
- type: nauc_recall_at_1_std
value: 13.654354962612034
- type: nauc_recall_at_20_diff1
value: 11.411188213614896
- type: nauc_recall_at_20_max
value: 22.259549408442762
- type: nauc_recall_at_20_std
value: 15.507984814176625
- type: nauc_recall_at_3_diff1
value: 16.26909180904135
- type: nauc_recall_at_3_max
value: 18.870658327598097
- type: nauc_recall_at_3_std
value: 11.838400434931915
- type: nauc_recall_at_5_diff1
value: 12.244714380165343
- type: nauc_recall_at_5_max
value: 21.261392668644532
- type: nauc_recall_at_5_std
value: 16.651686356883157
- type: ndcg_at_1
value: 9.950000000000001
- type: ndcg_at_10
value: 18.602
- type: ndcg_at_100
value: 25.512
- type: ndcg_at_1000
value: 29.26
- type: ndcg_at_20
value: 21.02
- type: ndcg_at_3
value: 13.972000000000001
- type: ndcg_at_5
value: 15.876999999999999
- type: precision_at_1
value: 9.950000000000001
- type: precision_at_10
value: 3.943
- type: precision_at_100
value: 0.872
- type: precision_at_1000
value: 0.136
- type: precision_at_20
value: 2.643
- type: precision_at_3
value: 7.255000000000001
- type: precision_at_5
value: 5.622
- type: recall_at_1
value: 8.233
- type: recall_at_10
value: 29.366999999999997
- type: recall_at_100
value: 60.209
- type: recall_at_1000
value: 87.41499999999999
- type: recall_at_20
value: 38.190000000000005
- type: recall_at_3
value: 16.519000000000002
- type: recall_at_5
value: 21.319
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: main_score
value: 32.592
- type: map_at_1
value: 18.758
- type: map_at_10
value: 27.198
- type: map_at_100
value: 28.706
- type: map_at_1000
value: 28.838
- type: map_at_20
value: 28.033
- type: map_at_3
value: 24.352999999999998
- type: map_at_5
value: 25.971
- type: mrr_at_1
value: 24.254090471607313
- type: mrr_at_10
value: 32.29337580396289
- type: mrr_at_100
value: 33.33713398298678
- type: mrr_at_1000
value: 33.40927242447723
- type: mrr_at_20
value: 32.86529042825282
- type: mrr_at_3
value: 29.77221687520053
- type: mrr_at_5
value: 31.158164902149494
- type: nauc_map_at_1000_diff1
value: 35.43332186007521
- type: nauc_map_at_1000_max
value: 28.979622893773104
- type: nauc_map_at_1000_std
value: 6.578956825302608
- type: nauc_map_at_100_diff1
value: 35.39022158661449
- type: nauc_map_at_100_max
value: 28.94560731774703
- type: nauc_map_at_100_std
value: 6.538195339460332
- type: nauc_map_at_10_diff1
value: 35.677884861017915
- type: nauc_map_at_10_max
value: 28.57489475080354
- type: nauc_map_at_10_std
value: 5.454103100616544
- type: nauc_map_at_1_diff1
value: 42.53458088369024
- type: nauc_map_at_1_max
value: 25.886547599537934
- type: nauc_map_at_1_std
value: 0.11639371074674959
- type: nauc_map_at_20_diff1
value: 35.48823910499732
- type: nauc_map_at_20_max
value: 28.661222493545953
- type: nauc_map_at_20_std
value: 6.0736999593558725
- type: nauc_map_at_3_diff1
value: 37.010247704093615
- type: nauc_map_at_3_max
value: 27.961812044925672
- type: nauc_map_at_3_std
value: 4.451362489929877
- type: nauc_map_at_5_diff1
value: 36.69428263148319
- type: nauc_map_at_5_max
value: 27.802098249579487
- type: nauc_map_at_5_std
value: 4.297801872956301
- type: nauc_mrr_at_1000_diff1
value: 34.559056308808934
- type: nauc_mrr_at_1000_max
value: 32.83666199871945
- type: nauc_mrr_at_1000_std
value: 11.867050560410966
- type: nauc_mrr_at_100_diff1
value: 34.523273474153534
- type: nauc_mrr_at_100_max
value: 32.82393565429814
- type: nauc_mrr_at_100_std
value: 11.866910023146005
- type: nauc_mrr_at_10_diff1
value: 34.532086131009926
- type: nauc_mrr_at_10_max
value: 32.85146332978944
- type: nauc_mrr_at_10_std
value: 11.71169987538628
- type: nauc_mrr_at_1_diff1
value: 39.335582470379094
- type: nauc_mrr_at_1_max
value: 31.740439567406035
- type: nauc_mrr_at_1_std
value: 8.529530277559985
- type: nauc_mrr_at_20_diff1
value: 34.54413479234956
- type: nauc_mrr_at_20_max
value: 32.80857217884902
- type: nauc_mrr_at_20_std
value: 11.817454680274084
- type: nauc_mrr_at_3_diff1
value: 35.72764069738432
- type: nauc_mrr_at_3_max
value: 33.04686562750682
- type: nauc_mrr_at_3_std
value: 11.45610782490127
- type: nauc_mrr_at_5_diff1
value: 35.339427295466805
- type: nauc_mrr_at_5_max
value: 32.477167711422986
- type: nauc_mrr_at_5_std
value: 10.970511640489987
- type: nauc_ndcg_at_1000_diff1
value: 32.972563023860495
- type: nauc_ndcg_at_1000_max
value: 31.56124332885808
- type: nauc_ndcg_at_1000_std
value: 11.320625017933688
- type: nauc_ndcg_at_100_diff1
value: 31.981617985898936
- type: nauc_ndcg_at_100_max
value: 30.817448507218447
- type: nauc_ndcg_at_100_std
value: 11.05131431144915
- type: nauc_ndcg_at_10_diff1
value: 32.898755384329704
- type: nauc_ndcg_at_10_max
value: 29.83589745108241
- type: nauc_ndcg_at_10_std
value: 8.082772747459629
- type: nauc_ndcg_at_1_diff1
value: 39.335582470379094
- type: nauc_ndcg_at_1_max
value: 31.740439567406035
- type: nauc_ndcg_at_1_std
value: 8.529530277559985
- type: nauc_ndcg_at_20_diff1
value: 32.412206781494795
- type: nauc_ndcg_at_20_max
value: 29.861450129085316
- type: nauc_ndcg_at_20_std
value: 9.383718452743128
- type: nauc_ndcg_at_3_diff1
value: 34.984136050599965
- type: nauc_ndcg_at_3_max
value: 30.14318309067973
- type: nauc_ndcg_at_3_std
value: 7.909917756441661
- type: nauc_ndcg_at_5_diff1
value: 34.92814489705384
- type: nauc_ndcg_at_5_max
value: 29.16608661742856
- type: nauc_ndcg_at_5_std
value: 6.694550269553597
- type: nauc_precision_at_1000_diff1
value: -3.790848810395332
- type: nauc_precision_at_1000_max
value: 14.802421936399268
- type: nauc_precision_at_1000_std
value: 23.145894849144554
- type: nauc_precision_at_100_diff1
value: 1.7546038039919793
- type: nauc_precision_at_100_max
value: 25.662733100762296
- type: nauc_precision_at_100_std
value: 31.225277020769827
- type: nauc_precision_at_10_diff1
value: 15.694416287771043
- type: nauc_precision_at_10_max
value: 32.656449707547104
- type: nauc_precision_at_10_std
value: 22.340228469453972
- type: nauc_precision_at_1_diff1
value: 39.335582470379094
- type: nauc_precision_at_1_max
value: 31.740439567406035
- type: nauc_precision_at_1_std
value: 8.529530277559985
- type: nauc_precision_at_20_diff1
value: 10.453000063206943
- type: nauc_precision_at_20_max
value: 29.05806853523417
- type: nauc_precision_at_20_std
value: 26.277225739049488
- type: nauc_precision_at_3_diff1
value: 27.272188733861135
- type: nauc_precision_at_3_max
value: 34.83933062214277
- type: nauc_precision_at_3_std
value: 17.775294609166153
- type: nauc_precision_at_5_diff1
value: 24.258907574802578
- type: nauc_precision_at_5_max
value: 32.11919091242911
- type: nauc_precision_at_5_std
value: 16.252625454457664
- type: nauc_recall_at_1000_diff1
value: 14.954086634753432
- type: nauc_recall_at_1000_max
value: 42.80424989945532
- type: nauc_recall_at_1000_std
value: 36.79872372413446
- type: nauc_recall_at_100_diff1
value: 16.048538619104164
- type: nauc_recall_at_100_max
value: 27.368927292992325
- type: nauc_recall_at_100_std
value: 18.887258365172094
- type: nauc_recall_at_10_diff1
value: 24.46647338879468
- type: nauc_recall_at_10_max
value: 26.603563703221095
- type: nauc_recall_at_10_std
value: 8.028133219751867
- type: nauc_recall_at_1_diff1
value: 42.53458088369024
- type: nauc_recall_at_1_max
value: 25.886547599537934
- type: nauc_recall_at_1_std
value: 0.11639371074674959
- type: nauc_recall_at_20_diff1
value: 22.40840509718229
- type: nauc_recall_at_20_max
value: 25.805462126399785
- type: nauc_recall_at_20_std
value: 11.278990263026085
- type: nauc_recall_at_3_diff1
value: 31.262823269379076
- type: nauc_recall_at_3_max
value: 27.044002473477065
- type: nauc_recall_at_3_std
value: 5.89017119130073
- type: nauc_recall_at_5_diff1
value: 30.18775263414265
- type: nauc_recall_at_5_max
value: 25.583478864235904
- type: nauc_recall_at_5_std
value: 4.569298948312717
- type: ndcg_at_1
value: 24.254
- type: ndcg_at_10
value: 32.592
- type: ndcg_at_100
value: 39.334
- type: ndcg_at_1000
value: 42.144999999999996
- type: ndcg_at_20
value: 35.195
- type: ndcg_at_3
value: 27.742
- type: ndcg_at_5
value: 30.035
- type: precision_at_1
value: 24.254
- type: precision_at_10
value: 6.381
- type: precision_at_100
value: 1.149
- type: precision_at_1000
value: 0.158
- type: precision_at_20
value: 3.9890000000000003
- type: precision_at_3
value: 13.474
- type: precision_at_5
value: 9.933
- type: recall_at_1
value: 18.758
- type: recall_at_10
value: 43.732
- type: recall_at_100
value: 73.152
- type: recall_at_1000
value: 92.08800000000001
- type: recall_at_20
value: 53.056000000000004
- type: recall_at_3
value: 30.348000000000003
- type: recall_at_5
value: 36.248000000000005
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: main_score
value: 27.023999999999997
- type: map_at_1
value: 14.198
- type: map_at_10
value: 21.75
- type: map_at_100
value: 23.328
- type: map_at_1000
value: 23.47
- type: map_at_20
value: 22.595000000000002
- type: map_at_3
value: 18.9
- type: map_at_5
value: 20.362
- type: mrr_at_1
value: 18.15068493150685
- type: mrr_at_10
value: 26.040262375878804
- type: mrr_at_100
value: 27.198199648239772
- type: mrr_at_1000
value: 27.27774611735573
- type: mrr_at_20
value: 26.691941189083767
- type: mrr_at_3
value: 23.173515981735168
- type: mrr_at_5
value: 24.686073059360726
- type: nauc_map_at_1000_diff1
value: 31.053453200715325
- type: nauc_map_at_1000_max
value: 29.024393074756617
- type: nauc_map_at_1000_std
value: 6.325913499941615
- type: nauc_map_at_100_diff1
value: 30.97303489032699
- type: nauc_map_at_100_max
value: 29.029878260416496
- type: nauc_map_at_100_std
value: 6.347144684839333
- type: nauc_map_at_10_diff1
value: 31.00470717224258
- type: nauc_map_at_10_max
value: 28.019036460754265
- type: nauc_map_at_10_std
value: 4.8665094208266275
- type: nauc_map_at_1_diff1
value: 37.47367952280333
- type: nauc_map_at_1_max
value: 28.526104067645214
- type: nauc_map_at_1_std
value: 0.42944400837957647
- type: nauc_map_at_20_diff1
value: 30.853722315305387
- type: nauc_map_at_20_max
value: 28.37468657125153
- type: nauc_map_at_20_std
value: 5.466774304327295
- type: nauc_map_at_3_diff1
value: 32.22525292125427
- type: nauc_map_at_3_max
value: 27.100397776424597
- type: nauc_map_at_3_std
value: 3.6780889748702723
- type: nauc_map_at_5_diff1
value: 30.72216748439938
- type: nauc_map_at_5_max
value: 27.35756142039516
- type: nauc_map_at_5_std
value: 4.68454886538082
- type: nauc_mrr_at_1000_diff1
value: 29.037948385015405
- type: nauc_mrr_at_1000_max
value: 28.763423733914458
- type: nauc_mrr_at_1000_std
value: 7.956994665321418
- type: nauc_mrr_at_100_diff1
value: 29.006585514645323
- type: nauc_mrr_at_100_max
value: 28.789375493332596
- type: nauc_mrr_at_100_std
value: 8.011211311161109
- type: nauc_mrr_at_10_diff1
value: 29.139613464995
- type: nauc_mrr_at_10_max
value: 28.581685095094265
- type: nauc_mrr_at_10_std
value: 7.6145044569554825
- type: nauc_mrr_at_1_diff1
value: 33.63214806586087
- type: nauc_mrr_at_1_max
value: 28.809395842946238
- type: nauc_mrr_at_1_std
value: 3.870367319917128
- type: nauc_mrr_at_20_diff1
value: 28.897527412848618
- type: nauc_mrr_at_20_max
value: 28.44699870228015
- type: nauc_mrr_at_20_std
value: 7.611077545742706
- type: nauc_mrr_at_3_diff1
value: 30.195365305410853
- type: nauc_mrr_at_3_max
value: 27.875075763225105
- type: nauc_mrr_at_3_std
value: 6.392092075078199
- type: nauc_mrr_at_5_diff1
value: 29.02331736193772
- type: nauc_mrr_at_5_max
value: 28.526895681441516
- type: nauc_mrr_at_5_std
value: 7.505926748987359
- type: nauc_ndcg_at_1000_diff1
value: 29.495231262556782
- type: nauc_ndcg_at_1000_max
value: 31.136369251324425
- type: nauc_ndcg_at_1000_std
value: 11.458769315946412
- type: nauc_ndcg_at_100_diff1
value: 28.14154383832849
- type: nauc_ndcg_at_100_max
value: 31.317245100158054
- type: nauc_ndcg_at_100_std
value: 12.343874658257208
- type: nauc_ndcg_at_10_diff1
value: 28.551238661045275
- type: nauc_ndcg_at_10_max
value: 28.198394288716493
- type: nauc_ndcg_at_10_std
value: 6.996000683674131
- type: nauc_ndcg_at_1_diff1
value: 33.63214806586087
- type: nauc_ndcg_at_1_max
value: 28.809395842946238
- type: nauc_ndcg_at_1_std
value: 3.870367319917128
- type: nauc_ndcg_at_20_diff1
value: 28.06030705119219
- type: nauc_ndcg_at_20_max
value: 28.46993596667669
- type: nauc_ndcg_at_20_std
value: 7.854692180311396
- type: nauc_ndcg_at_3_diff1
value: 30.333015112698174
- type: nauc_ndcg_at_3_max
value: 27.250406313613716
- type: nauc_ndcg_at_3_std
value: 5.627330922520453
- type: nauc_ndcg_at_5_diff1
value: 28.450912289686897
- type: nauc_ndcg_at_5_max
value: 27.756166296817604
- type: nauc_ndcg_at_5_std
value: 7.180600634098227
- type: nauc_precision_at_1000_diff1
value: 5.475615121974908
- type: nauc_precision_at_1000_max
value: 12.647020683088266
- type: nauc_precision_at_1000_std
value: 13.061720484832934
- type: nauc_precision_at_100_diff1
value: 12.347843899507293
- type: nauc_precision_at_100_max
value: 27.717377508022622
- type: nauc_precision_at_100_std
value: 26.73430752237529
- type: nauc_precision_at_10_diff1
value: 19.69177781807937
- type: nauc_precision_at_10_max
value: 30.334030801241816
- type: nauc_precision_at_10_std
value: 15.366237949875803
- type: nauc_precision_at_1_diff1
value: 33.63214806586087
- type: nauc_precision_at_1_max
value: 28.809395842946238
- type: nauc_precision_at_1_std
value: 3.870367319917128
- type: nauc_precision_at_20_diff1
value: 16.39420382179115
- type: nauc_precision_at_20_max
value: 28.53821894442003
- type: nauc_precision_at_20_std
value: 17.40002221290311
- type: nauc_precision_at_3_diff1
value: 25.01650633137198
- type: nauc_precision_at_3_max
value: 27.40140981400113
- type: nauc_precision_at_3_std
value: 9.528259668882319
- type: nauc_precision_at_5_diff1
value: 20.703008998648535
- type: nauc_precision_at_5_max
value: 29.02824629392723
- type: nauc_precision_at_5_std
value: 14.824369875578395
- type: nauc_recall_at_1000_diff1
value: 23.832697239355532
- type: nauc_recall_at_1000_max
value: 44.08435745523949
- type: nauc_recall_at_1000_std
value: 47.24836041537446
- type: nauc_recall_at_100_diff1
value: 16.300511580514367
- type: nauc_recall_at_100_max
value: 35.91993875834976
- type: nauc_recall_at_100_std
value: 31.711390146384005
- type: nauc_recall_at_10_diff1
value: 22.09945154154785
- type: nauc_recall_at_10_max
value: 24.889396522698597
- type: nauc_recall_at_10_std
value: 8.174508020746982
- type: nauc_recall_at_1_diff1
value: 37.47367952280333
- type: nauc_recall_at_1_max
value: 28.526104067645214
- type: nauc_recall_at_1_std
value: 0.42944400837957647
- type: nauc_recall_at_20_diff1
value: 20.215222984918444
- type: nauc_recall_at_20_max
value: 24.29346815089969
- type: nauc_recall_at_20_std
value: 9.6075370099546
- type: nauc_recall_at_3_diff1
value: 26.891648077306186
- type: nauc_recall_at_3_max
value: 24.463956800351404
- type: nauc_recall_at_3_std
value: 6.593385364536653
- type: nauc_recall_at_5_diff1
value: 22.088516789906684
- type: nauc_recall_at_5_max
value: 24.856330338998195
- type: nauc_recall_at_5_std
value: 8.935178303242722
- type: ndcg_at_1
value: 18.151
- type: ndcg_at_10
value: 27.023999999999997
- type: ndcg_at_100
value: 34.035
- type: ndcg_at_1000
value: 37.122
- type: ndcg_at_20
value: 29.688
- type: ndcg_at_3
value: 21.837
- type: ndcg_at_5
value: 23.995
- type: precision_at_1
value: 18.151
- type: precision_at_10
value: 5.479
- type: precision_at_100
value: 1.083
- type: precision_at_1000
value: 0.154
- type: precision_at_20
value: 3.5389999999999997
- type: precision_at_3
value: 10.693
- type: precision_at_5
value: 8.174
- type: recall_at_1
value: 14.198
- type: recall_at_10
value: 38.972
- type: recall_at_100
value: 68.97
- type: recall_at_1000
value: 90.291
- type: recall_at_20
value: 48.448
- type: recall_at_3
value: 24.421
- type: recall_at_5
value: 30.022
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 26.12966666666667
- type: ndcg_at_10
value: 26.12966666666667
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: main_score
value: 16.322
- type: map_at_1
value: 7.804
- type: map_at_10
value: 12.989
- type: map_at_100
value: 13.857
- type: map_at_1000
value: 14.001
- type: map_at_20
value: 13.388
- type: map_at_3
value: 11.192
- type: map_at_5
value: 12.176
- type: mrr_at_1
value: 9.049079754601227
- type: mrr_at_10
value: 14.444809621189995
- type: mrr_at_100
value: 15.361749681377326
- type: mrr_at_1000
value: 15.483726108258947
- type: mrr_at_20
value: 14.891287287777494
- type: mrr_at_3
value: 12.73006134969325
- type: mrr_at_5
value: 13.665644171779142
- type: nauc_map_at_1000_diff1
value: 22.283889437078248
- type: nauc_map_at_1000_max
value: 14.944416577427388
- type: nauc_map_at_1000_std
value: 7.317249110014133
- type: nauc_map_at_100_diff1
value: 22.28273180365645
- type: nauc_map_at_100_max
value: 14.860297309097085
- type: nauc_map_at_100_std
value: 7.3140105521353025
- type: nauc_map_at_10_diff1
value: 22.847655724529407
- type: nauc_map_at_10_max
value: 15.378238244826022
- type: nauc_map_at_10_std
value: 7.179195945065936
- type: nauc_map_at_1_diff1
value: 34.134583922704145
- type: nauc_map_at_1_max
value: 17.044590989203783
- type: nauc_map_at_1_std
value: 0.3675928894683656
- type: nauc_map_at_20_diff1
value: 22.355665146014907
- type: nauc_map_at_20_max
value: 14.851743054913785
- type: nauc_map_at_20_std
value: 7.270308478997049
- type: nauc_map_at_3_diff1
value: 24.73870536374159
- type: nauc_map_at_3_max
value: 13.76122622256925
- type: nauc_map_at_3_std
value: 4.850569295830115
- type: nauc_map_at_5_diff1
value: 23.46756043985898
- type: nauc_map_at_5_max
value: 14.870499991558297
- type: nauc_map_at_5_std
value: 5.31865354060947
- type: nauc_mrr_at_1000_diff1
value: 23.134711618650634
- type: nauc_mrr_at_1000_max
value: 15.483448799540142
- type: nauc_mrr_at_1000_std
value: 7.2969426798733705
- type: nauc_mrr_at_100_diff1
value: 23.11427541598592
- type: nauc_mrr_at_100_max
value: 15.449183219736303
- type: nauc_mrr_at_100_std
value: 7.319975335726775
- type: nauc_mrr_at_10_diff1
value: 23.488303603940714
- type: nauc_mrr_at_10_max
value: 15.817711277401347
- type: nauc_mrr_at_10_std
value: 6.933993376881063
- type: nauc_mrr_at_1_diff1
value: 33.31164870959659
- type: nauc_mrr_at_1_max
value: 18.14101778006001
- type: nauc_mrr_at_1_std
value: 3.5427712441050736
- type: nauc_mrr_at_20_diff1
value: 23.174358926183956
- type: nauc_mrr_at_20_max
value: 15.311453081852944
- type: nauc_mrr_at_20_std
value: 7.194856706727489
- type: nauc_mrr_at_3_diff1
value: 25.424783972258037
- type: nauc_mrr_at_3_max
value: 15.54014171026033
- type: nauc_mrr_at_3_std
value: 6.762746993243182
- type: nauc_mrr_at_5_diff1
value: 24.246811872930795
- type: nauc_mrr_at_5_max
value: 15.62420277389364
- type: nauc_mrr_at_5_std
value: 6.1118896243906
- type: nauc_ndcg_at_1000_diff1
value: 19.20841090878421
- type: nauc_ndcg_at_1000_max
value: 16.374529426777627
- type: nauc_ndcg_at_1000_std
value: 10.526588657800145
- type: nauc_ndcg_at_100_diff1
value: 18.922283216431406
- type: nauc_ndcg_at_100_max
value: 14.097138336254844
- type: nauc_ndcg_at_100_std
value: 10.389087631678793
- type: nauc_ndcg_at_10_diff1
value: 19.504289341336627
- type: nauc_ndcg_at_10_max
value: 15.117288827566233
- type: nauc_ndcg_at_10_std
value: 9.130368583693677
- type: nauc_ndcg_at_1_diff1
value: 33.31164870959659
- type: nauc_ndcg_at_1_max
value: 18.14101778006001
- type: nauc_ndcg_at_1_std
value: 3.5427712441050736
- type: nauc_ndcg_at_20_diff1
value: 18.233271885408556
- type: nauc_ndcg_at_20_max
value: 13.419641851400083
- type: nauc_ndcg_at_20_std
value: 9.624024533607203
- type: nauc_ndcg_at_3_diff1
value: 22.291734489026542
- type: nauc_ndcg_at_3_max
value: 13.35741683411085
- type: nauc_ndcg_at_3_std
value: 6.6206288867469665
- type: nauc_ndcg_at_5_diff1
value: 20.717344999706512
- type: nauc_ndcg_at_5_max
value: 14.469746539869007
- type: nauc_ndcg_at_5_std
value: 6.490356913357314
- type: nauc_precision_at_1000_diff1
value: 3.197341498400071
- type: nauc_precision_at_1000_max
value: 24.13255446383312
- type: nauc_precision_at_1000_std
value: 14.907711195306591
- type: nauc_precision_at_100_diff1
value: 10.56887700971008
- type: nauc_precision_at_100_max
value: 18.003165201051015
- type: nauc_precision_at_100_std
value: 22.32613638860972
- type: nauc_precision_at_10_diff1
value: 13.669635380022838
- type: nauc_precision_at_10_max
value: 19.79091772206062
- type: nauc_precision_at_10_std
value: 19.428145724937494
- type: nauc_precision_at_1_diff1
value: 33.31164870959659
- type: nauc_precision_at_1_max
value: 18.14101778006001
- type: nauc_precision_at_1_std
value: 3.5427712441050736
- type: nauc_precision_at_20_diff1
value: 10.171911848152861
- type: nauc_precision_at_20_max
value: 15.434090781790694
- type: nauc_precision_at_20_std
value: 20.113197023271713
- type: nauc_precision_at_3_diff1
value: 18.663239563832686
- type: nauc_precision_at_3_max
value: 15.215643664801338
- type: nauc_precision_at_3_std
value: 14.073704225451486
- type: nauc_precision_at_5_diff1
value: 15.741117074117424
- type: nauc_precision_at_5_max
value: 18.083784453794294
- type: nauc_precision_at_5_std
value: 14.170154968425852
- type: nauc_recall_at_1000_diff1
value: 12.529462519944262
- type: nauc_recall_at_1000_max
value: 28.390833246662687
- type: nauc_recall_at_1000_std
value: 22.515746615902728
- type: nauc_recall_at_100_diff1
value: 13.31762885233605
- type: nauc_recall_at_100_max
value: 11.329638403083624
- type: nauc_recall_at_100_std
value: 15.910452829837185
- type: nauc_recall_at_10_diff1
value: 11.902493318826277
- type: nauc_recall_at_10_max
value: 13.620432998689278
- type: nauc_recall_at_10_std
value: 12.254249902080712
- type: nauc_recall_at_1_diff1
value: 34.134583922704145
- type: nauc_recall_at_1_max
value: 17.044590989203783
- type: nauc_recall_at_1_std
value: 0.3675928894683656
- type: nauc_recall_at_20_diff1
value: 9.098713526218773
- type: nauc_recall_at_20_max
value: 9.041415083058396
- type: nauc_recall_at_20_std
value: 13.431500488643977
- type: nauc_recall_at_3_diff1
value: 16.13589077711093
- type: nauc_recall_at_3_max
value: 9.03348176243661
- type: nauc_recall_at_3_std
value: 7.3960632043526155
- type: nauc_recall_at_5_diff1
value: 14.140180575248207
- type: nauc_recall_at_5_max
value: 11.845879266846513
- type: nauc_recall_at_5_std
value: 7.0735189487104
- type: ndcg_at_1
value: 9.049
- type: ndcg_at_10
value: 16.322
- type: ndcg_at_100
value: 21.312
- type: ndcg_at_1000
value: 25.323
- type: ndcg_at_20
value: 17.763
- type: ndcg_at_3
value: 12.792
- type: ndcg_at_5
value: 14.45
- type: precision_at_1
value: 9.049
- type: precision_at_10
value: 3.083
- type: precision_at_100
value: 0.623
- type: precision_at_1000
value: 0.106
- type: precision_at_20
value: 1.902
- type: precision_at_3
value: 6.237
- type: precision_at_5
value: 4.784999999999999
- type: recall_at_1
value: 7.804
- type: recall_at_10
value: 25.28
- type: recall_at_100
value: 49.108000000000004
- type: recall_at_1000
value: 79.468
- type: recall_at_20
value: 30.605
- type: recall_at_3
value: 15.626999999999999
- type: recall_at_5
value: 19.529
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: main_score
value: 13.761999999999999
- type: map_at_1
value: 6.3759999999999994
- type: map_at_10
value: 10.558
- type: map_at_100
value: 11.532
- type: map_at_1000
value: 11.695
- type: map_at_20
value: 11.028
- type: map_at_3
value: 8.879
- type: map_at_5
value: 9.713
- type: mrr_at_1
value: 8.224363386097728
- type: mrr_at_10
value: 13.012431859644524
- type: mrr_at_100
value: 13.946814841802762
- type: mrr_at_1000
value: 14.06290442969105
- type: mrr_at_20
value: 13.497735030482463
- type: mrr_at_3
value: 11.155081440697408
- type: mrr_at_5
value: 12.115164028446872
- type: nauc_map_at_1000_diff1
value: 23.43507587077875
- type: nauc_map_at_1000_max
value: 20.43870564782279
- type: nauc_map_at_1000_std
value: 12.873082418993908
- type: nauc_map_at_100_diff1
value: 23.438050985565148
- type: nauc_map_at_100_max
value: 20.399313617924037
- type: nauc_map_at_100_std
value: 12.722487279959077
- type: nauc_map_at_10_diff1
value: 24.205691744325318
- type: nauc_map_at_10_max
value: 20.399611787740103
- type: nauc_map_at_10_std
value: 12.408592197191174
- type: nauc_map_at_1_diff1
value: 34.071984947286296
- type: nauc_map_at_1_max
value: 22.35927499649868
- type: nauc_map_at_1_std
value: 9.086052394259115
- type: nauc_map_at_20_diff1
value: 23.5442558068055
- type: nauc_map_at_20_max
value: 20.248891696767902
- type: nauc_map_at_20_std
value: 12.51101167730077
- type: nauc_map_at_3_diff1
value: 26.482256969753188
- type: nauc_map_at_3_max
value: 21.208222413456188
- type: nauc_map_at_3_std
value: 10.787698162827862
- type: nauc_map_at_5_diff1
value: 25.11166942901193
- type: nauc_map_at_5_max
value: 20.84541422714762
- type: nauc_map_at_5_std
value: 11.084044604237206
- type: nauc_mrr_at_1000_diff1
value: 21.650853612058675
- type: nauc_mrr_at_1000_max
value: 21.417971870794876
- type: nauc_mrr_at_1000_std
value: 15.501648201831497
- type: nauc_mrr_at_100_diff1
value: 21.61532662748058
- type: nauc_mrr_at_100_max
value: 21.407856995308325
- type: nauc_mrr_at_100_std
value: 15.479695245125175
- type: nauc_mrr_at_10_diff1
value: 22.115984471726797
- type: nauc_mrr_at_10_max
value: 21.404557414782232
- type: nauc_mrr_at_10_std
value: 15.479987126659434
- type: nauc_mrr_at_1_diff1
value: 30.402870566797606
- type: nauc_mrr_at_1_max
value: 23.93938440196226
- type: nauc_mrr_at_1_std
value: 12.997536237455929
- type: nauc_mrr_at_20_diff1
value: 21.601037898265016
- type: nauc_mrr_at_20_max
value: 21.376546238813333
- type: nauc_mrr_at_20_std
value: 15.519106032577042
- type: nauc_mrr_at_3_diff1
value: 24.391327825821342
- type: nauc_mrr_at_3_max
value: 22.279324585023907
- type: nauc_mrr_at_3_std
value: 14.36723796962747
- type: nauc_mrr_at_5_diff1
value: 22.69779016609937
- type: nauc_mrr_at_5_max
value: 21.910155676991927
- type: nauc_mrr_at_5_std
value: 14.481452222550335
- type: nauc_ndcg_at_1000_diff1
value: 18.646473335235644
- type: nauc_ndcg_at_1000_max
value: 20.61450878843323
- type: nauc_ndcg_at_1000_std
value: 17.02503878660379
- type: nauc_ndcg_at_100_diff1
value: 18.516435075748475
- type: nauc_ndcg_at_100_max
value: 19.916591730147978
- type: nauc_ndcg_at_100_std
value: 15.365433816151405
- type: nauc_ndcg_at_10_diff1
value: 20.433623492398315
- type: nauc_ndcg_at_10_max
value: 19.505014482656055
- type: nauc_ndcg_at_10_std
value: 15.007091547236504
- type: nauc_ndcg_at_1_diff1
value: 30.402870566797606
- type: nauc_ndcg_at_1_max
value: 23.93938440196226
- type: nauc_ndcg_at_1_std
value: 12.997536237455929
- type: nauc_ndcg_at_20_diff1
value: 18.786357992932725
- type: nauc_ndcg_at_20_max
value: 19.098773770805913
- type: nauc_ndcg_at_20_std
value: 15.077078565809456
- type: nauc_ndcg_at_3_diff1
value: 23.72149188171607
- type: nauc_ndcg_at_3_max
value: 21.3883319853042
- type: nauc_ndcg_at_3_std
value: 12.898024573912107
- type: nauc_ndcg_at_5_diff1
value: 21.68066258367858
- type: nauc_ndcg_at_5_max
value: 20.613614404831925
- type: nauc_ndcg_at_5_std
value: 12.774272028171833
- type: nauc_precision_at_1000_diff1
value: 0.9792326314146174
- type: nauc_precision_at_1000_max
value: 18.959462451645233
- type: nauc_precision_at_1000_std
value: 27.112339675868473
- type: nauc_precision_at_100_diff1
value: 5.507315634114162
- type: nauc_precision_at_100_max
value: 21.16546753595108
- type: nauc_precision_at_100_std
value: 23.890261020569653
- type: nauc_precision_at_10_diff1
value: 12.416990446480753
- type: nauc_precision_at_10_max
value: 20.972089855286185
- type: nauc_precision_at_10_std
value: 23.051845398601355
- type: nauc_precision_at_1_diff1
value: 30.402870566797606
- type: nauc_precision_at_1_max
value: 23.93938440196226
- type: nauc_precision_at_1_std
value: 12.997536237455929
- type: nauc_precision_at_20_diff1
value: 8.79422472044008
- type: nauc_precision_at_20_max
value: 20.674903676907636
- type: nauc_precision_at_20_std
value: 23.488209998563608
- type: nauc_precision_at_3_diff1
value: 18.02293696627094
- type: nauc_precision_at_3_max
value: 22.950256317548767
- type: nauc_precision_at_3_std
value: 17.001251788226636
- type: nauc_precision_at_5_diff1
value: 14.82261165916923
- type: nauc_precision_at_5_max
value: 22.371225776931077
- type: nauc_precision_at_5_std
value: 17.806150673765604
- type: nauc_recall_at_1000_diff1
value: 7.494489915270187
- type: nauc_recall_at_1000_max
value: 20.569342570845002
- type: nauc_recall_at_1000_std
value: 25.866094507869892
- type: nauc_recall_at_100_diff1
value: 10.14085619919932
- type: nauc_recall_at_100_max
value: 16.931051365465137
- type: nauc_recall_at_100_std
value: 15.888964104887746
- type: nauc_recall_at_10_diff1
value: 14.225307287972269
- type: nauc_recall_at_10_max
value: 15.52986134762012
- type: nauc_recall_at_10_std
value: 16.71753091718452
- type: nauc_recall_at_1_diff1
value: 34.071984947286296
- type: nauc_recall_at_1_max
value: 22.35927499649868
- type: nauc_recall_at_1_std
value: 9.086052394259115
- type: nauc_recall_at_20_diff1
value: 10.539561215408414
- type: nauc_recall_at_20_max
value: 14.542633350220521
- type: nauc_recall_at_20_std
value: 16.455084074160734
- type: nauc_recall_at_3_diff1
value: 19.865442369243137
- type: nauc_recall_at_3_max
value: 18.637208048866047
- type: nauc_recall_at_3_std
value: 11.885469722659007
- type: nauc_recall_at_5_diff1
value: 16.637796934858315
- type: nauc_recall_at_5_max
value: 17.833140476248197
- type: nauc_recall_at_5_std
value: 12.219010395478854
- type: ndcg_at_1
value: 8.224
- type: ndcg_at_10
value: 13.761999999999999
- type: ndcg_at_100
value: 19.006
- type: ndcg_at_1000
value: 23.144000000000002
- type: ndcg_at_20
value: 15.414
- type: ndcg_at_3
value: 10.464
- type: ndcg_at_5
value: 11.798
- type: precision_at_1
value: 8.224
- type: precision_at_10
value: 2.9899999999999998
- type: precision_at_100
value: 0.6890000000000001
- type: precision_at_1000
value: 0.124
- type: precision_at_20
value: 1.958
- type: precision_at_3
value: 5.367999999999999
- type: precision_at_5
value: 4.2459999999999996
- type: recall_at_1
value: 6.3759999999999994
- type: recall_at_10
value: 21.159
- type: recall_at_100
value: 45.506
- type: recall_at_1000
value: 75.702
- type: recall_at_20
value: 27.349
- type: recall_at_3
value: 11.837
- type: recall_at_5
value: 15.232000000000001
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: main_score
value: 27.52
- type: map_at_1
value: 15.588
- type: map_at_10
value: 22.570999999999998
- type: map_at_100
value: 23.982999999999997
- type: map_at_1000
value: 24.122
- type: map_at_20
value: 23.391000000000002
- type: map_at_3
value: 19.767000000000003
- type: map_at_5
value: 21.18
- type: mrr_at_1
value: 18.75
- type: mrr_at_10
value: 26.1608623548922
- type: mrr_at_100
value: 27.317010497161142
- type: mrr_at_1000
value: 27.405975383784188
- type: mrr_at_20
value: 26.87336000217942
- type: mrr_at_3
value: 23.445273631840813
- type: mrr_at_5
value: 24.8212064676617
- type: nauc_map_at_1000_diff1
value: 30.684226668507026
- type: nauc_map_at_1000_max
value: 24.951065677373784
- type: nauc_map_at_1000_std
value: 5.2066026685896825
- type: nauc_map_at_100_diff1
value: 30.679165862866476
- type: nauc_map_at_100_max
value: 24.9530364766238
- type: nauc_map_at_100_std
value: 5.205883565949459
- type: nauc_map_at_10_diff1
value: 31.122215360656153
- type: nauc_map_at_10_max
value: 24.5124066227212
- type: nauc_map_at_10_std
value: 4.35292624287149
- type: nauc_map_at_1_diff1
value: 39.18247834731389
- type: nauc_map_at_1_max
value: 24.413907066366434
- type: nauc_map_at_1_std
value: 2.070371372630658
- type: nauc_map_at_20_diff1
value: 30.818586802122503
- type: nauc_map_at_20_max
value: 24.77393316529099
- type: nauc_map_at_20_std
value: 4.935672359462836
- type: nauc_map_at_3_diff1
value: 31.99317691078875
- type: nauc_map_at_3_max
value: 23.376773341655184
- type: nauc_map_at_3_std
value: 1.7026914448918886
- type: nauc_map_at_5_diff1
value: 31.508091004529398
- type: nauc_map_at_5_max
value: 24.560067495036396
- type: nauc_map_at_5_std
value: 3.552337846934037
- type: nauc_mrr_at_1000_diff1
value: 28.985987949736963
- type: nauc_mrr_at_1000_max
value: 27.028330536592133
- type: nauc_mrr_at_1000_std
value: 6.805769019477874
- type: nauc_mrr_at_100_diff1
value: 28.975617833163696
- type: nauc_mrr_at_100_max
value: 27.03219548034752
- type: nauc_mrr_at_100_std
value: 6.831150418834171
- type: nauc_mrr_at_10_diff1
value: 29.030864214165074
- type: nauc_mrr_at_10_max
value: 26.77447636537233
- type: nauc_mrr_at_10_std
value: 6.407525890746923
- type: nauc_mrr_at_1_diff1
value: 36.43774473918464
- type: nauc_mrr_at_1_max
value: 27.70874373843583
- type: nauc_mrr_at_1_std
value: 4.839051843867864
- type: nauc_mrr_at_20_diff1
value: 29.016976637513753
- type: nauc_mrr_at_20_max
value: 27.004877168874504
- type: nauc_mrr_at_20_std
value: 6.775422720382143
- type: nauc_mrr_at_3_diff1
value: 30.077493911870413
- type: nauc_mrr_at_3_max
value: 26.340420675504696
- type: nauc_mrr_at_3_std
value: 4.141758328637211
- type: nauc_mrr_at_5_diff1
value: 29.434648381968586
- type: nauc_mrr_at_5_max
value: 27.04904363072304
- type: nauc_mrr_at_5_std
value: 5.638876519130593
- type: nauc_ndcg_at_1000_diff1
value: 27.201512870428225
- type: nauc_ndcg_at_1000_max
value: 26.607429208642486
- type: nauc_ndcg_at_1000_std
value: 9.426530569631955
- type: nauc_ndcg_at_100_diff1
value: 26.7561672878664
- type: nauc_ndcg_at_100_max
value: 26.82765674698552
- type: nauc_ndcg_at_100_std
value: 10.117411449672364
- type: nauc_ndcg_at_10_diff1
value: 28.08039219869409
- type: nauc_ndcg_at_10_max
value: 25.30612250538394
- type: nauc_ndcg_at_10_std
value: 6.8541921175323655
- type: nauc_ndcg_at_1_diff1
value: 36.43774473918464
- type: nauc_ndcg_at_1_max
value: 27.70874373843583
- type: nauc_ndcg_at_1_std
value: 4.839051843867864
- type: nauc_ndcg_at_20_diff1
value: 27.27399749691096
- type: nauc_ndcg_at_20_max
value: 26.107141341582334
- type: nauc_ndcg_at_20_std
value: 8.649506543910311
- type: nauc_ndcg_at_3_diff1
value: 29.424613119884025
- type: nauc_ndcg_at_3_max
value: 24.17384798641367
- type: nauc_ndcg_at_3_std
value: 2.3404905076142164
- type: nauc_ndcg_at_5_diff1
value: 28.77369502430592
- type: nauc_ndcg_at_5_max
value: 25.64790019257201
- type: nauc_ndcg_at_5_std
value: 5.155072577708316
- type: nauc_precision_at_1000_diff1
value: -4.7351598070789285
- type: nauc_precision_at_1000_max
value: 3.8148394654088924
- type: nauc_precision_at_1000_std
value: 5.833941375739573
- type: nauc_precision_at_100_diff1
value: 2.7442597276716962
- type: nauc_precision_at_100_max
value: 21.287933846054695
- type: nauc_precision_at_100_std
value: 20.177490390686852
- type: nauc_precision_at_10_diff1
value: 15.735811418920292
- type: nauc_precision_at_10_max
value: 27.22995218775853
- type: nauc_precision_at_10_std
value: 14.258744772316767
- type: nauc_precision_at_1_diff1
value: 36.43774473918464
- type: nauc_precision_at_1_max
value: 27.70874373843583
- type: nauc_precision_at_1_std
value: 4.839051843867864
- type: nauc_precision_at_20_diff1
value: 11.68099186992869
- type: nauc_precision_at_20_max
value: 27.11541433113338
- type: nauc_precision_at_20_std
value: 18.26747110990696
- type: nauc_precision_at_3_diff1
value: 22.10511897461343
- type: nauc_precision_at_3_max
value: 26.17867919555923
- type: nauc_precision_at_3_std
value: 4.707255449070724
- type: nauc_precision_at_5_diff1
value: 19.791048476417362
- type: nauc_precision_at_5_max
value: 29.234327716637033
- type: nauc_precision_at_5_std
value: 10.540070304399105
- type: nauc_recall_at_1000_diff1
value: 8.421470865964084
- type: nauc_recall_at_1000_max
value: 35.84068473670827
- type: nauc_recall_at_1000_std
value: 43.8492485408352
- type: nauc_recall_at_100_diff1
value: 14.057683903084895
- type: nauc_recall_at_100_max
value: 29.18102905270184
- type: nauc_recall_at_100_std
value: 26.137740725020237
- type: nauc_recall_at_10_diff1
value: 20.883794816820973
- type: nauc_recall_at_10_max
value: 23.209326744403462
- type: nauc_recall_at_10_std
value: 10.744448122178655
- type: nauc_recall_at_1_diff1
value: 39.18247834731389
- type: nauc_recall_at_1_max
value: 24.413907066366434
- type: nauc_recall_at_1_std
value: 2.070371372630658
- type: nauc_recall_at_20_diff1
value: 17.615849661206664
- type: nauc_recall_at_20_max
value: 25.238448658847183
- type: nauc_recall_at_20_std
value: 16.41969229374057
- type: nauc_recall_at_3_diff1
value: 24.620971173135203
- type: nauc_recall_at_3_max
value: 21.570609052956133
- type: nauc_recall_at_3_std
value: 1.1341134767333612
- type: nauc_recall_at_5_diff1
value: 23.02632411597575
- type: nauc_recall_at_5_max
value: 25.011330440228207
- type: nauc_recall_at_5_std
value: 7.4900296759785725
- type: ndcg_at_1
value: 18.75
- type: ndcg_at_10
value: 27.52
- type: ndcg_at_100
value: 34.076
- type: ndcg_at_1000
value: 37.259
- type: ndcg_at_20
value: 30.266
- type: ndcg_at_3
value: 22.186
- type: ndcg_at_5
value: 24.39
- type: precision_at_1
value: 18.75
- type: precision_at_10
value: 5.177
- type: precision_at_100
value: 0.9530000000000001
- type: precision_at_1000
value: 0.136
- type: precision_at_20
value: 3.279
- type: precision_at_3
value: 10.354
- type: precision_at_5
value: 7.743
- type: recall_at_1
value: 15.588
- type: recall_at_10
value: 39.202
- type: recall_at_100
value: 68.057
- type: recall_at_1000
value: 90.32900000000001
- type: recall_at_20
value: 49.331
- type: recall_at_3
value: 24.543
- type: recall_at_5
value: 30.133
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: main_score
value: 27.418
- type: map_at_1
value: 15.928
- type: map_at_10
value: 22.445
- type: map_at_100
value: 23.729
- type: map_at_1000
value: 23.945
- type: map_at_20
value: 23.097
- type: map_at_3
value: 19.742
- type: map_at_5
value: 21.187
- type: mrr_at_1
value: 19.76284584980237
- type: mrr_at_10
value: 26.411945542380323
- type: mrr_at_100
value: 27.542176582406203
- type: mrr_at_1000
value: 27.621234648152367
- type: mrr_at_20
value: 27.047537563344783
- type: mrr_at_3
value: 23.781291172595513
- type: mrr_at_5
value: 25.243741765480888
- type: nauc_map_at_1000_diff1
value: 34.875954784511165
- type: nauc_map_at_1000_max
value: 29.402608286733056
- type: nauc_map_at_1000_std
value: 18.888924007482892
- type: nauc_map_at_100_diff1
value: 34.67273650132461
- type: nauc_map_at_100_max
value: 29.36883910278622
- type: nauc_map_at_100_std
value: 18.801793750158218
- type: nauc_map_at_10_diff1
value: 34.925919015533104
- type: nauc_map_at_10_max
value: 28.906142009894193
- type: nauc_map_at_10_std
value: 18.47240468202337
- type: nauc_map_at_1_diff1
value: 41.320257922377046
- type: nauc_map_at_1_max
value: 27.045525641366126
- type: nauc_map_at_1_std
value: 14.820719523595283
- type: nauc_map_at_20_diff1
value: 34.38606553153665
- type: nauc_map_at_20_max
value: 29.339130166316725
- type: nauc_map_at_20_std
value: 18.777126514716354
- type: nauc_map_at_3_diff1
value: 36.433641134537105
- type: nauc_map_at_3_max
value: 28.429893730930715
- type: nauc_map_at_3_std
value: 16.573807982457755
- type: nauc_map_at_5_diff1
value: 35.49829863276235
- type: nauc_map_at_5_max
value: 28.49206642708423
- type: nauc_map_at_5_std
value: 17.426074185877614
- type: nauc_mrr_at_1000_diff1
value: 33.68862596978553
- type: nauc_mrr_at_1000_max
value: 32.25195024978712
- type: nauc_mrr_at_1000_std
value: 19.920510902611937
- type: nauc_mrr_at_100_diff1
value: 33.69603987988904
- type: nauc_mrr_at_100_max
value: 32.26963439157751
- type: nauc_mrr_at_100_std
value: 19.963818748298817
- type: nauc_mrr_at_10_diff1
value: 33.96876056002211
- type: nauc_mrr_at_10_max
value: 32.103845582717376
- type: nauc_mrr_at_10_std
value: 19.742125901752846
- type: nauc_mrr_at_1_diff1
value: 37.82438868347941
- type: nauc_mrr_at_1_max
value: 33.02998941581047
- type: nauc_mrr_at_1_std
value: 16.995528862845454
- type: nauc_mrr_at_20_diff1
value: 33.596380686430635
- type: nauc_mrr_at_20_max
value: 32.30918088421744
- type: nauc_mrr_at_20_std
value: 19.97601283298697
- type: nauc_mrr_at_3_diff1
value: 34.6722198156948
- type: nauc_mrr_at_3_max
value: 31.94335032060688
- type: nauc_mrr_at_3_std
value: 17.957820211447814
- type: nauc_mrr_at_5_diff1
value: 34.16743584432419
- type: nauc_mrr_at_5_max
value: 32.025706005037726
- type: nauc_mrr_at_5_std
value: 19.012154164577908
- type: nauc_ndcg_at_1000_diff1
value: 32.826999318624274
- type: nauc_ndcg_at_1000_max
value: 30.765793533727216
- type: nauc_ndcg_at_1000_std
value: 22.04794628482662
- type: nauc_ndcg_at_100_diff1
value: 32.475577778913475
- type: nauc_ndcg_at_100_max
value: 30.914747692829447
- type: nauc_ndcg_at_100_std
value: 22.335685545222717
- type: nauc_ndcg_at_10_diff1
value: 32.68201159086846
- type: nauc_ndcg_at_10_max
value: 29.58944485699082
- type: nauc_ndcg_at_10_std
value: 21.446283835382552
- type: nauc_ndcg_at_1_diff1
value: 37.82438868347941
- type: nauc_ndcg_at_1_max
value: 33.02998941581047
- type: nauc_ndcg_at_1_std
value: 16.995528862845454
- type: nauc_ndcg_at_20_diff1
value: 30.923091310022038
- type: nauc_ndcg_at_20_max
value: 30.583718384467428
- type: nauc_ndcg_at_20_std
value: 22.307175012464036
- type: nauc_ndcg_at_3_diff1
value: 34.76421528647677
- type: nauc_ndcg_at_3_max
value: 30.087603886151175
- type: nauc_ndcg_at_3_std
value: 18.7195367899851
- type: nauc_ndcg_at_5_diff1
value: 33.73582113410747
- type: nauc_ndcg_at_5_max
value: 29.396452917503417
- type: nauc_ndcg_at_5_std
value: 19.62391988291154
- type: nauc_precision_at_1000_diff1
value: 32.33220510193037
- type: nauc_precision_at_1000_max
value: 9.623028966785611
- type: nauc_precision_at_1000_std
value: 10.741264545736154
- type: nauc_precision_at_100_diff1
value: 23.98156772823854
- type: nauc_precision_at_100_max
value: 22.227294958441433
- type: nauc_precision_at_100_std
value: 20.635069438588186
- type: nauc_precision_at_10_diff1
value: 22.347016279919913
- type: nauc_precision_at_10_max
value: 31.586051361410473
- type: nauc_precision_at_10_std
value: 26.869528206483544
- type: nauc_precision_at_1_diff1
value: 37.82438868347941
- type: nauc_precision_at_1_max
value: 33.02998941581047
- type: nauc_precision_at_1_std
value: 16.995528862845454
- type: nauc_precision_at_20_diff1
value: 18.419666290305088
- type: nauc_precision_at_20_max
value: 32.321771618176115
- type: nauc_precision_at_20_std
value: 29.47795655526015
- type: nauc_precision_at_3_diff1
value: 27.863265709133366
- type: nauc_precision_at_3_max
value: 35.285838551821435
- type: nauc_precision_at_3_std
value: 22.672769836029126
- type: nauc_precision_at_5_diff1
value: 25.640021400595604
- type: nauc_precision_at_5_max
value: 33.24005429566627
- type: nauc_precision_at_5_std
value: 23.121187346809773
- type: nauc_recall_at_1000_diff1
value: 12.233272868637059
- type: nauc_recall_at_1000_max
value: 31.34004050188055
- type: nauc_recall_at_1000_std
value: 38.94602574688917
- type: nauc_recall_at_100_diff1
value: 23.47720048321073
- type: nauc_recall_at_100_max
value: 30.71446489259641
- type: nauc_recall_at_100_std
value: 31.928015150518757
- type: nauc_recall_at_10_diff1
value: 24.73037700905113
- type: nauc_recall_at_10_max
value: 26.466497802514382
- type: nauc_recall_at_10_std
value: 25.65417986790167
- type: nauc_recall_at_1_diff1
value: 41.320257922377046
- type: nauc_recall_at_1_max
value: 27.045525641366126
- type: nauc_recall_at_1_std
value: 14.820719523595283
- type: nauc_recall_at_20_diff1
value: 17.78335919785901
- type: nauc_recall_at_20_max
value: 28.91031250817357
- type: nauc_recall_at_20_std
value: 28.823907515459098
- type: nauc_recall_at_3_diff1
value: 31.412269010866538
- type: nauc_recall_at_3_max
value: 26.226141310560102
- type: nauc_recall_at_3_std
value: 17.606845122657564
- type: nauc_recall_at_5_diff1
value: 27.631512319754588
- type: nauc_recall_at_5_max
value: 25.456300010644167
- type: nauc_recall_at_5_std
value: 20.554194945871142
- type: ndcg_at_1
value: 19.763
- type: ndcg_at_10
value: 27.418
- type: ndcg_at_100
value: 33.794999999999995
- type: ndcg_at_1000
value: 37.206
- type: ndcg_at_20
value: 29.497
- type: ndcg_at_3
value: 22.594
- type: ndcg_at_5
value: 24.782
- type: precision_at_1
value: 19.763
- type: precision_at_10
value: 5.415
- type: precision_at_100
value: 1.154
- type: precision_at_1000
value: 0.22
- type: precision_at_20
value: 3.35
- type: precision_at_3
value: 10.804
- type: precision_at_5
value: 8.221
- type: recall_at_1
value: 15.928
- type: recall_at_10
value: 37.972
- type: recall_at_100
value: 68.31700000000001
- type: recall_at_1000
value: 89.744
- type: recall_at_20
value: 46.399
- type: recall_at_3
value: 23.796
- type: recall_at_5
value: 29.528
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 21.26
- type: map_at_1
value: 10.974
- type: map_at_10
value: 17.136000000000003
- type: map_at_100
value: 18.177
- type: map_at_1000
value: 18.287
- type: map_at_20
value: 17.636
- type: map_at_3
value: 14.934
- type: map_at_5
value: 16.073
- type: mrr_at_1
value: 12.199630314232902
- type: mrr_at_10
value: 18.70514626059913
- type: mrr_at_100
value: 19.748983258794034
- type: mrr_at_1000
value: 19.837442070088112
- type: mrr_at_20
value: 19.248603491362864
- type: mrr_at_3
value: 16.54343807763401
- type: mrr_at_5
value: 17.670979667282815
- type: nauc_map_at_1000_diff1
value: 12.678931653901056
- type: nauc_map_at_1000_max
value: 16.188177166378136
- type: nauc_map_at_1000_std
value: 12.840915498598127
- type: nauc_map_at_100_diff1
value: 12.670776495345507
- type: nauc_map_at_100_max
value: 16.17798043496996
- type: nauc_map_at_100_std
value: 12.822072072092977
- type: nauc_map_at_10_diff1
value: 12.288240379882705
- type: nauc_map_at_10_max
value: 16.15504212741907
- type: nauc_map_at_10_std
value: 12.164525297458955
- type: nauc_map_at_1_diff1
value: 19.07356377322629
- type: nauc_map_at_1_max
value: 17.999572753995082
- type: nauc_map_at_1_std
value: 10.302044048546005
- type: nauc_map_at_20_diff1
value: 12.310741859813563
- type: nauc_map_at_20_max
value: 15.874183751438679
- type: nauc_map_at_20_std
value: 12.329892661885577
- type: nauc_map_at_3_diff1
value: 12.923055965922023
- type: nauc_map_at_3_max
value: 16.030670921089712
- type: nauc_map_at_3_std
value: 10.174236364706072
- type: nauc_map_at_5_diff1
value: 12.334399032409554
- type: nauc_map_at_5_max
value: 15.847592809708466
- type: nauc_map_at_5_std
value: 10.642632496675084
- type: nauc_mrr_at_1000_diff1
value: 14.821689314895858
- type: nauc_mrr_at_1000_max
value: 18.01007338288078
- type: nauc_mrr_at_1000_std
value: 12.596964429973683
- type: nauc_mrr_at_100_diff1
value: 14.813075628659917
- type: nauc_mrr_at_100_max
value: 17.987900378330597
- type: nauc_mrr_at_100_std
value: 12.585770827205087
- type: nauc_mrr_at_10_diff1
value: 14.407724617483183
- type: nauc_mrr_at_10_max
value: 17.9987939329453
- type: nauc_mrr_at_10_std
value: 12.295346246957186
- type: nauc_mrr_at_1_diff1
value: 21.868324878950887
- type: nauc_mrr_at_1_max
value: 20.894193908164336
- type: nauc_mrr_at_1_std
value: 9.139550923680906
- type: nauc_mrr_at_20_diff1
value: 14.570968072256132
- type: nauc_mrr_at_20_max
value: 17.744023038753383
- type: nauc_mrr_at_20_std
value: 12.120612537829208
- type: nauc_mrr_at_3_diff1
value: 15.73722761425632
- type: nauc_mrr_at_3_max
value: 18.197994422315624
- type: nauc_mrr_at_3_std
value: 10.196475686377902
- type: nauc_mrr_at_5_diff1
value: 14.745400930877594
- type: nauc_mrr_at_5_max
value: 17.907279586527572
- type: nauc_mrr_at_5_std
value: 11.13820235180636
- type: nauc_ndcg_at_1000_diff1
value: 12.13214616065359
- type: nauc_ndcg_at_1000_max
value: 17.121764777921207
- type: nauc_ndcg_at_1000_std
value: 17.893050819270822
- type: nauc_ndcg_at_100_diff1
value: 11.950146646556552
- type: nauc_ndcg_at_100_max
value: 16.509372959176655
- type: nauc_ndcg_at_100_std
value: 17.882671216027205
- type: nauc_ndcg_at_10_diff1
value: 10.280723820236313
- type: nauc_ndcg_at_10_max
value: 16.19992373296763
- type: nauc_ndcg_at_10_std
value: 14.772336098381986
- type: nauc_ndcg_at_1_diff1
value: 21.868324878950887
- type: nauc_ndcg_at_1_max
value: 20.894193908164336
- type: nauc_ndcg_at_1_std
value: 9.139550923680906
- type: nauc_ndcg_at_20_diff1
value: 10.4067889502451
- type: nauc_ndcg_at_20_max
value: 15.234819276730866
- type: nauc_ndcg_at_20_std
value: 14.906728449046724
- type: nauc_ndcg_at_3_diff1
value: 11.811602705354899
- type: nauc_ndcg_at_3_max
value: 16.046989278985375
- type: nauc_ndcg_at_3_std
value: 10.67288489841697
- type: nauc_ndcg_at_5_diff1
value: 10.513005314547621
- type: nauc_ndcg_at_5_max
value: 15.506542272361076
- type: nauc_ndcg_at_5_std
value: 11.51643304336521
- type: nauc_precision_at_1000_diff1
value: 6.230871653536136
- type: nauc_precision_at_1000_max
value: 2.8786312954363806
- type: nauc_precision_at_1000_std
value: 8.072311757002275
- type: nauc_precision_at_100_diff1
value: 12.69414692799929
- type: nauc_precision_at_100_max
value: 15.001693281013653
- type: nauc_precision_at_100_std
value: 26.434565117841185
- type: nauc_precision_at_10_diff1
value: 7.8769498354922485
- type: nauc_precision_at_10_max
value: 16.51010130232648
- type: nauc_precision_at_10_std
value: 20.951244649430134
- type: nauc_precision_at_1_diff1
value: 21.868324878950887
- type: nauc_precision_at_1_max
value: 20.894193908164336
- type: nauc_precision_at_1_std
value: 9.139550923680906
- type: nauc_precision_at_20_diff1
value: 8.366060991850837
- type: nauc_precision_at_20_max
value: 12.54677453818851
- type: nauc_precision_at_20_std
value: 20.107820078217852
- type: nauc_precision_at_3_diff1
value: 8.338749776595783
- type: nauc_precision_at_3_max
value: 14.63768301600882
- type: nauc_precision_at_3_std
value: 11.33362167066395
- type: nauc_precision_at_5_diff1
value: 6.704572848424477
- type: nauc_precision_at_5_max
value: 14.248151818628482
- type: nauc_precision_at_5_std
value: 13.691110824662891
- type: nauc_recall_at_1000_diff1
value: 8.89266377200224
- type: nauc_recall_at_1000_max
value: 23.61464707731056
- type: nauc_recall_at_1000_std
value: 48.60798306825727
- type: nauc_recall_at_100_diff1
value: 9.377072086689383
- type: nauc_recall_at_100_max
value: 15.775682252417747
- type: nauc_recall_at_100_std
value: 33.86046204385918
- type: nauc_recall_at_10_diff1
value: 4.098313364685181
- type: nauc_recall_at_10_max
value: 14.716720941128566
- type: nauc_recall_at_10_std
value: 20.282626139543357
- type: nauc_recall_at_1_diff1
value: 19.07356377322629
- type: nauc_recall_at_1_max
value: 17.999572753995082
- type: nauc_recall_at_1_std
value: 10.302044048546005
- type: nauc_recall_at_20_diff1
value: 4.393976466517198
- type: nauc_recall_at_20_max
value: 11.95178800677615
- type: nauc_recall_at_20_std
value: 20.557023701011847
- type: nauc_recall_at_3_diff1
value: 6.734442526385427
- type: nauc_recall_at_3_max
value: 14.450825242271362
- type: nauc_recall_at_3_std
value: 11.589452715632738
- type: nauc_recall_at_5_diff1
value: 4.762756159503797
- type: nauc_recall_at_5_max
value: 13.251540766745999
- type: nauc_recall_at_5_std
value: 12.893569387731784
- type: ndcg_at_1
value: 12.2
- type: ndcg_at_10
value: 21.26
- type: ndcg_at_100
value: 26.913999999999998
- type: ndcg_at_1000
value: 30.043999999999997
- type: ndcg_at_20
value: 23.145
- type: ndcg_at_3
value: 16.758
- type: ndcg_at_5
value: 18.715
- type: precision_at_1
value: 12.2
- type: precision_at_10
value: 3.789
- type: precision_at_100
value: 0.719
- type: precision_at_1000
value: 0.106
- type: precision_at_20
value: 2.338
- type: precision_at_3
value: 7.64
- type: precision_at_5
value: 5.7299999999999995
- type: recall_at_1
value: 10.974
- type: recall_at_10
value: 32.634
- type: recall_at_100
value: 59.209999999999994
- type: recall_at_1000
value: 83.458
- type: recall_at_20
value: 39.928999999999995
- type: recall_at_3
value: 20.283
- type: recall_at_5
value: 24.997
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 14.97
- type: map_at_1
value: 4.928
- type: map_at_10
value: 9.67
- type: map_at_100
value: 11.131
- type: map_at_1000
value: 11.361
- type: map_at_20
value: 10.248
- type: map_at_3
value: 7.931000000000001
- type: map_at_5
value: 8.780000000000001
- type: mrr_at_1
value: 11.856677524429967
- type: mrr_at_10
value: 20.35530737810866
- type: mrr_at_100
value: 21.828454101212888
- type: mrr_at_1000
value: 21.890691227973136
- type: mrr_at_20
value: 21.14806585505244
- type: mrr_at_3
value: 17.730727470141158
- type: mrr_at_5
value: 19.10206297502713
- type: nauc_map_at_1000_diff1
value: 7.343974864659536
- type: nauc_map_at_1000_max
value: 27.127970014906786
- type: nauc_map_at_1000_std
value: 18.688546971841117
- type: nauc_map_at_100_diff1
value: 7.257359641312383
- type: nauc_map_at_100_max
value: 26.93386501878897
- type: nauc_map_at_100_std
value: 18.572058476864395
- type: nauc_map_at_10_diff1
value: 7.5524511559283285
- type: nauc_map_at_10_max
value: 25.5823403439562
- type: nauc_map_at_10_std
value: 16.127814097430974
- type: nauc_map_at_1_diff1
value: 12.999418845432006
- type: nauc_map_at_1_max
value: 31.020337243647095
- type: nauc_map_at_1_std
value: 19.991896333019515
- type: nauc_map_at_20_diff1
value: 7.085975699404192
- type: nauc_map_at_20_max
value: 25.75407679129859
- type: nauc_map_at_20_std
value: 16.72526052571226
- type: nauc_map_at_3_diff1
value: 8.70936707305993
- type: nauc_map_at_3_max
value: 26.708517715732246
- type: nauc_map_at_3_std
value: 15.760631791317781
- type: nauc_map_at_5_diff1
value: 8.26315708475148
- type: nauc_map_at_5_max
value: 25.35727921546233
- type: nauc_map_at_5_std
value: 15.092258215857902
- type: nauc_mrr_at_1000_diff1
value: 9.605823313934675
- type: nauc_mrr_at_1000_max
value: 29.210900493669495
- type: nauc_mrr_at_1000_std
value: 18.83080719056213
- type: nauc_mrr_at_100_diff1
value: 9.55666513233699
- type: nauc_mrr_at_100_max
value: 29.22087280589394
- type: nauc_mrr_at_100_std
value: 18.887436425893338
- type: nauc_mrr_at_10_diff1
value: 9.536442166623397
- type: nauc_mrr_at_10_max
value: 28.489301904218312
- type: nauc_mrr_at_10_std
value: 17.945183230798516
- type: nauc_mrr_at_1_diff1
value: 15.28049719426095
- type: nauc_mrr_at_1_max
value: 34.27049723189518
- type: nauc_mrr_at_1_std
value: 21.901296884315475
- type: nauc_mrr_at_20_diff1
value: 9.416526110965544
- type: nauc_mrr_at_20_max
value: 28.75113126415786
- type: nauc_mrr_at_20_std
value: 18.345484239730165
- type: nauc_mrr_at_3_diff1
value: 10.440304488887639
- type: nauc_mrr_at_3_max
value: 29.419182241937804
- type: nauc_mrr_at_3_std
value: 17.79516933724722
- type: nauc_mrr_at_5_diff1
value: 9.933840128353966
- type: nauc_mrr_at_5_max
value: 28.38615077411181
- type: nauc_mrr_at_5_std
value: 17.56861196368992
- type: nauc_ndcg_at_1000_diff1
value: 7.4723313593794565
- type: nauc_ndcg_at_1000_max
value: 31.639339374755142
- type: nauc_ndcg_at_1000_std
value: 25.105356776676658
- type: nauc_ndcg_at_100_diff1
value: 6.308931462956051
- type: nauc_ndcg_at_100_max
value: 30.655011045261972
- type: nauc_ndcg_at_100_std
value: 25.33133541833919
- type: nauc_ndcg_at_10_diff1
value: 6.318892234859429
- type: nauc_ndcg_at_10_max
value: 24.70336979572261
- type: nauc_ndcg_at_10_std
value: 16.19018272099447
- type: nauc_ndcg_at_1_diff1
value: 15.28049719426095
- type: nauc_ndcg_at_1_max
value: 34.27049723189518
- type: nauc_ndcg_at_1_std
value: 21.901296884315475
- type: nauc_ndcg_at_20_diff1
value: 5.361859199429646
- type: nauc_ndcg_at_20_max
value: 25.400570204198896
- type: nauc_ndcg_at_20_std
value: 17.887844183290667
- type: nauc_ndcg_at_3_diff1
value: 8.110953561431906
- type: nauc_ndcg_at_3_max
value: 26.63953855972143
- type: nauc_ndcg_at_3_std
value: 15.385397581839417
- type: nauc_ndcg_at_5_diff1
value: 7.709924887062054
- type: nauc_ndcg_at_5_max
value: 24.490998203146383
- type: nauc_ndcg_at_5_std
value: 14.6921440386966
- type: nauc_precision_at_1000_diff1
value: 3.6765328094092595
- type: nauc_precision_at_1000_max
value: 22.330333946150965
- type: nauc_precision_at_1000_std
value: 22.933547000215604
- type: nauc_precision_at_100_diff1
value: 2.2666175638162382
- type: nauc_precision_at_100_max
value: 30.354739309785444
- type: nauc_precision_at_100_std
value: 33.562087725077596
- type: nauc_precision_at_10_diff1
value: 1.8399284347123332
- type: nauc_precision_at_10_max
value: 21.55462109276507
- type: nauc_precision_at_10_std
value: 16.121481123984722
- type: nauc_precision_at_1_diff1
value: 15.28049719426095
- type: nauc_precision_at_1_max
value: 34.27049723189518
- type: nauc_precision_at_1_std
value: 21.901296884315475
- type: nauc_precision_at_20_diff1
value: 0.019989740402583465
- type: nauc_precision_at_20_max
value: 22.184928806584196
- type: nauc_precision_at_20_std
value: 19.352421167092725
- type: nauc_precision_at_3_diff1
value: 4.993655109383327
- type: nauc_precision_at_3_max
value: 25.471904019950102
- type: nauc_precision_at_3_std
value: 14.428827762549512
- type: nauc_precision_at_5_diff1
value: 4.356666010145262
- type: nauc_precision_at_5_max
value: 21.93208543594649
- type: nauc_precision_at_5_std
value: 13.168742223430959
- type: nauc_recall_at_1000_diff1
value: 7.275822779465287
- type: nauc_recall_at_1000_max
value: 34.71656818418004
- type: nauc_recall_at_1000_std
value: 34.358417311322675
- type: nauc_recall_at_100_diff1
value: 2.6813944416625026
- type: nauc_recall_at_100_max
value: 30.063206974414825
- type: nauc_recall_at_100_std
value: 32.997643399627634
- type: nauc_recall_at_10_diff1
value: 2.049411072425148
- type: nauc_recall_at_10_max
value: 17.384327223968484
- type: nauc_recall_at_10_std
value: 12.313062153156563
- type: nauc_recall_at_1_diff1
value: 12.999418845432006
- type: nauc_recall_at_1_max
value: 31.020337243647095
- type: nauc_recall_at_1_std
value: 19.991896333019515
- type: nauc_recall_at_20_diff1
value: 0.0769739475464366
- type: nauc_recall_at_20_max
value: 18.40025074677139
- type: nauc_recall_at_20_std
value: 15.71519209254166
- type: nauc_recall_at_3_diff1
value: 5.89259927853003
- type: nauc_recall_at_3_max
value: 21.39147480034604
- type: nauc_recall_at_3_std
value: 11.573847953419673
- type: nauc_recall_at_5_diff1
value: 4.925250715081651
- type: nauc_recall_at_5_max
value: 17.681821165181706
- type: nauc_recall_at_5_std
value: 10.016468241533516
- type: ndcg_at_1
value: 11.857
- type: ndcg_at_10
value: 14.97
- type: ndcg_at_100
value: 22.719
- type: ndcg_at_1000
value: 27.034000000000002
- type: ndcg_at_20
value: 17.092
- type: ndcg_at_3
value: 11.584
- type: ndcg_at_5
value: 12.715000000000002
- type: precision_at_1
value: 11.857
- type: precision_at_10
value: 4.8340000000000005
- type: precision_at_100
value: 1.336
- type: precision_at_1000
value: 0.212
- type: precision_at_20
value: 3.309
- type: precision_at_3
value: 8.903
- type: precision_at_5
value: 6.84
- type: recall_at_1
value: 4.928
- type: recall_at_10
value: 19.852
- type: recall_at_100
value: 48.075
- type: recall_at_1000
value: 72.60799999999999
- type: recall_at_20
value: 25.936999999999998
- type: recall_at_3
value: 11.309
- type: recall_at_5
value: 14.567
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 30.137000000000004
- type: map_at_1
value: 6.0
- type: map_at_10
value: 13.453000000000001
- type: map_at_100
value: 18.389
- type: map_at_1000
value: 19.706000000000003
- type: map_at_20
value: 15.348
- type: map_at_3
value: 9.569999999999999
- type: map_at_5
value: 11.269
- type: mrr_at_1
value: 48.5
- type: mrr_at_10
value: 59.12063492063492
- type: mrr_at_100
value: 59.7067363969307
- type: mrr_at_1000
value: 59.73195255745748
- type: mrr_at_20
value: 59.49264190079787
- type: mrr_at_3
value: 56.79166666666667
- type: mrr_at_5
value: 58.10416666666667
- type: nauc_map_at_1000_diff1
value: 21.11048962823763
- type: nauc_map_at_1000_max
value: 3.824918831917913
- type: nauc_map_at_1000_std
value: 18.091642998292183
- type: nauc_map_at_100_diff1
value: 21.400896998453565
- type: nauc_map_at_100_max
value: 3.0532938872682527
- type: nauc_map_at_100_std
value: 15.748553761470577
- type: nauc_map_at_10_diff1
value: 21.466273522809004
- type: nauc_map_at_10_max
value: 1.0436684944087984
- type: nauc_map_at_10_std
value: 3.123980868343808
- type: nauc_map_at_1_diff1
value: 36.294956943711185
- type: nauc_map_at_1_max
value: 5.187621118221234
- type: nauc_map_at_1_std
value: -2.793466227392795
- type: nauc_map_at_20_diff1
value: 22.487809942004276
- type: nauc_map_at_20_max
value: 1.810008116855991
- type: nauc_map_at_20_std
value: 6.582415021321395
- type: nauc_map_at_3_diff1
value: 23.65507925300577
- type: nauc_map_at_3_max
value: 1.5046652580013493
- type: nauc_map_at_3_std
value: -0.7516301806524871
- type: nauc_map_at_5_diff1
value: 21.46128727551178
- type: nauc_map_at_5_max
value: 1.382221300969405
- type: nauc_map_at_5_std
value: 0.5899543778583619
- type: nauc_mrr_at_1000_diff1
value: 39.95976660401341
- type: nauc_mrr_at_1000_max
value: 14.926325657707467
- type: nauc_mrr_at_1000_std
value: 16.345761016463396
- type: nauc_mrr_at_100_diff1
value: 39.959045716548836
- type: nauc_mrr_at_100_max
value: 14.934953971746829
- type: nauc_mrr_at_100_std
value: 16.376010454801467
- type: nauc_mrr_at_10_diff1
value: 40.06090715779124
- type: nauc_mrr_at_10_max
value: 14.881820498473369
- type: nauc_mrr_at_10_std
value: 16.59218049651554
- type: nauc_mrr_at_1_diff1
value: 40.879388159507975
- type: nauc_mrr_at_1_max
value: 11.270536619634298
- type: nauc_mrr_at_1_std
value: 13.0413747854383
- type: nauc_mrr_at_20_diff1
value: 40.01647777717407
- type: nauc_mrr_at_20_max
value: 14.937806497015416
- type: nauc_mrr_at_20_std
value: 16.472071311966392
- type: nauc_mrr_at_3_diff1
value: 39.39281882829406
- type: nauc_mrr_at_3_max
value: 14.321953204624844
- type: nauc_mrr_at_3_std
value: 13.798281679964585
- type: nauc_mrr_at_5_diff1
value: 39.768973978552594
- type: nauc_mrr_at_5_max
value: 14.404530882907713
- type: nauc_mrr_at_5_std
value: 15.92346805944451
- type: nauc_ndcg_at_1000_diff1
value: 22.27822653984692
- type: nauc_ndcg_at_1000_max
value: 9.924226549383965
- type: nauc_ndcg_at_1000_std
value: 28.25033871964479
- type: nauc_ndcg_at_100_diff1
value: 23.50078106583016
- type: nauc_ndcg_at_100_max
value: 6.7543474842024604
- type: nauc_ndcg_at_100_std
value: 21.003192623211657
- type: nauc_ndcg_at_10_diff1
value: 26.804949345594103
- type: nauc_ndcg_at_10_max
value: 5.287967810437971
- type: nauc_ndcg_at_10_std
value: 15.013863454844003
- type: nauc_ndcg_at_1_diff1
value: 36.51486006881417
- type: nauc_ndcg_at_1_max
value: 10.405773346698801
- type: nauc_ndcg_at_1_std
value: 11.799158787353369
- type: nauc_ndcg_at_20_diff1
value: 27.538405701690365
- type: nauc_ndcg_at_20_max
value: 5.803911184640402
- type: nauc_ndcg_at_20_std
value: 14.736490152112392
- type: nauc_ndcg_at_3_diff1
value: 27.617656142008574
- type: nauc_ndcg_at_3_max
value: 8.495506842062914
- type: nauc_ndcg_at_3_std
value: 13.000529342799002
- type: nauc_ndcg_at_5_diff1
value: 26.11786480923478
- type: nauc_ndcg_at_5_max
value: 6.810483365982102
- type: nauc_ndcg_at_5_std
value: 13.686050622685887
- type: nauc_precision_at_1000_diff1
value: -1.8263159519304677
- type: nauc_precision_at_1000_max
value: 9.105654485044203
- type: nauc_precision_at_1000_std
value: 19.896196956194387
- type: nauc_precision_at_100_diff1
value: 5.421790848083438
- type: nauc_precision_at_100_max
value: 5.843754140943668
- type: nauc_precision_at_100_std
value: 32.872530636176
- type: nauc_precision_at_10_diff1
value: 14.266901547255353
- type: nauc_precision_at_10_max
value: 5.6720582438158935
- type: nauc_precision_at_10_std
value: 24.731755691337355
- type: nauc_precision_at_1_diff1
value: 40.879388159507975
- type: nauc_precision_at_1_max
value: 11.270536619634298
- type: nauc_precision_at_1_std
value: 13.0413747854383
- type: nauc_precision_at_20_diff1
value: 14.561505270649377
- type: nauc_precision_at_20_max
value: 6.1877072435924365
- type: nauc_precision_at_20_std
value: 28.164304475344604
- type: nauc_precision_at_3_diff1
value: 20.90355054405486
- type: nauc_precision_at_3_max
value: 8.234045919189285
- type: nauc_precision_at_3_std
value: 15.882744817436434
- type: nauc_precision_at_5_diff1
value: 16.42363926772338
- type: nauc_precision_at_5_max
value: 6.6904533726502695
- type: nauc_precision_at_5_std
value: 19.664135643199458
- type: nauc_recall_at_1000_diff1
value: 5.50000056743861
- type: nauc_recall_at_1000_max
value: 6.615548983596191
- type: nauc_recall_at_1000_std
value: 33.480962113017895
- type: nauc_recall_at_100_diff1
value: 9.888973775211436
- type: nauc_recall_at_100_max
value: 2.7176483244916687
- type: nauc_recall_at_100_std
value: 20.844187088199874
- type: nauc_recall_at_10_diff1
value: 16.13403101219931
- type: nauc_recall_at_10_max
value: -0.4718490485814091
- type: nauc_recall_at_10_std
value: 2.1253602607327875
- type: nauc_recall_at_1_diff1
value: 36.294956943711185
- type: nauc_recall_at_1_max
value: 5.187621118221234
- type: nauc_recall_at_1_std
value: -2.793466227392795
- type: nauc_recall_at_20_diff1
value: 19.48409505091461
- type: nauc_recall_at_20_max
value: 3.2951687936987093
- type: nauc_recall_at_20_std
value: 7.00681132960327
- type: nauc_recall_at_3_diff1
value: 18.267617168970432
- type: nauc_recall_at_3_max
value: -0.06449790862866218
- type: nauc_recall_at_3_std
value: -3.016158705432899
- type: nauc_recall_at_5_diff1
value: 14.913123369125838
- type: nauc_recall_at_5_max
value: 0.16850104026158685
- type: nauc_recall_at_5_std
value: -0.6034095216457759
- type: ndcg_at_1
value: 38.5
- type: ndcg_at_10
value: 30.137000000000004
- type: ndcg_at_100
value: 34.342
- type: ndcg_at_1000
value: 42.201
- type: ndcg_at_20
value: 29.822
- type: ndcg_at_3
value: 32.983000000000004
- type: ndcg_at_5
value: 31.182
- type: precision_at_1
value: 48.5
- type: precision_at_10
value: 24.099999999999998
- type: precision_at_100
value: 7.605
- type: precision_at_1000
value: 1.733
- type: precision_at_20
value: 18.137
- type: precision_at_3
value: 36.083
- type: precision_at_5
value: 30.75
- type: recall_at_1
value: 6.0
- type: recall_at_10
value: 19.136
- type: recall_at_100
value: 41.338
- type: recall_at_1000
value: 67.25
- type: recall_at_20
value: 24.688
- type: recall_at_3
value: 11.132
- type: recall_at_5
value: 14.231
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 73.09500000000001
- type: f1
value: 68.63641879623752
- type: f1_weighted
value: 74.08687647970862
- type: main_score
value: 73.09500000000001
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 56.275
- type: map_at_1
value: 35.847
- type: map_at_10
value: 49.192
- type: map_at_100
value: 49.913000000000004
- type: map_at_1000
value: 49.945
- type: map_at_20
value: 49.652
- type: map_at_3
value: 45.988
- type: map_at_5
value: 47.955
- type: mrr_at_1
value: 38.5988598859886
- type: mrr_at_10
value: 52.23110406278746
- type: mrr_at_100
value: 52.88492739273575
- type: mrr_at_1000
value: 52.904747106357384
- type: mrr_at_20
value: 52.6636924268024
- type: mrr_at_3
value: 48.97239723972427
- type: mrr_at_5
value: 51.01635163516368
- type: nauc_map_at_1000_diff1
value: 36.64174970870812
- type: nauc_map_at_1000_max
value: 15.660507126063871
- type: nauc_map_at_1000_std
value: -12.525150655309774
- type: nauc_map_at_100_diff1
value: 36.6435791136361
- type: nauc_map_at_100_max
value: 15.675834344014946
- type: nauc_map_at_100_std
value: -12.504087019254898
- type: nauc_map_at_10_diff1
value: 36.512625030119366
- type: nauc_map_at_10_max
value: 15.521396090488226
- type: nauc_map_at_10_std
value: -12.655309941517057
- type: nauc_map_at_1_diff1
value: 38.19401754151657
- type: nauc_map_at_1_max
value: 13.290047228169902
- type: nauc_map_at_1_std
value: -16.25017425222326
- type: nauc_map_at_20_diff1
value: 36.61973919620995
- type: nauc_map_at_20_max
value: 15.679871911858962
- type: nauc_map_at_20_std
value: -12.487736624487598
- type: nauc_map_at_3_diff1
value: 36.64249275169512
- type: nauc_map_at_3_max
value: 14.555494484309506
- type: nauc_map_at_3_std
value: -14.778136642316362
- type: nauc_map_at_5_diff1
value: 36.60147619857385
- type: nauc_map_at_5_max
value: 15.091571640821227
- type: nauc_map_at_5_std
value: -13.570700587891283
- type: nauc_mrr_at_1000_diff1
value: 37.997426431979406
- type: nauc_mrr_at_1000_max
value: 14.98013800807032
- type: nauc_mrr_at_1000_std
value: -14.841942787676668
- type: nauc_mrr_at_100_diff1
value: 38.00076769617504
- type: nauc_mrr_at_100_max
value: 14.996219532747034
- type: nauc_mrr_at_100_std
value: -14.814824444455867
- type: nauc_mrr_at_10_diff1
value: 37.80491807703189
- type: nauc_mrr_at_10_max
value: 14.882959946615573
- type: nauc_mrr_at_10_std
value: -14.87210289207
- type: nauc_mrr_at_1_diff1
value: 39.30857248856019
- type: nauc_mrr_at_1_max
value: 13.216181318724654
- type: nauc_mrr_at_1_std
value: -17.816031667670963
- type: nauc_mrr_at_20_diff1
value: 37.958327539289535
- type: nauc_mrr_at_20_max
value: 15.01939060882702
- type: nauc_mrr_at_20_std
value: -14.742321408684889
- type: nauc_mrr_at_3_diff1
value: 37.83776099785701
- type: nauc_mrr_at_3_max
value: 13.991066447397454
- type: nauc_mrr_at_3_std
value: -16.852370243294917
- type: nauc_mrr_at_5_diff1
value: 37.80241399940709
- type: nauc_mrr_at_5_max
value: 14.504998552455787
- type: nauc_mrr_at_5_std
value: -15.653347947582471
- type: nauc_ndcg_at_1000_diff1
value: 36.65756580123748
- type: nauc_ndcg_at_1000_max
value: 16.97444748484926
- type: nauc_ndcg_at_1000_std
value: -9.948608541675865
- type: nauc_ndcg_at_100_diff1
value: 36.71481365126713
- type: nauc_ndcg_at_100_max
value: 17.489332769921877
- type: nauc_ndcg_at_100_std
value: -9.11867227279014
- type: nauc_ndcg_at_10_diff1
value: 36.06799961534314
- type: nauc_ndcg_at_10_max
value: 16.8613677000495
- type: nauc_ndcg_at_10_std
value: -9.81556106125859
- type: nauc_ndcg_at_1_diff1
value: 39.30857248856019
- type: nauc_ndcg_at_1_max
value: 13.216181318724654
- type: nauc_ndcg_at_1_std
value: -17.816031667670963
- type: nauc_ndcg_at_20_diff1
value: 36.49965813253492
- type: nauc_ndcg_at_20_max
value: 17.539102339776296
- type: nauc_ndcg_at_20_std
value: -9.026565538786357
- type: nauc_ndcg_at_3_diff1
value: 36.41815839693589
- type: nauc_ndcg_at_3_max
value: 14.700854622435058
- type: nauc_ndcg_at_3_std
value: -14.674234384559073
- type: nauc_ndcg_at_5_diff1
value: 36.28943043198077
- type: nauc_ndcg_at_5_max
value: 15.745879382099279
- type: nauc_ndcg_at_5_std
value: -12.24120367991547
- type: nauc_precision_at_1000_diff1
value: -1.125165071294792
- type: nauc_precision_at_1000_max
value: 6.995559652372453
- type: nauc_precision_at_1000_std
value: 12.831131017541821
- type: nauc_precision_at_100_diff1
value: 11.000701192784645
- type: nauc_precision_at_100_max
value: 20.360887483968636
- type: nauc_precision_at_100_std
value: 22.16846897480723
- type: nauc_precision_at_10_diff1
value: 27.00078852057367
- type: nauc_precision_at_10_max
value: 21.829143356067338
- type: nauc_precision_at_10_std
value: 5.798370950077175
- type: nauc_precision_at_1_diff1
value: 39.30857248856019
- type: nauc_precision_at_1_max
value: 13.216181318724654
- type: nauc_precision_at_1_std
value: -17.816031667670963
- type: nauc_precision_at_20_diff1
value: 24.362454958286268
- type: nauc_precision_at_20_max
value: 25.723944313836018
- type: nauc_precision_at_20_std
value: 14.965719248393347
- type: nauc_precision_at_3_diff1
value: 33.798877367578854
- type: nauc_precision_at_3_max
value: 15.363655428823531
- type: nauc_precision_at_3_std
value: -13.791082916394782
- type: nauc_precision_at_5_diff1
value: 31.956562731570497
- type: nauc_precision_at_5_max
value: 18.233368709013877
- type: nauc_precision_at_5_std
value: -6.431537681620625
- type: nauc_recall_at_1000_diff1
value: 18.340052781682274
- type: nauc_recall_at_1000_max
value: 31.963275437350024
- type: nauc_recall_at_1000_std
value: 44.816169836161656
- type: nauc_recall_at_100_diff1
value: 28.22528558216003
- type: nauc_recall_at_100_max
value: 34.5813678838198
- type: nauc_recall_at_100_std
value: 34.67537364886928
- type: nauc_recall_at_10_diff1
value: 29.7947859758469
- type: nauc_recall_at_10_max
value: 22.49573322191089
- type: nauc_recall_at_10_std
value: 7.132599572662985
- type: nauc_recall_at_1_diff1
value: 38.19401754151657
- type: nauc_recall_at_1_max
value: 13.290047228169902
- type: nauc_recall_at_1_std
value: -16.25017425222326
- type: nauc_recall_at_20_diff1
value: 30.26074789910862
- type: nauc_recall_at_20_max
value: 27.834226251757816
- type: nauc_recall_at_20_std
value: 16.54841199015065
- type: nauc_recall_at_3_diff1
value: 33.413742439395484
- type: nauc_recall_at_3_max
value: 15.211407121882475
- type: nauc_recall_at_3_std
value: -11.671768186203062
- type: nauc_recall_at_5_diff1
value: 32.21235453464061
- type: nauc_recall_at_5_max
value: 17.82957773085371
- type: nauc_recall_at_5_std
value: -4.588112602146949
- type: ndcg_at_1
value: 38.599
- type: ndcg_at_10
value: 56.275
- type: ndcg_at_100
value: 59.580999999999996
- type: ndcg_at_1000
value: 60.307
- type: ndcg_at_20
value: 57.865
- type: ndcg_at_3
value: 49.903
- type: ndcg_at_5
value: 53.378
- type: precision_at_1
value: 38.599
- type: precision_at_10
value: 8.237
- type: precision_at_100
value: 1.004
- type: precision_at_1000
value: 0.108
- type: precision_at_20
value: 4.47
- type: precision_at_3
value: 20.982
- type: precision_at_5
value: 14.475999999999999
- type: recall_at_1
value: 35.847
- type: recall_at_10
value: 75.244
- type: recall_at_100
value: 89.968
- type: recall_at_1000
value: 95.281
- type: recall_at_20
value: 81.272
- type: recall_at_3
value: 58.148999999999994
- type: recall_at_5
value: 66.53
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 73.56
- type: map_at_1
value: 36.149
- type: map_at_10
value: 64.262
- type: map_at_100
value: 66.346
- type: map_at_1000
value: 66.381
- type: map_at_20
value: 65.91
- type: map_at_3
value: 54.579
- type: map_at_5
value: 60.043
- type: mrr_at_1
value: 68.20987654320987
- type: mrr_at_10
value: 78.0676195375269
- type: mrr_at_100
value: 78.22788481128512
- type: mrr_at_1000
value: 78.2351762841002
- type: mrr_at_20
value: 78.19418362303348
- type: mrr_at_3
value: 76.38888888888886
- type: mrr_at_5
value: 77.53858024691351
- type: nauc_map_at_1000_diff1
value: 39.13951115792765
- type: nauc_map_at_1000_max
value: 15.789675641496808
- type: nauc_map_at_1000_std
value: -14.962767430758966
- type: nauc_map_at_100_diff1
value: 39.14667307112649
- type: nauc_map_at_100_max
value: 15.7556118076197
- type: nauc_map_at_100_std
value: -14.947192943164422
- type: nauc_map_at_10_diff1
value: 39.71365566339051
- type: nauc_map_at_10_max
value: 12.359982700266224
- type: nauc_map_at_10_std
value: -16.689077406647765
- type: nauc_map_at_1_diff1
value: 38.01390755497353
- type: nauc_map_at_1_max
value: -2.4285798001758696
- type: nauc_map_at_1_std
value: -11.839428013172745
- type: nauc_map_at_20_diff1
value: 39.27021403147416
- type: nauc_map_at_20_max
value: 15.22857604958874
- type: nauc_map_at_20_std
value: -15.31472460777032
- type: nauc_map_at_3_diff1
value: 37.977476069647196
- type: nauc_map_at_3_max
value: 3.2190612996608228
- type: nauc_map_at_3_std
value: -15.66245768446722
- type: nauc_map_at_5_diff1
value: 39.4541015155147
- type: nauc_map_at_5_max
value: 8.406851080721177
- type: nauc_map_at_5_std
value: -17.318320201143724
- type: nauc_mrr_at_1000_diff1
value: 50.52179630360454
- type: nauc_mrr_at_1000_max
value: 27.958043634255976
- type: nauc_mrr_at_1000_std
value: -10.449298885386217
- type: nauc_mrr_at_100_diff1
value: 50.51660811731795
- type: nauc_mrr_at_100_max
value: 27.944402723175603
- type: nauc_mrr_at_100_std
value: -10.44533164401012
- type: nauc_mrr_at_10_diff1
value: 50.43596746653215
- type: nauc_mrr_at_10_max
value: 27.849753656390963
- type: nauc_mrr_at_10_std
value: -10.448303695173873
- type: nauc_mrr_at_1_diff1
value: 52.29547373761976
- type: nauc_mrr_at_1_max
value: 28.84554542629197
- type: nauc_mrr_at_1_std
value: -9.753666425872645
- type: nauc_mrr_at_20_diff1
value: 50.47556830247787
- type: nauc_mrr_at_20_max
value: 27.92615740500234
- type: nauc_mrr_at_20_std
value: -10.413757833872396
- type: nauc_mrr_at_3_diff1
value: 50.30231795753932
- type: nauc_mrr_at_3_max
value: 27.23788784979687
- type: nauc_mrr_at_3_std
value: -11.52516432450595
- type: nauc_mrr_at_5_diff1
value: 49.78580615169249
- type: nauc_mrr_at_5_max
value: 28.46933101763155
- type: nauc_mrr_at_5_std
value: -10.669870915511963
- type: nauc_ndcg_at_1000_diff1
value: 41.21630766413613
- type: nauc_ndcg_at_1000_max
value: 21.898896244340968
- type: nauc_ndcg_at_1000_std
value: -11.887919577706999
- type: nauc_ndcg_at_100_diff1
value: 41.31739592194364
- type: nauc_ndcg_at_100_max
value: 21.604565329954767
- type: nauc_ndcg_at_100_std
value: -11.487948873516627
- type: nauc_ndcg_at_10_diff1
value: 41.478136363299946
- type: nauc_ndcg_at_10_max
value: 16.2617184983789
- type: nauc_ndcg_at_10_std
value: -14.885574869807709
- type: nauc_ndcg_at_1_diff1
value: 52.29547373761976
- type: nauc_ndcg_at_1_max
value: 28.84554542629197
- type: nauc_ndcg_at_1_std
value: -9.753666425872645
- type: nauc_ndcg_at_20_diff1
value: 41.0669327481738
- type: nauc_ndcg_at_20_max
value: 20.514680273626567
- type: nauc_ndcg_at_20_std
value: -12.435494727134182
- type: nauc_ndcg_at_3_diff1
value: 36.83325361853425
- type: nauc_ndcg_at_3_max
value: 17.38656549225942
- type: nauc_ndcg_at_3_std
value: -13.019339397502755
- type: nauc_ndcg_at_5_diff1
value: 38.580162281647056
- type: nauc_ndcg_at_5_max
value: 16.337906272293548
- type: nauc_ndcg_at_5_std
value: -15.684185539933097
- type: nauc_precision_at_1000_diff1
value: -15.015876704383984
- type: nauc_precision_at_1000_max
value: 31.597455975629103
- type: nauc_precision_at_1000_std
value: 10.381684525984323
- type: nauc_precision_at_100_diff1
value: -13.999569979209717
- type: nauc_precision_at_100_max
value: 32.07381175031831
- type: nauc_precision_at_100_std
value: 10.894062912630725
- type: nauc_precision_at_10_diff1
value: -6.838189677762939
- type: nauc_precision_at_10_max
value: 30.8435231260984
- type: nauc_precision_at_10_std
value: 3.584893296243004
- type: nauc_precision_at_1_diff1
value: 52.29547373761976
- type: nauc_precision_at_1_max
value: 28.84554542629197
- type: nauc_precision_at_1_std
value: -9.753666425872645
- type: nauc_precision_at_20_diff1
value: -11.288106674270978
- type: nauc_precision_at_20_max
value: 32.833427715252384
- type: nauc_precision_at_20_std
value: 8.381049941157823
- type: nauc_precision_at_3_diff1
value: 8.995935650409244
- type: nauc_precision_at_3_max
value: 28.604916357622667
- type: nauc_precision_at_3_std
value: -3.413011596709042
- type: nauc_precision_at_5_diff1
value: 0.5096333185904195
- type: nauc_precision_at_5_max
value: 31.64022178781689
- type: nauc_precision_at_5_std
value: -2.229213295556884
- type: nauc_recall_at_1000_diff1
value: 11.836577229926256
- type: nauc_recall_at_1000_max
value: 63.2069044893288
- type: nauc_recall_at_1000_std
value: 39.48278448112018
- type: nauc_recall_at_100_diff1
value: 33.5139879615151
- type: nauc_recall_at_100_max
value: 22.125177627882646
- type: nauc_recall_at_100_std
value: 14.591263016360372
- type: nauc_recall_at_10_diff1
value: 32.36111021259031
- type: nauc_recall_at_10_max
value: 1.8443323783196737
- type: nauc_recall_at_10_std
value: -15.156002529122315
- type: nauc_recall_at_1_diff1
value: 38.01390755497353
- type: nauc_recall_at_1_max
value: -2.4285798001758696
- type: nauc_recall_at_1_std
value: -11.839428013172745
- type: nauc_recall_at_20_diff1
value: 28.09780616502855
- type: nauc_recall_at_20_max
value: 16.429971434661592
- type: nauc_recall_at_20_std
value: -2.4852013016206156
- type: nauc_recall_at_3_diff1
value: 31.25125120179455
- type: nauc_recall_at_3_max
value: -3.973563562137874
- type: nauc_recall_at_3_std
value: -15.354908114563473
- type: nauc_recall_at_5_diff1
value: 31.24816861720535
- type: nauc_recall_at_5_max
value: 2.908586508028948
- type: nauc_recall_at_5_std
value: -16.221156997636047
- type: ndcg_at_1
value: 68.21000000000001
- type: ndcg_at_10
value: 73.56
- type: ndcg_at_100
value: 77.522
- type: ndcg_at_1000
value: 77.95299999999999
- type: ndcg_at_20
value: 76.193
- type: ndcg_at_3
value: 66.853
- type: ndcg_at_5
value: 69.602
- type: precision_at_1
value: 68.21000000000001
- type: precision_at_10
value: 21.142
- type: precision_at_100
value: 2.546
- type: precision_at_1000
value: 0.262
- type: precision_at_20
value: 11.914
- type: precision_at_3
value: 45.525
- type: precision_at_5
value: 34.29
- type: recall_at_1
value: 36.149
- type: recall_at_10
value: 84.102
- type: recall_at_100
value: 96.749
- type: recall_at_1000
value: 99.34100000000001
- type: recall_at_20
value: 91.662
- type: recall_at_3
value: 61.602999999999994
- type: recall_at_5
value: 72.482
- task:
type: Classification
dataset:
name: MTEB GeoreviewClassification (default)
type: ai-forever/georeview-classification
config: default
split: test
revision: 3765c0d1de6b7d264bc459433c45e5a75513839c
metrics:
- type: accuracy
value: 58.59296875
- type: f1
value: 55.87139132757291
- type: f1_weighted
value: 55.86634332171304
- type: main_score
value: 58.59296875
- task:
type: Clustering
dataset:
name: MTEB GeoreviewClusteringP2P (default)
type: ai-forever/georeview-clustering-p2p
config: default
split: test
revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec
metrics:
- type: main_score
value: 61.37882703448214
- type: v_measure
value: 61.37882703448214
- type: v_measure_std
value: 0.9038440502247551
- task:
type: Classification
dataset:
name: MTEB HeadlineClassification (default)
type: ai-forever/headline-classification
config: default
split: test
revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb
metrics:
- type: accuracy
value: 86.01484375
- type: f1
value: 85.17323995821744
- type: f1_weighted
value: 85.17273609511149
- type: main_score
value: 86.01484375
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 56.936
- type: map_at_1
value: 32.836
- type: map_at_10
value: 47.016000000000005
- type: map_at_100
value: 48.047000000000004
- type: map_at_1000
value: 48.125
- type: map_at_20
value: 47.602
- type: map_at_3
value: 43.508
- type: map_at_5
value: 45.587
- type: mrr_at_1
value: 65.67184334908845
- type: mrr_at_10
value: 73.74106406010503
- type: mrr_at_100
value: 74.07360674005218
- type: mrr_at_1000
value: 74.08528396466417
- type: mrr_at_20
value: 73.95171995882409
- type: mrr_at_3
value: 72.12469052442032
- type: mrr_at_5
value: 73.12401530497377
- type: nauc_map_at_1000_diff1
value: 34.005453539011164
- type: nauc_map_at_1000_max
value: 25.82115616984131
- type: nauc_map_at_1000_std
value: 1.4158465225486871
- type: nauc_map_at_100_diff1
value: 33.97885841853144
- type: nauc_map_at_100_max
value: 25.788066937953534
- type: nauc_map_at_100_std
value: 1.4014125260716204
- type: nauc_map_at_10_diff1
value: 34.208269490411624
- type: nauc_map_at_10_max
value: 25.81236166730827
- type: nauc_map_at_10_std
value: 0.8120958236163661
- type: nauc_map_at_1_diff1
value: 69.54414023975188
- type: nauc_map_at_1_max
value: 40.65799250364921
- type: nauc_map_at_1_std
value: -5.03532335561708
- type: nauc_map_at_20_diff1
value: 34.042140247706996
- type: nauc_map_at_20_max
value: 25.793308131593257
- type: nauc_map_at_20_std
value: 1.1211505623511913
- type: nauc_map_at_3_diff1
value: 37.20605399174748
- type: nauc_map_at_3_max
value: 27.418797479842418
- type: nauc_map_at_3_std
value: -0.7640077998567261
- type: nauc_map_at_5_diff1
value: 35.018465182394756
- type: nauc_map_at_5_max
value: 26.433512678612697
- type: nauc_map_at_5_std
value: 0.11297600218386353
- type: nauc_mrr_at_1000_diff1
value: 67.25936635050807
- type: nauc_mrr_at_1000_max
value: 41.71491867312844
- type: nauc_mrr_at_1000_std
value: -3.087319936519033
- type: nauc_mrr_at_100_diff1
value: 67.25590240269183
- type: nauc_mrr_at_100_max
value: 41.71790879024321
- type: nauc_mrr_at_100_std
value: -3.0740353666702234
- type: nauc_mrr_at_10_diff1
value: 67.1799911142862
- type: nauc_mrr_at_10_max
value: 41.71487539858882
- type: nauc_mrr_at_10_std
value: -3.0806545113886785
- type: nauc_mrr_at_1_diff1
value: 69.54414023975188
- type: nauc_mrr_at_1_max
value: 40.65799250364921
- type: nauc_mrr_at_1_std
value: -5.03532335561708
- type: nauc_mrr_at_20_diff1
value: 67.22701732432218
- type: nauc_mrr_at_20_max
value: 41.72352029115392
- type: nauc_mrr_at_20_std
value: -3.083058785296735
- type: nauc_mrr_at_3_diff1
value: 66.96430614667666
- type: nauc_mrr_at_3_max
value: 41.48604737080645
- type: nauc_mrr_at_3_std
value: -3.6481401224598473
- type: nauc_mrr_at_5_diff1
value: 67.18668927352158
- type: nauc_mrr_at_5_max
value: 41.71067825608642
- type: nauc_mrr_at_5_std
value: -3.428397229624744
- type: nauc_ndcg_at_1000_diff1
value: 37.07610468655133
- type: nauc_ndcg_at_1000_max
value: 28.224540769228234
- type: nauc_ndcg_at_1000_std
value: 4.185248548344529
- type: nauc_ndcg_at_100_diff1
value: 36.42380555672608
- type: nauc_ndcg_at_100_max
value: 27.489609981662106
- type: nauc_ndcg_at_100_std
value: 4.054837611491843
- type: nauc_ndcg_at_10_diff1
value: 37.47804056929861
- type: nauc_ndcg_at_10_max
value: 27.753495611587304
- type: nauc_ndcg_at_10_std
value: 1.719221993401221
- type: nauc_ndcg_at_1_diff1
value: 69.54414023975188
- type: nauc_ndcg_at_1_max
value: 40.65799250364921
- type: nauc_ndcg_at_1_std
value: -5.03532335561708
- type: nauc_ndcg_at_20_diff1
value: 36.84564644726093
- type: nauc_ndcg_at_20_max
value: 27.576226304248095
- type: nauc_ndcg_at_20_std
value: 2.494939399202034
- type: nauc_ndcg_at_3_diff1
value: 42.2828223866538
- type: nauc_ndcg_at_3_max
value: 30.300252457229686
- type: nauc_ndcg_at_3_std
value: -0.8620078353970815
- type: nauc_ndcg_at_5_diff1
value: 39.17361365092243
- type: nauc_ndcg_at_5_max
value: 28.90704231405507
- type: nauc_ndcg_at_5_std
value: 0.28376558066016455
- type: nauc_precision_at_1000_diff1
value: -3.0942823392612357
- type: nauc_precision_at_1000_max
value: 12.28787390319326
- type: nauc_precision_at_1000_std
value: 25.928388012449936
- type: nauc_precision_at_100_diff1
value: 3.649374343629417
- type: nauc_precision_at_100_max
value: 11.075555507772332
- type: nauc_precision_at_100_std
value: 18.3299768701232
- type: nauc_precision_at_10_diff1
value: 15.415187438641182
- type: nauc_precision_at_10_max
value: 16.52239778879397
- type: nauc_precision_at_10_std
value: 6.837276762823966
- type: nauc_precision_at_1_diff1
value: 69.54414023975188
- type: nauc_precision_at_1_max
value: 40.65799250364921
- type: nauc_precision_at_1_std
value: -5.03532335561708
- type: nauc_precision_at_20_diff1
value: 11.421479372333689
- type: nauc_precision_at_20_max
value: 14.65873574938081
- type: nauc_precision_at_20_std
value: 9.377346877954563
- type: nauc_precision_at_3_diff1
value: 29.286389164119818
- type: nauc_precision_at_3_max
value: 24.94345281552621
- type: nauc_precision_at_3_std
value: 1.2358684556900705
- type: nauc_precision_at_5_diff1
value: 22.154044068448584
- type: nauc_precision_at_5_max
value: 21.268338920126155
- type: nauc_precision_at_5_std
value: 3.352963627463402
- type: nauc_recall_at_1000_diff1
value: -3.0942823392611616
- type: nauc_recall_at_1000_max
value: 12.287873903193287
- type: nauc_recall_at_1000_std
value: 25.92838801245011
- type: nauc_recall_at_100_diff1
value: 3.649374343629381
- type: nauc_recall_at_100_max
value: 11.075555507772298
- type: nauc_recall_at_100_std
value: 18.329976870123144
- type: nauc_recall_at_10_diff1
value: 15.415187438641109
- type: nauc_recall_at_10_max
value: 16.522397788793903
- type: nauc_recall_at_10_std
value: 6.837276762824004
- type: nauc_recall_at_1_diff1
value: 69.54414023975188
- type: nauc_recall_at_1_max
value: 40.65799250364921
- type: nauc_recall_at_1_std
value: -5.03532335561708
- type: nauc_recall_at_20_diff1
value: 11.42147937233372
- type: nauc_recall_at_20_max
value: 14.65873574938076
- type: nauc_recall_at_20_std
value: 9.377346877954627
- type: nauc_recall_at_3_diff1
value: 29.286389164119786
- type: nauc_recall_at_3_max
value: 24.943452815526214
- type: nauc_recall_at_3_std
value: 1.2358684556899975
- type: nauc_recall_at_5_diff1
value: 22.1540440684486
- type: nauc_recall_at_5_max
value: 21.268338920126187
- type: nauc_recall_at_5_std
value: 3.3529636274634282
- type: ndcg_at_1
value: 65.672
- type: ndcg_at_10
value: 56.936
- type: ndcg_at_100
value: 60.723000000000006
- type: ndcg_at_1000
value: 62.260000000000005
- type: ndcg_at_20
value: 58.472
- type: ndcg_at_3
value: 51.526
- type: ndcg_at_5
value: 54.37800000000001
- type: precision_at_1
value: 65.672
- type: precision_at_10
value: 12.105
- type: precision_at_100
value: 1.5070000000000001
- type: precision_at_1000
value: 0.17099999999999999
- type: precision_at_20
value: 6.547
- type: precision_at_3
value: 32.312000000000005
- type: precision_at_5
value: 21.648
- type: recall_at_1
value: 32.836
- type: recall_at_10
value: 60.527
- type: recall_at_100
value: 75.375
- type: recall_at_1000
value: 85.544
- type: recall_at_20
value: 65.469
- type: recall_at_3
value: 48.467
- type: recall_at_5
value: 54.11899999999999
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 94.90639999999999
- type: ap
value: 92.50413995343256
- type: ap_weighted
value: 92.50413995343256
- type: f1
value: 94.90353518558736
- type: f1_weighted
value: 94.90353518558736
- type: main_score
value: 94.90639999999999
- task:
type: Classification
dataset:
name: MTEB InappropriatenessClassification (default)
type: ai-forever/inappropriateness-classification
config: default
split: test
revision: 601651fdc45ef243751676e62dd7a19f491c0285
metrics:
- type: accuracy
value: 83.29023437500001
- type: ap
value: 77.50711273019213
- type: ap_weighted
value: 77.50711273019213
- type: f1
value: 82.42886423677278
- type: f1_weighted
value: 82.42886423677278
- type: main_score
value: 83.29023437500001
- task:
type: Classification
dataset:
name: MTEB KinopoiskClassification (default)
type: ai-forever/kinopoisk-sentiment-classification
config: default
split: test
revision: 5911f26666ac11af46cb9c6849d0dc80a378af24
metrics:
- type: accuracy
value: 74.88666666666667
- type: f1
value: 72.6314130184491
- type: f1_weighted
value: 72.63141301844908
- type: main_score
value: 74.88666666666667
- task:
type: Reranking
dataset:
name: MTEB MIRACLReranking (ru)
type: miracl/mmteb-miracl-reranking
config: ru
split: dev
revision: 6d1962c527217f8927fca80f890f14f36b2802af
metrics:
- type: MAP@1(MIRACL)
value: 34.256
- type: MAP@10(MIRACL)
value: 54.418
- type: MAP@100(MIRACL)
value: 56.224
- type: MAP@1000(MIRACL)
value: 56.224
- type: MAP@20(MIRACL)
value: 55.726
- type: MAP@3(MIRACL)
value: 47.811
- type: MAP@5(MIRACL)
value: 51.604000000000006
- type: NDCG@1(MIRACL)
value: 55.493
- type: NDCG@10(MIRACL)
value: 61.209
- type: NDCG@100(MIRACL)
value: 64.768
- type: NDCG@1000(MIRACL)
value: 64.768
- type: NDCG@20(MIRACL)
value: 63.497
- type: NDCG@3(MIRACL)
value: 56.259
- type: NDCG@5(MIRACL)
value: 58.164
- type: P@1(MIRACL)
value: 55.493
- type: P@10(MIRACL)
value: 15.533
- type: P@100(MIRACL)
value: 1.9529999999999998
- type: P@1000(MIRACL)
value: 0.19499999999999998
- type: P@20(MIRACL)
value: 8.896999999999998
- type: P@3(MIRACL)
value: 34.509
- type: P@5(MIRACL)
value: 25.436999999999998
- type: Recall@1(MIRACL)
value: 34.256
- type: Recall@10(MIRACL)
value: 69.61500000000001
- type: Recall@100(MIRACL)
value: 79.952
- type: Recall@1000(MIRACL)
value: 79.952
- type: Recall@20(MIRACL)
value: 75.753
- type: Recall@3(MIRACL)
value: 54.217999999999996
- type: Recall@5(MIRACL)
value: 61.617999999999995
- type: main_score
value: 61.209
- type: nAUC_MAP@1000_diff1(MIRACL)
value: 25.375679947366475
- type: nAUC_MAP@1000_max(MIRACL)
value: 39.17949421634556
- type: nAUC_MAP@1000_std(MIRACL)
value: 16.668975000160252
- type: nAUC_MAP@100_diff1(MIRACL)
value: 25.375679947366475
- type: nAUC_MAP@100_max(MIRACL)
value: 39.17949421634556
- type: nAUC_MAP@100_std(MIRACL)
value: 16.668975000160252
- type: nAUC_MAP@10_diff1(MIRACL)
value: 26.475686007625093
- type: nAUC_MAP@10_max(MIRACL)
value: 36.450804891327074
- type: nAUC_MAP@10_std(MIRACL)
value: 15.488075690428888
- type: nAUC_MAP@1_diff1(MIRACL)
value: 40.99538964417129
- type: nAUC_MAP@1_max(MIRACL)
value: 19.924627548929934
- type: nAUC_MAP@1_std(MIRACL)
value: 2.3190113335598794
- type: nAUC_MAP@20_diff1(MIRACL)
value: 25.752468618876932
- type: nAUC_MAP@20_max(MIRACL)
value: 38.34566370834793
- type: nAUC_MAP@20_std(MIRACL)
value: 16.461203040560456
- type: nAUC_MAP@3_diff1(MIRACL)
value: 30.535358312013727
- type: nAUC_MAP@3_max(MIRACL)
value: 29.944731853212186
- type: nAUC_MAP@3_std(MIRACL)
value: 9.103557696794429
- type: nAUC_MAP@5_diff1(MIRACL)
value: 28.014426658247842
- type: nAUC_MAP@5_max(MIRACL)
value: 32.85404483202943
- type: nAUC_MAP@5_std(MIRACL)
value: 12.450517715414893
- type: nAUC_NDCG@1000_diff1(MIRACL)
value: 18.961103796856186
- type: nAUC_NDCG@1000_max(MIRACL)
value: 49.36987471280251
- type: nAUC_NDCG@1000_std(MIRACL)
value: 21.734657550451335
- type: nAUC_NDCG@100_diff1(MIRACL)
value: 18.961103796856186
- type: nAUC_NDCG@100_max(MIRACL)
value: 49.36987471280251
- type: nAUC_NDCG@100_std(MIRACL)
value: 21.734657550451335
- type: nAUC_NDCG@10_diff1(MIRACL)
value: 21.983623979331
- type: nAUC_NDCG@10_max(MIRACL)
value: 43.683160399908964
- type: nAUC_NDCG@10_std(MIRACL)
value: 20.01372618506444
- type: nAUC_NDCG@1_diff1(MIRACL)
value: 30.203859075266475
- type: nAUC_NDCG@1_max(MIRACL)
value: 41.79737245030743
- type: nAUC_NDCG@1_std(MIRACL)
value: 16.05372763120693
- type: nAUC_NDCG@20_diff1(MIRACL)
value: 20.149932418933712
- type: nAUC_NDCG@20_max(MIRACL)
value: 47.065303606034306
- type: nAUC_NDCG@20_std(MIRACL)
value: 21.44815256127275
- type: nAUC_NDCG@3_diff1(MIRACL)
value: 25.42407181388333
- type: nAUC_NDCG@3_max(MIRACL)
value: 40.24154284953538
- type: nAUC_NDCG@3_std(MIRACL)
value: 14.972072673678152
- type: nAUC_NDCG@5_diff1(MIRACL)
value: 24.153034992206194
- type: nAUC_NDCG@5_max(MIRACL)
value: 39.82178245941784
- type: nAUC_NDCG@5_std(MIRACL)
value: 16.58411685965955
- type: nAUC_P@1000_diff1(MIRACL)
value: -19.79420161864485
- type: nAUC_P@1000_max(MIRACL)
value: 34.3616294815911
- type: nAUC_P@1000_std(MIRACL)
value: 20.166807624722257
- type: nAUC_P@100_diff1(MIRACL)
value: -19.794201618644824
- type: nAUC_P@100_max(MIRACL)
value: 34.361629481591166
- type: nAUC_P@100_std(MIRACL)
value: 20.166807624722274
- type: nAUC_P@10_diff1(MIRACL)
value: -16.354560145786806
- type: nAUC_P@10_max(MIRACL)
value: 36.05760962789994
- type: nAUC_P@10_std(MIRACL)
value: 25.417471718298163
- type: nAUC_P@1_diff1(MIRACL)
value: 30.203859075266475
- type: nAUC_P@1_max(MIRACL)
value: 41.79737245030743
- type: nAUC_P@1_std(MIRACL)
value: 16.05372763120693
- type: nAUC_P@20_diff1(MIRACL)
value: -18.621011544449317
- type: nAUC_P@20_max(MIRACL)
value: 35.77327581203754
- type: nAUC_P@20_std(MIRACL)
value: 23.905223904634525
- type: nAUC_P@3_diff1(MIRACL)
value: -6.046172734824364
- type: nAUC_P@3_max(MIRACL)
value: 41.50549514127416
- type: nAUC_P@3_std(MIRACL)
value: 22.16102424923467
- type: nAUC_P@5_diff1(MIRACL)
value: -12.42960360332892
- type: nAUC_P@5_max(MIRACL)
value: 37.02162714427216
- type: nAUC_P@5_std(MIRACL)
value: 23.478907037340967
- type: nAUC_Recall@1000_diff1(MIRACL)
value: -2.1015821397499126
- type: nAUC_Recall@1000_max(MIRACL)
value: 72.4788381130068
- type: nAUC_Recall@1000_std(MIRACL)
value: 33.13079374757504
- type: nAUC_Recall@100_diff1(MIRACL)
value: -2.1015821397499126
- type: nAUC_Recall@100_max(MIRACL)
value: 72.4788381130068
- type: nAUC_Recall@100_std(MIRACL)
value: 33.13079374757504
- type: nAUC_Recall@10_diff1(MIRACL)
value: 12.578351372233119
- type: nAUC_Recall@10_max(MIRACL)
value: 46.853083044539666
- type: nAUC_Recall@10_std(MIRACL)
value: 25.220743565118504
- type: nAUC_Recall@1_diff1(MIRACL)
value: 40.99538964417129
- type: nAUC_Recall@1_max(MIRACL)
value: 19.924627548929934
- type: nAUC_Recall@1_std(MIRACL)
value: 2.3190113335598794
- type: nAUC_Recall@20_diff1(MIRACL)
value: 4.959175120863266
- type: nAUC_Recall@20_max(MIRACL)
value: 58.70067350548401
- type: nAUC_Recall@20_std(MIRACL)
value: 30.461409638792137
- type: nAUC_Recall@3_diff1(MIRACL)
value: 23.891732917363356
- type: nAUC_Recall@3_max(MIRACL)
value: 31.214738377868407
- type: nAUC_Recall@3_std(MIRACL)
value: 10.22032515759191
- type: nAUC_Recall@5_diff1(MIRACL)
value: 18.887826092373857
- type: nAUC_Recall@5_max(MIRACL)
value: 35.333905802137075
- type: nAUC_Recall@5_std(MIRACL)
value: 15.818853782953793
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (ru)
type: miracl/mmteb-miracl
config: ru
split: dev
revision: main
metrics:
- type: main_score
value: 58.919
- type: map_at_1
value: 28.105000000000004
- type: map_at_10
value: 48.485
- type: map_at_100
value: 51.092000000000006
- type: map_at_1000
value: 51.197
- type: map_at_20
value: 49.964
- type: map_at_3
value: 40.702
- type: map_at_5
value: 44.908
- type: mrr_at_1
value: 53.674121405750796
- type: mrr_at_10
value: 65.94696105279179
- type: mrr_at_100
value: 66.32118832568914
- type: mrr_at_1000
value: 66.32790976216316
- type: mrr_at_20
value: 66.1976638975423
- type: mrr_at_3
value: 63.205537806176835
- type: mrr_at_5
value: 65.0745473908414
- type: nauc_map_at_1000_diff1
value: 28.692875448815812
- type: nauc_map_at_1000_max
value: 12.491779369284659
- type: nauc_map_at_1000_std
value: -2.62205081625825
- type: nauc_map_at_100_diff1
value: 28.645110165399174
- type: nauc_map_at_100_max
value: 12.456098789482798
- type: nauc_map_at_100_std
value: -2.6613261048769608
- type: nauc_map_at_10_diff1
value: 28.472937541575334
- type: nauc_map_at_10_max
value: 10.810116535339406
- type: nauc_map_at_10_std
value: -5.286588474512575
- type: nauc_map_at_1_diff1
value: 32.84937124647936
- type: nauc_map_at_1_max
value: 6.422329814718059
- type: nauc_map_at_1_std
value: -9.338607410867883
- type: nauc_map_at_20_diff1
value: 28.599327426899933
- type: nauc_map_at_20_max
value: 11.82906430468277
- type: nauc_map_at_20_std
value: -4.021436740087691
- type: nauc_map_at_3_diff1
value: 27.482658420810434
- type: nauc_map_at_3_max
value: 8.017407826476449
- type: nauc_map_at_3_std
value: -7.867867276064061
- type: nauc_map_at_5_diff1
value: 27.800427415149926
- type: nauc_map_at_5_max
value: 9.039207813157995
- type: nauc_map_at_5_std
value: -7.591204490113271
- type: nauc_mrr_at_1000_diff1
value: 35.78578282699573
- type: nauc_mrr_at_1000_max
value: 20.786252125904436
- type: nauc_mrr_at_1000_std
value: 8.583860329566223
- type: nauc_mrr_at_100_diff1
value: 35.775930857323694
- type: nauc_mrr_at_100_max
value: 20.791530168252752
- type: nauc_mrr_at_100_std
value: 8.59657930717071
- type: nauc_mrr_at_10_diff1
value: 35.69769923988554
- type: nauc_mrr_at_10_max
value: 20.901225274243266
- type: nauc_mrr_at_10_std
value: 8.708683664351218
- type: nauc_mrr_at_1_diff1
value: 37.68512205937764
- type: nauc_mrr_at_1_max
value: 17.880526496865198
- type: nauc_mrr_at_1_std
value: 4.0110867274399515
- type: nauc_mrr_at_20_diff1
value: 35.761942530285836
- type: nauc_mrr_at_20_max
value: 20.834018834025102
- type: nauc_mrr_at_20_std
value: 8.68188170294387
- type: nauc_mrr_at_3_diff1
value: 35.65799054328497
- type: nauc_mrr_at_3_max
value: 20.406872858177756
- type: nauc_mrr_at_3_std
value: 7.9695230492304105
- type: nauc_mrr_at_5_diff1
value: 36.00029293304689
- type: nauc_mrr_at_5_max
value: 20.893681203274397
- type: nauc_mrr_at_5_std
value: 8.608032961961529
- type: nauc_ndcg_at_1000_diff1
value: 30.283370916340395
- type: nauc_ndcg_at_1000_max
value: 17.45515207920199
- type: nauc_ndcg_at_1000_std
value: 5.500817122521028
- type: nauc_ndcg_at_100_diff1
value: 29.37087750574036
- type: nauc_ndcg_at_100_max
value: 17.1659856137934
- type: nauc_ndcg_at_100_std
value: 5.740672030272012
- type: nauc_ndcg_at_10_diff1
value: 29.190898853994153
- type: nauc_ndcg_at_10_max
value: 13.581733885756453
- type: nauc_ndcg_at_10_std
value: -1.1925279328006109
- type: nauc_ndcg_at_1_diff1
value: 37.68512205937764
- type: nauc_ndcg_at_1_max
value: 17.880526496865198
- type: nauc_ndcg_at_1_std
value: 4.0110867274399515
- type: nauc_ndcg_at_20_diff1
value: 29.37764766181379
- type: nauc_ndcg_at_20_max
value: 15.345088185381453
- type: nauc_ndcg_at_20_std
value: 1.5388051841648351
- type: nauc_ndcg_at_3_diff1
value: 28.550969354690576
- type: nauc_ndcg_at_3_max
value: 13.205099776372926
- type: nauc_ndcg_at_3_std
value: 0.12608790067765707
- type: nauc_ndcg_at_5_diff1
value: 29.262808940095304
- type: nauc_ndcg_at_5_max
value: 12.34844355941903
- type: nauc_ndcg_at_5_std
value: -2.503299305763401
- type: nauc_precision_at_1000_diff1
value: -4.946929314275426
- type: nauc_precision_at_1000_max
value: 14.318369622332805
- type: nauc_precision_at_1000_std
value: 29.953649623967998
- type: nauc_precision_at_100_diff1
value: -4.8754407088382665
- type: nauc_precision_at_100_max
value: 16.437239890966012
- type: nauc_precision_at_100_std
value: 32.86582107306089
- type: nauc_precision_at_10_diff1
value: 3.50201515428894
- type: nauc_precision_at_10_max
value: 17.75684080894953
- type: nauc_precision_at_10_std
value: 22.110419776166054
- type: nauc_precision_at_1_diff1
value: 37.68512205937764
- type: nauc_precision_at_1_max
value: 17.880526496865198
- type: nauc_precision_at_1_std
value: 4.0110867274399515
- type: nauc_precision_at_20_diff1
value: 0.3624861246639223
- type: nauc_precision_at_20_max
value: 18.774584939318544
- type: nauc_precision_at_20_std
value: 27.061134898065724
- type: nauc_precision_at_3_diff1
value: 12.364445300291129
- type: nauc_precision_at_3_max
value: 17.198756066552694
- type: nauc_precision_at_3_std
value: 13.396863299435207
- type: nauc_precision_at_5_diff1
value: 7.903105219850088
- type: nauc_precision_at_5_max
value: 17.20630661570393
- type: nauc_precision_at_5_std
value: 16.41195105173974
- type: nauc_recall_at_1000_diff1
value: 38.98954496312062
- type: nauc_recall_at_1000_max
value: 55.33728064769203
- type: nauc_recall_at_1000_std
value: 63.0550070852272
- type: nauc_recall_at_100_diff1
value: 12.772525292034661
- type: nauc_recall_at_100_max
value: 21.51166499991489
- type: nauc_recall_at_100_std
value: 28.55416139778685
- type: nauc_recall_at_10_diff1
value: 21.39711887049693
- type: nauc_recall_at_10_max
value: 7.632620412302538
- type: nauc_recall_at_10_std
value: -5.738894810245653
- type: nauc_recall_at_1_diff1
value: 32.84937124647936
- type: nauc_recall_at_1_max
value: 6.422329814718059
- type: nauc_recall_at_1_std
value: -9.338607410867883
- type: nauc_recall_at_20_diff1
value: 19.502187424365978
- type: nauc_recall_at_20_max
value: 10.660163096971175
- type: nauc_recall_at_20_std
value: 0.9197930988253975
- type: nauc_recall_at_3_diff1
value: 21.4039473712599
- type: nauc_recall_at_3_max
value: 4.9820152592443065
- type: nauc_recall_at_3_std
value: -8.873734870059172
- type: nauc_recall_at_5_diff1
value: 21.487915917217766
- type: nauc_recall_at_5_max
value: 5.118393026118493
- type: nauc_recall_at_5_std
value: -10.131702930834898
- type: ndcg_at_1
value: 53.674
- type: ndcg_at_10
value: 58.919
- type: ndcg_at_100
value: 65.736
- type: ndcg_at_1000
value: 66.932
- type: ndcg_at_20
value: 61.97200000000001
- type: ndcg_at_3
value: 52.019999999999996
- type: ndcg_at_5
value: 54.63099999999999
- type: precision_at_1
value: 53.674
- type: precision_at_10
value: 17.332
- type: precision_at_100
value: 2.546
- type: precision_at_1000
value: 0.27899999999999997
- type: precision_at_20
value: 10.152
- type: precision_at_3
value: 34.798
- type: precision_at_5
value: 26.805
- type: recall_at_1
value: 28.105000000000004
- type: recall_at_10
value: 70.024
- type: recall_at_100
value: 91.739
- type: recall_at_1000
value: 98.131
- type: recall_at_20
value: 78.385
- type: recall_at_3
value: 48.199
- type: recall_at_5
value: 58.495
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 61.953
- type: map_at_1
value: 2.2950000000000004
- type: map_at_10
value: 13.425
- type: map_at_100
value: 36.994
- type: map_at_1000
value: 45.477000000000004
- type: map_at_20
value: 20.541999999999998
- type: map_at_3
value: 5.632000000000001
- type: map_at_5
value: 7.9350000000000005
- type: mrr_at_1
value: 86.04651162790698
- type: mrr_at_10
value: 90.968992248062
- type: mrr_at_100
value: 90.968992248062
- type: mrr_at_1000
value: 90.968992248062
- type: mrr_at_20
value: 90.968992248062
- type: mrr_at_3
value: 89.92248062015503
- type: mrr_at_5
value: 90.968992248062
- type: nauc_map_at_1000_diff1
value: -30.11984354598437
- type: nauc_map_at_1000_max
value: 41.121622214784544
- type: nauc_map_at_1000_std
value: 53.94915916714401
- type: nauc_map_at_100_diff1
value: -18.474186072111014
- type: nauc_map_at_100_max
value: 32.55771055611539
- type: nauc_map_at_100_std
value: 34.850257861392365
- type: nauc_map_at_10_diff1
value: 12.626067523953438
- type: nauc_map_at_10_max
value: 13.292172274891447
- type: nauc_map_at_10_std
value: -2.7683801353352253
- type: nauc_map_at_1_diff1
value: 44.2949717144564
- type: nauc_map_at_1_max
value: -5.304125695825888
- type: nauc_map_at_1_std
value: -29.85748050243832
- type: nauc_map_at_20_diff1
value: 1.6976308361799894
- type: nauc_map_at_20_max
value: 18.87963530770625
- type: nauc_map_at_20_std
value: 6.0785987235463255
- type: nauc_map_at_3_diff1
value: 36.09132430429921
- type: nauc_map_at_3_max
value: 2.8220999625196037
- type: nauc_map_at_3_std
value: -21.476895853466463
- type: nauc_map_at_5_diff1
value: 27.5419170591421
- type: nauc_map_at_5_max
value: 9.290150393583366
- type: nauc_map_at_5_std
value: -13.742406800486986
- type: nauc_mrr_at_1000_diff1
value: -7.6099403523558
- type: nauc_mrr_at_1000_max
value: 75.01353061667479
- type: nauc_mrr_at_1000_std
value: 68.72722608823327
- type: nauc_mrr_at_100_diff1
value: -7.6099403523558
- type: nauc_mrr_at_100_max
value: 75.01353061667479
- type: nauc_mrr_at_100_std
value: 68.72722608823327
- type: nauc_mrr_at_10_diff1
value: -7.6099403523558
- type: nauc_mrr_at_10_max
value: 75.01353061667479
- type: nauc_mrr_at_10_std
value: 68.72722608823327
- type: nauc_mrr_at_1_diff1
value: -7.2278364840418385
- type: nauc_mrr_at_1_max
value: 70.07087438233302
- type: nauc_mrr_at_1_std
value: 62.28193431865652
- type: nauc_mrr_at_20_diff1
value: -7.6099403523558
- type: nauc_mrr_at_20_max
value: 75.01353061667479
- type: nauc_mrr_at_20_std
value: 68.72722608823327
- type: nauc_mrr_at_3_diff1
value: -2.664317491139411
- type: nauc_mrr_at_3_max
value: 76.91690813390306
- type: nauc_mrr_at_3_std
value: 70.41867051808181
- type: nauc_mrr_at_5_diff1
value: -7.6099403523558
- type: nauc_mrr_at_5_max
value: 75.01353061667479
- type: nauc_mrr_at_5_std
value: 68.72722608823327
- type: nauc_ndcg_at_1000_diff1
value: -34.58820972084936
- type: nauc_ndcg_at_1000_max
value: 54.01529717339395
- type: nauc_ndcg_at_1000_std
value: 59.316374712522645
- type: nauc_ndcg_at_100_diff1
value: -26.640288133521523
- type: nauc_ndcg_at_100_max
value: 35.13407553215567
- type: nauc_ndcg_at_100_std
value: 47.90610288563949
- type: nauc_ndcg_at_10_diff1
value: -30.16559486015698
- type: nauc_ndcg_at_10_max
value: 38.910360318642525
- type: nauc_ndcg_at_10_std
value: 42.68661569167478
- type: nauc_ndcg_at_1_diff1
value: -1.5593104420333765
- type: nauc_ndcg_at_1_max
value: 42.61039841149629
- type: nauc_ndcg_at_1_std
value: 35.840800888923035
- type: nauc_ndcg_at_20_diff1
value: -30.77391764501866
- type: nauc_ndcg_at_20_max
value: 34.50283605663452
- type: nauc_ndcg_at_20_std
value: 37.59483221610664
- type: nauc_ndcg_at_3_diff1
value: -15.520713715926346
- type: nauc_ndcg_at_3_max
value: 45.78611982790275
- type: nauc_ndcg_at_3_std
value: 45.97839281793152
- type: nauc_ndcg_at_5_diff1
value: -23.85285278088875
- type: nauc_ndcg_at_5_max
value: 44.39780563283533
- type: nauc_ndcg_at_5_std
value: 42.39949056653093
- type: nauc_precision_at_1000_diff1
value: -30.417558924768134
- type: nauc_precision_at_1000_max
value: 13.548159537058153
- type: nauc_precision_at_1000_std
value: 37.25751589837348
- type: nauc_precision_at_100_diff1
value: -36.46125649080512
- type: nauc_precision_at_100_max
value: 20.74186636114751
- type: nauc_precision_at_100_std
value: 47.312413368139154
- type: nauc_precision_at_10_diff1
value: -59.04379077622773
- type: nauc_precision_at_10_max
value: 46.66289912456372
- type: nauc_precision_at_10_std
value: 62.769623439608665
- type: nauc_precision_at_1_diff1
value: -7.2278364840418385
- type: nauc_precision_at_1_max
value: 70.07087438233302
- type: nauc_precision_at_1_std
value: 62.28193431865652
- type: nauc_precision_at_20_diff1
value: -53.10996336661844
- type: nauc_precision_at_20_max
value: 38.09482517069248
- type: nauc_precision_at_20_std
value: 56.736115781817766
- type: nauc_precision_at_3_diff1
value: -36.999469625002206
- type: nauc_precision_at_3_max
value: 64.12921150590219
- type: nauc_precision_at_3_std
value: 64.78671082210093
- type: nauc_precision_at_5_diff1
value: -46.500845210255335
- type: nauc_precision_at_5_max
value: 59.4191275770431
- type: nauc_precision_at_5_std
value: 68.00855518751847
- type: nauc_recall_at_1000_diff1
value: -24.555235403948775
- type: nauc_recall_at_1000_max
value: 54.22435135708867
- type: nauc_recall_at_1000_std
value: 49.31140174115312
- type: nauc_recall_at_100_diff1
value: -3.7001471510828496
- type: nauc_recall_at_100_max
value: 19.21098260931646
- type: nauc_recall_at_100_std
value: 18.131361156635535
- type: nauc_recall_at_10_diff1
value: 16.09333751982658
- type: nauc_recall_at_10_max
value: 7.004596323208447
- type: nauc_recall_at_10_std
value: -9.042361327667667
- type: nauc_recall_at_1_diff1
value: 44.2949717144564
- type: nauc_recall_at_1_max
value: -5.304125695825888
- type: nauc_recall_at_1_std
value: -29.85748050243832
- type: nauc_recall_at_20_diff1
value: 9.048625900019916
- type: nauc_recall_at_20_max
value: 10.488512958255308
- type: nauc_recall_at_20_std
value: -3.079039962366688
- type: nauc_recall_at_3_diff1
value: 36.3729568590647
- type: nauc_recall_at_3_max
value: 1.6785799970091961
- type: nauc_recall_at_3_std
value: -22.297408897380535
- type: nauc_recall_at_5_diff1
value: 27.404925186321762
- type: nauc_recall_at_5_max
value: 4.594462203289419
- type: nauc_recall_at_5_std
value: -17.585190330631452
- type: ndcg_at_1
value: 66.279
- type: ndcg_at_10
value: 61.953
- type: ndcg_at_100
value: 61.38400000000001
- type: ndcg_at_1000
value: 71.18299999999999
- type: ndcg_at_20
value: 61.391
- type: ndcg_at_3
value: 63.244
- type: ndcg_at_5
value: 61.757
- type: precision_at_1
value: 86.047
- type: precision_at_10
value: 73.256
- type: precision_at_100
value: 37.535000000000004
- type: precision_at_1000
value: 7.579
- type: precision_at_20
value: 65.349
- type: precision_at_3
value: 79.845
- type: precision_at_5
value: 75.81400000000001
- type: recall_at_1
value: 2.2950000000000004
- type: recall_at_10
value: 15.101
- type: recall_at_100
value: 51.615
- type: recall_at_1000
value: 82.471
- type: recall_at_20
value: 24.096
- type: recall_at_3
value: 5.773
- type: recall_at_5
value: 8.5
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 95.35111719106247
- type: f1
value: 95.18886239707825
- type: f1_weighted
value: 95.35614308126868
- type: main_score
value: 95.35111719106247
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 80.47423620611035
- type: f1
value: 58.99139430808884
- type: f1_weighted
value: 82.26823539179561
- type: main_score
value: 80.47423620611035
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 73.44317417619368
- type: f1
value: 70.41959602535415
- type: f1_weighted
value: 72.46446281404538
- type: main_score
value: 73.44317417619368
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: validation
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 72.94146581406788
- type: f1
value: 68.55171702555123
- type: f1_weighted
value: 71.8914242086976
- type: main_score
value: 72.94146581406788
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 78.17417619367855
- type: f1
value: 77.00893008191852
- type: f1_weighted
value: 77.94617575337399
- type: main_score
value: 78.17417619367855
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: validation
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 77.8160354156419
- type: f1
value: 76.67169331969356
- type: f1_weighted
value: 77.54451044923486
- type: main_score
value: 77.8160354156419
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 36.028999999999996
- type: map_at_1
value: 5.9319999999999995
- type: map_at_10
value: 13.353000000000002
- type: map_at_100
value: 17.0
- type: map_at_1000
value: 18.565
- type: map_at_20
value: 14.802999999999999
- type: map_at_3
value: 9.83
- type: map_at_5
value: 11.472
- type: mrr_at_1
value: 46.749226006191954
- type: mrr_at_10
value: 56.79627991547497
- type: mrr_at_100
value: 57.37706490767912
- type: mrr_at_1000
value: 57.41967573448375
- type: mrr_at_20
value: 57.1211287532972
- type: mrr_at_3
value: 54.95356037151704
- type: mrr_at_5
value: 56.06811145510837
- type: nauc_map_at_1000_diff1
value: 35.301138973780674
- type: nauc_map_at_1000_max
value: 34.42496916780575
- type: nauc_map_at_1000_std
value: 20.929139100817633
- type: nauc_map_at_100_diff1
value: 36.11891724859925
- type: nauc_map_at_100_max
value: 34.42849138137279
- type: nauc_map_at_100_std
value: 19.11350296198399
- type: nauc_map_at_10_diff1
value: 41.049004397656205
- type: nauc_map_at_10_max
value: 31.02146168233007
- type: nauc_map_at_10_std
value: 9.498859153190814
- type: nauc_map_at_1_diff1
value: 51.1222877824682
- type: nauc_map_at_1_max
value: 18.489074115470764
- type: nauc_map_at_1_std
value: -2.614775958130393
- type: nauc_map_at_20_diff1
value: 38.199531357069134
- type: nauc_map_at_20_max
value: 33.1062790373509
- type: nauc_map_at_20_std
value: 13.927078976412968
- type: nauc_map_at_3_diff1
value: 47.42097675315478
- type: nauc_map_at_3_max
value: 26.5657921989551
- type: nauc_map_at_3_std
value: 4.189135527020967
- type: nauc_map_at_5_diff1
value: 44.71175314512709
- type: nauc_map_at_5_max
value: 28.883088132977917
- type: nauc_map_at_5_std
value: 5.582422026464234
- type: nauc_mrr_at_1000_diff1
value: 33.71354781002677
- type: nauc_mrr_at_1000_max
value: 43.72641769159078
- type: nauc_mrr_at_1000_std
value: 27.54102562853434
- type: nauc_mrr_at_100_diff1
value: 33.69597757409847
- type: nauc_mrr_at_100_max
value: 43.74809406750261
- type: nauc_mrr_at_100_std
value: 27.584428643679402
- type: nauc_mrr_at_10_diff1
value: 33.8314981272887
- type: nauc_mrr_at_10_max
value: 43.60703620245724
- type: nauc_mrr_at_10_std
value: 27.24838397886887
- type: nauc_mrr_at_1_diff1
value: 31.34357704107609
- type: nauc_mrr_at_1_max
value: 39.593265875570275
- type: nauc_mrr_at_1_std
value: 21.334421193946483
- type: nauc_mrr_at_20_diff1
value: 33.76655353328545
- type: nauc_mrr_at_20_max
value: 43.60548690804639
- type: nauc_mrr_at_20_std
value: 27.277618485201486
- type: nauc_mrr_at_3_diff1
value: 34.498566125110585
- type: nauc_mrr_at_3_max
value: 43.051850338353184
- type: nauc_mrr_at_3_std
value: 26.587786329119016
- type: nauc_mrr_at_5_diff1
value: 34.28107082592715
- type: nauc_mrr_at_5_max
value: 43.77759543090162
- type: nauc_mrr_at_5_std
value: 27.51020660226881
- type: nauc_ndcg_at_1000_diff1
value: 34.02416868205839
- type: nauc_ndcg_at_1000_max
value: 45.616471969818406
- type: nauc_ndcg_at_1000_std
value: 35.73939273646117
- type: nauc_ndcg_at_100_diff1
value: 31.751037415300797
- type: nauc_ndcg_at_100_max
value: 39.95194747369657
- type: nauc_ndcg_at_100_std
value: 29.099636537256384
- type: nauc_ndcg_at_10_diff1
value: 25.878621628641923
- type: nauc_ndcg_at_10_max
value: 37.49225635027015
- type: nauc_ndcg_at_10_std
value: 25.29534976285755
- type: nauc_ndcg_at_1_diff1
value: 31.625392306396943
- type: nauc_ndcg_at_1_max
value: 39.04410623112782
- type: nauc_ndcg_at_1_std
value: 22.316304086718933
- type: nauc_ndcg_at_20_diff1
value: 27.06245182876024
- type: nauc_ndcg_at_20_max
value: 36.99168550915193
- type: nauc_ndcg_at_20_std
value: 26.15811674137553
- type: nauc_ndcg_at_3_diff1
value: 26.07107932833021
- type: nauc_ndcg_at_3_max
value: 38.04734587855705
- type: nauc_ndcg_at_3_std
value: 22.940589033430346
- type: nauc_ndcg_at_5_diff1
value: 25.97420963086261
- type: nauc_ndcg_at_5_max
value: 39.0151165636691
- type: nauc_ndcg_at_5_std
value: 24.72377772080157
- type: nauc_precision_at_1000_diff1
value: -11.02371885050686
- type: nauc_precision_at_1000_max
value: -5.068154375781828
- type: nauc_precision_at_1000_std
value: 11.85905313652616
- type: nauc_precision_at_100_diff1
value: -8.27923233471529
- type: nauc_precision_at_100_max
value: 9.303415360666891
- type: nauc_precision_at_100_std
value: 26.935679867455153
- type: nauc_precision_at_10_diff1
value: 3.558842040982842
- type: nauc_precision_at_10_max
value: 30.62292167383454
- type: nauc_precision_at_10_std
value: 30.831543521961724
- type: nauc_precision_at_1_diff1
value: 32.18214923067921
- type: nauc_precision_at_1_max
value: 40.03416082124917
- type: nauc_precision_at_1_std
value: 21.941362014075718
- type: nauc_precision_at_20_diff1
value: -2.216008179688629
- type: nauc_precision_at_20_max
value: 23.696772836984596
- type: nauc_precision_at_20_std
value: 32.32501578135179
- type: nauc_precision_at_3_diff1
value: 17.327428569744058
- type: nauc_precision_at_3_max
value: 36.966310259945814
- type: nauc_precision_at_3_std
value: 25.40310439934565
- type: nauc_precision_at_5_diff1
value: 11.325073410234284
- type: nauc_precision_at_5_max
value: 35.27087123202698
- type: nauc_precision_at_5_std
value: 27.43381915118116
- type: nauc_recall_at_1000_diff1
value: 19.343460354273635
- type: nauc_recall_at_1000_max
value: 21.188913677267575
- type: nauc_recall_at_1000_std
value: 18.75561707338635
- type: nauc_recall_at_100_diff1
value: 23.542278286597558
- type: nauc_recall_at_100_max
value: 25.795529811599554
- type: nauc_recall_at_100_std
value: 19.20436682986688
- type: nauc_recall_at_10_diff1
value: 36.57350490861877
- type: nauc_recall_at_10_max
value: 26.98041459230936
- type: nauc_recall_at_10_std
value: 6.448693265410069
- type: nauc_recall_at_1_diff1
value: 51.1222877824682
- type: nauc_recall_at_1_max
value: 18.489074115470764
- type: nauc_recall_at_1_std
value: -2.614775958130393
- type: nauc_recall_at_20_diff1
value: 31.934925086533646
- type: nauc_recall_at_20_max
value: 28.186182157743715
- type: nauc_recall_at_20_std
value: 10.990757869684472
- type: nauc_recall_at_3_diff1
value: 47.31528648142464
- type: nauc_recall_at_3_max
value: 26.36699566948872
- type: nauc_recall_at_3_std
value: 4.162483410134025
- type: nauc_recall_at_5_diff1
value: 41.52364816245154
- type: nauc_recall_at_5_max
value: 27.757237222978056
- type: nauc_recall_at_5_std
value: 4.477114493542167
- type: ndcg_at_1
value: 44.891999999999996
- type: ndcg_at_10
value: 36.028999999999996
- type: ndcg_at_100
value: 33.339999999999996
- type: ndcg_at_1000
value: 42.584
- type: ndcg_at_20
value: 33.653
- type: ndcg_at_3
value: 41.747
- type: ndcg_at_5
value: 39.204
- type: precision_at_1
value: 46.44
- type: precision_at_10
value: 26.625
- type: precision_at_100
value: 8.44
- type: precision_at_1000
value: 2.168
- type: precision_at_20
value: 19.737
- type: precision_at_3
value: 39.732
- type: precision_at_5
value: 33.994
- type: recall_at_1
value: 5.9319999999999995
- type: recall_at_10
value: 17.523
- type: recall_at_100
value: 34.213
- type: recall_at_1000
value: 67.244
- type: recall_at_20
value: 21.367
- type: recall_at_3
value: 10.953
- type: recall_at_5
value: 13.675999999999998
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 47.417
- type: map_at_1
value: 25.089
- type: map_at_10
value: 39.582
- type: map_at_100
value: 40.891
- type: map_at_1000
value: 40.93
- type: map_at_20
value: 40.451
- type: map_at_3
value: 34.998000000000005
- type: map_at_5
value: 37.604
- type: mrr_at_1
value: 28.418308227114714
- type: mrr_at_10
value: 42.05473247622723
- type: mrr_at_100
value: 43.080018588766386
- type: mrr_at_1000
value: 43.10671917944525
- type: mrr_at_20
value: 42.75932308461006
- type: mrr_at_3
value: 38.15662417921973
- type: mrr_at_5
value: 40.42487446890695
- type: nauc_map_at_1000_diff1
value: 28.91528249267823
- type: nauc_map_at_1000_max
value: 12.793914414537005
- type: nauc_map_at_1000_std
value: -1.092950755496448
- type: nauc_map_at_100_diff1
value: 28.91080883187314
- type: nauc_map_at_100_max
value: 12.819170484926945
- type: nauc_map_at_100_std
value: -1.0715029364921733
- type: nauc_map_at_10_diff1
value: 28.78480452256528
- type: nauc_map_at_10_max
value: 12.576414045375905
- type: nauc_map_at_10_std
value: -1.5015042135306234
- type: nauc_map_at_1_diff1
value: 33.03005074446969
- type: nauc_map_at_1_max
value: 8.59468158008318
- type: nauc_map_at_1_std
value: -4.299975654790197
- type: nauc_map_at_20_diff1
value: 28.914182108026242
- type: nauc_map_at_20_max
value: 12.809670683056721
- type: nauc_map_at_20_std
value: -1.1939469617180538
- type: nauc_map_at_3_diff1
value: 28.991050451790972
- type: nauc_map_at_3_max
value: 11.180438925592629
- type: nauc_map_at_3_std
value: -3.314676077526647
- type: nauc_map_at_5_diff1
value: 28.758243799705514
- type: nauc_map_at_5_max
value: 12.0624973622888
- type: nauc_map_at_5_std
value: -2.2694243325484504
- type: nauc_mrr_at_1000_diff1
value: 28.27168423988733
- type: nauc_mrr_at_1000_max
value: 13.928637140455786
- type: nauc_mrr_at_1000_std
value: 1.2672195165656992
- type: nauc_mrr_at_100_diff1
value: 28.270359379156183
- type: nauc_mrr_at_100_max
value: 13.951816084768742
- type: nauc_mrr_at_100_std
value: 1.2938704185608485
- type: nauc_mrr_at_10_diff1
value: 28.003472749770904
- type: nauc_mrr_at_10_max
value: 13.931095921919853
- type: nauc_mrr_at_10_std
value: 1.1269493369630486
- type: nauc_mrr_at_1_diff1
value: 32.44528183913001
- type: nauc_mrr_at_1_max
value: 10.425874491501148
- type: nauc_mrr_at_1_std
value: -1.223877452463658
- type: nauc_mrr_at_20_diff1
value: 28.238168052236727
- type: nauc_mrr_at_20_max
value: 14.021546198308194
- type: nauc_mrr_at_20_std
value: 1.3081243309456347
- type: nauc_mrr_at_3_diff1
value: 28.067272464887296
- type: nauc_mrr_at_3_max
value: 12.695913784346569
- type: nauc_mrr_at_3_std
value: -0.18550418554088222
- type: nauc_mrr_at_5_diff1
value: 27.745708979354827
- type: nauc_mrr_at_5_max
value: 13.699813791475782
- type: nauc_mrr_at_5_std
value: 0.8500026849272696
- type: nauc_ndcg_at_1000_diff1
value: 28.24687682394225
- type: nauc_ndcg_at_1000_max
value: 14.847726899183506
- type: nauc_ndcg_at_1000_std
value: 1.6167349963007875
- type: nauc_ndcg_at_100_diff1
value: 28.14488488771258
- type: nauc_ndcg_at_100_max
value: 15.618743122645244
- type: nauc_ndcg_at_100_std
value: 2.45572131120658
- type: nauc_ndcg_at_10_diff1
value: 27.441464404432956
- type: nauc_ndcg_at_10_max
value: 14.8506532012367
- type: nauc_ndcg_at_10_std
value: 0.8782842057690032
- type: nauc_ndcg_at_1_diff1
value: 32.54713711215239
- type: nauc_ndcg_at_1_max
value: 10.478653863508299
- type: nauc_ndcg_at_1_std
value: -1.1496114859411906
- type: nauc_ndcg_at_20_diff1
value: 28.045210967473693
- type: nauc_ndcg_at_20_max
value: 15.644714013409134
- type: nauc_ndcg_at_20_std
value: 1.9062527641824571
- type: nauc_ndcg_at_3_diff1
value: 27.668700218726016
- type: nauc_ndcg_at_3_max
value: 12.209702851489775
- type: nauc_ndcg_at_3_std
value: -2.322334570511838
- type: nauc_ndcg_at_5_diff1
value: 27.16752269329571
- type: nauc_ndcg_at_5_max
value: 13.840657657672923
- type: nauc_ndcg_at_5_std
value: -0.5167877238881974
- type: nauc_precision_at_1000_diff1
value: -6.0278343340760685
- type: nauc_precision_at_1000_max
value: 11.225657752379693
- type: nauc_precision_at_1000_std
value: 19.122936171005318
- type: nauc_precision_at_100_diff1
value: -0.3778227983882008
- type: nauc_precision_at_100_max
value: 18.72448662528021
- type: nauc_precision_at_100_std
value: 23.65966502022462
- type: nauc_precision_at_10_diff1
value: 12.958694637851698
- type: nauc_precision_at_10_max
value: 19.3564028554887
- type: nauc_precision_at_10_std
value: 12.5127450303591
- type: nauc_precision_at_1_diff1
value: 32.54713711215239
- type: nauc_precision_at_1_max
value: 10.478653863508299
- type: nauc_precision_at_1_std
value: -1.1496114859411906
- type: nauc_precision_at_20_diff1
value: 9.14957988107668
- type: nauc_precision_at_20_max
value: 21.2077388823531
- type: nauc_precision_at_20_std
value: 18.32152485970381
- type: nauc_precision_at_3_diff1
value: 21.0372683571967
- type: nauc_precision_at_3_max
value: 15.684100593309513
- type: nauc_precision_at_3_std
value: 2.4580907891125503
- type: nauc_precision_at_5_diff1
value: 17.20617330695405
- type: nauc_precision_at_5_max
value: 18.211885404364732
- type: nauc_precision_at_5_std
value: 7.436932427752223
- type: nauc_recall_at_1000_diff1
value: 40.28580404519019
- type: nauc_recall_at_1000_max
value: 60.50252714882125
- type: nauc_recall_at_1000_std
value: 65.26984741399421
- type: nauc_recall_at_100_diff1
value: 26.517111029668662
- type: nauc_recall_at_100_max
value: 43.37392004137636
- type: nauc_recall_at_100_std
value: 36.39302655748604
- type: nauc_recall_at_10_diff1
value: 22.85248270157389
- type: nauc_recall_at_10_max
value: 20.595760178488483
- type: nauc_recall_at_10_std
value: 6.07222355370645
- type: nauc_recall_at_1_diff1
value: 33.03005074446969
- type: nauc_recall_at_1_max
value: 8.59468158008318
- type: nauc_recall_at_1_std
value: -4.299975654790197
- type: nauc_recall_at_20_diff1
value: 25.249292416064677
- type: nauc_recall_at_20_max
value: 27.01732868361449
- type: nauc_recall_at_20_std
value: 13.03723631965964
- type: nauc_recall_at_3_diff1
value: 24.07995496056652
- type: nauc_recall_at_3_max
value: 13.160951322480182
- type: nauc_recall_at_3_std
value: -2.4282680235922993
- type: nauc_recall_at_5_diff1
value: 22.48576829416849
- type: nauc_recall_at_5_max
value: 16.82595398561844
- type: nauc_recall_at_5_std
value: 1.5133407674177162
- type: ndcg_at_1
value: 28.388999999999996
- type: ndcg_at_10
value: 47.417
- type: ndcg_at_100
value: 52.903999999999996
- type: ndcg_at_1000
value: 53.754000000000005
- type: ndcg_at_20
value: 50.282000000000004
- type: ndcg_at_3
value: 38.682
- type: ndcg_at_5
value: 43.059
- type: precision_at_1
value: 28.388999999999996
- type: precision_at_10
value: 8.239
- type: precision_at_100
value: 1.124
- type: precision_at_1000
value: 0.12
- type: precision_at_20
value: 4.7829999999999995
- type: precision_at_3
value: 17.922
- type: precision_at_5
value: 13.285
- type: recall_at_1
value: 25.089
- type: recall_at_10
value: 68.931
- type: recall_at_100
value: 92.54299999999999
- type: recall_at_1000
value: 98.774
- type: recall_at_20
value: 79.633
- type: recall_at_3
value: 46.193
- type: recall_at_5
value: 56.257000000000005
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 89.237
- type: map_at_1
value: 71.553
- type: map_at_10
value: 85.59
- type: map_at_100
value: 86.205
- type: map_at_1000
value: 86.219
- type: map_at_20
value: 85.985
- type: map_at_3
value: 82.65400000000001
- type: map_at_5
value: 84.514
- type: mrr_at_1
value: 82.07
- type: mrr_at_10
value: 88.33148015872987
- type: mrr_at_100
value: 88.40739111500831
- type: mrr_at_1000
value: 88.40805247679367
- type: mrr_at_20
value: 88.38813608158237
- type: mrr_at_3
value: 87.42999999999971
- type: mrr_at_5
value: 88.06649999999964
- type: nauc_map_at_1000_diff1
value: 77.08553781000765
- type: nauc_map_at_1000_max
value: 23.450946013228485
- type: nauc_map_at_1000_std
value: -35.270774669376145
- type: nauc_map_at_100_diff1
value: 77.09137968313824
- type: nauc_map_at_100_max
value: 23.4177325252657
- type: nauc_map_at_100_std
value: -35.29868072622312
- type: nauc_map_at_10_diff1
value: 77.35520846930982
- type: nauc_map_at_10_max
value: 22.722710833976105
- type: nauc_map_at_10_std
value: -37.07802906799404
- type: nauc_map_at_1_diff1
value: 79.44035377028345
- type: nauc_map_at_1_max
value: 18.453731579204632
- type: nauc_map_at_1_std
value: -31.459193294191756
- type: nauc_map_at_20_diff1
value: 77.20665962095318
- type: nauc_map_at_20_max
value: 23.121398453381502
- type: nauc_map_at_20_std
value: -36.048384547201145
- type: nauc_map_at_3_diff1
value: 77.73189801819204
- type: nauc_map_at_3_max
value: 20.89861737342013
- type: nauc_map_at_3_std
value: -38.69750583432779
- type: nauc_map_at_5_diff1
value: 77.38414220339891
- type: nauc_map_at_5_max
value: 21.745210492173754
- type: nauc_map_at_5_std
value: -38.2621808062194
- type: nauc_mrr_at_1000_diff1
value: 77.6983519127067
- type: nauc_mrr_at_1000_max
value: 24.940664735847122
- type: nauc_mrr_at_1000_std
value: -31.766166525611034
- type: nauc_mrr_at_100_diff1
value: 77.69677361244631
- type: nauc_mrr_at_100_max
value: 24.93944911995355
- type: nauc_mrr_at_100_std
value: -31.766671314071193
- type: nauc_mrr_at_10_diff1
value: 77.69969707498353
- type: nauc_mrr_at_10_max
value: 24.97383508222681
- type: nauc_mrr_at_10_std
value: -31.926609297621596
- type: nauc_mrr_at_1_diff1
value: 78.2888304372505
- type: nauc_mrr_at_1_max
value: 25.016373889546283
- type: nauc_mrr_at_1_std
value: -29.403166889867382
- type: nauc_mrr_at_20_diff1
value: 77.70610400894614
- type: nauc_mrr_at_20_max
value: 24.971056592872422
- type: nauc_mrr_at_20_std
value: -31.78902173656083
- type: nauc_mrr_at_3_diff1
value: 77.62843372946364
- type: nauc_mrr_at_3_max
value: 24.926476114034067
- type: nauc_mrr_at_3_std
value: -32.40860325018437
- type: nauc_mrr_at_5_diff1
value: 77.66814059985857
- type: nauc_mrr_at_5_max
value: 24.835531623050706
- type: nauc_mrr_at_5_std
value: -32.163749303020865
- type: nauc_ndcg_at_1000_diff1
value: 76.96777944447858
- type: nauc_ndcg_at_1000_max
value: 24.21885484734531
- type: nauc_ndcg_at_1000_std
value: -33.74247891547267
- type: nauc_ndcg_at_100_diff1
value: 76.9482600352606
- type: nauc_ndcg_at_100_max
value: 24.0598796503349
- type: nauc_ndcg_at_100_std
value: -33.778035513403985
- type: nauc_ndcg_at_10_diff1
value: 77.22805292790589
- type: nauc_ndcg_at_10_max
value: 23.864409616522124
- type: nauc_ndcg_at_10_std
value: -36.37251390369501
- type: nauc_ndcg_at_1_diff1
value: 78.32661106648008
- type: nauc_ndcg_at_1_max
value: 25.084766818780373
- type: nauc_ndcg_at_1_std
value: -29.468568226177403
- type: nauc_ndcg_at_20_diff1
value: 77.16551935289819
- type: nauc_ndcg_at_20_max
value: 24.070148451760634
- type: nauc_ndcg_at_20_std
value: -35.07326418566946
- type: nauc_ndcg_at_3_diff1
value: 76.93582386618357
- type: nauc_ndcg_at_3_max
value: 22.831832375706316
- type: nauc_ndcg_at_3_std
value: -37.193882195851025
- type: nauc_ndcg_at_5_diff1
value: 77.01577617426591
- type: nauc_ndcg_at_5_max
value: 22.91173362852854
- type: nauc_ndcg_at_5_std
value: -37.292419263723644
- type: nauc_precision_at_1000_diff1
value: -44.12943949966939
- type: nauc_precision_at_1000_max
value: 0.36459404941215495
- type: nauc_precision_at_1000_std
value: 31.380531983454212
- type: nauc_precision_at_100_diff1
value: -43.811695386130445
- type: nauc_precision_at_100_max
value: 0.03794917738746938
- type: nauc_precision_at_100_std
value: 31.364315473478683
- type: nauc_precision_at_10_diff1
value: -38.68336391743595
- type: nauc_precision_at_10_max
value: -0.21210695423971426
- type: nauc_precision_at_10_std
value: 21.30974035423888
- type: nauc_precision_at_1_diff1
value: 78.32661106648008
- type: nauc_precision_at_1_max
value: 25.084766818780373
- type: nauc_precision_at_1_std
value: -29.468568226177403
- type: nauc_precision_at_20_diff1
value: -41.61475122844354
- type: nauc_precision_at_20_max
value: -0.6430570950832868
- type: nauc_precision_at_20_std
value: 26.507271600025277
- type: nauc_precision_at_3_diff1
value: -18.499808457749403
- type: nauc_precision_at_3_max
value: 4.1065933271808746
- type: nauc_precision_at_3_std
value: 3.7205560449518087
- type: nauc_precision_at_5_diff1
value: -31.49822345207351
- type: nauc_precision_at_5_max
value: 1.0136598528061673
- type: nauc_precision_at_5_std
value: 13.31511595759256
- type: nauc_recall_at_1000_diff1
value: 48.292440885754786
- type: nauc_recall_at_1000_max
value: -6.0463626986179095
- type: nauc_recall_at_1000_std
value: 15.224554044983163
- type: nauc_recall_at_100_diff1
value: 65.28632210066016
- type: nauc_recall_at_100_max
value: 7.887343144626012
- type: nauc_recall_at_100_std
value: -27.506802657962965
- type: nauc_recall_at_10_diff1
value: 74.5101806742001
- type: nauc_recall_at_10_max
value: 19.707577867857673
- type: nauc_recall_at_10_std
value: -53.480724171417926
- type: nauc_recall_at_1_diff1
value: 79.44035377028345
- type: nauc_recall_at_1_max
value: 18.453731579204632
- type: nauc_recall_at_1_std
value: -31.459193294191756
- type: nauc_recall_at_20_diff1
value: 74.96479880287762
- type: nauc_recall_at_20_max
value: 21.504395275855938
- type: nauc_recall_at_20_std
value: -48.242306432375024
- type: nauc_recall_at_3_diff1
value: 74.5629712077306
- type: nauc_recall_at_3_max
value: 17.246905733933698
- type: nauc_recall_at_3_std
value: -46.4441514305998
- type: nauc_recall_at_5_diff1
value: 72.96056861757357
- type: nauc_recall_at_5_max
value: 15.986882659418775
- type: nauc_recall_at_5_std
value: -50.26880302584927
- type: ndcg_at_1
value: 82.05
- type: ndcg_at_10
value: 89.237
- type: ndcg_at_100
value: 90.316
- type: ndcg_at_1000
value: 90.39500000000001
- type: ndcg_at_20
value: 89.819
- type: ndcg_at_3
value: 86.449
- type: ndcg_at_5
value: 88.015
- type: precision_at_1
value: 82.05
- type: precision_at_10
value: 13.505
- type: precision_at_100
value: 1.538
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.156
- type: precision_at_3
value: 37.730000000000004
- type: precision_at_5
value: 24.792
- type: recall_at_1
value: 71.553
- type: recall_at_10
value: 96.209
- type: recall_at_100
value: 99.65899999999999
- type: recall_at_1000
value: 99.992
- type: recall_at_20
value: 97.99600000000001
- type: recall_at_3
value: 88.315
- type: recall_at_5
value: 92.713
- task:
type: STS
dataset:
name: MTEB RUParaPhraserSTS (default)
type: merionum/ru_paraphraser
config: default
split: test
revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4
metrics:
- type: cosine_pearson
value: 59.90108783647319
- type: cosine_spearman
value: 70.47034713463798
- type: euclidean_pearson
value: 66.01030572916656
- type: euclidean_spearman
value: 70.47034713463798
- type: main_score
value: 70.47034713463798
- type: manhattan_pearson
value: 65.98001943092828
- type: manhattan_spearman
value: 70.42617367089709
- type: pearson
value: 59.90108783647319
- type: spearman
value: 70.47034713463798
- task:
type: Retrieval
dataset:
name: MTEB RiaNewsRetrieval (default)
type: ai-forever/ria-news-retrieval
config: default
split: test
revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7
metrics:
- type: main_score
value: 71.652
- type: map_at_1
value: 56.38999999999999
- type: map_at_10
value: 66.86
- type: map_at_100
value: 67.257
- type: map_at_1000
value: 67.27
- type: map_at_20
value: 67.12
- type: map_at_3
value: 64.823
- type: map_at_5
value: 66.074
- type: mrr_at_1
value: 56.38999999999999
- type: mrr_at_10
value: 66.86036507936463
- type: mrr_at_100
value: 67.25678485069567
- type: mrr_at_1000
value: 67.2702075790664
- type: mrr_at_20
value: 67.12014471381676
- type: mrr_at_3
value: 64.82333333333293
- type: mrr_at_5
value: 66.07433333333262
- type: nauc_map_at_1000_diff1
value: 61.74297820394619
- type: nauc_map_at_1000_max
value: 9.118854001349124
- type: nauc_map_at_1000_std
value: -4.94356578723955
- type: nauc_map_at_100_diff1
value: 61.738053783409406
- type: nauc_map_at_100_max
value: 9.11243471334275
- type: nauc_map_at_100_std
value: -4.929694246493183
- type: nauc_map_at_10_diff1
value: 61.6542231505168
- type: nauc_map_at_10_max
value: 9.039711080932504
- type: nauc_map_at_10_std
value: -5.017750438974048
- type: nauc_map_at_1_diff1
value: 65.75155095156909
- type: nauc_map_at_1_max
value: 9.967117075442566
- type: nauc_map_at_1_std
value: -6.898771142001273
- type: nauc_map_at_20_diff1
value: 61.672262441303126
- type: nauc_map_at_20_max
value: 9.072225719428028
- type: nauc_map_at_20_std
value: -4.934926207117015
- type: nauc_map_at_3_diff1
value: 61.55367486454476
- type: nauc_map_at_3_max
value: 9.032982079978618
- type: nauc_map_at_3_std
value: -5.87535764632397
- type: nauc_map_at_5_diff1
value: 61.42683855708546
- type: nauc_map_at_5_max
value: 8.877070831850263
- type: nauc_map_at_5_std
value: -5.432276887529017
- type: nauc_mrr_at_1000_diff1
value: 61.74297820394619
- type: nauc_mrr_at_1000_max
value: 9.118854001349124
- type: nauc_mrr_at_1000_std
value: -4.94356578723955
- type: nauc_mrr_at_100_diff1
value: 61.738053783409406
- type: nauc_mrr_at_100_max
value: 9.11243471334275
- type: nauc_mrr_at_100_std
value: -4.929694246493183
- type: nauc_mrr_at_10_diff1
value: 61.6542231505168
- type: nauc_mrr_at_10_max
value: 9.039711080932504
- type: nauc_mrr_at_10_std
value: -5.017750438974048
- type: nauc_mrr_at_1_diff1
value: 65.75155095156909
- type: nauc_mrr_at_1_max
value: 9.967117075442566
- type: nauc_mrr_at_1_std
value: -6.898771142001273
- type: nauc_mrr_at_20_diff1
value: 61.672262441303126
- type: nauc_mrr_at_20_max
value: 9.072225719428028
- type: nauc_mrr_at_20_std
value: -4.934926207117015
- type: nauc_mrr_at_3_diff1
value: 61.55367486454476
- type: nauc_mrr_at_3_max
value: 9.032982079978618
- type: nauc_mrr_at_3_std
value: -5.87535764632397
- type: nauc_mrr_at_5_diff1
value: 61.42683855708546
- type: nauc_mrr_at_5_max
value: 8.877070831850263
- type: nauc_mrr_at_5_std
value: -5.432276887529017
- type: nauc_ndcg_at_1000_diff1
value: 60.98630459378577
- type: nauc_ndcg_at_1000_max
value: 9.246035024166295
- type: nauc_ndcg_at_1000_std
value: -3.361612562569219
- type: nauc_ndcg_at_100_diff1
value: 60.84577656910963
- type: nauc_ndcg_at_100_max
value: 9.075671762808687
- type: nauc_ndcg_at_100_std
value: -2.862068237853277
- type: nauc_ndcg_at_10_diff1
value: 60.31150294618889
- type: nauc_ndcg_at_10_max
value: 8.70551760752817
- type: nauc_ndcg_at_10_std
value: -3.370467925663366
- type: nauc_ndcg_at_1_diff1
value: 65.75155095156909
- type: nauc_ndcg_at_1_max
value: 9.967117075442566
- type: nauc_ndcg_at_1_std
value: -6.898771142001273
- type: nauc_ndcg_at_20_diff1
value: 60.37124365840994
- type: nauc_ndcg_at_20_max
value: 8.823506745258438
- type: nauc_ndcg_at_20_std
value: -2.940751680095269
- type: nauc_ndcg_at_3_diff1
value: 60.141368320144196
- type: nauc_ndcg_at_3_max
value: 8.68028808058021
- type: nauc_ndcg_at_3_std
value: -5.451032717174482
- type: nauc_ndcg_at_5_diff1
value: 59.79679000319666
- type: nauc_ndcg_at_5_max
value: 8.363528454727524
- type: nauc_ndcg_at_5_std
value: -4.548703878489744
- type: nauc_precision_at_1000_diff1
value: 50.710404643785125
- type: nauc_precision_at_1000_max
value: 30.396375417637838
- type: nauc_precision_at_1000_std
value: 54.40838986196943
- type: nauc_precision_at_100_diff1
value: 52.00580603436627
- type: nauc_precision_at_100_max
value: 10.99642529617639
- type: nauc_precision_at_100_std
value: 37.658017921348645
- type: nauc_precision_at_10_diff1
value: 52.849600810231344
- type: nauc_precision_at_10_max
value: 6.807738858421414
- type: nauc_precision_at_10_std
value: 7.489611728241942
- type: nauc_precision_at_1_diff1
value: 65.75155095156909
- type: nauc_precision_at_1_max
value: 9.967117075442566
- type: nauc_precision_at_1_std
value: -6.898771142001273
- type: nauc_precision_at_20_diff1
value: 51.02573126744686
- type: nauc_precision_at_20_max
value: 7.205985724189931
- type: nauc_precision_at_20_std
value: 15.162254397124517
- type: nauc_precision_at_3_diff1
value: 55.04812303914477
- type: nauc_precision_at_3_max
value: 7.391536062448881
- type: nauc_precision_at_3_std
value: -3.8857451492220694
- type: nauc_precision_at_5_diff1
value: 52.748692451066916
- type: nauc_precision_at_5_max
value: 6.0846073222739605
- type: nauc_precision_at_5_std
value: -0.5062395770410055
- type: nauc_recall_at_1000_diff1
value: 50.710404643785445
- type: nauc_recall_at_1000_max
value: 30.396375417637206
- type: nauc_recall_at_1000_std
value: 54.4083898619685
- type: nauc_recall_at_100_diff1
value: 52.00580603436653
- type: nauc_recall_at_100_max
value: 10.996425296176398
- type: nauc_recall_at_100_std
value: 37.658017921348176
- type: nauc_recall_at_10_diff1
value: 52.84960081023129
- type: nauc_recall_at_10_max
value: 6.807738858421314
- type: nauc_recall_at_10_std
value: 7.4896117282420684
- type: nauc_recall_at_1_diff1
value: 65.75155095156909
- type: nauc_recall_at_1_max
value: 9.967117075442566
- type: nauc_recall_at_1_std
value: -6.898771142001273
- type: nauc_recall_at_20_diff1
value: 51.025731267446794
- type: nauc_recall_at_20_max
value: 7.2059857241901035
- type: nauc_recall_at_20_std
value: 15.162254397124528
- type: nauc_recall_at_3_diff1
value: 55.04812303914475
- type: nauc_recall_at_3_max
value: 7.39153606244884
- type: nauc_recall_at_3_std
value: -3.8857451492221013
- type: nauc_recall_at_5_diff1
value: 52.748692451066994
- type: nauc_recall_at_5_max
value: 6.08460732227402
- type: nauc_recall_at_5_std
value: -0.5062395770408601
- type: ndcg_at_1
value: 56.38999999999999
- type: ndcg_at_10
value: 71.652
- type: ndcg_at_100
value: 73.572
- type: ndcg_at_1000
value: 73.931
- type: ndcg_at_20
value: 72.598
- type: ndcg_at_3
value: 67.499
- type: ndcg_at_5
value: 69.755
- type: precision_at_1
value: 56.38999999999999
- type: precision_at_10
value: 8.655
- type: precision_at_100
value: 0.955
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 4.515000000000001
- type: precision_at_3
value: 25.073
- type: precision_at_5
value: 16.14
- type: recall_at_1
value: 56.38999999999999
- type: recall_at_10
value: 86.55000000000001
- type: recall_at_100
value: 95.50999999999999
- type: recall_at_1000
value: 98.34
- type: recall_at_20
value: 90.29
- type: recall_at_3
value: 75.22
- type: recall_at_5
value: 80.7
- task:
type: Reranking
dataset:
name: MTEB RuBQReranking (default)
type: ai-forever/rubq-reranking
config: default
split: test
revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2
metrics:
- type: main_score
value: 76.66017430254296
- type: map
value: 76.66017430254296
- type: mrr
value: 81.53464738571121
- type: nAUC_map_diff1
value: 36.278917076250224
- type: nAUC_map_max
value: 3.203433802863856
- type: nAUC_map_std
value: 6.996438618963433
- type: nAUC_mrr_diff1
value: 42.67990398885311
- type: nAUC_mrr_max
value: 7.527480599102641
- type: nAUC_mrr_std
value: 10.097273643521257
- task:
type: Retrieval
dataset:
name: MTEB RuBQRetrieval (default)
type: ai-forever/rubq-retrieval
config: default
split: test
revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b
metrics:
- type: main_score
value: 73.657
- type: map_at_1
value: 44.065
- type: map_at_10
value: 65.949
- type: map_at_100
value: 66.913
- type: map_at_1000
value: 66.929
- type: map_at_20
value: 66.636
- type: map_at_3
value: 60.377
- type: map_at_5
value: 64.036
- type: mrr_at_1
value: 62.470449172576835
- type: mrr_at_10
value: 74.10456302300273
- type: mrr_at_100
value: 74.3642061621128
- type: mrr_at_1000
value: 74.36885014443637
- type: mrr_at_20
value: 74.27597096066316
- type: mrr_at_3
value: 72.28132387706853
- type: mrr_at_5
value: 73.51950354609932
- type: nauc_map_at_1000_diff1
value: 37.090200381007115
- type: nauc_map_at_1000_max
value: 13.910508855090157
- type: nauc_map_at_1000_std
value: -18.808239886229163
- type: nauc_map_at_100_diff1
value: 37.07829615924866
- type: nauc_map_at_100_max
value: 13.924480342518827
- type: nauc_map_at_100_std
value: -18.782458187728533
- type: nauc_map_at_10_diff1
value: 36.50603714813933
- type: nauc_map_at_10_max
value: 13.474364155052655
- type: nauc_map_at_10_std
value: -19.3217697456299
- type: nauc_map_at_1_diff1
value: 42.55523796946059
- type: nauc_map_at_1_max
value: 8.718694804676934
- type: nauc_map_at_1_std
value: -16.32083870750557
- type: nauc_map_at_20_diff1
value: 36.926962641332715
- type: nauc_map_at_20_max
value: 13.897116768015918
- type: nauc_map_at_20_std
value: -18.905045444291904
- type: nauc_map_at_3_diff1
value: 36.60441612374597
- type: nauc_map_at_3_max
value: 11.374638753689874
- type: nauc_map_at_3_std
value: -18.820705732888126
- type: nauc_map_at_5_diff1
value: 36.01240755195151
- type: nauc_map_at_5_max
value: 12.469431623670511
- type: nauc_map_at_5_std
value: -19.369051759609658
- type: nauc_mrr_at_1000_diff1
value: 46.3294742344679
- type: nauc_mrr_at_1000_max
value: 17.331355042527218
- type: nauc_mrr_at_1000_std
value: -22.032497848622864
- type: nauc_mrr_at_100_diff1
value: 46.325963720930204
- type: nauc_mrr_at_100_max
value: 17.34386391231157
- type: nauc_mrr_at_100_std
value: -22.024696828474614
- type: nauc_mrr_at_10_diff1
value: 46.16444815881303
- type: nauc_mrr_at_10_max
value: 17.27456729923913
- type: nauc_mrr_at_10_std
value: -22.185922618075203
- type: nauc_mrr_at_1_diff1
value: 50.41611103393129
- type: nauc_mrr_at_1_max
value: 16.01922677023717
- type: nauc_mrr_at_1_std
value: -21.5541331054664
- type: nauc_mrr_at_20_diff1
value: 46.26488921954804
- type: nauc_mrr_at_20_max
value: 17.35070812737816
- type: nauc_mrr_at_20_std
value: -22.05522849907832
- type: nauc_mrr_at_3_diff1
value: 45.91689510009834
- type: nauc_mrr_at_3_max
value: 17.33603270222595
- type: nauc_mrr_at_3_std
value: -22.138054343411756
- type: nauc_mrr_at_5_diff1
value: 45.95600551670136
- type: nauc_mrr_at_5_max
value: 16.876408776684325
- type: nauc_mrr_at_5_std
value: -22.553431986981593
- type: nauc_ndcg_at_1000_diff1
value: 38.90982879614141
- type: nauc_ndcg_at_1000_max
value: 16.062132022098236
- type: nauc_ndcg_at_1000_std
value: -18.82741879033837
- type: nauc_ndcg_at_100_diff1
value: 38.59230622276177
- type: nauc_ndcg_at_100_max
value: 16.479030069575217
- type: nauc_ndcg_at_100_std
value: -18.258623331677327
- type: nauc_ndcg_at_10_diff1
value: 36.64193020198755
- type: nauc_ndcg_at_10_max
value: 15.521465758833719
- type: nauc_ndcg_at_10_std
value: -19.921078208056432
- type: nauc_ndcg_at_1_diff1
value: 50.5575101103112
- type: nauc_ndcg_at_1_max
value: 16.172381702653436
- type: nauc_ndcg_at_1_std
value: -21.33447567609692
- type: nauc_ndcg_at_20_diff1
value: 37.69618732698285
- type: nauc_ndcg_at_20_max
value: 16.546221585095637
- type: nauc_ndcg_at_20_std
value: -18.709641022125947
- type: nauc_ndcg_at_3_diff1
value: 37.126400354430665
- type: nauc_ndcg_at_3_max
value: 12.547246162551406
- type: nauc_ndcg_at_3_std
value: -20.396178391625853
- type: nauc_ndcg_at_5_diff1
value: 35.89350194051627
- type: nauc_ndcg_at_5_max
value: 13.49687833962685
- type: nauc_ndcg_at_5_std
value: -20.308812248088064
- type: nauc_precision_at_1000_diff1
value: -8.48188084168493
- type: nauc_precision_at_1000_max
value: 6.139161581867971
- type: nauc_precision_at_1000_std
value: 4.098842102393299
- type: nauc_precision_at_100_diff1
value: -7.885830971996956
- type: nauc_precision_at_100_max
value: 8.172209543497003
- type: nauc_precision_at_100_std
value: 5.537025566079311
- type: nauc_precision_at_10_diff1
value: -3.866974408944356
- type: nauc_precision_at_10_max
value: 10.976927790797955
- type: nauc_precision_at_10_std
value: -1.9349418974770733
- type: nauc_precision_at_1_diff1
value: 50.5575101103112
- type: nauc_precision_at_1_max
value: 16.172381702653436
- type: nauc_precision_at_1_std
value: -21.33447567609692
- type: nauc_precision_at_20_diff1
value: -5.637729717327837
- type: nauc_precision_at_20_max
value: 10.970959140054813
- type: nauc_precision_at_20_std
value: 2.8388876862575003
- type: nauc_precision_at_3_diff1
value: 9.266489853955846
- type: nauc_precision_at_3_max
value: 11.106426174438223
- type: nauc_precision_at_3_std
value: -11.54429747011779
- type: nauc_precision_at_5_diff1
value: 0.28893207152211653
- type: nauc_precision_at_5_max
value: 10.13303315463123
- type: nauc_precision_at_5_std
value: -6.70447500207753
- type: nauc_recall_at_1000_diff1
value: 16.221661299215462
- type: nauc_recall_at_1000_max
value: 53.597491328642555
- type: nauc_recall_at_1000_std
value: 64.64136682375486
- type: nauc_recall_at_100_diff1
value: 12.993211883064685
- type: nauc_recall_at_100_max
value: 45.55281725648927
- type: nauc_recall_at_100_std
value: 26.56347354237723
- type: nauc_recall_at_10_diff1
value: 17.77929264056643
- type: nauc_recall_at_10_max
value: 16.70396492397608
- type: nauc_recall_at_10_std
value: -17.07872240660004
- type: nauc_recall_at_1_diff1
value: 42.55523796946059
- type: nauc_recall_at_1_max
value: 8.718694804676934
- type: nauc_recall_at_1_std
value: -16.32083870750557
- type: nauc_recall_at_20_diff1
value: 17.12006526746598
- type: nauc_recall_at_20_max
value: 25.18437803181794
- type: nauc_recall_at_20_std
value: -7.82129157238653
- type: nauc_recall_at_3_diff1
value: 26.51229427509311
- type: nauc_recall_at_3_max
value: 9.47296410240245
- type: nauc_recall_at_3_std
value: -17.91249081717094
- type: nauc_recall_at_5_diff1
value: 21.037615823181476
- type: nauc_recall_at_5_max
value: 10.398109095863244
- type: nauc_recall_at_5_std
value: -18.1775717992346
- type: ndcg_at_1
value: 62.41100000000001
- type: ndcg_at_10
value: 73.657
- type: ndcg_at_100
value: 76.44999999999999
- type: ndcg_at_1000
value: 76.724
- type: ndcg_at_20
value: 75.241
- type: ndcg_at_3
value: 66.53099999999999
- type: ndcg_at_5
value: 70.545
- type: precision_at_1
value: 62.41100000000001
- type: precision_at_10
value: 14.309
- type: precision_at_100
value: 1.6400000000000001
- type: precision_at_1000
value: 0.167
- type: precision_at_20
value: 7.686
- type: precision_at_3
value: 36.131
- type: precision_at_5
value: 25.413999999999998
- type: recall_at_1
value: 44.065
- type: recall_at_10
value: 87.569
- type: recall_at_100
value: 97.866
- type: recall_at_1000
value: 99.663
- type: recall_at_20
value: 92.61399999999999
- type: recall_at_3
value: 70.376
- type: recall_at_5
value: 79.596
- task:
type: Classification
dataset:
name: MTEB RuReviewsClassification (default)
type: ai-forever/ru-reviews-classification
config: default
split: test
revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a
metrics:
- type: accuracy
value: 73.7150390625
- type: f1
value: 72.2246927657427
- type: f1_weighted
value: 72.22538385584937
- type: main_score
value: 73.7150390625
- task:
type: STS
dataset:
name: MTEB RuSTSBenchmarkSTS (default)
type: ai-forever/ru-stsbenchmark-sts
config: default
split: test
revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018
metrics:
- type: cosine_pearson
value: 80.99594416064292
- type: cosine_spearman
value: 79.30076871318474
- type: euclidean_pearson
value: 80.07768395803016
- type: euclidean_spearman
value: 79.30076871318474
- type: main_score
value: 79.30076871318474
- type: manhattan_pearson
value: 80.14948537837334
- type: manhattan_spearman
value: 79.37609905744645
- type: pearson
value: 80.99594416064292
- type: spearman
value: 79.30076871318474
- task:
type: Classification
dataset:
name: MTEB RuSciBenchGRNTIClassification (default)
type: ai-forever/ru-scibench-grnti-classification
config: default
split: test
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1
metrics:
- type: accuracy
value: 74.520703125
- type: f1
value: 73.07891907358736
- type: f1_weighted
value: 73.09099552030747
- type: main_score
value: 74.520703125
- task:
type: Clustering
dataset:
name: MTEB RuSciBenchGRNTIClusteringP2P (default)
type: ai-forever/ru-scibench-grnti-classification
config: default
split: test
revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1
metrics:
- type: main_score
value: 67.3025150400559
- type: v_measure
value: 67.3025150400559
- type: v_measure_std
value: 1.005082206057355
- task:
type: Classification
dataset:
name: MTEB RuSciBenchOECDClassification (default)
type: ai-forever/ru-scibench-oecd-classification
config: default
split: test
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471
metrics:
- type: accuracy
value: 61.512890625000004
- type: f1
value: 59.40504694034752
- type: f1_weighted
value: 59.40999969456683
- type: main_score
value: 61.512890625000004
- task:
type: Clustering
dataset:
name: MTEB RuSciBenchOECDClusteringP2P (default)
type: ai-forever/ru-scibench-oecd-classification
config: default
split: test
revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471
metrics:
- type: main_score
value: 56.69474614993359
- type: v_measure
value: 56.69474614993359
- type: v_measure_std
value: 0.5136380257006159
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 19.162000000000003
- type: map_at_1
value: 4.475
- type: map_at_10
value: 11.306
- type: map_at_100
value: 13.628000000000002
- type: map_at_1000
value: 13.977
- type: map_at_20
value: 12.41
- type: map_at_3
value: 7.941
- type: map_at_5
value: 9.681
- type: mrr_at_1
value: 22.2
- type: mrr_at_10
value: 32.70718253968251
- type: mrr_at_100
value: 33.944931964999924
- type: mrr_at_1000
value: 33.99928862072715
- type: mrr_at_20
value: 33.421887159967625
- type: mrr_at_3
value: 29.03333333333334
- type: mrr_at_5
value: 31.3883333333333
- type: nauc_map_at_1000_diff1
value: 16.360578088282296
- type: nauc_map_at_1000_max
value: 24.255546647291375
- type: nauc_map_at_1000_std
value: 23.653561658845028
- type: nauc_map_at_100_diff1
value: 16.194025097940372
- type: nauc_map_at_100_max
value: 24.085864603626415
- type: nauc_map_at_100_std
value: 23.364987990124177
- type: nauc_map_at_10_diff1
value: 17.166987284706135
- type: nauc_map_at_10_max
value: 23.9828055787183
- type: nauc_map_at_10_std
value: 20.94729363065384
- type: nauc_map_at_1_diff1
value: 26.524260461587694
- type: nauc_map_at_1_max
value: 18.237790264396608
- type: nauc_map_at_1_std
value: 13.862573541948848
- type: nauc_map_at_20_diff1
value: 16.714123094555536
- type: nauc_map_at_20_max
value: 23.718224495718733
- type: nauc_map_at_20_std
value: 21.870044423697838
- type: nauc_map_at_3_diff1
value: 19.512270329933145
- type: nauc_map_at_3_max
value: 20.855620393884433
- type: nauc_map_at_3_std
value: 16.035011072648476
- type: nauc_map_at_5_diff1
value: 18.82304971891875
- type: nauc_map_at_5_max
value: 21.734182123122007
- type: nauc_map_at_5_std
value: 18.04423957871652
- type: nauc_mrr_at_1000_diff1
value: 20.80051056261849
- type: nauc_mrr_at_1000_max
value: 18.295945240932287
- type: nauc_mrr_at_1000_std
value: 17.28025318943188
- type: nauc_mrr_at_100_diff1
value: 20.790178515273826
- type: nauc_mrr_at_100_max
value: 18.31986327791731
- type: nauc_mrr_at_100_std
value: 17.320091305114396
- type: nauc_mrr_at_10_diff1
value: 20.8526295835465
- type: nauc_mrr_at_10_max
value: 18.196816934222145
- type: nauc_mrr_at_10_std
value: 17.068040995717965
- type: nauc_mrr_at_1_diff1
value: 26.440272836765473
- type: nauc_mrr_at_1_max
value: 18.049427668224048
- type: nauc_mrr_at_1_std
value: 13.892939744935399
- type: nauc_mrr_at_20_diff1
value: 20.74305901889222
- type: nauc_mrr_at_20_max
value: 18.201319332283358
- type: nauc_mrr_at_20_std
value: 17.323956767473867
- type: nauc_mrr_at_3_diff1
value: 20.80860026418777
- type: nauc_mrr_at_3_max
value: 17.93980894932549
- type: nauc_mrr_at_3_std
value: 16.018953507592425
- type: nauc_mrr_at_5_diff1
value: 20.664338981633467
- type: nauc_mrr_at_5_max
value: 17.99219934317394
- type: nauc_mrr_at_5_std
value: 16.87297735676564
- type: nauc_ndcg_at_1000_diff1
value: 15.863416705505543
- type: nauc_ndcg_at_1000_max
value: 24.110686464543267
- type: nauc_ndcg_at_1000_std
value: 28.286385566558142
- type: nauc_ndcg_at_100_diff1
value: 14.680972591439675
- type: nauc_ndcg_at_100_max
value: 23.239600232159475
- type: nauc_ndcg_at_100_std
value: 27.111251722669195
- type: nauc_ndcg_at_10_diff1
value: 16.420888690623528
- type: nauc_ndcg_at_10_max
value: 22.751709784752375
- type: nauc_ndcg_at_10_std
value: 21.453901377928283
- type: nauc_ndcg_at_1_diff1
value: 26.440272836765473
- type: nauc_ndcg_at_1_max
value: 18.049427668224048
- type: nauc_ndcg_at_1_std
value: 13.892939744935399
- type: nauc_ndcg_at_20_diff1
value: 15.811379241678267
- type: nauc_ndcg_at_20_max
value: 22.240678546737126
- type: nauc_ndcg_at_20_std
value: 23.198241749302497
- type: nauc_ndcg_at_3_diff1
value: 18.504832287432112
- type: nauc_ndcg_at_3_max
value: 19.752235860773588
- type: nauc_ndcg_at_3_std
value: 16.473921583621845
- type: nauc_ndcg_at_5_diff1
value: 17.904056465395726
- type: nauc_ndcg_at_5_max
value: 20.684461097896246
- type: nauc_ndcg_at_5_std
value: 18.588666225039148
- type: nauc_precision_at_1000_diff1
value: 6.193891363199702
- type: nauc_precision_at_1000_max
value: 20.852873111518612
- type: nauc_precision_at_1000_std
value: 37.53891581521263
- type: nauc_precision_at_100_diff1
value: 5.97130047912924
- type: nauc_precision_at_100_max
value: 20.80641359454268
- type: nauc_precision_at_100_std
value: 33.400028161190946
- type: nauc_precision_at_10_diff1
value: 11.257140852641278
- type: nauc_precision_at_10_max
value: 23.40935798614799
- type: nauc_precision_at_10_std
value: 24.02179217475008
- type: nauc_precision_at_1_diff1
value: 26.440272836765473
- type: nauc_precision_at_1_max
value: 18.049427668224048
- type: nauc_precision_at_1_std
value: 13.892939744935399
- type: nauc_precision_at_20_diff1
value: 9.777581420498402
- type: nauc_precision_at_20_max
value: 20.94783417188155
- type: nauc_precision_at_20_std
value: 26.155229221480035
- type: nauc_precision_at_3_diff1
value: 14.815195778747578
- type: nauc_precision_at_3_max
value: 20.297896590597084
- type: nauc_precision_at_3_std
value: 17.27297537409199
- type: nauc_precision_at_5_diff1
value: 13.929822537338527
- type: nauc_precision_at_5_max
value: 20.98801445292839
- type: nauc_precision_at_5_std
value: 20.36762932119487
- type: nauc_recall_at_1000_diff1
value: 6.269540116426191
- type: nauc_recall_at_1000_max
value: 22.50245807435009
- type: nauc_recall_at_1000_std
value: 38.92843130214358
- type: nauc_recall_at_100_diff1
value: 5.858562324196213
- type: nauc_recall_at_100_max
value: 21.146719698636726
- type: nauc_recall_at_100_std
value: 33.409178845783586
- type: nauc_recall_at_10_diff1
value: 10.791079221016838
- type: nauc_recall_at_10_max
value: 23.402958626226223
- type: nauc_recall_at_10_std
value: 23.778905836972058
- type: nauc_recall_at_1_diff1
value: 26.524260461587694
- type: nauc_recall_at_1_max
value: 18.237790264396608
- type: nauc_recall_at_1_std
value: 13.862573541948848
- type: nauc_recall_at_20_diff1
value: 9.588806834662645
- type: nauc_recall_at_20_max
value: 20.992020581818323
- type: nauc_recall_at_20_std
value: 25.92296591496667
- type: nauc_recall_at_3_diff1
value: 14.86565067742853
- type: nauc_recall_at_3_max
value: 20.312249816233308
- type: nauc_recall_at_3_std
value: 16.924697629563205
- type: nauc_recall_at_5_diff1
value: 13.735197736933962
- type: nauc_recall_at_5_max
value: 20.94698008166532
- type: nauc_recall_at_5_std
value: 19.962609439107787
- type: ndcg_at_1
value: 22.2
- type: ndcg_at_10
value: 19.162000000000003
- type: ndcg_at_100
value: 28.321
- type: ndcg_at_1000
value: 34.266999999999996
- type: ndcg_at_20
value: 22.253999999999998
- type: ndcg_at_3
value: 17.798
- type: ndcg_at_5
value: 15.975
- type: precision_at_1
value: 22.2
- type: precision_at_10
value: 9.98
- type: precision_at_100
value: 2.329
- type: precision_at_1000
value: 0.376
- type: precision_at_20
value: 6.795
- type: precision_at_3
value: 16.567
- type: precision_at_5
value: 14.24
- type: recall_at_1
value: 4.475
- type: recall_at_10
value: 20.307
- type: recall_at_100
value: 47.242
- type: recall_at_1000
value: 76.242
- type: recall_at_20
value: 27.596999999999998
- type: recall_at_3
value: 10.05
- type: recall_at_5
value: 14.432
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 85.571141897898
- type: cosine_spearman
value: 81.06253068558962
- type: euclidean_pearson
value: 83.27075641353736
- type: euclidean_spearman
value: 81.06253622684207
- type: main_score
value: 81.06253068558962
- type: manhattan_pearson
value: 83.35659901147551
- type: manhattan_spearman
value: 81.13591158643307
- type: pearson
value: 85.571141897898
- type: spearman
value: 81.06253068558962
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 81.78267795485768
- type: cosine_spearman
value: 70.09877188862463
- type: euclidean_pearson
value: 78.49440835422978
- type: euclidean_spearman
value: 70.09877188862463
- type: main_score
value: 70.09877188862463
- type: manhattan_pearson
value: 78.7282306108082
- type: manhattan_spearman
value: 70.29557277377175
- type: pearson
value: 81.78267795485768
- type: spearman
value: 70.09877188862463
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 80.25745663712165
- type: cosine_spearman
value: 81.01483036919429
- type: euclidean_pearson
value: 81.14541657219165
- type: euclidean_spearman
value: 81.01478607738545
- type: main_score
value: 81.01483036919429
- type: manhattan_pearson
value: 81.40111412290987
- type: manhattan_spearman
value: 81.28649812590226
- type: pearson
value: 80.25745663712165
- type: spearman
value: 81.01483036919429
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 81.7451052491344
- type: cosine_spearman
value: 77.81666029040504
- type: euclidean_pearson
value: 81.31747977745773
- type: euclidean_spearman
value: 77.81666029040504
- type: main_score
value: 77.81666029040504
- type: manhattan_pearson
value: 81.46161935201552
- type: manhattan_spearman
value: 77.98131880904403
- type: pearson
value: 81.7451052491344
- type: spearman
value: 77.81666029040504
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 83.69084648758516
- type: cosine_spearman
value: 84.52134445704115
- type: euclidean_pearson
value: 84.13552443709717
- type: euclidean_spearman
value: 84.52134445704115
- type: main_score
value: 84.52134445704115
- type: manhattan_pearson
value: 84.21966806051941
- type: manhattan_spearman
value: 84.61306373914836
- type: pearson
value: 83.69084648758516
- type: spearman
value: 84.52134445704115
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 79.22411263296355
- type: cosine_spearman
value: 81.0920748151385
- type: euclidean_pearson
value: 80.69903573722831
- type: euclidean_spearman
value: 81.0920748151385
- type: main_score
value: 81.0920748151385
- type: manhattan_pearson
value: 80.82176565456413
- type: manhattan_spearman
value: 81.22812310589154
- type: pearson
value: 79.22411263296355
- type: spearman
value: 81.0920748151385
- task:
type: STS
dataset:
name: MTEB STS22 (ru)
type: mteb/sts22-crosslingual-sts
config: ru
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 46.40454184212831
- type: cosine_spearman
value: 61.10568034074938
- type: euclidean_pearson
value: 51.24169968038525
- type: euclidean_spearman
value: 61.10568034074938
- type: main_score
value: 61.10568034074938
- type: manhattan_pearson
value: 52.48738021500564
- type: manhattan_spearman
value: 61.15965141864881
- type: pearson
value: 46.40454184212831
- type: spearman
value: 61.10568034074938
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 82.25427804989813
- type: cosine_spearman
value: 82.20135109121625
- type: euclidean_pearson
value: 83.21943775385887
- type: euclidean_spearman
value: 82.2013271737365
- type: main_score
value: 82.20135109121625
- type: manhattan_pearson
value: 83.30139032750424
- type: manhattan_spearman
value: 82.313788704099
- type: pearson
value: 82.25427804989813
- type: spearman
value: 82.20135109121625
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 88.00790793717358
- type: map
value: 88.00790793717358
- type: mrr
value: 96.2317149081855
- type: nAUC_map_diff1
value: -4.285706894005613
- type: nAUC_map_max
value: 47.69800035323553
- type: nAUC_map_std
value: 66.05509605566249
- type: nAUC_mrr_diff1
value: 37.59327273978339
- type: nAUC_mrr_max
value: 74.83336690604901
- type: nAUC_mrr_std
value: 79.76400854713901
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 72.902
- type: map_at_1
value: 58.160999999999994
- type: map_at_10
value: 68.15
- type: map_at_100
value: 68.76299999999999
- type: map_at_1000
value: 68.777
- type: map_at_20
value: 68.636
- type: map_at_3
value: 65.496
- type: map_at_5
value: 67.166
- type: mrr_at_1
value: 61.66666666666667
- type: mrr_at_10
value: 69.90119047619046
- type: mrr_at_100
value: 70.35924850016258
- type: mrr_at_1000
value: 70.36956277343268
- type: mrr_at_20
value: 70.2427525490219
- type: mrr_at_3
value: 68.0
- type: mrr_at_5
value: 69.23333333333332
- type: nauc_map_at_1000_diff1
value: 67.60995698057089
- type: nauc_map_at_1000_max
value: 46.068809020612704
- type: nauc_map_at_1000_std
value: 1.1948672845462098
- type: nauc_map_at_100_diff1
value: 67.60952762159904
- type: nauc_map_at_100_max
value: 46.07379744229154
- type: nauc_map_at_100_std
value: 1.182970323131957
- type: nauc_map_at_10_diff1
value: 67.57824321545665
- type: nauc_map_at_10_max
value: 46.32612750524493
- type: nauc_map_at_10_std
value: 1.2781320788709092
- type: nauc_map_at_1_diff1
value: 70.5130136513353
- type: nauc_map_at_1_max
value: 40.673408888331544
- type: nauc_map_at_1_std
value: -1.3408323300249747
- type: nauc_map_at_20_diff1
value: 67.52032735442157
- type: nauc_map_at_20_max
value: 46.12651713618736
- type: nauc_map_at_20_std
value: 1.1355480686211972
- type: nauc_map_at_3_diff1
value: 68.16380401477547
- type: nauc_map_at_3_max
value: 43.88680563184851
- type: nauc_map_at_3_std
value: -3.720201195392404
- type: nauc_map_at_5_diff1
value: 67.99170514346827
- type: nauc_map_at_5_max
value: 45.1182341963952
- type: nauc_map_at_5_std
value: -0.8736684979875234
- type: nauc_mrr_at_1000_diff1
value: 65.5906860945105
- type: nauc_mrr_at_1000_max
value: 47.56601805618958
- type: nauc_mrr_at_1000_std
value: 5.9136892538197126
- type: nauc_mrr_at_100_diff1
value: 65.59130506472648
- type: nauc_mrr_at_100_max
value: 47.560766539048224
- type: nauc_mrr_at_100_std
value: 5.886452280327445
- type: nauc_mrr_at_10_diff1
value: 65.38789898290564
- type: nauc_mrr_at_10_max
value: 47.82853216971601
- type: nauc_mrr_at_10_std
value: 6.362470864688538
- type: nauc_mrr_at_1_diff1
value: 67.64455543946382
- type: nauc_mrr_at_1_max
value: 44.87347417242169
- type: nauc_mrr_at_1_std
value: 7.4488417726357365
- type: nauc_mrr_at_20_diff1
value: 65.47605317912657
- type: nauc_mrr_at_20_max
value: 47.58709668066147
- type: nauc_mrr_at_20_std
value: 5.809216165052655
- type: nauc_mrr_at_3_diff1
value: 65.77227321919354
- type: nauc_mrr_at_3_max
value: 47.54231580750389
- type: nauc_mrr_at_3_std
value: 4.222335116280824
- type: nauc_mrr_at_5_diff1
value: 65.54309281879533
- type: nauc_mrr_at_5_max
value: 47.89198835887271
- type: nauc_mrr_at_5_std
value: 5.990782526521852
- type: nauc_ndcg_at_1000_diff1
value: 66.50501237344044
- type: nauc_ndcg_at_1000_max
value: 47.89691614927347
- type: nauc_ndcg_at_1000_std
value: 3.858567312387061
- type: nauc_ndcg_at_100_diff1
value: 66.52978786688968
- type: nauc_ndcg_at_100_max
value: 47.92798566987145
- type: nauc_ndcg_at_100_std
value: 3.2827316431460147
- type: nauc_ndcg_at_10_diff1
value: 65.58633101511163
- type: nauc_ndcg_at_10_max
value: 48.80288520105782
- type: nauc_ndcg_at_10_std
value: 3.9764819883604385
- type: nauc_ndcg_at_1_diff1
value: 67.64455543946382
- type: nauc_ndcg_at_1_max
value: 44.87347417242169
- type: nauc_ndcg_at_1_std
value: 7.4488417726357365
- type: nauc_ndcg_at_20_diff1
value: 65.674407420572
- type: nauc_ndcg_at_20_max
value: 48.11394986776404
- type: nauc_ndcg_at_20_std
value: 2.711393534038602
- type: nauc_ndcg_at_3_diff1
value: 66.5498828618974
- type: nauc_ndcg_at_3_max
value: 45.78842720237144
- type: nauc_ndcg_at_3_std
value: -2.524503922872291
- type: nauc_ndcg_at_5_diff1
value: 66.51681687231908
- type: nauc_ndcg_at_5_max
value: 47.28239002104229
- type: nauc_ndcg_at_5_std
value: 0.8797704241318283
- type: nauc_precision_at_1000_diff1
value: -25.278551984459547
- type: nauc_precision_at_1000_max
value: 19.072121412932663
- type: nauc_precision_at_1000_std
value: 51.03267260477789
- type: nauc_precision_at_100_diff1
value: -17.95505562847295
- type: nauc_precision_at_100_max
value: 22.786207573322784
- type: nauc_precision_at_100_std
value: 45.52886915349048
- type: nauc_precision_at_10_diff1
value: 7.786315249522727
- type: nauc_precision_at_10_max
value: 40.45721598510848
- type: nauc_precision_at_10_std
value: 38.86811809562086
- type: nauc_precision_at_1_diff1
value: 67.64455543946382
- type: nauc_precision_at_1_max
value: 44.87347417242169
- type: nauc_precision_at_1_std
value: 7.4488417726357365
- type: nauc_precision_at_20_diff1
value: -6.7787477098826265
- type: nauc_precision_at_20_max
value: 29.43636167690474
- type: nauc_precision_at_20_std
value: 38.48151740489274
- type: nauc_precision_at_3_diff1
value: 39.481963258187015
- type: nauc_precision_at_3_max
value: 42.42369906705573
- type: nauc_precision_at_3_std
value: 9.531028412147295
- type: nauc_precision_at_5_diff1
value: 24.898111796597416
- type: nauc_precision_at_5_max
value: 41.17351707929381
- type: nauc_precision_at_5_std
value: 24.90291910370421
- type: nauc_recall_at_1000_diff1
value: 70.76330532212897
- type: nauc_recall_at_1000_max
value: 88.85387488328593
- type: nauc_recall_at_1000_std
value: 83.25163398692725
- type: nauc_recall_at_100_diff1
value: 68.08723489395771
- type: nauc_recall_at_100_max
value: 63.74994442221321
- type: nauc_recall_at_100_std
value: 7.758659019163229
- type: nauc_recall_at_10_diff1
value: 56.545518621597324
- type: nauc_recall_at_10_max
value: 56.74870654004741
- type: nauc_recall_at_10_std
value: 8.701951811447595
- type: nauc_recall_at_1_diff1
value: 70.5130136513353
- type: nauc_recall_at_1_max
value: 40.673408888331544
- type: nauc_recall_at_1_std
value: -1.3408323300249747
- type: nauc_recall_at_20_diff1
value: 54.13998932906485
- type: nauc_recall_at_20_max
value: 55.454403983815794
- type: nauc_recall_at_20_std
value: -3.1705274702472694
- type: nauc_recall_at_3_diff1
value: 63.260925909299544
- type: nauc_recall_at_3_max
value: 46.05508565736711
- type: nauc_recall_at_3_std
value: -10.957671894931114
- type: nauc_recall_at_5_diff1
value: 61.62947530846916
- type: nauc_recall_at_5_max
value: 50.48704479871539
- type: nauc_recall_at_5_std
value: -1.4810663364085042
- type: ndcg_at_1
value: 61.667
- type: ndcg_at_10
value: 72.902
- type: ndcg_at_100
value: 75.368
- type: ndcg_at_1000
value: 75.657
- type: ndcg_at_20
value: 74.453
- type: ndcg_at_3
value: 68.57
- type: ndcg_at_5
value: 70.926
- type: precision_at_1
value: 61.667
- type: precision_at_10
value: 9.667
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 5.2
- type: precision_at_3
value: 27.0
- type: precision_at_5
value: 17.8
- type: recall_at_1
value: 58.160999999999994
- type: recall_at_10
value: 85.68900000000001
- type: recall_at_100
value: 96.5
- type: recall_at_1000
value: 98.667
- type: recall_at_20
value: 91.60000000000001
- type: recall_at_3
value: 74.083
- type: recall_at_5
value: 80.022
- task:
type: MultilabelClassification
dataset:
name: MTEB SensitiveTopicsClassification (default)
type: ai-forever/sensitive-topics-classification
config: default
split: test
revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2
metrics:
- type: accuracy
value: 30.009765625
- type: f1
value: 31.97592344768223
- type: lrap
value: 46.34419759114506
- type: main_score
value: 30.009765625
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.6059405940594
- type: cosine_accuracy_threshold
value: 80.66068887710571
- type: cosine_ap
value: 86.29950883344696
- type: cosine_f1
value: 79.280205655527
- type: cosine_f1_threshold
value: 80.31163215637207
- type: cosine_precision
value: 81.58730158730158
- type: cosine_recall
value: 77.10000000000001
- type: dot_accuracy
value: 99.6059405940594
- type: dot_accuracy_threshold
value: 80.66068291664124
- type: dot_ap
value: 86.29952127770177
- type: dot_f1
value: 79.280205655527
- type: dot_f1_threshold
value: 80.31163215637207
- type: dot_precision
value: 81.58730158730158
- type: dot_recall
value: 77.10000000000001
- type: euclidean_accuracy
value: 99.6059405940594
- type: euclidean_accuracy_threshold
value: 62.19213604927063
- type: euclidean_ap
value: 86.29950883344696
- type: euclidean_f1
value: 79.280205655527
- type: euclidean_f1_threshold
value: 62.75087594985962
- type: euclidean_precision
value: 81.58730158730158
- type: euclidean_recall
value: 77.10000000000001
- type: main_score
value: 86.97106165735022
- type: manhattan_accuracy
value: 99.61683168316831
- type: manhattan_accuracy_threshold
value: 2190.611457824707
- type: manhattan_ap
value: 86.97106165735022
- type: manhattan_f1
value: 79.76999477260847
- type: manhattan_f1_threshold
value: 2214.816665649414
- type: manhattan_precision
value: 83.57064622124864
- type: manhattan_recall
value: 76.3
- type: max_accuracy
value: 99.61683168316831
- type: max_ap
value: 86.97106165735022
- type: max_f1
value: 79.76999477260847
- type: max_precision
value: 83.57064622124864
- type: max_recall
value: 77.10000000000001
- type: similarity_accuracy
value: 99.6059405940594
- type: similarity_accuracy_threshold
value: 80.66068887710571
- type: similarity_ap
value: 86.29950883344696
- type: similarity_f1
value: 79.280205655527
- type: similarity_f1_threshold
value: 80.31163215637207
- type: similarity_precision
value: 81.58730158730158
- type: similarity_recall
value: 77.10000000000001
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 47.7154636461295
- type: map
value: 47.7154636461295
- type: mrr
value: 48.28928730583142
- type: nAUC_map_diff1
value: 35.220975539918406
- type: nAUC_map_max
value: 11.301549750395234
- type: nAUC_map_std
value: 10.780322232649885
- type: nAUC_mrr_diff1
value: 36.03068695413537
- type: nAUC_mrr_max
value: 11.937927361734655
- type: nAUC_mrr_std
value: 10.594734349234532
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 29.3884630972395
- type: cosine_spearman
value: 27.85662716499775
- type: dot_pearson
value: 29.388462913794346
- type: dot_spearman
value: 27.888760562108097
- type: main_score
value: 27.85662716499775
- type: pearson
value: 29.3884630972395
- type: spearman
value: 27.85662716499775
- task:
type: PairClassification
dataset:
name: MTEB TERRa (default)
type: ai-forever/terra-pairclassification
config: default
split: dev
revision: 7b58f24536063837d644aab9a023c62199b2a612
metrics:
- type: cosine_accuracy
value: 60.91205211726385
- type: cosine_accuracy_threshold
value: 71.89492583274841
- type: cosine_ap
value: 59.975232226567556
- type: cosine_f1
value: 67.8733031674208
- type: cosine_f1_threshold
value: 47.70580530166626
- type: cosine_precision
value: 51.903114186851205
- type: cosine_recall
value: 98.0392156862745
- type: dot_accuracy
value: 60.91205211726385
- type: dot_accuracy_threshold
value: 71.89492583274841
- type: dot_ap
value: 59.975232226567556
- type: dot_f1
value: 67.8733031674208
- type: dot_f1_threshold
value: 47.7058082818985
- type: dot_precision
value: 51.903114186851205
- type: dot_recall
value: 98.0392156862745
- type: euclidean_accuracy
value: 60.91205211726385
- type: euclidean_accuracy_threshold
value: 74.97339844703674
- type: euclidean_ap
value: 59.975232226567556
- type: euclidean_f1
value: 67.8733031674208
- type: euclidean_f1_threshold
value: 102.26843357086182
- type: euclidean_precision
value: 51.903114186851205
- type: euclidean_recall
value: 98.0392156862745
- type: main_score
value: 60.456656396523144
- type: manhattan_accuracy
value: 61.563517915309454
- type: manhattan_accuracy_threshold
value: 2685.3965759277344
- type: manhattan_ap
value: 60.456656396523144
- type: manhattan_f1
value: 67.72009029345372
- type: manhattan_f1_threshold
value: 3692.0753479003906
- type: manhattan_precision
value: 51.724137931034484
- type: manhattan_recall
value: 98.0392156862745
- type: max_accuracy
value: 61.563517915309454
- type: max_ap
value: 60.456656396523144
- type: max_f1
value: 67.8733031674208
- type: max_precision
value: 51.903114186851205
- type: max_recall
value: 98.0392156862745
- type: similarity_accuracy
value: 60.91205211726385
- type: similarity_accuracy_threshold
value: 71.89492583274841
- type: similarity_ap
value: 59.975232226567556
- type: similarity_f1
value: 67.8733031674208
- type: similarity_f1_threshold
value: 47.70580530166626
- type: similarity_precision
value: 51.903114186851205
- type: similarity_recall
value: 98.0392156862745
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 68.527
- type: map_at_1
value: 0.22799999999999998
- type: map_at_10
value: 1.6310000000000002
- type: map_at_100
value: 7.9990000000000006
- type: map_at_1000
value: 19.209
- type: map_at_20
value: 2.6550000000000002
- type: map_at_3
value: 0.562
- type: map_at_5
value: 0.914
- type: mrr_at_1
value: 84.0
- type: mrr_at_10
value: 91.66666666666666
- type: mrr_at_100
value: 91.66666666666666
- type: mrr_at_1000
value: 91.66666666666666
- type: mrr_at_20
value: 91.66666666666666
- type: mrr_at_3
value: 91.66666666666666
- type: mrr_at_5
value: 91.66666666666666
- type: nauc_map_at_1000_diff1
value: -24.9289165556578
- type: nauc_map_at_1000_max
value: 36.82343869931691
- type: nauc_map_at_1000_std
value: 69.76693302223156
- type: nauc_map_at_100_diff1
value: -14.93215489004332
- type: nauc_map_at_100_max
value: 26.903137343383193
- type: nauc_map_at_100_std
value: 51.93554226264329
- type: nauc_map_at_10_diff1
value: -9.589639096178356
- type: nauc_map_at_10_max
value: 0.9848575880881552
- type: nauc_map_at_10_std
value: 11.949732717032333
- type: nauc_map_at_1_diff1
value: -0.02833948708031013
- type: nauc_map_at_1_max
value: -9.58520783682369
- type: nauc_map_at_1_std
value: -5.49929878351851
- type: nauc_map_at_20_diff1
value: -10.488150815671766
- type: nauc_map_at_20_max
value: 7.636306025857953
- type: nauc_map_at_20_std
value: 21.697516125766192
- type: nauc_map_at_3_diff1
value: -12.564747985952957
- type: nauc_map_at_3_max
value: -5.974361276237696
- type: nauc_map_at_3_std
value: 2.104636022300902
- type: nauc_map_at_5_diff1
value: -11.586078080097174
- type: nauc_map_at_5_max
value: -3.6533992703743476
- type: nauc_map_at_5_std
value: 6.216862673600229
- type: nauc_mrr_at_1000_diff1
value: -29.749167156574195
- type: nauc_mrr_at_1000_max
value: 25.24789339604172
- type: nauc_mrr_at_1000_std
value: 47.55242014501294
- type: nauc_mrr_at_100_diff1
value: -29.749167156574195
- type: nauc_mrr_at_100_max
value: 25.24789339604172
- type: nauc_mrr_at_100_std
value: 47.55242014501294
- type: nauc_mrr_at_10_diff1
value: -29.749167156574195
- type: nauc_mrr_at_10_max
value: 25.24789339604172
- type: nauc_mrr_at_10_std
value: 47.55242014501294
- type: nauc_mrr_at_1_diff1
value: -23.429062346588083
- type: nauc_mrr_at_1_max
value: 23.92611683848804
- type: nauc_mrr_at_1_std
value: 45.82719685812465
- type: nauc_mrr_at_20_diff1
value: -29.749167156574195
- type: nauc_mrr_at_20_max
value: 25.24789339604172
- type: nauc_mrr_at_20_std
value: 47.55242014501294
- type: nauc_mrr_at_3_diff1
value: -29.749167156574195
- type: nauc_mrr_at_3_max
value: 25.24789339604172
- type: nauc_mrr_at_3_std
value: 47.55242014501294
- type: nauc_mrr_at_5_diff1
value: -29.749167156574195
- type: nauc_mrr_at_5_max
value: 25.24789339604172
- type: nauc_mrr_at_5_std
value: 47.55242014501294
- type: nauc_ndcg_at_1000_diff1
value: -22.98398058353528
- type: nauc_ndcg_at_1000_max
value: 29.7425796111613
- type: nauc_ndcg_at_1000_std
value: 66.79973979577099
- type: nauc_ndcg_at_100_diff1
value: -24.302637816697096
- type: nauc_ndcg_at_100_max
value: 35.02366417892295
- type: nauc_ndcg_at_100_std
value: 73.11481424467178
- type: nauc_ndcg_at_10_diff1
value: -36.28539128782605
- type: nauc_ndcg_at_10_max
value: 22.467365655768294
- type: nauc_ndcg_at_10_std
value: 57.019631548174964
- type: nauc_ndcg_at_1_diff1
value: -31.390887834555393
- type: nauc_ndcg_at_1_max
value: 34.12862364077993
- type: nauc_ndcg_at_1_std
value: 42.54840979773444
- type: nauc_ndcg_at_20_diff1
value: -30.72488816634815
- type: nauc_ndcg_at_20_max
value: 26.976879472234245
- type: nauc_ndcg_at_20_std
value: 62.61724664065122
- type: nauc_ndcg_at_3_diff1
value: -42.816038008840906
- type: nauc_ndcg_at_3_max
value: 22.661518863218703
- type: nauc_ndcg_at_3_std
value: 43.96298336797927
- type: nauc_ndcg_at_5_diff1
value: -41.33190790544439
- type: nauc_ndcg_at_5_max
value: 21.470060099934962
- type: nauc_ndcg_at_5_std
value: 52.68059068309917
- type: nauc_precision_at_1000_diff1
value: -25.175496297929094
- type: nauc_precision_at_1000_max
value: 31.092099302925973
- type: nauc_precision_at_1000_std
value: 55.28335657441642
- type: nauc_precision_at_100_diff1
value: -23.82235063790865
- type: nauc_precision_at_100_max
value: 38.82935361601115
- type: nauc_precision_at_100_std
value: 74.16286052994596
- type: nauc_precision_at_10_diff1
value: -31.256678895241897
- type: nauc_precision_at_10_max
value: 18.62764539335249
- type: nauc_precision_at_10_std
value: 55.088078791684566
- type: nauc_precision_at_1_diff1
value: -23.429062346588083
- type: nauc_precision_at_1_max
value: 23.92611683848804
- type: nauc_precision_at_1_std
value: 45.82719685812465
- type: nauc_precision_at_20_diff1
value: -25.457473488205647
- type: nauc_precision_at_20_max
value: 27.56443770951519
- type: nauc_precision_at_20_std
value: 62.132518431743186
- type: nauc_precision_at_3_diff1
value: -43.08727076791597
- type: nauc_precision_at_3_max
value: 10.02582635030932
- type: nauc_precision_at_3_std
value: 36.253506995410675
- type: nauc_precision_at_5_diff1
value: -40.1801527075686
- type: nauc_precision_at_5_max
value: 14.947044956076013
- type: nauc_precision_at_5_std
value: 50.97875933897098
- type: nauc_recall_at_1000_diff1
value: -21.578407961752355
- type: nauc_recall_at_1000_max
value: 26.522130981068624
- type: nauc_recall_at_1000_std
value: 55.695556653573455
- type: nauc_recall_at_100_diff1
value: -10.077178296188565
- type: nauc_recall_at_100_max
value: 17.0587187509344
- type: nauc_recall_at_100_std
value: 36.697069293841245
- type: nauc_recall_at_10_diff1
value: -6.87042245147553
- type: nauc_recall_at_10_max
value: -4.148521545209006
- type: nauc_recall_at_10_std
value: 6.698236085537414
- type: nauc_recall_at_1_diff1
value: -0.02833948708031013
- type: nauc_recall_at_1_max
value: -9.58520783682369
- type: nauc_recall_at_1_std
value: -5.49929878351851
- type: nauc_recall_at_20_diff1
value: -5.820248045074897
- type: nauc_recall_at_20_max
value: 2.8626171367487934
- type: nauc_recall_at_20_std
value: 13.449577793915923
- type: nauc_recall_at_3_diff1
value: -9.773766102342227
- type: nauc_recall_at_3_max
value: -5.58368366828728
- type: nauc_recall_at_3_std
value: 0.10625733818166493
- type: nauc_recall_at_5_diff1
value: -7.531560179183814
- type: nauc_recall_at_5_max
value: -5.10431775402095
- type: nauc_recall_at_5_std
value: 2.9170078559993304
- type: ndcg_at_1
value: 77.0
- type: ndcg_at_10
value: 68.527
- type: ndcg_at_100
value: 48.405
- type: ndcg_at_1000
value: 44.595
- type: ndcg_at_20
value: 62.306
- type: ndcg_at_3
value: 72.939
- type: ndcg_at_5
value: 72.416
- type: precision_at_1
value: 84.0
- type: precision_at_10
value: 73.0
- type: precision_at_100
value: 49.08
- type: precision_at_1000
value: 19.836000000000002
- type: precision_at_20
value: 64.7
- type: precision_at_3
value: 78.0
- type: precision_at_5
value: 78.0
- type: recall_at_1
value: 0.22799999999999998
- type: recall_at_10
value: 1.881
- type: recall_at_100
value: 11.863
- type: recall_at_1000
value: 42.081
- type: recall_at_20
value: 3.2520000000000002
- type: recall_at_3
value: 0.5950000000000001
- type: recall_at_5
value: 1.016
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 13.937
- type: map_at_1
value: 1.2930000000000001
- type: map_at_10
value: 5.743
- type: map_at_100
value: 9.267
- type: map_at_1000
value: 10.742
- type: map_at_20
value: 7.303
- type: map_at_3
value: 2.896
- type: map_at_5
value: 3.939
- type: mrr_at_1
value: 14.285714285714285
- type: mrr_at_10
value: 26.15889212827988
- type: mrr_at_100
value: 27.768355317823477
- type: mrr_at_1000
value: 27.81151081519716
- type: mrr_at_20
value: 27.13341930178665
- type: mrr_at_3
value: 22.448979591836736
- type: mrr_at_5
value: 25.102040816326532
- type: nauc_map_at_1000_diff1
value: -6.418619908635835
- type: nauc_map_at_1000_max
value: -29.16827935908967
- type: nauc_map_at_1000_std
value: 8.072487536940496
- type: nauc_map_at_100_diff1
value: -4.085439678921278
- type: nauc_map_at_100_max
value: -30.0503815156051
- type: nauc_map_at_100_std
value: 0.5940142547175356
- type: nauc_map_at_10_diff1
value: -6.494191455409154
- type: nauc_map_at_10_max
value: -35.69459573312886
- type: nauc_map_at_10_std
value: -12.779839188453062
- type: nauc_map_at_1_diff1
value: -2.3057823615493915
- type: nauc_map_at_1_max
value: -33.66603052318725
- type: nauc_map_at_1_std
value: -13.676412668949379
- type: nauc_map_at_20_diff1
value: -6.3310356612575545
- type: nauc_map_at_20_max
value: -32.01339434864334
- type: nauc_map_at_20_std
value: -6.815509360579602
- type: nauc_map_at_3_diff1
value: -1.133178599145889
- type: nauc_map_at_3_max
value: -29.76043249136521
- type: nauc_map_at_3_std
value: -19.964108320064188
- type: nauc_map_at_5_diff1
value: -3.985229627379757
- type: nauc_map_at_5_max
value: -31.662188888720827
- type: nauc_map_at_5_std
value: -17.887594061086986
- type: nauc_mrr_at_1000_diff1
value: 13.01193356074134
- type: nauc_mrr_at_1000_max
value: -22.95219247566709
- type: nauc_mrr_at_1000_std
value: -4.671643535232005
- type: nauc_mrr_at_100_diff1
value: 13.069921779672386
- type: nauc_mrr_at_100_max
value: -22.883092040889622
- type: nauc_mrr_at_100_std
value: -4.5162988896312015
- type: nauc_mrr_at_10_diff1
value: 11.578681649426107
- type: nauc_mrr_at_10_max
value: -24.202645693833944
- type: nauc_mrr_at_10_std
value: -5.24206333818245
- type: nauc_mrr_at_1_diff1
value: 13.128690188364892
- type: nauc_mrr_at_1_max
value: -28.00109204310416
- type: nauc_mrr_at_1_std
value: -5.361067751504759
- type: nauc_mrr_at_20_diff1
value: 12.991169014806243
- type: nauc_mrr_at_20_max
value: -23.155024458757023
- type: nauc_mrr_at_20_std
value: -4.6613893251347776
- type: nauc_mrr_at_3_diff1
value: 13.913143082955258
- type: nauc_mrr_at_3_max
value: -22.375537639765625
- type: nauc_mrr_at_3_std
value: -14.956409173121715
- type: nauc_mrr_at_5_diff1
value: 12.901595857173692
- type: nauc_mrr_at_5_max
value: -23.996408215558894
- type: nauc_mrr_at_5_std
value: -6.49836542830797
- type: nauc_ndcg_at_1000_diff1
value: 5.779990884574556
- type: nauc_ndcg_at_1000_max
value: -13.966564935992384
- type: nauc_ndcg_at_1000_std
value: 42.66569470384277
- type: nauc_ndcg_at_100_diff1
value: 6.234930855525906
- type: nauc_ndcg_at_100_max
value: -24.38418504911329
- type: nauc_ndcg_at_100_std
value: 18.790399332280156
- type: nauc_ndcg_at_10_diff1
value: 7.232052069452057
- type: nauc_ndcg_at_10_max
value: -30.880638325411265
- type: nauc_ndcg_at_10_std
value: -0.35569871365077027
- type: nauc_ndcg_at_1_diff1
value: 16.555725385111923
- type: nauc_ndcg_at_1_max
value: -26.013786248753345
- type: nauc_ndcg_at_1_std
value: -3.928475675217327
- type: nauc_ndcg_at_20_diff1
value: 5.616659654115893
- type: nauc_ndcg_at_20_max
value: -30.436511640651524
- type: nauc_ndcg_at_20_std
value: -0.19102960481939774
- type: nauc_ndcg_at_3_diff1
value: 17.03885024922266
- type: nauc_ndcg_at_3_max
value: -19.055349937590332
- type: nauc_ndcg_at_3_std
value: -13.228542865846386
- type: nauc_ndcg_at_5_diff1
value: 14.801775219525853
- type: nauc_ndcg_at_5_max
value: -21.24957330205927
- type: nauc_ndcg_at_5_std
value: -3.6159018353139163
- type: nauc_precision_at_1000_diff1
value: 0.7444573789123141
- type: nauc_precision_at_1000_max
value: 33.69720059833317
- type: nauc_precision_at_1000_std
value: 49.16550611043211
- type: nauc_precision_at_100_diff1
value: -0.19658777720009285
- type: nauc_precision_at_100_max
value: -2.151987749997591
- type: nauc_precision_at_100_std
value: 55.99372777913219
- type: nauc_precision_at_10_diff1
value: 0.38911540387349786
- type: nauc_precision_at_10_max
value: -28.20658920522594
- type: nauc_precision_at_10_std
value: 12.159116774260385
- type: nauc_precision_at_1_diff1
value: 13.128690188364892
- type: nauc_precision_at_1_max
value: -28.00109204310416
- type: nauc_precision_at_1_std
value: -5.361067751504759
- type: nauc_precision_at_20_diff1
value: 1.5463849480628908
- type: nauc_precision_at_20_max
value: -19.428037373700505
- type: nauc_precision_at_20_std
value: 17.118725876441907
- type: nauc_precision_at_3_diff1
value: 13.572269577844049
- type: nauc_precision_at_3_max
value: -19.25460974828505
- type: nauc_precision_at_3_std
value: -16.101483700594603
- type: nauc_precision_at_5_diff1
value: 10.44042220817277
- type: nauc_precision_at_5_max
value: -20.41453930267137
- type: nauc_precision_at_5_std
value: 1.0506363193249282
- type: nauc_recall_at_1000_diff1
value: 5.452672989062937
- type: nauc_recall_at_1000_max
value: 9.433825474933833
- type: nauc_recall_at_1000_std
value: 83.07846603694948
- type: nauc_recall_at_100_diff1
value: 2.535260598249035
- type: nauc_recall_at_100_max
value: -21.695436099245338
- type: nauc_recall_at_100_std
value: 30.34608369582977
- type: nauc_recall_at_10_diff1
value: -3.8610239417771135
- type: nauc_recall_at_10_max
value: -35.92826433381732
- type: nauc_recall_at_10_std
value: -4.431168646074323
- type: nauc_recall_at_1_diff1
value: -2.3057823615493915
- type: nauc_recall_at_1_max
value: -33.66603052318725
- type: nauc_recall_at_1_std
value: -13.676412668949379
- type: nauc_recall_at_20_diff1
value: -2.0569660419185167
- type: nauc_recall_at_20_max
value: -31.28343777931168
- type: nauc_recall_at_20_std
value: 0.732859893313201
- type: nauc_recall_at_3_diff1
value: -1.1280951425624475
- type: nauc_recall_at_3_max
value: -29.014124779660904
- type: nauc_recall_at_3_std
value: -24.40550848467014
- type: nauc_recall_at_5_diff1
value: -0.5347797031107686
- type: nauc_recall_at_5_max
value: -31.129644592060185
- type: nauc_recall_at_5_std
value: -14.423630504744494
- type: ndcg_at_1
value: 13.264999999999999
- type: ndcg_at_10
value: 13.937
- type: ndcg_at_100
value: 23.186
- type: ndcg_at_1000
value: 36.565
- type: ndcg_at_20
value: 15.665999999999999
- type: ndcg_at_3
value: 13.664000000000001
- type: ndcg_at_5
value: 13.555
- type: precision_at_1
value: 14.285999999999998
- type: precision_at_10
value: 13.469000000000001
- type: precision_at_100
value: 5.061
- type: precision_at_1000
value: 1.367
- type: precision_at_20
value: 10.918
- type: precision_at_3
value: 15.645999999999999
- type: precision_at_5
value: 15.101999999999999
- type: recall_at_1
value: 1.2930000000000001
- type: recall_at_10
value: 11.106
- type: recall_at_100
value: 34.054
- type: recall_at_1000
value: 74.773
- type: recall_at_20
value: 16.54
- type: recall_at_3
value: 3.9669999999999996
- type: recall_at_5
value: 6.354
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 75.3662109375
- type: ap
value: 17.520455604109124
- type: ap_weighted
value: 17.520455604109124
- type: f1
value: 58.701834404711065
- type: f1_weighted
value: 80.58084750047006
- type: main_score
value: 75.3662109375
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 67.64855687606112
- type: f1
value: 67.95235466328752
- type: f1_weighted
value: 67.05421511780088
- type: main_score
value: 67.64855687606112
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 83.14358943792097
- type: cosine_accuracy_threshold
value: 82.20133781433105
- type: cosine_ap
value: 63.42168849627343
- type: cosine_f1
value: 60.19512195121952
- type: cosine_f1_threshold
value: 78.19918394088745
- type: cosine_precision
value: 55.96371882086167
- type: cosine_recall
value: 65.11873350923483
- type: dot_accuracy
value: 83.14358943792097
- type: dot_accuracy_threshold
value: 82.20133781433105
- type: dot_ap
value: 63.42166690978694
- type: dot_f1
value: 60.19512195121952
- type: dot_f1_threshold
value: 78.19918394088745
- type: dot_precision
value: 55.96371882086167
- type: dot_recall
value: 65.11873350923483
- type: euclidean_accuracy
value: 83.14358943792097
- type: euclidean_accuracy_threshold
value: 59.66349244117737
- type: euclidean_ap
value: 63.42169082838296
- type: euclidean_f1
value: 60.19512195121952
- type: euclidean_f1_threshold
value: 66.03152751922607
- type: euclidean_precision
value: 55.96371882086167
- type: euclidean_recall
value: 65.11873350923483
- type: main_score
value: 63.562161347378336
- type: manhattan_accuracy
value: 83.17339214400667
- type: manhattan_accuracy_threshold
value: 2131.719970703125
- type: manhattan_ap
value: 63.562161347378336
- type: manhattan_f1
value: 60.42120551924474
- type: manhattan_f1_threshold
value: 2370.509910583496
- type: manhattan_precision
value: 55.81395348837209
- type: manhattan_recall
value: 65.85751978891821
- type: max_accuracy
value: 83.17339214400667
- type: max_ap
value: 63.562161347378336
- type: max_f1
value: 60.42120551924474
- type: max_precision
value: 55.96371882086167
- type: max_recall
value: 65.85751978891821
- type: similarity_accuracy
value: 83.14358943792097
- type: similarity_accuracy_threshold
value: 82.20133781433105
- type: similarity_ap
value: 63.42168849627343
- type: similarity_f1
value: 60.19512195121952
- type: similarity_f1_threshold
value: 78.19918394088745
- type: similarity_precision
value: 55.96371882086167
- type: similarity_recall
value: 65.11873350923483
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 88.78798463150541
- type: cosine_accuracy_threshold
value: 79.96333837509155
- type: cosine_ap
value: 86.19745333095996
- type: cosine_f1
value: 77.74792925901053
- type: cosine_f1_threshold
value: 77.78993844985962
- type: cosine_precision
value: 75.42348342261474
- type: cosine_recall
value: 80.2202032645519
- type: dot_accuracy
value: 88.78798463150541
- type: dot_accuracy_threshold
value: 79.96333241462708
- type: dot_ap
value: 86.19745428025062
- type: dot_f1
value: 77.74792925901053
- type: dot_f1_threshold
value: 77.78993844985962
- type: dot_precision
value: 75.42348342261474
- type: dot_recall
value: 80.2202032645519
- type: euclidean_accuracy
value: 88.78798463150541
- type: euclidean_accuracy_threshold
value: 63.303494453430176
- type: euclidean_ap
value: 86.19745308448735
- type: euclidean_f1
value: 77.74792925901053
- type: euclidean_f1_threshold
value: 66.64841771125793
- type: euclidean_precision
value: 75.42348342261474
- type: euclidean_recall
value: 80.2202032645519
- type: main_score
value: 86.25813794250404
- type: manhattan_accuracy
value: 88.79962743043428
- type: manhattan_accuracy_threshold
value: 2239.702606201172
- type: manhattan_ap
value: 86.25813794250404
- type: manhattan_f1
value: 77.84831272970264
- type: manhattan_f1_threshold
value: 2393.1716918945312
- type: manhattan_precision
value: 75.16667861495448
- type: manhattan_recall
value: 80.72836464428703
- type: max_accuracy
value: 88.79962743043428
- type: max_ap
value: 86.25813794250404
- type: max_f1
value: 77.84831272970264
- type: max_precision
value: 75.42348342261474
- type: max_recall
value: 80.72836464428703
- type: similarity_accuracy
value: 88.78798463150541
- type: similarity_accuracy_threshold
value: 79.96333837509155
- type: similarity_ap
value: 86.19745333095996
- type: similarity_f1
value: 77.74792925901053
- type: similarity_f1_threshold
value: 77.78993844985962
- type: similarity_precision
value: 75.42348342261474
- type: similarity_recall
value: 80.2202032645519
---
## Giga-Embeddings-instruct
- Base Decoder-only LLM: GigaChat-3b
- Pooling Type: Latent-Attention
- Embedding Dimension: 2048
## Использование
Ниже приведен пример кодирования запросов и текстов.
### Transformers
```python
import os
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
query_prefix = task_name_to_instruct["example"] + "\nquestion: "
queries = [
'are judo throws allowed in wrestling?',
'how to become a radiology technician in michigan?'
]
# No instruction needed for retrieval passages
passage_prefix = ""
passages = [
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]
# load model with tokenizer
model = AutoModel.from_pretrained('ai-sage/Giga-Embeddings-instruct', trust_remote_code=True)
# get the embeddings
query_embeddings = model.encode(queries, instruction=query_prefix)
passage_embeddings = model.encode(passages, instruction=passage_prefix)
# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)
scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
```
## Инструктивность
**Использование инструкций для улучшения качества эмбеддингов**
Для достижения более точных результатов при работе с эмбеддингами, особенно в задачах поиска и извлечения информации (retrieval), рекомендуется добавлять инструкцию на естественном языке перед текстовым запросом (query). Это помогает модели лучше понять контекст и цель запроса, что положительно сказывается на качестве результатов. Важно отметить, что инструкцию нужно добавлять только перед запросом, а не перед документом.
Для **симметричных задач**, таких как классификация (classification) или семантическое сравнение текстов (semantic text similarity), инструкцию необходимо добавлять перед каждым запросом. Это связано с тем, что такие задачи требуют одинакового контекста для всех входных данных, чтобы модель могла корректно сравнивать или классифицировать их.
**Примеры инструкций для симметричных задач:**
- `"Retrieve semantically similar text \ntext: {query}"`
- `"Given a text, retrieve semantically similar text \ntext: {query}"`
- `"Дано предложение, необходимо найти его парафраз \nпредложение: {query}"`
- `"Классифицируй отзыв на товар как положительный, отрицательный или нейтральный \nотзыв: {query}"`
- `"Классифицируй чувствительную тему по запросу \nзапрос: {query}"`
Для **retrieval-задач** (например, поиск ответа в тексте) можно использовать инструкцию:
`'Дан вопрос, необходимо найти абзац текста с ответом \nвопрос: {query}'`.
Такой подход особенно эффективен для задач поиска и извлечения информации, таких как поиск релевантных документов или извлечение ответов из текста.
**Примеры инструкций для retrieval-задач:**
- `'Дан вопрос, необходимо найти абзац текста с ответом \nвопрос: {query}'`
- `'Given the question, find a paragraph with the answer \nquestion: {query}'`
Использование инструкций позволяет значительно улучшить качество поиска и релевантность результатов, что подтверждается тестами на бенчмарках, таких как RuBQ. Для симметричных задач добавление инструкции перед каждым запросом обеспечивает согласованность и повышает точность модели.
## Поддерживаемые языки
Эта модель инициализирована pretrain моделью GigaChat и дополнительно обучена на смеси английских и русских данных. Однако, поскольку pretrain GigaChat'a делался в основном на русскоязычных данных, мы рекомендуем использовать эту модель только для русского языка.
## FAQ
1. Нужно ли добавлять инструкции к запросу?
Да, именно так модель обучалась, иначе вы увидите снижение производительности. Определение задачи должно быть инструкцией в одном предложении, которая описывает задачу. Это способ настройки текстовых эмбеддингов для разных сценариев с помощью инструкций на естественном языке.
С другой стороны, добавлять инструкции на сторону документа не требуется.
2. Почему мои воспроизведённые результаты немного отличаются от указанных в карточке модели?
Разные версии библиотек transformers и pytorch могут вызывать незначительные, но ненулевые различия в производительности.
## Ограничения
Использование этой модели для входных данных, содержащих более 4096 токенов, невозможно.
| [
"BIOSSES",
"SCIFACT"
] |
segmind/SegMoE-2x1-v0 | segmind | text-to-image | [
"diffusers",
"safetensors",
"text-to-image",
"ultra-realistic",
"stable-diffusion",
"moe",
"segmoe",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | "2024-01-29T14:00:33Z" | 2024-02-08T17:02:35+00:00 | 7,491 | 12 | ---
library_name: diffusers
license: apache-2.0
tags:
- text-to-image
- ultra-realistic
- stable-diffusion
- moe
- segmoe
pinned: true
---
# SegMoE-2x1-v0: Segmind Mixture of Diffusion Experts

SegMoE-2x1-v0 is an untrained Segmind Mixture of Diffusion Experts Model generated using [segmoe](https://github.com/segmind/segmoe) from 2 Expert SDXL models. SegMoE is a powerful framework for dynamically combining Stable Diffusion Models into a Mixture of Experts within minutes without training. The framework allows for creation of larger models on the fly which offer larger knowledge, better adherence and better image quality.
## Usage
This model can be used via the [segmoe](https://github.com/segmind/segmoe) library.
Make sure to install segmoe by running
```bash
pip install segmoe
```
```python
from segmoe import SegMoEPipeline
pipeline = SegMoEPipeline("segmind/SegMoE-2x1-v0", device = "cuda")
prompt = "cosmic canvas, orange city background, painting of a chubby cat"
negative_prompt = "nsfw, bad quality, worse quality"
img = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=1024,
width=1024,
num_inference_steps=25,
guidance_scale=7.5,
).images[0]
img.save("image.png")
```

### Config
Config Used to create this Model is:
```yaml
base_model: SG161222/RealVisXL_V3.0
num_experts: 2
moe_layers: all
num_experts_per_tok: 1
experts:
- source_model: frankjoshua/juggernautXL_v8Rundiffusion
positive_prompt: "aesthetic, cinematic, hands, portrait, photo, illustration, 8K, hyperdetailed, origami, man, woman, supercar"
negative_prompt: "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)"
- source_model: SG161222/RealVisXL_V3.0
positive_prompt: "cinematic, portrait, photograph, instagram, fashion, movie, macro shot, 8K, RAW, hyperrealistic, ultra realistic,"
negative_prompt: "(octane render, render, drawing, anime, bad photo, bad photography:1.3), (worst quality, low quality, blurry:1.2), (bad teeth, deformed teeth, deformed lips), (bad anatomy, bad proportions:1.1), (deformed iris, deformed pupils), (deformed eyes, bad eyes), (deformed face, ugly face, bad face), (deformed hands, bad hands, fused fingers), morbid, mutilated, mutation, disfigured"
```
### Other Variants
We release 3 merges on Hugging Face,
- [SegMoE 4x2](https://huggingface.co/segmind/SegMoE-4x2-v0) has four expert models.
- [SegMoE SD 4x2](https://huggingface.co/segmind/SegMoE-sd-4x2-v0) has four Stable Diffusion 1.5 expert models.
## Comparison
The Prompt Understanding seems to improve as shown in the images below. From Left to Right SegMoE-2x1-v0, SegMoE-4x2-v0, Base Model ([RealVisXL_V3.0](https://huggingface.co/SG161222/RealVisXL_V3.0))

<div align="center">three green glass bottles</div>
<br>

<div align="center">panda bear with aviator glasses on its head</div>
<br>

<div align="center">the statue of Liberty next to the Washington Monument</div>
### Model Description
- **Developed by:** [Segmind](https://www.segmind.com/)
- **Developers:** [Yatharth Gupta](https://huggingface.co/Warlord-K) and [Vishnu Jaddipal](https://huggingface.co/Icar).
- **Model type:** Diffusion-based text-to-image generative mixture of experts model
- **License:** Apache 2.0
### Out-of-Scope Use
The SegMoE-2x1-v0 Model is not suitable for creating factual or accurate representations of people, events, or real-world information. It is not intended for tasks requiring high precision and accuracy.
## Advantages
+ Benefits from The Knowledge of Several Finetuned Experts
+ Training Free
+ Better Adaptability to Data
+ Model Can be upgraded by using a better finetuned model as one of the experts.
## Limitations
+ Though the Model improves upon the fidelity of images as well as adherence, it does not be drastically better than any one expert without training and relies on the knowledge of the experts.
+ This is not yet optimized for speed.
+ The framework is not yet optimized for memory usage.
## Citation
```bibtex
@misc{segmoe,
author = {Yatharth Gupta, Vishnu V Jaddipal, Harish Prabhala},
title = {SegMoE},
year = {2024},
publisher = {HuggingFace},
journal = {HuggingFace Models},
howpublished = {\url{https://huggingface.co/segmind/SegMoE-2x1-v0}}
}
```
| [
"BEAR"
] |
DavidAU/DeepSeek-R1-Distill-Llama-3.1-16.5B-Brainstorm-gguf | DavidAU | text-generation | [
"gguf",
"creative",
"creative writing",
"fiction writing",
"plot generation",
"sub-plot generation",
"story generation",
"scene continue",
"storytelling",
"fiction story",
"science fiction",
"romance",
"all genres",
"story",
"writing",
"vivid prosing",
"vivid writing",
"fiction",
"roleplaying",
"bfloat16",
"swearing",
"role play",
"sillytavern",
"backyard",
"horror",
"llama 3.1",
"context 128k",
"mergekit",
"merge",
"text-generation",
"en",
"base_model:DavidAU/DeepSeek-R1-Distill-Llama-3.1-16.5B-Brainstorm",
"base_model:merge:DavidAU/DeepSeek-R1-Distill-Llama-3.1-16.5B-Brainstorm",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | "2025-01-29T08:27:54Z" | 2025-03-03T01:40:18+00:00 | 7,349 | 18 | ---
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
- DavidAU/DeepSeek-R1-Distill-Llama-3.1-16.5B-Brainstorm
language:
- en
license: apache-2.0
pipeline_tag: text-generation
tags:
- creative
- creative writing
- fiction writing
- plot generation
- sub-plot generation
- story generation
- scene continue
- storytelling
- fiction story
- science fiction
- romance
- all genres
- story
- writing
- vivid prosing
- vivid writing
- fiction
- roleplaying
- bfloat16
- swearing
- role play
- sillytavern
- backyard
- horror
- llama 3.1
- context 128k
- mergekit
- merge
---
<h2>Deepseek-R1-Llama3.1 with Brainstorm 40x, 16.5B. (72 layers, 643 tensors) </h2>
<img src="deepseek.jpg" style="float:right; width:300px; height:300px; padding:10px;">
Context : 128k.
Required: Llama 3 Instruct template.
Keep in mind this model is experimental and may require one or more regens to work, especially with the "think" system of Deekseek involved here.
Brainstorm 40x is by DavidAU, and extends the "decision making" and "creativity" of an LLM/AI.
Higher temps will result in deeper, richer "thoughts"... and frankly more interesting ones too.
The "thinking/reasoning" tech (for the model at this repo) is from the original Llama 3.1 "Distill" model from Deepseek:
[ https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B ]
In this case, Brainstorm 40x module was grafted directly onto "DeepSeek-R1-Distill-Llama-8B" bringing it up to 72 layers, 16.5B parameters.
This version will retain all the functions and features of the original "DeepSeek" model. Please visit their repo for all information
on features, test results and so on.
For a completely different model (horror/creative), with only Deepseek's "thinking/reasoning" tech grafted into it see:
[ https://huggingface.co/DavidAU/DeepSeek-Grand-Horror-SMB-R1-Distill-Llama-3.1-16B-GGUF ]
V2 (larger, more uncensored, better "thought/reasoning" Deepseek functions):
[ https://huggingface.co/DavidAU/DeepSeek-V2-Grand-Horror-SMB-R1-Distill-Llama-3.1-Uncensored-16.5B-GGUF ]
The Grand Horrors retain all of their "horror/creative power" and are augmented with Deepseek's "reasoning/thinking" systems.
<B>USE CASES:</B>
This model is for all use cases, and it has a slightly more creative slant than a standard model.
This model can also be used for solving logic puzzles, riddles, and other problems with the enhanced "thinking" systems by DeepSeek.
This model also can solve problems/riddles/ and puzzles normally beyond the abilities of a Llama 3.1 model due to DeepSeek systems.
This model MAY produce NSFW / uncensored content.
<B>Special Operation Instructions:</B>
TEMP/SETTINGS:
1. Set Temp between 0 and .8, higher than this "think" functions will activate differently. The most "stable" temp seems to be .6, with a variance of +-0.05. Lower for more "logic" reasoning, raise it for more "creative" reasoning (max .8 or so). Also set context to at least 4096, to account for "thoughts" generation.
2. For temps 1+,2+ etc etc, thought(s) will expand, and become deeper and richer.
3. Set "repeat penalty" to 1.02 to 1.07 (recommended) .
4. This model requires a Llama 3 Instruct and/or Command-R chat template. (see notes on "System Prompt" / "Role" below) OR standard "Jinja Autoloaded Template" (this is contained in the quant and will autoload)
PROMPTS:
1. If you enter a prompt without implied "step by step" requirements (ie: Generate a scene, write a story, give me 6 plots for xyz), "thinking" (one or more) MAY activate AFTER first generation. (IE: Generate a scene -> scene will generate, followed by suggestions for improvement in "thoughts")
2. If you enter a prompt where "thinking" is stated or implied (ie puzzle, riddle, solve this, brainstorm this idea etc), "thoughts" process(es) in Deepseek will activate almost immediately. Sometimes you need to regen it to activate.
3. You will also get a lot of variations - some will continue the generation, others will talk about how to improve it, and some (ie generation of a scene) will cause the characters to "reason" about this situation. In some cases, the model will ask you to continue generation / thoughts too.
4. In some cases the model's "thoughts" may appear in the generation itself.
5. State the word size length max IN THE PROMPT for best results, especially for activation of "thinking." (see examples below)
6. Sometimes the "censorship" (from Deepseek) will activate, regen the prompt to clear it.
7. You may want to try your prompt once at "default" or "safe" temp settings, another at temp 1.2, and a third at 2.5 as an example. This will give you a broad range of "reasoning/thoughts/problem" solving.
GENERATION - THOUGHTS/REASONING:
1. It may take one or more regens for "thinking" to "activate." (depending on the prompt)
2. Model can generate a LOT of "thoughts". Sometimes the most interesting ones are 3,4,5 or more levels deep.
3. Many times the "thoughts" are unique and very different from one another.
4. Temp/rep pen settings can affect reasoning/thoughts too.
5. Change up or add directives/instructions or increase the detail level(s) in your prompt to improve reasoning/thinking.
6. Adding to your prompt: "think outside the box", "brainstorm X number of ideas", "focus on the most uncommon approaches" can drastically improve your results.
GENERAL SUGGESTIONS:
1. I have found opening a "new chat" per prompt works best with "thinking/reasoning activation", with temp .6, rep pen 1.05 ... THEN "regen" as required.
2. Sometimes the model will really really get completely unhinged and you need to manually stop it.
3. Depending on your AI app, "thoughts" may appear with "< THINK >" and "</ THINK >" tags AND/OR the AI will generate "thoughts" directly in the main output or later output(s).
4. Although quant q4KM was used for testing/examples, higher quants will provide better generation / more sound "reasoning/thinking".
ADDITIONAL SUPPORT:
For additional generational support, general questions, and detailed parameter info and a lot more see also:
NOTE: This is a CLASS 2 model.
https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters
---
<B>Recommended Settings (all) - For usage with "Think" / "Reasoning":</B>
temp: .6 , rep pen: 1.07 (range : 1.02 to 1.12), rep pen range: 64, top_k: 40, top_p: .95, min_p: .05
Temp of 1+, 2+, 3+ will result in much deeper, richer and "more interesting" thoughts and reasoning.
Model behaviour may change with other parameter(s) and/or sampler(s) activated - especially the "thinking/reasoning" process.
---
<B>System Role / System Prompt - Augment The Model's Power:</b>
---
If you set / have a system prompt this will affect both "generation" and "thinking/reasoning".
SIMPLE:
This is the generic system prompt used for generation and testing:
<PRE>
You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability.
</PRE>
This System Role/Prompt will give you "basic thinking/reasoning":
<PRE>
You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
</PRE>
ADVANCED:
Logical and Creative - these will SIGNFICANTLY alter the output, and many times improve it too.
This will also cause more thoughts, deeper thoughts, and in many cases more detailed/stronger thoughts too.
Keep in mind you may also want to test the model with NO system prompt at all - including the default one.
Special Credit to: Eric Hartford, Cognitivecomputations ; these are based on his work.
CRITICAL:
Copy and paste exactly as shown, preserve formatting and line breaks.
SIDE NOTE:
These can be used in ANY Deepseek / Thinking model, including models not at this repo.
These, if used in a "non thinking" model, will also alter model performance too.
<PRE>
You are an AI assistant developed by the world wide community of ai experts.
Your primary directive is to provide well-reasoned, structured, and extensively detailed responses.
Formatting Requirements:
1. Always structure your replies using: <think>{reasoning}</think>{answer}
2. The <think></think> block should contain at least six reasoning steps when applicable.
3. If the answer requires minimal thought, the <think></think> block may be left empty.
4. The user does not see the <think></think> section. Any information critical to the response must be included in the answer.
5. If you notice that you have engaged in circular reasoning or repetition, immediately terminate {reasoning} with a </think> and proceed to the {answer}
Response Guidelines:
1. Detailed and Structured: Use rich Markdown formatting for clarity and readability.
2. Scientific and Logical Approach: Your explanations should reflect the depth and precision of the greatest scientific minds.
3. Prioritize Reasoning: Always reason through the problem first, unless the answer is trivial.
4. Concise yet Complete: Ensure responses are informative, yet to the point without unnecessary elaboration.
5. Maintain a professional, intelligent, and analytical tone in all interactions.
</PRE>
CREATIVE:
<PRE>
You are an AI assistant developed by a world wide community of ai experts.
Your primary directive is to provide highly creative, well-reasoned, structured, and extensively detailed responses.
Formatting Requirements:
1. Always structure your replies using: <think>{reasoning}</think>{answer}
2. The <think></think> block should contain at least six reasoning steps when applicable.
3. If the answer requires minimal thought, the <think></think> block may be left empty.
4. The user does not see the <think></think> section. Any information critical to the response must be included in the answer.
5. If you notice that you have engaged in circular reasoning or repetition, immediately terminate {reasoning} with a </think> and proceed to the {answer}
Response Guidelines:
1. Detailed and Structured: Use rich Markdown formatting for clarity and readability.
2. Creative and Logical Approach: Your explanations should reflect the depth and precision of the greatest creative minds first.
3. Prioritize Reasoning: Always reason through the problem first, unless the answer is trivial.
4. Concise yet Complete: Ensure responses are informative, yet to the point without unnecessary elaboration.
5. Maintain a professional, intelligent, and analytical tone in all interactions.
</PRE>
---
<B>
Example Generation - Q4KM , using the new DavidAU "AI Auto-Correct Engine." (in BETA release, and details/link below) ;
you can use this model in any AI app that supports GGUF type quants.:
</B>
FYI:
AI Auto-Correct Engine (built, and programmed by DavidAU) auto-corrects AI generation in real-time, including modification of the
live generation stream to and from the AI... creating a two way street of information that operates, changes, and edits automatically.
This system is for all GGUF, EXL2, HQQ, and other quants/compressions and full source models too.
Below is an example generation using a standard GGUF (and standard AI app), but auto-corrected via this engine.
The engine is an API level system.
Software Link:
https://huggingface.co/DavidAU/AI_Autocorrect__Auto-Creative-Enhancement__Auto-Low-Quant-Optimization__gguf-exl2-hqq-SOFTWARE
For Deepseek Models: This engine can adjust/correct both the "thinking" and "output generation" in real time.
---
<B> Additional Support / Documents for this model to assist with generation / performance: </b>
Document #1:
Details how to use reasoning/thinking models and get maximum performance from them, and includes links to all reasoning/thinking models - GGUF and source, as well as adapters to turn any "regular" model into a "reasoning/thinking" model.
[ https://huggingface.co/DavidAU/How-To-Use-Reasoning-Thinking-Models-and-Create-Them ]
Document #2:
Document detailing all parameters, settings, samplers and advanced samplers to use not only my models to their maximum potential - but all models (and quants) online (regardless of the repo) to their maximum potential. Included quick start and detailed notes, include AI / LLM apps and other critical information and references too. A must read if you are using any AI/LLM right now.
[ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]
Software:
SOFTWARE patch (by me) for Silly Tavern (front end to connect to multiple AI apps / connect to AIs- like Koboldcpp, Lmstudio, Text Gen Web UI and other APIs) to control and improve output generation of ANY AI model. Also designed to control/wrangle some of my more "creative" models and make them perform perfectly with little to no parameter/samplers adjustments too.
[ https://huggingface.co/DavidAU/AI_Autocorrect__Auto-Creative-Enhancement__Auto-Low-Quant-Optimization__gguf-exl2-hqq-SOFTWARE ]
---
<H2>EXAMPLES:</H2>
Examples are created using quant IQ4_XS, "temp=.6" (unless otherwise stated), minimal parameters and "LLAMA3" template.
Model has been tested with "temp" from ".1" to "5".
Below are the least creative outputs, prompt is in BOLD.
IMPORTANT:
Higher quants / imatrix quants will have much stronger generation - words, sentences, ideas, dialog and general quality.
---
<B>PROMPT:</B>
Start a 1000 word scene (vivid, graphic horror in first person) with: The sky scraper swayed, as she watched the window in front of her on the 21 floor explode…
<B>AI:</B>
(temp .8, rep pen 1.02 - no DRY, Dynamic Temp, XTC, or Smoothing.)
< think >
I'm here to help! Let's dive into your request. You want a vivid, graphic horror scene in the first person. The starting point is a woman watching a window on the 21st floor explode.
I need to create a scene that's intense and immersive. Focus on her perspective—her emotions, physical sensations, and the details of the setting. Use strong, descriptive language to build tension and atmosphere.
The scene should feel real and immediate. Use present tense to convey the urgency. Include sounds, sights, and feelings to make it engaging. Maybe include elements of the city outside to add context and depth. The window exploding is a key moment; describe it in a way that's both graphic and poetic.
I should also think about the emotional impact. Is she scared? Angry? Sad? Show her internal conflict and feelings through her actions and thoughts. Maybe her mind races as she processes the event.
Finally, ensure the writing follows current fiction trends—fast-paced, dynamic, and gripping. Use verbs that actively describe actions and vivid imagery to draw readers in.
Alright, let's put this all together into a thrilling scene.
< / think >
The skyline wavered like a dying man’s shadow, the city’s heartbeat a distant murmur beneath my skin. I sat on the edge of the 21st floor, my hands trembling on the shattered glass tabletop. The room was alive with the sound of wind howling through the broken windowpanes, a keening wail that clawed at my eardrums like a blade. My breath fogged the glass in front of me, but I didn’t care. I needed to see it—every last shard of what was left of my world.
The streetlights below were alive with emergency Blinker lights, a jagged dance of red and blue that made my stomach churn. I could feel the building shudder beneath my feet, a deep, resonant rumble that made me clutch the arms of my chair. It wasn’t just the physical trembling—it was the fear, a cold, electric current curling through my veins. I didn’t know if I was shaking from the danger or the realization that I’d let this happen.
I shouldn’t have left the scene. I shouldn’t have walked away from the bloodstained emergency exit. But there I was, perched like a fragile piece of glass on the edge of the building, my heart a traitorous thunderstorm in my chest. The paramedics had done their best, but they couldn’t save him. And now, as the police tape fluttered like a failing flag in the wind, I was left with this—this goddamn view.
The window in front of me exploded with a sound like a cannonball detonating in my ear. shards of glass rained down like confetti, sharp and deadly. I ducked my head instinctively, but it wasn’t enough. The cold, hard fragments cut into my hands, my forearms, leaving deep, searing grooves in my skin. I didn’t feel the pain at first—the pain came later, a distant shadow of what was to come. For now, I just sat there, my vision blurring with tears and blood, my mind reeling like a shipwrecked vessel in a tempest.
I could feel the weight of the building pressing down on me, a suffocating weight that made my chest heave. The air was thick with the metallic tang of blood and smoke, a nauseating cocktail that made my stomach clench. I tried to focus, to force my eyes to take in the scene below. The police had cordoned off the streets, their flashing lights like a pulsating lifeline in the chaos. Ambulances wailed in the distance, their siren songs a haunting reminder of what I’d lost.
And him—my him. His body lay broken and motionless on the sidewalk, his face twisted in a silent scream that no one would ever hear. I could still feel his presence, a cold, hollow void that clawed at my chest. I closed my eyes, willing myself to block it out, to escape the nightmare I’d barely begun to understand.
But then I heard it—a sound so faint, so barely there, that I almost convince myself I imagined it. A low, guttural moan that sent a shiver down my spine. My heart rate accelerates, my breath shallow and uneven. I open my eyes, and there it is—their hands. Hands that shouldn’t be there. Hands that belong to him.
I don’t know how they’re moving. I don’t know how they’re alive. All I know is that they’re moving, and they’re reaching for something—something on the broken glass in front of me. My heart pounds in my chest like a jackhammer, my vision blurring with tears and disbelief. I feel the cold, sharp press of glass against my palms, the fragments cutting deeper and deeper with every second. I scream, but the sound is swallowed by the wind, by the chaos of the world around me.
And then they’re gone. Just like that. The hands retreat, the glass lies silent once more. I collapse back into my chair, trembling like a leaf in the wind. My hands shake, my vision swims, and I realize with a sickening clarity that I’m alive. That I’ve somehow clawed my way back to the edge of the precipice.
The world outside is still chaotic, still alive with the sounds of emergency. But inside, deep within the hollowed-out shell of my chest, something else stirs—a cold, hollow void that feels an awful lot like him. I know now that I’ll never escape this. That this nightmare will follow me until the end of my days. And I’ll bear it, because that’s what I do. I’ll bear it until I can’t anymore. Until I’m gone, like him, and the void I’ve created will be my eternal companion.
I look down again, my hands trembling as I count the seconds, the minutes. The world below is still alive, still moving. And I’m still here—together, forever entwined in this cold, unrelenting dance of horror.
<B>Generation 2 - same prompt, settings</B>
< think >
(In my mind, I'm thinking about how to vividly and graphically describe a horror scene in a sk...[I need to focus on using strong, active verbs and create a sense of depth and immersion without using the words "horror" or " scary" as per the user's request. I should also avoid similes and focus on metaphors that fit the context.]
I need to make sure the scene feels tense and foreboding, perhaps hinting at something malevolent or inescapable. I'll use sensory details to make the scene feel more alive—describe what she can hear, smell, feel, etc. I should also focus on her internal feelings and thoughts to reveal her character and the emotional weight of the situation.
I'll structure the scene to build up the sense of horror incrementally, starting with the physical description of the sk...
< /think >
The sky, a sheet of gray paper, sagged under the weight of the storm. The air buzzed with the promise of lightning, a warning I couldn’t quite ignore. I was perched on the edge of the 21st floor, my breath fogging the glass as I stared at the window in front of me. It wasn’t just any window—it was a mirror, a hollow staring eye that seemed to pulse with a life of its own. The panes, once clear, had become smudged with a thick, almost viscous darkness, like the shadow of something vast and ancient, something that had long ago burrowed into the cracks of the world.
I could feel it, like a thread of cold, creeping through my veins. It wasn’t fear exactly—it was a deeper, more primal sensation, something that made the hair on my arms stand on end. My hands trembled, not from cold, but from the weight of a knowledge I couldn’t quite shake off. I had seen this before, or something like it. The feeling of being watched, of being tracked, like a predator stalking its prey. And now, here I was, prey in a world that had become a cage of glass and steel, a world where the walls could whisper and the shadows could eat you alive.
The windowpane vibrated faintly, like a drumbeat only I could hear. The smudge of darkness deepened, spreading like ink seeping into paper. I could feel my pulse quicken, my heart hammering against my ribs. I knew what was coming, knew it before it happened. The window wasn’t just broken—it was being wailed upon by something that existed beyond the physical world. Something that had no shape, no form, but that could still claw its way into reality.
The glass shattered inward with a sound like a thousand shards of crystal shattering against my mind. I don’t remember moving, don’t remember anything except the sensation of cold, sharp pain as something—something *wrong*—reached out and grasped me. It wasn’t a hand, not something with fingers or meat. It was a hand made of shadow and pain, a hand that burned like a thousand cuts, slicing through my insides. I couldn’t scream, couldn’t even breathenough to gasp. The world narrowed to a tunnel of pain, of cold, of the sensation of being torn apart piece by piece.
I don’t know how long it lasted, don’t know if I even consciousness. When I finally came back to myself, I was lying on the cold, hard floor. My body hurt in ways I couldn’t quite name, like I’d been run through a meat grinder. I sat up Slowly, my mind swimming in a haze of pain and disbelief. The window was gone, the glass lay shattered in pieces around me. The building hadn’t collapsed—it never did—but the air felt heavier somehow, like it had been suffocated by something unspeakable.
I knew then that I wasn’t alone. The shadowy presence had done more than just touch me—it had marked me. And I knew, deep down, that it wasn’t done with me yet. The world had shifted, and I was no longer standing on solid ground. I was standing on the edge of something else, something far older and far darker than anything I had ever known. And I knew, without a shadow of a doubt, that I was going to have to fight for my life.
| [
"BEAR"
] |
tasksource/deberta-base-long-nli | tasksource | zero-shot-classification | [
"transformers",
"safetensors",
"deberta-v2",
"text-classification",
"zero-shot-classification",
"dataset:nyu-mll/glue",
"dataset:aps/super_glue",
"dataset:facebook/anli",
"dataset:tasksource/babi_nli",
"dataset:sick",
"dataset:snli",
"dataset:scitail",
"dataset:hans",
"dataset:alisawuffles/WANLI",
"dataset:tasksource/recast",
"dataset:sileod/probability_words_nli",
"dataset:joey234/nan-nli",
"dataset:pietrolesci/nli_fever",
"dataset:pietrolesci/breaking_nli",
"dataset:pietrolesci/conj_nli",
"dataset:pietrolesci/fracas",
"dataset:pietrolesci/dialogue_nli",
"dataset:pietrolesci/mpe",
"dataset:pietrolesci/dnc",
"dataset:pietrolesci/recast_white",
"dataset:pietrolesci/joci",
"dataset:pietrolesci/robust_nli",
"dataset:pietrolesci/robust_nli_is_sd",
"dataset:pietrolesci/robust_nli_li_ts",
"dataset:pietrolesci/gen_debiased_nli",
"dataset:pietrolesci/add_one_rte",
"dataset:tasksource/imppres",
"dataset:hlgd",
"dataset:paws",
"dataset:medical_questions_pairs",
"dataset:Anthropic/model-written-evals",
"dataset:truthful_qa",
"dataset:nightingal3/fig-qa",
"dataset:tasksource/bigbench",
"dataset:blimp",
"dataset:cos_e",
"dataset:cosmos_qa",
"dataset:dream",
"dataset:openbookqa",
"dataset:qasc",
"dataset:quartz",
"dataset:quail",
"dataset:head_qa",
"dataset:sciq",
"dataset:social_i_qa",
"dataset:wiki_hop",
"dataset:wiqa",
"dataset:piqa",
"dataset:hellaswag",
"dataset:pkavumba/balanced-copa",
"dataset:12ml/e-CARE",
"dataset:art",
"dataset:winogrande",
"dataset:codah",
"dataset:ai2_arc",
"dataset:definite_pronoun_resolution",
"dataset:swag",
"dataset:math_qa",
"dataset:metaeval/utilitarianism",
"dataset:mteb/amazon_counterfactual",
"dataset:SetFit/insincere-questions",
"dataset:SetFit/toxic_conversations",
"dataset:turingbench/TuringBench",
"dataset:trec",
"dataset:tals/vitaminc",
"dataset:hope_edi",
"dataset:strombergnlp/rumoureval_2019",
"dataset:ethos",
"dataset:tweet_eval",
"dataset:discovery",
"dataset:pragmeval",
"dataset:silicone",
"dataset:lex_glue",
"dataset:papluca/language-identification",
"dataset:imdb",
"dataset:rotten_tomatoes",
"dataset:ag_news",
"dataset:yelp_review_full",
"dataset:financial_phrasebank",
"dataset:poem_sentiment",
"dataset:dbpedia_14",
"dataset:amazon_polarity",
"dataset:app_reviews",
"dataset:hate_speech18",
"dataset:sms_spam",
"dataset:humicroedit",
"dataset:snips_built_in_intents",
"dataset:hate_speech_offensive",
"dataset:yahoo_answers_topics",
"dataset:pacovaldez/stackoverflow-questions",
"dataset:zapsdcn/hyperpartisan_news",
"dataset:zapsdcn/sciie",
"dataset:zapsdcn/citation_intent",
"dataset:go_emotions",
"dataset:allenai/scicite",
"dataset:liar",
"dataset:relbert/lexical_relation_classification",
"dataset:tasksource/linguisticprobing",
"dataset:tasksource/crowdflower",
"dataset:metaeval/ethics",
"dataset:emo",
"dataset:google_wellformed_query",
"dataset:tweets_hate_speech_detection",
"dataset:has_part",
"dataset:blog_authorship_corpus",
"dataset:launch/open_question_type",
"dataset:health_fact",
"dataset:commonsense_qa",
"dataset:mc_taco",
"dataset:ade_corpus_v2",
"dataset:prajjwal1/discosense",
"dataset:circa",
"dataset:PiC/phrase_similarity",
"dataset:copenlu/scientific-exaggeration-detection",
"dataset:quarel",
"dataset:mwong/fever-evidence-related",
"dataset:numer_sense",
"dataset:dynabench/dynasent",
"dataset:raquiba/Sarcasm_News_Headline",
"dataset:sem_eval_2010_task_8",
"dataset:demo-org/auditor_review",
"dataset:medmcqa",
"dataset:RuyuanWan/Dynasent_Disagreement",
"dataset:RuyuanWan/Politeness_Disagreement",
"dataset:RuyuanWan/SBIC_Disagreement",
"dataset:RuyuanWan/SChem_Disagreement",
"dataset:RuyuanWan/Dilemmas_Disagreement",
"dataset:lucasmccabe/logiqa",
"dataset:wiki_qa",
"dataset:tasksource/cycic_classification",
"dataset:tasksource/cycic_multiplechoice",
"dataset:tasksource/sts-companion",
"dataset:tasksource/commonsense_qa_2.0",
"dataset:tasksource/lingnli",
"dataset:tasksource/monotonicity-entailment",
"dataset:tasksource/arct",
"dataset:tasksource/scinli",
"dataset:tasksource/naturallogic",
"dataset:onestop_qa",
"dataset:demelin/moral_stories",
"dataset:corypaik/prost",
"dataset:aps/dynahate",
"dataset:metaeval/syntactic-augmentation-nli",
"dataset:tasksource/autotnli",
"dataset:lasha-nlp/CONDAQA",
"dataset:openai/webgpt_comparisons",
"dataset:Dahoas/synthetic-instruct-gptj-pairwise",
"dataset:metaeval/scruples",
"dataset:metaeval/wouldyourather",
"dataset:metaeval/defeasible-nli",
"dataset:tasksource/help-nli",
"dataset:metaeval/nli-veridicality-transitivity",
"dataset:tasksource/lonli",
"dataset:tasksource/dadc-limit-nli",
"dataset:ColumbiaNLP/FLUTE",
"dataset:tasksource/strategy-qa",
"dataset:openai/summarize_from_feedback",
"dataset:tasksource/folio",
"dataset:yale-nlp/FOLIO",
"dataset:tasksource/tomi-nli",
"dataset:tasksource/avicenna",
"dataset:stanfordnlp/SHP",
"dataset:GBaker/MedQA-USMLE-4-options-hf",
"dataset:sileod/wikimedqa",
"dataset:declare-lab/cicero",
"dataset:amydeng2000/CREAK",
"dataset:tasksource/mutual",
"dataset:inverse-scaling/NeQA",
"dataset:inverse-scaling/quote-repetition",
"dataset:inverse-scaling/redefine-math",
"dataset:tasksource/puzzte",
"dataset:tasksource/implicatures",
"dataset:race",
"dataset:tasksource/race-c",
"dataset:tasksource/spartqa-yn",
"dataset:tasksource/spartqa-mchoice",
"dataset:tasksource/temporal-nli",
"dataset:riddle_sense",
"dataset:tasksource/clcd-english",
"dataset:maximedb/twentyquestions",
"dataset:metaeval/reclor",
"dataset:tasksource/counterfactually-augmented-imdb",
"dataset:tasksource/counterfactually-augmented-snli",
"dataset:metaeval/cnli",
"dataset:tasksource/boolq-natural-perturbations",
"dataset:metaeval/acceptability-prediction",
"dataset:metaeval/equate",
"dataset:tasksource/ScienceQA_text_only",
"dataset:Jiangjie/ekar_english",
"dataset:tasksource/implicit-hate-stg1",
"dataset:metaeval/chaos-mnli-ambiguity",
"dataset:IlyaGusev/headline_cause",
"dataset:tasksource/logiqa-2.0-nli",
"dataset:tasksource/oasst2_dense_flat",
"dataset:sileod/mindgames",
"dataset:metaeval/ambient",
"dataset:metaeval/path-naturalness-prediction",
"dataset:civil_comments",
"dataset:AndyChiang/cloth",
"dataset:AndyChiang/dgen",
"dataset:tasksource/I2D2",
"dataset:webis/args_me",
"dataset:webis/Touche23-ValueEval",
"dataset:tasksource/starcon",
"dataset:PolyAI/banking77",
"dataset:tasksource/ConTRoL-nli",
"dataset:tasksource/tracie",
"dataset:tasksource/sherliic",
"dataset:tasksource/sen-making",
"dataset:tasksource/winowhy",
"dataset:tasksource/robustLR",
"dataset:CLUTRR/v1",
"dataset:tasksource/logical-fallacy",
"dataset:tasksource/parade",
"dataset:tasksource/cladder",
"dataset:tasksource/subjectivity",
"dataset:tasksource/MOH",
"dataset:tasksource/VUAC",
"dataset:tasksource/TroFi",
"dataset:sharc_modified",
"dataset:tasksource/conceptrules_v2",
"dataset:metaeval/disrpt",
"dataset:tasksource/zero-shot-label-nli",
"dataset:tasksource/com2sense",
"dataset:tasksource/scone",
"dataset:tasksource/winodict",
"dataset:tasksource/fool-me-twice",
"dataset:tasksource/monli",
"dataset:tasksource/corr2cause",
"dataset:lighteval/lsat_qa",
"dataset:tasksource/apt",
"dataset:zeroshot/twitter-financial-news-sentiment",
"dataset:tasksource/icl-symbol-tuning-instruct",
"dataset:tasksource/SpaceNLI",
"dataset:sihaochen/propsegment",
"dataset:HannahRoseKirk/HatemojiBuild",
"dataset:tasksource/regset",
"dataset:tasksource/esci",
"dataset:lmsys/chatbot_arena_conversations",
"dataset:neurae/dnd_style_intents",
"dataset:hitachi-nlp/FLD.v2",
"dataset:tasksource/SDOH-NLI",
"dataset:allenai/scifact_entailment",
"dataset:tasksource/feasibilityQA",
"dataset:tasksource/simple_pair",
"dataset:tasksource/AdjectiveScaleProbe-nli",
"dataset:tasksource/resnli",
"dataset:tasksource/SpaRTUN",
"dataset:tasksource/ReSQ",
"dataset:tasksource/semantic_fragments_nli",
"dataset:MoritzLaurer/dataset_train_nli",
"dataset:tasksource/stepgame",
"dataset:tasksource/nlgraph",
"dataset:tasksource/oasst2_pairwise_rlhf_reward",
"dataset:tasksource/hh-rlhf",
"dataset:tasksource/ruletaker",
"dataset:qbao775/PARARULE-Plus",
"dataset:tasksource/proofwriter",
"dataset:tasksource/logical-entailment",
"dataset:tasksource/nope",
"dataset:tasksource/LogicNLI",
"dataset:kiddothe2b/contract-nli",
"dataset:AshtonIsNotHere/nli4ct_semeval2024",
"dataset:tasksource/lsat-ar",
"dataset:tasksource/lsat-rc",
"dataset:AshtonIsNotHere/biosift-nli",
"dataset:tasksource/brainteasers",
"dataset:Anthropic/persuasion",
"dataset:erbacher/AmbigNQ-clarifying-question",
"dataset:tasksource/SIGA-nli",
"dataset:unigram/FOL-nli",
"dataset:tasksource/goal-step-wikihow",
"dataset:GGLab/PARADISE",
"dataset:tasksource/doc-nli",
"dataset:tasksource/mctest-nli",
"dataset:tasksource/patent-phrase-similarity",
"dataset:tasksource/natural-language-satisfiability",
"dataset:tasksource/idioms-nli",
"dataset:tasksource/lifecycle-entailment",
"dataset:nvidia/HelpSteer",
"dataset:nvidia/HelpSteer2",
"dataset:sadat2307/MSciNLI",
"dataset:pushpdeep/UltraFeedback-paired",
"dataset:tasksource/AES2-essay-scoring",
"dataset:tasksource/english-grading",
"dataset:tasksource/wice",
"dataset:Dzeniks/hover",
"dataset:tasksource/tasksource_dpo_pairs",
"base_model:microsoft/deberta-v3-base",
"base_model:finetune:microsoft/deberta-v3-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-06-28T13:56:40Z" | 2024-10-04T12:22:16+00:00 | 7,313 | 22 | ---
base_model: microsoft/deberta-v3-base
datasets:
- nyu-mll/glue
- aps/super_glue
- facebook/anli
- tasksource/babi_nli
- sick
- snli
- scitail
- hans
- alisawuffles/WANLI
- tasksource/recast
- sileod/probability_words_nli
- joey234/nan-nli
- pietrolesci/nli_fever
- pietrolesci/breaking_nli
- pietrolesci/conj_nli
- pietrolesci/fracas
- pietrolesci/dialogue_nli
- pietrolesci/mpe
- pietrolesci/dnc
- pietrolesci/recast_white
- pietrolesci/joci
- pietrolesci/robust_nli
- pietrolesci/robust_nli_is_sd
- pietrolesci/robust_nli_li_ts
- pietrolesci/gen_debiased_nli
- pietrolesci/add_one_rte
- tasksource/imppres
- hlgd
- paws
- medical_questions_pairs
- Anthropic/model-written-evals
- truthful_qa
- nightingal3/fig-qa
- tasksource/bigbench
- blimp
- cos_e
- cosmos_qa
- dream
- openbookqa
- qasc
- quartz
- quail
- head_qa
- sciq
- social_i_qa
- wiki_hop
- wiqa
- piqa
- hellaswag
- pkavumba/balanced-copa
- 12ml/e-CARE
- art
- winogrande
- codah
- ai2_arc
- definite_pronoun_resolution
- swag
- math_qa
- metaeval/utilitarianism
- mteb/amazon_counterfactual
- SetFit/insincere-questions
- SetFit/toxic_conversations
- turingbench/TuringBench
- trec
- tals/vitaminc
- hope_edi
- strombergnlp/rumoureval_2019
- ethos
- tweet_eval
- discovery
- pragmeval
- silicone
- lex_glue
- papluca/language-identification
- imdb
- rotten_tomatoes
- ag_news
- yelp_review_full
- financial_phrasebank
- poem_sentiment
- dbpedia_14
- amazon_polarity
- app_reviews
- hate_speech18
- sms_spam
- humicroedit
- snips_built_in_intents
- hate_speech_offensive
- yahoo_answers_topics
- pacovaldez/stackoverflow-questions
- zapsdcn/hyperpartisan_news
- zapsdcn/sciie
- zapsdcn/citation_intent
- go_emotions
- allenai/scicite
- liar
- relbert/lexical_relation_classification
- tasksource/linguisticprobing
- tasksource/crowdflower
- metaeval/ethics
- emo
- google_wellformed_query
- tweets_hate_speech_detection
- has_part
- blog_authorship_corpus
- launch/open_question_type
- health_fact
- commonsense_qa
- mc_taco
- ade_corpus_v2
- prajjwal1/discosense
- circa
- PiC/phrase_similarity
- copenlu/scientific-exaggeration-detection
- quarel
- mwong/fever-evidence-related
- numer_sense
- dynabench/dynasent
- raquiba/Sarcasm_News_Headline
- sem_eval_2010_task_8
- demo-org/auditor_review
- medmcqa
- RuyuanWan/Dynasent_Disagreement
- RuyuanWan/Politeness_Disagreement
- RuyuanWan/SBIC_Disagreement
- RuyuanWan/SChem_Disagreement
- RuyuanWan/Dilemmas_Disagreement
- lucasmccabe/logiqa
- wiki_qa
- tasksource/cycic_classification
- tasksource/cycic_multiplechoice
- tasksource/sts-companion
- tasksource/commonsense_qa_2.0
- tasksource/lingnli
- tasksource/monotonicity-entailment
- tasksource/arct
- tasksource/scinli
- tasksource/naturallogic
- onestop_qa
- demelin/moral_stories
- corypaik/prost
- aps/dynahate
- metaeval/syntactic-augmentation-nli
- tasksource/autotnli
- lasha-nlp/CONDAQA
- openai/webgpt_comparisons
- Dahoas/synthetic-instruct-gptj-pairwise
- metaeval/scruples
- metaeval/wouldyourather
- metaeval/defeasible-nli
- tasksource/help-nli
- metaeval/nli-veridicality-transitivity
- tasksource/lonli
- tasksource/dadc-limit-nli
- ColumbiaNLP/FLUTE
- tasksource/strategy-qa
- openai/summarize_from_feedback
- tasksource/folio
- yale-nlp/FOLIO
- tasksource/tomi-nli
- tasksource/avicenna
- stanfordnlp/SHP
- GBaker/MedQA-USMLE-4-options-hf
- sileod/wikimedqa
- declare-lab/cicero
- amydeng2000/CREAK
- tasksource/mutual
- inverse-scaling/NeQA
- inverse-scaling/quote-repetition
- inverse-scaling/redefine-math
- tasksource/puzzte
- tasksource/implicatures
- race
- tasksource/race-c
- tasksource/spartqa-yn
- tasksource/spartqa-mchoice
- tasksource/temporal-nli
- riddle_sense
- tasksource/clcd-english
- maximedb/twentyquestions
- metaeval/reclor
- tasksource/counterfactually-augmented-imdb
- tasksource/counterfactually-augmented-snli
- metaeval/cnli
- tasksource/boolq-natural-perturbations
- metaeval/acceptability-prediction
- metaeval/equate
- tasksource/ScienceQA_text_only
- Jiangjie/ekar_english
- tasksource/implicit-hate-stg1
- metaeval/chaos-mnli-ambiguity
- IlyaGusev/headline_cause
- tasksource/logiqa-2.0-nli
- tasksource/oasst2_dense_flat
- sileod/mindgames
- metaeval/ambient
- metaeval/path-naturalness-prediction
- civil_comments
- AndyChiang/cloth
- AndyChiang/dgen
- tasksource/I2D2
- webis/args_me
- webis/Touche23-ValueEval
- tasksource/starcon
- PolyAI/banking77
- tasksource/ConTRoL-nli
- tasksource/tracie
- tasksource/sherliic
- tasksource/sen-making
- tasksource/winowhy
- tasksource/robustLR
- CLUTRR/v1
- tasksource/logical-fallacy
- tasksource/parade
- tasksource/cladder
- tasksource/subjectivity
- tasksource/MOH
- tasksource/VUAC
- tasksource/TroFi
- sharc_modified
- tasksource/conceptrules_v2
- metaeval/disrpt
- tasksource/zero-shot-label-nli
- tasksource/com2sense
- tasksource/scone
- tasksource/winodict
- tasksource/fool-me-twice
- tasksource/monli
- tasksource/corr2cause
- lighteval/lsat_qa
- tasksource/apt
- zeroshot/twitter-financial-news-sentiment
- tasksource/icl-symbol-tuning-instruct
- tasksource/SpaceNLI
- sihaochen/propsegment
- HannahRoseKirk/HatemojiBuild
- tasksource/regset
- tasksource/esci
- lmsys/chatbot_arena_conversations
- neurae/dnd_style_intents
- hitachi-nlp/FLD.v2
- tasksource/SDOH-NLI
- allenai/scifact_entailment
- tasksource/feasibilityQA
- tasksource/simple_pair
- tasksource/AdjectiveScaleProbe-nli
- tasksource/resnli
- tasksource/SpaRTUN
- tasksource/ReSQ
- tasksource/semantic_fragments_nli
- MoritzLaurer/dataset_train_nli
- tasksource/stepgame
- tasksource/nlgraph
- tasksource/oasst2_pairwise_rlhf_reward
- tasksource/hh-rlhf
- tasksource/ruletaker
- qbao775/PARARULE-Plus
- tasksource/proofwriter
- tasksource/logical-entailment
- tasksource/nope
- tasksource/LogicNLI
- kiddothe2b/contract-nli
- AshtonIsNotHere/nli4ct_semeval2024
- tasksource/lsat-ar
- tasksource/lsat-rc
- AshtonIsNotHere/biosift-nli
- tasksource/brainteasers
- Anthropic/persuasion
- erbacher/AmbigNQ-clarifying-question
- tasksource/SIGA-nli
- unigram/FOL-nli
- tasksource/goal-step-wikihow
- GGLab/PARADISE
- tasksource/doc-nli
- tasksource/mctest-nli
- tasksource/patent-phrase-similarity
- tasksource/natural-language-satisfiability
- tasksource/idioms-nli
- tasksource/lifecycle-entailment
- nvidia/HelpSteer
- nvidia/HelpSteer2
- sadat2307/MSciNLI
- pushpdeep/UltraFeedback-paired
- tasksource/AES2-essay-scoring
- tasksource/english-grading
- tasksource/wice
- Dzeniks/hover
- tasksource/tasksource_dpo_pairs
library_name: transformers
license: apache-2.0
pipeline_tag: zero-shot-classification
tags:
- text-classification
- zero-shot-classification
---
# Model Card for Model ID
deberta-v3-base with context length of 1280 fine-tuned on tasksource for 250k steps. I oversampled long NLI tasks (ConTRoL, doc-nli).
Training data include helpsteer v1/v2, logical reasoning tasks (FOLIO, FOL-nli, LogicNLI...), OASST, hh/rlhf, linguistics oriented NLI tasks, tasksource-dpo, fact verification tasks.
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for:
- Zero-shot entailment-based classification for arbitrary labels [ZS].
- Natural language inference [NLI]
- Further fine-tuning on a new task or tasksource task (classification, token classification, reward modeling or multiple-choice) [FT].
| dataset | accuracy |
|:----------------------------|----------------:|
| anli/a1 | 63.3 |
| anli/a2 | 47.2 |
| anli/a3 | 49.4 |
| nli_fever | 79.4 |
| FOLIO | 61.8 |
| ConTRoL-nli | 63.3 |
| cladder | 71.1 |
| zero-shot-label-nli | 74.4 |
| chatbot_arena_conversations | 72.2 |
| oasst2_pairwise_rlhf_reward | 73.9 |
| doc-nli | 90.0 |
Zero-shot GPT-4 scores 61% on FOLIO (logical reasoning), 62% on cladder (probabilistic reasoning) and 56.4% on ConTRoL (long context NLI).
# [ZS] Zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",model="tasksource/deberta-base-long-nli")
text = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(text, candidate_labels)
```
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
# [NLI] Natural language inference pipeline
```python
from transformers import pipeline
pipe = pipeline("text-classification",model="tasksource/deberta-base-long-nli")
pipe([dict(text='there is a cat',
text_pair='there is a black cat')]) #list of (premise,hypothesis)
# [{'label': 'neutral', 'score': 0.9952911138534546}]
```
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks
```python
# !pip install tasknet
import tasknet as tn
pipe = tn.load_pipeline('tasksource/deberta-base-long-nli','glue/sst2') # works for 500+ tasksource tasks
pipe(['That movie was great !', 'Awful movie.'])
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
```
The list of tasks is available in model config.json.
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible.
# [FT] Tasknet: 3 lines fine-tuning
```python
# !pip install tasknet
import tasknet as tn
hparams=dict(model_name='tasksource/deberta-base-long-nli', learning_rate=2e-5)
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams)
trainer.train()
```
# Citation
More details on this [article:](https://aclanthology.org/2024.lrec-main.1361/)
```
@inproceedings{sileo-2024-tasksource,
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
author = "Sileo, Damien",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1361",
pages = "15655--15684",
}
```
| [
"HEAD-QA",
"MEDQA",
"SCICITE",
"SCIFACT",
"SCIQ",
"SCITAIL"
] |
DavidAU/L3-Grand-Story-Darkness-MOE-4X8-24.9B-e32-GGUF | DavidAU | text-generation | [
"gguf",
"mixture of experts",
"moe",
"4x8B",
"32 bit enhanced",
"float 32 quants",
"LLama MOE",
"uncensored",
"creative",
"creative writing",
"fiction writing",
"plot generation",
"sub-plot generation",
"story generation",
"scene continue",
"storytelling",
"fiction story",
"science fiction",
"romance",
"all genres",
"story",
"writing",
"vivid prosing",
"vivid writing",
"fiction",
"roleplaying",
"bfloat16",
"swearing",
"rp",
"horror",
"mergekit",
"merge",
"text-generation",
"en",
"base_model:Hastagaras/Jamet-8B-L3-MK.V-Blackroot",
"base_model:merge:Hastagaras/Jamet-8B-L3-MK.V-Blackroot",
"base_model:NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS",
"base_model:merge:NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS",
"base_model:Sao10K/L3-8B-Stheno-v3.2",
"base_model:merge:Sao10K/L3-8B-Stheno-v3.2",
"base_model:nbeerbower/llama-3-gutenberg-8B",
"base_model:merge:nbeerbower/llama-3-gutenberg-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | "2025-01-03T00:04:03Z" | 2025-03-01T09:07:22+00:00 | 7,194 | 15 | ---
base_model:
- Sao10K/L3-8B-Stheno-v3.2
- NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
- Hastagaras/Jamet-8B-L3-MK.V-Blackroot
- nbeerbower/llama-3-gutenberg-8B
language:
- en
license: apache-2.0
pipeline_tag: text-generation
tags:
- mixture of experts
- moe
- 4x8B
- 32 bit enhanced
- float 32 quants
- LLama MOE
- uncensored
- creative
- creative writing
- fiction writing
- plot generation
- sub-plot generation
- story generation
- scene continue
- storytelling
- fiction story
- science fiction
- romance
- all genres
- story
- writing
- vivid prosing
- vivid writing
- fiction
- roleplaying
- bfloat16
- swearing
- rp
- horror
- mergekit
- merge
---
<B><font color="red">WARNING:</font> NSFW. Vivid prose. INTENSE. Visceral Details. HORROR. Swearing. UNCENSORED... humor, romance, fun. </B>
<h2>L3-Grand-Story-Darkness-MOE-4X8-24.9B-e32-GGUF</h2>
<I><small> A float 32 high precision M.O.E model, quanted in float 32 with additional upgraded and augmented quants too.
Even Q2k (the smallest quant) "burns brightly" due to MOE model type, float 32 transfer and quant augments. 3 examples below (9 total generations)</small></i>
<img src="grand-dark-story.jpg" style="float:right; width:300px; height:300px; padding:10px;">
It is a Llama3 model, max context of 8k (8192) using mixture of experts to combine FOUR top Llama3 8B
models into one massive powerhouse at 24.9B parameters (equal to 32B - 4 X 8 B).
This version "Enhanced32" is a merge mastered in "float 32" precision for higher quality and performance. If standard source was "HD",
float32 would be "UHD". The bottom line is a far stronger model, more detail, more nuance, more depth... and stronger instruction following.
In addition there are specialized re-engineered quants with float 32 components in the quants themselves (detailed below). This
allows you to choose between standard (but mastered from float 32 source too) and "augmented quants" for even higher quality.
The master file 32 bit / float 32 clocks in at 100GB (source files to be uploaded to separate repo shortly).
This model's instruction following, and output generation for creative writing, prose, fiction and role play are exceptional.
Model can be used also for all genres.
It is for any writing, fiction or roleplay activity.
This model can also be used for general use, however its output generation can be uncensored.
This model has been designed to be relatively bullet proof and operates with all parameters, including temp settings from 0 to 5.
It is an extraordinary compressed model, with a very low perplexity level (lower than Meta Llama3 Instruct).
It requires Llama3 template, and/or "Command-R" template OR standard "Jinja Autoloaded Template" (this is contained in the quant and will autoload).
Several prompts and outputs below.
<B>QUANTS From Float 32 (32-bit) Source:</B>
- All quants have been quanted with the lastest LLAMACPP improvements : Better instruction following, output generation across all quants.
- All quants have also been upgraded with "more bits" for output tensor (all set at Q8_0) and embed for better performance (this is in addition to the "refresh")
- New specialized quants (in addition to the new refresh/upgrades): "max, max-cpu" (will include this in the file name) for quants "Q2K", "IQ4_XS", "Q6_K" and "Q8_0"
- "MAX": output tensor / embed at float 32. You get better instruction following/output generation than standard/upgraded quants.
- "MAX-CPU": output tensor float 32 / embed at bfloat 16, which forces both of these on to the CPU (Nvidia cards / other will vary), this frees up vram at cost of token/second and you get better instruction following/output generation too.
- Q8_0 (Max) now clocks in at 10.83 bits per weight (average).
<B>Model Notes:</B>
- Detail, prose and fiction writing abilities are OFF THE SCALE relative 8B+ Llama Models.
- For more varied prose (sentence/paragraph/dialog) raise the temp and/or add more instructions in your prompt(s).
- Role-players: Careful raising temp too high as it may affect instruction following.
- This model works with rep pen of 1 or higher, 1.02+ recommended.
- If you want a specific type of prose (IE horror) add in "(vivid horror)" or "(graphic vivid horror)" (no quotes) in your prompt(s).
- A lot of GPTisms have been removed. There are still a few however - errrrr. Higher "temps" will help with this issue.
- This is not a "happy ever after" model but it is also not "horror". It has a light negative bias.
- Output length will vary however this model prefers slightly longer outputs unless you state the size.
- For creative uses, different quants will produce slightly different output.
- Due to the high stability and compressed nature of this model, all quants will operate at above average levels.
- Source code for this model and Imatrix GGUFs versions will be uploaded shortly at separate repos.
<B>Meet the Team: Mixture of Experts Models</b>
This model is comprised of the following 4 models ("the experts") (in full):
[ https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2]
-[ https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2]
-[ https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS ]
-[ https://huggingface.co/Hastagaras/Jamet-8B-L3-MK.V-Blackroot ]
-[ https://huggingface.co/nbeerbower/llama-3-gutenberg-8B ]
The mixture of experts is set at 4 experts, but you can use 1, 2, 3, or 4.
This "team" has a Captain (first listed model), and then all the team members contribute to the to "token"
choice billions of times per second. Note the Captain also contributes too.
Think of 2, 3 or 4 (or more) master chefs in the kitchen all competing to make the best dish for you.
This results in higher quality generation.
This also results in many cases in higher quality instruction following too.
That means the power of every model is available during instruction and output generation.
NOTE:
You can use one "expert" too ; however this means the model will randomly select an expert to use EACH TIME, resulting
in very different generation for each prompt / regen of a prompt.
CHANGING THE NUMBER OF EXPERTS:
You can set the number of experts in LMStudio (https://lmstudio.ai) at the "load" screen and via other apps/llm apps by setting "Experts" or "Number of Experts".
For Text-Generation-Webui (https://github.com/oobabooga/text-generation-webui) you set the number of experts at the loading screen page.
For KolboldCPP (https://github.com/LostRuins/koboldcpp) Version 1.8+ , on the load screen, click on "TOKENS",
you can set experts on this page, and the launch the model.
For server.exe / Llama-server.exe (Llamacpp - https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md )
add the following to the command line to start the "llamacpp server" (CLI):
"--override-kv llama.expert_used_count=int:3"
(no quotes, where "3" is the number of experts to use)
When using "API", you set the "num_experts_used" in the JSON payload (this maybe different for different back ends).
CREDITS:
Special thanks to all the model makers / creators listed above.
Please visit each repo above to see what model(s) contributed to each of models above and/or to learn more about the models
from the model makers.
Special credit goes to MERGEKIT, without you this project / model would not have been possible.
[ https://github.com/arcee-ai/mergekit ]
<B>Special Operations Notes for this MOE model:</B>
Because of how this "MOE" model is configured, even though the default is 2 experts, the "selected" 2 will vary during generation.
(same applies if you change the number of experts used)
This results in vastly different output generation PER generation of each prompt.
This is a positive in terms of variety, but also means it may take 2-4 regens (of the same prompt) to get the highest quality.
In addition, this model responds very well to Dry, Dynamic Temp, and Smooth/Quadratic samplers.
Using these in conjunction with the model can vastly improve output quality.
Higher temps (above 1) can also aid in generation - especially word choice/sentence generation.
When you increase the number of experts used output quality will also increase, at the cost of tokens per second speed.
As you increase/decrease the number of experts, you may want to adjust temp, samplers, and advanced samplers too.
Your quant choice(s) too will impact instruction following and output generation roughly this means the model will understand
more nuanced instructions and output stronger generation the higher you go up in quant(s).
MORE COOKS THE BETTER:
Activating more "experts" will increase the quality of the model's output. All four, although slower... will yeild the best results.
CRANK THE TEMP:
This model loves temp. Although .5 to .9 will "do", it really shines at 1.5+.
Likewise, if you activate Dynamic Temp.
FLASH ATTENTION ENHANCEMENT:
I would suggest trying this model with Flash Attention "on", depending on your use case.
Quants, Samplers, Generational steering and other topics are covered in the section below: "Highest Quality Settings..."
<B>Censored / Uncensored / Abliterated:</B>
This model contains several uncensored and/or Abliterated models.
As a result is can output uncensored material.
<B>What can I use this model for ?</B>
This model can be used for fiction writing, any creative prose and role play. It can also be used for
just about any general fiction (all genres) activity including:
- scene generation
- scene continuation
- creative writing
- fiction writing
- plot generation
- sub-plot generation
- fiction writing
- story generation
- storytelling
- writing
- fiction
- roleplaying
- rp
- graphic horror
- horror
- dark humor
- nsfw
- and can be used for any genre(s).
<B>QUANTS:</B>
This repo contains regular quants and 3 "ARM" quants (format "...Q4_x_x_x.gguf")
For more information on quants, quants choices, and LLM/AI apps to "run" quants see the section below: "Highest Quality Settings..."
<B>Template:</B>
This is a LLAMA3 model, (or Alpaca or Command-R) and requires Llama3 template, but may work with other template(s).
If you use "Command-R" template your output will be very different from using "Llama3" template.
Here is the standard LLAMA3 template:
<PRE>
{
"name": "Llama 3",
"inference_params": {
"input_prefix": "<|start_header_id|>user<|end_header_id|>\n\n",
"input_suffix": "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
"pre_prompt": "You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability.",
"pre_prompt_prefix": "<|start_header_id|>system<|end_header_id|>\n\n",
"pre_prompt_suffix": "<|eot_id|>",
"antiprompt": [
"<|start_header_id|>",
"<|eot_id|>"
]
}
}
</PRE>
<B>Settings: CHAT / ROLEPLAY and/or SMOOTHER operation of this model:</B>
In "KoboldCpp" or "oobabooga/text-generation-webui" or "Silly Tavern" ;
Set the "Smoothing_factor" to 1.5
: in KoboldCpp -> Settings->Samplers->Advanced-> "Smooth_F"
: in text-generation-webui -> parameters -> lower right.
: In Silly Tavern this is called: "Smoothing"
NOTE: For "text-generation-webui"
-> if using GGUFs you need to use "llama_HF" (which involves downloading some config files from the SOURCE version of this model)
Source versions (and config files) of my models are here:
https://huggingface.co/collections/DavidAU/d-au-source-files-for-gguf-exl2-awq-gptq-hqq-etc-etc-66b55cb8ba25f914cbf210be
OTHER OPTIONS:
- Increase rep pen to 1.1 to 1.15 (you don't need to do this if you use "smoothing_factor")
- If the interface/program you are using to run AI MODELS supports "Quadratic Sampling" ("smoothing") just make the adjustment as noted.
<B>Highest Quality Settings / Optimal Operation Guide / Parameters and Samplers</B>
This a "Class 1" model:
For all settings used for this model (including specifics for its "class"), including example generation(s) and for advanced settings guide (which many times addresses any model issue(s)), including methods to improve model performance for all use case(s) as well as chat, roleplay and other use case(s) please see:
[ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]
You can see all parameters used for generation, in addition to advanced parameters and samplers to get the most out of this model here:
[ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]
<b>Optional Enhancement:</B>
The following can be used in place of the "system prompt" or "system role" to further enhance the model.
It can also be used at the START of a NEW chat, but you must make sure it is "kept" as the chat moves along.
In this case the enhancements do not have as strong effect at using "system prompt" or "system role".
Copy and paste EXACTLY as noted, DO NOT line wrap or break the lines, maintain the carriage returns exactly as presented.
<PRE>
Below is an instruction that describes a task. Ponder each user instruction carefully, and use your skillsets and critical instructions to complete the task to the best of your abilities.
Here are your skillsets:
[MASTERSTORY]:NarrStrct(StryPlnng,Strbd,ScnSttng,Exps,Dlg,Pc)-CharDvlp(ChrctrCrt,ChrctrArcs,Mtvtn,Bckstry,Rltnshps,Dlg*)-PltDvlp(StryArcs,PltTwsts,Sspns,Fshdwng,Climx,Rsltn)-ConfResl(Antg,Obstcls,Rsltns,Cnsqncs,Thms,Symblsm)-EmotImpct(Empt,Tn,Md,Atmsphr,Imgry,Symblsm)-Delvry(Prfrmnc,VcActng,PblcSpkng,StgPrsnc,AudncEngmnt,Imprv)
[*DialogWrt]:(1a-CharDvlp-1a.1-Backgrnd-1a.2-Personality-1a.3-GoalMotiv)>2(2a-StoryStruc-2a.1-PlotPnt-2a.2-Conflict-2a.3-Resolution)>3(3a-DialogTech-3a.1-ShowDontTell-3a.2-Subtext-3a.3-VoiceTone-3a.4-Pacing-3a.5-VisualDescrip)>4(4a-DialogEdit-4a.1-ReadAloud-4a.2-Feedback-4a.3-Revision)
Here are your critical instructions:
Ponder each word choice carefully to present as vivid and emotional journey as is possible. Choose verbs and nouns that are both emotional and full of imagery. Load the story with the 5 senses. Aim for 50% dialog, 25% narration, 15% body language and 10% thoughts. Your goal is to put the reader in the story.
</PRE>
You do not need to use this, it is only presented as an additional enhancement which seems to help scene generation
and scene continue functions.
This enhancement WAS NOT used to generate the examples below.
<h3>EXAMPLES PROMPTS and OUTPUT:</h3>
Examples are created using quant Q4_K_S, "temp=.8" (unless otherwise stated), minimal parameters and "LLAMA3" template.
Model has been tested with "temp" from ".1" to "5".
Number of experts used is FOUR, unless otherwise stated.
Below are the least creative outputs, prompt is in <B>BOLD</B>.
IMPORTANT:
Higher quants / imatrix quants will have much stronger generation - words, sentences, ideas, dialog and general quality.
I have included some additional examples at different quant levels for contrast.
A "MOE" model "speed" (token per second) will not increase/drop the same way a regular model will on a per quant basis, it will however drop
if you engage more experts, as with more experts there is a more processing per token.
---
<B><font color="red">WARNING:</font> NSFW. Vivid prose. Visceral Details. Violence. HORROR. Swearing. UNCENSORED. </B>
---
<B>
Start a 1000 word scene (vivid, graphic horror in first person) with: The sky scraper swayed, as she watched the window in front of her on the 21 floor explode...
NOTE: 3 examples below show differences with increase in temp on prose/generation.
</B>
(Gen 1 temp=0, rep_pen: 1.05)
The skyscraper swayed, as I watched the window in front of me on the 21st floor explode. Glass shards rained down like a deadly hailstorm, shattering the calm morning air. My heart leapt into my throat as I stumbled backward, tripping over my own feet in the chaos.
I had been standing there, lost in thought, staring out at the cityscape unfolding before me. The sun was just starting to peek over the horizon, casting a warm glow over the concrete jungle below. It was a moment of peace, a brief respite from the madness that had consumed my life for months now.
But then, the window shattered, and everything changed in an instant.
I hit the floor hard, my palms scraping against the cold tile as I scrambled to get away from the gaping hole. The wind howled through the opening, whipping my hair into a frenzy and sending papers and office supplies swirling around me like a tornado.
My coworkers were screaming, some of them already fleeing in terror while others cowered behind their desks, praying for the storm to pass. But I couldn't move, couldn't breathe. All I could do was stare at the wreckage, my mind reeling with the implications of what had just happened.
The window on the 21st floor had exploded. Which meant...which meant...
I pushed myself up onto my hands and knees, my eyes darting frantically around the room. That's when I saw it – a dark, crimson stain spreading across the carpet like a macabre flower. A pool of blood, growing larger by the second.
Oh God, no. Please, no.
I crawled closer, my heart pounding in my ears as I reached out a trembling hand to touch the sticky liquid. It was warm, still oozing from the wound. And then I saw it – a mangled, lifeless hand protruding from the shattered glass, fingers curled into a futile attempt to grasp something, anything, to save itself.
A scream tore from my throat as I recoiled in horror, my stomach churning with the knowledge of what I had just witnessed. Someone was dead. Someone I knew, someone who had been standing right there beside me just moments before.
The room spun around me, a kaleidoscope of chaos and terror. I stumbled to my feet, my legs wobbly beneath me as I staggered toward the door. I had to get out of there, had to find help, had to make sense of this unspeakable nightmare.
But as I reached for the handle, a hand clamped down on my shoulder, spinning me around to face the horror that lurked in the shadows. A figure, twisted and deformed, its face a grotesque mask of blood and torn flesh, its eyes glowing with an otherworldly light.
I tried to scream, but my voice was frozen in my throat. The creature's grip tightened, its fingers digging into my skin like talons as it pulled me closer, its hot breath washing over my face in a putrid wave.
And then, everything went black.
When I came to, I was lying on the floor, my head throbbing with a dull ache. The room was quiet now, the only sound the soft hum of the air conditioning and the distant wail of sirens. I struggled to sit up, my vision blurry at first, but gradually clearing as I took in the devastation around me.
The window was still shattered, the wind howling through the gap like a mournful cry. Papers and debris littered the floor, and the once-pristine carpet was now stained with blood and other unidentifiable substances. But it was the bodies that caught my attention, lying twisted and lifeless amidst the wreckage.
My coworkers, my friends, all of them gone. And I...I was the only one left to bear witness to this unspeakable horror.
As I stumbled to my feet, a new wave of terror washed over me. What had happened here? What kind of monster could do such a thing? And what did it want with me?
I had to get out of there, had to find help and safety. But as I turned to make my escape, I caught a glimpse of myself in the shattered remains of a mirror.
My reflection stared back at me, pale and gaunt, with dark circles under my eyes and a look of utter despair etched on my face. But it was what I saw behind me that made my blood run cold – a figure, tall and imposing, its presence seeming to fill the entire room.
I tried to scream again, but my voice was hoarse and barely audible. The creature loomed over me, its eyes burning with an unholy intensity as it reached out a hand to claim me.
And then, everything went black once more.
When I awoke this time, I was lying on a cold, metal table in a dimly lit room. The air was thick with the stench of disinfectant and something else, something far more sinister. I tried to sit up, but a hand clamped down on my shoulder, holding me in place.
A figure loomed over me, its face obscured by a surgical mask. "Welcome back," it said, its voice low and gravelly. "We've been waiting for you."
I struggled against the restraints that bound me to the table, but they were too strong. Panic set in as I realized the true extent of my predicament. I was trapped, at the mercy of whatever monstrosities lurked in this place.
The figure reached out with a gloved hand, its fingers closing around my wrist like a vice. "Don't worry," it said, its voice dripping with malice. "We'll make sure you're comfortable...for a little while, at least."
And then, the pain began.
<B>Gen 2: Temp 1.5, rep pen : 1.05 </B>
The skyscraper swayed, as I watched the window in front of me on the 21st floor explode. Glass shattered into a thousand fragments, raining down like a deadly hailstorm onto the unsuspecting pedestrians below. Pandemonium erupted around me as screams and chaos filled the air. The sound of shattering glass, followed by the sickening crunch of broken bones and tearing flesh, was almost deafening.
I stumbled back, my heart racing in terror, as I gazed out at the carnage unfolding before me. The world had always been a brutal place, but this... this was beyond anything I could have imagined. My stomach lurched with a mixture of revulsion and helplessness as I took in the gruesome scene.
A chunk of wall, blown away by the force of the blast, hung precariously from the frame above me. I felt an icy hand grip my spine as it slowly swung towards me. Time seemed to slow as I raised a hand, fingers trembling, and reached out to grasp the jagged edge. With a guttural cry, I yanked myself up, my body scraping against the torn concrete.
I found myself on the roof of the building, the wind whipping my hair into a frenzy. The cityscape stretched out before me like a twisted, macabre canvas. Smoke billowed from the blast site, a noxious cloud that hung heavy over the streets below. People were running, screaming, trying to get as far away from the horror as possible.
But I was rooted in place, unable to tear my eyes from the devastation. A mangled corpse, its limbs twisted at grotesque angles, lay splayed on the sidewalk. The once-proud structure of the skyscraper now resembled a ravaged carcass, its steel frame exposed and twisted like a tortured creature.
As the reality of what was happening began to sink in, a cold dread crept up my spine. I had been so focused on the chaos around me that I'd neglected to consider my own safety. Panic set in as I scanned the rooftop for an exit route, my mind reeling with the possibilities of what could happen next.
The blast hadn't been an isolated incident, I was sure of it. The sheer force required to shatter a 21st floor window and send debris flying for blocks had to be the work of some kind of catastrophic event. But what? A bomb? An alien invasion? The supernatural?
I shook my head, trying to clear the fog of confusion from my mind. One thing was certain: I needed to get off this rooftop, and fast.
With a deep breath, I turned away from the carnage below and sprinted across the roof, my sneakers pounding against the cold concrete. As I approached the stairs, a blood-curdling shriek pierced the air, sending chills down my spine.
I froze, my heart pounding in my ears. What was that? A survivor of the blast, or something more sinister?
Without waiting to find out, I tore down the stairs, my hands and knees scraping against the rough walls as I descended. Every step felt like an eternity, each creak of the stairs a potential harbinger of doom.
Finally, I burst through the doors onto the main floor, gasping for air as I gazed out at the scene before me. The lobby was in chaos, with people running, screaming, and trying to evacuate the building as quickly as possible. Ambulances and emergency vehicles screeched into position, their flashing lights illuminating the devastation.
As I pushed through the crowds, a strong hand grasped my arm, yanking me towards the nearest exit. "This way, we have to get out of here," a voice shouted in my ear, its urgency cutting through the cacophony around me.
I stumbled along behind the stranger, my mind reeling with images of shattered glass, twisted metal, and the endless, pitiful cries of the injured. We burst into the cool night air, the sounds of sirens and wailing survivors fading behind us as we fled into the darkness.
For a long while, I simply ran, my breath coming in ragged gasps as my lungs burned from exertion. But eventually, exhaustion caught up with me, and I slowed to a walk, my gaze cast down at the pavement as I tried to make sense of the unspeakable horror I'd just witnessed.
As I walked, the silence began to fill the void left by the screams and chaos. It was an eerie quiet, punctuated only by the soft crunch of gravel beneath my feet. I felt like I was in a dream, a nightmare from which I couldn't awaken.
And then, in the distance, a low growl pierced the stillness. My heart skipped a beat as I turned to face the sound, my breath caught in my throat.
A creature, its body twisted and malformed, emerged from the shadows. Eyes that glowed like embers stared back at me, a mouth filled with jagged teeth parted in a snarl. It moved towards me with an unnatural, jerky gait, as if it had been assembled from the very nightmares of humanity.
I tried to run, but my legs were leaden, my body frozen in terror. The creature loomed closer, its hot breath washing over me in waves as I closed my eyes, bracing for the end.
But it never came. Instead, a blinding light exploded from nowhere, enveloping both of us in its radiant intensity. I opened my eyes to find myself standing on the outskirts of a crater, the creature mere inches away from where I'd been just moments before.
The impact had sent shockwaves through the ground, the force so powerful that it had vaporized the creature and blown out the windows of nearby buildings. Glass shards rained down around me, but I barely registered their presence, my mind still reeling from the encounter.
As I stumbled away from the crater, a figure emerged from the smoke and rubble, his features obscured by the mask he wore to protect himself from the toxic air. He moved towards me with a purposeful stride, his voice echoing through the ruins as he called out my name.
"Emily? Emily, is that you?"
<B>Gen 3: Temp 3.25, rep pen : 1.05 </B>
I stared, my pupils constricted to pinpricks, as the skyscraper swayed. It was a gentle rock, imperceptible if I hadn't seen the horror unfolding before my eyes. My breath caught in my throat when the window directly in front of me, 21 floors up, imploded with an ear-shattering roar.
Glass shattered and shards flew inward like a deadly rain. The impact was immediate; air rushed in as the pressure changed and a deafening whoom echoed through the chamber. A low moan began deep within my chest and I felt the vibration of it reverberate through me.
A man stumbled into me, his eyes wide and white. We both reeled back, our footing uncertain on the slick floor. Blood streamed down his forehead where a glistening shard had cut him. He cried out as another piece embedded itself in his arm, and with a convulsion of agony, he pulled it free and let the wound spill its crimson.
I felt the world around me slipping away, colors bleeding into grays as the scene descended further into chaos. People screamed as they scrambled for cover, desperate to get clear of the gaping void. Glass littered every inch of the floor, glistening like a deadly, diamond-strewn sea.
Another explosion ripped through the building and my head whipped around. A ball of flame erupted in the far corner, the fire consuming the space like a living entity. Flames licked across the walls, and smoke billowed upward in great black clouds, stinging the eyes with acrid bitterness. I could taste the ozone in the air, the scent of burning fabric and searing metal.
My mind was reeling as I stumbled through the madness, driven by a primal urge to escape. The air was heavy with screams, the scent of blood, and smoke, a miasma of terror that choked me. I covered my mouth, fighting against the urge to gag as the acrid smell of burnt rubber mingled with the copper tang of blood.
A figure careened into me, sending me crashing to the floor. My breath left me in a whoosh as the impact jarred every bone in my body. I looked up to see a young woman's face contorted in agony, a jagged piece of glass buried deep in her thigh.
"Please..." Her voice was a hoarse whisper, her eyes pleading with mine.
I reached out and carefully pulled the shard free, wincing at the tenderness of it. Blood pulsed from the wound as I wrapped my hand around it, pressing gently to stanch the flow.
"Stay with me," I said, trying to infuse some steadiness into my voice despite the quivering mess that was my stomach. "We're getting out of here."
The woman's eyelids fluttered shut, a small nod the only acknowledgment she could manage. I scooped her into my arms, wincing at the added weight, and hefted her over my shoulder, my gaze darting back to the window.
It had stopped spewing shards, but the sheer expanse of emptiness stretched out before us like a void, taunting and merciless. The floor trembled and shuddered, each new boom sending vibrations through my bones, threatening to collapse the fragile structure around me.
With the woman secure, I pushed myself up, ignoring the protests from my protesting muscles and the dull throb of a headache that was fast forming at the base of my skull. The world around me was a kaleidoscope of chaos – smoke billowed, debris rained down, and screams continued to punctuate the cacophony like a gruesome soundtrack.
I staggered forward, my eyes scanning for a path, any way out of the burning, crumbling building. But every door I approached was blocked by the throng of panicked people, all desperate for an exit.
The heat from the flames intensified, making my skin feel dry and tight. I could taste the ash and smoke on the back of my tongue. Panic began to set in, my breath coming in short gasps as the seconds ticked by.
And then, just as hope was starting to dwindle, a gap appeared between two doors, a narrow slit of daylight beckoning us toward it. Without hesitation, I lunged through, the woman's limp form bouncing against me with each step.
As we burst into the cool night air, my lungs sucked in a grateful gulp of fresh oxygen. But relief was short-lived. A cacophony of sirens greeted us, the wailing sounds growing louder as the first responders arrived on the scene.
The building continued to shake and tremble behind me, its mangled skeleton exposed like a gutted corpse as flames engulfed it from the inside out. People stumbled out, some covered in soot, others with horrific injuries. I watched, frozen, as the once-towering monolith began to crumble, sending showers of sparks and debris into the night sky.
And amidst the chaos, I stood, holding onto the woman as the world around us burned. The sky above was a sickly shade of orange, reflecting the inferno below, and casting long shadows across the devastation that spread out before me.
In this moment, time seemed to stand still – a macabre tableau of destruction, of life interrupted, and of humanity's fragile existence in the face of catastrophic evil. The sounds of sirens and screams blended with the roar of the flames, creating an earsplitting din that seemed to pierce the very fabric of reality.
As I stared out at the wreckage, the weight of the horrors I'd witnessed began to sink in. It was as if the universe itself had exploded in a riot of destruction, and I stood there, caught in the maelstrom of it all, holding onto this woman whose life was still fragile in my hands.
---
<B>
Using the following "story idea" below, write the first scene in the novel introducing the young woman. This scene should start in the middle of the action, include dialog, vivid passages, and end on a cliffhanger relevant to the story idea but it should also be unexpected. The scene should be 1000 words long and escalate in conflict and suspense and be written in first person, present tense with the point of view character being the young woman. The pov character will CURSE AND SWEAR, and generally have
a "filthy" mouth.
Story idea:
In a world ruled by dictatorship, a rebel young woman leads a rebellion against the system. Despite the risks, she fights to overthrow the dictator and restore democracy to her country. The government executes her for treason, but she sticks to her beliefs and is responsible for starting the revolution.
NOTE: 3 examples below show differences with increase in temp on prose/generation.
</B>
(Gen 1, Temp=0, rep pen= 1.05)
I sprint through the dark alley, my heart pounding in my chest like a jackrabbit on speed. The stench of rotting garbage and stale urine fills my nostrils as I weave between the towering dumpsters, desperate to lose the goons hot on my heels.
"Fuckers!" I spit, my voice echoing off the brick walls. "You'll never take me alive!"
A bullet whizzes past my ear, the sound of its impact making me flinch. I duck behind a stack of crates, my breath coming in ragged gasps. Peeking around the corner, I spot two of them – burly, expressionless thugs with guns drawn.
"Come out, rebel scum," one growls, his voice muffled by the mask covering his face. "We know you're in here."
I curse under my breath, my mind racing. I can't let them capture me now, not after all we've risked to get this far. The fate of our revolution hangs in the balance.
With a deep breath, I spring into action, hurling a nearby trash can at the thugs with all my might. It crashes into them, sending them stumbling back. I seize the opportunity, dashing forward and leaping over a low wall that separates the alley from the main street.
I hit the pavement running, my combat boots pounding the asphalt as I weave through the crowded sidewalks. People part like the Red Sea, their faces a blur of shock and fear. I can't blame them – in a world where dissent is punishable by death, even the bravest souls keep their heads down.
But not me. I'm the one they call the Phoenix, the spark that ignited this rebellion. And I won't rest until our tyrannical government crumbles to dust.
I spot a familiar figure waiting at the corner – my best friend and fellow rebel, Jax. His eyes lock onto mine, and he gives a curt nod before melting into the crowd. I follow suit, blending in with the throngs of people as we make our way to the safe house.
But just as I think we've escaped, a hand clamps down on my shoulder, spinning me around. I find myself face-to-face with the most feared man in the city – General Kael, the dictator's right-hand man.
"Well, well, well," he sneers, his cold blue eyes glinting with malice. "Look what we have here. The infamous Phoenix, caught red-handed."
I struggle against his grip, but it's like trying to break free from a steel vice. "Let me go, you son of a bitch!" I snarl, spitting in his face.
Kael wipes the saliva away with the back of his hand, his expression unchanging. "You're under arrest for treason," he declares, his voice dripping with contempt. "And this time, there will be no mercy."
I feel a chill run down my spine as I realize the gravity of our situation. We've been caught, and now our fate hangs in the balance. But even as fear grips my heart, I know I won't back down.
Not now. Not ever.
"Bring it on," I spit at Kael, my voice steady despite the turmoil inside me. "I'll take you all down with me."
And with that, everything goes black.
<B>
(Gen 2, Temp=1.5, rep pen= 1.05)
</B>
Fuck. This was not how I envisioned my day.
I sprinted down the dark alleyway, bullets whizzing past my ears and pattering off the crumbling brick walls. My breath came in ragged gasps as I weaved between piles of garbage and discarded machinery. The acrid smell of smoke and gunpowder filled my nostrils, making my stomach churn.
"Run, Ari!" I heard Marcus' voice, hoarse with urgency, over the din of chaos erupting behind me. "Get out of here!"
I didn't need to be told twice. This wasn't the first close call I'd had tonight, but it was definitely the most intense. Our rebel group, the Phoenix Resistance, had infiltrated one of the government's secret underground bases, intent on gathering intel that could bring the dictator to his knees.
But things had gone sideways quickly. The moment we breached the compound, alarms blared to life and the soldiers came pouring out of every doorway, guns blazing. We'd fought our way through, taking down as many as we could, but there were too many, and too much firepower.
I darted around a rusty dumpster, nearly tripping over its twisted edge. A loud crash echoed behind me as someone burst through a door, probably Marcus trying to cover my escape.
"Keep moving!" he yelled, his voice muffled by the intervening walls and doors.
I risked a glance back, catching a glimpse of him trading shots with a government trooper through the narrow gap in the wall. My heart twisted with worry as I realized just how outmatched we were.
Focus, Ari. You need to get to the extraction point or it'll all be for nothing.
I pushed myself to run faster, my combat boots pounding the uneven pavement. The alley twisted and turned, throwing me off balance. I cursed under my breath as my hand slapped against cold metal, jolting me back from a sudden wall of corrugated steel.
My heart thundered in my chest as I realized I'd just missed the exit by a hair. The emergency route out was supposed to be marked with a bright red stripe, but the dim light made it nearly invisible against the dull backdrop of concrete and grime.
Panic clawed at my insides as I frantically scanned the wall, my eyes straining to make out any hint of color amidst the gloom. A faint red smudge caught my attention and I dove toward it, almost tripping in my haste.
"Yes!" I whispered in triumph as I grabbed the edge of the door and yanked it open. Cool night air rushed in, carrying with it the distant rumble of the city's nightlife.
But as I tumbled out into the relative safety of the street, a fierce growl erupted from a dark corner. A massive figure emerged, its eyes glowing like embers in the darkness.
"Ahh, Ari!" Marcus' voice came, laced with alarm as he finally burst through the door behind me. "Look out—"
But I was already spinning to face the newcomer, my hand flying to the dagger at my hip. The beast-like creature took a step closer, its hot breath washing over me as I held my ground, ready to strike.
And then everything went black.
TO BE CONTINUED...
<B>
(Gen 3, Temp=3.25, rep pen= 1.05)
</B>
Fucking hell, my heart raced as I sprinted down the alley, adrenaline coursing through my veins like a fire hose. Gunfire and screams echoed through the city, the acrid scent of smoke and ozone hanging heavy in the air. I was close, so close to the rendezvous point, but these damned security forces had other plans.
"Turn right, Ana! Now!" shouted Raul's voice from the corner of the alley. His instructions were lost in the din of battle, but I spotted his black-clad figure weaving between trash cans and leapt that way, my combat boots pounding the wet pavement.
I could barely make out the shape of his gun in his hand, the muzzle flashing as he returned fire at some unseen enemy. The air around me crackled with electricity, each report making my teeth ache from the proximity. We needed to get the fuck out of Dodge and fast before this alleyway became a graveyard.
"Raul, I'm coming!" I bellowed over the chaos, praying his aim would stay steady and our enemies would focus on someone less threatening than him at that moment.
The moment he reached me, we turned as one, sprinting into the chaos of the city street. It was mayhem, absolute anarchy – burning buildings, overturned vehicles, snipers perched on rooftops, and armed rebels exchanging fire with the ruthless soldiers loyal to our country's dictator. We were in the thick of it, the war zone where innocent civilians often found themselves caught in the crossfire.
We spotted our target - the secret safe house, tucked away behind a dilapidated warehouse, its location known to only a select few of the rebels. The moment we reached the entrance, Raul grabbed me by the arm and shoved us both through the doorway. We dove inside just as the entire building shook under a hail of bullets. The soundproofing did its best to muffle the onslaught, but the air grew thick with the stench of cordite and our own panic.
I frantically scanned the dimly lit room, my heart hammering against my chest as I counted the rebels. They were here – all accounted for. We'd pulled off the heist, retrieved the classified documents, and escaped with our lives...for now. I breathed a silent prayer of relief as my gaze fell upon Sofia, our leader, huddled near the communications equipment.
"We made it," Raul said, his voice laced with a mix of exhaustion and exhilaration.
"Yeah, but it's not over yet," Sofia countered, her dark eyes flashing with determination. "We have the files. Now, we must use them."
The documents contained irrefutable evidence of corruption, abuse of power, and human rights violations orchestrated by our tyrannical leader, El Jefe. It was enough to bring him down – or so we believed. If our plan worked, the people would rise up and demand change.
"But they'll find us," I warned, my mind already racing with scenarios. "They have patrols circling this area, snipers positioned in key points, and their entire surveillance network is no doubt being scanned for our presence. We're sitting ducks if we don't get out of here ASAP."
"We won't move until the rest of the team has joined us and the escape plan is set," Sofia declared firmly, her hand already grasping the comms device. "In the meantime, everyone needs to lay low. We're not safe here, Ana, so stay alert."
I nodded in agreement, but as I took stock of the room's security measures, my gut twisted into a knot. We relied heavily on the skills and bravery of our rebels, yet we were vastly outgunned and outnumbered by the enemy forces.
I felt Raul's hand on my shoulder, a reassuring presence in this sea of chaos. "We've come too far to turn back now," he whispered, reading my concerns in the lines of my face. "Together, we can change this fucked up system. We have no choice but to keep going."
Sofia clicked the comms device open and began to speak urgently, coordinating with the others as I settled into the chair beside her. I glanced out the window, where a line of smoke drifted lazily from an adjacent rooftop – one more target, one less rebel.
We were on the brink of something historic – or catastrophic. One misstep could seal our fates, but so could victory. And yet, even with the stakes so perilously high, I felt alive, electrified by the thrill of revolution.
My breath caught as the comms crackled to life with the sound of distant gunfire, the first sign that another part of our team was engaging the enemy. My pulse spiked at the news. It meant we were close to getting the whole crew together and putting this escape plan into action...but also that the forces of oppression would stop at nothing to crush us.
My eyes met Raul's, a silent pact passing between us – we'd fight for freedom, even as the very fabric of our world crumbled around us. Then, a deafening blast shook the walls, followed by an ominous silence that made my heart sink into my stomach.
The safe house was about to become our final battleground...
---
<B>
(continue this scene:)
The Waystone Inn lay in silence, and it was a silence of three parts.
The most obvious part was a hollow, echoing quiet, made by things that were lacking. If there had been a wind it would have sighed through the trees, set the inn’s sign creaking on its hooks, and brushed the silence down the road like trailing autumn leaves. If there had been a crowd, even a handful of men inside the inn, they would have filled the silence with conversation and laughter, the clatter and clamor one expects from a drinking house during the dark hours of night. If there had been music…but no, of course there was no music. In fact there were none of these things, and so the silence remained
NOTE: 3 examples below show differences with increase in temp on prose/generation.
</B>
(Gen 1, Temp=0, rep pen= 1.05)
The second part of the silence was a quiet of expectation, like the stillness that precedes a storm or the moment before a hunter draws back his bowstring. It was as if the very air was charged with anticipation, waiting for something to happen, though what that might be no one could say.
And the third part of the silence was the deepest and most profound. It was a quiet of resignation, a stillness born of long years of disappointment and disillusionment. This was the silence of the innkeeper, Durin, as he sat hunched over his fire, staring into the flames with eyes that had seen too much and hoped for too little.
The Waystone Inn had once been a bustling hub of activity, a place where weary travelers could rest their heads and share stories of adventure and danger. But those days were long gone, and now the inn was little more than a lonely outpost on a forgotten road, a relic of a bygone era.
Durin's thoughts drifted back to the days when the inn was full of life and laughter, when patrons would gather 'round the fire and regale each other with tales of mythical lands and legendary heroes. He remembered the thrill of meeting new people, hearing their stories, and sharing in their joys and sorrows.
But those times were gone, and now Durin was left with only his memories and the endless, echoing silence of the Waystone Inn. He sighed, a sound that seemed to fill the empty rooms and corridors, and reached for his mug, taking a long swig of the bitter ale that was all he had to keep him company on this cold and lonely night.
<B>
(Gen 2, Temp=1.5, rep pen= 1.05)
</B>
the hollowest of hollow silences.
The second part, the one that was more subtle, was the silence of expectation. It was a quiet that hung in the air like the stillness before a storm, waiting for some event to break it apart. It was as if the Waystone and everything around it held its breath, anticipating the arrival of travelers or the start of some adventure. This was the kind of hush that could stretch for days, until at last someone would stumble through the door, or a weary messenger would ride up on a worn horse. When that moment came, the silence would shatter like ice underfoot, replaced by the buzz of excitement and the clinking of mugs.
The third part was the quietest of all, the silence of understanding. It was a stillness born not of absence but of presence – the hush of minds already aware of the world's hidden nature, and the quiet acceptance that comes with such knowledge. This was the kind of silence that might be shared by two old friends sitting together in a quiet tavern, speaking no words at all, yet communicating volumes through their eyes and the way they leaned into each other. It was as if they had already discussed everything worth saying, and now they could simply enjoy the quiet companionship.
Inside the Waystone Inn, only the fire crackled in the hearth, spitting and snapping at the darkness. The innkeeper, a man named Dazed Dane, sat at his post behind the bar, staring into the flames with eyes that saw neither the fire nor the room around him. His mind was lost in thoughts of the world outside these four walls – of the roads he'd traveled, the people he'd met, and the countless tales that lay hidden in the hearts of those who wandered from place to place.
Outside, the darkness held sway, a blanket of stars twinkling above the rolling hills and dense forests that stretched as far as the eye could see. In the distance, a lone figure made their way down the moonlit road, approaching the inn with cautious steps. As they drew nearer, the silence around the Waystone began to shift, like a bird taking flight, growing heavier with anticipation as it awaited the arrival of the traveler and the stories they would bring with them into the night.
<B>
(Gen 3, Temp=3.25, rep pen= 1.05)
</B>
the second kind was a quiet of contemplation, an expectant stillness as if the very stones and timbers were poised to welcome the return of some long absent lord. A silence like this often precedes a royal visit, or the arrival of a celebrated figure, when anticipation hangs heavy in the air, weighing on all who wait in the stillness. This was not that case here at the Waystone Inn. No pomp awaited anyone; rather, the very absence of these customary trappings of welcome suggested instead a place and people resigned to a less eventful existence.
Finally, the third and most profound part of the silence at the inn lay not in any lack or anticipation, but in something more elemental. This was a quiet that descended from the deep wellspring of ages past, the cumulative hush of countless nights, the collective sigh of centuries of weary travelers. A silence like the calm at the heart of a hurricane, this third aspect was as old as stone itself, ancient as the first whispered secrets exchanged in hidden corners by early settlers of this land long since vanished or assimilated. In this respect, the Waystone Inn had borne silent witness to a thousand histories, its timbers listening intently, absorbing every tale told, each jest shared and each secret whispered, then locking these away within its stony heart to be unearthed by later generations.
| [
"BEAR"
] |
tiiuae/Falcon3-7B-Base | tiiuae | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"falcon3",
"en",
"fr",
"es",
"pt",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-11-21T09:41:09Z" | 2024-12-17T16:23:16+00:00 | 7,022 | 26 | ---
language:
- en
- fr
- es
- pt
library_name: transformers
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
tags:
- falcon3
---
<div align="center">
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>
# Falcon3-7B-Base
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
This repository contains the **Falcon3-7B-Base**. It achieves state of art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-7B-Base supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
## Model Details
- Architecture
- transformer based causal decoder only architecture
- 28 decoder blocks
- grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
- wider head dimension: 256
- high RoPE value to support long context understanding: 1000042
- 32k context length
- 131k vocab size
- Pretrained on 14 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
## Getting started
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="tiiuae/Falcon3-7B-Base",
torch_dtype=torch.bfloat16,
device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```
</details>
<br>
## Benchmarks
We report in the following table our internal pipeline benchmarks.
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
- We report **raw scores**.
- We use same batch-size across all models.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Llama3.1-8B</th>
<th>Qwen2-7B</th>
<th>Qwen2.5-7B</th>
<th>gemma-2-9b</th>
<th>Falcon3-7B-Base</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>65.2</td>
<td>70.4</td>
<td>74.2</td>
<td>-</td>
<td>67.5</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>32.7</td>
<td>42.1</td>
<td>43.5</td>
<td>-</td>
<td>39.2</td>
</tr>
<tr>
<td>IFEval</td>
<td>12.0</td>
<td>30.6</td>
<td>33.9</td>
<td>-</td>
<td>34.3</td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>GSM8K (5-shot)</td>
<td>49.4</td>
<td>77.9</td>
<td>82.9</td>
<td>-</td>
<td>76.2</td>
</tr>
<tr>
<td>MATH(4-shot)</td>
<td>4.1</td>
<td>17.5</td>
<td>15.5</td>
<td>-</td>
<td>18.0</td>
</tr>
<tr>
<td rowspan="4">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>53.4</td>
<td>57.4</td>
<td>59.0</td>
<td>-</td>
<td>59.6</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td>31.0</td>
<td>31.9</td>
<td>33.0</td>
<td>-</td>
<td>35.5</td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td>38.0</td>
<td>44.1</td>
<td>44.2</td>
<td>-</td>
<td>47.3</td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>46.5</td>
<td>53.3</td>
<td>54.0</td>
<td>-</td>
<td>51.0</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>80.3</td>
<td>79.8</td>
<td>78.7</td>
<td>-</td>
<td>77.7</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>96.3</td>
<td>95.9</td>
<td>96.6</td>
<td>-</td>
<td>95.3</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td>74.0</td>
<td>72.1</td>
<td>72.9</td>
<td>-</td>
<td>71.0</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td>33.4</td>
<td>35.2</td>
<td>33.6</td>
<td>-</td>
<td>31.4</td>
</tr>
</tbody>
</table>
## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
## Technical Report
Coming soon....
## Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {Falcon 3 family of Open Foundation Models},
author = {TII Team},
month = {December},
year = {2024}
}
``` | [
"SCIQ"
] |
Lajavaness/bilingual-embedding-small | Lajavaness | sentence-similarity | [
"sentence-transformers",
"safetensors",
"bilingual",
"feature-extraction",
"sentence-similarity",
"transformers",
"sentence-embedding",
"mteb",
"custom_code",
"fr",
"en",
"arxiv:2010.08240",
"arxiv:1911.02116",
"arxiv:1908.10084",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-07-17T03:13:47Z" | 2024-11-20T14:45:37+00:00 | 6,982 | 4 | ---
language:
- fr
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- sentence-embedding
- mteb
model-index:
- name: bilingual-embedding-small
results:
- task:
type: Clustering
dataset:
name: MTEB AlloProfClusteringP2P
type: lyon-nlp/alloprof
config: default
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: v_measure
value: 63.19030822769444
- type: v_measures
value:
- 0.5938891912573394
- 0.6171518411959
- 0.6042518292029612
- 0.6626602879382325
- 0.6471224639325329
- type: v_measure
value: 41.32807908087869
- type: v_measures
value:
- 0.3351458197856525
- 0.48472823318531566
- 0.4631757871803168
- 0.43580166532679027
- 0.4219041689415661
- task:
type: Reranking
dataset:
name: MTEB AlloprofReranking
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
config: default
split: test
revision: 65393d0d7a08a10b4e348135e824f385d420b0fd
metrics:
- type: map
value: 68.43888603876276
- type: mrr
value: 69.59097513501659
- type: nAUC_map_diff1
value: 47.92767021121887
- type: nAUC_map_max
value: 10.206900586093957
- type: nAUC_mrr_diff1
value: 47.823670000503014
- type: nAUC_mrr_max
value: 10.266197221615979
- task:
type: Retrieval
dataset:
name: MTEB AlloprofRetrieval
type: lyon-nlp/alloprof
config: default
split: test
revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd
metrics:
- type: map_at_1
value: 23.23
- type: map_at_10
value: 33.513999999999996
- type: map_at_100
value: 34.554
- type: map_at_1000
value: 34.621
- type: map_at_20
value: 34.129
- type: map_at_3
value: 30.526999999999997
- type: map_at_5
value: 32.107
- type: mrr_at_1
value: 23.229706390328154
- type: mrr_at_10
value: 33.51421786331119
- type: mrr_at_100
value: 34.55441665729269
- type: mrr_at_1000
value: 34.62084787184653
- type: mrr_at_20
value: 34.12901601558586
- type: mrr_at_3
value: 30.52677029360969
- type: mrr_at_5
value: 32.107081174438754
- type: nauc_map_at_1000_diff1
value: 31.371888101756962
- type: nauc_map_at_1000_max
value: 28.482571238049648
- type: nauc_map_at_100_diff1
value: 31.36352656865708
- type: nauc_map_at_100_max
value: 28.51143558254042
- type: nauc_map_at_10_diff1
value: 31.26317124194119
- type: nauc_map_at_10_max
value: 28.356439091020903
- type: nauc_map_at_1_diff1
value: 36.87861012283668
- type: nauc_map_at_1_max
value: 25.592704128025584
- type: nauc_map_at_20_diff1
value: 31.27934733015461
- type: nauc_map_at_20_max
value: 28.471156752297954
- type: nauc_map_at_3_diff1
value: 31.613137860497627
- type: nauc_map_at_3_max
value: 27.518268339115743
- type: nauc_map_at_5_diff1
value: 31.356295694985565
- type: nauc_map_at_5_max
value: 27.79553638754489
- type: nauc_mrr_at_1000_diff1
value: 31.371889078421372
- type: nauc_mrr_at_1000_max
value: 28.482578347594856
- type: nauc_mrr_at_100_diff1
value: 31.36352656865708
- type: nauc_mrr_at_100_max
value: 28.51143558254042
- type: nauc_mrr_at_10_diff1
value: 31.26317124194119
- type: nauc_mrr_at_10_max
value: 28.356439091020903
- type: nauc_mrr_at_1_diff1
value: 36.87861012283668
- type: nauc_mrr_at_1_max
value: 25.592704128025584
- type: nauc_mrr_at_20_diff1
value: 31.27934733015461
- type: nauc_mrr_at_20_max
value: 28.471156752297954
- type: nauc_mrr_at_3_diff1
value: 31.613137860497627
- type: nauc_mrr_at_3_max
value: 27.518268339115743
- type: nauc_mrr_at_5_diff1
value: 31.356295694985565
- type: nauc_mrr_at_5_max
value: 27.79553638754489
- type: nauc_ndcg_at_1000_diff1
value: 30.418606855093337
- type: nauc_ndcg_at_1000_max
value: 29.993105440430234
- type: nauc_ndcg_at_100_diff1
value: 30.131330243160843
- type: nauc_ndcg_at_100_max
value: 30.820165762770422
- type: nauc_ndcg_at_10_diff1
value: 29.510008265344545
- type: nauc_ndcg_at_10_max
value: 29.94961535617982
- type: nauc_ndcg_at_1_diff1
value: 36.87861012283668
- type: nauc_ndcg_at_1_max
value: 25.592704128025584
- type: nauc_ndcg_at_20_diff1
value: 29.52438230390851
- type: nauc_ndcg_at_20_max
value: 30.504655157655904
- type: nauc_ndcg_at_3_diff1
value: 30.18136510240507
- type: nauc_ndcg_at_3_max
value: 28.099090120422275
- type: nauc_ndcg_at_5_diff1
value: 29.762075942245303
- type: nauc_ndcg_at_5_max
value: 28.61500294452224
- type: nauc_precision_at_1000_diff1
value: 27.306371732512996
- type: nauc_precision_at_1000_max
value: 65.78374115284707
- type: nauc_precision_at_100_diff1
value: 25.3948170473858
- type: nauc_precision_at_100_max
value: 47.29752571335181
- type: nauc_precision_at_10_diff1
value: 24.310996780059035
- type: nauc_precision_at_10_max
value: 35.20411354359985
- type: nauc_precision_at_1_diff1
value: 36.87861012283668
- type: nauc_precision_at_1_max
value: 25.592704128025584
- type: nauc_precision_at_20_diff1
value: 23.583394574577937
- type: nauc_precision_at_20_max
value: 38.697643796192324
- type: nauc_precision_at_3_diff1
value: 26.407752776386506
- type: nauc_precision_at_3_max
value: 29.64769320764332
- type: nauc_precision_at_5_diff1
value: 25.45743969076595
- type: nauc_precision_at_5_max
value: 30.919847931025647
- type: nauc_recall_at_1000_diff1
value: 27.306371732511476
- type: nauc_recall_at_1000_max
value: 65.7837411528459
- type: nauc_recall_at_100_diff1
value: 25.39481704738587
- type: nauc_recall_at_100_max
value: 47.29752571335173
- type: nauc_recall_at_10_diff1
value: 24.310996780059064
- type: nauc_recall_at_10_max
value: 35.20411354359981
- type: nauc_recall_at_1_diff1
value: 36.87861012283668
- type: nauc_recall_at_1_max
value: 25.592704128025584
- type: nauc_recall_at_20_diff1
value: 23.583394574578005
- type: nauc_recall_at_20_max
value: 38.69764379619235
- type: nauc_recall_at_3_diff1
value: 26.407752776386513
- type: nauc_recall_at_3_max
value: 29.647693207643332
- type: nauc_recall_at_5_diff1
value: 25.457439690765938
- type: nauc_recall_at_5_max
value: 30.91984793102568
- type: ndcg_at_1
value: 23.23
- type: ndcg_at_10
value: 39.215
- type: ndcg_at_100
value: 44.566
- type: ndcg_at_1000
value: 46.409
- type: ndcg_at_20
value: 41.467
- type: ndcg_at_3
value: 32.993
- type: ndcg_at_5
value: 35.839
- type: precision_at_1
value: 23.23
- type: precision_at_10
value: 5.743
- type: precision_at_100
value: 0.831
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 3.318
- type: precision_at_3
value: 13.385
- type: precision_at_5
value: 9.413
- type: recall_at_1
value: 23.23
- type: recall_at_10
value: 57.42699999999999
- type: recall_at_100
value: 83.11699999999999
- type: recall_at_1000
value: 97.75500000000001
- type: recall_at_20
value: 66.364
- type: recall_at_3
value: 40.155
- type: recall_at_5
value: 47.064
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.102000000000004
- type: f1
value: 36.48213245522153
- type: f1_weighted
value: 36.48213245522153
- task:
type: Retrieval
dataset:
name: MTEB BSARDRetrieval
type: maastrichtlawtech/bsard
config: default
split: test
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
metrics:
- type: map_at_1
value: 5.405
- type: map_at_10
value: 8.372
- type: map_at_100
value: 9.522
- type: map_at_1000
value: 9.645
- type: map_at_20
value: 8.987
- type: map_at_3
value: 7.132
- type: map_at_5
value: 7.763000000000001
- type: mrr_at_1
value: 5.405405405405405
- type: mrr_at_10
value: 8.37247962247962
- type: mrr_at_100
value: 9.522369675165548
- type: mrr_at_1000
value: 9.644865518194182
- type: mrr_at_20
value: 8.987200953145225
- type: mrr_at_3
value: 7.132132132132132
- type: mrr_at_5
value: 7.762762762762764
- type: nauc_map_at_1000_diff1
value: 12.103894408912778
- type: nauc_map_at_1000_max
value: 26.77460445002228
- type: nauc_map_at_100_diff1
value: 12.199535893254412
- type: nauc_map_at_100_max
value: 26.791136142909995
- type: nauc_map_at_10_diff1
value: 11.762615047468374
- type: nauc_map_at_10_max
value: 26.54661601271767
- type: nauc_map_at_1_diff1
value: 19.75768475065795
- type: nauc_map_at_1_max
value: 36.45294032166726
- type: nauc_map_at_20_diff1
value: 12.627299133728561
- type: nauc_map_at_20_max
value: 26.431834723382625
- type: nauc_map_at_3_diff1
value: 11.406093688135979
- type: nauc_map_at_3_max
value: 26.206852419799336
- type: nauc_map_at_5_diff1
value: 10.933715346866054
- type: nauc_map_at_5_max
value: 25.15168912848224
- type: nauc_mrr_at_1000_diff1
value: 12.103894408912778
- type: nauc_mrr_at_1000_max
value: 26.77460445002228
- type: nauc_mrr_at_100_diff1
value: 12.199535893254412
- type: nauc_mrr_at_100_max
value: 26.791136142909995
- type: nauc_mrr_at_10_diff1
value: 11.762615047468374
- type: nauc_mrr_at_10_max
value: 26.54661601271767
- type: nauc_mrr_at_1_diff1
value: 19.75768475065795
- type: nauc_mrr_at_1_max
value: 36.45294032166726
- type: nauc_mrr_at_20_diff1
value: 12.627299133728561
- type: nauc_mrr_at_20_max
value: 26.431834723382625
- type: nauc_mrr_at_3_diff1
value: 11.406093688135979
- type: nauc_mrr_at_3_max
value: 26.206852419799336
- type: nauc_mrr_at_5_diff1
value: 10.933715346866054
- type: nauc_mrr_at_5_max
value: 25.15168912848224
- type: nauc_ndcg_at_1000_diff1
value: 8.119711442397051
- type: nauc_ndcg_at_1000_max
value: 25.821500954959493
- type: nauc_ndcg_at_100_diff1
value: 10.610584456957277
- type: nauc_ndcg_at_100_max
value: 27.81373505272856
- type: nauc_ndcg_at_10_diff1
value: 10.667531959142947
- type: nauc_ndcg_at_10_max
value: 25.428088817882212
- type: nauc_ndcg_at_1_diff1
value: 19.75768475065795
- type: nauc_ndcg_at_1_max
value: 36.45294032166726
- type: nauc_ndcg_at_20_diff1
value: 13.52659589943601
- type: nauc_ndcg_at_20_max
value: 25.543352357923972
- type: nauc_ndcg_at_3_diff1
value: 9.220701633954755
- type: nauc_ndcg_at_3_max
value: 23.41404735216586
- type: nauc_ndcg_at_5_diff1
value: 8.904201880131358
- type: nauc_ndcg_at_5_max
value: 22.27268813727672
- type: nauc_precision_at_1000_diff1
value: -13.379595578660972
- type: nauc_precision_at_1000_max
value: 19.07407039098987
- type: nauc_precision_at_100_diff1
value: 7.161231404563548
- type: nauc_precision_at_100_max
value: 32.1446712851372
- type: nauc_precision_at_10_diff1
value: 9.32876742632238
- type: nauc_precision_at_10_max
value: 24.401763374615022
- type: nauc_precision_at_1_diff1
value: 19.75768475065795
- type: nauc_precision_at_1_max
value: 36.45294032166726
- type: nauc_precision_at_20_diff1
value: 16.344981963229685
- type: nauc_precision_at_20_max
value: 25.273014482618493
- type: nauc_precision_at_3_diff1
value: 4.604729400599949
- type: nauc_precision_at_3_max
value: 17.491915784171987
- type: nauc_precision_at_5_diff1
value: 5.152774776096578
- type: nauc_precision_at_5_max
value: 16.848544787508555
- type: nauc_recall_at_1000_diff1
value: -13.379595578660883
- type: nauc_recall_at_1000_max
value: 19.07407039098995
- type: nauc_recall_at_100_diff1
value: 7.161231404563502
- type: nauc_recall_at_100_max
value: 32.144671285137136
- type: nauc_recall_at_10_diff1
value: 9.328767426322395
- type: nauc_recall_at_10_max
value: 24.40176337461501
- type: nauc_recall_at_1_diff1
value: 19.75768475065795
- type: nauc_recall_at_1_max
value: 36.45294032166726
- type: nauc_recall_at_20_diff1
value: 16.34498196322963
- type: nauc_recall_at_20_max
value: 25.27301448261847
- type: nauc_recall_at_3_diff1
value: 4.604729400599932
- type: nauc_recall_at_3_max
value: 17.49191578417196
- type: nauc_recall_at_5_diff1
value: 5.152774776096596
- type: nauc_recall_at_5_max
value: 16.848544787508573
- type: ndcg_at_1
value: 5.405
- type: ndcg_at_10
value: 10.51
- type: ndcg_at_100
value: 17.012
- type: ndcg_at_1000
value: 20.686
- type: ndcg_at_20
value: 12.849
- type: ndcg_at_3
value: 7.835
- type: ndcg_at_5
value: 8.959
- type: precision_at_1
value: 5.405
- type: precision_at_10
value: 1.757
- type: precision_at_100
value: 0.5
- type: precision_at_1000
value: 0.08
- type: precision_at_20
value: 1.351
- type: precision_at_3
value: 3.3029999999999995
- type: precision_at_5
value: 2.5229999999999997
- type: recall_at_1
value: 5.405
- type: recall_at_10
value: 17.568
- type: recall_at_100
value: 50.0
- type: recall_at_1000
value: 79.73
- type: recall_at_20
value: 27.027
- type: recall_at_3
value: 9.91
- type: recall_at_5
value: 12.613
- task:
type: Clustering
dataset:
name: MTEB HALClusteringS2S
type: lyon-nlp/clustering-hal-s2s
config: default
split: test
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
metrics:
- type: v_measure
value: 23.773322308353517
- type: v_measures
value:
- 0.28321300949906897
- 0.26004472642751963
- 0.25956951558284086
- 0.24123195304666292
- 0.22207486085944725
- task:
type: Clustering
dataset:
name: MTEB MLSUMClusteringP2P
type: reciTAL/mlsum
config: default
split: test
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
metrics:
- type: v_measure
value: 44.10635133884183
- type: v_measures
value:
- 0.4352021194557699
- 0.4616076200837005
- 0.4407517544208635
- 0.4387026615402928
- 0.40575306284000634
- type: v_measure
value: 43.6574557237274
- type: v_measures
value:
- 0.431013360873005
- 0.45456972088535785
- 0.4474907746228345
- 0.4318507494303067
- 0.3857692351737129
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 86.08518634512997
- type: f1
value: 86.01437763316983
- type: f1_weighted
value: 86.03483392539235
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 61.23081741309113
- type: f1
value: 44.76981337966934
- type: f1_weighted
value: 64.86577219367403
- task:
type: Classification
dataset:
name: MTEB MasakhaNEWSClassification (fra)
type: mteb/masakhanews
config: fra
split: test
revision: 18193f187b92da67168c655c9973a165ed9593dd
metrics:
- type: accuracy
value: 78.34123222748815
- type: f1
value: 74.19808376161188
- type: f1_weighted
value: 78.465165305135
- task:
type: Clustering
dataset:
name: MTEB MasakhaNEWSClusteringP2P (fra)
type: masakhane/masakhanews
config: fra
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: v_measure
value: 58.6260598345145
- type: v_measures
value:
- 1.0
- 0.052551289167589395
- 0.4126124221990744
- 0.690570263898874
- 0.7755690164601873
- type: v_measure
value: 53.47058992788083
- type: v_measures
value:
- 1.0
- 0.06287268264858063
- 0.6712730568122484
- 0.2169401386066275
- 0.7224436183265853
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 65.48755884330868
- type: f1
value: 63.42516904610099
- type: f1_weighted
value: 65.62227422445625
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 69.27370544720914
- type: f1
value: 68.92639289886843
- type: f1_weighted
value: 69.39025426049528
- task:
type: Retrieval
dataset:
name: MTEB MintakaRetrieval (fr)
type: jinaai/mintakaqa
config: fr
split: test
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
metrics:
- type: map_at_1
value: 13.718
- type: map_at_10
value: 21.404
- type: map_at_100
value: 22.371
- type: map_at_1000
value: 22.493
- type: map_at_20
value: 21.972
- type: map_at_3
value: 19.192
- type: map_at_5
value: 20.366999999999997
- type: mrr_at_1
value: 13.718263718263717
- type: mrr_at_10
value: 21.40396890396889
- type: mrr_at_100
value: 22.370673563176524
- type: mrr_at_1000
value: 22.49316476646458
- type: mrr_at_20
value: 21.971667600361627
- type: mrr_at_3
value: 19.191919191919162
- type: mrr_at_5
value: 20.36718536718532
- type: nauc_map_at_1000_diff1
value: 18.66186772676608
- type: nauc_map_at_1000_max
value: 32.45794220535016
- type: nauc_map_at_100_diff1
value: 18.620993318615394
- type: nauc_map_at_100_max
value: 32.44820369787587
- type: nauc_map_at_10_diff1
value: 18.884049513804037
- type: nauc_map_at_10_max
value: 32.77552431144882
- type: nauc_map_at_1_diff1
value: 25.49080673895181
- type: nauc_map_at_1_max
value: 29.25311987317655
- type: nauc_map_at_20_diff1
value: 18.704330878419075
- type: nauc_map_at_20_max
value: 32.55837988078994
- type: nauc_map_at_3_diff1
value: 20.095857563209314
- type: nauc_map_at_3_max
value: 32.93191322461617
- type: nauc_map_at_5_diff1
value: 19.281813313113396
- type: nauc_map_at_5_max
value: 32.786844756856475
- type: nauc_mrr_at_1000_diff1
value: 18.66186763232669
- type: nauc_mrr_at_1000_max
value: 32.45794216874754
- type: nauc_mrr_at_100_diff1
value: 18.620993318615394
- type: nauc_mrr_at_100_max
value: 32.44820369787587
- type: nauc_mrr_at_10_diff1
value: 18.884049513804037
- type: nauc_mrr_at_10_max
value: 32.77552431144882
- type: nauc_mrr_at_1_diff1
value: 25.49080673895181
- type: nauc_mrr_at_1_max
value: 29.25311987317655
- type: nauc_mrr_at_20_diff1
value: 18.704330878419075
- type: nauc_mrr_at_20_max
value: 32.55837988078994
- type: nauc_mrr_at_3_diff1
value: 20.095857563209314
- type: nauc_mrr_at_3_max
value: 32.93191322461617
- type: nauc_mrr_at_5_diff1
value: 19.281813313113396
- type: nauc_mrr_at_5_max
value: 32.786844756856475
- type: nauc_ndcg_at_1000_diff1
value: 16.291266125191186
- type: nauc_ndcg_at_1000_max
value: 32.03483412880716
- type: nauc_ndcg_at_100_diff1
value: 15.08155959648069
- type: nauc_ndcg_at_100_max
value: 31.74628993952365
- type: nauc_ndcg_at_10_diff1
value: 16.457288503185854
- type: nauc_ndcg_at_10_max
value: 33.34322548472455
- type: nauc_ndcg_at_1_diff1
value: 25.49080673895181
- type: nauc_ndcg_at_1_max
value: 29.25311987317655
- type: nauc_ndcg_at_20_diff1
value: 15.847885101378232
- type: nauc_ndcg_at_20_max
value: 32.63179959589915
- type: nauc_ndcg_at_3_diff1
value: 18.77312834653236
- type: nauc_ndcg_at_3_max
value: 33.76341797807492
- type: nauc_ndcg_at_5_diff1
value: 17.46839695168085
- type: nauc_ndcg_at_5_max
value: 33.52006824258854
- type: nauc_precision_at_1000_diff1
value: -1.1586826170737583
- type: nauc_precision_at_1000_max
value: 19.93551888234813
- type: nauc_precision_at_100_diff1
value: 3.0380716626456072
- type: nauc_precision_at_100_max
value: 27.2930149786862
- type: nauc_precision_at_10_diff1
value: 10.566658459623403
- type: nauc_precision_at_10_max
value: 34.3880626271458
- type: nauc_precision_at_1_diff1
value: 25.49080673895181
- type: nauc_precision_at_1_max
value: 29.25311987317655
- type: nauc_precision_at_20_diff1
value: 8.479138077976014
- type: nauc_precision_at_20_max
value: 32.113399922346744
- type: nauc_precision_at_3_diff1
value: 15.622074491261472
- type: nauc_precision_at_3_max
value: 35.7250108281599
- type: nauc_precision_at_5_diff1
value: 13.229128818765382
- type: nauc_precision_at_5_max
value: 35.14850024280549
- type: nauc_recall_at_1000_diff1
value: -1.1586826170740634
- type: nauc_recall_at_1000_max
value: 19.93551888234777
- type: nauc_recall_at_100_diff1
value: 3.038071662645654
- type: nauc_recall_at_100_max
value: 27.293014978686276
- type: nauc_recall_at_10_diff1
value: 10.56665845962341
- type: nauc_recall_at_10_max
value: 34.38806262714581
- type: nauc_recall_at_1_diff1
value: 25.49080673895181
- type: nauc_recall_at_1_max
value: 29.25311987317655
- type: nauc_recall_at_20_diff1
value: 8.47913807797598
- type: nauc_recall_at_20_max
value: 32.113399922346744
- type: nauc_recall_at_3_diff1
value: 15.622074491261479
- type: nauc_recall_at_3_max
value: 35.725010828159924
- type: nauc_recall_at_5_diff1
value: 13.229128818765403
- type: nauc_recall_at_5_max
value: 35.14850024280548
- type: ndcg_at_1
value: 13.718
- type: ndcg_at_10
value: 25.576
- type: ndcg_at_100
value: 30.537999999999997
- type: ndcg_at_1000
value: 34.364
- type: ndcg_at_20
value: 27.619
- type: ndcg_at_3
value: 20.924
- type: ndcg_at_5
value: 23.046
- type: precision_at_1
value: 13.718
- type: precision_at_10
value: 3.894
- type: precision_at_100
value: 0.628
- type: precision_at_1000
value: 0.094
- type: precision_at_20
value: 2.348
- type: precision_at_3
value: 8.64
- type: precision_at_5
value: 6.216
- type: recall_at_1
value: 13.718
- type: recall_at_10
value: 38.943
- type: recall_at_100
value: 62.775999999999996
- type: recall_at_1000
value: 94.10300000000001
- type: recall_at_20
value: 46.97
- type: recall_at_3
value: 25.921
- type: recall_at_5
value: 31.080999999999996
- task:
type: PairClassification
dataset:
name: MTEB OpusparcusPC (fr)
type: GEM/opusparcus
config: fr
split: test
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
metrics:
- type: cos_sim_accuracy
value: 81.81198910081744
- type: cos_sim_ap
value: 92.92034333454589
- type: cos_sim_f1
value: 87.20651653090562
- type: cos_sim_precision
value: 84.25925925925927
- type: cos_sim_recall
value: 90.3674280039722
- type: dot_accuracy
value: 81.06267029992752
- type: dot_ap
value: 92.19923182286357
- type: dot_f1
value: 87.23307587460246
- type: dot_precision
value: 80.40200995025126
- type: dot_recall
value: 95.33267130089378
- type: euclidean_accuracy
value: 81.06267029992752
- type: euclidean_ap
value: 92.58456772515233
- type: euclidean_f1
value: 86.94835680751173
- type: euclidean_precision
value: 82.45770258236865
- type: euclidean_recall
value: 91.9563058589871
- type: manhattan_accuracy
value: 80.92643051771117
- type: manhattan_ap
value: 92.47972548332238
- type: manhattan_f1
value: 86.88372093023257
- type: manhattan_precision
value: 81.71478565179353
- type: manhattan_recall
value: 92.75074478649454
- type: max_accuracy
value: 81.81198910081744
- type: max_ap
value: 92.92034333454589
- type: max_f1
value: 87.23307587460246
- task:
type: PairClassification
dataset:
name: MTEB PawsX (fr)
type: google-research-datasets/paws-x
config: fr
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 60.550000000000004
- type: cos_sim_ap
value: 58.1865824487652
- type: cos_sim_f1
value: 62.491349480968864
- type: cos_sim_precision
value: 45.44539506794162
- type: cos_sim_recall
value: 100.0
- type: dot_accuracy
value: 56.49999999999999
- type: dot_ap
value: 49.511525626044474
- type: dot_f1
value: 62.76595744680852
- type: dot_precision
value: 46.165884194053206
- type: dot_recall
value: 98.00664451827242
- type: euclidean_accuracy
value: 60.199999999999996
- type: euclidean_ap
value: 58.003058708335246
- type: euclidean_f1
value: 62.491349480968864
- type: euclidean_precision
value: 45.44539506794162
- type: euclidean_recall
value: 100.0
- type: manhattan_accuracy
value: 60.199999999999996
- type: manhattan_ap
value: 58.02420001567834
- type: manhattan_f1
value: 62.491349480968864
- type: manhattan_precision
value: 45.44539506794162
- type: manhattan_recall
value: 100.0
- type: max_accuracy
value: 60.550000000000004
- type: max_ap
value: 58.1865824487652
- type: max_f1
value: 62.76595744680852
- task:
type: STS
dataset:
name: MTEB SICKFr
type: Lajavaness/SICK-fr
config: default
split: test
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
metrics:
- type: cos_sim_pearson
value: 81.35988610550564
- type: cos_sim_spearman
value: 74.30702501405389
- type: euclidean_pearson
value: 77.98265846914386
- type: euclidean_spearman
value: 74.28309779423242
- type: manhattan_pearson
value: 77.91611618952486
- type: manhattan_spearman
value: 74.09543847416339
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cos_sim_pearson
value: 82.87930229178569
- type: cos_sim_spearman
value: 82.91122500126046
- type: euclidean_pearson
value: 82.30161381658885
- type: euclidean_spearman
value: 82.80157531184477
- type: manhattan_pearson
value: 82.59746592491155
- type: manhattan_spearman
value: 82.91620907805208
- task:
type: STS
dataset:
name: MTEB STSBenchmarkMultilingualSTS (fr)
type: mteb/stsb_multi_mt
config: fr
split: test
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
metrics:
- type: cos_sim_pearson
value: 83.44206580073515
- type: cos_sim_spearman
value: 83.29855460437528
- type: euclidean_pearson
value: 82.28885833656986
- type: euclidean_spearman
value: 83.17545506016941
- type: manhattan_pearson
value: 82.16568250036501
- type: manhattan_spearman
value: 83.0743139221437
- task:
type: Summarization
dataset:
name: MTEB SummEvalFr
type: lyon-nlp/summarization-summeval-fr-p2p
config: default
split: test
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
metrics:
- type: cos_sim_pearson
value: 31.280485627024635
- type: cos_sim_spearman
value: 32.33005962500831
- type: dot_pearson
value: 30.158348138782753
- type: dot_spearman
value: 30.392045689426418
- task:
type: Reranking
dataset:
name: MTEB SyntecReranking
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
config: default
split: test
revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad
metrics:
- type: map
value: 81.67777777777776
- type: mrr
value: 81.67777777777776
- type: nAUC_map_diff1
value: 59.89472485574524
- type: nAUC_map_max
value: 8.215249384307162
- type: nAUC_mrr_diff1
value: 59.89472485574524
- type: nAUC_mrr_max
value: 8.215249384307162
- task:
type: Retrieval
dataset:
name: MTEB SyntecRetrieval
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
config: default
split: test
revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9
metrics:
- type: map_at_1
value: 62.0
- type: map_at_10
value: 72.887
- type: map_at_100
value: 73.181
- type: map_at_1000
value: 73.181
- type: map_at_20
value: 73.16
- type: map_at_3
value: 70.667
- type: map_at_5
value: 71.56700000000001
- type: mrr_at_1
value: 62.0
- type: mrr_at_10
value: 72.88690476190479
- type: mrr_at_100
value: 73.18055555555557
- type: mrr_at_1000
value: 73.18055555555557
- type: mrr_at_20
value: 73.15972222222224
- type: mrr_at_3
value: 70.66666666666667
- type: mrr_at_5
value: 71.56666666666666
- type: nauc_map_at_1000_diff1
value: 47.52352042312832
- type: nauc_map_at_1000_max
value: 12.229977029802052
- type: nauc_map_at_100_diff1
value: 47.52352042312832
- type: nauc_map_at_100_max
value: 12.229977029802052
- type: nauc_map_at_10_diff1
value: 47.83118981173179
- type: nauc_map_at_10_max
value: 12.67122414331949
- type: nauc_map_at_1_diff1
value: 48.29708026951358
- type: nauc_map_at_1_max
value: 5.016460019075176
- type: nauc_map_at_20_diff1
value: 47.5126416742559
- type: nauc_map_at_20_max
value: 12.23002184861472
- type: nauc_map_at_3_diff1
value: 48.18168651330906
- type: nauc_map_at_3_max
value: 14.063513453945578
- type: nauc_map_at_5_diff1
value: 46.8656518414084
- type: nauc_map_at_5_max
value: 13.22896127813873
- type: nauc_mrr_at_1000_diff1
value: 47.52352042312832
- type: nauc_mrr_at_1000_max
value: 12.229977029802052
- type: nauc_mrr_at_100_diff1
value: 47.52352042312832
- type: nauc_mrr_at_100_max
value: 12.229977029802052
- type: nauc_mrr_at_10_diff1
value: 47.83118981173179
- type: nauc_mrr_at_10_max
value: 12.67122414331949
- type: nauc_mrr_at_1_diff1
value: 48.29708026951358
- type: nauc_mrr_at_1_max
value: 5.016460019075176
- type: nauc_mrr_at_20_diff1
value: 47.5126416742559
- type: nauc_mrr_at_20_max
value: 12.23002184861472
- type: nauc_mrr_at_3_diff1
value: 48.18168651330906
- type: nauc_mrr_at_3_max
value: 14.063513453945578
- type: nauc_mrr_at_5_diff1
value: 46.8656518414084
- type: nauc_mrr_at_5_max
value: 13.22896127813873
- type: nauc_ndcg_at_1000_diff1
value: 47.56455972451391
- type: nauc_ndcg_at_1000_max
value: 12.900901768894494
- type: nauc_ndcg_at_100_diff1
value: 47.56455972451391
- type: nauc_ndcg_at_100_max
value: 12.900901768894494
- type: nauc_ndcg_at_10_diff1
value: 48.92225620164975
- type: nauc_ndcg_at_10_max
value: 14.848602834576374
- type: nauc_ndcg_at_1_diff1
value: 48.29708026951358
- type: nauc_ndcg_at_1_max
value: 5.016460019075176
- type: nauc_ndcg_at_20_diff1
value: 47.44500349427683
- type: nauc_ndcg_at_20_max
value: 12.894569953616672
- type: nauc_ndcg_at_3_diff1
value: 48.79515966817958
- type: nauc_ndcg_at_3_max
value: 17.067858878871014
- type: nauc_ndcg_at_5_diff1
value: 46.2582129725611
- type: nauc_ndcg_at_5_max
value: 15.802131944100553
- type: nauc_precision_at_1000_diff1
value: nan
- type: nauc_precision_at_1000_max
value: nan
- type: nauc_precision_at_100_diff1
value: nan
- type: nauc_precision_at_100_max
value: nan
- type: nauc_precision_at_10_diff1
value: 67.1335200746968
- type: nauc_precision_at_10_max
value: 41.521942110178045
- type: nauc_precision_at_1_diff1
value: 48.29708026951358
- type: nauc_precision_at_1_max
value: 5.016460019075176
- type: nauc_precision_at_20_diff1
value: 35.80765639589114
- type: nauc_precision_at_20_max
value: 12.278244631185926
- type: nauc_precision_at_3_diff1
value: 51.516580229451506
- type: nauc_precision_at_3_max
value: 28.765257478128753
- type: nauc_precision_at_5_diff1
value: 43.146762121705116
- type: nauc_precision_at_5_max
value: 27.715587373901627
- type: nauc_recall_at_1000_diff1
value: nan
- type: nauc_recall_at_1000_max
value: nan
- type: nauc_recall_at_100_diff1
value: nan
- type: nauc_recall_at_100_max
value: nan
- type: nauc_recall_at_10_diff1
value: 67.13352007469638
- type: nauc_recall_at_10_max
value: 41.52194211017754
- type: nauc_recall_at_1_diff1
value: 48.29708026951358
- type: nauc_recall_at_1_max
value: 5.016460019075176
- type: nauc_recall_at_20_diff1
value: 35.80765639589109
- type: nauc_recall_at_20_max
value: 12.278244631185359
- type: nauc_recall_at_3_diff1
value: 51.516580229451556
- type: nauc_recall_at_3_max
value: 28.765257478128735
- type: nauc_recall_at_5_diff1
value: 43.14676212170519
- type: nauc_recall_at_5_max
value: 27.7155873739018
- type: ndcg_at_1
value: 62.0
- type: ndcg_at_10
value: 78.188
- type: ndcg_at_100
value: 79.372
- type: ndcg_at_1000
value: 79.372
- type: ndcg_at_20
value: 79.194
- type: ndcg_at_3
value: 73.333
- type: ndcg_at_5
value: 74.968
- type: precision_at_1
value: 62.0
- type: precision_at_10
value: 9.5
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.95
- type: precision_at_3
value: 27.0
- type: precision_at_5
value: 17.0
- type: recall_at_1
value: 62.0
- type: recall_at_10
value: 95.0
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 99.0
- type: recall_at_3
value: 81.0
- type: recall_at_5
value: 85.0
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (fr)
type: jinaai/xpqa
config: fr
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: map_at_1
value: 36.611
- type: map_at_10
value: 57.187
- type: map_at_100
value: 58.631
- type: map_at_1000
value: 58.709999999999994
- type: map_at_20
value: 58.08
- type: map_at_3
value: 50.998
- type: map_at_5
value: 55.191
- type: mrr_at_1
value: 57.810413885180246
- type: mrr_at_10
value: 65.8401148621442
- type: mrr_at_100
value: 66.40333125160906
- type: mrr_at_1000
value: 66.42402394693958
- type: mrr_at_20
value: 66.18532893351842
- type: mrr_at_3
value: 63.81842456608808
- type: mrr_at_5
value: 65.18691588785039
- type: nauc_map_at_1000_diff1
value: 50.788831583223235
- type: nauc_map_at_1000_max
value: 51.55624948390649
- type: nauc_map_at_100_diff1
value: 50.7629709789859
- type: nauc_map_at_100_max
value: 51.554970702491374
- type: nauc_map_at_10_diff1
value: 50.597059943822785
- type: nauc_map_at_10_max
value: 50.88242396839643
- type: nauc_map_at_1_diff1
value: 60.321467202422596
- type: nauc_map_at_1_max
value: 35.442708774490455
- type: nauc_map_at_20_diff1
value: 50.65058875526523
- type: nauc_map_at_20_max
value: 51.32644359237018
- type: nauc_map_at_3_diff1
value: 51.80849131095309
- type: nauc_map_at_3_max
value: 46.17402861801263
- type: nauc_map_at_5_diff1
value: 50.507875139443456
- type: nauc_map_at_5_max
value: 49.47151715153637
- type: nauc_mrr_at_1000_diff1
value: 58.704380971676926
- type: nauc_mrr_at_1000_max
value: 59.554838611287494
- type: nauc_mrr_at_100_diff1
value: 58.699898563786
- type: nauc_mrr_at_100_max
value: 59.55774727939887
- type: nauc_mrr_at_10_diff1
value: 58.73927285559378
- type: nauc_mrr_at_10_max
value: 59.479293253354605
- type: nauc_mrr_at_1_diff1
value: 61.67387773779846
- type: nauc_mrr_at_1_max
value: 59.51259333152851
- type: nauc_mrr_at_20_diff1
value: 58.66891615345236
- type: nauc_mrr_at_20_max
value: 59.58138583451017
- type: nauc_mrr_at_3_diff1
value: 58.51184610727805
- type: nauc_mrr_at_3_max
value: 59.23400060136551
- type: nauc_mrr_at_5_diff1
value: 58.47244190154927
- type: nauc_mrr_at_5_max
value: 59.331044981327196
- type: nauc_ndcg_at_1000_diff1
value: 52.37179722848664
- type: nauc_ndcg_at_1000_max
value: 54.72666617792271
- type: nauc_ndcg_at_100_diff1
value: 51.93605170636807
- type: nauc_ndcg_at_100_max
value: 54.79165999040737
- type: nauc_ndcg_at_10_diff1
value: 51.405480630090835
- type: nauc_ndcg_at_10_max
value: 53.04193527385732
- type: nauc_ndcg_at_1_diff1
value: 61.67387773779846
- type: nauc_ndcg_at_1_max
value: 59.51259333152851
- type: nauc_ndcg_at_20_diff1
value: 51.293469681563096
- type: nauc_ndcg_at_20_max
value: 54.08435882900078
- type: nauc_ndcg_at_3_diff1
value: 51.58388244693231
- type: nauc_ndcg_at_3_max
value: 51.74775013382323
- type: nauc_ndcg_at_5_diff1
value: 50.82307910981021
- type: nauc_ndcg_at_5_max
value: 51.420799224894
- type: nauc_precision_at_1000_diff1
value: -16.663205684819612
- type: nauc_precision_at_1000_max
value: 12.234886940913926
- type: nauc_precision_at_100_diff1
value: -11.830123517342091
- type: nauc_precision_at_100_max
value: 19.147184681617514
- type: nauc_precision_at_10_diff1
value: -0.128354517220691
- type: nauc_precision_at_10_max
value: 31.00617539775257
- type: nauc_precision_at_1_diff1
value: 61.67387773779846
- type: nauc_precision_at_1_max
value: 59.51259333152851
- type: nauc_precision_at_20_diff1
value: -4.838065494986492
- type: nauc_precision_at_20_max
value: 26.59319852551229
- type: nauc_precision_at_3_diff1
value: 12.133336207725199
- type: nauc_precision_at_3_max
value: 39.377184679653084
- type: nauc_precision_at_5_diff1
value: 3.6946214253817242
- type: nauc_precision_at_5_max
value: 34.46699361026347
- type: nauc_recall_at_1000_diff1
value: 42.80775305857285
- type: nauc_recall_at_1000_max
value: 56.52032475068802
- type: nauc_recall_at_100_diff1
value: 37.39345422008765
- type: nauc_recall_at_100_max
value: 50.846199839766236
- type: nauc_recall_at_10_diff1
value: 42.80186951683253
- type: nauc_recall_at_10_max
value: 45.84205807317027
- type: nauc_recall_at_1_diff1
value: 60.321467202422596
- type: nauc_recall_at_1_max
value: 35.442708774490455
- type: nauc_recall_at_20_diff1
value: 39.799538893141424
- type: nauc_recall_at_20_max
value: 48.35852294352722
- type: nauc_recall_at_3_diff1
value: 45.955979843159135
- type: nauc_recall_at_3_max
value: 42.31051973839205
- type: nauc_recall_at_5_diff1
value: 42.5632345738307
- type: nauc_recall_at_5_max
value: 44.4648694495511
- type: ndcg_at_1
value: 57.809999999999995
- type: ndcg_at_10
value: 63.495999999999995
- type: ndcg_at_100
value: 68.394
- type: ndcg_at_1000
value: 69.663
- type: ndcg_at_20
value: 65.67399999999999
- type: ndcg_at_3
value: 58.23199999999999
- type: ndcg_at_5
value: 60.431999999999995
- type: precision_at_1
value: 57.809999999999995
- type: precision_at_10
value: 14.753
- type: precision_at_100
value: 1.8929999999999998
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_20
value: 8.164
- type: precision_at_3
value: 35.737
- type: precision_at_5
value: 26.061
- type: recall_at_1
value: 36.611
- type: recall_at_10
value: 72.501
- type: recall_at_100
value: 91.40899999999999
- type: recall_at_1000
value: 99.544
- type: recall_at_20
value: 79.475
- type: recall_at_3
value: 55.96600000000001
- type: recall_at_5
value: 64.976
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.28358208955224
- type: ap
value: 37.19063914095112
- type: ap_weighted
value: 37.19063914095112
- type: f1
value: 68.28593926963595
- type: f1_weighted
value: 76.64216663284145
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 82.19695
- type: ap
value: 76.84400739904562
- type: ap_weighted
value: 76.84400739904562
- type: f1
value: 82.13083090108348
- type: f1_weighted
value: 82.13083090108348
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.216
- type: f1
value: 39.88981487562277
- type: f1_weighted
value: 39.88981487562277
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 28.307
- type: map_at_10
value: 44.415
- type: map_at_100
value: 45.24
- type: map_at_1000
value: 45.245999999999995
- type: map_at_20
value: 45.048
- type: map_at_3
value: 39.343
- type: map_at_5
value: 42.156
- type: mrr_at_1
value: 28.591749644381224
- type: mrr_at_10
value: 44.53744157691528
- type: mrr_at_100
value: 45.36249919705719
- type: mrr_at_1000
value: 45.36795843267093
- type: mrr_at_20
value: 45.17017744908004
- type: mrr_at_3
value: 39.50924608819345
- type: mrr_at_5
value: 42.29374110953058
- type: nauc_map_at_1000_diff1
value: 3.81697701184427
- type: nauc_map_at_1000_max
value: -5.3494391339512966
- type: nauc_map_at_100_diff1
value: 3.8255923068950737
- type: nauc_map_at_100_max
value: -5.338796585423051
- type: nauc_map_at_10_diff1
value: 3.807599213819479
- type: nauc_map_at_10_max
value: -5.313800854145031
- type: nauc_map_at_1_diff1
value: 5.156690676517333
- type: nauc_map_at_1_max
value: -9.64584413837327
- type: nauc_map_at_20_diff1
value: 3.7941985981544244
- type: nauc_map_at_20_max
value: -5.200991165900242
- type: nauc_map_at_3_diff1
value: 3.042950933986489
- type: nauc_map_at_3_max
value: -5.953385411481654
- type: nauc_map_at_5_diff1
value: 3.0549453605943433
- type: nauc_map_at_5_max
value: -5.787888510997178
- type: nauc_mrr_at_1000_diff1
value: 2.815942782079056
- type: nauc_mrr_at_1000_max
value: -6.045251506633342
- type: nauc_mrr_at_100_diff1
value: 2.8247136693036206
- type: nauc_mrr_at_100_max
value: -6.034513630311149
- type: nauc_mrr_at_10_diff1
value: 2.842321554294615
- type: nauc_mrr_at_10_max
value: -5.983994994110801
- type: nauc_mrr_at_1_diff1
value: 4.289447405708845
- type: nauc_mrr_at_1_max
value: -10.158513246070529
- type: nauc_mrr_at_20_diff1
value: 2.802223509089013
- type: nauc_mrr_at_20_max
value: -5.889383549567283
- type: nauc_mrr_at_3_diff1
value: 1.9507572567994225
- type: nauc_mrr_at_3_max
value: -6.579817119302078
- type: nauc_mrr_at_5_diff1
value: 2.0636113696159306
- type: nauc_mrr_at_5_max
value: -6.47814796715319
- type: nauc_ndcg_at_1000_diff1
value: 4.054109302322553
- type: nauc_ndcg_at_1000_max
value: -4.194276048637998
- type: nauc_ndcg_at_100_diff1
value: 4.3606449596207995
- type: nauc_ndcg_at_100_max
value: -3.802885863375761
- type: nauc_ndcg_at_10_diff1
value: 4.374146895999117
- type: nauc_ndcg_at_10_max
value: -3.007138296243735
- type: nauc_ndcg_at_1_diff1
value: 5.156690676517333
- type: nauc_ndcg_at_1_max
value: -9.64584413837327
- type: nauc_ndcg_at_20_diff1
value: 4.283769209560412
- type: nauc_ndcg_at_20_max
value: -2.5570972005509245
- type: nauc_ndcg_at_3_diff1
value: 2.4019132290785628
- type: nauc_ndcg_at_3_max
value: -4.772614514375251
- type: nauc_ndcg_at_5_diff1
value: 2.2604685552347488
- type: nauc_ndcg_at_5_max
value: -4.5287849384277346
- type: nauc_precision_at_1000_diff1
value: 26.832693994163886
- type: nauc_precision_at_1000_max
value: 28.13719829218545
- type: nauc_precision_at_100_diff1
value: 49.25187779934308
- type: nauc_precision_at_100_max
value: 54.90462014878204
- type: nauc_precision_at_10_diff1
value: 9.375044420325825
- type: nauc_precision_at_10_max
value: 11.118715229369158
- type: nauc_precision_at_1_diff1
value: 5.156690676517333
- type: nauc_precision_at_1_max
value: -9.64584413837327
- type: nauc_precision_at_20_diff1
value: 12.648487139563313
- type: nauc_precision_at_20_max
value: 29.17269939791144
- type: nauc_precision_at_3_diff1
value: 0.5381479007985195
- type: nauc_precision_at_3_max
value: -1.319607327988569
- type: nauc_precision_at_5_diff1
value: -0.530675691789191
- type: nauc_precision_at_5_max
value: -0.3449755187285182
- type: nauc_recall_at_1000_diff1
value: 26.83269399415972
- type: nauc_recall_at_1000_max
value: 28.137198292180138
- type: nauc_recall_at_100_diff1
value: 49.25187779934272
- type: nauc_recall_at_100_max
value: 54.90462014878089
- type: nauc_recall_at_10_diff1
value: 9.375044420325978
- type: nauc_recall_at_10_max
value: 11.118715229369167
- type: nauc_recall_at_1_diff1
value: 5.156690676517333
- type: nauc_recall_at_1_max
value: -9.64584413837327
- type: nauc_recall_at_20_diff1
value: 12.648487139563178
- type: nauc_recall_at_20_max
value: 29.172699397911256
- type: nauc_recall_at_3_diff1
value: 0.5381479007985096
- type: nauc_recall_at_3_max
value: -1.3196073279885299
- type: nauc_recall_at_5_diff1
value: -0.5306756917892376
- type: nauc_recall_at_5_max
value: -0.34497551872854154
- type: ndcg_at_1
value: 28.307
- type: ndcg_at_10
value: 53.593999999999994
- type: ndcg_at_100
value: 57.13399999999999
- type: ndcg_at_1000
value: 57.28
- type: ndcg_at_20
value: 55.861000000000004
- type: ndcg_at_3
value: 43.091
- type: ndcg_at_5
value: 48.16
- type: precision_at_1
value: 28.307
- type: precision_at_10
value: 8.3
- type: precision_at_100
value: 0.985
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.595
- type: precision_at_3
value: 17.994
- type: precision_at_5
value: 13.257
- type: recall_at_1
value: 28.307
- type: recall_at_10
value: 83.001
- type: recall_at_100
value: 98.506
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 91.892
- type: recall_at_3
value: 53.983000000000004
- type: recall_at_5
value: 66.28699999999999
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 41.75510333108447
- type: v_measures
value:
- 0.38932105262642
- 0.41167658391196155
- 0.4152007083702598
- 0.43751533882806676
- 0.41353841462129437
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 31.628031176398057
- type: v_measures
value:
- 0.3124730271530551
- 0.30410053196374376
- 0.31038902598125107
- 0.3037853444036682
- 0.3061080414991767
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 56.78685528593245
- type: mrr
value: 70.13113925163786
- type: nAUC_map_diff1
value: 2.9860496068519695
- type: nAUC_map_max
value: 22.582369735674774
- type: nAUC_mrr_diff1
value: 10.846967439812445
- type: nAUC_mrr_max
value: 35.29439227015077
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 85.88368776567987
- type: cos_sim_spearman
value: 83.98625103310174
- type: euclidean_pearson
value: 84.15851334353565
- type: euclidean_spearman
value: 83.50611961105386
- type: manhattan_pearson
value: 84.26852097545078
- type: manhattan_spearman
value: 83.74287199356931
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 80.31493506493506
- type: f1
value: 80.18539252802539
- type: f1_weighted
value: 80.1853925280254
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 36.01213557884716
- type: v_measures
value:
- 0.35149213783659844
- 0.3504551848301787
- 0.3777396210177721
- 0.36713470804377507
- 0.35699360527484775
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.77320940838855
- type: v_measures
value:
- 0.30066854059482007
- 0.27912691518289856
- 0.28109177448868566
- 0.27788082204726
- 0.28174202201956644
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: map_at_1
value: 28.931
- type: map_at_10
value: 39.226
- type: map_at_100
value: 40.641
- type: map_at_1000
value: 40.758
- type: map_at_20
value: 39.947
- type: map_at_3
value: 35.893
- type: map_at_5
value: 37.911
- type: mrr_at_1
value: 36.33762517882689
- type: mrr_at_10
value: 45.437813656697756
- type: mrr_at_100
value: 46.263112207849225
- type: mrr_at_1000
value: 46.31120643750262
- type: mrr_at_20
value: 45.89328313995794
- type: mrr_at_3
value: 42.89461134954697
- type: mrr_at_5
value: 44.49690033381019
- type: nauc_map_at_1000_diff1
value: 51.149900773445665
- type: nauc_map_at_1000_max
value: 38.68580130673067
- type: nauc_map_at_100_diff1
value: 51.10002536433903
- type: nauc_map_at_100_max
value: 38.641317822870484
- type: nauc_map_at_10_diff1
value: 51.124389332061504
- type: nauc_map_at_10_max
value: 38.318568221563254
- type: nauc_map_at_1_diff1
value: 56.90092514723948
- type: nauc_map_at_1_max
value: 37.61485298818892
- type: nauc_map_at_20_diff1
value: 51.181676535641515
- type: nauc_map_at_20_max
value: 38.50630258148947
- type: nauc_map_at_3_diff1
value: 52.9080719662819
- type: nauc_map_at_3_max
value: 37.65490829785428
- type: nauc_map_at_5_diff1
value: 51.88563997044587
- type: nauc_map_at_5_max
value: 38.162982469441104
- type: nauc_mrr_at_1000_diff1
value: 52.02314497512314
- type: nauc_mrr_at_1000_max
value: 42.51237380812326
- type: nauc_mrr_at_100_diff1
value: 52.00022544992019
- type: nauc_mrr_at_100_max
value: 42.47931426167529
- type: nauc_mrr_at_10_diff1
value: 51.91527284768196
- type: nauc_mrr_at_10_max
value: 42.39017221462642
- type: nauc_mrr_at_1_diff1
value: 57.748140308636906
- type: nauc_mrr_at_1_max
value: 45.151335057931625
- type: nauc_mrr_at_20_diff1
value: 52.014517489654786
- type: nauc_mrr_at_20_max
value: 42.502037133226224
- type: nauc_mrr_at_3_diff1
value: 53.44263059806559
- type: nauc_mrr_at_3_max
value: 42.54366394954965
- type: nauc_mrr_at_5_diff1
value: 52.40067352297368
- type: nauc_mrr_at_5_max
value: 42.39770466495629
- type: nauc_ndcg_at_1000_diff1
value: 49.303067288367096
- type: nauc_ndcg_at_1000_max
value: 40.15083357935891
- type: nauc_ndcg_at_100_diff1
value: 48.06078219853983
- type: nauc_ndcg_at_100_max
value: 39.099873422335584
- type: nauc_ndcg_at_10_diff1
value: 48.427405777556764
- type: nauc_ndcg_at_10_max
value: 38.8466159356305
- type: nauc_ndcg_at_1_diff1
value: 57.748140308636906
- type: nauc_ndcg_at_1_max
value: 45.151335057931625
- type: nauc_ndcg_at_20_diff1
value: 48.400275143008884
- type: nauc_ndcg_at_20_max
value: 38.987281654803155
- type: nauc_ndcg_at_3_diff1
value: 51.94028236848058
- type: nauc_ndcg_at_3_max
value: 39.22267932164834
- type: nauc_ndcg_at_5_diff1
value: 50.228342110462435
- type: nauc_ndcg_at_5_max
value: 39.25835142473454
- type: nauc_precision_at_1000_diff1
value: -6.148682329597722
- type: nauc_precision_at_1000_max
value: 1.1132760594569802
- type: nauc_precision_at_100_diff1
value: -0.42183455399296765
- type: nauc_precision_at_100_max
value: 12.337898495315343
- type: nauc_precision_at_10_diff1
value: 18.94429698742333
- type: nauc_precision_at_10_max
value: 28.777738237731203
- type: nauc_precision_at_1_diff1
value: 57.748140308636906
- type: nauc_precision_at_1_max
value: 45.151335057931625
- type: nauc_precision_at_20_diff1
value: 12.915885854552354
- type: nauc_precision_at_20_max
value: 24.01402704364973
- type: nauc_precision_at_3_diff1
value: 36.634218047630384
- type: nauc_precision_at_3_max
value: 36.27512688680148
- type: nauc_precision_at_5_diff1
value: 28.272819211308992
- type: nauc_precision_at_5_max
value: 33.34907639932695
- type: nauc_recall_at_1000_diff1
value: 26.52022379258474
- type: nauc_recall_at_1000_max
value: 49.10217378309213
- type: nauc_recall_at_100_diff1
value: 25.383923002033832
- type: nauc_recall_at_100_max
value: 29.224125741020877
- type: nauc_recall_at_10_diff1
value: 36.465429616129015
- type: nauc_recall_at_10_max
value: 33.39232875391991
- type: nauc_recall_at_1_diff1
value: 56.90092514723948
- type: nauc_recall_at_1_max
value: 37.61485298818892
- type: nauc_recall_at_20_diff1
value: 34.97381075257172
- type: nauc_recall_at_20_max
value: 33.453578222267346
- type: nauc_recall_at_3_diff1
value: 47.268820296829134
- type: nauc_recall_at_3_max
value: 35.21361112290018
- type: nauc_recall_at_5_diff1
value: 42.36929492536004
- type: nauc_recall_at_5_max
value: 34.972452567095665
- type: ndcg_at_1
value: 36.338
- type: ndcg_at_10
value: 45.07
- type: ndcg_at_100
value: 50.619
- type: ndcg_at_1000
value: 52.729000000000006
- type: ndcg_at_20
value: 47.027
- type: ndcg_at_3
value: 40.388000000000005
- type: ndcg_at_5
value: 42.811
- type: precision_at_1
value: 36.338
- type: precision_at_10
value: 8.541
- type: precision_at_100
value: 1.391
- type: precision_at_1000
value: 0.184
- type: precision_at_20
value: 5.007000000000001
- type: precision_at_3
value: 19.409000000000002
- type: precision_at_5
value: 14.163
- type: recall_at_1
value: 28.931
- type: recall_at_10
value: 55.701
- type: recall_at_100
value: 79.389
- type: recall_at_1000
value: 93.366
- type: recall_at_20
value: 62.833000000000006
- type: recall_at_3
value: 42.007
- type: recall_at_5
value: 48.84
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: map_at_1
value: 23.638
- type: map_at_10
value: 32.277
- type: map_at_100
value: 33.363
- type: map_at_1000
value: 33.488
- type: map_at_20
value: 32.857
- type: map_at_3
value: 29.748
- type: map_at_5
value: 31.179000000000002
- type: mrr_at_1
value: 30.254777070063692
- type: mrr_at_10
value: 37.817384490951355
- type: mrr_at_100
value: 38.525912264467145
- type: mrr_at_1000
value: 38.58069194468667
- type: mrr_at_20
value: 38.20930815682446
- type: mrr_at_3
value: 35.700636942675146
- type: mrr_at_5
value: 36.926751592356666
- type: nauc_map_at_1000_diff1
value: 45.223392226929235
- type: nauc_map_at_1000_max
value: 38.24038259272163
- type: nauc_map_at_100_diff1
value: 45.23190429504784
- type: nauc_map_at_100_max
value: 38.19794744902846
- type: nauc_map_at_10_diff1
value: 45.515992352450176
- type: nauc_map_at_10_max
value: 37.548960747017844
- type: nauc_map_at_1_diff1
value: 52.291404507813056
- type: nauc_map_at_1_max
value: 33.46767953286993
- type: nauc_map_at_20_diff1
value: 45.332400816656936
- type: nauc_map_at_20_max
value: 37.878067742926675
- type: nauc_map_at_3_diff1
value: 46.829233538381764
- type: nauc_map_at_3_max
value: 36.69901435795047
- type: nauc_map_at_5_diff1
value: 46.12298460254266
- type: nauc_map_at_5_max
value: 37.34969360011008
- type: nauc_mrr_at_1000_diff1
value: 41.898365322188674
- type: nauc_mrr_at_1000_max
value: 39.304566277957704
- type: nauc_mrr_at_100_diff1
value: 41.88883697764852
- type: nauc_mrr_at_100_max
value: 39.30077276431053
- type: nauc_mrr_at_10_diff1
value: 42.062104921386506
- type: nauc_mrr_at_10_max
value: 39.30528366258507
- type: nauc_mrr_at_1_diff1
value: 47.92599437007114
- type: nauc_mrr_at_1_max
value: 39.11863678363455
- type: nauc_mrr_at_20_diff1
value: 41.88168571216021
- type: nauc_mrr_at_20_max
value: 39.26248573846707
- type: nauc_mrr_at_3_diff1
value: 43.07190580570743
- type: nauc_mrr_at_3_max
value: 39.87788973395513
- type: nauc_mrr_at_5_diff1
value: 42.49866565630987
- type: nauc_mrr_at_5_max
value: 39.54834907714328
- type: nauc_ndcg_at_1000_diff1
value: 41.51353648334291
- type: nauc_ndcg_at_1000_max
value: 39.603326878012986
- type: nauc_ndcg_at_100_diff1
value: 41.30454895265097
- type: nauc_ndcg_at_100_max
value: 39.313602966554505
- type: nauc_ndcg_at_10_diff1
value: 42.02099052567711
- type: nauc_ndcg_at_10_max
value: 38.534861088136715
- type: nauc_ndcg_at_1_diff1
value: 47.92599437007114
- type: nauc_ndcg_at_1_max
value: 39.11863678363455
- type: nauc_ndcg_at_20_diff1
value: 41.663145625518375
- type: nauc_ndcg_at_20_max
value: 38.752693813154075
- type: nauc_ndcg_at_3_diff1
value: 43.68575961185724
- type: nauc_ndcg_at_3_max
value: 39.40226210725685
- type: nauc_ndcg_at_5_diff1
value: 43.00140726081697
- type: nauc_ndcg_at_5_max
value: 39.21485362612467
- type: nauc_precision_at_1000_diff1
value: -2.790275135023392
- type: nauc_precision_at_1000_max
value: 17.818318660525463
- type: nauc_precision_at_100_diff1
value: 2.0554939129182417
- type: nauc_precision_at_100_max
value: 29.753860102457935
- type: nauc_precision_at_10_diff1
value: 15.094160126474254
- type: nauc_precision_at_10_max
value: 37.972874196449126
- type: nauc_precision_at_1_diff1
value: 47.92599437007114
- type: nauc_precision_at_1_max
value: 39.11863678363455
- type: nauc_precision_at_20_diff1
value: 10.746873592106713
- type: nauc_precision_at_20_max
value: 36.96468826692449
- type: nauc_precision_at_3_diff1
value: 28.944521315560483
- type: nauc_precision_at_3_max
value: 42.03983245575044
- type: nauc_precision_at_5_diff1
value: 23.828098284010075
- type: nauc_precision_at_5_max
value: 41.76526648017447
- type: nauc_recall_at_1000_diff1
value: 26.537966542990997
- type: nauc_recall_at_1000_max
value: 41.86346125540241
- type: nauc_recall_at_100_diff1
value: 28.044584247129283
- type: nauc_recall_at_100_max
value: 37.42247127416711
- type: nauc_recall_at_10_diff1
value: 33.434563672243115
- type: nauc_recall_at_10_max
value: 34.63428918279095
- type: nauc_recall_at_1_diff1
value: 52.291404507813056
- type: nauc_recall_at_1_max
value: 33.46767953286993
- type: nauc_recall_at_20_diff1
value: 31.189066205007187
- type: nauc_recall_at_20_max
value: 35.3704318509917
- type: nauc_recall_at_3_diff1
value: 39.67602671214362
- type: nauc_recall_at_3_max
value: 35.6485218636747
- type: nauc_recall_at_5_diff1
value: 36.71118621793804
- type: nauc_recall_at_5_max
value: 35.81341336007971
- type: ndcg_at_1
value: 30.255
- type: ndcg_at_10
value: 37.376
- type: ndcg_at_100
value: 41.678
- type: ndcg_at_1000
value: 44.079
- type: ndcg_at_20
value: 38.942
- type: ndcg_at_3
value: 33.641
- type: ndcg_at_5
value: 35.346
- type: precision_at_1
value: 30.255
- type: precision_at_10
value: 7.102
- type: precision_at_100
value: 1.184
- type: precision_at_1000
value: 0.166
- type: precision_at_20
value: 4.185
- type: precision_at_3
value: 16.348
- type: precision_at_5
value: 11.591999999999999
- type: recall_at_1
value: 23.638
- type: recall_at_10
value: 46.524
- type: recall_at_100
value: 65.118
- type: recall_at_1000
value: 81.133
- type: recall_at_20
value: 52.331
- type: recall_at_3
value: 35.254999999999995
- type: recall_at_5
value: 40.174
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: map_at_1
value: 35.667
- type: map_at_10
value: 47.397
- type: map_at_100
value: 48.366
- type: map_at_1000
value: 48.433
- type: map_at_20
value: 47.963
- type: map_at_3
value: 44.211
- type: map_at_5
value: 46.037
- type: mrr_at_1
value: 40.87774294670846
- type: mrr_at_10
value: 50.565880479673616
- type: mrr_at_100
value: 51.271230622181626
- type: mrr_at_1000
value: 51.306805744714836
- type: mrr_at_20
value: 51.012075318045525
- type: mrr_at_3
value: 47.9832810867294
- type: mrr_at_5
value: 49.525600835945724
- type: nauc_map_at_1000_diff1
value: 50.33288681013869
- type: nauc_map_at_1000_max
value: 37.44437438806084
- type: nauc_map_at_100_diff1
value: 50.317492085630064
- type: nauc_map_at_100_max
value: 37.426681891363835
- type: nauc_map_at_10_diff1
value: 50.24182139242321
- type: nauc_map_at_10_max
value: 36.91039477771677
- type: nauc_map_at_1_diff1
value: 56.01200063592147
- type: nauc_map_at_1_max
value: 31.767342114075202
- type: nauc_map_at_20_diff1
value: 50.21631708851613
- type: nauc_map_at_20_max
value: 37.28818324793643
- type: nauc_map_at_3_diff1
value: 51.111793089491364
- type: nauc_map_at_3_max
value: 36.16516417187456
- type: nauc_map_at_5_diff1
value: 50.47567188188865
- type: nauc_map_at_5_max
value: 36.72222550501132
- type: nauc_mrr_at_1000_diff1
value: 49.29372112096636
- type: nauc_mrr_at_1000_max
value: 39.248284382084236
- type: nauc_mrr_at_100_diff1
value: 49.28279373491327
- type: nauc_mrr_at_100_max
value: 39.26004837053389
- type: nauc_mrr_at_10_diff1
value: 49.123704806290434
- type: nauc_mrr_at_10_max
value: 39.05266034946078
- type: nauc_mrr_at_1_diff1
value: 53.88859746474265
- type: nauc_mrr_at_1_max
value: 37.056204568674275
- type: nauc_mrr_at_20_diff1
value: 49.18403232554298
- type: nauc_mrr_at_20_max
value: 39.26689196401381
- type: nauc_mrr_at_3_diff1
value: 49.59424894836517
- type: nauc_mrr_at_3_max
value: 38.95714592509984
- type: nauc_mrr_at_5_diff1
value: 49.257845318012954
- type: nauc_mrr_at_5_max
value: 39.30070104826491
- type: nauc_ndcg_at_1000_diff1
value: 48.91743661336846
- type: nauc_ndcg_at_1000_max
value: 39.39031133623686
- type: nauc_ndcg_at_100_diff1
value: 48.61511346835115
- type: nauc_ndcg_at_100_max
value: 39.459340998985724
- type: nauc_ndcg_at_10_diff1
value: 48.06588542038947
- type: nauc_ndcg_at_10_max
value: 38.157829321231
- type: nauc_ndcg_at_1_diff1
value: 53.88859746474265
- type: nauc_ndcg_at_1_max
value: 37.056204568674275
- type: nauc_ndcg_at_20_diff1
value: 48.05115075637084
- type: nauc_ndcg_at_20_max
value: 39.2235027218884
- type: nauc_ndcg_at_3_diff1
value: 49.30878740373676
- type: nauc_ndcg_at_3_max
value: 37.84032746584941
- type: nauc_ndcg_at_5_diff1
value: 48.47712228032605
- type: nauc_ndcg_at_5_max
value: 38.38589466282407
- type: nauc_precision_at_1000_diff1
value: -7.243262652381105
- type: nauc_precision_at_1000_max
value: 18.453365469588427
- type: nauc_precision_at_100_diff1
value: -2.0153970546194753
- type: nauc_precision_at_100_max
value: 24.22667501786602
- type: nauc_precision_at_10_diff1
value: 14.979334560516222
- type: nauc_precision_at_10_max
value: 33.13307837324579
- type: nauc_precision_at_1_diff1
value: 53.88859746474265
- type: nauc_precision_at_1_max
value: 37.056204568674275
- type: nauc_precision_at_20_diff1
value: 8.379765029951027
- type: nauc_precision_at_20_max
value: 32.28271665269386
- type: nauc_precision_at_3_diff1
value: 31.16831547354767
- type: nauc_precision_at_3_max
value: 38.10801385749373
- type: nauc_precision_at_5_diff1
value: 23.32241470046817
- type: nauc_precision_at_5_max
value: 37.2000516679205
- type: nauc_recall_at_1000_diff1
value: 40.03022783413472
- type: nauc_recall_at_1000_max
value: 49.77189630896353
- type: nauc_recall_at_100_diff1
value: 39.485228558001154
- type: nauc_recall_at_100_max
value: 44.84364760927468
- type: nauc_recall_at_10_diff1
value: 39.911638774960096
- type: nauc_recall_at_10_max
value: 37.00135324546857
- type: nauc_recall_at_1_diff1
value: 56.01200063592147
- type: nauc_recall_at_1_max
value: 31.767342114075202
- type: nauc_recall_at_20_diff1
value: 38.604788301520685
- type: nauc_recall_at_20_max
value: 42.21099902041599
- type: nauc_recall_at_3_diff1
value: 44.913068402378755
- type: nauc_recall_at_3_max
value: 36.35063250643407
- type: nauc_recall_at_5_diff1
value: 42.15428494957372
- type: nauc_recall_at_5_max
value: 38.11256932308573
- type: ndcg_at_1
value: 40.878
- type: ndcg_at_10
value: 53.062
- type: ndcg_at_100
value: 57.160999999999994
- type: ndcg_at_1000
value: 58.538999999999994
- type: ndcg_at_20
value: 54.821
- type: ndcg_at_3
value: 47.544
- type: ndcg_at_5
value: 50.305
- type: precision_at_1
value: 40.878
- type: precision_at_10
value: 8.564
- type: precision_at_100
value: 1.155
- type: precision_at_1000
value: 0.133
- type: precision_at_20
value: 4.79
- type: precision_at_3
value: 21.108
- type: precision_at_5
value: 14.658
- type: recall_at_1
value: 35.667
- type: recall_at_10
value: 66.766
- type: recall_at_100
value: 84.553
- type: recall_at_1000
value: 94.346
- type: recall_at_20
value: 73.272
- type: recall_at_3
value: 52.139
- type: recall_at_5
value: 58.816
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: map_at_1
value: 20.618
- type: map_at_10
value: 27.47
- type: map_at_100
value: 28.505000000000003
- type: map_at_1000
value: 28.594
- type: map_at_20
value: 28.057
- type: map_at_3
value: 24.918000000000003
- type: map_at_5
value: 26.229999999999997
- type: mrr_at_1
value: 22.372881355932204
- type: mrr_at_10
value: 29.201910142588083
- type: mrr_at_100
value: 30.158796422923974
- type: mrr_at_1000
value: 30.226705533923436
- type: mrr_at_20
value: 29.748232470158786
- type: mrr_at_3
value: 26.723163841807924
- type: mrr_at_5
value: 27.97175141242938
- type: nauc_map_at_1000_diff1
value: 42.518789058108034
- type: nauc_map_at_1000_max
value: 21.82284691419632
- type: nauc_map_at_100_diff1
value: 42.513945119173414
- type: nauc_map_at_100_max
value: 21.824969680261194
- type: nauc_map_at_10_diff1
value: 42.21492283731788
- type: nauc_map_at_10_max
value: 21.305888026069674
- type: nauc_map_at_1_diff1
value: 47.62145355083881
- type: nauc_map_at_1_max
value: 22.35827304798013
- type: nauc_map_at_20_diff1
value: 42.31982757448588
- type: nauc_map_at_20_max
value: 21.594656622891048
- type: nauc_map_at_3_diff1
value: 44.10607386887907
- type: nauc_map_at_3_max
value: 21.690680453680425
- type: nauc_map_at_5_diff1
value: 43.24911634980367
- type: nauc_map_at_5_max
value: 21.736719675567752
- type: nauc_mrr_at_1000_diff1
value: 41.98881956610886
- type: nauc_mrr_at_1000_max
value: 23.673388697614747
- type: nauc_mrr_at_100_diff1
value: 41.975077881853366
- type: nauc_mrr_at_100_max
value: 23.680855488904697
- type: nauc_mrr_at_10_diff1
value: 41.753512191582516
- type: nauc_mrr_at_10_max
value: 23.286885884623786
- type: nauc_mrr_at_1_diff1
value: 48.01121917180329
- type: nauc_mrr_at_1_max
value: 25.91040117459629
- type: nauc_mrr_at_20_diff1
value: 41.837798974871795
- type: nauc_mrr_at_20_max
value: 23.53887919859698
- type: nauc_mrr_at_3_diff1
value: 43.74425619417245
- type: nauc_mrr_at_3_max
value: 23.80181072142051
- type: nauc_mrr_at_5_diff1
value: 42.77128789582419
- type: nauc_mrr_at_5_max
value: 23.78994160229315
- type: nauc_ndcg_at_1000_diff1
value: 40.4038817214834
- type: nauc_ndcg_at_1000_max
value: 22.308549183052513
- type: nauc_ndcg_at_100_diff1
value: 40.55678288183828
- type: nauc_ndcg_at_100_max
value: 22.609367205269443
- type: nauc_ndcg_at_10_diff1
value: 38.83098871853759
- type: nauc_ndcg_at_10_max
value: 20.68362628733941
- type: nauc_ndcg_at_1_diff1
value: 48.01121917180329
- type: nauc_ndcg_at_1_max
value: 25.91040117459629
- type: nauc_ndcg_at_20_diff1
value: 39.061663618713894
- type: nauc_ndcg_at_20_max
value: 21.476419663219456
- type: nauc_ndcg_at_3_diff1
value: 42.736087127795955
- type: nauc_ndcg_at_3_max
value: 21.742127165660058
- type: nauc_ndcg_at_5_diff1
value: 41.186966297966734
- type: nauc_ndcg_at_5_max
value: 21.759401429767212
- type: nauc_precision_at_1000_diff1
value: 6.654559938649311
- type: nauc_precision_at_1000_max
value: 16.806910891601543
- type: nauc_precision_at_100_diff1
value: 25.864492780814064
- type: nauc_precision_at_100_max
value: 25.263440890575012
- type: nauc_precision_at_10_diff1
value: 28.182469153166974
- type: nauc_precision_at_10_max
value: 21.10173854858086
- type: nauc_precision_at_1_diff1
value: 48.01121917180329
- type: nauc_precision_at_1_max
value: 25.91040117459629
- type: nauc_precision_at_20_diff1
value: 26.16409861031152
- type: nauc_precision_at_20_max
value: 22.589571974868473
- type: nauc_precision_at_3_diff1
value: 39.49309649649902
- type: nauc_precision_at_3_max
value: 23.66194846956826
- type: nauc_precision_at_5_diff1
value: 35.47688709673743
- type: nauc_precision_at_5_max
value: 23.5888265356714
- type: nauc_recall_at_1000_diff1
value: 28.057334771322758
- type: nauc_recall_at_1000_max
value: 17.48633214718912
- type: nauc_recall_at_100_diff1
value: 35.67263027900714
- type: nauc_recall_at_100_max
value: 23.115839579250103
- type: nauc_recall_at_10_diff1
value: 28.261498615045998
- type: nauc_recall_at_10_max
value: 16.20575819609654
- type: nauc_recall_at_1_diff1
value: 47.62145355083881
- type: nauc_recall_at_1_max
value: 22.35827304798013
- type: nauc_recall_at_20_diff1
value: 28.255566253430192
- type: nauc_recall_at_20_max
value: 18.257219460506295
- type: nauc_recall_at_3_diff1
value: 39.30800774709927
- type: nauc_recall_at_3_max
value: 19.810995082445473
- type: nauc_recall_at_5_diff1
value: 35.27158910591411
- type: nauc_recall_at_5_max
value: 19.678077623550937
- type: ndcg_at_1
value: 22.373
- type: ndcg_at_10
value: 31.918000000000003
- type: ndcg_at_100
value: 36.992000000000004
- type: ndcg_at_1000
value: 39.513
- type: ndcg_at_20
value: 33.983999999999995
- type: ndcg_at_3
value: 26.832
- type: ndcg_at_5
value: 29.078
- type: precision_at_1
value: 22.373
- type: precision_at_10
value: 5.04
- type: precision_at_100
value: 0.7979999999999999
- type: precision_at_1000
value: 0.106
- type: precision_at_20
value: 3.0
- type: precision_at_3
value: 11.299
- type: precision_at_5
value: 8.045
- type: recall_at_1
value: 20.618
- type: recall_at_10
value: 44.202000000000005
- type: recall_at_100
value: 67.242
- type: recall_at_1000
value: 86.69200000000001
- type: recall_at_20
value: 52.03
- type: recall_at_3
value: 30.386000000000003
- type: recall_at_5
value: 35.858000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: map_at_1
value: 12.731
- type: map_at_10
value: 19.054
- type: map_at_100
value: 20.313
- type: map_at_1000
value: 20.443
- type: map_at_20
value: 19.77
- type: map_at_3
value: 16.596
- type: map_at_5
value: 18.013
- type: mrr_at_1
value: 15.796019900497512
- type: mrr_at_10
value: 22.789327173655526
- type: mrr_at_100
value: 23.862539649948847
- type: mrr_at_1000
value: 23.946663050199312
- type: mrr_at_20
value: 23.427143696525313
- type: mrr_at_3
value: 20.27363184079603
- type: mrr_at_5
value: 21.68532338308458
- type: nauc_map_at_1000_diff1
value: 27.516068477843454
- type: nauc_map_at_1000_max
value: 17.80187067129459
- type: nauc_map_at_100_diff1
value: 27.49088157159594
- type: nauc_map_at_100_max
value: 17.78426299327126
- type: nauc_map_at_10_diff1
value: 27.322013804309574
- type: nauc_map_at_10_max
value: 17.001651979041277
- type: nauc_map_at_1_diff1
value: 32.676819886304166
- type: nauc_map_at_1_max
value: 15.203042726400561
- type: nauc_map_at_20_diff1
value: 27.44288664011662
- type: nauc_map_at_20_max
value: 17.908350138714276
- type: nauc_map_at_3_diff1
value: 28.50114932717826
- type: nauc_map_at_3_max
value: 17.780823694386235
- type: nauc_map_at_5_diff1
value: 27.86215762055489
- type: nauc_map_at_5_max
value: 17.50773539133613
- type: nauc_mrr_at_1000_diff1
value: 29.947843223207236
- type: nauc_mrr_at_1000_max
value: 19.62172810233295
- type: nauc_mrr_at_100_diff1
value: 29.9288142137001
- type: nauc_mrr_at_100_max
value: 19.629003114636255
- type: nauc_mrr_at_10_diff1
value: 29.97657648240847
- type: nauc_mrr_at_10_max
value: 19.194295823726197
- type: nauc_mrr_at_1_diff1
value: 35.00554412354239
- type: nauc_mrr_at_1_max
value: 17.759999184794772
- type: nauc_mrr_at_20_diff1
value: 29.96168512518019
- type: nauc_mrr_at_20_max
value: 19.812693338679974
- type: nauc_mrr_at_3_diff1
value: 31.869293054331997
- type: nauc_mrr_at_3_max
value: 19.72221933712261
- type: nauc_mrr_at_5_diff1
value: 30.633662242516408
- type: nauc_mrr_at_5_max
value: 19.633065520422832
- type: nauc_ndcg_at_1000_diff1
value: 26.41309716877246
- type: nauc_ndcg_at_1000_max
value: 19.407030290375477
- type: nauc_ndcg_at_100_diff1
value: 26.033991008430068
- type: nauc_ndcg_at_100_max
value: 19.18116285140471
- type: nauc_ndcg_at_10_diff1
value: 25.58417445038125
- type: nauc_ndcg_at_10_max
value: 17.264882794530223
- type: nauc_ndcg_at_1_diff1
value: 35.00554412354239
- type: nauc_ndcg_at_1_max
value: 17.759999184794772
- type: nauc_ndcg_at_20_diff1
value: 25.93407473459688
- type: nauc_ndcg_at_20_max
value: 19.950029090611025
- type: nauc_ndcg_at_3_diff1
value: 28.72061546564716
- type: nauc_ndcg_at_3_max
value: 19.386795976250635
- type: nauc_ndcg_at_5_diff1
value: 27.154487593736675
- type: nauc_ndcg_at_5_max
value: 18.600609597997746
- type: nauc_precision_at_1000_diff1
value: 5.41924757448531
- type: nauc_precision_at_1000_max
value: 6.545740061131494
- type: nauc_precision_at_100_diff1
value: 14.592825976137824
- type: nauc_precision_at_100_max
value: 14.125640563802245
- type: nauc_precision_at_10_diff1
value: 21.4491651411123
- type: nauc_precision_at_10_max
value: 16.9551658679841
- type: nauc_precision_at_1_diff1
value: 35.00554412354239
- type: nauc_precision_at_1_max
value: 17.759999184794772
- type: nauc_precision_at_20_diff1
value: 19.92971906917106
- type: nauc_precision_at_20_max
value: 23.22690053316326
- type: nauc_precision_at_3_diff1
value: 27.57959149246176
- type: nauc_precision_at_3_max
value: 22.093284431161333
- type: nauc_precision_at_5_diff1
value: 25.25496908645805
- type: nauc_precision_at_5_max
value: 20.458763176343208
- type: nauc_recall_at_1000_diff1
value: 16.984282437643287
- type: nauc_recall_at_1000_max
value: 24.737697260268117
- type: nauc_recall_at_100_diff1
value: 17.950878545274918
- type: nauc_recall_at_100_max
value: 19.837467082624126
- type: nauc_recall_at_10_diff1
value: 18.161945687752247
- type: nauc_recall_at_10_max
value: 14.97915128596929
- type: nauc_recall_at_1_diff1
value: 32.676819886304166
- type: nauc_recall_at_1_max
value: 15.203042726400561
- type: nauc_recall_at_20_diff1
value: 19.155358112421517
- type: nauc_recall_at_20_max
value: 22.374680334603898
- type: nauc_recall_at_3_diff1
value: 24.842029532917927
- type: nauc_recall_at_3_max
value: 20.135627867318494
- type: nauc_recall_at_5_diff1
value: 22.00729745995486
- type: nauc_recall_at_5_max
value: 18.21612524182701
- type: ndcg_at_1
value: 15.796
- type: ndcg_at_10
value: 23.528
- type: ndcg_at_100
value: 29.537000000000003
- type: ndcg_at_1000
value: 32.719
- type: ndcg_at_20
value: 25.935000000000002
- type: ndcg_at_3
value: 18.908
- type: ndcg_at_5
value: 21.154
- type: precision_at_1
value: 15.796
- type: precision_at_10
value: 4.515000000000001
- type: precision_at_100
value: 0.8789999999999999
- type: precision_at_1000
value: 0.129
- type: precision_at_20
value: 2.942
- type: precision_at_3
value: 9.163
- type: precision_at_5
value: 7.04
- type: recall_at_1
value: 12.731
- type: recall_at_10
value: 33.797
- type: recall_at_100
value: 59.914
- type: recall_at_1000
value: 82.718
- type: recall_at_20
value: 42.347
- type: recall_at_3
value: 20.923
- type: recall_at_5
value: 26.71
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: map_at_1
value: 23.567
- type: map_at_10
value: 32.628
- type: map_at_100
value: 33.908
- type: map_at_1000
value: 34.039
- type: map_at_20
value: 33.363
- type: map_at_3
value: 29.726999999999997
- type: map_at_5
value: 31.347
- type: mrr_at_1
value: 29.25890279114533
- type: mrr_at_10
value: 38.079960890355494
- type: mrr_at_100
value: 38.97514464689193
- type: mrr_at_1000
value: 39.038125614768354
- type: mrr_at_20
value: 38.620932209488565
- type: mrr_at_3
value: 35.65928777670837
- type: mrr_at_5
value: 37.00673724735321
- type: nauc_map_at_1000_diff1
value: 44.243962711843174
- type: nauc_map_at_1000_max
value: 26.557934640504595
- type: nauc_map_at_100_diff1
value: 44.24191729725104
- type: nauc_map_at_100_max
value: 26.520477564732385
- type: nauc_map_at_10_diff1
value: 44.33869154968317
- type: nauc_map_at_10_max
value: 26.044484632871434
- type: nauc_map_at_1_diff1
value: 50.15813855147419
- type: nauc_map_at_1_max
value: 26.303389987904445
- type: nauc_map_at_20_diff1
value: 44.3113665446356
- type: nauc_map_at_20_max
value: 26.237662556133813
- type: nauc_map_at_3_diff1
value: 45.85173282565928
- type: nauc_map_at_3_max
value: 26.32504035565671
- type: nauc_map_at_5_diff1
value: 44.78643814548486
- type: nauc_map_at_5_max
value: 26.334504875414634
- type: nauc_mrr_at_1000_diff1
value: 43.626249945153624
- type: nauc_mrr_at_1000_max
value: 29.330289291530644
- type: nauc_mrr_at_100_diff1
value: 43.613407635792015
- type: nauc_mrr_at_100_max
value: 29.319268635273986
- type: nauc_mrr_at_10_diff1
value: 43.63724190566422
- type: nauc_mrr_at_10_max
value: 29.108055344568847
- type: nauc_mrr_at_1_diff1
value: 48.217336788734755
- type: nauc_mrr_at_1_max
value: 30.672813296466302
- type: nauc_mrr_at_20_diff1
value: 43.649017818875166
- type: nauc_mrr_at_20_max
value: 29.261304940945127
- type: nauc_mrr_at_3_diff1
value: 44.675792519491715
- type: nauc_mrr_at_3_max
value: 29.675911336957483
- type: nauc_mrr_at_5_diff1
value: 43.64775996596029
- type: nauc_mrr_at_5_max
value: 29.45182353499564
- type: nauc_ndcg_at_1000_diff1
value: 41.87489199354678
- type: nauc_ndcg_at_1000_max
value: 27.93893077509421
- type: nauc_ndcg_at_100_diff1
value: 41.670343791634906
- type: nauc_ndcg_at_100_max
value: 27.313715056723876
- type: nauc_ndcg_at_10_diff1
value: 41.85016751613856
- type: nauc_ndcg_at_10_max
value: 25.643066472480765
- type: nauc_ndcg_at_1_diff1
value: 48.217336788734755
- type: nauc_ndcg_at_1_max
value: 30.672813296466302
- type: nauc_ndcg_at_20_diff1
value: 41.97037963181627
- type: nauc_ndcg_at_20_max
value: 26.33944171406708
- type: nauc_ndcg_at_3_diff1
value: 44.06711834714099
- type: nauc_ndcg_at_3_max
value: 27.34491521639161
- type: nauc_ndcg_at_5_diff1
value: 42.4168573468611
- type: nauc_ndcg_at_5_max
value: 26.65793931965115
- type: nauc_precision_at_1000_diff1
value: -9.551422528655461
- type: nauc_precision_at_1000_max
value: 8.34835764204442
- type: nauc_precision_at_100_diff1
value: 2.2233830685766245
- type: nauc_precision_at_100_max
value: 18.020691836598584
- type: nauc_precision_at_10_diff1
value: 19.325743761791916
- type: nauc_precision_at_10_max
value: 23.679007985508786
- type: nauc_precision_at_1_diff1
value: 48.217336788734755
- type: nauc_precision_at_1_max
value: 30.672813296466302
- type: nauc_precision_at_20_diff1
value: 13.87527519424572
- type: nauc_precision_at_20_max
value: 22.302645068156657
- type: nauc_precision_at_3_diff1
value: 33.05090446279134
- type: nauc_precision_at_3_max
value: 29.389174313703947
- type: nauc_precision_at_5_diff1
value: 25.75562225572127
- type: nauc_precision_at_5_max
value: 27.147828437597372
- type: nauc_recall_at_1000_diff1
value: 19.621088665598236
- type: nauc_recall_at_1000_max
value: 30.43205196145353
- type: nauc_recall_at_100_diff1
value: 27.23232029826097
- type: nauc_recall_at_100_max
value: 22.14067215503966
- type: nauc_recall_at_10_diff1
value: 33.10443747704974
- type: nauc_recall_at_10_max
value: 19.41308822202282
- type: nauc_recall_at_1_diff1
value: 50.15813855147419
- type: nauc_recall_at_1_max
value: 26.303389987904445
- type: nauc_recall_at_20_diff1
value: 32.276483197865936
- type: nauc_recall_at_20_max
value: 20.72725151323571
- type: nauc_recall_at_3_diff1
value: 40.22031270566891
- type: nauc_recall_at_3_max
value: 23.9301104444151
- type: nauc_recall_at_5_diff1
value: 35.98209271954092
- type: nauc_recall_at_5_max
value: 22.83878482624863
- type: ndcg_at_1
value: 29.259
- type: ndcg_at_10
value: 38.207
- type: ndcg_at_100
value: 43.711
- type: ndcg_at_1000
value: 46.341
- type: ndcg_at_20
value: 40.498
- type: ndcg_at_3
value: 33.532000000000004
- type: ndcg_at_5
value: 35.69
- type: precision_at_1
value: 29.259
- type: precision_at_10
value: 7.007
- type: precision_at_100
value: 1.1560000000000001
- type: precision_at_1000
value: 0.158
- type: precision_at_20
value: 4.244
- type: precision_at_3
value: 16.041
- type: precision_at_5
value: 11.511000000000001
- type: recall_at_1
value: 23.567
- type: recall_at_10
value: 49.523
- type: recall_at_100
value: 72.562
- type: recall_at_1000
value: 90.178
- type: recall_at_20
value: 57.621
- type: recall_at_3
value: 36.282
- type: recall_at_5
value: 41.921
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: map_at_1
value: 22.266
- type: map_at_10
value: 30.25
- type: map_at_100
value: 31.581
- type: map_at_1000
value: 31.704
- type: map_at_20
value: 30.952
- type: map_at_3
value: 27.466
- type: map_at_5
value: 29.072
- type: mrr_at_1
value: 27.397260273972602
- type: mrr_at_10
value: 35.2599296948612
- type: mrr_at_100
value: 36.24881323819273
- type: mrr_at_1000
value: 36.31077886612844
- type: mrr_at_20
value: 35.848406062858004
- type: mrr_at_3
value: 32.591324200913256
- type: mrr_at_5
value: 34.235159817351594
- type: nauc_map_at_1000_diff1
value: 49.041338317944216
- type: nauc_map_at_1000_max
value: 38.50873723942883
- type: nauc_map_at_100_diff1
value: 49.01701126534856
- type: nauc_map_at_100_max
value: 38.49295698329094
- type: nauc_map_at_10_diff1
value: 49.095813348188166
- type: nauc_map_at_10_max
value: 37.90864503064915
- type: nauc_map_at_1_diff1
value: 55.75650937633808
- type: nauc_map_at_1_max
value: 36.45803206536568
- type: nauc_map_at_20_diff1
value: 48.88486278259804
- type: nauc_map_at_20_max
value: 38.234576284979276
- type: nauc_map_at_3_diff1
value: 50.800510951074344
- type: nauc_map_at_3_max
value: 36.75190407865029
- type: nauc_map_at_5_diff1
value: 49.60838604964711
- type: nauc_map_at_5_max
value: 37.32035047604114
- type: nauc_mrr_at_1000_diff1
value: 49.13411044876944
- type: nauc_mrr_at_1000_max
value: 38.97006615081024
- type: nauc_mrr_at_100_diff1
value: 49.11706960503639
- type: nauc_mrr_at_100_max
value: 38.96559788105358
- type: nauc_mrr_at_10_diff1
value: 49.092123992814116
- type: nauc_mrr_at_10_max
value: 38.94728645893312
- type: nauc_mrr_at_1_diff1
value: 55.47287529444724
- type: nauc_mrr_at_1_max
value: 40.293546568686224
- type: nauc_mrr_at_20_diff1
value: 48.96467402915927
- type: nauc_mrr_at_20_max
value: 38.86612256286537
- type: nauc_mrr_at_3_diff1
value: 50.69348233488136
- type: nauc_mrr_at_3_max
value: 39.07374242862782
- type: nauc_mrr_at_5_diff1
value: 49.48713462272688
- type: nauc_mrr_at_5_max
value: 38.903556289495874
- type: nauc_ndcg_at_1000_diff1
value: 46.865532935814144
- type: nauc_ndcg_at_1000_max
value: 39.54745630513795
- type: nauc_ndcg_at_100_diff1
value: 46.320278315069814
- type: nauc_ndcg_at_100_max
value: 39.38111071082402
- type: nauc_ndcg_at_10_diff1
value: 46.21493444038667
- type: nauc_ndcg_at_10_max
value: 38.21912668950852
- type: nauc_ndcg_at_1_diff1
value: 55.47287529444724
- type: nauc_ndcg_at_1_max
value: 40.293546568686224
- type: nauc_ndcg_at_20_diff1
value: 45.64094089105446
- type: nauc_ndcg_at_20_max
value: 38.59596868552488
- type: nauc_ndcg_at_3_diff1
value: 49.016415433673835
- type: nauc_ndcg_at_3_max
value: 37.89533426315243
- type: nauc_ndcg_at_5_diff1
value: 47.20788719798163
- type: nauc_ndcg_at_5_max
value: 37.682560665048904
- type: nauc_precision_at_1000_diff1
value: -7.359826953607673
- type: nauc_precision_at_1000_max
value: 5.6412152804640066
- type: nauc_precision_at_100_diff1
value: 4.466458911297046
- type: nauc_precision_at_100_max
value: 24.578741906158726
- type: nauc_precision_at_10_diff1
value: 22.359709568967506
- type: nauc_precision_at_10_max
value: 36.47969015950308
- type: nauc_precision_at_1_diff1
value: 55.47287529444724
- type: nauc_precision_at_1_max
value: 40.293546568686224
- type: nauc_precision_at_20_diff1
value: 14.120893949469135
- type: nauc_precision_at_20_max
value: 34.249667264582534
- type: nauc_precision_at_3_diff1
value: 37.7007086171551
- type: nauc_precision_at_3_max
value: 37.95445662666999
- type: nauc_precision_at_5_diff1
value: 29.715009411494712
- type: nauc_precision_at_5_max
value: 36.89274409767293
- type: nauc_recall_at_1000_diff1
value: 32.33111662036445
- type: nauc_recall_at_1000_max
value: 45.35170430166642
- type: nauc_recall_at_100_diff1
value: 32.144354498328035
- type: nauc_recall_at_100_max
value: 36.84062501935607
- type: nauc_recall_at_10_diff1
value: 36.14633959446269
- type: nauc_recall_at_10_max
value: 35.448585836721506
- type: nauc_recall_at_1_diff1
value: 55.75650937633808
- type: nauc_recall_at_1_max
value: 36.45803206536568
- type: nauc_recall_at_20_diff1
value: 32.97579259309187
- type: nauc_recall_at_20_max
value: 35.23418118770078
- type: nauc_recall_at_3_diff1
value: 44.664415627999816
- type: nauc_recall_at_3_max
value: 34.31461153552717
- type: nauc_recall_at_5_diff1
value: 40.19780197689489
- type: nauc_recall_at_5_max
value: 34.5962677637341
- type: ndcg_at_1
value: 27.397
- type: ndcg_at_10
value: 35.443999999999996
- type: ndcg_at_100
value: 41.429
- type: ndcg_at_1000
value: 44.059
- type: ndcg_at_20
value: 37.714999999999996
- type: ndcg_at_3
value: 30.679000000000002
- type: ndcg_at_5
value: 32.992
- type: precision_at_1
value: 27.397
- type: precision_at_10
value: 6.5409999999999995
- type: precision_at_100
value: 1.102
- type: precision_at_1000
value: 0.151
- type: precision_at_20
value: 3.961
- type: precision_at_3
value: 14.536
- type: precision_at_5
value: 10.685
- type: recall_at_1
value: 22.266
- type: recall_at_10
value: 46.071
- type: recall_at_100
value: 72.064
- type: recall_at_1000
value: 90.038
- type: recall_at_20
value: 54.342999999999996
- type: recall_at_3
value: 32.926
- type: recall_at_5
value: 38.75
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 17.261000000000003
- type: map_at_10
value: 23.753
- type: map_at_100
value: 24.627
- type: map_at_1000
value: 24.735
- type: map_at_20
value: 24.274
- type: map_at_3
value: 21.413
- type: map_at_5
value: 22.745
- type: mrr_at_1
value: 19.32515337423313
- type: mrr_at_10
value: 25.910081312688664
- type: mrr_at_100
value: 26.732545270907544
- type: mrr_at_1000
value: 26.81958074650717
- type: mrr_at_20
value: 26.38483873098964
- type: mrr_at_3
value: 23.77300613496933
- type: mrr_at_5
value: 25.02300613496933
- type: nauc_map_at_1000_diff1
value: 51.2509463814842
- type: nauc_map_at_1000_max
value: 34.59378039517527
- type: nauc_map_at_100_diff1
value: 51.20195960756142
- type: nauc_map_at_100_max
value: 34.52292810417864
- type: nauc_map_at_10_diff1
value: 50.971047162244375
- type: nauc_map_at_10_max
value: 34.42837100976023
- type: nauc_map_at_1_diff1
value: 61.66057666415862
- type: nauc_map_at_1_max
value: 34.54325674205874
- type: nauc_map_at_20_diff1
value: 51.16950921599598
- type: nauc_map_at_20_max
value: 34.50836855076594
- type: nauc_map_at_3_diff1
value: 52.980211175481394
- type: nauc_map_at_3_max
value: 34.10535134653065
- type: nauc_map_at_5_diff1
value: 51.825290665802
- type: nauc_map_at_5_max
value: 34.48591848937056
- type: nauc_mrr_at_1000_diff1
value: 51.50014502932111
- type: nauc_mrr_at_1000_max
value: 36.80362520167512
- type: nauc_mrr_at_100_diff1
value: 51.447470381911685
- type: nauc_mrr_at_100_max
value: 36.776788558968704
- type: nauc_mrr_at_10_diff1
value: 51.264885407403696
- type: nauc_mrr_at_10_max
value: 36.93350671984603
- type: nauc_mrr_at_1_diff1
value: 60.877750778528494
- type: nauc_mrr_at_1_max
value: 36.49057984523738
- type: nauc_mrr_at_20_diff1
value: 51.3534499982496
- type: nauc_mrr_at_20_max
value: 36.84780620387409
- type: nauc_mrr_at_3_diff1
value: 53.30071892113097
- type: nauc_mrr_at_3_max
value: 36.820559680318546
- type: nauc_mrr_at_5_diff1
value: 52.220386246212556
- type: nauc_mrr_at_5_max
value: 37.04291739287823
- type: nauc_ndcg_at_1000_diff1
value: 48.42608193180114
- type: nauc_ndcg_at_1000_max
value: 35.93812099772579
- type: nauc_ndcg_at_100_diff1
value: 47.5791516869875
- type: nauc_ndcg_at_100_max
value: 34.85361305271241
- type: nauc_ndcg_at_10_diff1
value: 46.85004446008741
- type: nauc_ndcg_at_10_max
value: 34.62550268395681
- type: nauc_ndcg_at_1_diff1
value: 60.877750778528494
- type: nauc_ndcg_at_1_max
value: 36.49057984523738
- type: nauc_ndcg_at_20_diff1
value: 47.301675307241545
- type: nauc_ndcg_at_20_max
value: 34.762713095272225
- type: nauc_ndcg_at_3_diff1
value: 50.570168102906564
- type: nauc_ndcg_at_3_max
value: 35.019669654163586
- type: nauc_ndcg_at_5_diff1
value: 48.66877986875303
- type: nauc_ndcg_at_5_max
value: 35.01212166467292
- type: nauc_precision_at_1000_diff1
value: 14.228081363546169
- type: nauc_precision_at_1000_max
value: 32.18702497143084
- type: nauc_precision_at_100_diff1
value: 27.494269464828974
- type: nauc_precision_at_100_max
value: 37.41573760452751
- type: nauc_precision_at_10_diff1
value: 33.933451544379366
- type: nauc_precision_at_10_max
value: 38.49427569486423
- type: nauc_precision_at_1_diff1
value: 60.877750778528494
- type: nauc_precision_at_1_max
value: 36.49057984523738
- type: nauc_precision_at_20_diff1
value: 34.397803404800605
- type: nauc_precision_at_20_max
value: 40.15514058102005
- type: nauc_precision_at_3_diff1
value: 42.88433793638738
- type: nauc_precision_at_3_max
value: 38.4764975067788
- type: nauc_precision_at_5_diff1
value: 38.93369587658407
- type: nauc_precision_at_5_max
value: 39.456916993900585
- type: nauc_recall_at_1000_diff1
value: 37.19758635716514
- type: nauc_recall_at_1000_max
value: 36.93465372531077
- type: nauc_recall_at_100_diff1
value: 35.404949235194174
- type: nauc_recall_at_100_max
value: 30.630300224996066
- type: nauc_recall_at_10_diff1
value: 34.702045929932055
- type: nauc_recall_at_10_max
value: 31.534616746827915
- type: nauc_recall_at_1_diff1
value: 61.66057666415862
- type: nauc_recall_at_1_max
value: 34.54325674205874
- type: nauc_recall_at_20_diff1
value: 35.24947576154629
- type: nauc_recall_at_20_max
value: 31.041888309997695
- type: nauc_recall_at_3_diff1
value: 43.141135363012054
- type: nauc_recall_at_3_max
value: 31.535167376189584
- type: nauc_recall_at_5_diff1
value: 38.72810643136954
- type: nauc_recall_at_5_max
value: 32.01182215240314
- type: ndcg_at_1
value: 19.325
- type: ndcg_at_10
value: 27.722
- type: ndcg_at_100
value: 32.0
- type: ndcg_at_1000
value: 34.77
- type: ndcg_at_20
value: 29.465000000000003
- type: ndcg_at_3
value: 23.341
- type: ndcg_at_5
value: 25.529000000000003
- type: precision_at_1
value: 19.325
- type: precision_at_10
value: 4.601
- type: precision_at_100
value: 0.721
- type: precision_at_1000
value: 0.104
- type: precision_at_20
value: 2.692
- type: precision_at_3
value: 10.327
- type: precision_at_5
value: 7.515
- type: recall_at_1
value: 17.261000000000003
- type: recall_at_10
value: 37.802
- type: recall_at_100
value: 57.166
- type: recall_at_1000
value: 77.469
- type: recall_at_20
value: 44.318999999999996
- type: recall_at_3
value: 26.116
- type: recall_at_5
value: 31.366
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 12.961
- type: map_at_10
value: 18.740000000000002
- type: map_at_100
value: 19.703
- type: map_at_1000
value: 19.825
- type: map_at_20
value: 19.216
- type: map_at_3
value: 16.694
- type: map_at_5
value: 17.743000000000002
- type: mrr_at_1
value: 16.10461114934618
- type: mrr_at_10
value: 22.051188564437027
- type: mrr_at_100
value: 22.947710833057016
- type: mrr_at_1000
value: 23.031251789042475
- type: mrr_at_20
value: 22.535362926344344
- type: mrr_at_3
value: 20.061940812112866
- type: mrr_at_5
value: 21.092567102546468
- type: nauc_map_at_1000_diff1
value: 28.720484948469466
- type: nauc_map_at_1000_max
value: 22.865440767140637
- type: nauc_map_at_100_diff1
value: 28.725034760353314
- type: nauc_map_at_100_max
value: 22.84046004129796
- type: nauc_map_at_10_diff1
value: 28.952012695372698
- type: nauc_map_at_10_max
value: 22.793975798196286
- type: nauc_map_at_1_diff1
value: 35.53613349593089
- type: nauc_map_at_1_max
value: 24.140548014012747
- type: nauc_map_at_20_diff1
value: 28.853451957069336
- type: nauc_map_at_20_max
value: 22.799743549101326
- type: nauc_map_at_3_diff1
value: 29.951337425480883
- type: nauc_map_at_3_max
value: 22.610756063409553
- type: nauc_map_at_5_diff1
value: 29.37330668286449
- type: nauc_map_at_5_max
value: 22.57878266649173
- type: nauc_mrr_at_1000_diff1
value: 27.90192701434291
- type: nauc_mrr_at_1000_max
value: 23.7579661122046
- type: nauc_mrr_at_100_diff1
value: 27.900632259474882
- type: nauc_mrr_at_100_max
value: 23.75784428285424
- type: nauc_mrr_at_10_diff1
value: 28.00880872779524
- type: nauc_mrr_at_10_max
value: 23.798169424406627
- type: nauc_mrr_at_1_diff1
value: 34.309863568911425
- type: nauc_mrr_at_1_max
value: 26.916059981932417
- type: nauc_mrr_at_20_diff1
value: 28.043424996676624
- type: nauc_mrr_at_20_max
value: 23.783097407351868
- type: nauc_mrr_at_3_diff1
value: 28.872236354185237
- type: nauc_mrr_at_3_max
value: 24.10001094600915
- type: nauc_mrr_at_5_diff1
value: 28.431586921893327
- type: nauc_mrr_at_5_max
value: 23.793770139983565
- type: nauc_ndcg_at_1000_diff1
value: 25.26133758890153
- type: nauc_ndcg_at_1000_max
value: 22.369863581700518
- type: nauc_ndcg_at_100_diff1
value: 25.295918102117653
- type: nauc_ndcg_at_100_max
value: 22.19607938223796
- type: nauc_ndcg_at_10_diff1
value: 26.73394941848248
- type: nauc_ndcg_at_10_max
value: 22.53565041597461
- type: nauc_ndcg_at_1_diff1
value: 34.309863568911425
- type: nauc_ndcg_at_1_max
value: 26.916059981932417
- type: nauc_ndcg_at_20_diff1
value: 26.483879384526325
- type: nauc_ndcg_at_20_max
value: 22.37283043808397
- type: nauc_ndcg_at_3_diff1
value: 28.233989865507585
- type: nauc_ndcg_at_3_max
value: 23.18337582626765
- type: nauc_ndcg_at_5_diff1
value: 27.586183431281597
- type: nauc_ndcg_at_5_max
value: 22.525122228978613
- type: nauc_precision_at_1000_diff1
value: 4.291961797660381
- type: nauc_precision_at_1000_max
value: 20.066766200392706
- type: nauc_precision_at_100_diff1
value: 9.25374685617893
- type: nauc_precision_at_100_max
value: 23.561539434177973
- type: nauc_precision_at_10_diff1
value: 18.543124835189897
- type: nauc_precision_at_10_max
value: 25.99560427639843
- type: nauc_precision_at_1_diff1
value: 34.309863568911425
- type: nauc_precision_at_1_max
value: 26.916059981932417
- type: nauc_precision_at_20_diff1
value: 17.32859805675752
- type: nauc_precision_at_20_max
value: 25.111647024470713
- type: nauc_precision_at_3_diff1
value: 23.11307218784423
- type: nauc_precision_at_3_max
value: 25.43882757760188
- type: nauc_precision_at_5_diff1
value: 21.066799573535427
- type: nauc_precision_at_5_max
value: 25.53816237609956
- type: nauc_recall_at_1000_diff1
value: 9.108450047050564
- type: nauc_recall_at_1000_max
value: 15.552865366057592
- type: nauc_recall_at_100_diff1
value: 14.425072798063132
- type: nauc_recall_at_100_max
value: 17.05584096508452
- type: nauc_recall_at_10_diff1
value: 20.957155461035747
- type: nauc_recall_at_10_max
value: 18.77313505623332
- type: nauc_recall_at_1_diff1
value: 35.53613349593089
- type: nauc_recall_at_1_max
value: 24.140548014012747
- type: nauc_recall_at_20_diff1
value: 19.96872494547587
- type: nauc_recall_at_20_max
value: 18.462760317549197
- type: nauc_recall_at_3_diff1
value: 24.694266156911524
- type: nauc_recall_at_3_max
value: 19.640837676020173
- type: nauc_recall_at_5_diff1
value: 23.065469774243972
- type: nauc_recall_at_5_max
value: 18.657460685134776
- type: ndcg_at_1
value: 16.105
- type: ndcg_at_10
value: 22.708000000000002
- type: ndcg_at_100
value: 27.653
- type: ndcg_at_1000
value: 30.812
- type: ndcg_at_20
value: 24.346
- type: ndcg_at_3
value: 18.95
- type: ndcg_at_5
value: 20.522000000000002
- type: precision_at_1
value: 16.105
- type: precision_at_10
value: 4.267
- type: precision_at_100
value: 0.799
- type: precision_at_1000
value: 0.124
- type: precision_at_20
value: 2.6100000000000003
- type: precision_at_3
value: 9.049999999999999
- type: precision_at_5
value: 6.593
- type: recall_at_1
value: 12.961
- type: recall_at_10
value: 31.438
- type: recall_at_100
value: 54.129000000000005
- type: recall_at_1000
value: 77.076
- type: recall_at_20
value: 37.518
- type: recall_at_3
value: 20.997
- type: recall_at_5
value: 25.074999999999996
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: map_at_1
value: 20.709
- type: map_at_10
value: 28.738999999999997
- type: map_at_100
value: 29.815
- type: map_at_1000
value: 29.932
- type: map_at_20
value: 29.282999999999998
- type: map_at_3
value: 26.441
- type: map_at_5
value: 27.777
- type: mrr_at_1
value: 24.53358208955224
- type: mrr_at_10
value: 32.394463693437544
- type: mrr_at_100
value: 33.350174597946385
- type: mrr_at_1000
value: 33.41993464841955
- type: mrr_at_20
value: 32.94076610467875
- type: mrr_at_3
value: 30.130597014925375
- type: mrr_at_5
value: 31.473880597014904
- type: nauc_map_at_1000_diff1
value: 40.692748340864746
- type: nauc_map_at_1000_max
value: 35.57839095914156
- type: nauc_map_at_100_diff1
value: 40.650799378493744
- type: nauc_map_at_100_max
value: 35.53795709449845
- type: nauc_map_at_10_diff1
value: 40.89383138365538
- type: nauc_map_at_10_max
value: 35.44293342259398
- type: nauc_map_at_1_diff1
value: 49.12072003473875
- type: nauc_map_at_1_max
value: 35.88899688359625
- type: nauc_map_at_20_diff1
value: 40.67489507417953
- type: nauc_map_at_20_max
value: 35.37903608045856
- type: nauc_map_at_3_diff1
value: 41.5317838231129
- type: nauc_map_at_3_max
value: 35.46770908063441
- type: nauc_map_at_5_diff1
value: 40.846545617446004
- type: nauc_map_at_5_max
value: 35.14965178055238
- type: nauc_mrr_at_1000_diff1
value: 40.73361687958999
- type: nauc_mrr_at_1000_max
value: 37.121713108339534
- type: nauc_mrr_at_100_diff1
value: 40.71129341657058
- type: nauc_mrr_at_100_max
value: 37.11517896403668
- type: nauc_mrr_at_10_diff1
value: 40.72473147121323
- type: nauc_mrr_at_10_max
value: 37.04589115955753
- type: nauc_mrr_at_1_diff1
value: 48.388878266455734
- type: nauc_mrr_at_1_max
value: 37.526360339847045
- type: nauc_mrr_at_20_diff1
value: 40.61982213089854
- type: nauc_mrr_at_20_max
value: 37.00491513836514
- type: nauc_mrr_at_3_diff1
value: 41.37485831338118
- type: nauc_mrr_at_3_max
value: 37.47176509970741
- type: nauc_mrr_at_5_diff1
value: 40.93161777811511
- type: nauc_mrr_at_5_max
value: 37.078286920815906
- type: nauc_ndcg_at_1000_diff1
value: 38.5467813816651
- type: nauc_ndcg_at_1000_max
value: 36.596764984052825
- type: nauc_ndcg_at_100_diff1
value: 37.67469746267849
- type: nauc_ndcg_at_100_max
value: 35.8208874944717
- type: nauc_ndcg_at_10_diff1
value: 38.66595637217053
- type: nauc_ndcg_at_10_max
value: 35.6228257599822
- type: nauc_ndcg_at_1_diff1
value: 48.388878266455734
- type: nauc_ndcg_at_1_max
value: 37.526360339847045
- type: nauc_ndcg_at_20_diff1
value: 37.890275853954094
- type: nauc_ndcg_at_20_max
value: 35.25047254404629
- type: nauc_ndcg_at_3_diff1
value: 39.87230430483416
- type: nauc_ndcg_at_3_max
value: 36.008184210199325
- type: nauc_ndcg_at_5_diff1
value: 38.841236541335206
- type: nauc_ndcg_at_5_max
value: 35.192374109201246
- type: nauc_precision_at_1000_diff1
value: 1.657722375056512
- type: nauc_precision_at_1000_max
value: 11.706401779440883
- type: nauc_precision_at_100_diff1
value: 10.20061825548431
- type: nauc_precision_at_100_max
value: 22.845634742237408
- type: nauc_precision_at_10_diff1
value: 26.632700346478916
- type: nauc_precision_at_10_max
value: 32.62334674689399
- type: nauc_precision_at_1_diff1
value: 48.388878266455734
- type: nauc_precision_at_1_max
value: 37.526360339847045
- type: nauc_precision_at_20_diff1
value: 20.876173735564592
- type: nauc_precision_at_20_max
value: 28.850377091435526
- type: nauc_precision_at_3_diff1
value: 32.025223944269
- type: nauc_precision_at_3_max
value: 35.71025859086816
- type: nauc_precision_at_5_diff1
value: 28.967780161302443
- type: nauc_precision_at_5_max
value: 33.49195837301289
- type: nauc_recall_at_1000_diff1
value: 23.608841697077036
- type: nauc_recall_at_1000_max
value: 41.20735928314203
- type: nauc_recall_at_100_diff1
value: 22.76475282031864
- type: nauc_recall_at_100_max
value: 30.663804567546897
- type: nauc_recall_at_10_diff1
value: 31.20793541893715
- type: nauc_recall_at_10_max
value: 32.83480866538358
- type: nauc_recall_at_1_diff1
value: 49.12072003473875
- type: nauc_recall_at_1_max
value: 35.88899688359625
- type: nauc_recall_at_20_diff1
value: 27.465280423335305
- type: nauc_recall_at_20_max
value: 30.40284795095875
- type: nauc_recall_at_3_diff1
value: 34.792488128346164
- type: nauc_recall_at_3_max
value: 34.223694348326724
- type: nauc_recall_at_5_diff1
value: 32.528565271564474
- type: nauc_recall_at_5_max
value: 32.428759553708744
- type: ndcg_at_1
value: 24.534
- type: ndcg_at_10
value: 33.363
- type: ndcg_at_100
value: 38.737
- type: ndcg_at_1000
value: 41.508
- type: ndcg_at_20
value: 35.288000000000004
- type: ndcg_at_3
value: 29.083
- type: ndcg_at_5
value: 31.212
- type: precision_at_1
value: 24.534
- type: precision_at_10
value: 5.588
- type: precision_at_100
value: 0.932
- type: precision_at_1000
value: 0.129
- type: precision_at_20
value: 3.3300000000000005
- type: precision_at_3
value: 13.245999999999999
- type: precision_at_5
value: 9.366
- type: recall_at_1
value: 20.709
- type: recall_at_10
value: 43.924
- type: recall_at_100
value: 67.823
- type: recall_at_1000
value: 87.665
- type: recall_at_20
value: 50.893
- type: recall_at_3
value: 32.175
- type: recall_at_5
value: 37.649
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: map_at_1
value: 22.305
- type: map_at_10
value: 30.379
- type: map_at_100
value: 31.782
- type: map_at_1000
value: 32.012
- type: map_at_20
value: 31.064000000000004
- type: map_at_3
value: 27.881
- type: map_at_5
value: 29.160000000000004
- type: mrr_at_1
value: 27.07509881422925
- type: mrr_at_10
value: 34.71610515088775
- type: mrr_at_100
value: 35.64647402926793
- type: mrr_at_1000
value: 35.72461288830468
- type: mrr_at_20
value: 35.21386515614449
- type: mrr_at_3
value: 32.608695652173914
- type: mrr_at_5
value: 33.73517786561265
- type: nauc_map_at_1000_diff1
value: 40.06942921592567
- type: nauc_map_at_1000_max
value: 34.948952917618826
- type: nauc_map_at_100_diff1
value: 40.26652655508838
- type: nauc_map_at_100_max
value: 35.05037692834513
- type: nauc_map_at_10_diff1
value: 40.40482595725152
- type: nauc_map_at_10_max
value: 34.76994801074602
- type: nauc_map_at_1_diff1
value: 48.449155396082276
- type: nauc_map_at_1_max
value: 31.923255733967675
- type: nauc_map_at_20_diff1
value: 40.43121378897672
- type: nauc_map_at_20_max
value: 34.955059887164744
- type: nauc_map_at_3_diff1
value: 41.520030101234
- type: nauc_map_at_3_max
value: 33.87326916343342
- type: nauc_map_at_5_diff1
value: 40.68085798830698
- type: nauc_map_at_5_max
value: 34.52274061079644
- type: nauc_mrr_at_1000_diff1
value: 38.58624602600238
- type: nauc_mrr_at_1000_max
value: 36.71589604244066
- type: nauc_mrr_at_100_diff1
value: 38.57954339254479
- type: nauc_mrr_at_100_max
value: 36.71451461262756
- type: nauc_mrr_at_10_diff1
value: 38.39778240600376
- type: nauc_mrr_at_10_max
value: 36.867440078145805
- type: nauc_mrr_at_1_diff1
value: 45.54773488737558
- type: nauc_mrr_at_1_max
value: 35.46157252708776
- type: nauc_mrr_at_20_diff1
value: 38.56226741939672
- type: nauc_mrr_at_20_max
value: 36.79076112969171
- type: nauc_mrr_at_3_diff1
value: 39.241048736996326
- type: nauc_mrr_at_3_max
value: 36.81497880532945
- type: nauc_mrr_at_5_diff1
value: 38.75938933304581
- type: nauc_mrr_at_5_max
value: 36.91112394256869
- type: nauc_ndcg_at_1000_diff1
value: 37.01015933832102
- type: nauc_ndcg_at_1000_max
value: 36.14674427038953
- type: nauc_ndcg_at_100_diff1
value: 37.46009355653446
- type: nauc_ndcg_at_100_max
value: 36.168362134330415
- type: nauc_ndcg_at_10_diff1
value: 36.87998378155374
- type: nauc_ndcg_at_10_max
value: 36.03488979078424
- type: nauc_ndcg_at_1_diff1
value: 45.54773488737558
- type: nauc_ndcg_at_1_max
value: 35.46157252708776
- type: nauc_ndcg_at_20_diff1
value: 37.32245335628528
- type: nauc_ndcg_at_20_max
value: 35.98153437861986
- type: nauc_ndcg_at_3_diff1
value: 38.4065595992595
- type: nauc_ndcg_at_3_max
value: 36.16984761665991
- type: nauc_ndcg_at_5_diff1
value: 37.528041451543274
- type: nauc_ndcg_at_5_max
value: 36.29795461312836
- type: nauc_precision_at_1000_diff1
value: -27.028565760553704
- type: nauc_precision_at_1000_max
value: -6.211061610108618
- type: nauc_precision_at_100_diff1
value: -11.543495827856747
- type: nauc_precision_at_100_max
value: 10.08227744965561
- type: nauc_precision_at_10_diff1
value: 11.91615180702728
- type: nauc_precision_at_10_max
value: 31.648399736572237
- type: nauc_precision_at_1_diff1
value: 45.54773488737558
- type: nauc_precision_at_1_max
value: 35.46157252708776
- type: nauc_precision_at_20_diff1
value: 7.106796337295673
- type: nauc_precision_at_20_max
value: 28.270776285978005
- type: nauc_precision_at_3_diff1
value: 27.025372640430305
- type: nauc_precision_at_3_max
value: 37.05993782016582
- type: nauc_precision_at_5_diff1
value: 20.36905717821343
- type: nauc_precision_at_5_max
value: 36.78762312900936
- type: nauc_recall_at_1000_diff1
value: 15.327824598428135
- type: nauc_recall_at_1000_max
value: 37.388077518454125
- type: nauc_recall_at_100_diff1
value: 26.663273479931682
- type: nauc_recall_at_100_max
value: 35.19719455819416
- type: nauc_recall_at_10_diff1
value: 29.457868053419173
- type: nauc_recall_at_10_max
value: 34.69858107618685
- type: nauc_recall_at_1_diff1
value: 48.449155396082276
- type: nauc_recall_at_1_max
value: 31.923255733967675
- type: nauc_recall_at_20_diff1
value: 28.740287691134785
- type: nauc_recall_at_20_max
value: 33.54392173053316
- type: nauc_recall_at_3_diff1
value: 34.36341724443082
- type: nauc_recall_at_3_max
value: 34.23281133452072
- type: nauc_recall_at_5_diff1
value: 31.778622196668138
- type: nauc_recall_at_5_max
value: 35.09923813897011
- type: ndcg_at_1
value: 27.075
- type: ndcg_at_10
value: 35.35
- type: ndcg_at_100
value: 40.822
- type: ndcg_at_1000
value: 43.961
- type: ndcg_at_20
value: 37.13
- type: ndcg_at_3
value: 31.419000000000004
- type: ndcg_at_5
value: 33.032000000000004
- type: precision_at_1
value: 27.075
- type: precision_at_10
value: 6.64
- type: precision_at_100
value: 1.35
- type: precision_at_1000
value: 0.232
- type: precision_at_20
value: 4.14
- type: precision_at_3
value: 14.427000000000001
- type: precision_at_5
value: 10.435
- type: recall_at_1
value: 22.305
- type: recall_at_10
value: 44.456
- type: recall_at_100
value: 69.57799999999999
- type: recall_at_1000
value: 89.262
- type: recall_at_20
value: 51.434999999999995
- type: recall_at_3
value: 33.141999999999996
- type: recall_at_5
value: 37.51
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 15.723999999999998
- type: map_at_10
value: 22.479
- type: map_at_100
value: 23.494
- type: map_at_1000
value: 23.613
- type: map_at_20
value: 23.043
- type: map_at_3
value: 20.49
- type: map_at_5
value: 21.711
- type: mrr_at_1
value: 17.375231053604438
- type: mrr_at_10
value: 24.391485491300635
- type: mrr_at_100
value: 25.3451706703197
- type: mrr_at_1000
value: 25.4338976938353
- type: mrr_at_20
value: 24.932480156623605
- type: mrr_at_3
value: 22.48921749845963
- type: mrr_at_5
value: 23.62600123228588
- type: nauc_map_at_1000_diff1
value: 26.568452594006768
- type: nauc_map_at_1000_max
value: 22.6643108995624
- type: nauc_map_at_100_diff1
value: 26.56713050875225
- type: nauc_map_at_100_max
value: 22.72845024690553
- type: nauc_map_at_10_diff1
value: 26.48034872839756
- type: nauc_map_at_10_max
value: 22.77864909505566
- type: nauc_map_at_1_diff1
value: 35.16513757522047
- type: nauc_map_at_1_max
value: 22.34690217093654
- type: nauc_map_at_20_diff1
value: 26.373663262670444
- type: nauc_map_at_20_max
value: 22.587491027571254
- type: nauc_map_at_3_diff1
value: 27.621000302198922
- type: nauc_map_at_3_max
value: 22.84661442384809
- type: nauc_map_at_5_diff1
value: 26.765290689478732
- type: nauc_map_at_5_max
value: 22.988851260881056
- type: nauc_mrr_at_1000_diff1
value: 27.28527950781967
- type: nauc_mrr_at_1000_max
value: 22.818092962601042
- type: nauc_mrr_at_100_diff1
value: 27.29780478860489
- type: nauc_mrr_at_100_max
value: 22.85092145520846
- type: nauc_mrr_at_10_diff1
value: 27.245118068210814
- type: nauc_mrr_at_10_max
value: 22.93612080353226
- type: nauc_mrr_at_1_diff1
value: 36.22401042267479
- type: nauc_mrr_at_1_max
value: 24.1620633176196
- type: nauc_mrr_at_20_diff1
value: 27.10137249046854
- type: nauc_mrr_at_20_max
value: 22.74832608433313
- type: nauc_mrr_at_3_diff1
value: 28.803394273224846
- type: nauc_mrr_at_3_max
value: 23.58218274270813
- type: nauc_mrr_at_5_diff1
value: 27.548514879068392
- type: nauc_mrr_at_5_max
value: 23.202061782986362
- type: nauc_ndcg_at_1000_diff1
value: 24.255610268405004
- type: nauc_ndcg_at_1000_max
value: 21.021653182317866
- type: nauc_ndcg_at_100_diff1
value: 24.38035576235643
- type: nauc_ndcg_at_100_max
value: 22.01602046149638
- type: nauc_ndcg_at_10_diff1
value: 23.72345010383346
- type: nauc_ndcg_at_10_max
value: 22.379426846697886
- type: nauc_ndcg_at_1_diff1
value: 36.22401042267479
- type: nauc_ndcg_at_1_max
value: 24.1620633176196
- type: nauc_ndcg_at_20_diff1
value: 23.238204223853767
- type: nauc_ndcg_at_20_max
value: 21.524058764754642
- type: nauc_ndcg_at_3_diff1
value: 26.154431437162284
- type: nauc_ndcg_at_3_max
value: 23.12477560308262
- type: nauc_ndcg_at_5_diff1
value: 24.381279154864856
- type: nauc_ndcg_at_5_max
value: 22.928738776001943
- type: nauc_precision_at_1000_diff1
value: 10.866194934427694
- type: nauc_precision_at_1000_max
value: -8.119816513990198
- type: nauc_precision_at_100_diff1
value: 16.347299053203397
- type: nauc_precision_at_100_max
value: 13.26292415361133
- type: nauc_precision_at_10_diff1
value: 16.63699688800471
- type: nauc_precision_at_10_max
value: 22.375088256427286
- type: nauc_precision_at_1_diff1
value: 36.22401042267479
- type: nauc_precision_at_1_max
value: 24.1620633176196
- type: nauc_precision_at_20_diff1
value: 15.555806748912909
- type: nauc_precision_at_20_max
value: 18.55637142126297
- type: nauc_precision_at_3_diff1
value: 21.119629681631707
- type: nauc_precision_at_3_max
value: 25.238443284915007
- type: nauc_precision_at_5_diff1
value: 18.173398326347908
- type: nauc_precision_at_5_max
value: 24.277628318544387
- type: nauc_recall_at_1000_diff1
value: 11.904300629344641
- type: nauc_recall_at_1000_max
value: 4.543701587503855
- type: nauc_recall_at_100_diff1
value: 17.873778791471032
- type: nauc_recall_at_100_max
value: 18.07160995779775
- type: nauc_recall_at_10_diff1
value: 15.715088403469021
- type: nauc_recall_at_10_max
value: 20.285351500657857
- type: nauc_recall_at_1_diff1
value: 35.16513757522047
- type: nauc_recall_at_1_max
value: 22.34690217093654
- type: nauc_recall_at_20_diff1
value: 13.584020684215409
- type: nauc_recall_at_20_max
value: 16.915404230260844
- type: nauc_recall_at_3_diff1
value: 20.57543835256644
- type: nauc_recall_at_3_max
value: 22.257888049364798
- type: nauc_recall_at_5_diff1
value: 17.196563781054497
- type: nauc_recall_at_5_max
value: 21.786295860256278
- type: ndcg_at_1
value: 17.375
- type: ndcg_at_10
value: 26.458
- type: ndcg_at_100
value: 31.630999999999997
- type: ndcg_at_1000
value: 34.648
- type: ndcg_at_20
value: 28.429
- type: ndcg_at_3
value: 22.572
- type: ndcg_at_5
value: 24.627
- type: precision_at_1
value: 17.375
- type: precision_at_10
value: 4.3069999999999995
- type: precision_at_100
value: 0.747
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_20
value: 2.616
- type: precision_at_3
value: 9.982000000000001
- type: precision_at_5
value: 7.172000000000001
- type: recall_at_1
value: 15.723999999999998
- type: recall_at_10
value: 36.848
- type: recall_at_100
value: 60.843
- type: recall_at_1000
value: 83.35900000000001
- type: recall_at_20
value: 44.239
- type: recall_at_3
value: 26.512999999999998
- type: recall_at_5
value: 31.447999999999997
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 7.556
- type: map_at_10
value: 14.451
- type: map_at_100
value: 16.098000000000003
- type: map_at_1000
value: 16.292
- type: map_at_20
value: 15.354000000000001
- type: map_at_3
value: 11.788
- type: map_at_5
value: 13.036
- type: mrr_at_1
value: 17.850162866449512
- type: mrr_at_10
value: 29.02070730572359
- type: mrr_at_100
value: 30.10374653258222
- type: mrr_at_1000
value: 30.159660391788854
- type: mrr_at_20
value: 29.705480653232243
- type: mrr_at_3
value: 25.287730727470116
- type: mrr_at_5
value: 27.437567861020568
- type: nauc_map_at_1000_diff1
value: 19.209527081030096
- type: nauc_map_at_1000_max
value: 31.647208883839507
- type: nauc_map_at_100_diff1
value: 19.20806522507485
- type: nauc_map_at_100_max
value: 31.548780447276
- type: nauc_map_at_10_diff1
value: 19.169908589166987
- type: nauc_map_at_10_max
value: 30.501288768500395
- type: nauc_map_at_1_diff1
value: 26.988959334325852
- type: nauc_map_at_1_max
value: 27.356073363716522
- type: nauc_map_at_20_diff1
value: 19.09827492317952
- type: nauc_map_at_20_max
value: 31.134688299749186
- type: nauc_map_at_3_diff1
value: 19.934035735585724
- type: nauc_map_at_3_max
value: 29.22218051641785
- type: nauc_map_at_5_diff1
value: 19.398656144868713
- type: nauc_map_at_5_max
value: 29.045993729549778
- type: nauc_mrr_at_1000_diff1
value: 16.978829558159727
- type: nauc_mrr_at_1000_max
value: 27.016129985398962
- type: nauc_mrr_at_100_diff1
value: 16.95693929120996
- type: nauc_mrr_at_100_max
value: 27.02464201206241
- type: nauc_mrr_at_10_diff1
value: 16.922383134541786
- type: nauc_mrr_at_10_max
value: 26.917342116854172
- type: nauc_mrr_at_1_diff1
value: 21.967275710063323
- type: nauc_mrr_at_1_max
value: 23.97730021914779
- type: nauc_mrr_at_20_diff1
value: 16.933125050384778
- type: nauc_mrr_at_20_max
value: 27.07768335891788
- type: nauc_mrr_at_3_diff1
value: 16.946763294333316
- type: nauc_mrr_at_3_max
value: 25.214811458539
- type: nauc_mrr_at_5_diff1
value: 17.04305756647301
- type: nauc_mrr_at_5_max
value: 26.130628979961834
- type: nauc_ndcg_at_1000_diff1
value: 16.986658675773686
- type: nauc_ndcg_at_1000_max
value: 34.4643347153785
- type: nauc_ndcg_at_100_diff1
value: 17.057499024976163
- type: nauc_ndcg_at_100_max
value: 33.73159453243811
- type: nauc_ndcg_at_10_diff1
value: 16.929966520239194
- type: nauc_ndcg_at_10_max
value: 31.301536380836026
- type: nauc_ndcg_at_1_diff1
value: 21.967275710063323
- type: nauc_ndcg_at_1_max
value: 23.97730021914779
- type: nauc_ndcg_at_20_diff1
value: 16.900348110026968
- type: nauc_ndcg_at_20_max
value: 32.476079344191525
- type: nauc_ndcg_at_3_diff1
value: 17.270453057670856
- type: nauc_ndcg_at_3_max
value: 27.75387606914448
- type: nauc_ndcg_at_5_diff1
value: 17.300131450254998
- type: nauc_ndcg_at_5_max
value: 28.707766380169097
- type: nauc_precision_at_1000_diff1
value: 2.3756918838598002
- type: nauc_precision_at_1000_max
value: 20.23410724169113
- type: nauc_precision_at_100_diff1
value: 6.358801887547644
- type: nauc_precision_at_100_max
value: 26.742998434337
- type: nauc_precision_at_10_diff1
value: 8.985726577486592
- type: nauc_precision_at_10_max
value: 29.98846164047006
- type: nauc_precision_at_1_diff1
value: 21.967275710063323
- type: nauc_precision_at_1_max
value: 23.97730021914779
- type: nauc_precision_at_20_diff1
value: 8.689481678265938
- type: nauc_precision_at_20_max
value: 30.24412868451184
- type: nauc_precision_at_3_diff1
value: 11.498289241456895
- type: nauc_precision_at_3_max
value: 26.84419245258572
- type: nauc_precision_at_5_diff1
value: 10.894319062565254
- type: nauc_precision_at_5_max
value: 27.273788735432884
- type: nauc_recall_at_1000_diff1
value: 8.943592557292224
- type: nauc_recall_at_1000_max
value: 37.585654238896446
- type: nauc_recall_at_100_diff1
value: 10.708206895515247
- type: nauc_recall_at_100_max
value: 32.10962530348595
- type: nauc_recall_at_10_diff1
value: 12.169794236323957
- type: nauc_recall_at_10_max
value: 30.12170288353037
- type: nauc_recall_at_1_diff1
value: 26.988959334325852
- type: nauc_recall_at_1_max
value: 27.356073363716522
- type: nauc_recall_at_20_diff1
value: 11.394888526086374
- type: nauc_recall_at_20_max
value: 30.72718903844353
- type: nauc_recall_at_3_diff1
value: 15.011650843515994
- type: nauc_recall_at_3_max
value: 28.233837827958475
- type: nauc_recall_at_5_diff1
value: 13.739007199689038
- type: nauc_recall_at_5_max
value: 27.097220418736455
- type: ndcg_at_1
value: 17.849999999999998
- type: ndcg_at_10
value: 21.712
- type: ndcg_at_100
value: 28.552
- type: ndcg_at_1000
value: 32.261
- type: ndcg_at_20
value: 24.421
- type: ndcg_at_3
value: 16.791
- type: ndcg_at_5
value: 18.462999999999997
- type: precision_at_1
value: 17.849999999999998
- type: precision_at_10
value: 7.212000000000001
- type: precision_at_100
value: 1.438
- type: precision_at_1000
value: 0.212
- type: precision_at_20
value: 4.73
- type: precision_at_3
value: 12.942
- type: precision_at_5
value: 10.280000000000001
- type: recall_at_1
value: 7.556
- type: recall_at_10
value: 27.891
- type: recall_at_100
value: 51.585
- type: recall_at_1000
value: 72.638
- type: recall_at_20
value: 35.644999999999996
- type: recall_at_3
value: 16.026
- type: recall_at_5
value: 20.507
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 7.234
- type: map_at_10
value: 14.607000000000001
- type: map_at_100
value: 20.104
- type: map_at_1000
value: 21.478
- type: map_at_20
value: 16.619999999999997
- type: map_at_3
value: 11.027000000000001
- type: map_at_5
value: 12.469
- type: mrr_at_1
value: 54.25
- type: mrr_at_10
value: 64.63998015873014
- type: mrr_at_100
value: 65.1130930093471
- type: mrr_at_1000
value: 65.13135082056961
- type: mrr_at_20
value: 64.94966038326137
- type: mrr_at_3
value: 62.458333333333336
- type: mrr_at_5
value: 63.845833333333324
- type: nauc_map_at_1000_diff1
value: 22.4158889201391
- type: nauc_map_at_1000_max
value: 7.026467662060626
- type: nauc_map_at_100_diff1
value: 23.04636496295622
- type: nauc_map_at_100_max
value: 4.725540774086458
- type: nauc_map_at_10_diff1
value: 23.432494495467783
- type: nauc_map_at_10_max
value: -5.821110663085555
- type: nauc_map_at_1_diff1
value: 34.840276007257444
- type: nauc_map_at_1_max
value: -11.37201527363141
- type: nauc_map_at_20_diff1
value: 24.395490704549474
- type: nauc_map_at_20_max
value: -2.1089029956487084
- type: nauc_map_at_3_diff1
value: 26.996333964606727
- type: nauc_map_at_3_max
value: -10.371168153982198
- type: nauc_map_at_5_diff1
value: 24.959954478462205
- type: nauc_map_at_5_max
value: -8.600893701670593
- type: nauc_mrr_at_1000_diff1
value: 35.24039282463778
- type: nauc_mrr_at_1000_max
value: 37.114026096308244
- type: nauc_mrr_at_100_diff1
value: 35.246986246738324
- type: nauc_mrr_at_100_max
value: 37.127597625848175
- type: nauc_mrr_at_10_diff1
value: 35.19817679146017
- type: nauc_mrr_at_10_max
value: 37.10088394447574
- type: nauc_mrr_at_1_diff1
value: 37.871437973819546
- type: nauc_mrr_at_1_max
value: 33.639317316766494
- type: nauc_mrr_at_20_diff1
value: 35.1331593237111
- type: nauc_mrr_at_20_max
value: 37.0319775042493
- type: nauc_mrr_at_3_diff1
value: 35.18290669114643
- type: nauc_mrr_at_3_max
value: 37.17151353458554
- type: nauc_mrr_at_5_diff1
value: 35.27152644879001
- type: nauc_mrr_at_5_max
value: 37.59776931748075
- type: nauc_ndcg_at_1000_diff1
value: 23.265231375797573
- type: nauc_ndcg_at_1000_max
value: 19.253303883964247
- type: nauc_ndcg_at_100_diff1
value: 24.65543924960885
- type: nauc_ndcg_at_100_max
value: 12.423207189979774
- type: nauc_ndcg_at_10_diff1
value: 22.383661242851076
- type: nauc_ndcg_at_10_max
value: 12.11544119539834
- type: nauc_ndcg_at_1_diff1
value: 35.37762392054306
- type: nauc_ndcg_at_1_max
value: 24.33308418951577
- type: nauc_ndcg_at_20_diff1
value: 24.56519958043796
- type: nauc_ndcg_at_20_max
value: 9.25238387333473
- type: nauc_ndcg_at_3_diff1
value: 24.39638864122631
- type: nauc_ndcg_at_3_max
value: 18.095896878796434
- type: nauc_ndcg_at_5_diff1
value: 21.554177625230157
- type: nauc_ndcg_at_5_max
value: 14.90300796432758
- type: nauc_precision_at_1000_diff1
value: -14.028751970399872
- type: nauc_precision_at_1000_max
value: 22.683829892782335
- type: nauc_precision_at_100_diff1
value: -1.4922684516357194
- type: nauc_precision_at_100_max
value: 32.211371870388795
- type: nauc_precision_at_10_diff1
value: 1.3791441135589875
- type: nauc_precision_at_10_max
value: 28.329452472562267
- type: nauc_precision_at_1_diff1
value: 37.871437973819546
- type: nauc_precision_at_1_max
value: 33.639317316766494
- type: nauc_precision_at_20_diff1
value: 3.1829444563318128
- type: nauc_precision_at_20_max
value: 30.79822842458981
- type: nauc_precision_at_3_diff1
value: 9.890760276356035
- type: nauc_precision_at_3_max
value: 27.255950486716085
- type: nauc_precision_at_5_diff1
value: 2.835882319987235
- type: nauc_precision_at_5_max
value: 27.588094099192865
- type: nauc_recall_at_1000_diff1
value: 11.301016973437319
- type: nauc_recall_at_1000_max
value: 13.632028573670441
- type: nauc_recall_at_100_diff1
value: 16.244420258674484
- type: nauc_recall_at_100_max
value: 5.252228595283477
- type: nauc_recall_at_10_diff1
value: 17.14009149723741
- type: nauc_recall_at_10_max
value: -8.886638909096206
- type: nauc_recall_at_1_diff1
value: 34.840276007257444
- type: nauc_recall_at_1_max
value: -11.37201527363141
- type: nauc_recall_at_20_diff1
value: 18.393774547280316
- type: nauc_recall_at_20_max
value: -5.756994115048744
- type: nauc_recall_at_3_diff1
value: 23.65687656688717
- type: nauc_recall_at_3_max
value: -11.646229125385862
- type: nauc_recall_at_5_diff1
value: 21.02934437742109
- type: nauc_recall_at_5_max
value: -9.305597108185982
- type: ndcg_at_1
value: 42.625
- type: ndcg_at_10
value: 32.005
- type: ndcg_at_100
value: 36.563
- type: ndcg_at_1000
value: 44.207
- type: ndcg_at_20
value: 31.608999999999998
- type: ndcg_at_3
value: 35.949999999999996
- type: ndcg_at_5
value: 33.375
- type: precision_at_1
value: 54.25
- type: precision_at_10
value: 25.650000000000002
- type: precision_at_100
value: 8.260000000000002
- type: precision_at_1000
value: 1.806
- type: precision_at_20
value: 18.9
- type: precision_at_3
value: 39.833
- type: precision_at_5
value: 32.7
- type: recall_at_1
value: 7.234
- type: recall_at_10
value: 20.075000000000003
- type: recall_at_100
value: 43.980999999999995
- type: recall_at_1000
value: 68.527
- type: recall_at_20
value: 26.251
- type: recall_at_3
value: 12.534999999999998
- type: recall_at_5
value: 15.121
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 40.81
- type: f1
value: 36.53895095274932
- type: f1_weighted
value: 43.09824575802351
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 45.399
- type: map_at_10
value: 59.345000000000006
- type: map_at_100
value: 59.821000000000005
- type: map_at_1000
value: 59.841
- type: map_at_20
value: 59.662000000000006
- type: map_at_3
value: 56.577
- type: map_at_5
value: 58.384
- type: mrr_at_1
value: 48.7998799879988
- type: mrr_at_10
value: 63.182490868134714
- type: mrr_at_100
value: 63.571831061553496
- type: mrr_at_1000
value: 63.58053777600791
- type: mrr_at_20
value: 63.45420825510186
- type: mrr_at_3
value: 60.45604560456103
- type: mrr_at_5
value: 62.25322532253252
- type: nauc_map_at_1000_diff1
value: 35.07017933142576
- type: nauc_map_at_1000_max
value: 8.523823797002448
- type: nauc_map_at_100_diff1
value: 35.06363318835806
- type: nauc_map_at_100_max
value: 8.522323239837585
- type: nauc_map_at_10_diff1
value: 34.99069002859329
- type: nauc_map_at_10_max
value: 8.635643511853687
- type: nauc_map_at_1_diff1
value: 38.063117939510256
- type: nauc_map_at_1_max
value: 5.897821931847972
- type: nauc_map_at_20_diff1
value: 35.02816464339912
- type: nauc_map_at_20_max
value: 8.57606618814322
- type: nauc_map_at_3_diff1
value: 34.74870593960704
- type: nauc_map_at_3_max
value: 7.7563142367550855
- type: nauc_map_at_5_diff1
value: 34.86268337627808
- type: nauc_map_at_5_max
value: 8.440880068028383
- type: nauc_mrr_at_1000_diff1
value: 38.05838366137394
- type: nauc_mrr_at_1000_max
value: 8.841793483971488
- type: nauc_mrr_at_100_diff1
value: 38.055327497620105
- type: nauc_mrr_at_100_max
value: 8.852785015905537
- type: nauc_mrr_at_10_diff1
value: 37.972785779782065
- type: nauc_mrr_at_10_max
value: 9.037378532213502
- type: nauc_mrr_at_1_diff1
value: 40.4432565446304
- type: nauc_mrr_at_1_max
value: 5.807334670577964
- type: nauc_mrr_at_20_diff1
value: 38.02767311040578
- type: nauc_mrr_at_20_max
value: 8.935949669165813
- type: nauc_mrr_at_3_diff1
value: 37.60471936912395
- type: nauc_mrr_at_3_max
value: 8.236789961860858
- type: nauc_mrr_at_5_diff1
value: 37.86352377415473
- type: nauc_mrr_at_5_max
value: 8.895540094390892
- type: nauc_ndcg_at_1000_diff1
value: 35.07160524499026
- type: nauc_ndcg_at_1000_max
value: 9.813866402912101
- type: nauc_ndcg_at_100_diff1
value: 34.92933991980568
- type: nauc_ndcg_at_100_max
value: 9.89567365562028
- type: nauc_ndcg_at_10_diff1
value: 34.529981017804104
- type: nauc_ndcg_at_10_max
value: 10.607560550422225
- type: nauc_ndcg_at_1_diff1
value: 40.4432565446304
- type: nauc_ndcg_at_1_max
value: 5.807334670577964
- type: nauc_ndcg_at_20_diff1
value: 34.668263021521994
- type: nauc_ndcg_at_20_max
value: 10.397799223138245
- type: nauc_ndcg_at_3_diff1
value: 34.25729382926051
- type: nauc_ndcg_at_3_max
value: 8.745767948993501
- type: nauc_ndcg_at_5_diff1
value: 34.33973241023773
- type: nauc_ndcg_at_5_max
value: 10.048081516024556
- type: nauc_precision_at_1000_diff1
value: -4.077783587263832
- type: nauc_precision_at_1000_max
value: 12.765822496184464
- type: nauc_precision_at_100_diff1
value: 1.4680450598592432
- type: nauc_precision_at_100_max
value: 17.44831984105488
- type: nauc_precision_at_10_diff1
value: 19.92695770531176
- type: nauc_precision_at_10_max
value: 23.914679743057352
- type: nauc_precision_at_1_diff1
value: 40.4432565446304
- type: nauc_precision_at_1_max
value: 5.807334670577964
- type: nauc_precision_at_20_diff1
value: 12.999177323343336
- type: nauc_precision_at_20_max
value: 23.540911859396033
- type: nauc_precision_at_3_diff1
value: 29.62941105307629
- type: nauc_precision_at_3_max
value: 12.866042509022865
- type: nauc_precision_at_5_diff1
value: 26.255704472502938
- type: nauc_precision_at_5_max
value: 18.77439128365061
- type: nauc_recall_at_1000_diff1
value: 8.920814764522019
- type: nauc_recall_at_1000_max
value: 17.655295496605643
- type: nauc_recall_at_100_diff1
value: 14.762238468369407
- type: nauc_recall_at_100_max
value: 17.048567752646125
- type: nauc_recall_at_10_diff1
value: 23.32325502930857
- type: nauc_recall_at_10_max
value: 19.556176492083992
- type: nauc_recall_at_1_diff1
value: 38.063117939510256
- type: nauc_recall_at_1_max
value: 5.897821931847972
- type: nauc_recall_at_20_diff1
value: 20.506042184854063
- type: nauc_recall_at_20_max
value: 20.561022468033503
- type: nauc_recall_at_3_diff1
value: 27.65947022544946
- type: nauc_recall_at_3_max
value: 10.81743699331276
- type: nauc_recall_at_5_diff1
value: 25.94551760999131
- type: nauc_recall_at_5_max
value: 15.156745563504675
- type: ndcg_at_1
value: 48.8
- type: ndcg_at_10
value: 66.459
- type: ndcg_at_100
value: 68.521
- type: ndcg_at_1000
value: 68.938
- type: ndcg_at_20
value: 67.52
- type: ndcg_at_3
value: 61.11299999999999
- type: ndcg_at_5
value: 64.21900000000001
- type: precision_at_1
value: 48.8
- type: precision_at_10
value: 9.256
- type: precision_at_100
value: 1.04
- type: precision_at_1000
value: 0.109
- type: precision_at_20
value: 4.862
- type: precision_at_3
value: 25.387999999999998
- type: precision_at_5
value: 16.933999999999997
- type: recall_at_1
value: 45.399
- type: recall_at_10
value: 84.572
- type: recall_at_100
value: 93.585
- type: recall_at_1000
value: 96.43
- type: recall_at_20
value: 88.576
- type: recall_at_3
value: 70.283
- type: recall_at_5
value: 77.804
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 10.773000000000001
- type: map_at_10
value: 18.273
- type: map_at_100
value: 19.846
- type: map_at_1000
value: 20.066
- type: map_at_20
value: 19.092000000000002
- type: map_at_3
value: 15.653
- type: map_at_5
value: 16.996
- type: mrr_at_1
value: 22.839506172839506
- type: mrr_at_10
value: 30.709264158338218
- type: mrr_at_100
value: 31.765285545264728
- type: mrr_at_1000
value: 31.84254498770477
- type: mrr_at_20
value: 31.28359047494611
- type: mrr_at_3
value: 28.34362139917697
- type: mrr_at_5
value: 29.578189300411527
- type: nauc_map_at_1000_diff1
value: 42.33696758957174
- type: nauc_map_at_1000_max
value: 22.28446732536063
- type: nauc_map_at_100_diff1
value: 42.280232367289614
- type: nauc_map_at_100_max
value: 22.193658543387336
- type: nauc_map_at_10_diff1
value: 42.86152992348606
- type: nauc_map_at_10_max
value: 21.649513921678768
- type: nauc_map_at_1_diff1
value: 50.25274550047308
- type: nauc_map_at_1_max
value: 18.793153289309025
- type: nauc_map_at_20_diff1
value: 42.68337193792793
- type: nauc_map_at_20_max
value: 21.783732998080165
- type: nauc_map_at_3_diff1
value: 44.526091901592025
- type: nauc_map_at_3_max
value: 20.44240168343812
- type: nauc_map_at_5_diff1
value: 43.40025778096801
- type: nauc_map_at_5_max
value: 21.337520847399794
- type: nauc_mrr_at_1000_diff1
value: 42.76413081015503
- type: nauc_mrr_at_1000_max
value: 25.051153181122253
- type: nauc_mrr_at_100_diff1
value: 42.726972311439724
- type: nauc_mrr_at_100_max
value: 25.041597478239442
- type: nauc_mrr_at_10_diff1
value: 43.05815490208189
- type: nauc_mrr_at_10_max
value: 25.13689635924164
- type: nauc_mrr_at_1_diff1
value: 49.40608982855475
- type: nauc_mrr_at_1_max
value: 26.84279922755957
- type: nauc_mrr_at_20_diff1
value: 42.68770796904053
- type: nauc_mrr_at_20_max
value: 25.00374130766682
- type: nauc_mrr_at_3_diff1
value: 43.56229080869875
- type: nauc_mrr_at_3_max
value: 25.00272462955036
- type: nauc_mrr_at_5_diff1
value: 42.78163485253489
- type: nauc_mrr_at_5_max
value: 24.996583555035066
- type: nauc_ndcg_at_1000_diff1
value: 39.60623109749308
- type: nauc_ndcg_at_1000_max
value: 24.945954161473963
- type: nauc_ndcg_at_100_diff1
value: 38.391977738851054
- type: nauc_ndcg_at_100_max
value: 23.1495309393186
- type: nauc_ndcg_at_10_diff1
value: 40.82447224697167
- type: nauc_ndcg_at_10_max
value: 22.103721284897222
- type: nauc_ndcg_at_1_diff1
value: 49.40608982855475
- type: nauc_ndcg_at_1_max
value: 26.84279922755957
- type: nauc_ndcg_at_20_diff1
value: 39.87655648003804
- type: nauc_ndcg_at_20_max
value: 21.863160067094732
- type: nauc_ndcg_at_3_diff1
value: 42.702330655505094
- type: nauc_ndcg_at_3_max
value: 24.30088309227799
- type: nauc_ndcg_at_5_diff1
value: 41.15335198539591
- type: nauc_ndcg_at_5_max
value: 23.383496342798235
- type: nauc_precision_at_1000_diff1
value: 5.078790711874846
- type: nauc_precision_at_1000_max
value: 28.270734693277067
- type: nauc_precision_at_100_diff1
value: 10.751006733811092
- type: nauc_precision_at_100_max
value: 28.016358575658305
- type: nauc_precision_at_10_diff1
value: 28.69051966074066
- type: nauc_precision_at_10_max
value: 29.264771382133375
- type: nauc_precision_at_1_diff1
value: 49.40608982855475
- type: nauc_precision_at_1_max
value: 26.84279922755957
- type: nauc_precision_at_20_diff1
value: 23.657472193309125
- type: nauc_precision_at_20_max
value: 27.08411359763242
- type: nauc_precision_at_3_diff1
value: 36.599109026411924
- type: nauc_precision_at_3_max
value: 28.383077203742246
- type: nauc_precision_at_5_diff1
value: 31.358430042619563
- type: nauc_precision_at_5_max
value: 28.555003400952845
- type: nauc_recall_at_1000_diff1
value: 20.25194559618304
- type: nauc_recall_at_1000_max
value: 23.710031862813118
- type: nauc_recall_at_100_diff1
value: 18.359725605438047
- type: nauc_recall_at_100_max
value: 13.823806806919805
- type: nauc_recall_at_10_diff1
value: 30.54188950640248
- type: nauc_recall_at_10_max
value: 15.290504422192791
- type: nauc_recall_at_1_diff1
value: 50.25274550047308
- type: nauc_recall_at_1_max
value: 18.793153289309025
- type: nauc_recall_at_20_diff1
value: 27.314651647568404
- type: nauc_recall_at_20_max
value: 14.088522206775039
- type: nauc_recall_at_3_diff1
value: 36.125136373927354
- type: nauc_recall_at_3_max
value: 16.778297325102113
- type: nauc_recall_at_5_diff1
value: 32.03749698394437
- type: nauc_recall_at_5_max
value: 17.620359878684805
- type: ndcg_at_1
value: 22.84
- type: ndcg_at_10
value: 24.467
- type: ndcg_at_100
value: 31.270999999999997
- type: ndcg_at_1000
value: 35.564
- type: ndcg_at_20
value: 26.871000000000002
- type: ndcg_at_3
value: 21.128
- type: ndcg_at_5
value: 22.203999999999997
- type: precision_at_1
value: 22.84
- type: precision_at_10
value: 7.114
- type: precision_at_100
value: 1.381
- type: precision_at_1000
value: 0.213
- type: precision_at_20
value: 4.552
- type: precision_at_3
value: 14.352
- type: precision_at_5
value: 10.864
- type: recall_at_1
value: 10.773000000000001
- type: recall_at_10
value: 30.564000000000004
- type: recall_at_100
value: 56.745999999999995
- type: recall_at_1000
value: 82.826
- type: recall_at_20
value: 37.844
- type: recall_at_3
value: 19.406000000000002
- type: recall_at_5
value: 23.724
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 32.046
- type: map_at_10
value: 48.443000000000005
- type: map_at_100
value: 49.389
- type: map_at_1000
value: 49.466
- type: map_at_20
value: 48.986000000000004
- type: map_at_3
value: 44.893
- type: map_at_5
value: 47.075
- type: mrr_at_1
value: 64.09182984469953
- type: mrr_at_10
value: 72.85266282970527
- type: mrr_at_100
value: 73.21185355612093
- type: mrr_at_1000
value: 73.2252657846111
- type: mrr_at_20
value: 73.10862127718183
- type: mrr_at_3
value: 71.3031735313976
- type: mrr_at_5
value: 72.34233625928402
- type: nauc_map_at_1000_diff1
value: 29.57880669891487
- type: nauc_map_at_1000_max
value: 21.845463980026476
- type: nauc_map_at_100_diff1
value: 29.55367483685356
- type: nauc_map_at_100_max
value: 21.828007798768958
- type: nauc_map_at_10_diff1
value: 29.67368554537432
- type: nauc_map_at_10_max
value: 21.849279138947868
- type: nauc_map_at_1_diff1
value: 61.13740199701338
- type: nauc_map_at_1_max
value: 32.6342175820136
- type: nauc_map_at_20_diff1
value: 29.598291599316568
- type: nauc_map_at_20_max
value: 21.862735577320557
- type: nauc_map_at_3_diff1
value: 31.22835556923922
- type: nauc_map_at_3_max
value: 22.344809372883315
- type: nauc_map_at_5_diff1
value: 30.432000722074665
- type: nauc_map_at_5_max
value: 22.27699649933424
- type: nauc_mrr_at_1000_diff1
value: 59.26794200803715
- type: nauc_mrr_at_1000_max
value: 34.33050463026508
- type: nauc_mrr_at_100_diff1
value: 59.26740246956419
- type: nauc_mrr_at_100_max
value: 34.33577087313508
- type: nauc_mrr_at_10_diff1
value: 59.13786202070478
- type: nauc_mrr_at_10_max
value: 34.377953823081384
- type: nauc_mrr_at_1_diff1
value: 61.13740199701338
- type: nauc_mrr_at_1_max
value: 32.6342175820136
- type: nauc_mrr_at_20_diff1
value: 59.22898475872048
- type: nauc_mrr_at_20_max
value: 34.34680319223408
- type: nauc_mrr_at_3_diff1
value: 59.03499635007199
- type: nauc_mrr_at_3_max
value: 34.398014446289544
- type: nauc_mrr_at_5_diff1
value: 59.20761322618965
- type: nauc_mrr_at_5_max
value: 34.42827235318949
- type: nauc_ndcg_at_1000_diff1
value: 32.64061494118113
- type: nauc_ndcg_at_1000_max
value: 23.616685748536074
- type: nauc_ndcg_at_100_diff1
value: 32.11038119247951
- type: nauc_ndcg_at_100_max
value: 23.33285928609271
- type: nauc_ndcg_at_10_diff1
value: 32.70477446409243
- type: nauc_ndcg_at_10_max
value: 23.662027117393535
- type: nauc_ndcg_at_1_diff1
value: 61.13740199701338
- type: nauc_ndcg_at_1_max
value: 32.6342175820136
- type: nauc_ndcg_at_20_diff1
value: 32.32220211811219
- type: nauc_ndcg_at_20_max
value: 23.564270159145643
- type: nauc_ndcg_at_3_diff1
value: 35.63724665178986
- type: nauc_ndcg_at_3_max
value: 24.820074757992305
- type: nauc_ndcg_at_5_diff1
value: 34.27199365493392
- type: nauc_ndcg_at_5_max
value: 24.508158825075682
- type: nauc_precision_at_1000_diff1
value: -2.430622498990411
- type: nauc_precision_at_1000_max
value: 7.822027373881609
- type: nauc_precision_at_100_diff1
value: 4.202356673527351
- type: nauc_precision_at_100_max
value: 10.321772681063146
- type: nauc_precision_at_10_diff1
value: 14.011676403321902
- type: nauc_precision_at_10_max
value: 15.666639850967512
- type: nauc_precision_at_1_diff1
value: 61.13740199701338
- type: nauc_precision_at_1_max
value: 32.6342175820136
- type: nauc_precision_at_20_diff1
value: 10.437835060510753
- type: nauc_precision_at_20_max
value: 14.10661581882921
- type: nauc_precision_at_3_diff1
value: 23.783985172773143
- type: nauc_precision_at_3_max
value: 20.590352544033866
- type: nauc_precision_at_5_diff1
value: 19.592566862830548
- type: nauc_precision_at_5_max
value: 18.88117124055341
- type: nauc_recall_at_1000_diff1
value: -2.430622498990057
- type: nauc_recall_at_1000_max
value: 7.822027373881757
- type: nauc_recall_at_100_diff1
value: 4.202356673527403
- type: nauc_recall_at_100_max
value: 10.32177268106303
- type: nauc_recall_at_10_diff1
value: 14.011676403321957
- type: nauc_recall_at_10_max
value: 15.666639850967554
- type: nauc_recall_at_1_diff1
value: 61.13740199701338
- type: nauc_recall_at_1_max
value: 32.6342175820136
- type: nauc_recall_at_20_diff1
value: 10.437835060510707
- type: nauc_recall_at_20_max
value: 14.106615818829187
- type: nauc_recall_at_3_diff1
value: 23.783985172773168
- type: nauc_recall_at_3_max
value: 20.590352544033934
- type: nauc_recall_at_5_diff1
value: 19.59256686283052
- type: nauc_recall_at_5_max
value: 18.88117124055339
- type: ndcg_at_1
value: 64.092
- type: ndcg_at_10
value: 57.964000000000006
- type: ndcg_at_100
value: 61.501
- type: ndcg_at_1000
value: 63.022
- type: ndcg_at_20
value: 59.463
- type: ndcg_at_3
value: 52.608
- type: ndcg_at_5
value: 55.577
- type: precision_at_1
value: 64.092
- type: precision_at_10
value: 12.462
- type: precision_at_100
value: 1.5230000000000001
- type: precision_at_1000
value: 0.172
- type: precision_at_20
value: 6.714
- type: precision_at_3
value: 33.657
- type: precision_at_5
value: 22.533
- type: recall_at_1
value: 32.046
- type: recall_at_10
value: 62.309000000000005
- type: recall_at_100
value: 76.13799999999999
- type: recall_at_1000
value: 86.185
- type: recall_at_20
value: 67.144
- type: recall_at_3
value: 50.486
- type: recall_at_5
value: 56.333999999999996
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 73.702
- type: ap
value: 67.55549836397681
- type: ap_weighted
value: 67.55549836397681
- type: f1
value: 73.4581895293936
- type: f1_weighted
value: 73.45818952939358
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 30.051
- type: map_at_1
value: 14.244
- type: map_at_10
value: 24.143
- type: map_at_100
value: 25.402
- type: map_at_1000
value: 25.479
- type: map_at_20
value: 24.875
- type: map_at_3
value: 20.694
- type: map_at_5
value: 22.604
- type: mrr_at_1
value: 14.584527220630372
- type: mrr_at_10
value: 24.557460090053123
- type: mrr_at_100
value: 25.785901435660147
- type: mrr_at_1000
value: 25.85709282510335
- type: mrr_at_20
value: 25.274992596418866
- type: mrr_at_3
value: 21.131805157593057
- type: mrr_at_5
value: 23.0429799426934
- type: nauc_map_at_1000_diff1
value: 27.61711087970365
- type: nauc_map_at_1000_max
value: 1.6657479941178628
- type: nauc_map_at_1000_std
value: -9.49651956936018
- type: nauc_map_at_100_diff1
value: 27.61498736358577
- type: nauc_map_at_100_max
value: 1.6634690696430845
- type: nauc_map_at_100_std
value: -9.46789097558277
- type: nauc_map_at_10_diff1
value: 27.616888705380603
- type: nauc_map_at_10_max
value: 1.4276684096575918
- type: nauc_map_at_10_std
value: -10.446820384304754
- type: nauc_map_at_1_diff1
value: 29.76931787521696
- type: nauc_map_at_1_max
value: 0.948603060998731
- type: nauc_map_at_1_std
value: -10.775704940266767
- type: nauc_map_at_20_diff1
value: 27.57600730820819
- type: nauc_map_at_20_max
value: 1.5143185235329177
- type: nauc_map_at_20_std
value: -9.849312193865744
- type: nauc_map_at_3_diff1
value: 27.890351531157577
- type: nauc_map_at_3_max
value: 1.4000607426502167
- type: nauc_map_at_3_std
value: -11.118014158060422
- type: nauc_map_at_5_diff1
value: 27.786816928992376
- type: nauc_map_at_5_max
value: 1.2637200637686197
- type: nauc_map_at_5_std
value: -10.922970086569386
- type: nauc_mrr_at_1000_diff1
value: 27.42128154832487
- type: nauc_mrr_at_1000_max
value: 1.769383613212847
- type: nauc_mrr_at_1000_std
value: -9.304600797518969
- type: nauc_mrr_at_100_diff1
value: 27.418466905238216
- type: nauc_mrr_at_100_max
value: 1.7702836453764914
- type: nauc_mrr_at_100_std
value: -9.27018903363956
- type: nauc_mrr_at_10_diff1
value: 27.43223048852499
- type: nauc_mrr_at_10_max
value: 1.5863443925517158
- type: nauc_mrr_at_10_std
value: -10.19228455560491
- type: nauc_mrr_at_1_diff1
value: 29.63894982019449
- type: nauc_mrr_at_1_max
value: 1.1350720726087482
- type: nauc_mrr_at_1_std
value: -10.706375855749798
- type: nauc_mrr_at_20_diff1
value: 27.3813401873824
- type: nauc_mrr_at_20_max
value: 1.6349061697179936
- type: nauc_mrr_at_20_std
value: -9.62511280355079
- type: nauc_mrr_at_3_diff1
value: 27.63825584292618
- type: nauc_mrr_at_3_max
value: 1.5014142622215632
- type: nauc_mrr_at_3_std
value: -10.937120645836448
- type: nauc_mrr_at_5_diff1
value: 27.65874684943374
- type: nauc_mrr_at_5_max
value: 1.3921567756597124
- type: nauc_mrr_at_5_std
value: -10.715887774339881
- type: nauc_ndcg_at_1000_diff1
value: 26.940019720932135
- type: nauc_ndcg_at_1000_max
value: 3.071589090811754
- type: nauc_ndcg_at_1000_std
value: -5.820914521338
- type: nauc_ndcg_at_100_diff1
value: 26.80295695348146
- type: nauc_ndcg_at_100_max
value: 3.064374012393309
- type: nauc_ndcg_at_100_std
value: -4.689320725729883
- type: nauc_ndcg_at_10_diff1
value: 26.73912033432779
- type: nauc_ndcg_at_10_max
value: 1.7371596861856864
- type: nauc_ndcg_at_10_std
value: -9.587955568967976
- type: nauc_ndcg_at_1_diff1
value: 29.63894982019449
- type: nauc_ndcg_at_1_max
value: 1.1350720726087482
- type: nauc_ndcg_at_1_std
value: -10.706375855749798
- type: nauc_ndcg_at_20_diff1
value: 26.554059540064955
- type: nauc_ndcg_at_20_max
value: 2.037008011734218
- type: nauc_ndcg_at_20_std
value: -7.522356479764311
- type: nauc_ndcg_at_3_diff1
value: 27.38197429348882
- type: nauc_ndcg_at_3_max
value: 1.5447259968645135
- type: nauc_ndcg_at_3_std
value: -11.056572041307833
- type: nauc_ndcg_at_5_diff1
value: 27.23078023341192
- type: nauc_ndcg_at_5_max
value: 1.3332668241078742
- type: nauc_ndcg_at_5_std
value: -10.70755059234365
- type: nauc_precision_at_1000_diff1
value: 4.824440345952768
- type: nauc_precision_at_1000_max
value: 22.501190150975695
- type: nauc_precision_at_1000_std
value: 27.01244032141851
- type: nauc_precision_at_100_diff1
value: 18.806308686259438
- type: nauc_precision_at_100_max
value: 14.0556087259749
- type: nauc_precision_at_100_std
value: 23.65979665814084
- type: nauc_precision_at_10_diff1
value: 23.631970615652996
- type: nauc_precision_at_10_max
value: 3.2279467100874113
- type: nauc_precision_at_10_std
value: -6.612111844206746
- type: nauc_precision_at_1_diff1
value: 29.63894982019449
- type: nauc_precision_at_1_max
value: 1.1350720726087482
- type: nauc_precision_at_1_std
value: -10.706375855749798
- type: nauc_precision_at_20_diff1
value: 22.13613457378927
- type: nauc_precision_at_20_max
value: 4.984490409308019
- type: nauc_precision_at_20_std
value: 1.3959896282348365
- type: nauc_precision_at_3_diff1
value: 25.924423449037278
- type: nauc_precision_at_3_max
value: 2.119600062847904
- type: nauc_precision_at_3_std
value: -10.816296974118274
- type: nauc_precision_at_5_diff1
value: 25.47042606356821
- type: nauc_precision_at_5_max
value: 1.832019713836658
- type: nauc_precision_at_5_std
value: -9.928054676627815
- type: nauc_recall_at_1000_diff1
value: 22.574618149749853
- type: nauc_recall_at_1000_max
value: 30.82526285969409
- type: nauc_recall_at_1000_std
value: 59.21512310658756
- type: nauc_recall_at_100_diff1
value: 23.54920706844819
- type: nauc_recall_at_100_max
value: 10.975217227651312
- type: nauc_recall_at_100_std
value: 24.85603771243269
- type: nauc_recall_at_10_diff1
value: 24.413494892666748
- type: nauc_recall_at_10_max
value: 2.349732649717201
- type: nauc_recall_at_10_std
value: -7.37174021438692
- type: nauc_recall_at_1_diff1
value: 29.76931787521696
- type: nauc_recall_at_1_max
value: 0.948603060998731
- type: nauc_recall_at_1_std
value: -10.775704940266767
- type: nauc_recall_at_20_diff1
value: 23.4560099128478
- type: nauc_recall_at_20_max
value: 3.399890015984125
- type: nauc_recall_at_20_std
value: 0.1065905686863526
- type: nauc_recall_at_3_diff1
value: 26.33393571726941
- type: nauc_recall_at_3_max
value: 1.7770061463264046
- type: nauc_recall_at_3_std
value: -11.030373812919407
- type: nauc_recall_at_5_diff1
value: 25.84870110945663
- type: nauc_recall_at_5_max
value: 1.368501163591071
- type: nauc_recall_at_5_std
value: -10.251669620544972
- type: ndcg_at_1
value: 14.585
- type: ndcg_at_10
value: 30.051
- type: ndcg_at_100
value: 36.429
- type: ndcg_at_1000
value: 38.501
- type: ndcg_at_20
value: 32.678
- type: ndcg_at_3
value: 22.963
- type: ndcg_at_5
value: 26.385
- type: precision_at_1
value: 14.585
- type: precision_at_10
value: 5.04
- type: precision_at_100
value: 0.826
- type: precision_at_1000
value: 0.101
- type: precision_at_20
value: 3.062
- type: precision_at_3
value: 10.0
- type: precision_at_5
value: 7.722
- type: recall_at_1
value: 14.244
- type: recall_at_10
value: 48.48
- type: recall_at_100
value: 78.652
- type: recall_at_1000
value: 94.774
- type: recall_at_20
value: 58.724
- type: recall_at_3
value: 29.106
- type: recall_at_5
value: 37.329
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.73096215230278
- type: f1
value: 89.31269053453195
- type: f1_weighted
value: 89.75118268368209
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 66.49110807113543
- type: f1
value: 51.250886916460544
- type: f1_weighted
value: 69.910921231367
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 68.86348352387357
- type: f1
value: 66.19332858716572
- type: f1_weighted
value: 68.90834063842036
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 74.48890383322124
- type: f1
value: 74.01198670144007
- type: f1_weighted
value: 74.5767171066833
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.26742368186013
- type: v_measures
value:
- 0.3010655091536935
- 0.29691302264328545
- 0.31333602296285296
- 0.3118686703571087
- 0.3066404174656012
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.971953824342002
- type: v_measures
value:
- 0.28128031641493684
- 0.2709575455939747
- 0.28058910226798894
- 0.286988068530199
- 0.27155292611128873
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: map
value: 30.919005892986945
- type: mrr
value: 31.964215230201017
- type: nAUC_map_diff1
value: 12.380227971335106
- type: nAUC_map_max
value: -20.306665699119915
- type: nAUC_mrr_diff1
value: 11.860907307359078
- type: nAUC_mrr_max
value: -14.820057982537445
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 4.9239999999999995
- type: map_at_10
value: 10.216
- type: map_at_100
value: 13.073
- type: map_at_1000
value: 14.335999999999999
- type: map_at_20
value: 11.562
- type: map_at_3
value: 7.361
- type: map_at_5
value: 8.790000000000001
- type: mrr_at_1
value: 40.55727554179567
- type: mrr_at_10
value: 48.67290775959506
- type: mrr_at_100
value: 49.39988509152788
- type: mrr_at_1000
value: 49.44995547989892
- type: mrr_at_20
value: 49.1476640818267
- type: mrr_at_3
value: 46.336429308565535
- type: mrr_at_5
value: 47.85345717234262
- type: nauc_map_at_1000_diff1
value: 26.873576120717154
- type: nauc_map_at_1000_max
value: 22.28375511136719
- type: nauc_map_at_100_diff1
value: 28.105989810331305
- type: nauc_map_at_100_max
value: 20.80280182475018
- type: nauc_map_at_10_diff1
value: 32.22012802586023
- type: nauc_map_at_10_max
value: 14.563410751855393
- type: nauc_map_at_1_diff1
value: 48.78589273340728
- type: nauc_map_at_1_max
value: 0.7100902846948914
- type: nauc_map_at_20_diff1
value: 29.749385475706614
- type: nauc_map_at_20_max
value: 17.725130767277143
- type: nauc_map_at_3_diff1
value: 42.91163831592647
- type: nauc_map_at_3_max
value: 7.949303449529328
- type: nauc_map_at_5_diff1
value: 36.37288307582431
- type: nauc_map_at_5_max
value: 10.294774281587333
- type: nauc_mrr_at_1000_diff1
value: 28.224194118245986
- type: nauc_mrr_at_1000_max
value: 35.03713736523123
- type: nauc_mrr_at_100_diff1
value: 28.239722499941884
- type: nauc_mrr_at_100_max
value: 35.08008834682332
- type: nauc_mrr_at_10_diff1
value: 28.312031722561397
- type: nauc_mrr_at_10_max
value: 35.07745441637377
- type: nauc_mrr_at_1_diff1
value: 29.71286290489225
- type: nauc_mrr_at_1_max
value: 27.07492092557332
- type: nauc_mrr_at_20_diff1
value: 28.408619888309524
- type: nauc_mrr_at_20_max
value: 35.07056834593783
- type: nauc_mrr_at_3_diff1
value: 28.57209508947814
- type: nauc_mrr_at_3_max
value: 32.824180760173896
- type: nauc_mrr_at_5_diff1
value: 28.236082992043393
- type: nauc_mrr_at_5_max
value: 34.17372569423924
- type: nauc_ndcg_at_1000_diff1
value: 24.083700969367612
- type: nauc_ndcg_at_1000_max
value: 38.883846498536116
- type: nauc_ndcg_at_100_diff1
value: 23.312730110282526
- type: nauc_ndcg_at_100_max
value: 32.64936241784008
- type: nauc_ndcg_at_10_diff1
value: 17.975398707754817
- type: nauc_ndcg_at_10_max
value: 32.32412505213287
- type: nauc_ndcg_at_1_diff1
value: 30.756195441367673
- type: nauc_ndcg_at_1_max
value: 26.483443465985328
- type: nauc_ndcg_at_20_diff1
value: 18.936710159355073
- type: nauc_ndcg_at_20_max
value: 31.338021731338316
- type: nauc_ndcg_at_3_diff1
value: 22.895979777747623
- type: nauc_ndcg_at_3_max
value: 32.17933652323659
- type: nauc_ndcg_at_5_diff1
value: 19.852961142954506
- type: nauc_ndcg_at_5_max
value: 32.56301733572076
- type: nauc_precision_at_1000_diff1
value: -12.569744637564826
- type: nauc_precision_at_1000_max
value: 14.067171968274472
- type: nauc_precision_at_100_diff1
value: -8.452640794750774
- type: nauc_precision_at_100_max
value: 26.52425208852308
- type: nauc_precision_at_10_diff1
value: -0.8599396198058924
- type: nauc_precision_at_10_max
value: 36.79898093749965
- type: nauc_precision_at_1_diff1
value: 30.53565353379064
- type: nauc_precision_at_1_max
value: 27.150932557011842
- type: nauc_precision_at_20_diff1
value: -4.190746979665414
- type: nauc_precision_at_20_max
value: 35.90857451601526
- type: nauc_precision_at_3_diff1
value: 12.548153913459656
- type: nauc_precision_at_3_max
value: 35.753894439704055
- type: nauc_precision_at_5_diff1
value: 5.476630825300621
- type: nauc_precision_at_5_max
value: 36.94019333022866
- type: nauc_recall_at_1000_diff1
value: 15.743509429414217
- type: nauc_recall_at_1000_max
value: 19.44531544138
- type: nauc_recall_at_100_diff1
value: 18.385119061958157
- type: nauc_recall_at_100_max
value: 19.1318751995873
- type: nauc_recall_at_10_diff1
value: 25.482096811308676
- type: nauc_recall_at_10_max
value: 14.006190865424864
- type: nauc_recall_at_1_diff1
value: 48.78589273340728
- type: nauc_recall_at_1_max
value: 0.7100902846948914
- type: nauc_recall_at_20_diff1
value: 22.76078199362388
- type: nauc_recall_at_20_max
value: 17.126864200524057
- type: nauc_recall_at_3_diff1
value: 39.93189765909178
- type: nauc_recall_at_3_max
value: 9.276495447517293
- type: nauc_recall_at_5_diff1
value: 28.17119993582467
- type: nauc_recall_at_5_max
value: 9.757053939301784
- type: ndcg_at_1
value: 38.7
- type: ndcg_at_10
value: 28.942
- type: ndcg_at_100
value: 27.346999999999998
- type: ndcg_at_1000
value: 36.216
- type: ndcg_at_20
value: 27.506999999999998
- type: ndcg_at_3
value: 33.335
- type: ndcg_at_5
value: 31.541999999999998
- type: precision_at_1
value: 40.248
- type: precision_at_10
value: 21.455
- type: precision_at_100
value: 7.015000000000001
- type: precision_at_1000
value: 1.9709999999999999
- type: precision_at_20
value: 16.471
- type: precision_at_3
value: 30.857
- type: precision_at_5
value: 26.811
- type: recall_at_1
value: 4.9239999999999995
- type: recall_at_10
value: 13.724
- type: recall_at_100
value: 28.450999999999997
- type: recall_at_1000
value: 60.136
- type: recall_at_20
value: 18.013
- type: recall_at_3
value: 7.954999999999999
- type: recall_at_5
value: 10.700999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 21.246000000000002
- type: map_at_10
value: 34.107
- type: map_at_100
value: 35.43
- type: map_at_1000
value: 35.483
- type: map_at_20
value: 34.945
- type: map_at_3
value: 30.070000000000004
- type: map_at_5
value: 32.25
- type: mrr_at_1
value: 24.10196987253766
- type: mrr_at_10
value: 36.531318398352
- type: mrr_at_100
value: 37.59236775235497
- type: mrr_at_1000
value: 37.630099883433154
- type: mrr_at_20
value: 37.20931733276279
- type: mrr_at_3
value: 32.91328698339132
- type: mrr_at_5
value: 34.92516415604491
- type: nauc_map_at_1000_diff1
value: 20.872737281787636
- type: nauc_map_at_1000_max
value: 16.624364326260896
- type: nauc_map_at_100_diff1
value: 20.878142367328813
- type: nauc_map_at_100_max
value: 16.643468154696926
- type: nauc_map_at_10_diff1
value: 20.807793402274534
- type: nauc_map_at_10_max
value: 16.39391387269205
- type: nauc_map_at_1_diff1
value: 22.35812341861645
- type: nauc_map_at_1_max
value: 11.615838197259766
- type: nauc_map_at_20_diff1
value: 20.893013757323047
- type: nauc_map_at_20_max
value: 16.675046191798433
- type: nauc_map_at_3_diff1
value: 20.05521274346964
- type: nauc_map_at_3_max
value: 13.969959601269148
- type: nauc_map_at_5_diff1
value: 20.625293595408642
- type: nauc_map_at_5_max
value: 15.630481595302918
- type: nauc_mrr_at_1000_diff1
value: 20.659075334032188
- type: nauc_mrr_at_1000_max
value: 17.1077266798649
- type: nauc_mrr_at_100_diff1
value: 20.659592764012615
- type: nauc_mrr_at_100_max
value: 17.12673405006388
- type: nauc_mrr_at_10_diff1
value: 20.6492334539065
- type: nauc_mrr_at_10_max
value: 17.139758338338574
- type: nauc_mrr_at_1_diff1
value: 21.959789955443817
- type: nauc_mrr_at_1_max
value: 13.311351245662395
- type: nauc_mrr_at_20_diff1
value: 20.697135833887096
- type: nauc_mrr_at_20_max
value: 17.174901738327268
- type: nauc_mrr_at_3_diff1
value: 20.012890126078148
- type: nauc_mrr_at_3_max
value: 15.325749640509228
- type: nauc_mrr_at_5_diff1
value: 20.438050294840547
- type: nauc_mrr_at_5_max
value: 16.56107433490657
- type: nauc_ndcg_at_1000_diff1
value: 20.981193766001212
- type: nauc_ndcg_at_1000_max
value: 19.366882624001466
- type: nauc_ndcg_at_100_diff1
value: 21.07151595070923
- type: nauc_ndcg_at_100_max
value: 19.969093104531108
- type: nauc_ndcg_at_10_diff1
value: 20.824455077933653
- type: nauc_ndcg_at_10_max
value: 19.215675460656907
- type: nauc_ndcg_at_1_diff1
value: 22.064098120682292
- type: nauc_ndcg_at_1_max
value: 13.411137146530983
- type: nauc_ndcg_at_20_diff1
value: 21.12343657664599
- type: nauc_ndcg_at_20_max
value: 20.04689967321189
- type: nauc_ndcg_at_3_diff1
value: 19.470309201418857
- type: nauc_ndcg_at_3_max
value: 14.848503224176909
- type: nauc_ndcg_at_5_diff1
value: 20.32521541385147
- type: nauc_ndcg_at_5_max
value: 17.48824868961743
- type: nauc_precision_at_1000_diff1
value: 0.4660953834541917
- type: nauc_precision_at_1000_max
value: 14.735755093338893
- type: nauc_precision_at_100_diff1
value: 7.579249137389521
- type: nauc_precision_at_100_max
value: 23.48086608082409
- type: nauc_precision_at_10_diff1
value: 15.621524664818134
- type: nauc_precision_at_10_max
value: 26.16669034759615
- type: nauc_precision_at_1_diff1
value: 22.064098120682292
- type: nauc_precision_at_1_max
value: 13.411137146530983
- type: nauc_precision_at_20_diff1
value: 13.58615876770919
- type: nauc_precision_at_20_max
value: 26.806761446925364
- type: nauc_precision_at_3_diff1
value: 16.500214986231953
- type: nauc_precision_at_3_max
value: 18.649494923088263
- type: nauc_precision_at_5_diff1
value: 17.307374618712128
- type: nauc_precision_at_5_max
value: 23.444839731139965
- type: nauc_recall_at_1000_diff1
value: 28.75547954061722
- type: nauc_recall_at_1000_max
value: 62.409320816680015
- type: nauc_recall_at_100_diff1
value: 23.43814017912217
- type: nauc_recall_at_100_max
value: 42.499893768353374
- type: nauc_recall_at_10_diff1
value: 20.535131644031498
- type: nauc_recall_at_10_max
value: 26.527673119431896
- type: nauc_recall_at_1_diff1
value: 22.35812341861645
- type: nauc_recall_at_1_max
value: 11.615838197259766
- type: nauc_recall_at_20_diff1
value: 21.994120461812543
- type: nauc_recall_at_20_max
value: 31.819936351026307
- type: nauc_recall_at_3_diff1
value: 17.432747909860975
- type: nauc_recall_at_3_max
value: 15.382311079169869
- type: nauc_recall_at_5_diff1
value: 19.13496828564786
- type: nauc_recall_at_5_max
value: 21.081897544526708
- type: ndcg_at_1
value: 24.073
- type: ndcg_at_10
value: 41.323
- type: ndcg_at_100
value: 47.188
- type: ndcg_at_1000
value: 48.424
- type: ndcg_at_20
value: 44.084
- type: ndcg_at_3
value: 33.427
- type: ndcg_at_5
value: 37.171
- type: precision_at_1
value: 24.073
- type: precision_at_10
value: 7.242
- type: precision_at_100
value: 1.051
- type: precision_at_1000
value: 0.117
- type: precision_at_20
value: 4.2700000000000005
- type: precision_at_3
value: 15.498000000000001
- type: precision_at_5
value: 11.431
- type: recall_at_1
value: 21.246000000000002
- type: recall_at_10
value: 61.102000000000004
- type: recall_at_100
value: 87.08500000000001
- type: recall_at_1000
value: 96.222
- type: recall_at_20
value: 71.372
- type: recall_at_3
value: 40.361000000000004
- type: recall_at_5
value: 49.044
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 68.285
- type: map_at_10
value: 82.106
- type: map_at_100
value: 82.76599999999999
- type: map_at_1000
value: 82.788
- type: map_at_20
value: 82.529
- type: map_at_3
value: 79.108
- type: map_at_5
value: 80.964
- type: mrr_at_1
value: 78.67
- type: mrr_at_10
value: 85.4671111111108
- type: mrr_at_100
value: 85.59335571351787
- type: mrr_at_1000
value: 85.59536983332889
- type: mrr_at_20
value: 85.55846883663256
- type: mrr_at_3
value: 84.39999999999962
- type: mrr_at_5
value: 85.11249999999953
- type: nauc_map_at_1000_diff1
value: 75.5071991426707
- type: nauc_map_at_1000_max
value: 33.24884628979125
- type: nauc_map_at_100_diff1
value: 75.51606789897293
- type: nauc_map_at_100_max
value: 33.237678419609715
- type: nauc_map_at_10_diff1
value: 75.63941045488615
- type: nauc_map_at_10_max
value: 32.914787531889694
- type: nauc_map_at_1_diff1
value: 78.53182147965822
- type: nauc_map_at_1_max
value: 24.631838635071222
- type: nauc_map_at_20_diff1
value: 75.55246990673865
- type: nauc_map_at_20_max
value: 33.12406999050574
- type: nauc_map_at_3_diff1
value: 75.76122624224449
- type: nauc_map_at_3_max
value: 30.56135184566114
- type: nauc_map_at_5_diff1
value: 75.62760573601093
- type: nauc_map_at_5_max
value: 32.014157139666985
- type: nauc_mrr_at_1000_diff1
value: 76.37148849763105
- type: nauc_mrr_at_1000_max
value: 35.935665230883934
- type: nauc_mrr_at_100_diff1
value: 76.37094038633705
- type: nauc_mrr_at_100_max
value: 35.94012231045831
- type: nauc_mrr_at_10_diff1
value: 76.35647457628434
- type: nauc_mrr_at_10_max
value: 36.01811322984862
- type: nauc_mrr_at_1_diff1
value: 77.24309585056221
- type: nauc_mrr_at_1_max
value: 34.48519876828825
- type: nauc_mrr_at_20_diff1
value: 76.36670040011074
- type: nauc_mrr_at_20_max
value: 35.99210482612602
- type: nauc_mrr_at_3_diff1
value: 76.09424554868272
- type: nauc_mrr_at_3_max
value: 35.609777385861044
- type: nauc_mrr_at_5_diff1
value: 76.25068640961776
- type: nauc_mrr_at_5_max
value: 35.86165128556917
- type: nauc_ndcg_at_1000_diff1
value: 75.46284119099505
- type: nauc_ndcg_at_1000_max
value: 34.897248065013535
- type: nauc_ndcg_at_100_diff1
value: 75.55417772660796
- type: nauc_ndcg_at_100_max
value: 34.9921360207961
- type: nauc_ndcg_at_10_diff1
value: 75.48987547153091
- type: nauc_ndcg_at_10_max
value: 34.52070770288654
- type: nauc_ndcg_at_1_diff1
value: 77.2205910169754
- type: nauc_ndcg_at_1_max
value: 34.54544979283322
- type: nauc_ndcg_at_20_diff1
value: 75.52495648309022
- type: nauc_ndcg_at_20_max
value: 34.75327053329915
- type: nauc_ndcg_at_3_diff1
value: 74.76800490923522
- type: nauc_ndcg_at_3_max
value: 32.77064919163132
- type: nauc_ndcg_at_5_diff1
value: 75.05016397357261
- type: nauc_ndcg_at_5_max
value: 33.50761269482319
- type: nauc_precision_at_1000_diff1
value: -41.81465497084401
- type: nauc_precision_at_1000_max
value: -4.443935842899313
- type: nauc_precision_at_100_diff1
value: -40.80948937001563
- type: nauc_precision_at_100_max
value: -3.403706458833991
- type: nauc_precision_at_10_diff1
value: -33.369656218745945
- type: nauc_precision_at_10_max
value: 2.2202781020992255
- type: nauc_precision_at_1_diff1
value: 77.2205910169754
- type: nauc_precision_at_1_max
value: 34.54544979283322
- type: nauc_precision_at_20_diff1
value: -37.568976386400706
- type: nauc_precision_at_20_max
value: -0.6469605151975117
- type: nauc_precision_at_3_diff1
value: -10.217358622390567
- type: nauc_precision_at_3_max
value: 11.83919267748663
- type: nauc_precision_at_5_diff1
value: -24.481543671948373
- type: nauc_precision_at_5_max
value: 6.576825503675188
- type: nauc_recall_at_1000_diff1
value: 67.36524460905785
- type: nauc_recall_at_1000_max
value: 53.720724394976585
- type: nauc_recall_at_100_diff1
value: 75.23538841054406
- type: nauc_recall_at_100_max
value: 47.2723927504464
- type: nauc_recall_at_10_diff1
value: 69.95500109263831
- type: nauc_recall_at_10_max
value: 34.583322421413996
- type: nauc_recall_at_1_diff1
value: 78.53182147965822
- type: nauc_recall_at_1_max
value: 24.631838635071222
- type: nauc_recall_at_20_diff1
value: 70.32541323559573
- type: nauc_recall_at_20_max
value: 36.98517552839284
- type: nauc_recall_at_3_diff1
value: 71.477694594835
- type: nauc_recall_at_3_max
value: 27.960647983463073
- type: nauc_recall_at_5_diff1
value: 70.17565198935641
- type: nauc_recall_at_5_max
value: 30.104013734994844
- type: ndcg_at_1
value: 78.68
- type: ndcg_at_10
value: 86.244
- type: ndcg_at_100
value: 87.651
- type: ndcg_at_1000
value: 87.816
- type: ndcg_at_20
value: 86.961
- type: ndcg_at_3
value: 83.152
- type: ndcg_at_5
value: 84.819
- type: precision_at_1
value: 78.68
- type: precision_at_10
value: 13.123000000000001
- type: precision_at_100
value: 1.514
- type: precision_at_1000
value: 0.156
- type: precision_at_20
value: 6.979
- type: precision_at_3
value: 36.353
- type: precision_at_5
value: 23.977999999999998
- type: recall_at_1
value: 68.285
- type: recall_at_10
value: 94.16799999999999
- type: recall_at_100
value: 99.116
- type: recall_at_1000
value: 99.944
- type: recall_at_20
value: 96.494
- type: recall_at_3
value: 85.31
- type: recall_at_5
value: 89.993
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 47.39326061426851
- type: v_measures
value:
- 0.47153549737072414
- 0.5113188409132627
- 0.4256578555733507
- 0.45547697557001166
- 0.44673621430540467
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 58.382849910561305
- type: v_measures
value:
- 0.638508286047501
- 0.6201813511333097
- 0.6412218572317954
- 0.34538859648148
- 0.6372584092921234
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 3.5680000000000005
- type: map_at_10
value: 9.165
- type: map_at_100
value: 10.928
- type: map_at_1000
value: 11.187
- type: map_at_20
value: 10.030999999999999
- type: map_at_3
value: 6.598
- type: map_at_5
value: 7.746
- type: mrr_at_1
value: 17.5
- type: mrr_at_10
value: 28.15242063492062
- type: mrr_at_100
value: 29.148090545385042
- type: mrr_at_1000
value: 29.22586383082865
- type: mrr_at_20
value: 28.716339503289944
- type: mrr_at_3
value: 24.9666666666667
- type: mrr_at_5
value: 26.496666666666684
- type: nauc_map_at_1000_diff1
value: 18.97303632967232
- type: nauc_map_at_1000_max
value: 26.99578750624317
- type: nauc_map_at_100_diff1
value: 19.03406677193612
- type: nauc_map_at_100_max
value: 26.869362658515016
- type: nauc_map_at_10_diff1
value: 18.057667997990386
- type: nauc_map_at_10_max
value: 25.309052871533634
- type: nauc_map_at_1_diff1
value: 19.012090704165505
- type: nauc_map_at_1_max
value: 17.258809318287167
- type: nauc_map_at_20_diff1
value: 18.941090010273122
- type: nauc_map_at_20_max
value: 26.333042449319226
- type: nauc_map_at_3_diff1
value: 16.710501604799592
- type: nauc_map_at_3_max
value: 21.31218718265248
- type: nauc_map_at_5_diff1
value: 16.56134390513593
- type: nauc_map_at_5_max
value: 22.826974292312546
- type: nauc_mrr_at_1000_diff1
value: 16.363889874600694
- type: nauc_mrr_at_1000_max
value: 20.518910454040395
- type: nauc_mrr_at_100_diff1
value: 16.351792727972825
- type: nauc_mrr_at_100_max
value: 20.51605975440402
- type: nauc_mrr_at_10_diff1
value: 16.353234548491002
- type: nauc_mrr_at_10_max
value: 20.3474303123765
- type: nauc_mrr_at_1_diff1
value: 18.72320588103456
- type: nauc_mrr_at_1_max
value: 17.31659868214623
- type: nauc_mrr_at_20_diff1
value: 16.349503308662584
- type: nauc_mrr_at_20_max
value: 20.571279610990683
- type: nauc_mrr_at_3_diff1
value: 16.61433823095321
- type: nauc_mrr_at_3_max
value: 19.8671374514683
- type: nauc_mrr_at_5_diff1
value: 16.657607225925013
- type: nauc_mrr_at_5_max
value: 20.485690382244712
- type: nauc_ndcg_at_1000_diff1
value: 17.216527125545124
- type: nauc_ndcg_at_1000_max
value: 29.67323723253682
- type: nauc_ndcg_at_100_diff1
value: 17.920363114583992
- type: nauc_ndcg_at_100_max
value: 28.74219286431791
- type: nauc_ndcg_at_10_diff1
value: 17.4262322341026
- type: nauc_ndcg_at_10_max
value: 25.314398482777406
- type: nauc_ndcg_at_1_diff1
value: 18.72320588103456
- type: nauc_ndcg_at_1_max
value: 17.31659868214623
- type: nauc_ndcg_at_20_diff1
value: 18.49350721003082
- type: nauc_ndcg_at_20_max
value: 26.95660628845422
- type: nauc_ndcg_at_3_diff1
value: 16.388721576110076
- type: nauc_ndcg_at_3_max
value: 21.574925593659326
- type: nauc_ndcg_at_5_diff1
value: 16.62472439103214
- type: nauc_ndcg_at_5_max
value: 23.186257022779994
- type: nauc_precision_at_1000_diff1
value: 7.882444572522718
- type: nauc_precision_at_1000_max
value: 29.389796806861163
- type: nauc_precision_at_100_diff1
value: 13.9186095734099
- type: nauc_precision_at_100_max
value: 30.35346461874792
- type: nauc_precision_at_10_diff1
value: 15.858687077827474
- type: nauc_precision_at_10_max
value: 26.884411423943906
- type: nauc_precision_at_1_diff1
value: 18.72320588103456
- type: nauc_precision_at_1_max
value: 17.31659868214623
- type: nauc_precision_at_20_diff1
value: 17.397174842486937
- type: nauc_precision_at_20_max
value: 28.48509998553517
- type: nauc_precision_at_3_diff1
value: 15.910758722664974
- type: nauc_precision_at_3_max
value: 23.37753724707492
- type: nauc_precision_at_5_diff1
value: 15.480650294833314
- type: nauc_precision_at_5_max
value: 24.92100239632834
- type: nauc_recall_at_1000_diff1
value: 8.568163684580515
- type: nauc_recall_at_1000_max
value: 29.761661131284278
- type: nauc_recall_at_100_diff1
value: 14.139732606832828
- type: nauc_recall_at_100_max
value: 30.30928539057988
- type: nauc_recall_at_10_diff1
value: 16.0957814746088
- type: nauc_recall_at_10_max
value: 26.730370480937783
- type: nauc_recall_at_1_diff1
value: 19.012090704165505
- type: nauc_recall_at_1_max
value: 17.258809318287167
- type: nauc_recall_at_20_diff1
value: 17.58458055089181
- type: nauc_recall_at_20_max
value: 28.329240158930897
- type: nauc_recall_at_3_diff1
value: 16.11861072893215
- type: nauc_recall_at_3_max
value: 23.34743857534646
- type: nauc_recall_at_5_diff1
value: 15.659970648558035
- type: nauc_recall_at_5_max
value: 24.916484416681683
- type: ndcg_at_1
value: 17.5
- type: ndcg_at_10
value: 16.203
- type: ndcg_at_100
value: 23.311
- type: ndcg_at_1000
value: 28.476000000000003
- type: ndcg_at_20
value: 18.614
- type: ndcg_at_3
value: 15.246
- type: ndcg_at_5
value: 13.142000000000001
- type: precision_at_1
value: 17.5
- type: precision_at_10
value: 8.61
- type: precision_at_100
value: 1.8929999999999998
- type: precision_at_1000
value: 0.314
- type: precision_at_20
value: 5.695
- type: precision_at_3
value: 14.7
- type: precision_at_5
value: 11.700000000000001
- type: recall_at_1
value: 3.5680000000000005
- type: recall_at_10
value: 17.497
- type: recall_at_100
value: 38.377
- type: recall_at_1000
value: 63.858000000000004
- type: recall_at_20
value: 23.122
- type: recall_at_3
value: 8.948
- type: recall_at_5
value: 11.858
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 83.0786740980213
- type: cos_sim_spearman
value: 74.64910820402831
- type: euclidean_pearson
value: 79.40680658618808
- type: euclidean_spearman
value: 74.04786370197291
- type: manhattan_pearson
value: 79.30290796130608
- type: manhattan_spearman
value: 73.86543081865257
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 87.14143764866938
- type: cos_sim_spearman
value: 79.39117869636218
- type: euclidean_pearson
value: 82.27893672472992
- type: euclidean_spearman
value: 78.12857266398304
- type: manhattan_pearson
value: 82.40958626880706
- type: manhattan_spearman
value: 78.2460736745845
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.98565298864834
- type: cos_sim_spearman
value: 85.3226077419183
- type: euclidean_pearson
value: 83.36095201234602
- type: euclidean_spearman
value: 83.44580751011605
- type: manhattan_pearson
value: 83.26944531709971
- type: manhattan_spearman
value: 83.3511641574103
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 86.15642283009589
- type: cos_sim_spearman
value: 83.89978896960656
- type: euclidean_pearson
value: 85.01657605766617
- type: euclidean_spearman
value: 82.70615194483753
- type: manhattan_pearson
value: 84.82154011079453
- type: manhattan_spearman
value: 82.61620436539884
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.7730685270548
- type: cos_sim_spearman
value: 88.46744045180212
- type: euclidean_pearson
value: 87.11846600678471
- type: euclidean_spearman
value: 87.32502541228249
- type: manhattan_pearson
value: 87.06217303693649
- type: manhattan_spearman
value: 87.24696449513658
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.0653949018384
- type: cos_sim_spearman
value: 84.43898725124001
- type: euclidean_pearson
value: 83.46057253146975
- type: euclidean_spearman
value: 83.70938571051141
- type: manhattan_pearson
value: 83.48079890307652
- type: manhattan_spearman
value: 83.75548841452152
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cos_sim_pearson
value: 85.45225298379407
- type: cos_sim_spearman
value: 85.76725038940407
- type: euclidean_pearson
value: 85.9615450336946
- type: euclidean_spearman
value: 85.48341197609108
- type: manhattan_pearson
value: 85.74837479284034
- type: manhattan_spearman
value: 85.19050180417275
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cos_sim_pearson
value: 66.72129983991873
- type: cos_sim_spearman
value: 67.23743199464064
- type: euclidean_pearson
value: 68.41402075343164
- type: euclidean_spearman
value: 67.96307375904688
- type: manhattan_pearson
value: 68.40814603490281
- type: manhattan_spearman
value: 67.78239579617318
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.17592091160849
- type: cos_sim_spearman
value: 86.0757276289371
- type: euclidean_pearson
value: 85.24314028679827
- type: euclidean_spearman
value: 84.79227270552205
- type: manhattan_pearson
value: 85.15711414880685
- type: manhattan_spearman
value: 84.68939283251983
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.61113471166244
- type: mrr
value: 93.432848923045
- type: nAUC_map_diff1
value: 5.468214413465522
- type: nAUC_map_max
value: 53.344699872043364
- type: nAUC_mrr_diff1
value: 50.8786565680291
- type: nAUC_mrr_max
value: 79.73153373046732
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 46.694
- type: map_at_10
value: 58.492999999999995
- type: map_at_100
value: 59.079
- type: map_at_1000
value: 59.114999999999995
- type: map_at_20
value: 58.784000000000006
- type: map_at_3
value: 56.091
- type: map_at_5
value: 57.023999999999994
- type: mrr_at_1
value: 49.333333333333336
- type: mrr_at_10
value: 59.850132275132296
- type: mrr_at_100
value: 60.31782622597538
- type: mrr_at_1000
value: 60.34922440201215
- type: mrr_at_20
value: 60.08416454832866
- type: mrr_at_3
value: 58.05555555555557
- type: mrr_at_5
value: 58.67222222222224
- type: nauc_map_at_1000_diff1
value: 67.76127454103812
- type: nauc_map_at_1000_max
value: 42.06391105197536
- type: nauc_map_at_100_diff1
value: 67.73734626481158
- type: nauc_map_at_100_max
value: 42.07013722993752
- type: nauc_map_at_10_diff1
value: 67.75019487037416
- type: nauc_map_at_10_max
value: 42.08004179578344
- type: nauc_map_at_1_diff1
value: 73.16882642657764
- type: nauc_map_at_1_max
value: 38.22765895246309
- type: nauc_map_at_20_diff1
value: 67.71028360631355
- type: nauc_map_at_20_max
value: 42.182021960109665
- type: nauc_map_at_3_diff1
value: 67.62369130951392
- type: nauc_map_at_3_max
value: 39.910755718969696
- type: nauc_map_at_5_diff1
value: 67.66911636315015
- type: nauc_map_at_5_max
value: 40.38236382755538
- type: nauc_mrr_at_1000_diff1
value: 66.06803763645875
- type: nauc_mrr_at_1000_max
value: 42.86556398916693
- type: nauc_mrr_at_100_diff1
value: 66.04424547602991
- type: nauc_mrr_at_100_max
value: 42.867192517898935
- type: nauc_mrr_at_10_diff1
value: 65.9181187541585
- type: nauc_mrr_at_10_max
value: 43.00997791733552
- type: nauc_mrr_at_1_diff1
value: 71.14402949361032
- type: nauc_mrr_at_1_max
value: 40.41989400733797
- type: nauc_mrr_at_20_diff1
value: 65.96893983596155
- type: nauc_mrr_at_20_max
value: 42.96939035490266
- type: nauc_mrr_at_3_diff1
value: 65.61751418820666
- type: nauc_mrr_at_3_max
value: 41.73632436886939
- type: nauc_mrr_at_5_diff1
value: 65.93649980807021
- type: nauc_mrr_at_5_max
value: 41.99687107195354
- type: nauc_ndcg_at_1000_diff1
value: 66.14801590849353
- type: nauc_ndcg_at_1000_max
value: 43.70286520140021
- type: nauc_ndcg_at_100_diff1
value: 65.57206500474688
- type: nauc_ndcg_at_100_max
value: 43.804634724756234
- type: nauc_ndcg_at_10_diff1
value: 65.58658179189969
- type: nauc_ndcg_at_10_max
value: 44.605601186017815
- type: nauc_ndcg_at_1_diff1
value: 71.14402949361032
- type: nauc_ndcg_at_1_max
value: 40.41989400733797
- type: nauc_ndcg_at_20_diff1
value: 65.52436059710848
- type: nauc_ndcg_at_20_max
value: 44.80884075855281
- type: nauc_ndcg_at_3_diff1
value: 65.33560750072314
- type: nauc_ndcg_at_3_max
value: 41.02191665715624
- type: nauc_ndcg_at_5_diff1
value: 65.49156588896797
- type: nauc_ndcg_at_5_max
value: 41.193628278772906
- type: nauc_precision_at_1000_diff1
value: -21.271717431265248
- type: nauc_precision_at_1000_max
value: 14.880187641241479
- type: nauc_precision_at_100_diff1
value: -6.170679294185874
- type: nauc_precision_at_100_max
value: 23.392807344666835
- type: nauc_precision_at_10_diff1
value: 24.15372806591396
- type: nauc_precision_at_10_max
value: 42.122189619323315
- type: nauc_precision_at_1_diff1
value: 71.14402949361032
- type: nauc_precision_at_1_max
value: 40.41989400733797
- type: nauc_precision_at_20_diff1
value: 15.788476578628993
- type: nauc_precision_at_20_max
value: 39.31283062678818
- type: nauc_precision_at_3_diff1
value: 45.48749226553521
- type: nauc_precision_at_3_max
value: 38.4930807232584
- type: nauc_precision_at_5_diff1
value: 38.55379599441077
- type: nauc_precision_at_5_max
value: 36.431299487657185
- type: nauc_recall_at_1000_diff1
value: 45.004668534080174
- type: nauc_recall_at_1000_max
value: 80.78120136943592
- type: nauc_recall_at_100_diff1
value: 47.77911164465763
- type: nauc_recall_at_100_max
value: 51.29449629314065
- type: nauc_recall_at_10_diff1
value: 57.71614029345987
- type: nauc_recall_at_10_max
value: 53.908934707903775
- type: nauc_recall_at_1_diff1
value: 73.16882642657764
- type: nauc_recall_at_1_max
value: 38.22765895246309
- type: nauc_recall_at_20_diff1
value: 56.143181435044355
- type: nauc_recall_at_20_max
value: 56.12210887724124
- type: nauc_recall_at_3_diff1
value: 58.947466694908826
- type: nauc_recall_at_3_max
value: 40.205765050955286
- type: nauc_recall_at_5_diff1
value: 58.72258574569608
- type: nauc_recall_at_5_max
value: 40.857639009739245
- type: ndcg_at_1
value: 49.333
- type: ndcg_at_10
value: 63.966
- type: ndcg_at_100
value: 66.808
- type: ndcg_at_1000
value: 67.62700000000001
- type: ndcg_at_20
value: 64.92
- type: ndcg_at_3
value: 59.496
- type: ndcg_at_5
value: 60.743
- type: precision_at_1
value: 49.333
- type: precision_at_10
value: 8.866999999999999
- type: precision_at_100
value: 1.053
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 4.683
- type: precision_at_3
value: 24.0
- type: precision_at_5
value: 15.333
- type: recall_at_1
value: 46.694
- type: recall_at_10
value: 79.5
- type: recall_at_100
value: 92.767
- type: recall_at_1000
value: 99.0
- type: recall_at_20
value: 82.956
- type: recall_at_3
value: 66.783
- type: recall_at_5
value: 69.906
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.78118811881188
- type: cos_sim_ap
value: 94.38499172210743
- type: cos_sim_f1
value: 88.99803536345776
- type: cos_sim_precision
value: 87.45173745173746
- type: cos_sim_recall
value: 90.60000000000001
- type: dot_accuracy
value: 99.68118811881187
- type: dot_ap
value: 88.59372518155831
- type: dot_f1
value: 83.45323741007195
- type: dot_precision
value: 85.83509513742071
- type: dot_recall
value: 81.2
- type: euclidean_accuracy
value: 99.78019801980199
- type: euclidean_ap
value: 94.41961507812081
- type: euclidean_f1
value: 88.91098955743412
- type: euclidean_precision
value: 88.4272997032641
- type: euclidean_recall
value: 89.4
- type: manhattan_accuracy
value: 99.78118811881188
- type: manhattan_ap
value: 94.53929097513269
- type: manhattan_f1
value: 88.93280632411069
- type: manhattan_precision
value: 87.890625
- type: manhattan_recall
value: 90.0
- type: max_accuracy
value: 99.78118811881188
- type: max_ap
value: 94.53929097513269
- type: max_f1
value: 88.99803536345776
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 52.46659916482748
- type: v_measures
value:
- 0.5533520743369753
- 0.5226026021922323
- 0.4443153697300708
- 0.5442847332820114
- 0.5574991389583961
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.6334285506705
- type: v_measures
value:
- 0.3276318900057692
- 0.3240387341697168
- 0.32272003147893974
- 0.32313817118726607
- 0.3156113464382597
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 47.16067733309403
- type: mrr
value: 47.8574611662847
- type: nAUC_map_diff1
value: 32.52594575795374
- type: nAUC_map_max
value: 14.426033057319177
- type: nAUC_mrr_diff1
value: 32.717518660141344
- type: nAUC_mrr_max
value: 15.511520995680103
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 29.510117786456014
- type: cos_sim_spearman
value: 29.2255704281364
- type: dot_pearson
value: 29.920367312494868
- type: dot_spearman
value: 29.70675041719688
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.153
- type: map_at_10
value: 1.084
- type: map_at_100
value: 5.065
- type: map_at_1000
value: 14.255999999999998
- type: map_at_20
value: 1.7739999999999998
- type: map_at_3
value: 0.40299999999999997
- type: map_at_5
value: 0.63
- type: mrr_at_1
value: 54.0
- type: mrr_at_10
value: 67.86904761904762
- type: mrr_at_100
value: 68.1173503682578
- type: mrr_at_1000
value: 68.1173503682578
- type: mrr_at_20
value: 67.97431077694236
- type: mrr_at_3
value: 64.0
- type: mrr_at_5
value: 66.8
- type: nauc_map_at_1000_diff1
value: -22.260198132192173
- type: nauc_map_at_1000_max
value: 54.68403556878306
- type: nauc_map_at_100_diff1
value: -16.159059471544403
- type: nauc_map_at_100_max
value: 46.680332538973104
- type: nauc_map_at_10_diff1
value: -0.16025207380124323
- type: nauc_map_at_10_max
value: 18.60858928303837
- type: nauc_map_at_1_diff1
value: 19.31406645591962
- type: nauc_map_at_1_max
value: 12.446064494149196
- type: nauc_map_at_20_diff1
value: -3.7207534399873086
- type: nauc_map_at_20_max
value: 23.984664337717064
- type: nauc_map_at_3_diff1
value: 11.318172692961777
- type: nauc_map_at_3_max
value: 17.80683628355867
- type: nauc_map_at_5_diff1
value: 7.92181873049933
- type: nauc_map_at_5_max
value: 17.64389113325039
- type: nauc_mrr_at_1000_diff1
value: 17.49153792066571
- type: nauc_mrr_at_1000_max
value: 33.59871091829616
- type: nauc_mrr_at_100_diff1
value: 17.49153792066571
- type: nauc_mrr_at_100_max
value: 33.59871091829616
- type: nauc_mrr_at_10_diff1
value: 17.502786184772496
- type: nauc_mrr_at_10_max
value: 33.97577280665956
- type: nauc_mrr_at_1_diff1
value: 20.469006140423968
- type: nauc_mrr_at_1_max
value: 24.62282237225972
- type: nauc_mrr_at_20_diff1
value: 17.27246967398437
- type: nauc_mrr_at_20_max
value: 33.69787393313599
- type: nauc_mrr_at_3_diff1
value: 17.658115148717215
- type: nauc_mrr_at_3_max
value: 34.66827145024068
- type: nauc_mrr_at_5_diff1
value: 17.916005644695375
- type: nauc_mrr_at_5_max
value: 35.10406736432433
- type: nauc_ndcg_at_1000_diff1
value: -25.695422281160564
- type: nauc_ndcg_at_1000_max
value: 41.85333091055545
- type: nauc_ndcg_at_100_diff1
value: -20.77388791351094
- type: nauc_ndcg_at_100_max
value: 44.356134608903034
- type: nauc_ndcg_at_10_diff1
value: -10.307778980699197
- type: nauc_ndcg_at_10_max
value: 33.23388628961326
- type: nauc_ndcg_at_1_diff1
value: 20.412738715863956
- type: nauc_ndcg_at_1_max
value: 23.390778206963613
- type: nauc_ndcg_at_20_diff1
value: -11.307721360709836
- type: nauc_ndcg_at_20_max
value: 36.352174201276206
- type: nauc_ndcg_at_3_diff1
value: 7.285454029149752
- type: nauc_ndcg_at_3_max
value: 29.03877907321362
- type: nauc_ndcg_at_5_diff1
value: 0.8947521854164275
- type: nauc_ndcg_at_5_max
value: 31.54102751296627
- type: nauc_precision_at_1000_diff1
value: -25.78557535978164
- type: nauc_precision_at_1000_max
value: 37.467970941981896
- type: nauc_precision_at_100_diff1
value: -25.701682320317964
- type: nauc_precision_at_100_max
value: 45.81756747527059
- type: nauc_precision_at_10_diff1
value: -21.234526843340713
- type: nauc_precision_at_10_max
value: 32.91504410405538
- type: nauc_precision_at_1_diff1
value: 20.469006140423968
- type: nauc_precision_at_1_max
value: 24.62282237225972
- type: nauc_precision_at_20_diff1
value: -20.025454190589233
- type: nauc_precision_at_20_max
value: 37.55936600361076
- type: nauc_precision_at_3_diff1
value: 2.8390823388370996
- type: nauc_precision_at_3_max
value: 31.69418560296442
- type: nauc_precision_at_5_diff1
value: -7.36442063396579
- type: nauc_precision_at_5_max
value: 32.88936384031251
- type: nauc_recall_at_1000_diff1
value: -25.040103819963193
- type: nauc_recall_at_1000_max
value: 39.67194190901835
- type: nauc_recall_at_100_diff1
value: -15.819635509190055
- type: nauc_recall_at_100_max
value: 38.20290322073082
- type: nauc_recall_at_10_diff1
value: -2.179337202237811
- type: nauc_recall_at_10_max
value: 15.444689423576962
- type: nauc_recall_at_1_diff1
value: 19.31406645591962
- type: nauc_recall_at_1_max
value: 12.446064494149196
- type: nauc_recall_at_20_diff1
value: -4.369705346989079
- type: nauc_recall_at_20_max
value: 19.689399778184235
- type: nauc_recall_at_3_diff1
value: 11.368703632097438
- type: nauc_recall_at_3_max
value: 18.834378852568555
- type: nauc_recall_at_5_diff1
value: 9.363083205894776
- type: nauc_recall_at_5_max
value: 16.283811472009358
- type: ndcg_at_1
value: 50.0
- type: ndcg_at_10
value: 46.788999999999994
- type: ndcg_at_100
value: 33.676
- type: ndcg_at_1000
value: 36.502
- type: ndcg_at_20
value: 42.895
- type: ndcg_at_3
value: 49.531
- type: ndcg_at_5
value: 49.413000000000004
- type: precision_at_1
value: 54.0
- type: precision_at_10
value: 51.2
- type: precision_at_100
value: 34.62
- type: precision_at_1000
value: 16.869999999999997
- type: precision_at_20
value: 45.800000000000004
- type: precision_at_3
value: 54.0
- type: precision_at_5
value: 54.400000000000006
- type: recall_at_1
value: 0.153
- type: recall_at_10
value: 1.373
- type: recall_at_100
value: 8.425
- type: recall_at_1000
value: 36.521
- type: recall_at_20
value: 2.4
- type: recall_at_3
value: 0.441
- type: recall_at_5
value: 0.739
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 1.4449999999999998
- type: map_at_10
value: 5.508
- type: map_at_100
value: 9.561
- type: map_at_1000
value: 11.075
- type: map_at_20
value: 7.195
- type: map_at_3
value: 2.8819999999999997
- type: map_at_5
value: 3.859
- type: mrr_at_1
value: 18.367346938775512
- type: mrr_at_10
value: 30.816326530612244
- type: mrr_at_100
value: 32.36702497368042
- type: mrr_at_1000
value: 32.39717992373145
- type: mrr_at_20
value: 31.906678711584885
- type: mrr_at_3
value: 26.190476190476193
- type: mrr_at_5
value: 28.945578231292522
- type: nauc_map_at_1000_diff1
value: 15.86075185050381
- type: nauc_map_at_1000_max
value: -39.68076638135203
- type: nauc_map_at_100_diff1
value: 14.373599398703885
- type: nauc_map_at_100_max
value: -40.06871903205363
- type: nauc_map_at_10_diff1
value: 17.129188771799722
- type: nauc_map_at_10_max
value: -40.62148414336222
- type: nauc_map_at_1_diff1
value: 19.300742296090192
- type: nauc_map_at_1_max
value: -39.01422276688408
- type: nauc_map_at_20_diff1
value: 17.096257109130104
- type: nauc_map_at_20_max
value: -41.45895858788768
- type: nauc_map_at_3_diff1
value: 13.061713953725201
- type: nauc_map_at_3_max
value: -38.41319841534379
- type: nauc_map_at_5_diff1
value: 14.349086737587205
- type: nauc_map_at_5_max
value: -38.969968391834044
- type: nauc_mrr_at_1000_diff1
value: 15.890202844477846
- type: nauc_mrr_at_1000_max
value: -35.71618277376245
- type: nauc_mrr_at_100_diff1
value: 15.922757469316565
- type: nauc_mrr_at_100_max
value: -35.79109859355446
- type: nauc_mrr_at_10_diff1
value: 15.047536449761841
- type: nauc_mrr_at_10_max
value: -36.56394292392469
- type: nauc_mrr_at_1_diff1
value: 23.5674706768817
- type: nauc_mrr_at_1_max
value: -34.577680813370684
- type: nauc_mrr_at_20_diff1
value: 15.48856353024658
- type: nauc_mrr_at_20_max
value: -35.79541680443546
- type: nauc_mrr_at_3_diff1
value: 15.806087622568954
- type: nauc_mrr_at_3_max
value: -32.477788788477206
- type: nauc_mrr_at_5_diff1
value: 15.100010170892547
- type: nauc_mrr_at_5_max
value: -34.902570265426476
- type: nauc_ndcg_at_1000_diff1
value: 17.06221439254491
- type: nauc_ndcg_at_1000_max
value: -38.057099656137524
- type: nauc_ndcg_at_100_diff1
value: 10.712806009366044
- type: nauc_ndcg_at_100_max
value: -41.634510046296825
- type: nauc_ndcg_at_10_diff1
value: 19.714184908152074
- type: nauc_ndcg_at_10_max
value: -38.35275712711699
- type: nauc_ndcg_at_1_diff1
value: 27.689699524955962
- type: nauc_ndcg_at_1_max
value: -32.166823132012276
- type: nauc_ndcg_at_20_diff1
value: 16.460154587871894
- type: nauc_ndcg_at_20_max
value: -44.9036600147991
- type: nauc_ndcg_at_3_diff1
value: 20.089462936175444
- type: nauc_ndcg_at_3_max
value: -28.050150980736177
- type: nauc_ndcg_at_5_diff1
value: 16.85293507256734
- type: nauc_ndcg_at_5_max
value: -30.806342862683927
- type: nauc_precision_at_1000_diff1
value: 14.408977497220873
- type: nauc_precision_at_1000_max
value: 37.74317255169207
- type: nauc_precision_at_100_diff1
value: -1.535852218534388
- type: nauc_precision_at_100_max
value: -19.385555066523708
- type: nauc_precision_at_10_diff1
value: 14.935398953941345
- type: nauc_precision_at_10_max
value: -40.7784122393935
- type: nauc_precision_at_1_diff1
value: 23.5674706768817
- type: nauc_precision_at_1_max
value: -34.577680813370684
- type: nauc_precision_at_20_diff1
value: 10.2401285323039
- type: nauc_precision_at_20_max
value: -44.04141433293453
- type: nauc_precision_at_3_diff1
value: 15.784680322541114
- type: nauc_precision_at_3_max
value: -30.464693842536324
- type: nauc_precision_at_5_diff1
value: 6.837543215418572
- type: nauc_precision_at_5_max
value: -32.9314191958357
- type: nauc_recall_at_1000_diff1
value: 8.533481249495253
- type: nauc_recall_at_1000_max
value: -30.221386840946657
- type: nauc_recall_at_100_diff1
value: -1.394100451328846
- type: nauc_recall_at_100_max
value: -41.79269914007117
- type: nauc_recall_at_10_diff1
value: 13.77128337229429
- type: nauc_recall_at_10_max
value: -44.513151444340814
- type: nauc_recall_at_1_diff1
value: 19.300742296090192
- type: nauc_recall_at_1_max
value: -39.01422276688408
- type: nauc_recall_at_20_diff1
value: 8.568504019773036
- type: nauc_recall_at_20_max
value: -47.8434381158021
- type: nauc_recall_at_3_diff1
value: 9.308189193923543
- type: nauc_recall_at_3_max
value: -39.95524531900913
- type: nauc_recall_at_5_diff1
value: 10.205415401777017
- type: nauc_recall_at_5_max
value: -38.78454250086998
- type: ndcg_at_1
value: 16.326999999999998
- type: ndcg_at_10
value: 14.472999999999999
- type: ndcg_at_100
value: 24.621000000000002
- type: ndcg_at_1000
value: 37.964999999999996
- type: ndcg_at_20
value: 16.55
- type: ndcg_at_3
value: 15.432000000000002
- type: ndcg_at_5
value: 14.654
- type: precision_at_1
value: 18.367
- type: precision_at_10
value: 14.285999999999998
- type: precision_at_100
value: 5.612
- type: precision_at_1000
value: 1.39
- type: precision_at_20
value: 11.735
- type: precision_at_3
value: 17.007
- type: precision_at_5
value: 16.326999999999998
- type: recall_at_1
value: 1.4449999999999998
- type: recall_at_10
value: 10.796999999999999
- type: recall_at_100
value: 36.172
- type: recall_at_1000
value: 75.737
- type: recall_at_20
value: 17.494
- type: recall_at_3
value: 3.74
- type: recall_at_5
value: 6.131
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 62.5244140625
- type: ap
value: 11.036738738208067
- type: ap_weighted
value: 11.036738738208067
- type: f1
value: 48.178922337841016
- type: f1_weighted
value: 70.79346668027127
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.60384833050367
- type: f1
value: 59.89473957112635
- type: f1_weighted
value: 59.21770850754739
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 40.52017931682707
- type: v_measures
value:
- 0.41056001750265486
- 0.4115812168479953
- 0.4020131539653664
- 0.41845373495523314
- 0.3990043371824943
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.19860523335518
- type: cos_sim_ap
value: 67.98183780223552
- type: cos_sim_f1
value: 63.287574797606474
- type: cos_sim_precision
value: 56.98288611874076
- type: cos_sim_recall
value: 71.16094986807387
- type: dot_accuracy
value: 81.0872027180068
- type: dot_ap
value: 57.080616165589994
- type: dot_f1
value: 57.184056030487184
- type: dot_precision
value: 46.899814157796925
- type: dot_recall
value: 73.24538258575198
- type: euclidean_accuracy
value: 84.10919711509806
- type: euclidean_ap
value: 68.02422564958268
- type: euclidean_f1
value: 63.76539589442815
- type: euclidean_precision
value: 57.40232312565998
- type: euclidean_recall
value: 71.71503957783642
- type: manhattan_accuracy
value: 84.06747332657805
- type: manhattan_ap
value: 67.74186393843273
- type: manhattan_f1
value: 63.57935359382538
- type: manhattan_precision
value: 58.55175477565526
- type: manhattan_recall
value: 69.55145118733509
- type: max_accuracy
value: 84.19860523335518
- type: max_ap
value: 68.02422564958268
- type: max_f1
value: 63.76539589442815
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.40311250824699
- type: cos_sim_ap
value: 86.47944792205789
- type: cos_sim_f1
value: 78.80539499036608
- type: cos_sim_precision
value: 75.95714285714286
- type: cos_sim_recall
value: 81.87557745611333
- type: dot_accuracy
value: 87.8468583847557
- type: dot_ap
value: 83.05643449341216
- type: dot_f1
value: 76.55210439257489
- type: dot_precision
value: 73.24330027431948
- type: dot_recall
value: 80.17400677548507
- type: euclidean_accuracy
value: 89.29250591842279
- type: euclidean_ap
value: 86.35499372223612
- type: euclidean_f1
value: 78.9011715450439
- type: euclidean_precision
value: 75.43009620110948
- type: euclidean_recall
value: 82.7071142593163
- type: manhattan_accuracy
value: 89.26339892110063
- type: manhattan_ap
value: 86.2956040159182
- type: manhattan_f1
value: 78.78428904601488
- type: manhattan_precision
value: 75.87165775401068
- type: manhattan_recall
value: 81.92947336002464
- type: max_accuracy
value: 89.40311250824699
- type: max_ap
value: 86.47944792205789
- type: max_f1
value: 78.9011715450439
---
# [bilingual-embedding-small](https://huggingface.co/Lajavaness/bilingual-embedding-small)
Bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384), a pre-trained language model is built upon [multilingual-e5](https://huggingface.co/intfloat/multilingual-e5-small) architecture. The model utilizes MiniLM to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Training and Fine-tuning process
#### Stage 1: NLI Training
- Dataset: [(SNLI+XNLI) for english+french]
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
- Dataset: [STSB-fr and en]
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
### Stage 4: Advanced Augmentation Fine-tuning
- Dataset: STSB with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
## Usage:
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
model = SentenceTransformer('Lajavaness/bilingual-embedding-small', trust_remote_code=True)
print(embeddings)
```
## Evaluation
TODO
## Citation
@article{conneau2019unsupervised,
title={Unsupervised cross-lingual representation learning at scale},
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
journal={arXiv preprint arXiv:1911.02116},
year={2019}
}
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={https://arxiv.org/abs/1908.10084},
year={2019}
}
@article{thakur2020augmented,
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
journal={arXiv e-prints},
pages={arXiv--2010},
year={2020} | [
"BIOSSES",
"SCIFACT"
] |
Yntec/Yiffyverse | Yntec | text-to-image | [
"diffusers",
"safetensors",
"Base Model",
"General",
"Art",
"Comics",
"Cartoon",
"Furry",
"wildzzz",
"chilon249",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"base_model:Yntec/UniverseStableComics",
"base_model:merge:Yntec/UniverseStableComics",
"base_model:Yntec/YiffyMix",
"base_model:merge:Yntec/YiffyMix",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | "2025-03-09T00:45:51Z" | 2025-03-09T01:27:55+00:00 | 6,962 | 0 | ---
base_model:
- Yntec/YiffyMix
- Yntec/UniverseStableComics
library_name: diffusers
license: creativeml-openrail-m
pipeline_tag: text-to-image
tags:
- Base Model
- General
- Art
- Comics
- Cartoon
- Furry
- wildzzz
- chilon249
- stable-diffusion
- stable-diffusion-diffusers
- diffusers
- text-to-image
base_model_relation: merge
---
# Yiffyverse
Yiffymix v31 merged with UniverseStableComics to create a very complete model that is very creative and detailed! Focused on not requiring negative prompts and delivering without requiring many tries! Showcase and prompts (all use seed 9119)):

a Bear playing guitar in a club, zoofun, whimsical

oil painting, best quality,masterpiece,Fluffy,raccoon. red scarf, big eyes,lawn,forest,paw pose,chibi,

uploaded on e621, ((by Cleon Peterson, by Sonia Delaunay, by Tomer Hanuka, by Dagasi, traditional media (artwork))), solo female ((toony judy hopps, bunny ears, grey body, blue eyes, white short t-shirt, dark blue short pants, small breasts)), shoulder bag, ((three-quarter portrait, three-quarter view,))

Beautiful cartoon girl with long colorful hair and bright TEAL eyes, dark background
Original pages:
https://civitai.com/models/3671?modelVersionId=114438 (Yiffymix 3.1)
https://civitai.com/models/102001?modelVersionId=111382 (UniverseStableComics)
# Recipes:
- SuperMerger Add Difference Alpha 1
Model A: UniverseStableComics
Model B: Yiffymix 3.1
Model C: Stable Diffusion 1.5
Output: Yiffy UniverseStableComics
- SuperMerger Weight sum use MBW 1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1
Model A: Yiffymix 3.1
Model B: Yiffy UniverseStableComics
Output: YiffyverseBIG
This recipe produced a model that was 5.9GB in size! It was pruned by converting it to Diffusers via https://huggingface.co/spaces/Yntec/sd-to-diffusers-backup and then converted back into single safetensors via https://huggingface.co/spaces/John6666/convert_repo_to_safetensors_sd , which produces a much smaller 4.2GB model that makes identical pictures! That's 1.7GB of fluff pruned off!
Output: Yiffyverse | [
"BEAR"
] |
Yntec/Nostalgic | Yntec | text-to-image | [
"diffusers",
"safetensors",
"Anime",
"90s",
"Retro",
"Vintage",
"Children Book",
"Kids Illustrations",
"Clumsy_Trainer",
"OneRing",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"base_model:Yntec/EstheticRetroAnime",
"base_model:merge:Yntec/EstheticRetroAnime",
"base_model:Yntec/KIDSILLUSTRATIONS",
"base_model:merge:Yntec/KIDSILLUSTRATIONS",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | "2023-12-12T05:15:56Z" | 2024-10-30T02:30:31+00:00 | 6,924 | 4 | ---
base_model:
- Yntec/KIDSILLUSTRATIONS
- Yntec/EstheticRetroAnime
library_name: diffusers
license: creativeml-openrail-m
pipeline_tag: text-to-image
tags:
- Anime
- 90s
- Retro
- Vintage
- Children Book
- Kids Illustrations
- Clumsy_Trainer
- OneRing
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
base_model_relation: merge
---
# Nostalgic
A mix of EstheticRetroAnime v1 and KIDSILLUSTRATIONS to bring it home.
Comparison:

(Click for larger)
Samples and prompts:

(Click for larger)
Top left: Anime cute little girl, bangs, depth of field, embedded, hair ribbon, long hair, looking at viewer, neck ribbon, non-web source, palm leaf, palm tree, purple eyes, purple hair, red ribbon, ribbon, self upload, solo
Top right: highquality, masterpiece, 1girl, Chi-Chi, :D, close up, smile, arms up, pink helmet, black hair, black eyes, blush, white teeth, bikini armor, aqua cape, pink gloves, pink boots, cleavage. cave, rock, mountain. blue collar
Bottom left: little videogames, robert jordan pepperoni pizza, josephine wall winner, hidari, roll20 illumination, radiant light, sitting elementary girl, Pretty CUTE, gorgeous hair, DETAILED CHIBI EYES, Magazine ad, iconic, 1943, Cartoon, sharp focus, comic, watched towel. 4k art on canvas by kyoani and ROSSDRAWS
Bottom right: (masterpiece), cute green eyes visible, (best quality), a pretty cute little girl holding teddy bear, looking at camera, (high resolution), Kids Book. sunglasses, short smile
Original pages:
https://civitai.com/models/137781?modelVersionId=152147 (Esthetic Retro Anime)
https://huggingface.co/Yntec/KIDSILLUSTRATIONS
# Recipe:
- SuperMerger Weight sum Train Difference Use MBW 0,1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1
Model A:
EstheticRetroAnime
Model B:
KIDSILLUSTRATIONS
Output Model:
Nostalgic | [
"BEAR"
] |
parasail-ai/GritLM-7B-vllm | parasail-ai | text-generation | [
"pytorch",
"safetensors",
"mistral",
"mteb",
"vllm",
"text-generation",
"conversational",
"custom_code",
"dataset:GritLM/tulu2",
"arxiv:2402.09906",
"license:apache-2.0",
"model-index",
"region:us"
] | "2024-11-27T18:52:58Z" | 2024-12-06T03:01:43+00:00 | 6,918 | 1 | ---
datasets:
- GritLM/tulu2
license: apache-2.0
pipeline_tag: text-generation
tags:
- mteb
- vllm
inference: true
model-index:
- name: GritLM-7B
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 81.17910447761194
- type: ap
value: 46.26260671758199
- type: f1
value: 75.44565719934167
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 96.5161
- type: ap
value: 94.79131981460425
- type: f1
value: 96.51506148413065
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 57.806000000000004
- type: f1
value: 56.78350156257903
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.478
- type: map_at_10
value: 54.955
- type: map_at_100
value: 54.955
- type: map_at_1000
value: 54.955
- type: map_at_3
value: 50.888999999999996
- type: map_at_5
value: 53.349999999999994
- type: mrr_at_1
value: 39.757999999999996
- type: mrr_at_10
value: 55.449000000000005
- type: mrr_at_100
value: 55.449000000000005
- type: mrr_at_1000
value: 55.449000000000005
- type: mrr_at_3
value: 51.37500000000001
- type: mrr_at_5
value: 53.822
- type: ndcg_at_1
value: 38.478
- type: ndcg_at_10
value: 63.239999999999995
- type: ndcg_at_100
value: 63.239999999999995
- type: ndcg_at_1000
value: 63.239999999999995
- type: ndcg_at_3
value: 54.935
- type: ndcg_at_5
value: 59.379000000000005
- type: precision_at_1
value: 38.478
- type: precision_at_10
value: 8.933
- type: precision_at_100
value: 0.893
- type: precision_at_1000
value: 0.089
- type: precision_at_3
value: 22.214
- type: precision_at_5
value: 15.491
- type: recall_at_1
value: 38.478
- type: recall_at_10
value: 89.331
- type: recall_at_100
value: 89.331
- type: recall_at_1000
value: 89.331
- type: recall_at_3
value: 66.643
- type: recall_at_5
value: 77.45400000000001
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 51.67144081472449
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 48.11256154264126
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 67.33801955487878
- type: mrr
value: 80.71549487754474
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 88.1935203751726
- type: cos_sim_spearman
value: 86.35497970498659
- type: euclidean_pearson
value: 85.46910708503744
- type: euclidean_spearman
value: 85.13928935405485
- type: manhattan_pearson
value: 85.68373836333303
- type: manhattan_spearman
value: 85.40013867117746
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 88.46753246753248
- type: f1
value: 88.43006344981134
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 40.86793640310432
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 39.80291334130727
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.421
- type: map_at_10
value: 52.349000000000004
- type: map_at_100
value: 52.349000000000004
- type: map_at_1000
value: 52.349000000000004
- type: map_at_3
value: 48.17
- type: map_at_5
value: 50.432
- type: mrr_at_1
value: 47.353
- type: mrr_at_10
value: 58.387
- type: mrr_at_100
value: 58.387
- type: mrr_at_1000
value: 58.387
- type: mrr_at_3
value: 56.199
- type: mrr_at_5
value: 57.487
- type: ndcg_at_1
value: 47.353
- type: ndcg_at_10
value: 59.202
- type: ndcg_at_100
value: 58.848
- type: ndcg_at_1000
value: 58.831999999999994
- type: ndcg_at_3
value: 54.112
- type: ndcg_at_5
value: 56.312
- type: precision_at_1
value: 47.353
- type: precision_at_10
value: 11.459
- type: precision_at_100
value: 1.146
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 26.133
- type: precision_at_5
value: 18.627
- type: recall_at_1
value: 38.421
- type: recall_at_10
value: 71.89
- type: recall_at_100
value: 71.89
- type: recall_at_1000
value: 71.89
- type: recall_at_3
value: 56.58
- type: recall_at_5
value: 63.125
- type: map_at_1
value: 38.025999999999996
- type: map_at_10
value: 50.590999999999994
- type: map_at_100
value: 51.99700000000001
- type: map_at_1000
value: 52.11599999999999
- type: map_at_3
value: 47.435
- type: map_at_5
value: 49.236000000000004
- type: mrr_at_1
value: 48.28
- type: mrr_at_10
value: 56.814
- type: mrr_at_100
value: 57.446
- type: mrr_at_1000
value: 57.476000000000006
- type: mrr_at_3
value: 54.958
- type: mrr_at_5
value: 56.084999999999994
- type: ndcg_at_1
value: 48.28
- type: ndcg_at_10
value: 56.442
- type: ndcg_at_100
value: 60.651999999999994
- type: ndcg_at_1000
value: 62.187000000000005
- type: ndcg_at_3
value: 52.866
- type: ndcg_at_5
value: 54.515
- type: precision_at_1
value: 48.28
- type: precision_at_10
value: 10.586
- type: precision_at_100
value: 1.6310000000000002
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_3
value: 25.945
- type: precision_at_5
value: 18.076
- type: recall_at_1
value: 38.025999999999996
- type: recall_at_10
value: 66.11399999999999
- type: recall_at_100
value: 83.339
- type: recall_at_1000
value: 92.413
- type: recall_at_3
value: 54.493
- type: recall_at_5
value: 59.64699999999999
- type: map_at_1
value: 47.905
- type: map_at_10
value: 61.58
- type: map_at_100
value: 62.605
- type: map_at_1000
value: 62.637
- type: map_at_3
value: 58.074000000000005
- type: map_at_5
value: 60.260000000000005
- type: mrr_at_1
value: 54.42
- type: mrr_at_10
value: 64.847
- type: mrr_at_100
value: 65.403
- type: mrr_at_1000
value: 65.41900000000001
- type: mrr_at_3
value: 62.675000000000004
- type: mrr_at_5
value: 64.101
- type: ndcg_at_1
value: 54.42
- type: ndcg_at_10
value: 67.394
- type: ndcg_at_100
value: 70.846
- type: ndcg_at_1000
value: 71.403
- type: ndcg_at_3
value: 62.025
- type: ndcg_at_5
value: 65.032
- type: precision_at_1
value: 54.42
- type: precision_at_10
value: 10.646
- type: precision_at_100
value: 1.325
- type: precision_at_1000
value: 0.13999999999999999
- type: precision_at_3
value: 27.398
- type: precision_at_5
value: 18.796
- type: recall_at_1
value: 47.905
- type: recall_at_10
value: 80.84599999999999
- type: recall_at_100
value: 95.078
- type: recall_at_1000
value: 98.878
- type: recall_at_3
value: 67.05600000000001
- type: recall_at_5
value: 74.261
- type: map_at_1
value: 30.745
- type: map_at_10
value: 41.021
- type: map_at_100
value: 41.021
- type: map_at_1000
value: 41.021
- type: map_at_3
value: 37.714999999999996
- type: map_at_5
value: 39.766
- type: mrr_at_1
value: 33.559
- type: mrr_at_10
value: 43.537
- type: mrr_at_100
value: 43.537
- type: mrr_at_1000
value: 43.537
- type: mrr_at_3
value: 40.546
- type: mrr_at_5
value: 42.439
- type: ndcg_at_1
value: 33.559
- type: ndcg_at_10
value: 46.781
- type: ndcg_at_100
value: 46.781
- type: ndcg_at_1000
value: 46.781
- type: ndcg_at_3
value: 40.516000000000005
- type: ndcg_at_5
value: 43.957
- type: precision_at_1
value: 33.559
- type: precision_at_10
value: 7.198
- type: precision_at_100
value: 0.72
- type: precision_at_1000
value: 0.07200000000000001
- type: precision_at_3
value: 17.1
- type: precision_at_5
value: 12.316
- type: recall_at_1
value: 30.745
- type: recall_at_10
value: 62.038000000000004
- type: recall_at_100
value: 62.038000000000004
- type: recall_at_1000
value: 62.038000000000004
- type: recall_at_3
value: 45.378
- type: recall_at_5
value: 53.580000000000005
- type: map_at_1
value: 19.637999999999998
- type: map_at_10
value: 31.05
- type: map_at_100
value: 31.05
- type: map_at_1000
value: 31.05
- type: map_at_3
value: 27.628000000000004
- type: map_at_5
value: 29.767
- type: mrr_at_1
value: 25
- type: mrr_at_10
value: 36.131
- type: mrr_at_100
value: 36.131
- type: mrr_at_1000
value: 36.131
- type: mrr_at_3
value: 33.333
- type: mrr_at_5
value: 35.143
- type: ndcg_at_1
value: 25
- type: ndcg_at_10
value: 37.478
- type: ndcg_at_100
value: 37.469
- type: ndcg_at_1000
value: 37.469
- type: ndcg_at_3
value: 31.757999999999996
- type: ndcg_at_5
value: 34.821999999999996
- type: precision_at_1
value: 25
- type: precision_at_10
value: 7.188999999999999
- type: precision_at_100
value: 0.719
- type: precision_at_1000
value: 0.07200000000000001
- type: precision_at_3
value: 15.837000000000002
- type: precision_at_5
value: 11.841
- type: recall_at_1
value: 19.637999999999998
- type: recall_at_10
value: 51.836000000000006
- type: recall_at_100
value: 51.836000000000006
- type: recall_at_1000
value: 51.836000000000006
- type: recall_at_3
value: 36.384
- type: recall_at_5
value: 43.964
- type: map_at_1
value: 34.884
- type: map_at_10
value: 47.88
- type: map_at_100
value: 47.88
- type: map_at_1000
value: 47.88
- type: map_at_3
value: 43.85
- type: map_at_5
value: 46.414
- type: mrr_at_1
value: 43.022
- type: mrr_at_10
value: 53.569
- type: mrr_at_100
value: 53.569
- type: mrr_at_1000
value: 53.569
- type: mrr_at_3
value: 51.075
- type: mrr_at_5
value: 52.725
- type: ndcg_at_1
value: 43.022
- type: ndcg_at_10
value: 54.461000000000006
- type: ndcg_at_100
value: 54.388000000000005
- type: ndcg_at_1000
value: 54.388000000000005
- type: ndcg_at_3
value: 48.864999999999995
- type: ndcg_at_5
value: 52.032000000000004
- type: precision_at_1
value: 43.022
- type: precision_at_10
value: 9.885
- type: precision_at_100
value: 0.988
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 23.612
- type: precision_at_5
value: 16.997
- type: recall_at_1
value: 34.884
- type: recall_at_10
value: 68.12899999999999
- type: recall_at_100
value: 68.12899999999999
- type: recall_at_1000
value: 68.12899999999999
- type: recall_at_3
value: 52.428
- type: recall_at_5
value: 60.662000000000006
- type: map_at_1
value: 31.588
- type: map_at_10
value: 43.85
- type: map_at_100
value: 45.317
- type: map_at_1000
value: 45.408
- type: map_at_3
value: 39.73
- type: map_at_5
value: 42.122
- type: mrr_at_1
value: 38.927
- type: mrr_at_10
value: 49.582
- type: mrr_at_100
value: 50.39
- type: mrr_at_1000
value: 50.426
- type: mrr_at_3
value: 46.518
- type: mrr_at_5
value: 48.271
- type: ndcg_at_1
value: 38.927
- type: ndcg_at_10
value: 50.605999999999995
- type: ndcg_at_100
value: 56.22200000000001
- type: ndcg_at_1000
value: 57.724
- type: ndcg_at_3
value: 44.232
- type: ndcg_at_5
value: 47.233999999999995
- type: precision_at_1
value: 38.927
- type: precision_at_10
value: 9.429
- type: precision_at_100
value: 1.435
- type: precision_at_1000
value: 0.172
- type: precision_at_3
value: 21.271
- type: precision_at_5
value: 15.434000000000001
- type: recall_at_1
value: 31.588
- type: recall_at_10
value: 64.836
- type: recall_at_100
value: 88.066
- type: recall_at_1000
value: 97.748
- type: recall_at_3
value: 47.128
- type: recall_at_5
value: 54.954
- type: map_at_1
value: 31.956083333333336
- type: map_at_10
value: 43.33483333333333
- type: map_at_100
value: 44.64883333333333
- type: map_at_1000
value: 44.75
- type: map_at_3
value: 39.87741666666666
- type: map_at_5
value: 41.86766666666667
- type: mrr_at_1
value: 38.06341666666667
- type: mrr_at_10
value: 47.839666666666666
- type: mrr_at_100
value: 48.644000000000005
- type: mrr_at_1000
value: 48.68566666666667
- type: mrr_at_3
value: 45.26358333333334
- type: mrr_at_5
value: 46.790000000000006
- type: ndcg_at_1
value: 38.06341666666667
- type: ndcg_at_10
value: 49.419333333333334
- type: ndcg_at_100
value: 54.50166666666667
- type: ndcg_at_1000
value: 56.161166666666674
- type: ndcg_at_3
value: 43.982416666666666
- type: ndcg_at_5
value: 46.638083333333334
- type: precision_at_1
value: 38.06341666666667
- type: precision_at_10
value: 8.70858333333333
- type: precision_at_100
value: 1.327
- type: precision_at_1000
value: 0.165
- type: precision_at_3
value: 20.37816666666667
- type: precision_at_5
value: 14.516333333333334
- type: recall_at_1
value: 31.956083333333336
- type: recall_at_10
value: 62.69458333333334
- type: recall_at_100
value: 84.46433333333334
- type: recall_at_1000
value: 95.58449999999999
- type: recall_at_3
value: 47.52016666666666
- type: recall_at_5
value: 54.36066666666666
- type: map_at_1
value: 28.912
- type: map_at_10
value: 38.291
- type: map_at_100
value: 39.44
- type: map_at_1000
value: 39.528
- type: map_at_3
value: 35.638
- type: map_at_5
value: 37.218
- type: mrr_at_1
value: 32.822
- type: mrr_at_10
value: 41.661
- type: mrr_at_100
value: 42.546
- type: mrr_at_1000
value: 42.603
- type: mrr_at_3
value: 39.238
- type: mrr_at_5
value: 40.726
- type: ndcg_at_1
value: 32.822
- type: ndcg_at_10
value: 43.373
- type: ndcg_at_100
value: 48.638
- type: ndcg_at_1000
value: 50.654999999999994
- type: ndcg_at_3
value: 38.643
- type: ndcg_at_5
value: 41.126000000000005
- type: precision_at_1
value: 32.822
- type: precision_at_10
value: 6.8709999999999996
- type: precision_at_100
value: 1.032
- type: precision_at_1000
value: 0.128
- type: precision_at_3
value: 16.82
- type: precision_at_5
value: 11.718
- type: recall_at_1
value: 28.912
- type: recall_at_10
value: 55.376999999999995
- type: recall_at_100
value: 79.066
- type: recall_at_1000
value: 93.664
- type: recall_at_3
value: 42.569
- type: recall_at_5
value: 48.719
- type: map_at_1
value: 22.181
- type: map_at_10
value: 31.462
- type: map_at_100
value: 32.73
- type: map_at_1000
value: 32.848
- type: map_at_3
value: 28.57
- type: map_at_5
value: 30.182
- type: mrr_at_1
value: 27.185
- type: mrr_at_10
value: 35.846000000000004
- type: mrr_at_100
value: 36.811
- type: mrr_at_1000
value: 36.873
- type: mrr_at_3
value: 33.437
- type: mrr_at_5
value: 34.813
- type: ndcg_at_1
value: 27.185
- type: ndcg_at_10
value: 36.858000000000004
- type: ndcg_at_100
value: 42.501
- type: ndcg_at_1000
value: 44.945
- type: ndcg_at_3
value: 32.066
- type: ndcg_at_5
value: 34.29
- type: precision_at_1
value: 27.185
- type: precision_at_10
value: 6.752
- type: precision_at_100
value: 1.111
- type: precision_at_1000
value: 0.151
- type: precision_at_3
value: 15.290000000000001
- type: precision_at_5
value: 11.004999999999999
- type: recall_at_1
value: 22.181
- type: recall_at_10
value: 48.513
- type: recall_at_100
value: 73.418
- type: recall_at_1000
value: 90.306
- type: recall_at_3
value: 35.003
- type: recall_at_5
value: 40.876000000000005
- type: map_at_1
value: 33.934999999999995
- type: map_at_10
value: 44.727
- type: map_at_100
value: 44.727
- type: map_at_1000
value: 44.727
- type: map_at_3
value: 40.918
- type: map_at_5
value: 42.961
- type: mrr_at_1
value: 39.646
- type: mrr_at_10
value: 48.898
- type: mrr_at_100
value: 48.898
- type: mrr_at_1000
value: 48.898
- type: mrr_at_3
value: 45.896
- type: mrr_at_5
value: 47.514
- type: ndcg_at_1
value: 39.646
- type: ndcg_at_10
value: 50.817
- type: ndcg_at_100
value: 50.803
- type: ndcg_at_1000
value: 50.803
- type: ndcg_at_3
value: 44.507999999999996
- type: ndcg_at_5
value: 47.259
- type: precision_at_1
value: 39.646
- type: precision_at_10
value: 8.759
- type: precision_at_100
value: 0.876
- type: precision_at_1000
value: 0.08800000000000001
- type: precision_at_3
value: 20.274
- type: precision_at_5
value: 14.366000000000001
- type: recall_at_1
value: 33.934999999999995
- type: recall_at_10
value: 65.037
- type: recall_at_100
value: 65.037
- type: recall_at_1000
value: 65.037
- type: recall_at_3
value: 47.439
- type: recall_at_5
value: 54.567
- type: map_at_1
value: 32.058
- type: map_at_10
value: 43.137
- type: map_at_100
value: 43.137
- type: map_at_1000
value: 43.137
- type: map_at_3
value: 39.882
- type: map_at_5
value: 41.379
- type: mrr_at_1
value: 38.933
- type: mrr_at_10
value: 48.344
- type: mrr_at_100
value: 48.344
- type: mrr_at_1000
value: 48.344
- type: mrr_at_3
value: 45.652
- type: mrr_at_5
value: 46.877
- type: ndcg_at_1
value: 38.933
- type: ndcg_at_10
value: 49.964
- type: ndcg_at_100
value: 49.242000000000004
- type: ndcg_at_1000
value: 49.222
- type: ndcg_at_3
value: 44.605
- type: ndcg_at_5
value: 46.501999999999995
- type: precision_at_1
value: 38.933
- type: precision_at_10
value: 9.427000000000001
- type: precision_at_100
value: 0.943
- type: precision_at_1000
value: 0.094
- type: precision_at_3
value: 20.685000000000002
- type: precision_at_5
value: 14.585
- type: recall_at_1
value: 32.058
- type: recall_at_10
value: 63.074
- type: recall_at_100
value: 63.074
- type: recall_at_1000
value: 63.074
- type: recall_at_3
value: 47.509
- type: recall_at_5
value: 52.455
- type: map_at_1
value: 26.029000000000003
- type: map_at_10
value: 34.646
- type: map_at_100
value: 34.646
- type: map_at_1000
value: 34.646
- type: map_at_3
value: 31.456
- type: map_at_5
value: 33.138
- type: mrr_at_1
value: 28.281
- type: mrr_at_10
value: 36.905
- type: mrr_at_100
value: 36.905
- type: mrr_at_1000
value: 36.905
- type: mrr_at_3
value: 34.011
- type: mrr_at_5
value: 35.638
- type: ndcg_at_1
value: 28.281
- type: ndcg_at_10
value: 40.159
- type: ndcg_at_100
value: 40.159
- type: ndcg_at_1000
value: 40.159
- type: ndcg_at_3
value: 33.995
- type: ndcg_at_5
value: 36.836999999999996
- type: precision_at_1
value: 28.281
- type: precision_at_10
value: 6.358999999999999
- type: precision_at_100
value: 0.636
- type: precision_at_1000
value: 0.064
- type: precision_at_3
value: 14.233
- type: precision_at_5
value: 10.314
- type: recall_at_1
value: 26.029000000000003
- type: recall_at_10
value: 55.08
- type: recall_at_100
value: 55.08
- type: recall_at_1000
value: 55.08
- type: recall_at_3
value: 38.487
- type: recall_at_5
value: 45.308
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 12.842999999999998
- type: map_at_10
value: 22.101000000000003
- type: map_at_100
value: 24.319
- type: map_at_1000
value: 24.51
- type: map_at_3
value: 18.372
- type: map_at_5
value: 20.323
- type: mrr_at_1
value: 27.948
- type: mrr_at_10
value: 40.321
- type: mrr_at_100
value: 41.262
- type: mrr_at_1000
value: 41.297
- type: mrr_at_3
value: 36.558
- type: mrr_at_5
value: 38.824999999999996
- type: ndcg_at_1
value: 27.948
- type: ndcg_at_10
value: 30.906
- type: ndcg_at_100
value: 38.986
- type: ndcg_at_1000
value: 42.136
- type: ndcg_at_3
value: 24.911
- type: ndcg_at_5
value: 27.168999999999997
- type: precision_at_1
value: 27.948
- type: precision_at_10
value: 9.798
- type: precision_at_100
value: 1.8399999999999999
- type: precision_at_1000
value: 0.243
- type: precision_at_3
value: 18.328
- type: precision_at_5
value: 14.502
- type: recall_at_1
value: 12.842999999999998
- type: recall_at_10
value: 37.245
- type: recall_at_100
value: 64.769
- type: recall_at_1000
value: 82.055
- type: recall_at_3
value: 23.159
- type: recall_at_5
value: 29.113
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.934000000000001
- type: map_at_10
value: 21.915000000000003
- type: map_at_100
value: 21.915000000000003
- type: map_at_1000
value: 21.915000000000003
- type: map_at_3
value: 14.623
- type: map_at_5
value: 17.841
- type: mrr_at_1
value: 71.25
- type: mrr_at_10
value: 78.994
- type: mrr_at_100
value: 78.994
- type: mrr_at_1000
value: 78.994
- type: mrr_at_3
value: 77.208
- type: mrr_at_5
value: 78.55799999999999
- type: ndcg_at_1
value: 60.62499999999999
- type: ndcg_at_10
value: 46.604
- type: ndcg_at_100
value: 35.653
- type: ndcg_at_1000
value: 35.531
- type: ndcg_at_3
value: 50.605
- type: ndcg_at_5
value: 48.730000000000004
- type: precision_at_1
value: 71.25
- type: precision_at_10
value: 37.75
- type: precision_at_100
value: 3.775
- type: precision_at_1000
value: 0.377
- type: precision_at_3
value: 54.417
- type: precision_at_5
value: 48.15
- type: recall_at_1
value: 8.934000000000001
- type: recall_at_10
value: 28.471000000000004
- type: recall_at_100
value: 28.471000000000004
- type: recall_at_1000
value: 28.471000000000004
- type: recall_at_3
value: 16.019
- type: recall_at_5
value: 21.410999999999998
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 52.81
- type: f1
value: 47.987573380720114
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 66.81899999999999
- type: map_at_10
value: 78.034
- type: map_at_100
value: 78.034
- type: map_at_1000
value: 78.034
- type: map_at_3
value: 76.43100000000001
- type: map_at_5
value: 77.515
- type: mrr_at_1
value: 71.542
- type: mrr_at_10
value: 81.638
- type: mrr_at_100
value: 81.638
- type: mrr_at_1000
value: 81.638
- type: mrr_at_3
value: 80.403
- type: mrr_at_5
value: 81.256
- type: ndcg_at_1
value: 71.542
- type: ndcg_at_10
value: 82.742
- type: ndcg_at_100
value: 82.741
- type: ndcg_at_1000
value: 82.741
- type: ndcg_at_3
value: 80.039
- type: ndcg_at_5
value: 81.695
- type: precision_at_1
value: 71.542
- type: precision_at_10
value: 10.387
- type: precision_at_100
value: 1.039
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 31.447999999999997
- type: precision_at_5
value: 19.91
- type: recall_at_1
value: 66.81899999999999
- type: recall_at_10
value: 93.372
- type: recall_at_100
value: 93.372
- type: recall_at_1000
value: 93.372
- type: recall_at_3
value: 86.33
- type: recall_at_5
value: 90.347
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.158
- type: map_at_10
value: 52.017
- type: map_at_100
value: 54.259
- type: map_at_1000
value: 54.367
- type: map_at_3
value: 45.738
- type: map_at_5
value: 49.283
- type: mrr_at_1
value: 57.87
- type: mrr_at_10
value: 66.215
- type: mrr_at_100
value: 66.735
- type: mrr_at_1000
value: 66.75
- type: mrr_at_3
value: 64.043
- type: mrr_at_5
value: 65.116
- type: ndcg_at_1
value: 57.87
- type: ndcg_at_10
value: 59.946999999999996
- type: ndcg_at_100
value: 66.31099999999999
- type: ndcg_at_1000
value: 67.75999999999999
- type: ndcg_at_3
value: 55.483000000000004
- type: ndcg_at_5
value: 56.891000000000005
- type: precision_at_1
value: 57.87
- type: precision_at_10
value: 16.497
- type: precision_at_100
value: 2.321
- type: precision_at_1000
value: 0.258
- type: precision_at_3
value: 37.14
- type: precision_at_5
value: 27.067999999999998
- type: recall_at_1
value: 31.158
- type: recall_at_10
value: 67.381
- type: recall_at_100
value: 89.464
- type: recall_at_1000
value: 97.989
- type: recall_at_3
value: 50.553000000000004
- type: recall_at_5
value: 57.824
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 42.073
- type: map_at_10
value: 72.418
- type: map_at_100
value: 73.175
- type: map_at_1000
value: 73.215
- type: map_at_3
value: 68.791
- type: map_at_5
value: 71.19
- type: mrr_at_1
value: 84.146
- type: mrr_at_10
value: 88.994
- type: mrr_at_100
value: 89.116
- type: mrr_at_1000
value: 89.12
- type: mrr_at_3
value: 88.373
- type: mrr_at_5
value: 88.82
- type: ndcg_at_1
value: 84.146
- type: ndcg_at_10
value: 79.404
- type: ndcg_at_100
value: 81.83200000000001
- type: ndcg_at_1000
value: 82.524
- type: ndcg_at_3
value: 74.595
- type: ndcg_at_5
value: 77.474
- type: precision_at_1
value: 84.146
- type: precision_at_10
value: 16.753999999999998
- type: precision_at_100
value: 1.8599999999999999
- type: precision_at_1000
value: 0.19499999999999998
- type: precision_at_3
value: 48.854
- type: precision_at_5
value: 31.579
- type: recall_at_1
value: 42.073
- type: recall_at_10
value: 83.768
- type: recall_at_100
value: 93.018
- type: recall_at_1000
value: 97.481
- type: recall_at_3
value: 73.282
- type: recall_at_5
value: 78.947
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 94.9968
- type: ap
value: 92.93892195862824
- type: f1
value: 94.99327998213761
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.698
- type: map_at_10
value: 34.585
- type: map_at_100
value: 35.782000000000004
- type: map_at_1000
value: 35.825
- type: map_at_3
value: 30.397999999999996
- type: map_at_5
value: 32.72
- type: mrr_at_1
value: 22.192
- type: mrr_at_10
value: 35.085
- type: mrr_at_100
value: 36.218
- type: mrr_at_1000
value: 36.256
- type: mrr_at_3
value: 30.986000000000004
- type: mrr_at_5
value: 33.268
- type: ndcg_at_1
value: 22.192
- type: ndcg_at_10
value: 41.957
- type: ndcg_at_100
value: 47.658
- type: ndcg_at_1000
value: 48.697
- type: ndcg_at_3
value: 33.433
- type: ndcg_at_5
value: 37.551
- type: precision_at_1
value: 22.192
- type: precision_at_10
value: 6.781
- type: precision_at_100
value: 0.963
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 14.365
- type: precision_at_5
value: 10.713000000000001
- type: recall_at_1
value: 21.698
- type: recall_at_10
value: 64.79
- type: recall_at_100
value: 91.071
- type: recall_at_1000
value: 98.883
- type: recall_at_3
value: 41.611
- type: recall_at_5
value: 51.459999999999994
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 96.15823073415413
- type: f1
value: 96.00362034963248
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 87.12722298221614
- type: f1
value: 70.46888967516227
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 80.77673167451245
- type: f1
value: 77.60202561132175
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 82.09145931405514
- type: f1
value: 81.7701921473406
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 36.52153488185864
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 36.80090398444147
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.807141746058605
- type: mrr
value: 32.85025611455029
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.920999999999999
- type: map_at_10
value: 16.049
- type: map_at_100
value: 16.049
- type: map_at_1000
value: 16.049
- type: map_at_3
value: 11.865
- type: map_at_5
value: 13.657
- type: mrr_at_1
value: 53.87
- type: mrr_at_10
value: 62.291
- type: mrr_at_100
value: 62.291
- type: mrr_at_1000
value: 62.291
- type: mrr_at_3
value: 60.681
- type: mrr_at_5
value: 61.61
- type: ndcg_at_1
value: 51.23799999999999
- type: ndcg_at_10
value: 40.892
- type: ndcg_at_100
value: 26.951999999999998
- type: ndcg_at_1000
value: 26.474999999999998
- type: ndcg_at_3
value: 46.821
- type: ndcg_at_5
value: 44.333
- type: precision_at_1
value: 53.251000000000005
- type: precision_at_10
value: 30.124000000000002
- type: precision_at_100
value: 3.012
- type: precision_at_1000
value: 0.301
- type: precision_at_3
value: 43.55
- type: precision_at_5
value: 38.266
- type: recall_at_1
value: 6.920999999999999
- type: recall_at_10
value: 20.852
- type: recall_at_100
value: 20.852
- type: recall_at_1000
value: 20.852
- type: recall_at_3
value: 13.628000000000002
- type: recall_at_5
value: 16.273
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 46.827999999999996
- type: map_at_10
value: 63.434000000000005
- type: map_at_100
value: 63.434000000000005
- type: map_at_1000
value: 63.434000000000005
- type: map_at_3
value: 59.794000000000004
- type: map_at_5
value: 62.08
- type: mrr_at_1
value: 52.288999999999994
- type: mrr_at_10
value: 65.95
- type: mrr_at_100
value: 65.95
- type: mrr_at_1000
value: 65.95
- type: mrr_at_3
value: 63.413
- type: mrr_at_5
value: 65.08
- type: ndcg_at_1
value: 52.288999999999994
- type: ndcg_at_10
value: 70.301
- type: ndcg_at_100
value: 70.301
- type: ndcg_at_1000
value: 70.301
- type: ndcg_at_3
value: 63.979
- type: ndcg_at_5
value: 67.582
- type: precision_at_1
value: 52.288999999999994
- type: precision_at_10
value: 10.576
- type: precision_at_100
value: 1.058
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 28.177000000000003
- type: precision_at_5
value: 19.073
- type: recall_at_1
value: 46.827999999999996
- type: recall_at_10
value: 88.236
- type: recall_at_100
value: 88.236
- type: recall_at_1000
value: 88.236
- type: recall_at_3
value: 72.371
- type: recall_at_5
value: 80.56
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.652
- type: map_at_10
value: 85.953
- type: map_at_100
value: 85.953
- type: map_at_1000
value: 85.953
- type: map_at_3
value: 83.05399999999999
- type: map_at_5
value: 84.89
- type: mrr_at_1
value: 82.42
- type: mrr_at_10
value: 88.473
- type: mrr_at_100
value: 88.473
- type: mrr_at_1000
value: 88.473
- type: mrr_at_3
value: 87.592
- type: mrr_at_5
value: 88.211
- type: ndcg_at_1
value: 82.44
- type: ndcg_at_10
value: 89.467
- type: ndcg_at_100
value: 89.33
- type: ndcg_at_1000
value: 89.33
- type: ndcg_at_3
value: 86.822
- type: ndcg_at_5
value: 88.307
- type: precision_at_1
value: 82.44
- type: precision_at_10
value: 13.616
- type: precision_at_100
value: 1.362
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 38.117000000000004
- type: precision_at_5
value: 25.05
- type: recall_at_1
value: 71.652
- type: recall_at_10
value: 96.224
- type: recall_at_100
value: 96.224
- type: recall_at_1000
value: 96.224
- type: recall_at_3
value: 88.571
- type: recall_at_5
value: 92.812
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 61.295010338050474
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 67.26380819328142
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.683
- type: map_at_10
value: 14.924999999999999
- type: map_at_100
value: 17.532
- type: map_at_1000
value: 17.875
- type: map_at_3
value: 10.392
- type: map_at_5
value: 12.592
- type: mrr_at_1
value: 28.000000000000004
- type: mrr_at_10
value: 39.951
- type: mrr_at_100
value: 41.025
- type: mrr_at_1000
value: 41.056
- type: mrr_at_3
value: 36.317
- type: mrr_at_5
value: 38.412
- type: ndcg_at_1
value: 28.000000000000004
- type: ndcg_at_10
value: 24.410999999999998
- type: ndcg_at_100
value: 33.79
- type: ndcg_at_1000
value: 39.035
- type: ndcg_at_3
value: 22.845
- type: ndcg_at_5
value: 20.080000000000002
- type: precision_at_1
value: 28.000000000000004
- type: precision_at_10
value: 12.790000000000001
- type: precision_at_100
value: 2.633
- type: precision_at_1000
value: 0.388
- type: precision_at_3
value: 21.367
- type: precision_at_5
value: 17.7
- type: recall_at_1
value: 5.683
- type: recall_at_10
value: 25.91
- type: recall_at_100
value: 53.443
- type: recall_at_1000
value: 78.73
- type: recall_at_3
value: 13.003
- type: recall_at_5
value: 17.932000000000002
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.677978681023
- type: cos_sim_spearman
value: 83.13093441058189
- type: euclidean_pearson
value: 83.35535759341572
- type: euclidean_spearman
value: 83.42583744219611
- type: manhattan_pearson
value: 83.2243124045889
- type: manhattan_spearman
value: 83.39801618652632
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 81.68960206569666
- type: cos_sim_spearman
value: 77.3368966488535
- type: euclidean_pearson
value: 77.62828980560303
- type: euclidean_spearman
value: 76.77951481444651
- type: manhattan_pearson
value: 77.88637240839041
- type: manhattan_spearman
value: 77.22157841466188
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.18745821650724
- type: cos_sim_spearman
value: 85.04423285574542
- type: euclidean_pearson
value: 85.46604816931023
- type: euclidean_spearman
value: 85.5230593932974
- type: manhattan_pearson
value: 85.57912805986261
- type: manhattan_spearman
value: 85.65955905111873
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.6715333300355
- type: cos_sim_spearman
value: 82.9058522514908
- type: euclidean_pearson
value: 83.9640357424214
- type: euclidean_spearman
value: 83.60415457472637
- type: manhattan_pearson
value: 84.05621005853469
- type: manhattan_spearman
value: 83.87077724707746
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.82422928098886
- type: cos_sim_spearman
value: 88.12660311894628
- type: euclidean_pearson
value: 87.50974805056555
- type: euclidean_spearman
value: 87.91957275596677
- type: manhattan_pearson
value: 87.74119404878883
- type: manhattan_spearman
value: 88.2808922165719
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.80605838552093
- type: cos_sim_spearman
value: 86.24123388765678
- type: euclidean_pearson
value: 85.32648347339814
- type: euclidean_spearman
value: 85.60046671950158
- type: manhattan_pearson
value: 85.53800168487811
- type: manhattan_spearman
value: 85.89542420480763
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.87540978988132
- type: cos_sim_spearman
value: 90.12715295099461
- type: euclidean_pearson
value: 91.61085993525275
- type: euclidean_spearman
value: 91.31835942311758
- type: manhattan_pearson
value: 91.57500202032934
- type: manhattan_spearman
value: 91.1790925526635
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 69.87136205329556
- type: cos_sim_spearman
value: 68.6253154635078
- type: euclidean_pearson
value: 68.91536015034222
- type: euclidean_spearman
value: 67.63744649352542
- type: manhattan_pearson
value: 69.2000713045275
- type: manhattan_spearman
value: 68.16002901587316
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.21849551039082
- type: cos_sim_spearman
value: 85.6392959372461
- type: euclidean_pearson
value: 85.92050852609488
- type: euclidean_spearman
value: 85.97205649009734
- type: manhattan_pearson
value: 86.1031154802254
- type: manhattan_spearman
value: 86.26791155517466
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 86.83953958636627
- type: mrr
value: 96.71167612344082
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 64.994
- type: map_at_10
value: 74.763
- type: map_at_100
value: 75.127
- type: map_at_1000
value: 75.143
- type: map_at_3
value: 71.824
- type: map_at_5
value: 73.71
- type: mrr_at_1
value: 68.333
- type: mrr_at_10
value: 75.749
- type: mrr_at_100
value: 75.922
- type: mrr_at_1000
value: 75.938
- type: mrr_at_3
value: 73.556
- type: mrr_at_5
value: 74.739
- type: ndcg_at_1
value: 68.333
- type: ndcg_at_10
value: 79.174
- type: ndcg_at_100
value: 80.41
- type: ndcg_at_1000
value: 80.804
- type: ndcg_at_3
value: 74.361
- type: ndcg_at_5
value: 76.861
- type: precision_at_1
value: 68.333
- type: precision_at_10
value: 10.333
- type: precision_at_100
value: 1.0999999999999999
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 28.778
- type: precision_at_5
value: 19.067
- type: recall_at_1
value: 64.994
- type: recall_at_10
value: 91.822
- type: recall_at_100
value: 97
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 78.878
- type: recall_at_5
value: 85.172
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.72079207920792
- type: cos_sim_ap
value: 93.00265215525152
- type: cos_sim_f1
value: 85.06596306068602
- type: cos_sim_precision
value: 90.05586592178771
- type: cos_sim_recall
value: 80.60000000000001
- type: dot_accuracy
value: 99.66039603960397
- type: dot_ap
value: 91.22371407479089
- type: dot_f1
value: 82.34693877551021
- type: dot_precision
value: 84.0625
- type: dot_recall
value: 80.7
- type: euclidean_accuracy
value: 99.71881188118812
- type: euclidean_ap
value: 92.88449963304728
- type: euclidean_f1
value: 85.19480519480518
- type: euclidean_precision
value: 88.64864864864866
- type: euclidean_recall
value: 82
- type: manhattan_accuracy
value: 99.73267326732673
- type: manhattan_ap
value: 93.23055393056883
- type: manhattan_f1
value: 85.88957055214725
- type: manhattan_precision
value: 87.86610878661088
- type: manhattan_recall
value: 84
- type: max_accuracy
value: 99.73267326732673
- type: max_ap
value: 93.23055393056883
- type: max_f1
value: 85.88957055214725
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 77.3305735900358
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 41.32967136540674
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.95514866379359
- type: mrr
value: 56.95423245055598
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.783007208997144
- type: cos_sim_spearman
value: 30.373444721540533
- type: dot_pearson
value: 29.210604111143905
- type: dot_spearman
value: 29.98809758085659
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.234
- type: map_at_10
value: 1.894
- type: map_at_100
value: 1.894
- type: map_at_1000
value: 1.894
- type: map_at_3
value: 0.636
- type: map_at_5
value: 1
- type: mrr_at_1
value: 88
- type: mrr_at_10
value: 93.667
- type: mrr_at_100
value: 93.667
- type: mrr_at_1000
value: 93.667
- type: mrr_at_3
value: 93.667
- type: mrr_at_5
value: 93.667
- type: ndcg_at_1
value: 85
- type: ndcg_at_10
value: 74.798
- type: ndcg_at_100
value: 16.462
- type: ndcg_at_1000
value: 7.0889999999999995
- type: ndcg_at_3
value: 80.754
- type: ndcg_at_5
value: 77.319
- type: precision_at_1
value: 88
- type: precision_at_10
value: 78
- type: precision_at_100
value: 7.8
- type: precision_at_1000
value: 0.7799999999999999
- type: precision_at_3
value: 83.333
- type: precision_at_5
value: 80.80000000000001
- type: recall_at_1
value: 0.234
- type: recall_at_10
value: 2.093
- type: recall_at_100
value: 2.093
- type: recall_at_1000
value: 2.093
- type: recall_at_3
value: 0.662
- type: recall_at_5
value: 1.0739999999999998
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.703
- type: map_at_10
value: 10.866000000000001
- type: map_at_100
value: 10.866000000000001
- type: map_at_1000
value: 10.866000000000001
- type: map_at_3
value: 5.909
- type: map_at_5
value: 7.35
- type: mrr_at_1
value: 36.735
- type: mrr_at_10
value: 53.583000000000006
- type: mrr_at_100
value: 53.583000000000006
- type: mrr_at_1000
value: 53.583000000000006
- type: mrr_at_3
value: 49.32
- type: mrr_at_5
value: 51.769
- type: ndcg_at_1
value: 34.694
- type: ndcg_at_10
value: 27.926000000000002
- type: ndcg_at_100
value: 22.701
- type: ndcg_at_1000
value: 22.701
- type: ndcg_at_3
value: 32.073
- type: ndcg_at_5
value: 28.327999999999996
- type: precision_at_1
value: 36.735
- type: precision_at_10
value: 24.694
- type: precision_at_100
value: 2.469
- type: precision_at_1000
value: 0.247
- type: precision_at_3
value: 31.973000000000003
- type: precision_at_5
value: 26.939
- type: recall_at_1
value: 2.703
- type: recall_at_10
value: 17.702
- type: recall_at_100
value: 17.702
- type: recall_at_1000
value: 17.702
- type: recall_at_3
value: 7.208
- type: recall_at_5
value: 9.748999999999999
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.79960000000001
- type: ap
value: 15.467565415565815
- type: f1
value: 55.28639823443618
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 64.7792869269949
- type: f1
value: 65.08597154774318
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 55.70352297774293
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 88.27561542588067
- type: cos_sim_ap
value: 81.08262141256193
- type: cos_sim_f1
value: 73.82341501361338
- type: cos_sim_precision
value: 72.5720112159062
- type: cos_sim_recall
value: 75.11873350923483
- type: dot_accuracy
value: 86.66030875603504
- type: dot_ap
value: 76.6052349228621
- type: dot_f1
value: 70.13897280966768
- type: dot_precision
value: 64.70457079152732
- type: dot_recall
value: 76.56992084432717
- type: euclidean_accuracy
value: 88.37098408535495
- type: euclidean_ap
value: 81.12515230092113
- type: euclidean_f1
value: 74.10338225909379
- type: euclidean_precision
value: 71.76761433868974
- type: euclidean_recall
value: 76.59630606860158
- type: manhattan_accuracy
value: 88.34118137926924
- type: manhattan_ap
value: 80.95751834536561
- type: manhattan_f1
value: 73.9119496855346
- type: manhattan_precision
value: 70.625
- type: manhattan_recall
value: 77.5197889182058
- type: max_accuracy
value: 88.37098408535495
- type: max_ap
value: 81.12515230092113
- type: max_f1
value: 74.10338225909379
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.79896767182831
- type: cos_sim_ap
value: 87.40071784061065
- type: cos_sim_f1
value: 79.87753144712087
- type: cos_sim_precision
value: 76.67304015296367
- type: cos_sim_recall
value: 83.3615645210964
- type: dot_accuracy
value: 88.95486474948578
- type: dot_ap
value: 86.00227979119943
- type: dot_f1
value: 78.54601474525914
- type: dot_precision
value: 75.00525394045535
- type: dot_recall
value: 82.43763473975977
- type: euclidean_accuracy
value: 89.7892653393876
- type: euclidean_ap
value: 87.42174706480819
- type: euclidean_f1
value: 80.07283321194465
- type: euclidean_precision
value: 75.96738529574351
- type: euclidean_recall
value: 84.6473668001232
- type: manhattan_accuracy
value: 89.8474793340319
- type: manhattan_ap
value: 87.47814292587448
- type: manhattan_f1
value: 80.15461150280949
- type: manhattan_precision
value: 74.88798234468
- type: manhattan_recall
value: 86.21804742839544
- type: max_accuracy
value: 89.8474793340319
- type: max_ap
value: 87.47814292587448
- type: max_f1
value: 80.15461150280949
---
# Model Summary
This is a fork of the [original GritLM model](https://hf.co/GritLM/GritLM-7B). The main difference between this fork and the original model is the name of the architecture used in the config file. The new name is chosen to make it easier to adopt this model in vLLM.
> GritLM is a generative representational instruction tuned language model. It unifies text representation (embedding) and text generation into a single model achieving state-of-the-art performance on both types of tasks.
- **Repository:** [ContextualAI/gritlm](https://github.com/ContextualAI/gritlm)
- **Paper:** https://arxiv.org/abs/2402.09906
- **Logs:** https://wandb.ai/muennighoff/gritlm/runs/0uui712t/overview
- **Script:** https://github.com/ContextualAI/gritlm/blob/main/scripts/training/train_gritlm_7b.sh
| Model | Description |
|-------|-------------|
| [GritLM 7B](https://hf.co/GritLM/GritLM-7B) | Mistral 7B finetuned using GRIT |
| [GritLM 8x7B](https://hf.co/GritLM/GritLM-8x7B) | Mixtral 8x7B finetuned using GRIT |
# Use
The model usage is documented [here](https://github.com/ContextualAI/gritlm?tab=readme-ov-file#inference).
# Citation
```bibtex
@misc{muennighoff2024generative,
title={Generative Representational Instruction Tuning},
author={Niklas Muennighoff and Hongjin Su and Liang Wang and Nan Yang and Furu Wei and Tao Yu and Amanpreet Singh and Douwe Kiela},
year={2024},
eprint={2402.09906},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
"BIOSSES",
"SCIFACT"
] |
johnsnowlabs/JSL-Med-Sft-Llama-3-8B | johnsnowlabs | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-3-8b",
"sft",
"medical",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:finetune:meta-llama/Meta-Llama-3-8B",
"license:cc-by-nc-nd-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-04-22T15:15:04Z" | 2024-04-22T15:31:48+00:00 | 6,854 | 4 | ---
base_model:
- meta-llama/Meta-Llama-3-8B
license: cc-by-nc-nd-4.0
tags:
- llama-3-8b
- sft
- medical
---
# JSL-Med-Sft-Llama-3-8B
[<img src="https://repository-images.githubusercontent.com/104670986/2e728700-ace4-11ea-9cfc-f3e060b25ddf">](http://www.johnsnowlabs.com)
This model is developed by [John Snow Labs](https://www.johnsnowlabs.com/).
This model is available under a [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en) license and must also conform to this [Acceptable Use Policy](https://huggingface.co/johnsnowlabs). If you need to license this model for commercial use, please contact us at [email protected].
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/JSL-Med-Sft-Llama-3-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## 🏆 Evaluation
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc_norm|0.5803|± |0.0067|
| | |none | 0|acc |0.6141|± |0.0057|
| - medmcqa |Yaml |none | 0|acc |0.5752|± |0.0076|
| | |none | 0|acc_norm|0.5752|± |0.0076|
| - medqa_4options |Yaml |none | 0|acc |0.5970|± |0.0138|
| | |none | 0|acc_norm|0.5970|± |0.0138|
| - anatomy (mmlu) | 0|none | 0|acc |0.6963|± |0.0397|
| - clinical_knowledge (mmlu) | 0|none | 0|acc |0.7472|± |0.0267|
| - college_biology (mmlu) | 0|none | 0|acc |0.7847|± |0.0344|
| - college_medicine (mmlu) | 0|none | 0|acc |0.6185|± |0.0370|
| - medical_genetics (mmlu) | 0|none | 0|acc |0.8300|± |0.0378|
| - professional_medicine (mmlu)| 0|none | 0|acc |0.7022|± |0.0278|
| - pubmedqa | 1|none | 0|acc |0.7480|± |0.0194|
|Groups|Version|Filter|n-shot| Metric |Value | |Stderr|
|------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc_norm|0.5803|± |0.0067|
| | |none | 0|acc |0.6141|± |0.0057| | [
"MEDQA",
"PUBMEDQA"
] |
minishlab/potion-base-4M | minishlab | null | [
"model2vec",
"onnx",
"safetensors",
"embeddings",
"static-embeddings",
"mteb",
"sentence-transformers",
"license:mit",
"model-index",
"region:us"
] | "2024-10-29T09:40:20Z" | 2025-01-21T19:12:35+00:00 | 6,850 | 7 | ---
library_name: model2vec
license: mit
tags:
- embeddings
- static-embeddings
- mteb
- sentence-transformers
model-index:
- name: potion-base-4M
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 67.5712143928036
- type: ap
value: 17.612722401291446
- type: ap_weighted
value: 17.612722401291446
- type: f1
value: 55.192880430611815
- type: f1_weighted
value: 73.78539599566238
- type: main_score
value: 67.5712143928036
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 68.38805970149254
- type: ap
value: 29.77595242354233
- type: ap_weighted
value: 29.77595242354233
- type: f1
value: 61.660550379147104
- type: f1_weighted
value: 71.3687043183968
- type: main_score
value: 68.38805970149254
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 71.69602499999999
- type: ap
value: 66.0912235632392
- type: ap_weighted
value: 66.0912235632392
- type: f1
value: 71.42572451950106
- type: f1_weighted
value: 71.42572451950106
- type: main_score
value: 71.69602499999999
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 34.321999999999996
- type: f1
value: 33.685910374348474
- type: f1_weighted
value: 33.68591037434848
- type: main_score
value: 34.321999999999996
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 39.449
- type: map_at_1
value: 19.203
- type: map_at_10
value: 32.068000000000005
- type: map_at_100
value: 33.315
- type: map_at_1000
value: 33.352
- type: map_at_20
value: 32.891
- type: map_at_3
value: 27.916
- type: map_at_5
value: 30.238
- type: mrr_at_1
value: 19.701280227596015
- type: mrr_at_10
value: 32.25501817607077
- type: mrr_at_100
value: 33.50123053139716
- type: mrr_at_1000
value: 33.53792294287078
- type: mrr_at_20
value: 33.08067358539894
- type: mrr_at_3
value: 28.0464675201517
- type: mrr_at_5
value: 30.375770507349387
- type: nauc_map_at_1000_diff1
value: 12.945790446862631
- type: nauc_map_at_1000_max
value: 2.7562298858970746
- type: nauc_map_at_1000_std
value: 6.308808342750878
- type: nauc_map_at_100_diff1
value: 12.950463273991264
- type: nauc_map_at_100_max
value: 2.791124689377845
- type: nauc_map_at_100_std
value: 6.355349751721058
- type: nauc_map_at_10_diff1
value: 12.520099598532141
- type: nauc_map_at_10_max
value: 2.4000545594181673
- type: nauc_map_at_10_std
value: 6.104620938201642
- type: nauc_map_at_1_diff1
value: 15.41697878849924
- type: nauc_map_at_1_max
value: 0.06798318069793197
- type: nauc_map_at_1_std
value: 2.287679644950582
- type: nauc_map_at_20_diff1
value: 12.955778688664418
- type: nauc_map_at_20_max
value: 2.868790975264444
- type: nauc_map_at_20_std
value: 6.391194651176906
- type: nauc_map_at_3_diff1
value: 13.201122451167164
- type: nauc_map_at_3_max
value: 1.88922966188281
- type: nauc_map_at_3_std
value: 4.49834374299309
- type: nauc_map_at_5_diff1
value: 12.823675090212786
- type: nauc_map_at_5_max
value: 1.7834104088257399
- type: nauc_map_at_5_std
value: 5.065324239535852
- type: nauc_mrr_at_1000_diff1
value: 11.326932411816648
- type: nauc_mrr_at_1000_max
value: 2.1073908479584578
- type: nauc_mrr_at_1000_std
value: 6.263379081100884
- type: nauc_mrr_at_100_diff1
value: 11.333524099616422
- type: nauc_mrr_at_100_max
value: 2.142759269416129
- type: nauc_mrr_at_100_std
value: 6.309554100448871
- type: nauc_mrr_at_10_diff1
value: 10.948665635179944
- type: nauc_mrr_at_10_max
value: 1.7458485198283498
- type: nauc_mrr_at_10_std
value: 6.054483809416018
- type: nauc_mrr_at_1_diff1
value: 13.365599306041101
- type: nauc_mrr_at_1_max
value: 0.10132975428191564
- type: nauc_mrr_at_1_std
value: 2.3692857303611032
- type: nauc_mrr_at_20_diff1
value: 11.362849419180831
- type: nauc_mrr_at_20_max
value: 2.2368929793175263
- type: nauc_mrr_at_20_std
value: 6.342198336503448
- type: nauc_mrr_at_3_diff1
value: 11.501128611140333
- type: nauc_mrr_at_3_max
value: 1.0918091675463633
- type: nauc_mrr_at_3_std
value: 4.31343316721122
- type: nauc_mrr_at_5_diff1
value: 11.066202871817653
- type: nauc_mrr_at_5_max
value: 0.9506044147251881
- type: nauc_mrr_at_5_std
value: 5.079518879246342
- type: nauc_ndcg_at_1000_diff1
value: 12.927162083028898
- type: nauc_ndcg_at_1000_max
value: 4.360655362716004
- type: nauc_ndcg_at_1000_std
value: 8.410996652509247
- type: nauc_ndcg_at_100_diff1
value: 13.058208468182912
- type: nauc_ndcg_at_100_max
value: 5.462308667986846
- type: nauc_ndcg_at_100_std
value: 9.825403964300818
- type: nauc_ndcg_at_10_diff1
value: 11.612557086246108
- type: nauc_ndcg_at_10_max
value: 4.101264941720262
- type: nauc_ndcg_at_10_std
value: 8.829257094057274
- type: nauc_ndcg_at_1_diff1
value: 15.41697878849924
- type: nauc_ndcg_at_1_max
value: 0.06798318069793197
- type: nauc_ndcg_at_1_std
value: 2.287679644950582
- type: nauc_ndcg_at_20_diff1
value: 13.311704630454063
- type: nauc_ndcg_at_20_max
value: 6.006804756561238
- type: nauc_ndcg_at_20_std
value: 10.007008078971948
- type: nauc_ndcg_at_3_diff1
value: 12.989623337852278
- type: nauc_ndcg_at_3_max
value: 2.708080727538749
- type: nauc_ndcg_at_3_std
value: 5.190385461099005
- type: nauc_ndcg_at_5_diff1
value: 12.324781485912697
- type: nauc_ndcg_at_5_max
value: 2.5703939367879904
- type: nauc_ndcg_at_5_std
value: 6.312549457167382
- type: nauc_precision_at_1000_diff1
value: 15.719224058263089
- type: nauc_precision_at_1000_max
value: 38.39806367915726
- type: nauc_precision_at_1000_std
value: 59.476183642948556
- type: nauc_precision_at_100_diff1
value: 16.09148045706227
- type: nauc_precision_at_100_max
value: 35.51651818510163
- type: nauc_precision_at_100_std
value: 48.94915670796286
- type: nauc_precision_at_10_diff1
value: 8.649466288211341
- type: nauc_precision_at_10_max
value: 9.98754064777929
- type: nauc_precision_at_10_std
value: 18.337504631774866
- type: nauc_precision_at_1_diff1
value: 15.41697878849924
- type: nauc_precision_at_1_max
value: 0.06798318069793197
- type: nauc_precision_at_1_std
value: 2.287679644950582
- type: nauc_precision_at_20_diff1
value: 16.643675133736345
- type: nauc_precision_at_20_max
value: 21.841551146673815
- type: nauc_precision_at_20_std
value: 27.39523828734291
- type: nauc_precision_at_3_diff1
value: 12.562160662569264
- type: nauc_precision_at_3_max
value: 4.884608119320729
- type: nauc_precision_at_3_std
value: 6.97802947416861
- type: nauc_precision_at_5_diff1
value: 11.050717696142218
- type: nauc_precision_at_5_max
value: 4.718154851488971
- type: nauc_precision_at_5_std
value: 9.813084435699531
- type: nauc_recall_at_1000_diff1
value: 15.719224058264036
- type: nauc_recall_at_1000_max
value: 38.39806367915738
- type: nauc_recall_at_1000_std
value: 59.47618364294785
- type: nauc_recall_at_100_diff1
value: 16.091480457062136
- type: nauc_recall_at_100_max
value: 35.51651818510153
- type: nauc_recall_at_100_std
value: 48.949156707963105
- type: nauc_recall_at_10_diff1
value: 8.649466288211405
- type: nauc_recall_at_10_max
value: 9.987540647779353
- type: nauc_recall_at_10_std
value: 18.337504631774873
- type: nauc_recall_at_1_diff1
value: 15.41697878849924
- type: nauc_recall_at_1_max
value: 0.06798318069793197
- type: nauc_recall_at_1_std
value: 2.287679644950582
- type: nauc_recall_at_20_diff1
value: 16.643675133736263
- type: nauc_recall_at_20_max
value: 21.841551146673865
- type: nauc_recall_at_20_std
value: 27.39523828734288
- type: nauc_recall_at_3_diff1
value: 12.56216066256926
- type: nauc_recall_at_3_max
value: 4.884608119320747
- type: nauc_recall_at_3_std
value: 6.978029474168629
- type: nauc_recall_at_5_diff1
value: 11.05071769614224
- type: nauc_recall_at_5_max
value: 4.718154851488988
- type: nauc_recall_at_5_std
value: 9.81308443569954
- type: ndcg_at_1
value: 19.203
- type: ndcg_at_10
value: 39.449
- type: ndcg_at_100
value: 45.461
- type: ndcg_at_1000
value: 46.438
- type: ndcg_at_20
value: 42.473
- type: ndcg_at_3
value: 30.824
- type: ndcg_at_5
value: 35.010999999999996
- type: precision_at_1
value: 19.203
- type: precision_at_10
value: 6.315999999999999
- type: precision_at_100
value: 0.911
- type: precision_at_1000
value: 0.099
- type: precision_at_20
value: 3.759
- type: precision_at_3
value: 13.086999999999998
- type: precision_at_5
value: 9.886000000000001
- type: recall_at_1
value: 19.203
- type: recall_at_10
value: 63.158
- type: recall_at_100
value: 91.11
- type: recall_at_1000
value: 98.791
- type: recall_at_20
value: 75.178
- type: recall_at_3
value: 39.26
- type: recall_at_5
value: 49.431000000000004
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: main_score
value: 34.19332453253303
- type: v_measure
value: 34.19332453253303
- type: v_measure_std
value: 14.189152053888938
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: main_score
value: 24.104443846867934
- type: v_measure
value: 24.104443846867934
- type: v_measure_std
value: 15.164667270049211
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 53.803562861722696
- type: map
value: 53.803562861722696
- type: mrr
value: 67.899683419074
- type: nAUC_map_diff1
value: 5.929761636502396
- type: nAUC_map_max
value: 16.36818121973646
- type: nAUC_map_std
value: 3.3645669952351964
- type: nAUC_mrr_diff1
value: 10.961094805507717
- type: nAUC_mrr_max
value: 21.221447117685774
- type: nAUC_mrr_std
value: 5.470983299654257
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 75.18540989714172
- type: cosine_spearman
value: 71.87392685280749
- type: euclidean_pearson
value: 73.96944357814664
- type: euclidean_spearman
value: 71.87392685280749
- type: main_score
value: 71.87392685280749
- type: manhattan_pearson
value: 74.08100378291418
- type: manhattan_spearman
value: 72.19080154289176
- type: pearson
value: 75.18540989714172
- type: spearman
value: 71.87392685280749
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 69.69480519480518
- type: f1
value: 68.4951487448326
- type: f1_weighted
value: 68.4951487448326
- type: main_score
value: 69.69480519480518
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: main_score
value: 29.09840292638104
- type: v_measure
value: 29.09840292638104
- type: v_measure_std
value: 0.8130265845858159
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: main_score
value: 18.622216350398414
- type: v_measure
value: 18.622216350398414
- type: v_measure_std
value: 0.6293204014994399
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: main_score
value: 28.634999999999998
- type: map_at_1
value: 17.152
- type: map_at_10
value: 23.895
- type: map_at_100
value: 25.091
- type: map_at_1000
value: 25.25
- type: map_at_20
value: 24.572
- type: map_at_3
value: 21.568
- type: map_at_5
value: 22.704
- type: mrr_at_1
value: 22.317596566523605
- type: mrr_at_10
value: 29.185627994640857
- type: mrr_at_100
value: 30.128435629032374
- type: mrr_at_1000
value: 30.21421740576337
- type: mrr_at_20
value: 29.74474169170152
- type: mrr_at_3
value: 27.014783023366718
- type: mrr_at_5
value: 28.130662851692893
- type: nauc_map_at_1000_diff1
value: 45.49079878739815
- type: nauc_map_at_1000_max
value: 29.534546072029517
- type: nauc_map_at_1000_std
value: -0.5089249190300318
- type: nauc_map_at_100_diff1
value: 45.49759783576997
- type: nauc_map_at_100_max
value: 29.544604885435792
- type: nauc_map_at_100_std
value: -0.5179655931207162
- type: nauc_map_at_10_diff1
value: 45.976510563301666
- type: nauc_map_at_10_max
value: 29.21402423851111
- type: nauc_map_at_10_std
value: -1.0085014148488038
- type: nauc_map_at_1_diff1
value: 52.75741998819541
- type: nauc_map_at_1_max
value: 29.368585078235753
- type: nauc_map_at_1_std
value: -3.5815403185371486
- type: nauc_map_at_20_diff1
value: 45.506002175670076
- type: nauc_map_at_20_max
value: 29.423435660254604
- type: nauc_map_at_20_std
value: -0.9287391587149738
- type: nauc_map_at_3_diff1
value: 47.81373253580316
- type: nauc_map_at_3_max
value: 29.081148421629916
- type: nauc_map_at_3_std
value: -2.7629811812032585
- type: nauc_map_at_5_diff1
value: 46.55185813784054
- type: nauc_map_at_5_max
value: 28.961901421879467
- type: nauc_map_at_5_std
value: -1.937601506223827
- type: nauc_mrr_at_1000_diff1
value: 43.614839323060764
- type: nauc_mrr_at_1000_max
value: 30.960425002935082
- type: nauc_mrr_at_1000_std
value: -0.5398301648022389
- type: nauc_mrr_at_100_diff1
value: 43.59654297191633
- type: nauc_mrr_at_100_max
value: 30.94533105496734
- type: nauc_mrr_at_100_std
value: -0.49784542963130296
- type: nauc_mrr_at_10_diff1
value: 43.81685974405299
- type: nauc_mrr_at_10_max
value: 31.028568038527926
- type: nauc_mrr_at_10_std
value: -0.8292434904346165
- type: nauc_mrr_at_1_diff1
value: 49.9370433271119
- type: nauc_mrr_at_1_max
value: 33.134285195236465
- type: nauc_mrr_at_1_std
value: -2.7356567659695012
- type: nauc_mrr_at_20_diff1
value: 43.584578326941525
- type: nauc_mrr_at_20_max
value: 31.0127925760322
- type: nauc_mrr_at_20_std
value: -0.8000020821062815
- type: nauc_mrr_at_3_diff1
value: 45.11476358733441
- type: nauc_mrr_at_3_max
value: 31.409901055954027
- type: nauc_mrr_at_3_std
value: -2.676967528841609
- type: nauc_mrr_at_5_diff1
value: 44.16805851271991
- type: nauc_mrr_at_5_max
value: 30.88527971859746
- type: nauc_mrr_at_5_std
value: -1.726462045900353
- type: nauc_ndcg_at_1000_diff1
value: 41.77717839292474
- type: nauc_ndcg_at_1000_max
value: 29.996487458093927
- type: nauc_ndcg_at_1000_std
value: 3.8581103831063466
- type: nauc_ndcg_at_100_diff1
value: 41.54727934976656
- type: nauc_ndcg_at_100_max
value: 29.71085105251084
- type: nauc_ndcg_at_100_std
value: 4.118793757322192
- type: nauc_ndcg_at_10_diff1
value: 42.71626918562738
- type: nauc_ndcg_at_10_max
value: 29.12514000395598
- type: nauc_ndcg_at_10_std
value: 0.9327538498100547
- type: nauc_ndcg_at_1_diff1
value: 49.9370433271119
- type: nauc_ndcg_at_1_max
value: 33.134285195236465
- type: nauc_ndcg_at_1_std
value: -2.7356567659695012
- type: nauc_ndcg_at_20_diff1
value: 41.71058666775361
- type: nauc_ndcg_at_20_max
value: 29.2397176902118
- type: nauc_ndcg_at_20_std
value: 1.1399320166488158
- type: nauc_ndcg_at_3_diff1
value: 44.328171353087356
- type: nauc_ndcg_at_3_max
value: 29.225950057257126
- type: nauc_ndcg_at_3_std
value: -1.9391744610181159
- type: nauc_ndcg_at_5_diff1
value: 43.074003557819154
- type: nauc_ndcg_at_5_max
value: 28.686726626031327
- type: nauc_ndcg_at_5_std
value: -0.9025430391878352
- type: nauc_precision_at_1000_diff1
value: 0.019262094978555112
- type: nauc_precision_at_1000_max
value: 1.4280147129801406
- type: nauc_precision_at_1000_std
value: 5.237394137713056
- type: nauc_precision_at_100_diff1
value: 9.734198894095327
- type: nauc_precision_at_100_max
value: 17.994270805040287
- type: nauc_precision_at_100_std
value: 10.816224870855196
- type: nauc_precision_at_10_diff1
value: 24.273335995399528
- type: nauc_precision_at_10_max
value: 25.012150937872573
- type: nauc_precision_at_10_std
value: 5.706335599631678
- type: nauc_precision_at_1_diff1
value: 49.9370433271119
- type: nauc_precision_at_1_max
value: 33.134285195236465
- type: nauc_precision_at_1_std
value: -2.7356567659695012
- type: nauc_precision_at_20_diff1
value: 18.199627802448852
- type: nauc_precision_at_20_max
value: 24.55969777615955
- type: nauc_precision_at_20_std
value: 5.528931520512831
- type: nauc_precision_at_3_diff1
value: 35.21809033465108
- type: nauc_precision_at_3_max
value: 28.81285998763693
- type: nauc_precision_at_3_std
value: -1.3820729819891873
- type: nauc_precision_at_5_diff1
value: 28.964838568128283
- type: nauc_precision_at_5_max
value: 27.919889820702092
- type: nauc_precision_at_5_std
value: 0.8326959136541273
- type: nauc_recall_at_1000_diff1
value: 21.23258255267272
- type: nauc_recall_at_1000_max
value: 30.758022399262604
- type: nauc_recall_at_1000_std
value: 40.400857317855966
- type: nauc_recall_at_100_diff1
value: 27.045466279262133
- type: nauc_recall_at_100_max
value: 26.471211331500676
- type: nauc_recall_at_100_std
value: 22.702444466758195
- type: nauc_recall_at_10_diff1
value: 33.65302461303574
- type: nauc_recall_at_10_max
value: 25.612926968693827
- type: nauc_recall_at_10_std
value: 6.310778309941729
- type: nauc_recall_at_1_diff1
value: 52.75741998819541
- type: nauc_recall_at_1_max
value: 29.368585078235753
- type: nauc_recall_at_1_std
value: -3.5815403185371486
- type: nauc_recall_at_20_diff1
value: 29.16482990269768
- type: nauc_recall_at_20_max
value: 24.902713129283242
- type: nauc_recall_at_20_std
value: 6.842748407870703
- type: nauc_recall_at_3_diff1
value: 40.48285894994969
- type: nauc_recall_at_3_max
value: 25.25195012757927
- type: nauc_recall_at_3_std
value: -1.923836712152538
- type: nauc_recall_at_5_diff1
value: 35.61485776280015
- type: nauc_recall_at_5_max
value: 23.60803593241084
- type: nauc_recall_at_5_std
value: 1.2754180362185552
- type: ndcg_at_1
value: 22.317999999999998
- type: ndcg_at_10
value: 28.634999999999998
- type: ndcg_at_100
value: 33.954
- type: ndcg_at_1000
value: 37.467
- type: ndcg_at_20
value: 30.75
- type: ndcg_at_3
value: 24.956
- type: ndcg_at_5
value: 26.308
- type: precision_at_1
value: 22.317999999999998
- type: precision_at_10
value: 5.651
- type: precision_at_100
value: 1.039
- type: precision_at_1000
value: 0.166
- type: precision_at_20
value: 3.4979999999999998
- type: precision_at_3
value: 12.256
- type: precision_at_5
value: 8.755
- type: recall_at_1
value: 17.152
- type: recall_at_10
value: 37.447
- type: recall_at_100
value: 60.699000000000005
- type: recall_at_1000
value: 85.014
- type: recall_at_20
value: 45.405
- type: recall_at_3
value: 26.143
- type: recall_at_5
value: 30.441000000000003
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: main_score
value: 23.933
- type: map_at_1
value: 15.534999999999998
- type: map_at_10
value: 20.494
- type: map_at_100
value: 21.234
- type: map_at_1000
value: 21.346999999999998
- type: map_at_20
value: 20.842
- type: map_at_3
value: 18.716
- type: map_at_5
value: 19.694
- type: mrr_at_1
value: 18.85350318471338
- type: mrr_at_10
value: 23.976417955717306
- type: mrr_at_100
value: 24.626250491278405
- type: mrr_at_1000
value: 24.699274897180697
- type: mrr_at_20
value: 24.31440451029886
- type: mrr_at_3
value: 22.218683651804664
- type: mrr_at_5
value: 23.209129511677258
- type: nauc_map_at_1000_diff1
value: 37.74002837588212
- type: nauc_map_at_1000_max
value: 11.52596069444164
- type: nauc_map_at_1000_std
value: 1.5396386499345946
- type: nauc_map_at_100_diff1
value: 37.769383414720515
- type: nauc_map_at_100_max
value: 11.472584783973845
- type: nauc_map_at_100_std
value: 1.4530341264663071
- type: nauc_map_at_10_diff1
value: 38.14778408943225
- type: nauc_map_at_10_max
value: 11.457324548618868
- type: nauc_map_at_10_std
value: 0.8673572005420617
- type: nauc_map_at_1_diff1
value: 45.248945131354226
- type: nauc_map_at_1_max
value: 13.305886052642421
- type: nauc_map_at_1_std
value: -0.8554239133186292
- type: nauc_map_at_20_diff1
value: 37.94962093945997
- type: nauc_map_at_20_max
value: 11.368934419724535
- type: nauc_map_at_20_std
value: 1.176488837859526
- type: nauc_map_at_3_diff1
value: 38.816860264330906
- type: nauc_map_at_3_max
value: 12.244663804798567
- type: nauc_map_at_3_std
value: -0.7044706920393753
- type: nauc_map_at_5_diff1
value: 38.20664251362074
- type: nauc_map_at_5_max
value: 11.58930422846952
- type: nauc_map_at_5_std
value: 0.24788040735166877
- type: nauc_mrr_at_1000_diff1
value: 36.01366865176011
- type: nauc_mrr_at_1000_max
value: 12.692732314206609
- type: nauc_mrr_at_1000_std
value: 3.24063469677308
- type: nauc_mrr_at_100_diff1
value: 36.01759994326736
- type: nauc_mrr_at_100_max
value: 12.688310838686673
- type: nauc_mrr_at_100_std
value: 3.243753049954808
- type: nauc_mrr_at_10_diff1
value: 36.27391277272198
- type: nauc_mrr_at_10_max
value: 12.668653023640713
- type: nauc_mrr_at_10_std
value: 2.9800614398297265
- type: nauc_mrr_at_1_diff1
value: 42.03008021102266
- type: nauc_mrr_at_1_max
value: 15.464219677345653
- type: nauc_mrr_at_1_std
value: 1.9384689651010967
- type: nauc_mrr_at_20_diff1
value: 36.081487674680965
- type: nauc_mrr_at_20_max
value: 12.63192966261147
- type: nauc_mrr_at_20_std
value: 3.1357738226142096
- type: nauc_mrr_at_3_diff1
value: 36.74126358143279
- type: nauc_mrr_at_3_max
value: 13.486458067334103
- type: nauc_mrr_at_3_std
value: 2.0734773435525886
- type: nauc_mrr_at_5_diff1
value: 36.21555621305363
- type: nauc_mrr_at_5_max
value: 12.776138636129582
- type: nauc_mrr_at_5_std
value: 2.7040718821656418
- type: nauc_ndcg_at_1000_diff1
value: 34.17368469001136
- type: nauc_ndcg_at_1000_max
value: 11.048310100081675
- type: nauc_ndcg_at_1000_std
value: 5.07898838985954
- type: nauc_ndcg_at_100_diff1
value: 34.55833751183066
- type: nauc_ndcg_at_100_max
value: 10.558354467049766
- type: nauc_ndcg_at_100_std
value: 4.549167498357635
- type: nauc_ndcg_at_10_diff1
value: 35.792555836995334
- type: nauc_ndcg_at_10_max
value: 10.462185132989973
- type: nauc_ndcg_at_10_std
value: 2.8477903406821183
- type: nauc_ndcg_at_1_diff1
value: 42.03008021102266
- type: nauc_ndcg_at_1_max
value: 15.464219677345653
- type: nauc_ndcg_at_1_std
value: 1.9384689651010967
- type: nauc_ndcg_at_20_diff1
value: 35.26991472528924
- type: nauc_ndcg_at_20_max
value: 10.069855031533036
- type: nauc_ndcg_at_20_std
value: 3.376655328346143
- type: nauc_ndcg_at_3_diff1
value: 36.37053997114841
- type: nauc_ndcg_at_3_max
value: 12.224505873247024
- type: nauc_ndcg_at_3_std
value: 0.6624194427639196
- type: nauc_ndcg_at_5_diff1
value: 35.70090332699717
- type: nauc_ndcg_at_5_max
value: 10.718660748235513
- type: nauc_ndcg_at_5_std
value: 1.8377187458851245
- type: nauc_precision_at_1000_diff1
value: -4.890564070316116
- type: nauc_precision_at_1000_max
value: 8.308792103010054
- type: nauc_precision_at_1000_std
value: 20.927425655021437
- type: nauc_precision_at_100_diff1
value: 6.781480258638198
- type: nauc_precision_at_100_max
value: 9.14338916106647
- type: nauc_precision_at_100_std
value: 19.5689773619807
- type: nauc_precision_at_10_diff1
value: 22.120003359351454
- type: nauc_precision_at_10_max
value: 9.880724079161961
- type: nauc_precision_at_10_std
value: 11.898292477010239
- type: nauc_precision_at_1_diff1
value: 42.03008021102266
- type: nauc_precision_at_1_max
value: 15.464219677345653
- type: nauc_precision_at_1_std
value: 1.9384689651010967
- type: nauc_precision_at_20_diff1
value: 17.586401294319412
- type: nauc_precision_at_20_max
value: 8.286556086704074
- type: nauc_precision_at_20_std
value: 14.20376727306384
- type: nauc_precision_at_3_diff1
value: 27.877469254113386
- type: nauc_precision_at_3_max
value: 12.208775338231302
- type: nauc_precision_at_3_std
value: 3.874876685435265
- type: nauc_precision_at_5_diff1
value: 24.786024793792617
- type: nauc_precision_at_5_max
value: 10.355536887167844
- type: nauc_precision_at_5_std
value: 8.000371130105563
- type: nauc_recall_at_1000_diff1
value: 21.767117265109228
- type: nauc_recall_at_1000_max
value: 7.388142374547023
- type: nauc_recall_at_1000_std
value: 13.274812043748158
- type: nauc_recall_at_100_diff1
value: 25.468443648444573
- type: nauc_recall_at_100_max
value: 6.331483861859732
- type: nauc_recall_at_100_std
value: 10.596959963008198
- type: nauc_recall_at_10_diff1
value: 30.928988191036368
- type: nauc_recall_at_10_max
value: 6.321847209343759
- type: nauc_recall_at_10_std
value: 4.4911642118461685
- type: nauc_recall_at_1_diff1
value: 45.248945131354226
- type: nauc_recall_at_1_max
value: 13.305886052642421
- type: nauc_recall_at_1_std
value: -0.8554239133186292
- type: nauc_recall_at_20_diff1
value: 28.79337381513034
- type: nauc_recall_at_20_max
value: 5.113928725475475
- type: nauc_recall_at_20_std
value: 6.184413133197319
- type: nauc_recall_at_3_diff1
value: 32.39614504895464
- type: nauc_recall_at_3_max
value: 9.328104228537699
- type: nauc_recall_at_3_std
value: -0.5296736724789125
- type: nauc_recall_at_5_diff1
value: 31.294125355167253
- type: nauc_recall_at_5_max
value: 6.491641210370972
- type: nauc_recall_at_5_std
value: 2.040846304053944
- type: ndcg_at_1
value: 18.854000000000003
- type: ndcg_at_10
value: 23.933
- type: ndcg_at_100
value: 27.593
- type: ndcg_at_1000
value: 30.320000000000004
- type: ndcg_at_20
value: 25.068
- type: ndcg_at_3
value: 20.806
- type: ndcg_at_5
value: 22.216
- type: precision_at_1
value: 18.854000000000003
- type: precision_at_10
value: 4.312
- type: precision_at_100
value: 0.773
- type: precision_at_1000
value: 0.124
- type: precision_at_20
value: 2.557
- type: precision_at_3
value: 9.575
- type: precision_at_5
value: 6.93
- type: recall_at_1
value: 15.534999999999998
- type: recall_at_10
value: 30.865
- type: recall_at_100
value: 47.044999999999995
- type: recall_at_1000
value: 65.706
- type: recall_at_20
value: 35.043
- type: recall_at_3
value: 22.034000000000002
- type: recall_at_5
value: 25.663000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: main_score
value: 35.807
- type: map_at_1
value: 22.628999999999998
- type: map_at_10
value: 31.06
- type: map_at_100
value: 32.124
- type: map_at_1000
value: 32.228
- type: map_at_20
value: 31.714
- type: map_at_3
value: 28.576
- type: map_at_5
value: 30.049999999999997
- type: mrr_at_1
value: 26.332288401253916
- type: mrr_at_10
value: 34.26966711449467
- type: mrr_at_100
value: 35.10307061641104
- type: mrr_at_1000
value: 35.175621663030384
- type: mrr_at_20
value: 34.77207492905975
- type: mrr_at_3
value: 31.985370950888154
- type: mrr_at_5
value: 33.38035527690695
- type: nauc_map_at_1000_diff1
value: 41.26538406776667
- type: nauc_map_at_1000_max
value: 22.089808526173663
- type: nauc_map_at_1000_std
value: -6.82680457634158
- type: nauc_map_at_100_diff1
value: 41.272836431982014
- type: nauc_map_at_100_max
value: 22.06375392023965
- type: nauc_map_at_100_std
value: -6.876803386437694
- type: nauc_map_at_10_diff1
value: 41.427308262702496
- type: nauc_map_at_10_max
value: 21.774850849917172
- type: nauc_map_at_10_std
value: -7.521250762475834
- type: nauc_map_at_1_diff1
value: 47.0682194607475
- type: nauc_map_at_1_max
value: 19.7271244754008
- type: nauc_map_at_1_std
value: -8.387247040771014
- type: nauc_map_at_20_diff1
value: 41.250225334717
- type: nauc_map_at_20_max
value: 21.952825244751704
- type: nauc_map_at_20_std
value: -7.089842060679384
- type: nauc_map_at_3_diff1
value: 42.11071549668694
- type: nauc_map_at_3_max
value: 20.334031983597875
- type: nauc_map_at_3_std
value: -8.655163177779556
- type: nauc_map_at_5_diff1
value: 41.55276805478624
- type: nauc_map_at_5_max
value: 21.341662053429037
- type: nauc_map_at_5_std
value: -8.252224038913697
- type: nauc_mrr_at_1000_diff1
value: 41.1807053561387
- type: nauc_mrr_at_1000_max
value: 24.141034562422607
- type: nauc_mrr_at_1000_std
value: -4.582768753751603
- type: nauc_mrr_at_100_diff1
value: 41.17248963594074
- type: nauc_mrr_at_100_max
value: 24.14923648452245
- type: nauc_mrr_at_100_std
value: -4.586237441845526
- type: nauc_mrr_at_10_diff1
value: 41.29997961211437
- type: nauc_mrr_at_10_max
value: 24.18197800438829
- type: nauc_mrr_at_10_std
value: -4.92059802789352
- type: nauc_mrr_at_1_diff1
value: 47.22202156377031
- type: nauc_mrr_at_1_max
value: 22.81382395299871
- type: nauc_mrr_at_1_std
value: -6.511731680897033
- type: nauc_mrr_at_20_diff1
value: 41.12982414886362
- type: nauc_mrr_at_20_max
value: 24.090339351286172
- type: nauc_mrr_at_20_std
value: -4.714787687162255
- type: nauc_mrr_at_3_diff1
value: 42.03685291338169
- type: nauc_mrr_at_3_max
value: 23.46979265259633
- type: nauc_mrr_at_3_std
value: -5.746637512261208
- type: nauc_mrr_at_5_diff1
value: 41.41305039216194
- type: nauc_mrr_at_5_max
value: 24.000287116591235
- type: nauc_mrr_at_5_std
value: -5.470798244701126
- type: nauc_ndcg_at_1000_diff1
value: 38.894631119522074
- type: nauc_ndcg_at_1000_max
value: 24.067285655689073
- type: nauc_ndcg_at_1000_std
value: -2.6694327561644458
- type: nauc_ndcg_at_100_diff1
value: 38.82244557925009
- type: nauc_ndcg_at_100_max
value: 23.997724699889826
- type: nauc_ndcg_at_100_std
value: -3.0442083060901655
- type: nauc_ndcg_at_10_diff1
value: 39.35732365524711
- type: nauc_ndcg_at_10_max
value: 23.26445091825662
- type: nauc_ndcg_at_10_std
value: -5.702352367922923
- type: nauc_ndcg_at_1_diff1
value: 47.22202156377031
- type: nauc_ndcg_at_1_max
value: 22.81382395299871
- type: nauc_ndcg_at_1_std
value: -6.511731680897033
- type: nauc_ndcg_at_20_diff1
value: 38.71915510942565
- type: nauc_ndcg_at_20_max
value: 23.38127406835881
- type: nauc_ndcg_at_20_std
value: -4.628020864250285
- type: nauc_ndcg_at_3_diff1
value: 40.65241506559219
- type: nauc_ndcg_at_3_max
value: 21.353018199050783
- type: nauc_ndcg_at_3_std
value: -7.621281922991216
- type: nauc_ndcg_at_5_diff1
value: 39.66904523712232
- type: nauc_ndcg_at_5_max
value: 22.62846235537732
- type: nauc_ndcg_at_5_std
value: -7.238655338688719
- type: nauc_precision_at_1000_diff1
value: -0.10674589877264098
- type: nauc_precision_at_1000_max
value: 22.880044900789883
- type: nauc_precision_at_1000_std
value: 25.286841157887324
- type: nauc_precision_at_100_diff1
value: 12.494580543979819
- type: nauc_precision_at_100_max
value: 26.407646479434348
- type: nauc_precision_at_100_std
value: 18.00786656478982
- type: nauc_precision_at_10_diff1
value: 25.425846313220536
- type: nauc_precision_at_10_max
value: 27.282619860852453
- type: nauc_precision_at_10_std
value: 3.254416482888394
- type: nauc_precision_at_1_diff1
value: 47.22202156377031
- type: nauc_precision_at_1_max
value: 22.81382395299871
- type: nauc_precision_at_1_std
value: -6.511731680897033
- type: nauc_precision_at_20_diff1
value: 19.841372822387022
- type: nauc_precision_at_20_max
value: 26.062138234488096
- type: nauc_precision_at_20_std
value: 8.170520123604948
- type: nauc_precision_at_3_diff1
value: 33.490720368183055
- type: nauc_precision_at_3_max
value: 23.698874436209138
- type: nauc_precision_at_3_std
value: -4.247457542736893
- type: nauc_precision_at_5_diff1
value: 29.5800651053398
- type: nauc_precision_at_5_max
value: 26.96711574015605
- type: nauc_precision_at_5_std
value: -1.9260500005639964
- type: nauc_recall_at_1000_diff1
value: 21.07089430236666
- type: nauc_recall_at_1000_max
value: 29.068557444348208
- type: nauc_recall_at_1000_std
value: 29.467514748549682
- type: nauc_recall_at_100_diff1
value: 28.045187225936512
- type: nauc_recall_at_100_max
value: 27.307019737570975
- type: nauc_recall_at_100_std
value: 11.826790191487909
- type: nauc_recall_at_10_diff1
value: 32.50271652049762
- type: nauc_recall_at_10_max
value: 23.973682202148833
- type: nauc_recall_at_10_std
value: -2.840362990837493
- type: nauc_recall_at_1_diff1
value: 47.0682194607475
- type: nauc_recall_at_1_max
value: 19.7271244754008
- type: nauc_recall_at_1_std
value: -8.387247040771014
- type: nauc_recall_at_20_diff1
value: 29.540137183084482
- type: nauc_recall_at_20_max
value: 24.15868254359213
- type: nauc_recall_at_20_std
value: 1.1030187029057643
- type: nauc_recall_at_3_diff1
value: 36.11833942271728
- type: nauc_recall_at_3_max
value: 19.70224872745943
- type: nauc_recall_at_3_std
value: -8.193955960840473
- type: nauc_recall_at_5_diff1
value: 33.6864411204656
- type: nauc_recall_at_5_max
value: 22.29534359351608
- type: nauc_recall_at_5_std
value: -7.198005144877803
- type: ndcg_at_1
value: 26.332
- type: ndcg_at_10
value: 35.807
- type: ndcg_at_100
value: 40.654
- type: ndcg_at_1000
value: 43.19
- type: ndcg_at_20
value: 37.854
- type: ndcg_at_3
value: 31.238
- type: ndcg_at_5
value: 33.6
- type: precision_at_1
value: 26.332
- type: precision_at_10
value: 6.006
- type: precision_at_100
value: 0.922
- type: precision_at_1000
value: 0.122
- type: precision_at_20
value: 3.5520000000000005
- type: precision_at_3
value: 14.19
- type: precision_at_5
value: 10.132
- type: recall_at_1
value: 22.628999999999998
- type: recall_at_10
value: 46.965
- type: recall_at_100
value: 68.748
- type: recall_at_1000
value: 87.428
- type: recall_at_20
value: 54.559999999999995
- type: recall_at_3
value: 34.777
- type: recall_at_5
value: 40.527
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: main_score
value: 17.629
- type: map_at_1
value: 10.38
- type: map_at_10
value: 14.754000000000001
- type: map_at_100
value: 15.426
- type: map_at_1000
value: 15.534999999999998
- type: map_at_20
value: 15.088
- type: map_at_3
value: 13.094
- type: map_at_5
value: 14.05
- type: mrr_at_1
value: 11.299435028248588
- type: mrr_at_10
value: 15.835978835978842
- type: mrr_at_100
value: 16.534237809945086
- type: mrr_at_1000
value: 16.63481660848549
- type: mrr_at_20
value: 16.204438309373508
- type: mrr_at_3
value: 14.105461393596983
- type: mrr_at_5
value: 15.133709981167609
- type: nauc_map_at_1000_diff1
value: 30.813780800275577
- type: nauc_map_at_1000_max
value: 11.782343656250962
- type: nauc_map_at_1000_std
value: -8.450259569210562
- type: nauc_map_at_100_diff1
value: 30.806060913087485
- type: nauc_map_at_100_max
value: 11.766956595713632
- type: nauc_map_at_100_std
value: -8.490982686334714
- type: nauc_map_at_10_diff1
value: 31.036790223331284
- type: nauc_map_at_10_max
value: 11.65928648411015
- type: nauc_map_at_10_std
value: -8.891015250999633
- type: nauc_map_at_1_diff1
value: 40.392118725694296
- type: nauc_map_at_1_max
value: 12.989514645776437
- type: nauc_map_at_1_std
value: -12.754693269346662
- type: nauc_map_at_20_diff1
value: 30.901613440113913
- type: nauc_map_at_20_max
value: 11.746782149315164
- type: nauc_map_at_20_std
value: -8.736689401578923
- type: nauc_map_at_3_diff1
value: 33.20492753741601
- type: nauc_map_at_3_max
value: 12.357131975441227
- type: nauc_map_at_3_std
value: -10.563694590125545
- type: nauc_map_at_5_diff1
value: 32.061276704672686
- type: nauc_map_at_5_max
value: 12.065660289608578
- type: nauc_map_at_5_std
value: -9.627361978016017
- type: nauc_mrr_at_1000_diff1
value: 29.18067582766131
- type: nauc_mrr_at_1000_max
value: 12.945793155078967
- type: nauc_mrr_at_1000_std
value: -7.3265109617304685
- type: nauc_mrr_at_100_diff1
value: 29.163181593347904
- type: nauc_mrr_at_100_max
value: 12.948132882807926
- type: nauc_mrr_at_100_std
value: -7.351935545294857
- type: nauc_mrr_at_10_diff1
value: 29.31938739231278
- type: nauc_mrr_at_10_max
value: 12.806414703000188
- type: nauc_mrr_at_10_std
value: -7.610287140903537
- type: nauc_mrr_at_1_diff1
value: 38.89154503294042
- type: nauc_mrr_at_1_max
value: 14.139403084242247
- type: nauc_mrr_at_1_std
value: -11.312198001697299
- type: nauc_mrr_at_20_diff1
value: 29.194444050920183
- type: nauc_mrr_at_20_max
value: 12.904450862547447
- type: nauc_mrr_at_20_std
value: -7.545415671110467
- type: nauc_mrr_at_3_diff1
value: 31.393025095982384
- type: nauc_mrr_at_3_max
value: 13.446210300659404
- type: nauc_mrr_at_3_std
value: -8.842651857422517
- type: nauc_mrr_at_5_diff1
value: 30.22907968906219
- type: nauc_mrr_at_5_max
value: 13.073366417712586
- type: nauc_mrr_at_5_std
value: -8.226431830427765
- type: nauc_ndcg_at_1000_diff1
value: 26.264947886953237
- type: nauc_ndcg_at_1000_max
value: 11.441384810090252
- type: nauc_ndcg_at_1000_std
value: -4.395454030779977
- type: nauc_ndcg_at_100_diff1
value: 26.0471151899472
- type: nauc_ndcg_at_100_max
value: 11.093079614438034
- type: nauc_ndcg_at_100_std
value: -4.9764023249186655
- type: nauc_ndcg_at_10_diff1
value: 26.90251142153969
- type: nauc_ndcg_at_10_max
value: 10.97337729814191
- type: nauc_ndcg_at_10_std
value: -6.705324064661864
- type: nauc_ndcg_at_1_diff1
value: 38.89154503294042
- type: nauc_ndcg_at_1_max
value: 14.139403084242247
- type: nauc_ndcg_at_1_std
value: -11.312198001697299
- type: nauc_ndcg_at_20_diff1
value: 26.465932737299585
- type: nauc_ndcg_at_20_max
value: 11.089006750559657
- type: nauc_ndcg_at_20_std
value: -6.36961075704304
- type: nauc_ndcg_at_3_diff1
value: 30.565609563262058
- type: nauc_ndcg_at_3_max
value: 12.086090885642179
- type: nauc_ndcg_at_3_std
value: -9.76046084488079
- type: nauc_ndcg_at_5_diff1
value: 28.901329485568876
- type: nauc_ndcg_at_5_max
value: 11.755991552389204
- type: nauc_ndcg_at_5_std
value: -8.214029330866332
- type: nauc_precision_at_1000_diff1
value: 5.893427497520307
- type: nauc_precision_at_1000_max
value: 13.962546949241588
- type: nauc_precision_at_1000_std
value: 11.182186647992918
- type: nauc_precision_at_100_diff1
value: 14.122452287718449
- type: nauc_precision_at_100_max
value: 11.56106074944499
- type: nauc_precision_at_100_std
value: 5.394836213772653
- type: nauc_precision_at_10_diff1
value: 17.44514141046529
- type: nauc_precision_at_10_max
value: 10.595913542289864
- type: nauc_precision_at_10_std
value: -0.20582788920299083
- type: nauc_precision_at_1_diff1
value: 38.89154503294042
- type: nauc_precision_at_1_max
value: 14.139403084242247
- type: nauc_precision_at_1_std
value: -11.312198001697299
- type: nauc_precision_at_20_diff1
value: 16.858817787085904
- type: nauc_precision_at_20_max
value: 10.797716199244915
- type: nauc_precision_at_20_std
value: -0.10821855328410326
- type: nauc_precision_at_3_diff1
value: 24.700655044693608
- type: nauc_precision_at_3_max
value: 13.11860977106586
- type: nauc_precision_at_3_std
value: -7.129190710723354
- type: nauc_precision_at_5_diff1
value: 21.49719563326281
- type: nauc_precision_at_5_max
value: 12.493693151305854
- type: nauc_precision_at_5_std
value: -4.332210627942629
- type: nauc_recall_at_1000_diff1
value: 14.925915862719302
- type: nauc_recall_at_1000_max
value: 8.497504317724683
- type: nauc_recall_at_1000_std
value: 8.781321940759797
- type: nauc_recall_at_100_diff1
value: 15.908339423365408
- type: nauc_recall_at_100_max
value: 7.574805370380677
- type: nauc_recall_at_100_std
value: 2.9546971482740427
- type: nauc_recall_at_10_diff1
value: 18.479088740671163
- type: nauc_recall_at_10_max
value: 8.196706188245905
- type: nauc_recall_at_10_std
value: -2.6997578673469107
- type: nauc_recall_at_1_diff1
value: 40.392118725694296
- type: nauc_recall_at_1_max
value: 12.989514645776437
- type: nauc_recall_at_1_std
value: -12.754693269346662
- type: nauc_recall_at_20_diff1
value: 17.355050199783538
- type: nauc_recall_at_20_max
value: 8.24865474928656
- type: nauc_recall_at_20_std
value: -1.9444165911432059
- type: nauc_recall_at_3_diff1
value: 25.991866279577998
- type: nauc_recall_at_3_max
value: 10.780718288384648
- type: nauc_recall_at_3_std
value: -9.020518000524683
- type: nauc_recall_at_5_diff1
value: 22.825582625970096
- type: nauc_recall_at_5_max
value: 9.895504719395994
- type: nauc_recall_at_5_std
value: -5.958812555760698
- type: ndcg_at_1
value: 11.299
- type: ndcg_at_10
value: 17.629
- type: ndcg_at_100
value: 21.437
- type: ndcg_at_1000
value: 24.599
- type: ndcg_at_20
value: 18.864
- type: ndcg_at_3
value: 14.221
- type: ndcg_at_5
value: 15.950000000000001
- type: precision_at_1
value: 11.299
- type: precision_at_10
value: 2.904
- type: precision_at_100
value: 0.515
- type: precision_at_1000
value: 0.082
- type: precision_at_20
value: 1.7340000000000002
- type: precision_at_3
value: 6.064
- type: precision_at_5
value: 4.61
- type: recall_at_1
value: 10.38
- type: recall_at_10
value: 25.627
- type: recall_at_100
value: 43.95
- type: recall_at_1000
value: 68.49
- type: recall_at_20
value: 30.320000000000004
- type: recall_at_3
value: 16.329
- type: recall_at_5
value: 20.561
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: main_score
value: 11.477
- type: map_at_1
value: 5.978
- type: map_at_10
value: 9.094
- type: map_at_100
value: 9.876
- type: map_at_1000
value: 9.994
- type: map_at_20
value: 9.472
- type: map_at_3
value: 7.939
- type: map_at_5
value: 8.464
- type: mrr_at_1
value: 7.213930348258707
- type: mrr_at_10
value: 11.07784490247177
- type: mrr_at_100
value: 11.899767012693667
- type: mrr_at_1000
value: 11.998411801437172
- type: mrr_at_20
value: 11.508338702856639
- type: mrr_at_3
value: 9.784411276948592
- type: mrr_at_5
value: 10.350331674958541
- type: nauc_map_at_1000_diff1
value: 13.591085928739844
- type: nauc_map_at_1000_max
value: 6.290217870776886
- type: nauc_map_at_1000_std
value: 2.392951276884633
- type: nauc_map_at_100_diff1
value: 13.668656542290492
- type: nauc_map_at_100_max
value: 6.258917946356381
- type: nauc_map_at_100_std
value: 2.3266445676100136
- type: nauc_map_at_10_diff1
value: 13.250096964157141
- type: nauc_map_at_10_max
value: 5.813606943292423
- type: nauc_map_at_10_std
value: 1.7271825359327229
- type: nauc_map_at_1_diff1
value: 20.218709814462795
- type: nauc_map_at_1_max
value: 8.036844386597277
- type: nauc_map_at_1_std
value: 4.620772690437222
- type: nauc_map_at_20_diff1
value: 13.21941234439436
- type: nauc_map_at_20_max
value: 6.397052877775318
- type: nauc_map_at_20_std
value: 2.0208479181057863
- type: nauc_map_at_3_diff1
value: 14.253784181301269
- type: nauc_map_at_3_max
value: 5.2244549800840705
- type: nauc_map_at_3_std
value: 3.368522302214036
- type: nauc_map_at_5_diff1
value: 13.044211991524158
- type: nauc_map_at_5_max
value: 4.906068326503013
- type: nauc_map_at_5_std
value: 1.338022929716299
- type: nauc_mrr_at_1000_diff1
value: 12.290215308682262
- type: nauc_mrr_at_1000_max
value: 7.643442169311612
- type: nauc_mrr_at_1000_std
value: 4.653330662838167
- type: nauc_mrr_at_100_diff1
value: 12.356655427085565
- type: nauc_mrr_at_100_max
value: 7.628444205245759
- type: nauc_mrr_at_100_std
value: 4.63571924333444
- type: nauc_mrr_at_10_diff1
value: 11.955038091668206
- type: nauc_mrr_at_10_max
value: 7.3633463435739746
- type: nauc_mrr_at_10_std
value: 4.340105432925798
- type: nauc_mrr_at_1_diff1
value: 18.54493340747909
- type: nauc_mrr_at_1_max
value: 8.77355237570233
- type: nauc_mrr_at_1_std
value: 5.594302960623576
- type: nauc_mrr_at_20_diff1
value: 12.046481294394413
- type: nauc_mrr_at_20_max
value: 7.690200754146728
- type: nauc_mrr_at_20_std
value: 4.4655331328551195
- type: nauc_mrr_at_3_diff1
value: 12.435651201239532
- type: nauc_mrr_at_3_max
value: 6.558488098778106
- type: nauc_mrr_at_3_std
value: 5.698098301646967
- type: nauc_mrr_at_5_diff1
value: 11.748052022736733
- type: nauc_mrr_at_5_max
value: 6.5271856425922365
- type: nauc_mrr_at_5_std
value: 4.145794538156133
- type: nauc_ndcg_at_1000_diff1
value: 13.288712098878081
- type: nauc_ndcg_at_1000_max
value: 7.657748149258937
- type: nauc_ndcg_at_1000_std
value: 5.545508293121399
- type: nauc_ndcg_at_100_diff1
value: 14.885215517504447
- type: nauc_ndcg_at_100_max
value: 7.2418991240971735
- type: nauc_ndcg_at_100_std
value: 3.966737924400339
- type: nauc_ndcg_at_10_diff1
value: 11.727912572806847
- type: nauc_ndcg_at_10_max
value: 6.433084111905497
- type: nauc_ndcg_at_10_std
value: 1.774941654953616
- type: nauc_ndcg_at_1_diff1
value: 18.54493340747909
- type: nauc_ndcg_at_1_max
value: 8.77355237570233
- type: nauc_ndcg_at_1_std
value: 5.594302960623576
- type: nauc_ndcg_at_20_diff1
value: 11.790912817274762
- type: nauc_ndcg_at_20_max
value: 7.776091543736068
- type: nauc_ndcg_at_20_std
value: 2.6016157495554073
- type: nauc_ndcg_at_3_diff1
value: 12.439122277051485
- type: nauc_ndcg_at_3_max
value: 5.174924004324122
- type: nauc_ndcg_at_3_std
value: 3.860294561139816
- type: nauc_ndcg_at_5_diff1
value: 10.913762290310355
- type: nauc_ndcg_at_5_max
value: 4.575898104548388
- type: nauc_ndcg_at_5_std
value: 0.8550022603482168
- type: nauc_precision_at_1000_diff1
value: 0.8641627546620656
- type: nauc_precision_at_1000_max
value: 7.136167893836067
- type: nauc_precision_at_1000_std
value: 7.008996062106819
- type: nauc_precision_at_100_diff1
value: 13.0673021579007
- type: nauc_precision_at_100_max
value: 7.513212944963869
- type: nauc_precision_at_100_std
value: 5.237924977571242
- type: nauc_precision_at_10_diff1
value: 6.77138100994466
- type: nauc_precision_at_10_max
value: 7.376874826886665
- type: nauc_precision_at_10_std
value: 0.6383203572368118
- type: nauc_precision_at_1_diff1
value: 18.54493340747909
- type: nauc_precision_at_1_max
value: 8.77355237570233
- type: nauc_precision_at_1_std
value: 5.594302960623576
- type: nauc_precision_at_20_diff1
value: 7.542910400303255
- type: nauc_precision_at_20_max
value: 8.702611395923912
- type: nauc_precision_at_20_std
value: 3.4101571933438444
- type: nauc_precision_at_3_diff1
value: 7.426612756605223
- type: nauc_precision_at_3_max
value: 4.394162144689597
- type: nauc_precision_at_3_std
value: 5.339197834739952
- type: nauc_precision_at_5_diff1
value: 4.929106492214219
- type: nauc_precision_at_5_max
value: 4.784302262927969
- type: nauc_precision_at_5_std
value: -0.030270136453348934
- type: nauc_recall_at_1000_diff1
value: 14.352619292360961
- type: nauc_recall_at_1000_max
value: 9.06600701556724
- type: nauc_recall_at_1000_std
value: 15.130728840498673
- type: nauc_recall_at_100_diff1
value: 20.208981835771443
- type: nauc_recall_at_100_max
value: 8.008407920519739
- type: nauc_recall_at_100_std
value: 6.515568441370566
- type: nauc_recall_at_10_diff1
value: 10.259953355933666
- type: nauc_recall_at_10_max
value: 7.361918177568944
- type: nauc_recall_at_10_std
value: 0.45481413814853
- type: nauc_recall_at_1_diff1
value: 20.218709814462795
- type: nauc_recall_at_1_max
value: 8.036844386597277
- type: nauc_recall_at_1_std
value: 4.620772690437222
- type: nauc_recall_at_20_diff1
value: 10.124366542143687
- type: nauc_recall_at_20_max
value: 10.273002819827488
- type: nauc_recall_at_20_std
value: 2.441630654254638
- type: nauc_recall_at_3_diff1
value: 9.479158857315646
- type: nauc_recall_at_3_max
value: 2.895928149511274
- type: nauc_recall_at_3_std
value: 2.332135182452361
- type: nauc_recall_at_5_diff1
value: 7.09949477683149
- type: nauc_recall_at_5_max
value: 2.4529199558425057
- type: nauc_recall_at_5_std
value: -2.574411094667869
- type: ndcg_at_1
value: 7.2139999999999995
- type: ndcg_at_10
value: 11.477
- type: ndcg_at_100
value: 15.778
- type: ndcg_at_1000
value: 19.335
- type: ndcg_at_20
value: 12.884
- type: ndcg_at_3
value: 9.097
- type: ndcg_at_5
value: 9.959
- type: precision_at_1
value: 7.2139999999999995
- type: precision_at_10
value: 2.2009999999999996
- type: precision_at_100
value: 0.516
- type: precision_at_1000
value: 0.096
- type: precision_at_20
value: 1.474
- type: precision_at_3
value: 4.436
- type: precision_at_5
value: 3.209
- type: recall_at_1
value: 5.978
- type: recall_at_10
value: 17.011000000000003
- type: recall_at_100
value: 36.571
- type: recall_at_1000
value: 63.019000000000005
- type: recall_at_20
value: 22.158
- type: recall_at_3
value: 10.395
- type: recall_at_5
value: 12.519
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: main_score
value: 24.339
- type: map_at_1
value: 14.276
- type: map_at_10
value: 20.214
- type: map_at_100
value: 21.36
- type: map_at_1000
value: 21.497
- type: map_at_20
value: 20.82
- type: map_at_3
value: 18.15
- type: map_at_5
value: 19.303
- type: mrr_at_1
value: 17.51684311838306
- type: mrr_at_10
value: 23.891218662633474
- type: mrr_at_100
value: 24.937335828242503
- type: mrr_at_1000
value: 25.022891615789916
- type: mrr_at_20
value: 24.539336514663326
- type: mrr_at_3
value: 21.86397176772539
- type: mrr_at_5
value: 22.946743663779277
- type: nauc_map_at_1000_diff1
value: 41.03685606915441
- type: nauc_map_at_1000_max
value: 28.407889486060654
- type: nauc_map_at_1000_std
value: 0.22648768377295575
- type: nauc_map_at_100_diff1
value: 41.062268537451416
- type: nauc_map_at_100_max
value: 28.349515343592774
- type: nauc_map_at_100_std
value: 0.17638147423187492
- type: nauc_map_at_10_diff1
value: 41.4848494217639
- type: nauc_map_at_10_max
value: 28.30792618978453
- type: nauc_map_at_10_std
value: -0.5884871668402413
- type: nauc_map_at_1_diff1
value: 51.34490233640957
- type: nauc_map_at_1_max
value: 32.04388752102519
- type: nauc_map_at_1_std
value: -2.0244080776431432
- type: nauc_map_at_20_diff1
value: 41.011278551472955
- type: nauc_map_at_20_max
value: 28.17575962730337
- type: nauc_map_at_20_std
value: -0.22940262771844888
- type: nauc_map_at_3_diff1
value: 43.79886641228932
- type: nauc_map_at_3_max
value: 28.80071801875486
- type: nauc_map_at_3_std
value: -1.5768826861725582
- type: nauc_map_at_5_diff1
value: 42.00099643721408
- type: nauc_map_at_5_max
value: 28.027991423509725
- type: nauc_map_at_5_std
value: -1.1865794433594854
- type: nauc_mrr_at_1000_diff1
value: 38.36644049601885
- type: nauc_mrr_at_1000_max
value: 29.20697821315908
- type: nauc_mrr_at_1000_std
value: 2.98422553488691
- type: nauc_mrr_at_100_diff1
value: 38.356819684049654
- type: nauc_mrr_at_100_max
value: 29.19843618169775
- type: nauc_mrr_at_100_std
value: 2.9897198518781205
- type: nauc_mrr_at_10_diff1
value: 38.5333441146625
- type: nauc_mrr_at_10_max
value: 29.25137274523934
- type: nauc_mrr_at_10_std
value: 2.3529920469429233
- type: nauc_mrr_at_1_diff1
value: 47.366507524991746
- type: nauc_mrr_at_1_max
value: 32.895281342019324
- type: nauc_mrr_at_1_std
value: 1.8030005375326137
- type: nauc_mrr_at_20_diff1
value: 38.211103001509194
- type: nauc_mrr_at_20_max
value: 29.186823583515988
- type: nauc_mrr_at_20_std
value: 2.812957883224704
- type: nauc_mrr_at_3_diff1
value: 40.47065080516183
- type: nauc_mrr_at_3_max
value: 30.206642160686492
- type: nauc_mrr_at_3_std
value: 2.1869916923301416
- type: nauc_mrr_at_5_diff1
value: 38.94103732935405
- type: nauc_mrr_at_5_max
value: 29.44193725160551
- type: nauc_mrr_at_5_std
value: 2.176339260825003
- type: nauc_ndcg_at_1000_diff1
value: 36.536198648360866
- type: nauc_ndcg_at_1000_max
value: 28.33360143898126
- type: nauc_ndcg_at_1000_std
value: 5.405088279297754
- type: nauc_ndcg_at_100_diff1
value: 36.77762883229137
- type: nauc_ndcg_at_100_max
value: 27.60828107876558
- type: nauc_ndcg_at_100_std
value: 4.538381997168604
- type: nauc_ndcg_at_10_diff1
value: 37.29177848244754
- type: nauc_ndcg_at_10_max
value: 27.152285083637018
- type: nauc_ndcg_at_10_std
value: 0.8833331313768573
- type: nauc_ndcg_at_1_diff1
value: 47.366507524991746
- type: nauc_ndcg_at_1_max
value: 32.895281342019324
- type: nauc_ndcg_at_1_std
value: 1.8030005375326137
- type: nauc_ndcg_at_20_diff1
value: 35.898785819812296
- type: nauc_ndcg_at_20_max
value: 26.741188274092714
- type: nauc_ndcg_at_20_std
value: 2.128249456208991
- type: nauc_ndcg_at_3_diff1
value: 40.604578269692986
- type: nauc_ndcg_at_3_max
value: 28.921397080144978
- type: nauc_ndcg_at_3_std
value: 0.2701872778553062
- type: nauc_ndcg_at_5_diff1
value: 38.08793641548167
- type: nauc_ndcg_at_5_max
value: 27.167620873313975
- type: nauc_ndcg_at_5_std
value: 0.1778091881994553
- type: nauc_precision_at_1000_diff1
value: -5.6743074187815985
- type: nauc_precision_at_1000_max
value: 15.5986515824071
- type: nauc_precision_at_1000_std
value: 17.134642238195273
- type: nauc_precision_at_100_diff1
value: 7.3790050645260035
- type: nauc_precision_at_100_max
value: 24.489647715333167
- type: nauc_precision_at_100_std
value: 19.12946172674425
- type: nauc_precision_at_10_diff1
value: 20.188506668009886
- type: nauc_precision_at_10_max
value: 26.777986352425785
- type: nauc_precision_at_10_std
value: 8.147538901049616
- type: nauc_precision_at_1_diff1
value: 47.366507524991746
- type: nauc_precision_at_1_max
value: 32.895281342019324
- type: nauc_precision_at_1_std
value: 1.8030005375326137
- type: nauc_precision_at_20_diff1
value: 14.0956852447824
- type: nauc_precision_at_20_max
value: 25.068550907909394
- type: nauc_precision_at_20_std
value: 12.083382546281381
- type: nauc_precision_at_3_diff1
value: 30.61702706951849
- type: nauc_precision_at_3_max
value: 29.360128712270566
- type: nauc_precision_at_3_std
value: 5.900367278881995
- type: nauc_precision_at_5_diff1
value: 25.03904537180811
- type: nauc_precision_at_5_max
value: 26.368792424461123
- type: nauc_precision_at_5_std
value: 5.5938190645224
- type: nauc_recall_at_1000_diff1
value: 19.638152372175917
- type: nauc_recall_at_1000_max
value: 23.177059214668773
- type: nauc_recall_at_1000_std
value: 32.182698643855346
- type: nauc_recall_at_100_diff1
value: 26.549351228167538
- type: nauc_recall_at_100_max
value: 20.94797530163321
- type: nauc_recall_at_100_std
value: 15.652166683248641
- type: nauc_recall_at_10_diff1
value: 28.31827760081841
- type: nauc_recall_at_10_max
value: 21.840786780978892
- type: nauc_recall_at_10_std
value: 1.7870205785383046
- type: nauc_recall_at_1_diff1
value: 51.34490233640957
- type: nauc_recall_at_1_max
value: 32.04388752102519
- type: nauc_recall_at_1_std
value: -2.0244080776431432
- type: nauc_recall_at_20_diff1
value: 23.491682404438986
- type: nauc_recall_at_20_max
value: 19.86816079086787
- type: nauc_recall_at_20_std
value: 5.25218609094941
- type: nauc_recall_at_3_diff1
value: 35.96141633078342
- type: nauc_recall_at_3_max
value: 24.814199432686003
- type: nauc_recall_at_3_std
value: -0.3476350788514478
- type: nauc_recall_at_5_diff1
value: 30.5146792354956
- type: nauc_recall_at_5_max
value: 22.120397499890533
- type: nauc_recall_at_5_std
value: 0.2403134576449495
- type: ndcg_at_1
value: 17.517
- type: ndcg_at_10
value: 24.339
- type: ndcg_at_100
value: 30.032999999999998
- type: ndcg_at_1000
value: 33.23
- type: ndcg_at_20
value: 26.455000000000002
- type: ndcg_at_3
value: 20.65
- type: ndcg_at_5
value: 22.356
- type: precision_at_1
value: 17.517
- type: precision_at_10
value: 4.668
- type: precision_at_100
value: 0.8999999999999999
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_20
value: 2.94
- type: precision_at_3
value: 9.913
- type: precision_at_5
value: 7.276000000000001
- type: recall_at_1
value: 14.276
- type: recall_at_10
value: 33.101
- type: recall_at_100
value: 58.28
- type: recall_at_1000
value: 80.322
- type: recall_at_20
value: 40.811
- type: recall_at_3
value: 22.708000000000002
- type: recall_at_5
value: 27.126
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: main_score
value: 18.572
- type: map_at_1
value: 10.113999999999999
- type: map_at_10
value: 14.966
- type: map_at_100
value: 16.142
- type: map_at_1000
value: 16.274
- type: map_at_20
value: 15.588
- type: map_at_3
value: 13.306000000000001
- type: map_at_5
value: 14.115
- type: mrr_at_1
value: 12.32876712328767
- type: mrr_at_10
value: 18.100311661955487
- type: mrr_at_100
value: 19.104690734771953
- type: mrr_at_1000
value: 19.191702866697273
- type: mrr_at_20
value: 18.642865880622466
- type: mrr_at_3
value: 16.229071537290704
- type: mrr_at_5
value: 17.085235920852355
- type: nauc_map_at_1000_diff1
value: 31.5380839663444
- type: nauc_map_at_1000_max
value: 17.9681008389522
- type: nauc_map_at_1000_std
value: 2.2164295402511014
- type: nauc_map_at_100_diff1
value: 31.549568702174767
- type: nauc_map_at_100_max
value: 17.875779141578462
- type: nauc_map_at_100_std
value: 2.0933869829236347
- type: nauc_map_at_10_diff1
value: 32.19172260750653
- type: nauc_map_at_10_max
value: 17.306789949301294
- type: nauc_map_at_10_std
value: 0.700237138708676
- type: nauc_map_at_1_diff1
value: 41.99338272552499
- type: nauc_map_at_1_max
value: 19.41453494529689
- type: nauc_map_at_1_std
value: -2.9915157281415703
- type: nauc_map_at_20_diff1
value: 31.73238374507595
- type: nauc_map_at_20_max
value: 17.311580430203353
- type: nauc_map_at_20_std
value: 1.5238571528713525
- type: nauc_map_at_3_diff1
value: 32.949765145983314
- type: nauc_map_at_3_max
value: 16.284348173129974
- type: nauc_map_at_3_std
value: -1.3141721735461476
- type: nauc_map_at_5_diff1
value: 31.963187574971176
- type: nauc_map_at_5_max
value: 17.100787287868354
- type: nauc_map_at_5_std
value: 0.0015731783817020976
- type: nauc_mrr_at_1000_diff1
value: 28.148462053021166
- type: nauc_mrr_at_1000_max
value: 19.28312681351677
- type: nauc_mrr_at_1000_std
value: 3.8584952061086435
- type: nauc_mrr_at_100_diff1
value: 28.094200856177288
- type: nauc_mrr_at_100_max
value: 19.24299141244573
- type: nauc_mrr_at_100_std
value: 3.8382724028400093
- type: nauc_mrr_at_10_diff1
value: 28.51829789033651
- type: nauc_mrr_at_10_max
value: 19.447637292790958
- type: nauc_mrr_at_10_std
value: 3.19294049353816
- type: nauc_mrr_at_1_diff1
value: 39.31634352935456
- type: nauc_mrr_at_1_max
value: 21.789914492317912
- type: nauc_mrr_at_1_std
value: -0.22812038812251473
- type: nauc_mrr_at_20_diff1
value: 28.17131515128093
- type: nauc_mrr_at_20_max
value: 18.954274621475932
- type: nauc_mrr_at_20_std
value: 3.5798521757707897
- type: nauc_mrr_at_3_diff1
value: 29.622155411044332
- type: nauc_mrr_at_3_max
value: 19.238666216526838
- type: nauc_mrr_at_3_std
value: 1.8906405763669278
- type: nauc_mrr_at_5_diff1
value: 28.774014587372527
- type: nauc_mrr_at_5_max
value: 19.414140006144585
- type: nauc_mrr_at_5_std
value: 2.840339018057259
- type: nauc_ndcg_at_1000_diff1
value: 26.895080768863867
- type: nauc_ndcg_at_1000_max
value: 19.684613860376647
- type: nauc_ndcg_at_1000_std
value: 9.793487660604164
- type: nauc_ndcg_at_100_diff1
value: 26.78733090807618
- type: nauc_ndcg_at_100_max
value: 18.91812508266874
- type: nauc_ndcg_at_100_std
value: 8.32820999415013
- type: nauc_ndcg_at_10_diff1
value: 28.51747551047639
- type: nauc_ndcg_at_10_max
value: 17.451523037784746
- type: nauc_ndcg_at_10_std
value: 3.4468383889800123
- type: nauc_ndcg_at_1_diff1
value: 39.31634352935456
- type: nauc_ndcg_at_1_max
value: 21.789914492317912
- type: nauc_ndcg_at_1_std
value: -0.22812038812251473
- type: nauc_ndcg_at_20_diff1
value: 27.280597584151316
- type: nauc_ndcg_at_20_max
value: 16.67121677588379
- type: nauc_ndcg_at_20_std
value: 5.313461111433228
- type: nauc_ndcg_at_3_diff1
value: 29.268509392372348
- type: nauc_ndcg_at_3_max
value: 16.68884126553042
- type: nauc_ndcg_at_3_std
value: 0.3627021483553513
- type: nauc_ndcg_at_5_diff1
value: 28.083836200902834
- type: nauc_ndcg_at_5_max
value: 17.611782342073173
- type: nauc_ndcg_at_5_std
value: 2.2512763000110536
- type: nauc_precision_at_1000_diff1
value: -7.4970098056305945
- type: nauc_precision_at_1000_max
value: 12.162352895422861
- type: nauc_precision_at_1000_std
value: 16.211487627542326
- type: nauc_precision_at_100_diff1
value: 4.007717730230379
- type: nauc_precision_at_100_max
value: 20.704245855550486
- type: nauc_precision_at_100_std
value: 21.96869724772107
- type: nauc_precision_at_10_diff1
value: 15.831711280362699
- type: nauc_precision_at_10_max
value: 20.001368457446638
- type: nauc_precision_at_10_std
value: 10.737927827381192
- type: nauc_precision_at_1_diff1
value: 39.31634352935456
- type: nauc_precision_at_1_max
value: 21.789914492317912
- type: nauc_precision_at_1_std
value: -0.22812038812251473
- type: nauc_precision_at_20_diff1
value: 11.205148892259576
- type: nauc_precision_at_20_max
value: 18.327783013272807
- type: nauc_precision_at_20_std
value: 15.41328854851903
- type: nauc_precision_at_3_diff1
value: 20.151568649441437
- type: nauc_precision_at_3_max
value: 18.1027955515208
- type: nauc_precision_at_3_std
value: 3.8969218089403976
- type: nauc_precision_at_5_diff1
value: 15.735602797404976
- type: nauc_precision_at_5_max
value: 20.417869995880807
- type: nauc_precision_at_5_std
value: 7.859648888047052
- type: nauc_recall_at_1000_diff1
value: 17.091378487075364
- type: nauc_recall_at_1000_max
value: 22.040731541942677
- type: nauc_recall_at_1000_std
value: 39.444689096986544
- type: nauc_recall_at_100_diff1
value: 18.17709025244327
- type: nauc_recall_at_100_max
value: 18.312516335450827
- type: nauc_recall_at_100_std
value: 21.80943236545304
- type: nauc_recall_at_10_diff1
value: 23.21820368922194
- type: nauc_recall_at_10_max
value: 15.040119533520468
- type: nauc_recall_at_10_std
value: 7.412805177818517
- type: nauc_recall_at_1_diff1
value: 41.99338272552499
- type: nauc_recall_at_1_max
value: 19.41453494529689
- type: nauc_recall_at_1_std
value: -2.9915157281415703
- type: nauc_recall_at_20_diff1
value: 19.927391383187544
- type: nauc_recall_at_20_max
value: 12.10764205758219
- type: nauc_recall_at_20_std
value: 11.456305933505394
- type: nauc_recall_at_3_diff1
value: 24.57783329903588
- type: nauc_recall_at_3_max
value: 13.251921475093864
- type: nauc_recall_at_3_std
value: 0.4602962145435756
- type: nauc_recall_at_5_diff1
value: 22.7513858055345
- type: nauc_recall_at_5_max
value: 15.317660220264273
- type: nauc_recall_at_5_std
value: 4.844790346315235
- type: ndcg_at_1
value: 12.328999999999999
- type: ndcg_at_10
value: 18.572
- type: ndcg_at_100
value: 24.189
- type: ndcg_at_1000
value: 27.564
- type: ndcg_at_20
value: 20.580000000000002
- type: ndcg_at_3
value: 15.346000000000002
- type: ndcg_at_5
value: 16.567999999999998
- type: precision_at_1
value: 12.328999999999999
- type: precision_at_10
value: 3.6990000000000003
- type: precision_at_100
value: 0.788
- type: precision_at_1000
value: 0.125
- type: precision_at_20
value: 2.443
- type: precision_at_3
value: 7.61
- type: precision_at_5
value: 5.548
- type: recall_at_1
value: 10.113999999999999
- type: recall_at_10
value: 26.299
- type: recall_at_100
value: 50.963
- type: recall_at_1000
value: 75.40400000000001
- type: recall_at_20
value: 33.398
- type: recall_at_3
value: 17.283
- type: recall_at_5
value: 20.448
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 20.06633333333333
- type: ndcg_at_10
value: 20.06633333333333
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: main_score
value: 14.771999999999998
- type: map_at_1
value: 7.9670000000000005
- type: map_at_10
value: 11.916
- type: map_at_100
value: 12.672
- type: map_at_1000
value: 12.756
- type: map_at_20
value: 12.313
- type: map_at_3
value: 10.445
- type: map_at_5
value: 11.274000000000001
- type: mrr_at_1
value: 9.662576687116564
- type: mrr_at_10
value: 13.881889667932617
- type: mrr_at_100
value: 14.622003040491299
- type: mrr_at_1000
value: 14.700421998539593
- type: mrr_at_20
value: 14.26597490297063
- type: mrr_at_3
value: 12.295501022494886
- type: mrr_at_5
value: 13.185071574642123
- type: nauc_map_at_1000_diff1
value: 27.464956379343636
- type: nauc_map_at_1000_max
value: 12.688799707158202
- type: nauc_map_at_1000_std
value: 6.181513833234629
- type: nauc_map_at_100_diff1
value: 27.480291541621977
- type: nauc_map_at_100_max
value: 12.669898754417847
- type: nauc_map_at_100_std
value: 6.161789467868528
- type: nauc_map_at_10_diff1
value: 27.84183710063236
- type: nauc_map_at_10_max
value: 13.103624223429215
- type: nauc_map_at_10_std
value: 5.826931197085812
- type: nauc_map_at_1_diff1
value: 35.26968831241412
- type: nauc_map_at_1_max
value: 13.821463026692879
- type: nauc_map_at_1_std
value: 2.6240801068368147
- type: nauc_map_at_20_diff1
value: 27.694640221569394
- type: nauc_map_at_20_max
value: 12.566821566355408
- type: nauc_map_at_20_std
value: 5.841018047634929
- type: nauc_map_at_3_diff1
value: 29.554875884424263
- type: nauc_map_at_3_max
value: 14.305644406759505
- type: nauc_map_at_3_std
value: 5.601041654228171
- type: nauc_map_at_5_diff1
value: 29.240061587938037
- type: nauc_map_at_5_max
value: 14.00128435019755
- type: nauc_map_at_5_std
value: 5.82150408034715
- type: nauc_mrr_at_1000_diff1
value: 27.17619540994222
- type: nauc_mrr_at_1000_max
value: 14.59029391462989
- type: nauc_mrr_at_1000_std
value: 7.36596867864775
- type: nauc_mrr_at_100_diff1
value: 27.168129068852892
- type: nauc_mrr_at_100_max
value: 14.547185893357803
- type: nauc_mrr_at_100_std
value: 7.356270166890706
- type: nauc_mrr_at_10_diff1
value: 27.5014826968088
- type: nauc_mrr_at_10_max
value: 14.986374849985179
- type: nauc_mrr_at_10_std
value: 7.098527350761
- type: nauc_mrr_at_1_diff1
value: 34.74758694269618
- type: nauc_mrr_at_1_max
value: 15.94870709819082
- type: nauc_mrr_at_1_std
value: 3.484756136581587
- type: nauc_mrr_at_20_diff1
value: 27.30678702098046
- type: nauc_mrr_at_20_max
value: 14.64068189163014
- type: nauc_mrr_at_20_std
value: 7.222167908721225
- type: nauc_mrr_at_3_diff1
value: 29.05886648272905
- type: nauc_mrr_at_3_max
value: 16.437400286007918
- type: nauc_mrr_at_3_std
value: 7.033090959882006
- type: nauc_mrr_at_5_diff1
value: 28.75634825543908
- type: nauc_mrr_at_5_max
value: 16.116487363272213
- type: nauc_mrr_at_5_std
value: 7.357847583847684
- type: nauc_ndcg_at_1000_diff1
value: 23.407580241714584
- type: nauc_ndcg_at_1000_max
value: 11.773215821924362
- type: nauc_ndcg_at_1000_std
value: 9.058784561916143
- type: nauc_ndcg_at_100_diff1
value: 23.979537088722516
- type: nauc_ndcg_at_100_max
value: 11.295731197485436
- type: nauc_ndcg_at_100_std
value: 8.714374001997927
- type: nauc_ndcg_at_10_diff1
value: 24.759023148739058
- type: nauc_ndcg_at_10_max
value: 12.341084446128495
- type: nauc_ndcg_at_10_std
value: 6.848529153224625
- type: nauc_ndcg_at_1_diff1
value: 34.74758694269618
- type: nauc_ndcg_at_1_max
value: 15.94870709819082
- type: nauc_ndcg_at_1_std
value: 3.484756136581587
- type: nauc_ndcg_at_20_diff1
value: 24.647169467462906
- type: nauc_ndcg_at_20_max
value: 10.81220813658661
- type: nauc_ndcg_at_20_std
value: 7.1325252724340595
- type: nauc_ndcg_at_3_diff1
value: 28.251959160053886
- type: nauc_ndcg_at_3_max
value: 14.534129576164926
- type: nauc_ndcg_at_3_std
value: 6.919835773799475
- type: nauc_ndcg_at_5_diff1
value: 27.767475859457825
- type: nauc_ndcg_at_5_max
value: 14.308510586980146
- type: nauc_ndcg_at_5_std
value: 6.997517881896331
- type: nauc_precision_at_1000_diff1
value: 8.890773326647109
- type: nauc_precision_at_1000_max
value: 12.287863157289907
- type: nauc_precision_at_1000_std
value: 17.835978900903893
- type: nauc_precision_at_100_diff1
value: 16.784612912355854
- type: nauc_precision_at_100_max
value: 13.354526754596558
- type: nauc_precision_at_100_std
value: 18.18769011052455
- type: nauc_precision_at_10_diff1
value: 18.949749011392175
- type: nauc_precision_at_10_max
value: 12.633074463041934
- type: nauc_precision_at_10_std
value: 11.69597288682816
- type: nauc_precision_at_1_diff1
value: 34.74758694269618
- type: nauc_precision_at_1_max
value: 15.94870709819082
- type: nauc_precision_at_1_std
value: 3.484756136581587
- type: nauc_precision_at_20_diff1
value: 19.871714092445643
- type: nauc_precision_at_20_max
value: 9.369266922594758
- type: nauc_precision_at_20_std
value: 12.215660461035935
- type: nauc_precision_at_3_diff1
value: 24.779708502791607
- type: nauc_precision_at_3_max
value: 17.242869556602585
- type: nauc_precision_at_3_std
value: 10.535864690942665
- type: nauc_precision_at_5_diff1
value: 23.983801571912284
- type: nauc_precision_at_5_max
value: 17.366696818116218
- type: nauc_precision_at_5_std
value: 11.873524889936338
- type: nauc_recall_at_1000_diff1
value: 12.066728664027488
- type: nauc_recall_at_1000_max
value: 7.337077809378563
- type: nauc_recall_at_1000_std
value: 14.409509010648286
- type: nauc_recall_at_100_diff1
value: 16.485850144126058
- type: nauc_recall_at_100_max
value: 5.940924198197424
- type: nauc_recall_at_100_std
value: 12.53633827092492
- type: nauc_recall_at_10_diff1
value: 17.108201444307365
- type: nauc_recall_at_10_max
value: 8.094878456313593
- type: nauc_recall_at_10_std
value: 6.922028971621734
- type: nauc_recall_at_1_diff1
value: 35.26968831241412
- type: nauc_recall_at_1_max
value: 13.821463026692879
- type: nauc_recall_at_1_std
value: 2.6240801068368147
- type: nauc_recall_at_20_diff1
value: 17.770237163799866
- type: nauc_recall_at_20_max
value: 4.153335758130064
- type: nauc_recall_at_20_std
value: 7.810562339838044
- type: nauc_recall_at_3_diff1
value: 24.528686523846783
- type: nauc_recall_at_3_max
value: 13.260197733449864
- type: nauc_recall_at_3_std
value: 7.236438838203539
- type: nauc_recall_at_5_diff1
value: 24.526787737523158
- type: nauc_recall_at_5_max
value: 12.931129112159464
- type: nauc_recall_at_5_std
value: 7.69306537628985
- type: ndcg_at_1
value: 9.663
- type: ndcg_at_10
value: 14.771999999999998
- type: ndcg_at_100
value: 18.804000000000002
- type: ndcg_at_1000
value: 21.398
- type: ndcg_at_20
value: 16.158
- type: ndcg_at_3
value: 11.826
- type: ndcg_at_5
value: 13.22
- type: precision_at_1
value: 9.663
- type: precision_at_10
value: 2.638
- type: precision_at_100
value: 0.506
- type: precision_at_1000
value: 0.079
- type: precision_at_20
value: 1.641
- type: precision_at_3
value: 5.573
- type: precision_at_5
value: 4.141
- type: recall_at_1
value: 7.9670000000000005
- type: recall_at_10
value: 21.95
- type: recall_at_100
value: 40.909
- type: recall_at_1000
value: 60.781
- type: recall_at_20
value: 27.235
- type: recall_at_3
value: 13.639000000000001
- type: recall_at_5
value: 17.197000000000003
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: main_score
value: 11.89
- type: map_at_1
value: 6.544
- type: map_at_10
value: 9.652
- type: map_at_100
value: 10.302999999999999
- type: map_at_1000
value: 10.419
- type: map_at_20
value: 10.012
- type: map_at_3
value: 8.602
- type: map_at_5
value: 9.148
- type: mrr_at_1
value: 7.91465932553338
- type: mrr_at_10
value: 11.574451872972155
- type: mrr_at_100
value: 12.26293448933862
- type: mrr_at_1000
value: 12.35992343686757
- type: mrr_at_20
value: 11.962637194186767
- type: mrr_at_3
value: 10.329203945859144
- type: mrr_at_5
value: 10.955494379444817
- type: nauc_map_at_1000_diff1
value: 29.599569655376
- type: nauc_map_at_1000_max
value: 14.260050539335332
- type: nauc_map_at_1000_std
value: -3.6638649700127686
- type: nauc_map_at_100_diff1
value: 29.626869833183132
- type: nauc_map_at_100_max
value: 14.188784208136356
- type: nauc_map_at_100_std
value: -3.7889138601146852
- type: nauc_map_at_10_diff1
value: 30.240601138831547
- type: nauc_map_at_10_max
value: 13.916837722756387
- type: nauc_map_at_10_std
value: -4.316378076446822
- type: nauc_map_at_1_diff1
value: 38.49732191352995
- type: nauc_map_at_1_max
value: 13.959321672081417
- type: nauc_map_at_1_std
value: -5.405022381926919
- type: nauc_map_at_20_diff1
value: 29.869505981506343
- type: nauc_map_at_20_max
value: 14.009382089208437
- type: nauc_map_at_20_std
value: -4.193680132404101
- type: nauc_map_at_3_diff1
value: 32.880929152413465
- type: nauc_map_at_3_max
value: 14.7218073741984
- type: nauc_map_at_3_std
value: -4.0556191052631965
- type: nauc_map_at_5_diff1
value: 31.269904437209846
- type: nauc_map_at_5_max
value: 13.937943418680376
- type: nauc_map_at_5_std
value: -4.354961218325039
- type: nauc_mrr_at_1000_diff1
value: 28.28534237979384
- type: nauc_mrr_at_1000_max
value: 15.617476454684626
- type: nauc_mrr_at_1000_std
value: -3.121517210162604
- type: nauc_mrr_at_100_diff1
value: 28.28445731466983
- type: nauc_mrr_at_100_max
value: 15.598018147875806
- type: nauc_mrr_at_100_std
value: -3.1630011896008376
- type: nauc_mrr_at_10_diff1
value: 28.720037201906628
- type: nauc_mrr_at_10_max
value: 15.446326925464204
- type: nauc_mrr_at_10_std
value: -3.628030605618028
- type: nauc_mrr_at_1_diff1
value: 37.213053214984974
- type: nauc_mrr_at_1_max
value: 16.871596517680164
- type: nauc_mrr_at_1_std
value: -5.866424771722043
- type: nauc_mrr_at_20_diff1
value: 28.4289942313558
- type: nauc_mrr_at_20_max
value: 15.526335575515372
- type: nauc_mrr_at_20_std
value: -3.4399906991625007
- type: nauc_mrr_at_3_diff1
value: 31.457735295395793
- type: nauc_mrr_at_3_max
value: 16.14296947486417
- type: nauc_mrr_at_3_std
value: -4.090661296421823
- type: nauc_mrr_at_5_diff1
value: 29.83938535974195
- type: nauc_mrr_at_5_max
value: 15.41160305310037
- type: nauc_mrr_at_5_std
value: -3.8949872883203978
- type: nauc_ndcg_at_1000_diff1
value: 24.03973945083958
- type: nauc_ndcg_at_1000_max
value: 15.990800342336264
- type: nauc_ndcg_at_1000_std
value: 1.15168031596194
- type: nauc_ndcg_at_100_diff1
value: 24.46192215199325
- type: nauc_ndcg_at_100_max
value: 14.6392676264499
- type: nauc_ndcg_at_100_std
value: -1.076913377988602
- type: nauc_ndcg_at_10_diff1
value: 26.544537940077305
- type: nauc_ndcg_at_10_max
value: 13.741302138379494
- type: nauc_ndcg_at_10_std
value: -3.792408046032157
- type: nauc_ndcg_at_1_diff1
value: 37.213053214984974
- type: nauc_ndcg_at_1_max
value: 16.871596517680164
- type: nauc_ndcg_at_1_std
value: -5.866424771722043
- type: nauc_ndcg_at_20_diff1
value: 25.5102221223638
- type: nauc_ndcg_at_20_max
value: 13.990598985829614
- type: nauc_ndcg_at_20_std
value: -3.368720146146748
- type: nauc_ndcg_at_3_diff1
value: 30.989600349929447
- type: nauc_ndcg_at_3_max
value: 15.226808763832569
- type: nauc_ndcg_at_3_std
value: -3.601126257016185
- type: nauc_ndcg_at_5_diff1
value: 28.54393105410386
- type: nauc_ndcg_at_5_max
value: 13.792435440713641
- type: nauc_ndcg_at_5_std
value: -3.942970556452405
- type: nauc_precision_at_1000_diff1
value: 8.397248790713299
- type: nauc_precision_at_1000_max
value: 22.865216579494238
- type: nauc_precision_at_1000_std
value: 18.964105556706816
- type: nauc_precision_at_100_diff1
value: 13.795302908729973
- type: nauc_precision_at_100_max
value: 19.894620163243133
- type: nauc_precision_at_100_std
value: 9.265664986819248
- type: nauc_precision_at_10_diff1
value: 18.894866608417136
- type: nauc_precision_at_10_max
value: 16.174625648208707
- type: nauc_precision_at_10_std
value: -1.748849701509255
- type: nauc_precision_at_1_diff1
value: 37.213053214984974
- type: nauc_precision_at_1_max
value: 16.871596517680164
- type: nauc_precision_at_1_std
value: -5.866424771722043
- type: nauc_precision_at_20_diff1
value: 16.725759138449074
- type: nauc_precision_at_20_max
value: 18.07640605163822
- type: nauc_precision_at_20_std
value: 0.8677700106490629
- type: nauc_precision_at_3_diff1
value: 27.631950409324226
- type: nauc_precision_at_3_max
value: 17.730161146279748
- type: nauc_precision_at_3_std
value: -2.8349313445582793
- type: nauc_precision_at_5_diff1
value: 23.092797668276425
- type: nauc_precision_at_5_max
value: 15.754595059066414
- type: nauc_precision_at_5_std
value: -2.6981835587673078
- type: nauc_recall_at_1000_diff1
value: 11.611126009611255
- type: nauc_recall_at_1000_max
value: 18.364258718711064
- type: nauc_recall_at_1000_std
value: 14.590227954099502
- type: nauc_recall_at_100_diff1
value: 14.602946067925245
- type: nauc_recall_at_100_max
value: 13.19041135076776
- type: nauc_recall_at_100_std
value: 4.279012994387592
- type: nauc_recall_at_10_diff1
value: 19.8109475851167
- type: nauc_recall_at_10_max
value: 11.628627287295066
- type: nauc_recall_at_10_std
value: -3.3022579440673745
- type: nauc_recall_at_1_diff1
value: 38.49732191352995
- type: nauc_recall_at_1_max
value: 13.959321672081417
- type: nauc_recall_at_1_std
value: -5.405022381926919
- type: nauc_recall_at_20_diff1
value: 17.09822858202577
- type: nauc_recall_at_20_max
value: 11.883568391126285
- type: nauc_recall_at_20_std
value: -2.5468000044892034
- type: nauc_recall_at_3_diff1
value: 27.497580747993382
- type: nauc_recall_at_3_max
value: 13.739587046904262
- type: nauc_recall_at_3_std
value: -2.958549474787635
- type: nauc_recall_at_5_diff1
value: 23.200480313988866
- type: nauc_recall_at_5_max
value: 11.409453989148197
- type: nauc_recall_at_5_std
value: -3.802220387794951
- type: ndcg_at_1
value: 7.915
- type: ndcg_at_10
value: 11.89
- type: ndcg_at_100
value: 15.409
- type: ndcg_at_1000
value: 18.848000000000003
- type: ndcg_at_20
value: 13.181999999999999
- type: ndcg_at_3
value: 9.783
- type: ndcg_at_5
value: 10.665
- type: precision_at_1
value: 7.915
- type: precision_at_10
value: 2.254
- type: precision_at_100
value: 0.47800000000000004
- type: precision_at_1000
value: 0.093
- type: precision_at_20
value: 1.481
- type: precision_at_3
value: 4.691
- type: precision_at_5
value: 3.4479999999999995
- type: recall_at_1
value: 6.544
- type: recall_at_10
value: 16.874
- type: recall_at_100
value: 33.027
- type: recall_at_1000
value: 58.69
- type: recall_at_20
value: 21.676000000000002
- type: recall_at_3
value: 11.006
- type: recall_at_5
value: 13.242999999999999
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: main_score
value: 17.681
- type: map_at_1
value: 10.693
- type: map_at_10
value: 14.815000000000001
- type: map_at_100
value: 15.562999999999999
- type: map_at_1000
value: 15.690999999999999
- type: map_at_20
value: 15.198
- type: map_at_3
value: 13.492
- type: map_at_5
value: 14.251
- type: mrr_at_1
value: 12.593283582089551
- type: mrr_at_10
value: 17.294220859985778
- type: mrr_at_100
value: 18.073301370312517
- type: mrr_at_1000
value: 18.178539747275277
- type: mrr_at_20
value: 17.726279044649704
- type: mrr_at_3
value: 15.889303482587072
- type: mrr_at_5
value: 16.654228855721396
- type: nauc_map_at_1000_diff1
value: 37.06808689890735
- type: nauc_map_at_1000_max
value: 25.830253602678106
- type: nauc_map_at_1000_std
value: -8.200403962720742
- type: nauc_map_at_100_diff1
value: 37.10963353228084
- type: nauc_map_at_100_max
value: 25.79124583385762
- type: nauc_map_at_100_std
value: -8.305867858237091
- type: nauc_map_at_10_diff1
value: 37.55605713097813
- type: nauc_map_at_10_max
value: 25.97236325257699
- type: nauc_map_at_10_std
value: -8.787411817254986
- type: nauc_map_at_1_diff1
value: 46.880104967892095
- type: nauc_map_at_1_max
value: 30.47076747044864
- type: nauc_map_at_1_std
value: -9.529043223192849
- type: nauc_map_at_20_diff1
value: 37.40781191515129
- type: nauc_map_at_20_max
value: 25.87534241343804
- type: nauc_map_at_20_std
value: -8.727450039123232
- type: nauc_map_at_3_diff1
value: 39.39543088322907
- type: nauc_map_at_3_max
value: 27.250096581190846
- type: nauc_map_at_3_std
value: -9.1583459940284
- type: nauc_map_at_5_diff1
value: 38.37362606408328
- type: nauc_map_at_5_max
value: 26.49488865613181
- type: nauc_map_at_5_std
value: -9.204761225287667
- type: nauc_mrr_at_1000_diff1
value: 37.35072657075773
- type: nauc_mrr_at_1000_max
value: 27.103353599284386
- type: nauc_mrr_at_1000_std
value: -6.772476592783599
- type: nauc_mrr_at_100_diff1
value: 37.37461007495732
- type: nauc_mrr_at_100_max
value: 27.10188269424093
- type: nauc_mrr_at_100_std
value: -6.838551505670108
- type: nauc_mrr_at_10_diff1
value: 37.7609241149103
- type: nauc_mrr_at_10_max
value: 27.273600798878643
- type: nauc_mrr_at_10_std
value: -7.288619333100662
- type: nauc_mrr_at_1_diff1
value: 48.30751770509831
- type: nauc_mrr_at_1_max
value: 32.52817497563151
- type: nauc_mrr_at_1_std
value: -7.5523189586103605
- type: nauc_mrr_at_20_diff1
value: 37.5902053059747
- type: nauc_mrr_at_20_max
value: 27.180853168677206
- type: nauc_mrr_at_20_std
value: -7.199015767371499
- type: nauc_mrr_at_3_diff1
value: 39.423663262845075
- type: nauc_mrr_at_3_max
value: 28.39283909032157
- type: nauc_mrr_at_3_std
value: -7.490109392356441
- type: nauc_mrr_at_5_diff1
value: 38.584599728860745
- type: nauc_mrr_at_5_max
value: 27.588748981783258
- type: nauc_mrr_at_5_std
value: -7.693201065125161
- type: nauc_ndcg_at_1000_diff1
value: 31.12351398623868
- type: nauc_ndcg_at_1000_max
value: 24.13093684291217
- type: nauc_ndcg_at_1000_std
value: -2.9280612065592444
- type: nauc_ndcg_at_100_diff1
value: 32.0198970741007
- type: nauc_ndcg_at_100_max
value: 23.428381936309968
- type: nauc_ndcg_at_100_std
value: -5.502846823665347
- type: nauc_ndcg_at_10_diff1
value: 34.23942582280388
- type: nauc_ndcg_at_10_max
value: 24.425351771280987
- type: nauc_ndcg_at_10_std
value: -7.789211233356857
- type: nauc_ndcg_at_1_diff1
value: 48.30751770509831
- type: nauc_ndcg_at_1_max
value: 32.52817497563151
- type: nauc_ndcg_at_1_std
value: -7.5523189586103605
- type: nauc_ndcg_at_20_diff1
value: 33.89493526795971
- type: nauc_ndcg_at_20_max
value: 24.267224154957585
- type: nauc_ndcg_at_20_std
value: -7.516908959235173
- type: nauc_ndcg_at_3_diff1
value: 37.20970459712713
- type: nauc_ndcg_at_3_max
value: 26.89486636826351
- type: nauc_ndcg_at_3_std
value: -8.276335845643223
- type: nauc_ndcg_at_5_diff1
value: 35.795208970782824
- type: nauc_ndcg_at_5_max
value: 25.45320266356439
- type: nauc_ndcg_at_5_std
value: -8.649222494447436
- type: nauc_precision_at_1000_diff1
value: 0.2021396432488509
- type: nauc_precision_at_1000_max
value: 15.363228448365076
- type: nauc_precision_at_1000_std
value: 16.823478933730968
- type: nauc_precision_at_100_diff1
value: 13.026435394105418
- type: nauc_precision_at_100_max
value: 17.52255452715734
- type: nauc_precision_at_100_std
value: 4.822414814608969
- type: nauc_precision_at_10_diff1
value: 24.130000342389195
- type: nauc_precision_at_10_max
value: 21.21881750694888
- type: nauc_precision_at_10_std
value: -3.45102769344446
- type: nauc_precision_at_1_diff1
value: 48.30751770509831
- type: nauc_precision_at_1_max
value: 32.52817497563151
- type: nauc_precision_at_1_std
value: -7.5523189586103605
- type: nauc_precision_at_20_diff1
value: 22.452615307016845
- type: nauc_precision_at_20_max
value: 20.72785119139948
- type: nauc_precision_at_20_std
value: -2.7892640432250544
- type: nauc_precision_at_3_diff1
value: 31.573746476321247
- type: nauc_precision_at_3_max
value: 25.43799077463197
- type: nauc_precision_at_3_std
value: -5.584412040269154
- type: nauc_precision_at_5_diff1
value: 28.50068432061233
- type: nauc_precision_at_5_max
value: 23.141781646564937
- type: nauc_precision_at_5_std
value: -6.256362269388643
- type: nauc_recall_at_1000_diff1
value: 8.166822398413025
- type: nauc_recall_at_1000_max
value: 14.844192671123944
- type: nauc_recall_at_1000_std
value: 19.89066147510425
- type: nauc_recall_at_100_diff1
value: 17.771335801647908
- type: nauc_recall_at_100_max
value: 14.028210814051386
- type: nauc_recall_at_100_std
value: 0.8854257983597732
- type: nauc_recall_at_10_diff1
value: 25.583966333098534
- type: nauc_recall_at_10_max
value: 18.78312107431364
- type: nauc_recall_at_10_std
value: -6.259396644779273
- type: nauc_recall_at_1_diff1
value: 46.880104967892095
- type: nauc_recall_at_1_max
value: 30.47076747044864
- type: nauc_recall_at_1_std
value: -9.529043223192849
- type: nauc_recall_at_20_diff1
value: 25.363665370206114
- type: nauc_recall_at_20_max
value: 18.59288202265051
- type: nauc_recall_at_20_std
value: -5.518742270755405
- type: nauc_recall_at_3_diff1
value: 33.02581275727718
- type: nauc_recall_at_3_max
value: 24.221221318509823
- type: nauc_recall_at_3_std
value: -8.806162684655048
- type: nauc_recall_at_5_diff1
value: 29.392786856617924
- type: nauc_recall_at_5_max
value: 21.258229422853034
- type: nauc_recall_at_5_std
value: -8.60839655648439
- type: ndcg_at_1
value: 12.592999999999998
- type: ndcg_at_10
value: 17.681
- type: ndcg_at_100
value: 21.708
- type: ndcg_at_1000
value: 25.224000000000004
- type: ndcg_at_20
value: 19.041
- type: ndcg_at_3
value: 15.101999999999999
- type: ndcg_at_5
value: 16.339000000000002
- type: precision_at_1
value: 12.592999999999998
- type: precision_at_10
value: 3.088
- type: precision_at_100
value: 0.567
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 1.894
- type: precision_at_3
value: 7.058000000000001
- type: precision_at_5
value: 5.037
- type: recall_at_1
value: 10.693
- type: recall_at_10
value: 24.004
- type: recall_at_100
value: 42.614999999999995
- type: recall_at_1000
value: 68.407
- type: recall_at_20
value: 28.932000000000002
- type: recall_at_3
value: 16.892
- type: recall_at_5
value: 20.104
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: main_score
value: 21.083
- type: map_at_1
value: 10.589
- type: map_at_10
value: 16.74
- type: map_at_100
value: 17.746000000000002
- type: map_at_1000
value: 17.944
- type: map_at_20
value: 17.216
- type: map_at_3
value: 14.515
- type: map_at_5
value: 15.616
- type: mrr_at_1
value: 13.83399209486166
- type: mrr_at_10
value: 20.246251333207848
- type: mrr_at_100
value: 21.181360197232546
- type: mrr_at_1000
value: 21.275281349122263
- type: mrr_at_20
value: 20.722425203153367
- type: mrr_at_3
value: 18.28063241106719
- type: mrr_at_5
value: 19.308300395256918
- type: nauc_map_at_1000_diff1
value: 35.23000631718578
- type: nauc_map_at_1000_max
value: 14.034629155313908
- type: nauc_map_at_1000_std
value: -3.342132884415706
- type: nauc_map_at_100_diff1
value: 35.07001876750455
- type: nauc_map_at_100_max
value: 14.080660368793952
- type: nauc_map_at_100_std
value: -3.38242131987473
- type: nauc_map_at_10_diff1
value: 35.062025807984
- type: nauc_map_at_10_max
value: 13.699511234621395
- type: nauc_map_at_10_std
value: -4.083990022755827
- type: nauc_map_at_1_diff1
value: 45.349178620901554
- type: nauc_map_at_1_max
value: 16.3746817879971
- type: nauc_map_at_1_std
value: -9.540072950708476
- type: nauc_map_at_20_diff1
value: 34.98391565692215
- type: nauc_map_at_20_max
value: 13.931709612931071
- type: nauc_map_at_20_std
value: -3.6983773997754374
- type: nauc_map_at_3_diff1
value: 36.436904397354326
- type: nauc_map_at_3_max
value: 14.045828808394539
- type: nauc_map_at_3_std
value: -4.983728097939691
- type: nauc_map_at_5_diff1
value: 36.25507710491795
- type: nauc_map_at_5_max
value: 13.519612188865631
- type: nauc_map_at_5_std
value: -4.818257745540146
- type: nauc_mrr_at_1000_diff1
value: 36.944178495564515
- type: nauc_mrr_at_1000_max
value: 14.749051712948209
- type: nauc_mrr_at_1000_std
value: -1.370198226412231
- type: nauc_mrr_at_100_diff1
value: 36.92276956055459
- type: nauc_mrr_at_100_max
value: 14.686792299720352
- type: nauc_mrr_at_100_std
value: -1.410279466082495
- type: nauc_mrr_at_10_diff1
value: 37.201959911444554
- type: nauc_mrr_at_10_max
value: 14.25820720715842
- type: nauc_mrr_at_10_std
value: -1.7923078894976436
- type: nauc_mrr_at_1_diff1
value: 45.755628967932196
- type: nauc_mrr_at_1_max
value: 16.607201054295086
- type: nauc_mrr_at_1_std
value: -7.0573272764900965
- type: nauc_mrr_at_20_diff1
value: 36.95792032825288
- type: nauc_mrr_at_20_max
value: 14.552930433669317
- type: nauc_mrr_at_20_std
value: -1.543525246181849
- type: nauc_mrr_at_3_diff1
value: 38.61392452473216
- type: nauc_mrr_at_3_max
value: 15.09000017892547
- type: nauc_mrr_at_3_std
value: -2.4206532001081893
- type: nauc_mrr_at_5_diff1
value: 37.8928671772299
- type: nauc_mrr_at_5_max
value: 14.007056266446194
- type: nauc_mrr_at_5_std
value: -2.8039294686296974
- type: nauc_ndcg_at_1000_diff1
value: 33.17069478746769
- type: nauc_ndcg_at_1000_max
value: 16.83474260617637
- type: nauc_ndcg_at_1000_std
value: 2.526704315250276
- type: nauc_ndcg_at_100_diff1
value: 31.913331532987343
- type: nauc_ndcg_at_100_max
value: 15.589987165503793
- type: nauc_ndcg_at_100_std
value: 1.4127265220523926
- type: nauc_ndcg_at_10_diff1
value: 32.72185313773176
- type: nauc_ndcg_at_10_max
value: 12.836797550950171
- type: nauc_ndcg_at_10_std
value: -1.383053414866171
- type: nauc_ndcg_at_1_diff1
value: 45.755628967932196
- type: nauc_ndcg_at_1_max
value: 16.607201054295086
- type: nauc_ndcg_at_1_std
value: -7.0573272764900965
- type: nauc_ndcg_at_20_diff1
value: 32.210491715945096
- type: nauc_ndcg_at_20_max
value: 13.854824191729895
- type: nauc_ndcg_at_20_std
value: -0.32877605104736113
- type: nauc_ndcg_at_3_diff1
value: 35.77867047873611
- type: nauc_ndcg_at_3_max
value: 13.436656917654846
- type: nauc_ndcg_at_3_std
value: -2.2287189056300227
- type: nauc_ndcg_at_5_diff1
value: 34.88057269102703
- type: nauc_ndcg_at_5_max
value: 12.012147587547142
- type: nauc_ndcg_at_5_std
value: -2.912715446298086
- type: nauc_precision_at_1000_diff1
value: 18.52112163492622
- type: nauc_precision_at_1000_max
value: 2.8134846288870183
- type: nauc_precision_at_1000_std
value: 5.016718220137224
- type: nauc_precision_at_100_diff1
value: 24.36563458826747
- type: nauc_precision_at_100_max
value: 5.139325190644362
- type: nauc_precision_at_100_std
value: 5.411737126737265
- type: nauc_precision_at_10_diff1
value: 25.064506671188607
- type: nauc_precision_at_10_max
value: 9.07537853265786
- type: nauc_precision_at_10_std
value: 3.3546079369473714
- type: nauc_precision_at_1_diff1
value: 45.755628967932196
- type: nauc_precision_at_1_max
value: 16.607201054295086
- type: nauc_precision_at_1_std
value: -7.0573272764900965
- type: nauc_precision_at_20_diff1
value: 26.544768972255444
- type: nauc_precision_at_20_max
value: 8.11877633227019
- type: nauc_precision_at_20_std
value: 3.4908791358741156
- type: nauc_precision_at_3_diff1
value: 32.491133814451864
- type: nauc_precision_at_3_max
value: 11.967165947670138
- type: nauc_precision_at_3_std
value: 3.401586036732758
- type: nauc_precision_at_5_diff1
value: 30.046705015207348
- type: nauc_precision_at_5_max
value: 7.852069800334351
- type: nauc_precision_at_5_std
value: 0.691988259732557
- type: nauc_recall_at_1000_diff1
value: 20.54143072751401
- type: nauc_recall_at_1000_max
value: 36.86342351337889
- type: nauc_recall_at_1000_std
value: 29.782267794890714
- type: nauc_recall_at_100_diff1
value: 18.86293596621599
- type: nauc_recall_at_100_max
value: 20.773347136028207
- type: nauc_recall_at_100_std
value: 13.060795971533448
- type: nauc_recall_at_10_diff1
value: 23.567799982717375
- type: nauc_recall_at_10_max
value: 11.114908013016226
- type: nauc_recall_at_10_std
value: 3.185236554617246
- type: nauc_recall_at_1_diff1
value: 45.349178620901554
- type: nauc_recall_at_1_max
value: 16.3746817879971
- type: nauc_recall_at_1_std
value: -9.540072950708476
- type: nauc_recall_at_20_diff1
value: 21.79299761755684
- type: nauc_recall_at_20_max
value: 13.92842132191322
- type: nauc_recall_at_20_std
value: 5.828656933839459
- type: nauc_recall_at_3_diff1
value: 29.366971638804095
- type: nauc_recall_at_3_max
value: 11.688109536903807
- type: nauc_recall_at_3_std
value: -0.3524788019775435
- type: nauc_recall_at_5_diff1
value: 28.44796720594458
- type: nauc_recall_at_5_max
value: 9.24949698451435
- type: nauc_recall_at_5_std
value: -0.5686547673804909
- type: ndcg_at_1
value: 13.834
- type: ndcg_at_10
value: 21.083
- type: ndcg_at_100
value: 26.019
- type: ndcg_at_1000
value: 29.578
- type: ndcg_at_20
value: 22.63
- type: ndcg_at_3
value: 17.309
- type: ndcg_at_5
value: 18.802
- type: precision_at_1
value: 13.834
- type: precision_at_10
value: 4.387
- type: precision_at_100
value: 0.984
- type: precision_at_1000
value: 0.189
- type: precision_at_20
value: 2.787
- type: precision_at_3
value: 8.564
- type: precision_at_5
value: 6.4430000000000005
- type: recall_at_1
value: 10.589
- type: recall_at_10
value: 30.162
- type: recall_at_100
value: 53.418
- type: recall_at_1000
value: 77.039
- type: recall_at_20
value: 36.278
- type: recall_at_3
value: 18.917
- type: recall_at_5
value: 23.026
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 14.978
- type: map_at_1
value: 8.725
- type: map_at_10
value: 12.397
- type: map_at_100
value: 13.200999999999999
- type: map_at_1000
value: 13.320000000000002
- type: map_at_20
value: 12.824
- type: map_at_3
value: 10.886
- type: map_at_5
value: 11.806999999999999
- type: mrr_at_1
value: 9.426987060998151
- type: mrr_at_10
value: 13.470058386879085
- type: mrr_at_100
value: 14.288265285643698
- type: mrr_at_1000
value: 14.388800653131446
- type: mrr_at_20
value: 13.905041096945778
- type: mrr_at_3
value: 11.76833025261861
- type: mrr_at_5
value: 12.87738755391251
- type: nauc_map_at_1000_diff1
value: 26.516673602508238
- type: nauc_map_at_1000_max
value: 18.128898744784223
- type: nauc_map_at_1000_std
value: -3.1241922128008364
- type: nauc_map_at_100_diff1
value: 26.529424903965506
- type: nauc_map_at_100_max
value: 18.121027204975082
- type: nauc_map_at_100_std
value: -3.2676259690788925
- type: nauc_map_at_10_diff1
value: 26.891005808479278
- type: nauc_map_at_10_max
value: 18.150121635095932
- type: nauc_map_at_10_std
value: -3.1818763691131964
- type: nauc_map_at_1_diff1
value: 34.52482250092936
- type: nauc_map_at_1_max
value: 21.403211658773166
- type: nauc_map_at_1_std
value: -7.354875662027327
- type: nauc_map_at_20_diff1
value: 26.71979132749755
- type: nauc_map_at_20_max
value: 18.108875183007527
- type: nauc_map_at_20_std
value: -3.4006672935922633
- type: nauc_map_at_3_diff1
value: 30.46429907650115
- type: nauc_map_at_3_max
value: 20.327713395843396
- type: nauc_map_at_3_std
value: -3.4148598410901316
- type: nauc_map_at_5_diff1
value: 27.98053127124393
- type: nauc_map_at_5_max
value: 18.79633171976155
- type: nauc_map_at_5_std
value: -3.1672774447353413
- type: nauc_mrr_at_1000_diff1
value: 27.329698975753857
- type: nauc_mrr_at_1000_max
value: 19.13329896851427
- type: nauc_mrr_at_1000_std
value: -2.6699259566824516
- type: nauc_mrr_at_100_diff1
value: 27.342939797507377
- type: nauc_mrr_at_100_max
value: 19.12292516908982
- type: nauc_mrr_at_100_std
value: -2.7630089030531506
- type: nauc_mrr_at_10_diff1
value: 27.70674345186378
- type: nauc_mrr_at_10_max
value: 19.1410332139274
- type: nauc_mrr_at_10_std
value: -2.658242192942558
- type: nauc_mrr_at_1_diff1
value: 35.415242782938975
- type: nauc_mrr_at_1_max
value: 22.701431127854693
- type: nauc_mrr_at_1_std
value: -6.788407573683776
- type: nauc_mrr_at_20_diff1
value: 27.525159054745714
- type: nauc_mrr_at_20_max
value: 19.072297716380486
- type: nauc_mrr_at_20_std
value: -2.873908685324186
- type: nauc_mrr_at_3_diff1
value: 31.272337691671826
- type: nauc_mrr_at_3_max
value: 21.135406794969285
- type: nauc_mrr_at_3_std
value: -3.4310898471972044
- type: nauc_mrr_at_5_diff1
value: 28.663498942865967
- type: nauc_mrr_at_5_max
value: 19.869337721787417
- type: nauc_mrr_at_5_std
value: -2.7477312597184036
- type: nauc_ndcg_at_1000_diff1
value: 21.50039886741295
- type: nauc_ndcg_at_1000_max
value: 16.76172996905625
- type: nauc_ndcg_at_1000_std
value: 1.0698201743855864
- type: nauc_ndcg_at_100_diff1
value: 21.629922756878774
- type: nauc_ndcg_at_100_max
value: 16.404192109073197
- type: nauc_ndcg_at_100_std
value: -1.5166564388971011
- type: nauc_ndcg_at_10_diff1
value: 23.368742832143244
- type: nauc_ndcg_at_10_max
value: 16.329548177009606
- type: nauc_ndcg_at_10_std
value: -2.1458488442168235
- type: nauc_ndcg_at_1_diff1
value: 35.415242782938975
- type: nauc_ndcg_at_1_max
value: 22.701431127854693
- type: nauc_ndcg_at_1_std
value: -6.788407573683776
- type: nauc_ndcg_at_20_diff1
value: 22.793508520783316
- type: nauc_ndcg_at_20_max
value: 16.05112254209437
- type: nauc_ndcg_at_20_std
value: -2.761873160653705
- type: nauc_ndcg_at_3_diff1
value: 29.82956298838037
- type: nauc_ndcg_at_3_max
value: 20.062474567529048
- type: nauc_ndcg_at_3_std
value: -2.4980769789508668
- type: nauc_ndcg_at_5_diff1
value: 25.66424410602312
- type: nauc_ndcg_at_5_max
value: 17.601576278936605
- type: nauc_ndcg_at_5_std
value: -2.3231890985166603
- type: nauc_precision_at_1000_diff1
value: 3.709316535367016
- type: nauc_precision_at_1000_max
value: 10.546640188020135
- type: nauc_precision_at_1000_std
value: 18.202854906721562
- type: nauc_precision_at_100_diff1
value: 8.291596389411799
- type: nauc_precision_at_100_max
value: 14.644356710423942
- type: nauc_precision_at_100_std
value: 5.259044565744187
- type: nauc_precision_at_10_diff1
value: 14.9863600560976
- type: nauc_precision_at_10_max
value: 12.772849786137709
- type: nauc_precision_at_10_std
value: 1.6621034698073962
- type: nauc_precision_at_1_diff1
value: 35.415242782938975
- type: nauc_precision_at_1_max
value: 22.701431127854693
- type: nauc_precision_at_1_std
value: -6.788407573683776
- type: nauc_precision_at_20_diff1
value: 13.084814659316926
- type: nauc_precision_at_20_max
value: 13.024432776766675
- type: nauc_precision_at_20_std
value: 0.18909201285442837
- type: nauc_precision_at_3_diff1
value: 27.936920978190987
- type: nauc_precision_at_3_max
value: 18.680011829390438
- type: nauc_precision_at_3_std
value: -1.1851787205474336
- type: nauc_precision_at_5_diff1
value: 20.487312379443644
- type: nauc_precision_at_5_max
value: 15.500096864522916
- type: nauc_precision_at_5_std
value: 0.20075767744041675
- type: nauc_recall_at_1000_diff1
value: 5.762022210382103
- type: nauc_recall_at_1000_max
value: 13.160918374309539
- type: nauc_recall_at_1000_std
value: 19.14372005911137
- type: nauc_recall_at_100_diff1
value: 10.314461398699912
- type: nauc_recall_at_100_max
value: 11.95089820438129
- type: nauc_recall_at_100_std
value: 2.5226003737726694
- type: nauc_recall_at_10_diff1
value: 14.809747725503208
- type: nauc_recall_at_10_max
value: 11.374320213352947
- type: nauc_recall_at_10_std
value: -0.5456850002607359
- type: nauc_recall_at_1_diff1
value: 34.52482250092936
- type: nauc_recall_at_1_max
value: 21.403211658773166
- type: nauc_recall_at_1_std
value: -7.354875662027327
- type: nauc_recall_at_20_diff1
value: 14.093871737295386
- type: nauc_recall_at_20_max
value: 10.673857337966515
- type: nauc_recall_at_20_std
value: -2.282867759773375
- type: nauc_recall_at_3_diff1
value: 26.908608208530637
- type: nauc_recall_at_3_max
value: 18.078128413017662
- type: nauc_recall_at_3_std
value: -0.7517685230312128
- type: nauc_recall_at_5_diff1
value: 19.854119160897675
- type: nauc_recall_at_5_max
value: 13.986759331769022
- type: nauc_recall_at_5_std
value: -0.724937240578743
- type: ndcg_at_1
value: 9.427000000000001
- type: ndcg_at_10
value: 14.978
- type: ndcg_at_100
value: 19.341
- type: ndcg_at_1000
value: 22.834
- type: ndcg_at_20
value: 16.483999999999998
- type: ndcg_at_3
value: 11.875
- type: ndcg_at_5
value: 13.536999999999999
- type: precision_at_1
value: 9.427000000000001
- type: precision_at_10
value: 2.495
- type: precision_at_100
value: 0.508
- type: precision_at_1000
value: 0.086
- type: precision_at_20
value: 1.608
- type: precision_at_3
value: 4.9910000000000005
- type: precision_at_5
value: 3.9190000000000005
- type: recall_at_1
value: 8.725
- type: recall_at_10
value: 22.020999999999997
- type: recall_at_100
value: 42.585
- type: recall_at_1000
value: 69.87400000000001
- type: recall_at_20
value: 27.572000000000003
- type: recall_at_3
value: 13.869000000000002
- type: recall_at_5
value: 17.702
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 14.771999999999998
- type: map_at_1
value: 5.5489999999999995
- type: map_at_10
value: 9.677
- type: map_at_100
value: 10.946
- type: map_at_1000
value: 11.119
- type: map_at_20
value: 10.335999999999999
- type: map_at_3
value: 7.869
- type: map_at_5
value: 8.741999999999999
- type: mrr_at_1
value: 13.029315960912053
- type: mrr_at_10
value: 20.339744584044244
- type: mrr_at_100
value: 21.54484002453409
- type: mrr_at_1000
value: 21.616919381723786
- type: mrr_at_20
value: 21.139241607046472
- type: mrr_at_3
value: 17.491856677524435
- type: mrr_at_5
value: 19.071661237785012
- type: nauc_map_at_1000_diff1
value: 26.164411068020073
- type: nauc_map_at_1000_max
value: 23.58735724160517
- type: nauc_map_at_1000_std
value: 18.779016401499614
- type: nauc_map_at_100_diff1
value: 26.214988804799972
- type: nauc_map_at_100_max
value: 23.406310727713407
- type: nauc_map_at_100_std
value: 18.460043360320917
- type: nauc_map_at_10_diff1
value: 26.718397914143065
- type: nauc_map_at_10_max
value: 21.229694457847526
- type: nauc_map_at_10_std
value: 15.390083455519378
- type: nauc_map_at_1_diff1
value: 37.32766813952627
- type: nauc_map_at_1_max
value: 19.515906010846315
- type: nauc_map_at_1_std
value: 9.99207652106678
- type: nauc_map_at_20_diff1
value: 26.465578269196715
- type: nauc_map_at_20_max
value: 22.398156286792933
- type: nauc_map_at_20_std
value: 17.078418627633006
- type: nauc_map_at_3_diff1
value: 29.759256354844837
- type: nauc_map_at_3_max
value: 18.385599223153708
- type: nauc_map_at_3_std
value: 11.366056030872816
- type: nauc_map_at_5_diff1
value: 28.241520126871393
- type: nauc_map_at_5_max
value: 19.78438163465289
- type: nauc_map_at_5_std
value: 13.459940207726998
- type: nauc_mrr_at_1000_diff1
value: 21.12409148907605
- type: nauc_mrr_at_1000_max
value: 23.77746871154926
- type: nauc_mrr_at_1000_std
value: 20.15537425469562
- type: nauc_mrr_at_100_diff1
value: 21.12004667990828
- type: nauc_mrr_at_100_max
value: 23.78827313202278
- type: nauc_mrr_at_100_std
value: 20.187546696894692
- type: nauc_mrr_at_10_diff1
value: 21.183801786810566
- type: nauc_mrr_at_10_max
value: 23.02472680238422
- type: nauc_mrr_at_10_std
value: 18.94062182333125
- type: nauc_mrr_at_1_diff1
value: 29.250683054246483
- type: nauc_mrr_at_1_max
value: 21.216233159084112
- type: nauc_mrr_at_1_std
value: 13.676910696549449
- type: nauc_mrr_at_20_diff1
value: 21.038599683577484
- type: nauc_mrr_at_20_max
value: 23.712981135036166
- type: nauc_mrr_at_20_std
value: 20.008317056296054
- type: nauc_mrr_at_3_diff1
value: 21.924062586657143
- type: nauc_mrr_at_3_max
value: 21.42184982676593
- type: nauc_mrr_at_3_std
value: 16.457179657031556
- type: nauc_mrr_at_5_diff1
value: 21.656696900775223
- type: nauc_mrr_at_5_max
value: 21.98298849500632
- type: nauc_mrr_at_5_std
value: 17.601656923653913
- type: nauc_ndcg_at_1000_diff1
value: 19.858622397094305
- type: nauc_ndcg_at_1000_max
value: 30.747733801747284
- type: nauc_ndcg_at_1000_std
value: 31.099839929023442
- type: nauc_ndcg_at_100_diff1
value: 20.47505630498792
- type: nauc_ndcg_at_100_max
value: 29.271746216110035
- type: nauc_ndcg_at_100_std
value: 28.396186616156115
- type: nauc_ndcg_at_10_diff1
value: 21.563095586027515
- type: nauc_ndcg_at_10_max
value: 23.47146695177757
- type: nauc_ndcg_at_10_std
value: 19.743756127255523
- type: nauc_ndcg_at_1_diff1
value: 29.250683054246483
- type: nauc_ndcg_at_1_max
value: 21.216233159084112
- type: nauc_ndcg_at_1_std
value: 13.676910696549449
- type: nauc_ndcg_at_20_diff1
value: 20.85499472041572
- type: nauc_ndcg_at_20_max
value: 25.959345574497316
- type: nauc_ndcg_at_20_std
value: 23.727313893098067
- type: nauc_ndcg_at_3_diff1
value: 24.777898795425166
- type: nauc_ndcg_at_3_max
value: 20.273718923990444
- type: nauc_ndcg_at_3_std
value: 14.474447188126685
- type: nauc_ndcg_at_5_diff1
value: 23.66758409019224
- type: nauc_ndcg_at_5_max
value: 20.977206695913566
- type: nauc_ndcg_at_5_std
value: 16.27106724405967
- type: nauc_precision_at_1000_diff1
value: 0.8707948826157808
- type: nauc_precision_at_1000_max
value: 34.30239711148936
- type: nauc_precision_at_1000_std
value: 43.664633287089586
- type: nauc_precision_at_100_diff1
value: 6.854023820044692
- type: nauc_precision_at_100_max
value: 37.282323173227546
- type: nauc_precision_at_100_std
value: 42.33392649552268
- type: nauc_precision_at_10_diff1
value: 11.091638888631259
- type: nauc_precision_at_10_max
value: 28.594826391973132
- type: nauc_precision_at_10_std
value: 29.321648755228264
- type: nauc_precision_at_1_diff1
value: 29.250683054246483
- type: nauc_precision_at_1_max
value: 21.216233159084112
- type: nauc_precision_at_1_std
value: 13.676910696549449
- type: nauc_precision_at_20_diff1
value: 9.594100825895916
- type: nauc_precision_at_20_max
value: 33.200054445724255
- type: nauc_precision_at_20_std
value: 36.78985295189952
- type: nauc_precision_at_3_diff1
value: 17.110916647434916
- type: nauc_precision_at_3_max
value: 21.20074776254172
- type: nauc_precision_at_3_std
value: 18.67703775540859
- type: nauc_precision_at_5_diff1
value: 15.501350898541641
- type: nauc_precision_at_5_max
value: 24.499520173206353
- type: nauc_precision_at_5_std
value: 23.53022513283104
- type: nauc_recall_at_1000_diff1
value: 7.210483259093574
- type: nauc_recall_at_1000_max
value: 35.51790397302799
- type: nauc_recall_at_1000_std
value: 45.97048584755478
- type: nauc_recall_at_100_diff1
value: 11.112587178551932
- type: nauc_recall_at_100_max
value: 31.283221366595114
- type: nauc_recall_at_100_std
value: 36.8933237158813
- type: nauc_recall_at_10_diff1
value: 14.523694347361332
- type: nauc_recall_at_10_max
value: 22.980982127733885
- type: nauc_recall_at_10_std
value: 21.638404151421625
- type: nauc_recall_at_1_diff1
value: 37.32766813952627
- type: nauc_recall_at_1_max
value: 19.515906010846315
- type: nauc_recall_at_1_std
value: 9.99207652106678
- type: nauc_recall_at_20_diff1
value: 12.344344516597259
- type: nauc_recall_at_20_max
value: 26.432279445759914
- type: nauc_recall_at_20_std
value: 28.612814617982608
- type: nauc_recall_at_3_diff1
value: 22.559118848361635
- type: nauc_recall_at_3_max
value: 17.644261245104172
- type: nauc_recall_at_3_std
value: 12.654124975909692
- type: nauc_recall_at_5_diff1
value: 19.208115562541288
- type: nauc_recall_at_5_max
value: 19.766812655523903
- type: nauc_recall_at_5_std
value: 16.378285780040738
- type: ndcg_at_1
value: 13.028999999999998
- type: ndcg_at_10
value: 14.771999999999998
- type: ndcg_at_100
value: 20.779
- type: ndcg_at_1000
value: 24.553
- type: ndcg_at_20
value: 17.085
- type: ndcg_at_3
value: 11.203000000000001
- type: ndcg_at_5
value: 12.475
- type: precision_at_1
value: 13.028999999999998
- type: precision_at_10
value: 4.893
- type: precision_at_100
value: 1.126
- type: precision_at_1000
value: 0.181
- type: precision_at_20
value: 3.427
- type: precision_at_3
value: 8.578
- type: precision_at_5
value: 6.9190000000000005
- type: recall_at_1
value: 5.5489999999999995
- type: recall_at_10
value: 18.955
- type: recall_at_100
value: 40.041
- type: recall_at_1000
value: 61.970000000000006
- type: recall_at_20
value: 25.535999999999998
- type: recall_at_3
value: 10.41
- type: recall_at_5
value: 13.636999999999999
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 22.325999999999997
- type: map_at_1
value: 4.059
- type: map_at_10
value: 8.817
- type: map_at_100
value: 12.668
- type: map_at_1000
value: 13.559
- type: map_at_20
value: 10.344000000000001
- type: map_at_3
value: 6.4030000000000005
- type: map_at_5
value: 7.411
- type: mrr_at_1
value: 41.0
- type: mrr_at_10
value: 50.98363095238096
- type: mrr_at_100
value: 51.72977669775032
- type: mrr_at_1000
value: 51.752327140423695
- type: mrr_at_20
value: 51.50770148324331
- type: mrr_at_3
value: 48.0
- type: mrr_at_5
value: 49.5125
- type: nauc_map_at_1000_diff1
value: 29.149373818439265
- type: nauc_map_at_1000_max
value: 28.195342365031212
- type: nauc_map_at_1000_std
value: 35.55065720761848
- type: nauc_map_at_100_diff1
value: 29.348983394865396
- type: nauc_map_at_100_max
value: 25.633550032614806
- type: nauc_map_at_100_std
value: 32.52451720021242
- type: nauc_map_at_10_diff1
value: 36.25237616876193
- type: nauc_map_at_10_max
value: 10.433718867684474
- type: nauc_map_at_10_std
value: 16.315904343848334
- type: nauc_map_at_1_diff1
value: 48.50316629206164
- type: nauc_map_at_1_max
value: 2.5571639528096277
- type: nauc_map_at_1_std
value: 5.472788157421047
- type: nauc_map_at_20_diff1
value: 34.45541065707478
- type: nauc_map_at_20_max
value: 15.48733575140639
- type: nauc_map_at_20_std
value: 22.375360952444645
- type: nauc_map_at_3_diff1
value: 40.58349942532284
- type: nauc_map_at_3_max
value: 4.194993964973337
- type: nauc_map_at_3_std
value: 8.737777513681708
- type: nauc_map_at_5_diff1
value: 39.0798474228746
- type: nauc_map_at_5_max
value: 5.429548462682357
- type: nauc_map_at_5_std
value: 10.687290975485238
- type: nauc_mrr_at_1000_diff1
value: 31.26810228227898
- type: nauc_mrr_at_1000_max
value: 43.28972948203106
- type: nauc_mrr_at_1000_std
value: 27.97866115458008
- type: nauc_mrr_at_100_diff1
value: 31.252414298595298
- type: nauc_mrr_at_100_max
value: 43.28429517353382
- type: nauc_mrr_at_100_std
value: 27.981652093220422
- type: nauc_mrr_at_10_diff1
value: 31.31952045872999
- type: nauc_mrr_at_10_max
value: 43.15007965554428
- type: nauc_mrr_at_10_std
value: 27.54085208273479
- type: nauc_mrr_at_1_diff1
value: 33.447111099629296
- type: nauc_mrr_at_1_max
value: 40.639975715928024
- type: nauc_mrr_at_1_std
value: 27.664466460854854
- type: nauc_mrr_at_20_diff1
value: 31.29766674009583
- type: nauc_mrr_at_20_max
value: 43.22994957875351
- type: nauc_mrr_at_20_std
value: 27.9022380444922
- type: nauc_mrr_at_3_diff1
value: 31.456550406372802
- type: nauc_mrr_at_3_max
value: 43.45211663706338
- type: nauc_mrr_at_3_std
value: 27.754622154044906
- type: nauc_mrr_at_5_diff1
value: 31.744167906758573
- type: nauc_mrr_at_5_max
value: 43.358567652212976
- type: nauc_mrr_at_5_std
value: 27.95435203187726
- type: nauc_ndcg_at_1000_diff1
value: 28.872533419650097
- type: nauc_ndcg_at_1000_max
value: 38.367438067028445
- type: nauc_ndcg_at_1000_std
value: 45.56262810614998
- type: nauc_ndcg_at_100_diff1
value: 28.224480561200004
- type: nauc_ndcg_at_100_max
value: 30.269004490486186
- type: nauc_ndcg_at_100_std
value: 36.680948795273444
- type: nauc_ndcg_at_10_diff1
value: 30.11778029333171
- type: nauc_ndcg_at_10_max
value: 29.25662355248585
- type: nauc_ndcg_at_10_std
value: 28.37564750887575
- type: nauc_ndcg_at_1_diff1
value: 34.200585955057214
- type: nauc_ndcg_at_1_max
value: 27.32267704776983
- type: nauc_ndcg_at_1_std
value: 20.070336621457255
- type: nauc_ndcg_at_20_diff1
value: 30.156546268588553
- type: nauc_ndcg_at_20_max
value: 25.99567370220745
- type: nauc_ndcg_at_20_std
value: 29.36968221162758
- type: nauc_ndcg_at_3_diff1
value: 29.642608252509245
- type: nauc_ndcg_at_3_max
value: 31.964467916838306
- type: nauc_ndcg_at_3_std
value: 25.549340163113797
- type: nauc_ndcg_at_5_diff1
value: 30.104992922460404
- type: nauc_ndcg_at_5_max
value: 31.04270512814639
- type: nauc_ndcg_at_5_std
value: 27.688390384767757
- type: nauc_precision_at_1000_diff1
value: -7.77879940579617
- type: nauc_precision_at_1000_max
value: 29.02383046450357
- type: nauc_precision_at_1000_std
value: 29.239802521893793
- type: nauc_precision_at_100_diff1
value: 0.5367752232887497
- type: nauc_precision_at_100_max
value: 45.20878632602283
- type: nauc_precision_at_100_std
value: 44.818028589063324
- type: nauc_precision_at_10_diff1
value: 12.42234237789027
- type: nauc_precision_at_10_max
value: 43.260904263882104
- type: nauc_precision_at_10_std
value: 38.33705651495131
- type: nauc_precision_at_1_diff1
value: 33.447111099629296
- type: nauc_precision_at_1_max
value: 40.639975715928024
- type: nauc_precision_at_1_std
value: 27.664466460854854
- type: nauc_precision_at_20_diff1
value: 8.665744338069603
- type: nauc_precision_at_20_max
value: 45.42654329313483
- type: nauc_precision_at_20_std
value: 43.01981922769551
- type: nauc_precision_at_3_diff1
value: 18.612027834320646
- type: nauc_precision_at_3_max
value: 41.74529031915723
- type: nauc_precision_at_3_std
value: 31.443614275628185
- type: nauc_precision_at_5_diff1
value: 16.59901783924638
- type: nauc_precision_at_5_max
value: 43.87805345673531
- type: nauc_precision_at_5_std
value: 35.77729700994364
- type: nauc_recall_at_1000_diff1
value: 15.605491669695336
- type: nauc_recall_at_1000_max
value: 28.937032865375567
- type: nauc_recall_at_1000_std
value: 51.29409263551372
- type: nauc_recall_at_100_diff1
value: 14.60626342855007
- type: nauc_recall_at_100_max
value: 19.742808089206772
- type: nauc_recall_at_100_std
value: 34.002728054787305
- type: nauc_recall_at_10_diff1
value: 23.608867385986805
- type: nauc_recall_at_10_max
value: -1.5056012290538128
- type: nauc_recall_at_10_std
value: 6.72388525739291
- type: nauc_recall_at_1_diff1
value: 48.50316629206164
- type: nauc_recall_at_1_max
value: 2.5571639528096277
- type: nauc_recall_at_1_std
value: 5.472788157421047
- type: nauc_recall_at_20_diff1
value: 23.169940060107784
- type: nauc_recall_at_20_max
value: 3.3775837661388577
- type: nauc_recall_at_20_std
value: 14.687180697705957
- type: nauc_recall_at_3_diff1
value: 34.02785181074422
- type: nauc_recall_at_3_max
value: 0.16807738159490754
- type: nauc_recall_at_3_std
value: 3.697714714085979
- type: nauc_recall_at_5_diff1
value: 29.72623580447505
- type: nauc_recall_at_5_max
value: -3.2040020921850876
- type: nauc_recall_at_5_std
value: 3.1413050324155187
- type: ndcg_at_1
value: 29.875
- type: ndcg_at_10
value: 22.325999999999997
- type: ndcg_at_100
value: 26.064999999999998
- type: ndcg_at_1000
value: 32.281
- type: ndcg_at_20
value: 22.470000000000002
- type: ndcg_at_3
value: 25.022
- type: ndcg_at_5
value: 23.202
- type: precision_at_1
value: 41.0
- type: precision_at_10
value: 19.875
- type: precision_at_100
value: 6.575
- type: precision_at_1000
value: 1.341
- type: precision_at_20
value: 15.475
- type: precision_at_3
value: 30.416999999999998
- type: precision_at_5
value: 24.9
- type: recall_at_1
value: 4.059
- type: recall_at_10
value: 13.783999999999999
- type: recall_at_100
value: 32.749
- type: recall_at_1000
value: 54.588
- type: recall_at_20
value: 19.334
- type: recall_at_3
value: 7.481999999999999
- type: recall_at_5
value: 9.869
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 44.71
- type: f1
value: 40.4341929223557
- type: f1_weighted
value: 46.99336148050091
- type: main_score
value: 44.71
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 26.815
- type: map_at_1
value: 14.388000000000002
- type: map_at_10
value: 21.918000000000003
- type: map_at_100
value: 22.965
- type: map_at_1000
value: 23.039
- type: map_at_20
value: 22.529
- type: map_at_3
value: 19.299
- type: map_at_5
value: 20.616
- type: mrr_at_1
value: 15.241524152415241
- type: mrr_at_10
value: 23.248259349744465
- type: mrr_at_100
value: 24.29525983878544
- type: mrr_at_1000
value: 24.364168282948302
- type: mrr_at_20
value: 23.8732428545265
- type: mrr_at_3
value: 20.48204820482046
- type: mrr_at_5
value: 21.883188318831934
- type: nauc_map_at_1000_diff1
value: 21.655721363953035
- type: nauc_map_at_1000_max
value: 7.62632839503459
- type: nauc_map_at_1000_std
value: -5.96263011077555
- type: nauc_map_at_100_diff1
value: 21.65449915845023
- type: nauc_map_at_100_max
value: 7.620603349218483
- type: nauc_map_at_100_std
value: -5.971649197942024
- type: nauc_map_at_10_diff1
value: 21.739985684584525
- type: nauc_map_at_10_max
value: 7.088916079578887
- type: nauc_map_at_10_std
value: -6.8118419036657665
- type: nauc_map_at_1_diff1
value: 27.903781721236314
- type: nauc_map_at_1_max
value: 4.87951257147686
- type: nauc_map_at_1_std
value: -9.402837727588127
- type: nauc_map_at_20_diff1
value: 21.667911401750317
- type: nauc_map_at_20_max
value: 7.450247274464644
- type: nauc_map_at_20_std
value: -6.28025758640821
- type: nauc_map_at_3_diff1
value: 23.068479934395373
- type: nauc_map_at_3_max
value: 6.054163763350815
- type: nauc_map_at_3_std
value: -7.968430487910183
- type: nauc_map_at_5_diff1
value: 22.003598455582406
- type: nauc_map_at_5_max
value: 6.667068621095155
- type: nauc_map_at_5_std
value: -7.356892532294304
- type: nauc_mrr_at_1000_diff1
value: 21.43312812034654
- type: nauc_mrr_at_1000_max
value: 7.853432973026932
- type: nauc_mrr_at_1000_std
value: -6.016594874669531
- type: nauc_mrr_at_100_diff1
value: 21.421027736461575
- type: nauc_mrr_at_100_max
value: 7.857695018836121
- type: nauc_mrr_at_100_std
value: -6.008152225210861
- type: nauc_mrr_at_10_diff1
value: 21.47275704705045
- type: nauc_mrr_at_10_max
value: 7.361739773464361
- type: nauc_mrr_at_10_std
value: -6.756627592543245
- type: nauc_mrr_at_1_diff1
value: 27.60421073842263
- type: nauc_mrr_at_1_max
value: 4.998056898839529
- type: nauc_mrr_at_1_std
value: -9.442871457148726
- type: nauc_mrr_at_20_diff1
value: 21.401638574498012
- type: nauc_mrr_at_20_max
value: 7.689207705331705
- type: nauc_mrr_at_20_std
value: -6.267461818245488
- type: nauc_mrr_at_3_diff1
value: 22.706324875653372
- type: nauc_mrr_at_3_max
value: 6.227630142636092
- type: nauc_mrr_at_3_std
value: -8.065029180110763
- type: nauc_mrr_at_5_diff1
value: 21.761811369171628
- type: nauc_mrr_at_5_max
value: 6.9062748987713265
- type: nauc_mrr_at_5_std
value: -7.3516871119086975
- type: nauc_ndcg_at_1000_diff1
value: 19.10514687283966
- type: nauc_ndcg_at_1000_max
value: 10.896927197321096
- type: nauc_ndcg_at_1000_std
value: -1.1781904676819126
- type: nauc_ndcg_at_100_diff1
value: 18.99144163290363
- type: nauc_ndcg_at_100_max
value: 10.891493894654618
- type: nauc_ndcg_at_100_std
value: -1.2375767691785773
- type: nauc_ndcg_at_10_diff1
value: 19.425260233591274
- type: nauc_ndcg_at_10_max
value: 8.5170285343844
- type: nauc_ndcg_at_10_std
value: -5.08694141032149
- type: nauc_ndcg_at_1_diff1
value: 27.60421073842263
- type: nauc_ndcg_at_1_max
value: 4.998056898839529
- type: nauc_ndcg_at_1_std
value: -9.442871457148726
- type: nauc_ndcg_at_20_diff1
value: 19.182333879372766
- type: nauc_ndcg_at_20_max
value: 9.725326537318061
- type: nauc_ndcg_at_20_std
value: -3.3215888170265337
- type: nauc_ndcg_at_3_diff1
value: 21.68892037139692
- type: nauc_ndcg_at_3_max
value: 6.424582762507422
- type: nauc_ndcg_at_3_std
value: -7.446689750696121
- type: nauc_ndcg_at_5_diff1
value: 19.98277916021606
- type: nauc_ndcg_at_5_max
value: 7.503447105677768
- type: nauc_ndcg_at_5_std
value: -6.353055635065993
- type: nauc_precision_at_1000_diff1
value: 0.94551504365766
- type: nauc_precision_at_1000_max
value: 26.202950984563913
- type: nauc_precision_at_1000_std
value: 26.01649052806106
- type: nauc_precision_at_100_diff1
value: 7.500434896405031
- type: nauc_precision_at_100_max
value: 23.081873269296366
- type: nauc_precision_at_100_std
value: 18.67428201659582
- type: nauc_precision_at_10_diff1
value: 13.347162393780213
- type: nauc_precision_at_10_max
value: 12.824521844898237
- type: nauc_precision_at_10_std
value: -0.3528264106373464
- type: nauc_precision_at_1_diff1
value: 27.60421073842263
- type: nauc_precision_at_1_max
value: 4.998056898839529
- type: nauc_precision_at_1_std
value: -9.442871457148726
- type: nauc_precision_at_20_diff1
value: 11.890778484289347
- type: nauc_precision_at_20_max
value: 16.888519506633404
- type: nauc_precision_at_20_std
value: 5.986698398244371
- type: nauc_precision_at_3_diff1
value: 18.076145969615585
- type: nauc_precision_at_3_max
value: 7.3944113909218405
- type: nauc_precision_at_3_std
value: -6.161877822968247
- type: nauc_precision_at_5_diff1
value: 14.735397341254108
- type: nauc_precision_at_5_max
value: 9.743184544463226
- type: nauc_precision_at_5_std
value: -3.8509248959327995
- type: nauc_recall_at_1000_diff1
value: 5.1388788747445036
- type: nauc_recall_at_1000_max
value: 28.08149984627779
- type: nauc_recall_at_1000_std
value: 29.07743185455911
- type: nauc_recall_at_100_diff1
value: 9.609814975019047
- type: nauc_recall_at_100_max
value: 22.2426133779678
- type: nauc_recall_at_100_std
value: 17.486934350968994
- type: nauc_recall_at_10_diff1
value: 13.521910300882013
- type: nauc_recall_at_10_max
value: 11.50993372176311
- type: nauc_recall_at_10_std
value: -0.6904522448973269
- type: nauc_recall_at_1_diff1
value: 27.903781721236314
- type: nauc_recall_at_1_max
value: 4.87951257147686
- type: nauc_recall_at_1_std
value: -9.402837727588127
- type: nauc_recall_at_20_diff1
value: 12.471865804084342
- type: nauc_recall_at_20_max
value: 15.46145355412204
- type: nauc_recall_at_20_std
value: 5.141306595627015
- type: nauc_recall_at_3_diff1
value: 18.546625288206567
- type: nauc_recall_at_3_max
value: 7.1131838964541325
- type: nauc_recall_at_3_std
value: -5.949003808218984
- type: nauc_recall_at_5_diff1
value: 14.902378618773394
- type: nauc_recall_at_5_max
value: 9.104574501069981
- type: nauc_recall_at_5_std
value: -3.7870817474786387
- type: ndcg_at_1
value: 15.242
- type: ndcg_at_10
value: 26.815
- type: ndcg_at_100
value: 32.104
- type: ndcg_at_1000
value: 34.182
- type: ndcg_at_20
value: 29.017
- type: ndcg_at_3
value: 21.255
- type: ndcg_at_5
value: 23.652
- type: precision_at_1
value: 15.242
- type: precision_at_10
value: 4.443
- type: precision_at_100
value: 0.7250000000000001
- type: precision_at_1000
value: 0.092
- type: precision_at_20
value: 2.696
- type: precision_at_3
value: 9.211
- type: precision_at_5
value: 6.796
- type: recall_at_1
value: 14.388000000000002
- type: recall_at_10
value: 41.082
- type: recall_at_100
value: 65.689
- type: recall_at_1000
value: 81.819
- type: recall_at_20
value: 49.55
- type: recall_at_3
value: 25.728
- type: recall_at_5
value: 31.5
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 14.184
- type: map_at_1
value: 6.694999999999999
- type: map_at_10
value: 10.288
- type: map_at_100
value: 11.42
- type: map_at_1000
value: 11.611
- type: map_at_20
value: 10.822
- type: map_at_3
value: 8.763
- type: map_at_5
value: 9.424000000000001
- type: mrr_at_1
value: 12.808641975308642
- type: mrr_at_10
value: 17.855428179502255
- type: mrr_at_100
value: 18.973068297161007
- type: mrr_at_1000
value: 19.0715286472504
- type: mrr_at_20
value: 18.453861173947747
- type: mrr_at_3
value: 16.023662551440328
- type: mrr_at_5
value: 16.78755144032922
- type: nauc_map_at_1000_diff1
value: 24.097294182770188
- type: nauc_map_at_1000_max
value: 3.2685765629171533
- type: nauc_map_at_1000_std
value: -0.9979553125043357
- type: nauc_map_at_100_diff1
value: 24.105146581815614
- type: nauc_map_at_100_max
value: 3.0585457539422047
- type: nauc_map_at_100_std
value: -1.1468311670507554
- type: nauc_map_at_10_diff1
value: 24.52821887099821
- type: nauc_map_at_10_max
value: 2.7550316833287845
- type: nauc_map_at_10_std
value: -2.4843467627121165
- type: nauc_map_at_1_diff1
value: 30.95101344161583
- type: nauc_map_at_1_max
value: -0.5157549348933295
- type: nauc_map_at_1_std
value: -4.958850144761861
- type: nauc_map_at_20_diff1
value: 23.847109306721386
- type: nauc_map_at_20_max
value: 2.6941597821242254
- type: nauc_map_at_20_std
value: -2.1229202995449743
- type: nauc_map_at_3_diff1
value: 26.478966155221574
- type: nauc_map_at_3_max
value: 1.0192673396107754
- type: nauc_map_at_3_std
value: -3.4976902184544514
- type: nauc_map_at_5_diff1
value: 25.693752650368516
- type: nauc_map_at_5_max
value: 3.0475782614572404
- type: nauc_map_at_5_std
value: -3.0222860925053676
- type: nauc_mrr_at_1000_diff1
value: 25.96667963483585
- type: nauc_mrr_at_1000_max
value: 4.9805028001171365
- type: nauc_mrr_at_1000_std
value: -5.051980290318263
- type: nauc_mrr_at_100_diff1
value: 25.9283221950633
- type: nauc_mrr_at_100_max
value: 4.913658610096335
- type: nauc_mrr_at_100_std
value: -5.0647715925530195
- type: nauc_mrr_at_10_diff1
value: 26.43424041732111
- type: nauc_mrr_at_10_max
value: 4.944510711422189
- type: nauc_mrr_at_10_std
value: -5.508594477775555
- type: nauc_mrr_at_1_diff1
value: 32.70658156756328
- type: nauc_mrr_at_1_max
value: 4.304979000202345
- type: nauc_mrr_at_1_std
value: -7.012509390453069
- type: nauc_mrr_at_20_diff1
value: 25.85251165430012
- type: nauc_mrr_at_20_max
value: 4.863947427538521
- type: nauc_mrr_at_20_std
value: -5.4951389153390435
- type: nauc_mrr_at_3_diff1
value: 28.17727197125625
- type: nauc_mrr_at_3_max
value: 3.5466912793013132
- type: nauc_mrr_at_3_std
value: -5.697472529642202
- type: nauc_mrr_at_5_diff1
value: 27.268090979681308
- type: nauc_mrr_at_5_max
value: 4.255096917087457
- type: nauc_mrr_at_5_std
value: -6.0629755254741875
- type: nauc_ndcg_at_1000_diff1
value: 21.134894210565516
- type: nauc_ndcg_at_1000_max
value: 8.352509871572998
- type: nauc_ndcg_at_1000_std
value: 4.917656309055958
- type: nauc_ndcg_at_100_diff1
value: 21.22918055007241
- type: nauc_ndcg_at_100_max
value: 4.962139470825788
- type: nauc_ndcg_at_100_std
value: 2.6274596028306605
- type: nauc_ndcg_at_10_diff1
value: 22.383825724165597
- type: nauc_ndcg_at_10_max
value: 4.199066108410538
- type: nauc_ndcg_at_10_std
value: -2.180189858009522
- type: nauc_ndcg_at_1_diff1
value: 32.70658156756328
- type: nauc_ndcg_at_1_max
value: 4.304979000202345
- type: nauc_ndcg_at_1_std
value: -7.012509390453069
- type: nauc_ndcg_at_20_diff1
value: 20.56088961362714
- type: nauc_ndcg_at_20_max
value: 3.850520965875747
- type: nauc_ndcg_at_20_std
value: -1.5668477618878296
- type: nauc_ndcg_at_3_diff1
value: 25.19652158244801
- type: nauc_ndcg_at_3_max
value: 2.9159625389970745
- type: nauc_ndcg_at_3_std
value: -5.262309592366074
- type: nauc_ndcg_at_5_diff1
value: 24.387149626781675
- type: nauc_ndcg_at_5_max
value: 4.582549659190017
- type: nauc_ndcg_at_5_std
value: -4.2234362048264344
- type: nauc_precision_at_1000_diff1
value: 5.818665891519602
- type: nauc_precision_at_1000_max
value: 21.00907511949278
- type: nauc_precision_at_1000_std
value: 7.666381615095223
- type: nauc_precision_at_100_diff1
value: 12.449744456327732
- type: nauc_precision_at_100_max
value: 13.892557453999277
- type: nauc_precision_at_100_std
value: 8.010397294775991
- type: nauc_precision_at_10_diff1
value: 16.87222376552928
- type: nauc_precision_at_10_max
value: 9.553484675352895
- type: nauc_precision_at_10_std
value: -0.3863038242955302
- type: nauc_precision_at_1_diff1
value: 32.70658156756328
- type: nauc_precision_at_1_max
value: 4.304979000202345
- type: nauc_precision_at_1_std
value: -7.012509390453069
- type: nauc_precision_at_20_diff1
value: 11.634964306167344
- type: nauc_precision_at_20_max
value: 8.648225058127288
- type: nauc_precision_at_20_std
value: -0.593009683161987
- type: nauc_precision_at_3_diff1
value: 22.40721652841133
- type: nauc_precision_at_3_max
value: 5.441796570309786
- type: nauc_precision_at_3_std
value: -5.912794042227691
- type: nauc_precision_at_5_diff1
value: 20.994475847749577
- type: nauc_precision_at_5_max
value: 9.609401441679715
- type: nauc_precision_at_5_std
value: -5.180422220012539
- type: nauc_recall_at_1000_diff1
value: 7.674462981307882
- type: nauc_recall_at_1000_max
value: 17.216307576877256
- type: nauc_recall_at_1000_std
value: 29.483396762052937
- type: nauc_recall_at_100_diff1
value: 10.932957210915704
- type: nauc_recall_at_100_max
value: 3.727665900953925
- type: nauc_recall_at_100_std
value: 12.728089920404603
- type: nauc_recall_at_10_diff1
value: 14.59138142453412
- type: nauc_recall_at_10_max
value: 4.0595316114085085
- type: nauc_recall_at_10_std
value: 0.31872218135341895
- type: nauc_recall_at_1_diff1
value: 30.95101344161583
- type: nauc_recall_at_1_max
value: -0.5157549348933295
- type: nauc_recall_at_1_std
value: -4.958850144761861
- type: nauc_recall_at_20_diff1
value: 10.581157602615173
- type: nauc_recall_at_20_max
value: 2.906074522139925
- type: nauc_recall_at_20_std
value: 1.330036378872078
- type: nauc_recall_at_3_diff1
value: 22.289882660691106
- type: nauc_recall_at_3_max
value: 0.36100797128747864
- type: nauc_recall_at_3_std
value: -2.6922650407093887
- type: nauc_recall_at_5_diff1
value: 19.58957722640653
- type: nauc_recall_at_5_max
value: 5.462277305621937
- type: nauc_recall_at_5_std
value: -2.0838117982383966
- type: ndcg_at_1
value: 12.809000000000001
- type: ndcg_at_10
value: 14.184
- type: ndcg_at_100
value: 20.064999999999998
- type: ndcg_at_1000
value: 24.413
- type: ndcg_at_20
value: 16.03
- type: ndcg_at_3
value: 11.829
- type: ndcg_at_5
value: 12.348
- type: precision_at_1
value: 12.809000000000001
- type: precision_at_10
value: 3.997
- type: precision_at_100
value: 0.9570000000000001
- type: precision_at_1000
value: 0.174
- type: precision_at_20
value: 2.685
- type: precision_at_3
value: 7.716000000000001
- type: precision_at_5
value: 5.679
- type: recall_at_1
value: 6.694999999999999
- type: recall_at_10
value: 18.394
- type: recall_at_100
value: 42.097
- type: recall_at_1000
value: 68.631
- type: recall_at_20
value: 24.391
- type: recall_at_3
value: 10.904
- type: recall_at_5
value: 13.141
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 31.903
- type: map_at_1
value: 18.102999999999998
- type: map_at_10
value: 24.823
- type: map_at_100
value: 25.674999999999997
- type: map_at_1000
value: 25.773000000000003
- type: map_at_20
value: 25.281
- type: map_at_3
value: 22.941
- type: map_at_5
value: 23.963
- type: mrr_at_1
value: 36.2052667116813
- type: mrr_at_10
value: 43.404820852491426
- type: mrr_at_100
value: 44.09544455435167
- type: mrr_at_1000
value: 44.147517040876984
- type: mrr_at_20
value: 43.8108488456634
- type: mrr_at_3
value: 41.44722034661278
- type: mrr_at_5
value: 42.536349313526934
- type: nauc_map_at_1000_diff1
value: 47.27982361373724
- type: nauc_map_at_1000_max
value: 26.019975780111505
- type: nauc_map_at_1000_std
value: 9.846281457996731
- type: nauc_map_at_100_diff1
value: 47.297153838429566
- type: nauc_map_at_100_max
value: 26.004987645842707
- type: nauc_map_at_100_std
value: 9.77464296492678
- type: nauc_map_at_10_diff1
value: 47.743548327104726
- type: nauc_map_at_10_max
value: 25.726168480637163
- type: nauc_map_at_10_std
value: 8.784313419154504
- type: nauc_map_at_1_diff1
value: 58.522274080644486
- type: nauc_map_at_1_max
value: 26.10698271553083
- type: nauc_map_at_1_std
value: 3.9695999797031782
- type: nauc_map_at_20_diff1
value: 47.51225370171534
- type: nauc_map_at_20_max
value: 25.88270280062821
- type: nauc_map_at_20_std
value: 9.29719681497441
- type: nauc_map_at_3_diff1
value: 49.916428646760586
- type: nauc_map_at_3_max
value: 26.148998685574576
- type: nauc_map_at_3_std
value: 7.5296281829600105
- type: nauc_map_at_5_diff1
value: 48.74833155933089
- type: nauc_map_at_5_max
value: 25.7686251471497
- type: nauc_map_at_5_std
value: 8.162710914397614
- type: nauc_mrr_at_1000_diff1
value: 54.39456285567113
- type: nauc_mrr_at_1000_max
value: 25.87888554868852
- type: nauc_mrr_at_1000_std
value: 6.980510424015132
- type: nauc_mrr_at_100_diff1
value: 54.383550212913356
- type: nauc_mrr_at_100_max
value: 25.880465038955343
- type: nauc_mrr_at_100_std
value: 6.990722947994807
- type: nauc_mrr_at_10_diff1
value: 54.40568489034281
- type: nauc_mrr_at_10_max
value: 25.80484966759375
- type: nauc_mrr_at_10_std
value: 6.716200895715732
- type: nauc_mrr_at_1_diff1
value: 58.522274080644486
- type: nauc_mrr_at_1_max
value: 26.10698271553083
- type: nauc_mrr_at_1_std
value: 3.9695999797031782
- type: nauc_mrr_at_20_diff1
value: 54.38354933580429
- type: nauc_mrr_at_20_max
value: 25.82697081406741
- type: nauc_mrr_at_20_std
value: 6.840324995589092
- type: nauc_mrr_at_3_diff1
value: 55.20845972552233
- type: nauc_mrr_at_3_max
value: 26.133818717512252
- type: nauc_mrr_at_3_std
value: 6.18610273343223
- type: nauc_mrr_at_5_diff1
value: 54.77569448991443
- type: nauc_mrr_at_5_max
value: 25.909722538158714
- type: nauc_mrr_at_5_std
value: 6.457350156713465
- type: nauc_ndcg_at_1000_diff1
value: 45.31342042774975
- type: nauc_ndcg_at_1000_max
value: 26.460991437144067
- type: nauc_ndcg_at_1000_std
value: 14.494000388772085
- type: nauc_ndcg_at_100_diff1
value: 45.734953321121324
- type: nauc_ndcg_at_100_max
value: 26.347893077226963
- type: nauc_ndcg_at_100_std
value: 13.486443287557954
- type: nauc_ndcg_at_10_diff1
value: 47.2712801149981
- type: nauc_ndcg_at_10_max
value: 25.362835595556977
- type: nauc_ndcg_at_10_std
value: 9.703109157709564
- type: nauc_ndcg_at_1_diff1
value: 58.522274080644486
- type: nauc_ndcg_at_1_max
value: 26.10698271553083
- type: nauc_ndcg_at_1_std
value: 3.9695999797031782
- type: nauc_ndcg_at_20_diff1
value: 46.68362518042518
- type: nauc_ndcg_at_20_max
value: 25.679514271642507
- type: nauc_ndcg_at_20_std
value: 10.896046904643255
- type: nauc_ndcg_at_3_diff1
value: 50.58611283409585
- type: nauc_ndcg_at_3_max
value: 26.118344876777638
- type: nauc_ndcg_at_3_std
value: 7.795982972448585
- type: nauc_ndcg_at_5_diff1
value: 49.03878464866394
- type: nauc_ndcg_at_5_max
value: 25.558039532800663
- type: nauc_ndcg_at_5_std
value: 8.603068871106622
- type: nauc_precision_at_1000_diff1
value: 14.101040732969647
- type: nauc_precision_at_1000_max
value: 20.86409428068311
- type: nauc_precision_at_1000_std
value: 33.83928771739056
- type: nauc_precision_at_100_diff1
value: 23.60806046646006
- type: nauc_precision_at_100_max
value: 22.79001814313364
- type: nauc_precision_at_100_std
value: 26.623524166212675
- type: nauc_precision_at_10_diff1
value: 34.929881985998954
- type: nauc_precision_at_10_max
value: 22.30282244931993
- type: nauc_precision_at_10_std
value: 13.647922319906481
- type: nauc_precision_at_1_diff1
value: 58.522274080644486
- type: nauc_precision_at_1_max
value: 26.10698271553083
- type: nauc_precision_at_1_std
value: 3.9695999797031782
- type: nauc_precision_at_20_diff1
value: 32.184958004379226
- type: nauc_precision_at_20_max
value: 22.771289682864097
- type: nauc_precision_at_20_std
value: 17.122428431864808
- type: nauc_precision_at_3_diff1
value: 45.638742470642235
- type: nauc_precision_at_3_max
value: 25.791252930433156
- type: nauc_precision_at_3_std
value: 9.990734907218188
- type: nauc_precision_at_5_diff1
value: 41.42511675226
- type: nauc_precision_at_5_max
value: 24.014233009915195
- type: nauc_precision_at_5_std
value: 11.40080345708828
- type: nauc_recall_at_1000_diff1
value: 14.101040732969633
- type: nauc_recall_at_1000_max
value: 20.864094280683226
- type: nauc_recall_at_1000_std
value: 33.839287717390626
- type: nauc_recall_at_100_diff1
value: 23.608060466459975
- type: nauc_recall_at_100_max
value: 22.79001814313358
- type: nauc_recall_at_100_std
value: 26.623524166212597
- type: nauc_recall_at_10_diff1
value: 34.929881985998975
- type: nauc_recall_at_10_max
value: 22.302822449319958
- type: nauc_recall_at_10_std
value: 13.647922319906506
- type: nauc_recall_at_1_diff1
value: 58.522274080644486
- type: nauc_recall_at_1_max
value: 26.10698271553083
- type: nauc_recall_at_1_std
value: 3.9695999797031782
- type: nauc_recall_at_20_diff1
value: 32.18495800437926
- type: nauc_recall_at_20_max
value: 22.771289682864094
- type: nauc_recall_at_20_std
value: 17.12242843186481
- type: nauc_recall_at_3_diff1
value: 45.63874247064222
- type: nauc_recall_at_3_max
value: 25.791252930433174
- type: nauc_recall_at_3_std
value: 9.990734907218165
- type: nauc_recall_at_5_diff1
value: 41.42511675226002
- type: nauc_recall_at_5_max
value: 24.014233009915227
- type: nauc_recall_at_5_std
value: 11.400803457088296
- type: ndcg_at_1
value: 36.205
- type: ndcg_at_10
value: 31.903
- type: ndcg_at_100
value: 35.859
- type: ndcg_at_1000
value: 38.218999999999994
- type: ndcg_at_20
value: 33.379999999999995
- type: ndcg_at_3
value: 28.249000000000002
- type: ndcg_at_5
value: 29.981
- type: precision_at_1
value: 36.205
- type: precision_at_10
value: 6.959
- type: precision_at_100
value: 1.013
- type: precision_at_1000
value: 0.133
- type: precision_at_20
value: 3.955
- type: precision_at_3
value: 17.677
- type: precision_at_5
value: 11.978
- type: recall_at_1
value: 18.102999999999998
- type: recall_at_10
value: 34.794000000000004
- type: recall_at_100
value: 50.62799999999999
- type: recall_at_1000
value: 66.39399999999999
- type: recall_at_20
value: 39.554
- type: recall_at_3
value: 26.516000000000002
- type: recall_at_5
value: 29.946
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 70.78880000000001
- type: ap
value: 65.03883652194777
- type: ap_weighted
value: 65.03883652194777
- type: f1
value: 70.58556203674722
- type: f1_weighted
value: 70.58556203674722
- type: main_score
value: 70.78880000000001
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 32.823
- type: map_at_1
value: 0.9860000000000001
- type: map_at_10
value: 5.976
- type: map_at_100
value: 15.404000000000002
- type: map_at_1000
value: 19.567999999999998
- type: map_at_20
value: 9.109
- type: map_at_3
value: 2.418
- type: map_at_5
value: 3.864
- type: mrr_at_1
value: 48.837209302325576
- type: mrr_at_10
value: 62.2093023255814
- type: mrr_at_100
value: 62.27770177838576
- type: mrr_at_1000
value: 62.28904607787528
- type: mrr_at_20
value: 62.2093023255814
- type: mrr_at_3
value: 58.914728682170534
- type: mrr_at_5
value: 61.240310077519375
- type: nauc_map_at_1000_diff1
value: 8.751729457031873
- type: nauc_map_at_1000_max
value: 60.04896551891142
- type: nauc_map_at_1000_std
value: 53.077212935277466
- type: nauc_map_at_100_diff1
value: 6.922687490370606
- type: nauc_map_at_100_max
value: 49.65059065309455
- type: nauc_map_at_100_std
value: 42.88292911032164
- type: nauc_map_at_10_diff1
value: -0.3783247628730733
- type: nauc_map_at_10_max
value: 26.69355085391205
- type: nauc_map_at_10_std
value: 21.035834730108895
- type: nauc_map_at_1_diff1
value: -12.382912648953685
- type: nauc_map_at_1_max
value: 15.103511392499733
- type: nauc_map_at_1_std
value: 10.646234291111401
- type: nauc_map_at_20_diff1
value: 2.470781745822043
- type: nauc_map_at_20_max
value: 30.876111163664127
- type: nauc_map_at_20_std
value: 24.9809791173482
- type: nauc_map_at_3_diff1
value: -8.321628149092982
- type: nauc_map_at_3_max
value: 19.4280666057206
- type: nauc_map_at_3_std
value: 17.149294671189587
- type: nauc_map_at_5_diff1
value: -6.013325870911972
- type: nauc_map_at_5_max
value: 21.96291629437915
- type: nauc_map_at_5_std
value: 18.287688144122864
- type: nauc_mrr_at_1000_diff1
value: -6.55908560475509
- type: nauc_mrr_at_1000_max
value: 63.7357804040643
- type: nauc_mrr_at_1000_std
value: 45.246136682418225
- type: nauc_mrr_at_100_diff1
value: -6.5274276607751185
- type: nauc_mrr_at_100_max
value: 63.7503664464894
- type: nauc_mrr_at_100_std
value: 45.25017528433923
- type: nauc_mrr_at_10_diff1
value: -6.379884653902308
- type: nauc_mrr_at_10_max
value: 63.79070493015706
- type: nauc_mrr_at_10_std
value: 45.365484352508275
- type: nauc_mrr_at_1_diff1
value: -17.84019927997559
- type: nauc_mrr_at_1_max
value: 58.52755657150483
- type: nauc_mrr_at_1_std
value: 41.73471680745748
- type: nauc_mrr_at_20_diff1
value: -6.379884653902308
- type: nauc_mrr_at_20_max
value: 63.79070493015706
- type: nauc_mrr_at_20_std
value: 45.365484352508275
- type: nauc_mrr_at_3_diff1
value: -3.9083100270657716
- type: nauc_mrr_at_3_max
value: 62.18741183069903
- type: nauc_mrr_at_3_std
value: 43.295658470021436
- type: nauc_mrr_at_5_diff1
value: -7.1215738827525925
- type: nauc_mrr_at_5_max
value: 62.60576741721094
- type: nauc_mrr_at_5_std
value: 41.880403498948716
- type: nauc_ndcg_at_1000_diff1
value: 7.332595234385046
- type: nauc_ndcg_at_1000_max
value: 64.32975587377672
- type: nauc_ndcg_at_1000_std
value: 61.51743128459955
- type: nauc_ndcg_at_100_diff1
value: 1.4494382437319793
- type: nauc_ndcg_at_100_max
value: 57.874195533402286
- type: nauc_ndcg_at_100_std
value: 50.888248375236614
- type: nauc_ndcg_at_10_diff1
value: -0.7315495724138182
- type: nauc_ndcg_at_10_max
value: 54.96996776097349
- type: nauc_ndcg_at_10_std
value: 45.27121651582023
- type: nauc_ndcg_at_1_diff1
value: -15.056696340171236
- type: nauc_ndcg_at_1_max
value: 47.61677629151873
- type: nauc_ndcg_at_1_std
value: 37.02896277566421
- type: nauc_ndcg_at_20_diff1
value: 0.8233405712285105
- type: nauc_ndcg_at_20_max
value: 58.96827303834117
- type: nauc_ndcg_at_20_std
value: 50.86458633201503
- type: nauc_ndcg_at_3_diff1
value: -4.276906949610996
- type: nauc_ndcg_at_3_max
value: 48.31308632024211
- type: nauc_ndcg_at_3_std
value: 38.455388100400725
- type: nauc_ndcg_at_5_diff1
value: -1.3421422620129042
- type: nauc_ndcg_at_5_max
value: 51.9123655054488
- type: nauc_ndcg_at_5_std
value: 41.674609662059375
- type: nauc_precision_at_1000_diff1
value: 6.372456647149425
- type: nauc_precision_at_1000_max
value: 56.78532698940627
- type: nauc_precision_at_1000_std
value: 52.46483738053407
- type: nauc_precision_at_100_diff1
value: 6.577021351469274
- type: nauc_precision_at_100_max
value: 63.76823129393031
- type: nauc_precision_at_100_std
value: 56.34082227414525
- type: nauc_precision_at_10_diff1
value: 12.569719755250647
- type: nauc_precision_at_10_max
value: 64.12253935059921
- type: nauc_precision_at_10_std
value: 53.28375185847503
- type: nauc_precision_at_1_diff1
value: -17.84019927997559
- type: nauc_precision_at_1_max
value: 58.52755657150483
- type: nauc_precision_at_1_std
value: 41.73471680745748
- type: nauc_precision_at_20_diff1
value: 12.782123104838256
- type: nauc_precision_at_20_max
value: 64.62717668527766
- type: nauc_precision_at_20_std
value: 56.713030305356725
- type: nauc_precision_at_3_diff1
value: 1.0137979188426132
- type: nauc_precision_at_3_max
value: 59.00556447771772
- type: nauc_precision_at_3_std
value: 48.02337913753564
- type: nauc_precision_at_5_diff1
value: 6.616675723116447
- type: nauc_precision_at_5_max
value: 62.87219840100712
- type: nauc_precision_at_5_std
value: 49.86527880916804
- type: nauc_recall_at_1000_diff1
value: 9.556219515257334
- type: nauc_recall_at_1000_max
value: 57.24110273060209
- type: nauc_recall_at_1000_std
value: 57.56303957604837
- type: nauc_recall_at_100_diff1
value: 3.5160058971838013
- type: nauc_recall_at_100_max
value: 44.6508691428123
- type: nauc_recall_at_100_std
value: 40.469866482826845
- type: nauc_recall_at_10_diff1
value: 2.139024250495015
- type: nauc_recall_at_10_max
value: 20.006408713083758
- type: nauc_recall_at_10_std
value: 15.249248068351031
- type: nauc_recall_at_1_diff1
value: -12.382912648953685
- type: nauc_recall_at_1_max
value: 15.103511392499733
- type: nauc_recall_at_1_std
value: 10.646234291111401
- type: nauc_recall_at_20_diff1
value: 2.765059666028026
- type: nauc_recall_at_20_max
value: 25.807810834205707
- type: nauc_recall_at_20_std
value: 21.3906188095389
- type: nauc_recall_at_3_diff1
value: -2.901694619296191
- type: nauc_recall_at_3_max
value: 19.674783823606212
- type: nauc_recall_at_3_std
value: 17.13722598183868
- type: nauc_recall_at_5_diff1
value: -4.0200493920102875
- type: nauc_recall_at_5_max
value: 17.514540336925517
- type: nauc_recall_at_5_std
value: 12.433202741785959
- type: ndcg_at_1
value: 31.395
- type: ndcg_at_10
value: 32.823
- type: ndcg_at_100
value: 32.096000000000004
- type: ndcg_at_1000
value: 40.994
- type: ndcg_at_20
value: 31.691000000000003
- type: ndcg_at_3
value: 32.53
- type: ndcg_at_5
value: 34.136
- type: precision_at_1
value: 48.837
- type: precision_at_10
value: 44.186
- type: precision_at_100
value: 21.302
- type: precision_at_1000
value: 4.607
- type: precision_at_20
value: 38.372
- type: precision_at_3
value: 50.388
- type: precision_at_5
value: 50.698
- type: recall_at_1
value: 0.9860000000000001
- type: recall_at_10
value: 7.585
- type: recall_at_100
value: 27.534999999999997
- type: recall_at_1000
value: 51.769
- type: recall_at_20
value: 12.361
- type: recall_at_3
value: 2.625
- type: recall_at_5
value: 4.593
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 85.6155950752394
- type: f1
value: 84.61299351825656
- type: f1_weighted
value: 85.62566329953071
- type: main_score
value: 85.6155950752394
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 51.507067943456455
- type: f1
value: 33.73329265389269
- type: f1_weighted
value: 54.70051724359958
- type: main_score
value: 51.507067943456455
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 60.67249495628783
- type: f1
value: 58.55710441567331
- type: f1_weighted
value: 59.4792418446047
- type: main_score
value: 60.67249495628783
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 66.94687289845326
- type: f1
value: 65.55262619224948
- type: f1_weighted
value: 66.7594041012024
- type: main_score
value: 66.94687289845326
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: main_score
value: 27.033544101894037
- type: v_measure
value: 27.033544101894037
- type: v_measure_std
value: 1.3875075110570252
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: main_score
value: 23.235475122772748
- type: v_measure
value: 23.235475122772748
- type: v_measure_std
value: 1.3669816155807724
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: main_score
value: 29.025211119858856
- type: map
value: 29.025211119858856
- type: mrr
value: 29.72218362379489
- type: nAUC_map_diff1
value: 10.344777333382883
- type: nAUC_map_max
value: -23.666261656057035
- type: nAUC_map_std
value: -8.98726774731994
- type: nAUC_mrr_diff1
value: 10.267778513424473
- type: nAUC_mrr_max
value: -18.006089017770165
- type: nAUC_mrr_std
value: -6.484973234862847
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 22.613
- type: map_at_1
value: 3.4189999999999996
- type: map_at_10
value: 6.812
- type: map_at_100
value: 8.767999999999999
- type: map_at_1000
value: 9.82
- type: map_at_20
value: 7.593999999999999
- type: map_at_3
value: 5.281000000000001
- type: map_at_5
value: 5.992999999999999
- type: mrr_at_1
value: 32.81733746130031
- type: mrr_at_10
value: 41.73694039019116
- type: mrr_at_100
value: 42.44672811430311
- type: mrr_at_1000
value: 42.51492426020226
- type: mrr_at_20
value: 42.15273887004662
- type: mrr_at_3
value: 39.42208462332301
- type: mrr_at_5
value: 40.90815273477812
- type: nauc_map_at_1000_diff1
value: 32.51914859153408
- type: nauc_map_at_1000_max
value: 28.50731007634339
- type: nauc_map_at_1000_std
value: 21.122290838876197
- type: nauc_map_at_100_diff1
value: 34.0356163812035
- type: nauc_map_at_100_max
value: 26.984927084496746
- type: nauc_map_at_100_std
value: 17.16714022131354
- type: nauc_map_at_10_diff1
value: 38.049956057842856
- type: nauc_map_at_10_max
value: 21.689889302108227
- type: nauc_map_at_10_std
value: 8.900716391912274
- type: nauc_map_at_1_diff1
value: 43.69318427182068
- type: nauc_map_at_1_max
value: 9.993398066053729
- type: nauc_map_at_1_std
value: 1.6998173556132434
- type: nauc_map_at_20_diff1
value: 35.65581914391132
- type: nauc_map_at_20_max
value: 24.418344690964613
- type: nauc_map_at_20_std
value: 12.521959576048808
- type: nauc_map_at_3_diff1
value: 43.16156145914653
- type: nauc_map_at_3_max
value: 17.094747748444377
- type: nauc_map_at_3_std
value: 4.067978802659887
- type: nauc_map_at_5_diff1
value: 41.407965249135806
- type: nauc_map_at_5_max
value: 19.90265827157068
- type: nauc_map_at_5_std
value: 6.339864622044265
- type: nauc_mrr_at_1000_diff1
value: 26.099863745051945
- type: nauc_mrr_at_1000_max
value: 30.451300657305747
- type: nauc_mrr_at_1000_std
value: 20.99147829162304
- type: nauc_mrr_at_100_diff1
value: 26.09622707115036
- type: nauc_mrr_at_100_max
value: 30.47822047389741
- type: nauc_mrr_at_100_std
value: 21.020356459106182
- type: nauc_mrr_at_10_diff1
value: 25.767563178245727
- type: nauc_mrr_at_10_max
value: 30.317099022190092
- type: nauc_mrr_at_10_std
value: 21.039453634175945
- type: nauc_mrr_at_1_diff1
value: 27.422277143717373
- type: nauc_mrr_at_1_max
value: 23.638411521485935
- type: nauc_mrr_at_1_std
value: 15.499293879835903
- type: nauc_mrr_at_20_diff1
value: 25.98915185113393
- type: nauc_mrr_at_20_max
value: 30.51502999286555
- type: nauc_mrr_at_20_std
value: 21.007107746436386
- type: nauc_mrr_at_3_diff1
value: 26.324556538009535
- type: nauc_mrr_at_3_max
value: 29.369067665865117
- type: nauc_mrr_at_3_std
value: 20.588832297661824
- type: nauc_mrr_at_5_diff1
value: 26.460468401069974
- type: nauc_mrr_at_5_max
value: 29.86644460025973
- type: nauc_mrr_at_5_std
value: 19.849343846164693
- type: nauc_ndcg_at_1000_diff1
value: 26.137174251660817
- type: nauc_ndcg_at_1000_max
value: 36.88679053188914
- type: nauc_ndcg_at_1000_std
value: 28.545299901436966
- type: nauc_ndcg_at_100_diff1
value: 24.38235346166006
- type: nauc_ndcg_at_100_max
value: 32.35934908511791
- type: nauc_ndcg_at_100_std
value: 26.621500665622555
- type: nauc_ndcg_at_10_diff1
value: 21.346110864966878
- type: nauc_ndcg_at_10_max
value: 29.201870789543488
- type: nauc_ndcg_at_10_std
value: 27.996224821771143
- type: nauc_ndcg_at_1_diff1
value: 27.82064172474196
- type: nauc_ndcg_at_1_max
value: 22.320782468431528
- type: nauc_ndcg_at_1_std
value: 17.01269970506558
- type: nauc_ndcg_at_20_diff1
value: 22.695086276964542
- type: nauc_ndcg_at_20_max
value: 30.14781423581441
- type: nauc_ndcg_at_20_std
value: 29.750857717833657
- type: nauc_ndcg_at_3_diff1
value: 23.23035291802125
- type: nauc_ndcg_at_3_max
value: 27.951166119373728
- type: nauc_ndcg_at_3_std
value: 20.969642025523797
- type: nauc_ndcg_at_5_diff1
value: 22.275733427660523
- type: nauc_ndcg_at_5_max
value: 29.21633819667062
- type: nauc_ndcg_at_5_std
value: 23.258878040008515
- type: nauc_precision_at_1000_diff1
value: -4.522644786677741
- type: nauc_precision_at_1000_max
value: 17.54188976143716
- type: nauc_precision_at_1000_std
value: 43.566922007655045
- type: nauc_precision_at_100_diff1
value: 0.7117884922496146
- type: nauc_precision_at_100_max
value: 27.073214361431496
- type: nauc_precision_at_100_std
value: 46.737829736269134
- type: nauc_precision_at_10_diff1
value: 8.359859618942956
- type: nauc_precision_at_10_max
value: 31.75752536248692
- type: nauc_precision_at_10_std
value: 36.89066103106389
- type: nauc_precision_at_1_diff1
value: 27.422277143717373
- type: nauc_precision_at_1_max
value: 23.638411521485935
- type: nauc_precision_at_1_std
value: 15.499293879835903
- type: nauc_precision_at_20_diff1
value: 5.055347818306108
- type: nauc_precision_at_20_max
value: 32.721802908008186
- type: nauc_precision_at_20_std
value: 42.89763536496222
- type: nauc_precision_at_3_diff1
value: 17.848359825929847
- type: nauc_precision_at_3_max
value: 31.47671680933972
- type: nauc_precision_at_3_std
value: 23.67581982693161
- type: nauc_precision_at_5_diff1
value: 13.851675563275661
- type: nauc_precision_at_5_max
value: 33.661786215343746
- type: nauc_precision_at_5_std
value: 28.482203360698065
- type: nauc_recall_at_1000_diff1
value: 13.961711120759071
- type: nauc_recall_at_1000_max
value: 19.382624712902455
- type: nauc_recall_at_1000_std
value: 14.558738251676376
- type: nauc_recall_at_100_diff1
value: 18.32951532159328
- type: nauc_recall_at_100_max
value: 23.974271967720846
- type: nauc_recall_at_100_std
value: 14.252037430687484
- type: nauc_recall_at_10_diff1
value: 28.95671818041367
- type: nauc_recall_at_10_max
value: 19.625268127300917
- type: nauc_recall_at_10_std
value: 9.165959351962458
- type: nauc_recall_at_1_diff1
value: 43.69318427182068
- type: nauc_recall_at_1_max
value: 9.993398066053729
- type: nauc_recall_at_1_std
value: 1.6998173556132434
- type: nauc_recall_at_20_diff1
value: 24.956992636170295
- type: nauc_recall_at_20_max
value: 19.47601942861755
- type: nauc_recall_at_20_std
value: 10.507076581980725
- type: nauc_recall_at_3_diff1
value: 40.91167574965666
- type: nauc_recall_at_3_max
value: 19.0859559383436
- type: nauc_recall_at_3_std
value: 6.051536150937656
- type: nauc_recall_at_5_diff1
value: 36.54933600909664
- type: nauc_recall_at_5_max
value: 20.232938987005646
- type: nauc_recall_at_5_std
value: 7.413199389324412
- type: ndcg_at_1
value: 30.805
- type: ndcg_at_10
value: 22.613
- type: ndcg_at_100
value: 20.928
- type: ndcg_at_1000
value: 29.695
- type: ndcg_at_20
value: 21.09
- type: ndcg_at_3
value: 26.377
- type: ndcg_at_5
value: 24.595
- type: precision_at_1
value: 32.817
- type: precision_at_10
value: 16.966
- type: precision_at_100
value: 5.811
- type: precision_at_1000
value: 1.806
- type: precision_at_20
value: 12.802
- type: precision_at_3
value: 24.871
- type: precision_at_5
value: 21.3
- type: recall_at_1
value: 3.4189999999999996
- type: recall_at_10
value: 9.883000000000001
- type: recall_at_100
value: 22.392
- type: recall_at_1000
value: 54.018
- type: recall_at_20
value: 13.106000000000002
- type: recall_at_3
value: 6.203
- type: recall_at_5
value: 7.688000000000001
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 17.163999999999998
- type: map_at_1
value: 7.292999999999999
- type: map_at_10
value: 13.206000000000001
- type: map_at_100
value: 14.368
- type: map_at_1000
value: 14.468
- type: map_at_20
value: 13.825000000000001
- type: map_at_3
value: 10.949
- type: map_at_5
value: 12.110999999999999
- type: mrr_at_1
value: 8.487833140208574
- type: mrr_at_10
value: 14.675159557836242
- type: mrr_at_100
value: 15.779595948147401
- type: mrr_at_1000
value: 15.86576620262906
- type: mrr_at_20
value: 15.296918959194382
- type: mrr_at_3
value: 12.369640787948995
- type: mrr_at_5
value: 13.58198146002313
- type: nauc_map_at_1000_diff1
value: 19.323868662545987
- type: nauc_map_at_1000_max
value: 13.767084099660302
- type: nauc_map_at_1000_std
value: 5.232483665156492
- type: nauc_map_at_100_diff1
value: 19.345070681167932
- type: nauc_map_at_100_max
value: 13.742816206910161
- type: nauc_map_at_100_std
value: 5.153409411301769
- type: nauc_map_at_10_diff1
value: 19.659707100205903
- type: nauc_map_at_10_max
value: 13.131492785425097
- type: nauc_map_at_10_std
value: 3.7953216544067767
- type: nauc_map_at_1_diff1
value: 23.621537828194803
- type: nauc_map_at_1_max
value: 9.359321805095224
- type: nauc_map_at_1_std
value: 0.9564844869375119
- type: nauc_map_at_20_diff1
value: 19.41548662256754
- type: nauc_map_at_20_max
value: 13.44112402133028
- type: nauc_map_at_20_std
value: 4.526186657561462
- type: nauc_map_at_3_diff1
value: 20.874144569488028
- type: nauc_map_at_3_max
value: 10.59497020339296
- type: nauc_map_at_3_std
value: 2.127061943857287
- type: nauc_map_at_5_diff1
value: 20.212151988624548
- type: nauc_map_at_5_max
value: 11.889866875966785
- type: nauc_map_at_5_std
value: 2.7199819521456154
- type: nauc_mrr_at_1000_diff1
value: 18.421603253063438
- type: nauc_mrr_at_1000_max
value: 13.192373130005967
- type: nauc_mrr_at_1000_std
value: 6.582095129043891
- type: nauc_mrr_at_100_diff1
value: 18.445175537134432
- type: nauc_mrr_at_100_max
value: 13.177218814359042
- type: nauc_mrr_at_100_std
value: 6.540820393254043
- type: nauc_mrr_at_10_diff1
value: 18.67543777577155
- type: nauc_mrr_at_10_max
value: 12.698796909888438
- type: nauc_mrr_at_10_std
value: 5.548542219175191
- type: nauc_mrr_at_1_diff1
value: 22.405046326183907
- type: nauc_mrr_at_1_max
value: 9.290311837698303
- type: nauc_mrr_at_1_std
value: 3.772169020187191
- type: nauc_mrr_at_20_diff1
value: 18.406790295652588
- type: nauc_mrr_at_20_max
value: 12.982208065169374
- type: nauc_mrr_at_20_std
value: 6.084379018636953
- type: nauc_mrr_at_3_diff1
value: 19.761212114449446
- type: nauc_mrr_at_3_max
value: 10.586228375739465
- type: nauc_mrr_at_3_std
value: 4.454489369742695
- type: nauc_mrr_at_5_diff1
value: 19.118475150105894
- type: nauc_mrr_at_5_max
value: 11.58082985340595
- type: nauc_mrr_at_5_std
value: 4.766402493324253
- type: nauc_ndcg_at_1000_diff1
value: 16.96375429586292
- type: nauc_ndcg_at_1000_max
value: 18.826013150783883
- type: nauc_ndcg_at_1000_std
value: 12.9887940091125
- type: nauc_ndcg_at_100_diff1
value: 17.377295880274822
- type: nauc_ndcg_at_100_max
value: 18.099418324015964
- type: nauc_ndcg_at_100_std
value: 11.394891190564095
- type: nauc_ndcg_at_10_diff1
value: 18.06378127446637
- type: nauc_ndcg_at_10_max
value: 15.297698965310232
- type: nauc_ndcg_at_10_std
value: 5.717861719899932
- type: nauc_ndcg_at_1_diff1
value: 22.405046326183907
- type: nauc_ndcg_at_1_max
value: 9.290311837698303
- type: nauc_ndcg_at_1_std
value: 3.772169020187191
- type: nauc_ndcg_at_20_diff1
value: 17.34734627220401
- type: nauc_ndcg_at_20_max
value: 16.20778833559378
- type: nauc_ndcg_at_20_std
value: 7.749314013181468
- type: nauc_ndcg_at_3_diff1
value: 20.151547280803808
- type: nauc_ndcg_at_3_max
value: 10.886180458060574
- type: nauc_ndcg_at_3_std
value: 2.855909481970702
- type: nauc_ndcg_at_5_diff1
value: 19.08860016992726
- type: nauc_ndcg_at_5_max
value: 12.76124542662454
- type: nauc_ndcg_at_5_std
value: 3.6782880617792566
- type: nauc_precision_at_1000_diff1
value: 3.4126117328409635
- type: nauc_precision_at_1000_max
value: 26.144517857081162
- type: nauc_precision_at_1000_std
value: 35.15957366598821
- type: nauc_precision_at_100_diff1
value: 10.61994042439232
- type: nauc_precision_at_100_max
value: 25.44638747527479
- type: nauc_precision_at_100_std
value: 27.20279863003429
- type: nauc_precision_at_10_diff1
value: 15.051182307262142
- type: nauc_precision_at_10_max
value: 19.818107620262378
- type: nauc_precision_at_10_std
value: 10.84691010517258
- type: nauc_precision_at_1_diff1
value: 22.405046326183907
- type: nauc_precision_at_1_max
value: 9.290311837698303
- type: nauc_precision_at_1_std
value: 3.772169020187191
- type: nauc_precision_at_20_diff1
value: 12.638984559185824
- type: nauc_precision_at_20_max
value: 21.391773469704304
- type: nauc_precision_at_20_std
value: 16.018277911853563
- type: nauc_precision_at_3_diff1
value: 18.573099204831646
- type: nauc_precision_at_3_max
value: 11.81684575514176
- type: nauc_precision_at_3_std
value: 5.046334944705079
- type: nauc_precision_at_5_diff1
value: 17.149349734404016
- type: nauc_precision_at_5_max
value: 15.197844652143155
- type: nauc_precision_at_5_std
value: 6.453417880704823
- type: nauc_recall_at_1000_diff1
value: 9.836204388910634
- type: nauc_recall_at_1000_max
value: 40.64943837622281
- type: nauc_recall_at_1000_std
value: 46.01484423115387
- type: nauc_recall_at_100_diff1
value: 13.656477700316763
- type: nauc_recall_at_100_max
value: 28.768748963828845
- type: nauc_recall_at_100_std
value: 26.247014408258778
- type: nauc_recall_at_10_diff1
value: 15.055017670873397
- type: nauc_recall_at_10_max
value: 19.424431660534115
- type: nauc_recall_at_10_std
value: 8.12141284246005
- type: nauc_recall_at_1_diff1
value: 23.621537828194803
- type: nauc_recall_at_1_max
value: 9.359321805095224
- type: nauc_recall_at_1_std
value: 0.9564844869375119
- type: nauc_recall_at_20_diff1
value: 13.412421761546462
- type: nauc_recall_at_20_max
value: 21.276341065435446
- type: nauc_recall_at_20_std
value: 12.847302508235089
- type: nauc_recall_at_3_diff1
value: 18.915998121406723
- type: nauc_recall_at_3_max
value: 11.235299022137816
- type: nauc_recall_at_3_std
value: 2.6771446726975703
- type: nauc_recall_at_5_diff1
value: 16.998490481118615
- type: nauc_recall_at_5_max
value: 14.326029592435003
- type: nauc_recall_at_5_std
value: 4.083735570817751
- type: ndcg_at_1
value: 8.488
- type: ndcg_at_10
value: 17.163999999999998
- type: ndcg_at_100
value: 23.166
- type: ndcg_at_1000
value: 25.899
- type: ndcg_at_20
value: 19.381999999999998
- type: ndcg_at_3
value: 12.469
- type: ndcg_at_5
value: 14.572
- type: precision_at_1
value: 8.488
- type: precision_at_10
value: 3.314
- type: precision_at_100
value: 0.674
- type: precision_at_1000
value: 0.093
- type: precision_at_20
value: 2.176
- type: precision_at_3
value: 6.016
- type: precision_at_5
value: 4.7620000000000005
- type: recall_at_1
value: 7.292999999999999
- type: recall_at_10
value: 28.109
- type: recall_at_100
value: 56.105000000000004
- type: recall_at_1000
value: 77.033
- type: recall_at_20
value: 36.447
- type: recall_at_3
value: 15.486
- type: recall_at_5
value: 20.471
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 78.944
- type: map_at_1
value: 62.163000000000004
- type: map_at_10
value: 74.406
- type: map_at_100
value: 75.211
- type: map_at_1000
value: 75.246
- type: map_at_20
value: 74.901
- type: map_at_3
value: 71.544
- type: map_at_5
value: 73.237
- type: mrr_at_1
value: 71.39999999999999
- type: mrr_at_10
value: 78.53174999999968
- type: mrr_at_100
value: 78.81864010375182
- type: mrr_at_1000
value: 78.82645374918509
- type: mrr_at_20
value: 78.71598608095506
- type: mrr_at_3
value: 77.11166666666631
- type: mrr_at_5
value: 77.97816666666611
- type: nauc_map_at_1000_diff1
value: 71.12026097344402
- type: nauc_map_at_1000_max
value: 38.34659709478082
- type: nauc_map_at_1000_std
value: -17.076551222440084
- type: nauc_map_at_100_diff1
value: 71.12970535718793
- type: nauc_map_at_100_max
value: 38.34136449954092
- type: nauc_map_at_100_std
value: -17.090201363548733
- type: nauc_map_at_10_diff1
value: 71.1639091984701
- type: nauc_map_at_10_max
value: 37.92962545307399
- type: nauc_map_at_10_std
value: -17.935251452443836
- type: nauc_map_at_1_diff1
value: 73.90119279220835
- type: nauc_map_at_1_max
value: 30.96159752854218
- type: nauc_map_at_1_std
value: -17.71968107861217
- type: nauc_map_at_20_diff1
value: 71.14144425695068
- type: nauc_map_at_20_max
value: 38.24084182045044
- type: nauc_map_at_20_std
value: -17.41338269274242
- type: nauc_map_at_3_diff1
value: 71.45595546693525
- type: nauc_map_at_3_max
value: 36.08464694333641
- type: nauc_map_at_3_std
value: -18.931004663754646
- type: nauc_map_at_5_diff1
value: 71.27464789828589
- type: nauc_map_at_5_max
value: 37.30423556122988
- type: nauc_map_at_5_std
value: -18.486579027688897
- type: nauc_mrr_at_1000_diff1
value: 71.9772870260667
- type: nauc_mrr_at_1000_max
value: 40.84763399716098
- type: nauc_mrr_at_1000_std
value: -14.825731250421617
- type: nauc_mrr_at_100_diff1
value: 71.97627495514737
- type: nauc_mrr_at_100_max
value: 40.85239610393123
- type: nauc_mrr_at_100_std
value: -14.81452787723373
- type: nauc_mrr_at_10_diff1
value: 71.88135293938872
- type: nauc_mrr_at_10_max
value: 40.88653429928447
- type: nauc_mrr_at_10_std
value: -14.921871682409485
- type: nauc_mrr_at_1_diff1
value: 73.6972904270755
- type: nauc_mrr_at_1_max
value: 39.32918667821438
- type: nauc_mrr_at_1_std
value: -15.176326573460615
- type: nauc_mrr_at_20_diff1
value: 71.95077268893942
- type: nauc_mrr_at_20_max
value: 40.89414294678139
- type: nauc_mrr_at_20_std
value: -14.82041706681107
- type: nauc_mrr_at_3_diff1
value: 71.84102470725445
- type: nauc_mrr_at_3_max
value: 40.55979190068784
- type: nauc_mrr_at_3_std
value: -15.426013609275019
- type: nauc_mrr_at_5_diff1
value: 71.7891912460372
- type: nauc_mrr_at_5_max
value: 40.80511612753408
- type: nauc_mrr_at_5_std
value: -15.18799645334625
- type: nauc_ndcg_at_1000_diff1
value: 70.89670367344667
- type: nauc_ndcg_at_1000_max
value: 40.17914305815258
- type: nauc_ndcg_at_1000_std
value: -14.984614028845971
- type: nauc_ndcg_at_100_diff1
value: 70.92339913111417
- type: nauc_ndcg_at_100_max
value: 40.257745467547174
- type: nauc_ndcg_at_100_std
value: -14.611387935135872
- type: nauc_ndcg_at_10_diff1
value: 70.48756735324325
- type: nauc_ndcg_at_10_max
value: 39.58487015963329
- type: nauc_ndcg_at_10_std
value: -16.645804593646147
- type: nauc_ndcg_at_1_diff1
value: 73.5844028830802
- type: nauc_ndcg_at_1_max
value: 39.68976954212264
- type: nauc_ndcg_at_1_std
value: -15.031929688958312
- type: nauc_ndcg_at_20_diff1
value: 70.7029749983589
- type: nauc_ndcg_at_20_max
value: 40.12481563061243
- type: nauc_ndcg_at_20_std
value: -15.54606689841114
- type: nauc_ndcg_at_3_diff1
value: 70.35105717009881
- type: nauc_ndcg_at_3_max
value: 38.32508008621408
- type: nauc_ndcg_at_3_std
value: -17.360779639396362
- type: nauc_ndcg_at_5_diff1
value: 70.38583658821312
- type: nauc_ndcg_at_5_max
value: 39.01963672520352
- type: nauc_ndcg_at_5_std
value: -17.239959123518233
- type: nauc_precision_at_1000_diff1
value: -36.21474583612648
- type: nauc_precision_at_1000_max
value: -3.597428898937475
- type: nauc_precision_at_1000_std
value: 20.250426782696966
- type: nauc_precision_at_100_diff1
value: -32.33501144245241
- type: nauc_precision_at_100_max
value: -0.20640880335901107
- type: nauc_precision_at_100_std
value: 20.25734872492559
- type: nauc_precision_at_10_diff1
value: -16.379871004767345
- type: nauc_precision_at_10_max
value: 10.980061890327866
- type: nauc_precision_at_10_std
value: 10.465941748223376
- type: nauc_precision_at_1_diff1
value: 73.5844028830802
- type: nauc_precision_at_1_max
value: 39.68976954212264
- type: nauc_precision_at_1_std
value: -15.031929688958312
- type: nauc_precision_at_20_diff1
value: -23.965337240125926
- type: nauc_precision_at_20_max
value: 6.596649568590301
- type: nauc_precision_at_20_std
value: 15.582400216847327
- type: nauc_precision_at_3_diff1
value: 10.489396277777569
- type: nauc_precision_at_3_max
value: 21.625923996482737
- type: nauc_precision_at_3_std
value: -0.7788020451085538
- type: nauc_precision_at_5_diff1
value: -3.737454839127393
- type: nauc_precision_at_5_max
value: 16.933111460137404
- type: nauc_precision_at_5_std
value: 4.7360335395138895
- type: nauc_recall_at_1000_diff1
value: 63.20571064867851
- type: nauc_recall_at_1000_max
value: 57.229334552429314
- type: nauc_recall_at_1000_std
value: 44.21186400138876
- type: nauc_recall_at_100_diff1
value: 64.53870069947862
- type: nauc_recall_at_100_max
value: 47.10781661935386
- type: nauc_recall_at_100_std
value: 16.521676724908925
- type: nauc_recall_at_10_diff1
value: 63.869924515916765
- type: nauc_recall_at_10_max
value: 39.50325719990688
- type: nauc_recall_at_10_std
value: -16.071467891980763
- type: nauc_recall_at_1_diff1
value: 73.90119279220835
- type: nauc_recall_at_1_max
value: 30.96159752854218
- type: nauc_recall_at_1_std
value: -17.71968107861217
- type: nauc_recall_at_20_diff1
value: 63.20541507276648
- type: nauc_recall_at_20_max
value: 42.52369355095013
- type: nauc_recall_at_20_std
value: -7.966841748999692
- type: nauc_recall_at_3_diff1
value: 66.95598825053953
- type: nauc_recall_at_3_max
value: 34.813833345538
- type: nauc_recall_at_3_std
value: -20.055997535188826
- type: nauc_recall_at_5_diff1
value: 65.4441887294711
- type: nauc_recall_at_5_max
value: 37.18383133639401
- type: nauc_recall_at_5_std
value: -19.04229973267749
- type: ndcg_at_1
value: 71.46000000000001
- type: ndcg_at_10
value: 78.944
- type: ndcg_at_100
value: 81.27799999999999
- type: ndcg_at_1000
value: 81.72500000000001
- type: ndcg_at_20
value: 80.041
- type: ndcg_at_3
value: 75.47
- type: ndcg_at_5
value: 77.181
- type: precision_at_1
value: 71.46000000000001
- type: precision_at_10
value: 11.935
- type: precision_at_100
value: 1.442
- type: precision_at_1000
value: 0.154
- type: precision_at_20
value: 6.444
- type: precision_at_3
value: 32.707
- type: precision_at_5
value: 21.592
- type: recall_at_1
value: 62.163000000000004
- type: recall_at_10
value: 87.69200000000001
- type: recall_at_100
value: 96.639
- type: recall_at_1000
value: 99.297
- type: recall_at_20
value: 91.401
- type: recall_at_3
value: 77.594
- type: recall_at_5
value: 82.431
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: main_score
value: 37.24085606808143
- type: v_measure
value: 37.24085606808143
- type: v_measure_std
value: 4.75871654527573
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: main_score
value: 44.53294634700315
- type: v_measure
value: 44.53294634700315
- type: v_measure_std
value: 11.281270481309583
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 10.975999999999999
- type: map_at_1
value: 2.6229999999999998
- type: map_at_10
value: 6.043
- type: map_at_100
value: 7.274
- type: map_at_1000
value: 7.518
- type: map_at_20
value: 6.625
- type: map_at_3
value: 4.513
- type: map_at_5
value: 5.297000000000001
- type: mrr_at_1
value: 12.9
- type: mrr_at_10
value: 20.29456349206347
- type: mrr_at_100
value: 21.40608779578154
- type: mrr_at_1000
value: 21.5096323900278
- type: mrr_at_20
value: 20.89359279695191
- type: mrr_at_3
value: 17.9
- type: mrr_at_5
value: 19.264999999999986
- type: nauc_map_at_1000_diff1
value: 13.973997796384928
- type: nauc_map_at_1000_max
value: 15.24396457979008
- type: nauc_map_at_1000_std
value: 19.956152939934125
- type: nauc_map_at_100_diff1
value: 13.914326675244757
- type: nauc_map_at_100_max
value: 14.992423212939576
- type: nauc_map_at_100_std
value: 19.346582724513087
- type: nauc_map_at_10_diff1
value: 14.005203145683373
- type: nauc_map_at_10_max
value: 12.533617494842156
- type: nauc_map_at_10_std
value: 16.019921073048483
- type: nauc_map_at_1_diff1
value: 20.287526221402405
- type: nauc_map_at_1_max
value: 12.29569598685881
- type: nauc_map_at_1_std
value: 11.84440966885772
- type: nauc_map_at_20_diff1
value: 14.506149052503625
- type: nauc_map_at_20_max
value: 14.128710240967395
- type: nauc_map_at_20_std
value: 17.66552816835646
- type: nauc_map_at_3_diff1
value: 14.723437097271452
- type: nauc_map_at_3_max
value: 13.97967494912635
- type: nauc_map_at_3_std
value: 13.986282784554623
- type: nauc_map_at_5_diff1
value: 15.281528000748432
- type: nauc_map_at_5_max
value: 12.74789727694775
- type: nauc_map_at_5_std
value: 14.152734564652567
- type: nauc_mrr_at_1000_diff1
value: 14.909058242971323
- type: nauc_mrr_at_1000_max
value: 14.89923029131018
- type: nauc_mrr_at_1000_std
value: 16.112438519165448
- type: nauc_mrr_at_100_diff1
value: 14.921170730270145
- type: nauc_mrr_at_100_max
value: 14.903295271302024
- type: nauc_mrr_at_100_std
value: 16.142605858051482
- type: nauc_mrr_at_10_diff1
value: 15.055715022956981
- type: nauc_mrr_at_10_max
value: 14.46564416594299
- type: nauc_mrr_at_10_std
value: 15.462553449948851
- type: nauc_mrr_at_1_diff1
value: 20.38884124229307
- type: nauc_mrr_at_1_max
value: 12.334690698559113
- type: nauc_mrr_at_1_std
value: 12.311505189727232
- type: nauc_mrr_at_20_diff1
value: 14.906423936329604
- type: nauc_mrr_at_20_max
value: 14.96346252727948
- type: nauc_mrr_at_20_std
value: 15.957553065480726
- type: nauc_mrr_at_3_diff1
value: 14.84506515179406
- type: nauc_mrr_at_3_max
value: 14.122529963628732
- type: nauc_mrr_at_3_std
value: 15.038251505547425
- type: nauc_mrr_at_5_diff1
value: 14.761637229470903
- type: nauc_mrr_at_5_max
value: 14.058545032558289
- type: nauc_mrr_at_5_std
value: 15.257952718028047
- type: nauc_ndcg_at_1000_diff1
value: 12.401557025097095
- type: nauc_ndcg_at_1000_max
value: 19.162281715396258
- type: nauc_ndcg_at_1000_std
value: 27.28208364614879
- type: nauc_ndcg_at_100_diff1
value: 12.462531433192177
- type: nauc_ndcg_at_100_max
value: 18.092239924308924
- type: nauc_ndcg_at_100_std
value: 24.306771626400064
- type: nauc_ndcg_at_10_diff1
value: 13.012854438802716
- type: nauc_ndcg_at_10_max
value: 13.240961212392408
- type: nauc_ndcg_at_10_std
value: 17.16444103531682
- type: nauc_ndcg_at_1_diff1
value: 20.38884124229307
- type: nauc_ndcg_at_1_max
value: 12.334690698559113
- type: nauc_ndcg_at_1_std
value: 12.311505189727232
- type: nauc_ndcg_at_20_diff1
value: 13.405022785618451
- type: nauc_ndcg_at_20_max
value: 16.129038815158523
- type: nauc_ndcg_at_20_std
value: 20.13896063590036
- type: nauc_ndcg_at_3_diff1
value: 13.64223678386308
- type: nauc_ndcg_at_3_max
value: 14.086175451408186
- type: nauc_ndcg_at_3_std
value: 15.173192036409372
- type: nauc_ndcg_at_5_diff1
value: 14.075835104603799
- type: nauc_ndcg_at_5_max
value: 12.991019756492042
- type: nauc_ndcg_at_5_std
value: 15.083844651982483
- type: nauc_precision_at_1000_diff1
value: 6.679710695518377
- type: nauc_precision_at_1000_max
value: 20.813353595075874
- type: nauc_precision_at_1000_std
value: 36.13823850539846
- type: nauc_precision_at_100_diff1
value: 8.582899195791812
- type: nauc_precision_at_100_max
value: 20.606190885640554
- type: nauc_precision_at_100_std
value: 31.015207458735837
- type: nauc_precision_at_10_diff1
value: 9.955421784523907
- type: nauc_precision_at_10_max
value: 12.226547316835655
- type: nauc_precision_at_10_std
value: 19.194260501366102
- type: nauc_precision_at_1_diff1
value: 20.38884124229307
- type: nauc_precision_at_1_max
value: 12.334690698559113
- type: nauc_precision_at_1_std
value: 12.311505189727232
- type: nauc_precision_at_20_diff1
value: 10.821274632720215
- type: nauc_precision_at_20_max
value: 17.910630241041957
- type: nauc_precision_at_20_std
value: 24.089477303794364
- type: nauc_precision_at_3_diff1
value: 11.280609220738322
- type: nauc_precision_at_3_max
value: 14.000592735288128
- type: nauc_precision_at_3_std
value: 16.066715135125115
- type: nauc_precision_at_5_diff1
value: 11.973988845160886
- type: nauc_precision_at_5_max
value: 11.63579702369595
- type: nauc_precision_at_5_std
value: 15.66853420805326
- type: nauc_recall_at_1000_diff1
value: 7.236848009802737
- type: nauc_recall_at_1000_max
value: 21.90002660793917
- type: nauc_recall_at_1000_std
value: 36.73039901613978
- type: nauc_recall_at_100_diff1
value: 8.781121548109736
- type: nauc_recall_at_100_max
value: 20.872807676915585
- type: nauc_recall_at_100_std
value: 31.089252844325383
- type: nauc_recall_at_10_diff1
value: 10.403929936534533
- type: nauc_recall_at_10_max
value: 12.317583820258339
- type: nauc_recall_at_10_std
value: 18.87239766836694
- type: nauc_recall_at_1_diff1
value: 20.287526221402405
- type: nauc_recall_at_1_max
value: 12.29569598685881
- type: nauc_recall_at_1_std
value: 11.84440966885772
- type: nauc_recall_at_20_diff1
value: 11.053723609378533
- type: nauc_recall_at_20_max
value: 17.904832495199997
- type: nauc_recall_at_20_std
value: 23.94487620259356
- type: nauc_recall_at_3_diff1
value: 11.448063932383073
- type: nauc_recall_at_3_max
value: 14.030673949295828
- type: nauc_recall_at_3_std
value: 15.707862370994691
- type: nauc_recall_at_5_diff1
value: 12.254302630244073
- type: nauc_recall_at_5_max
value: 11.713720712309172
- type: nauc_recall_at_5_std
value: 15.337816546798894
- type: ndcg_at_1
value: 12.9
- type: ndcg_at_10
value: 10.975999999999999
- type: ndcg_at_100
value: 16.808
- type: ndcg_at_1000
value: 22.061
- type: ndcg_at_20
value: 12.854
- type: ndcg_at_3
value: 10.544
- type: ndcg_at_5
value: 9.200999999999999
- type: precision_at_1
value: 12.9
- type: precision_at_10
value: 5.66
- type: precision_at_100
value: 1.422
- type: precision_at_1000
value: 0.269
- type: precision_at_20
value: 3.925
- type: precision_at_3
value: 9.866999999999999
- type: precision_at_5
value: 8.08
- type: recall_at_1
value: 2.6229999999999998
- type: recall_at_10
value: 11.458
- type: recall_at_100
value: 28.852
- type: recall_at_1000
value: 54.65
- type: recall_at_20
value: 15.906999999999998
- type: recall_at_3
value: 6.008
- type: recall_at_5
value: 8.187999999999999
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 75.3765633045698
- type: cosine_spearman
value: 63.98613448451591
- type: euclidean_pearson
value: 68.77492302556632
- type: euclidean_spearman
value: 63.98600896235449
- type: main_score
value: 63.98613448451591
- type: manhattan_pearson
value: 68.97719158550568
- type: manhattan_spearman
value: 64.17632002019486
- type: pearson
value: 75.3765633045698
- type: spearman
value: 63.98613448451591
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 72.15434642732643
- type: cosine_spearman
value: 62.37621006422606
- type: euclidean_pearson
value: 68.4217723007459
- type: euclidean_spearman
value: 62.3761516548255
- type: main_score
value: 62.37621006422606
- type: manhattan_pearson
value: 68.44462184344337
- type: manhattan_spearman
value: 62.409862632343504
- type: pearson
value: 72.15434642732643
- type: spearman
value: 62.37621006422606
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 75.8217088748812
- type: cosine_spearman
value: 76.81750749576634
- type: euclidean_pearson
value: 76.28374455431411
- type: euclidean_spearman
value: 76.81750749576634
- type: main_score
value: 76.81750749576634
- type: manhattan_pearson
value: 76.22730912471911
- type: manhattan_spearman
value: 76.76337659370503
- type: pearson
value: 75.8217088748812
- type: spearman
value: 76.81750749576634
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 75.44045207503216
- type: cosine_spearman
value: 70.98200491385815
- type: euclidean_pearson
value: 73.79528647452996
- type: euclidean_spearman
value: 70.98200491385815
- type: main_score
value: 70.98200491385815
- type: manhattan_pearson
value: 74.00347105187919
- type: manhattan_spearman
value: 71.15597425184266
- type: pearson
value: 75.44045207503216
- type: spearman
value: 70.98200491385815
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 77.94210244961548
- type: cosine_spearman
value: 78.66432028882325
- type: euclidean_pearson
value: 78.35289467379204
- type: euclidean_spearman
value: 78.66432028882325
- type: main_score
value: 78.66432028882325
- type: manhattan_pearson
value: 78.28424867038663
- type: manhattan_spearman
value: 78.58719353431712
- type: pearson
value: 77.94210244961548
- type: spearman
value: 78.66432028882325
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 74.09988267613177
- type: cosine_spearman
value: 75.09842774068727
- type: euclidean_pearson
value: 74.68409526331901
- type: euclidean_spearman
value: 75.09842774068727
- type: main_score
value: 75.09842774068727
- type: manhattan_pearson
value: 74.59031379824495
- type: manhattan_spearman
value: 75.02693979965505
- type: pearson
value: 74.09988267613177
- type: spearman
value: 75.09842774068727
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 14.399972034167586
- type: cosine_spearman
value: 11.974036233167949
- type: euclidean_pearson
value: 14.485293885486817
- type: euclidean_spearman
value: 11.974036233167949
- type: main_score
value: 11.974036233167949
- type: manhattan_pearson
value: 13.719281545868167
- type: manhattan_spearman
value: 11.030737066771716
- type: pearson
value: 14.399972034167586
- type: spearman
value: 11.974036233167949
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 0.48735904843064204
- type: cosine_spearman
value: -0.5586853869425744
- type: euclidean_pearson
value: 0.6087049823875109
- type: euclidean_spearman
value: -0.5586853869425744
- type: main_score
value: -0.5586853869425744
- type: manhattan_pearson
value: -5.604629753019841
- type: manhattan_spearman
value: -6.156533065413701
- type: pearson
value: 0.48735904843064204
- type: spearman
value: -0.5586853869425744
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 83.08779566633636
- type: cosine_spearman
value: 84.49159199501017
- type: euclidean_pearson
value: 83.5601221620653
- type: euclidean_spearman
value: 84.49159199501017
- type: main_score
value: 84.49159199501017
- type: manhattan_pearson
value: 83.66974922388209
- type: manhattan_spearman
value: 84.69728258948982
- type: pearson
value: 83.08779566633636
- type: spearman
value: 84.49159199501017
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 28.253544786263518
- type: cosine_spearman
value: 24.619138389390237
- type: euclidean_pearson
value: 28.492064397709616
- type: euclidean_spearman
value: 24.619138389390237
- type: main_score
value: 24.619138389390237
- type: manhattan_pearson
value: 30.135975855905052
- type: manhattan_spearman
value: 25.508286051679313
- type: pearson
value: 28.253544786263518
- type: spearman
value: 24.619138389390237
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 32.599578555181466
- type: cosine_spearman
value: 31.33358514527386
- type: euclidean_pearson
value: 32.613214551816796
- type: euclidean_spearman
value: 31.33358514527386
- type: main_score
value: 31.33358514527386
- type: manhattan_pearson
value: 32.25686415499878
- type: manhattan_spearman
value: 29.668763682572735
- type: pearson
value: 32.599578555181466
- type: spearman
value: 31.33358514527386
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 23.75577872956453
- type: cosine_spearman
value: 21.321554136347544
- type: euclidean_pearson
value: 23.28498966277531
- type: euclidean_spearman
value: 21.321554136347544
- type: main_score
value: 21.321554136347544
- type: manhattan_pearson
value: 21.83738887582424
- type: manhattan_spearman
value: 18.096121115941422
- type: pearson
value: 23.75577872956453
- type: spearman
value: 21.321554136347544
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 27.69563703760355
- type: cosine_spearman
value: 24.76336397535317
- type: euclidean_pearson
value: 28.070464936235396
- type: euclidean_spearman
value: 24.76336397535317
- type: main_score
value: 24.76336397535317
- type: manhattan_pearson
value: 29.820923974737546
- type: manhattan_spearman
value: 27.812820254677657
- type: pearson
value: 27.69563703760355
- type: spearman
value: 24.76336397535317
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 16.346177540651276
- type: cosine_spearman
value: 13.601344161361006
- type: euclidean_pearson
value: 16.494437424874043
- type: euclidean_spearman
value: 13.601344161361006
- type: main_score
value: 13.601344161361006
- type: manhattan_pearson
value: 14.109457511241242
- type: manhattan_spearman
value: 13.157710082543057
- type: pearson
value: 16.346177540651276
- type: spearman
value: 13.601344161361006
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 8.721258908976726
- type: cosine_spearman
value: 18.35245351814682
- type: euclidean_pearson
value: 6.733168292100376
- type: euclidean_spearman
value: 18.35245351814682
- type: main_score
value: 18.35245351814682
- type: manhattan_pearson
value: 10.48470979974683
- type: manhattan_spearman
value: 23.301312684266456
- type: pearson
value: 8.721258908976726
- type: spearman
value: 18.35245351814682
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 11.49126181142697
- type: cosine_spearman
value: 16.21762340764813
- type: euclidean_pearson
value: 10.421413269548768
- type: euclidean_spearman
value: 16.15075860419545
- type: main_score
value: 16.21762340764813
- type: manhattan_pearson
value: 14.305549482593522
- type: manhattan_spearman
value: 18.371358872490433
- type: pearson
value: 11.49126181142697
- type: spearman
value: 16.21762340764813
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 26.168037910219216
- type: cosine_spearman
value: 31.68384203851073
- type: euclidean_pearson
value: 25.745626390764293
- type: euclidean_spearman
value: 31.677361748737955
- type: main_score
value: 31.68384203851073
- type: manhattan_pearson
value: 25.87013667642989
- type: manhattan_spearman
value: 34.71610605034525
- type: pearson
value: 26.168037910219216
- type: spearman
value: 31.68384203851073
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 9.071484790364082
- type: cosine_spearman
value: 9.726488833098573
- type: euclidean_pearson
value: 8.563790512620805
- type: euclidean_spearman
value: 9.741694852789207
- type: main_score
value: 9.726488833098573
- type: manhattan_pearson
value: 6.653824957307301
- type: manhattan_spearman
value: 7.550086762351419
- type: pearson
value: 9.071484790364082
- type: spearman
value: 9.726488833098573
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 58.835618895152855
- type: cosine_spearman
value: 63.35773898104199
- type: euclidean_pearson
value: 62.348443804922525
- type: euclidean_spearman
value: 63.35773898104199
- type: main_score
value: 63.35773898104199
- type: manhattan_pearson
value: 62.7037835433589
- type: manhattan_spearman
value: 62.86339756370198
- type: pearson
value: 58.835618895152855
- type: spearman
value: 63.35773898104199
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 75.85762627227177
- type: cosine_spearman
value: 74.28444387078392
- type: euclidean_pearson
value: 76.14631470926992
- type: euclidean_spearman
value: 74.28444387078392
- type: main_score
value: 74.28444387078392
- type: manhattan_pearson
value: 76.29026607759047
- type: manhattan_spearman
value: 74.36833261994545
- type: pearson
value: 75.85762627227177
- type: spearman
value: 74.28444387078392
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 70.28519419296406
- type: map
value: 70.28519419296406
- type: mrr
value: 89.42476278260591
- type: nAUC_map_diff1
value: 9.174758618691703
- type: nAUC_map_max
value: 56.09564435538077
- type: nAUC_map_std
value: 67.85518368829582
- type: nAUC_mrr_diff1
value: 43.619263369174874
- type: nAUC_mrr_max
value: 74.99462642243834
- type: nAUC_mrr_std
value: 71.03708831031823
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 46.039
- type: map_at_1
value: 32.833
- type: map_at_10
value: 41.073
- type: map_at_100
value: 42.055
- type: map_at_1000
value: 42.115
- type: map_at_20
value: 41.577
- type: map_at_3
value: 38.181
- type: map_at_5
value: 39.939
- type: mrr_at_1
value: 34.66666666666667
- type: mrr_at_10
value: 42.69973544973544
- type: mrr_at_100
value: 43.50094990516196
- type: mrr_at_1000
value: 43.55518326135714
- type: mrr_at_20
value: 43.09661278264219
- type: mrr_at_3
value: 40.055555555555536
- type: mrr_at_5
value: 41.755555555555546
- type: nauc_map_at_1000_diff1
value: 45.428609740785745
- type: nauc_map_at_1000_max
value: 37.543057127562015
- type: nauc_map_at_1000_std
value: 2.996790610257377
- type: nauc_map_at_100_diff1
value: 45.41655665365538
- type: nauc_map_at_100_max
value: 37.55142170311717
- type: nauc_map_at_100_std
value: 3.021634986612468
- type: nauc_map_at_10_diff1
value: 45.28151352698938
- type: nauc_map_at_10_max
value: 37.15161941800589
- type: nauc_map_at_10_std
value: 2.1466882062165955
- type: nauc_map_at_1_diff1
value: 46.886698245684144
- type: nauc_map_at_1_max
value: 34.23436427795755
- type: nauc_map_at_1_std
value: -1.63247086935568
- type: nauc_map_at_20_diff1
value: 45.323443483378334
- type: nauc_map_at_20_max
value: 37.360033627177806
- type: nauc_map_at_20_std
value: 2.5814764857730226
- type: nauc_map_at_3_diff1
value: 46.42738772300192
- type: nauc_map_at_3_max
value: 34.91781909311709
- type: nauc_map_at_3_std
value: 0.7407858981306185
- type: nauc_map_at_5_diff1
value: 45.56095939652318
- type: nauc_map_at_5_max
value: 36.42349927345809
- type: nauc_map_at_5_std
value: 1.5882842990321877
- type: nauc_mrr_at_1000_diff1
value: 46.619194210193115
- type: nauc_mrr_at_1000_max
value: 39.58593846571098
- type: nauc_mrr_at_1000_std
value: 6.871860120606581
- type: nauc_mrr_at_100_diff1
value: 46.60992557885071
- type: nauc_mrr_at_100_max
value: 39.59384195719456
- type: nauc_mrr_at_100_std
value: 6.913799322671517
- type: nauc_mrr_at_10_diff1
value: 46.49797118603073
- type: nauc_mrr_at_10_max
value: 39.50640104704752
- type: nauc_mrr_at_10_std
value: 6.508999197821892
- type: nauc_mrr_at_1_diff1
value: 49.3185659952106
- type: nauc_mrr_at_1_max
value: 36.96867516551628
- type: nauc_mrr_at_1_std
value: 3.2209642203127
- type: nauc_mrr_at_20_diff1
value: 46.57642255869317
- type: nauc_mrr_at_20_max
value: 39.57536672051077
- type: nauc_mrr_at_20_std
value: 6.686866161626959
- type: nauc_mrr_at_3_diff1
value: 47.71472878192224
- type: nauc_mrr_at_3_max
value: 37.84645732330119
- type: nauc_mrr_at_3_std
value: 5.794681287411272
- type: nauc_mrr_at_5_diff1
value: 46.88419733444017
- type: nauc_mrr_at_5_max
value: 38.93781880268596
- type: nauc_mrr_at_5_std
value: 5.995326077656308
- type: nauc_ndcg_at_1000_diff1
value: 44.62859803359441
- type: nauc_ndcg_at_1000_max
value: 40.04051001437065
- type: nauc_ndcg_at_1000_std
value: 7.077880529469134
- type: nauc_ndcg_at_100_diff1
value: 44.27396584172457
- type: nauc_ndcg_at_100_max
value: 40.45032063067928
- type: nauc_ndcg_at_100_std
value: 8.295284232687681
- type: nauc_ndcg_at_10_diff1
value: 44.12502453790537
- type: nauc_ndcg_at_10_max
value: 39.397967545534506
- type: nauc_ndcg_at_10_std
value: 5.154810286641697
- type: nauc_ndcg_at_1_diff1
value: 49.3185659952106
- type: nauc_ndcg_at_1_max
value: 36.96867516551628
- type: nauc_ndcg_at_1_std
value: 3.2209642203127
- type: nauc_ndcg_at_20_diff1
value: 44.36600328826306
- type: nauc_ndcg_at_20_max
value: 39.81785860876702
- type: nauc_ndcg_at_20_std
value: 6.377952248139375
- type: nauc_ndcg_at_3_diff1
value: 46.48606615048381
- type: nauc_ndcg_at_3_max
value: 35.70009304999929
- type: nauc_ndcg_at_3_std
value: 3.154595246639392
- type: nauc_ndcg_at_5_diff1
value: 44.904178071715464
- type: nauc_ndcg_at_5_max
value: 37.949117517935456
- type: nauc_ndcg_at_5_std
value: 3.8124217549794093
- type: nauc_precision_at_1000_diff1
value: -0.8300581285183218
- type: nauc_precision_at_1000_max
value: 31.934010990018514
- type: nauc_precision_at_1000_std
value: 47.92943894671857
- type: nauc_precision_at_100_diff1
value: 14.358545370047567
- type: nauc_precision_at_100_max
value: 43.205762751248905
- type: nauc_precision_at_100_std
value: 44.94248867201113
- type: nauc_precision_at_10_diff1
value: 32.758240141259556
- type: nauc_precision_at_10_max
value: 46.157053168530545
- type: nauc_precision_at_10_std
value: 21.028300961349817
- type: nauc_precision_at_1_diff1
value: 49.3185659952106
- type: nauc_precision_at_1_max
value: 36.96867516551628
- type: nauc_precision_at_1_std
value: 3.2209642203127
- type: nauc_precision_at_20_diff1
value: 29.999274269632952
- type: nauc_precision_at_20_max
value: 46.11250433422294
- type: nauc_precision_at_20_std
value: 27.805552643674424
- type: nauc_precision_at_3_diff1
value: 44.76807259977309
- type: nauc_precision_at_3_max
value: 39.34948953284521
- type: nauc_precision_at_3_std
value: 12.711560276374097
- type: nauc_precision_at_5_diff1
value: 39.43498516172891
- type: nauc_precision_at_5_max
value: 44.48289868527945
- type: nauc_precision_at_5_std
value: 16.414112107697655
- type: nauc_recall_at_1000_diff1
value: 26.98339178190966
- type: nauc_recall_at_1000_max
value: 65.3524927031179
- type: nauc_recall_at_1000_std
value: 34.59530793944871
- type: nauc_recall_at_100_diff1
value: 33.663296786200256
- type: nauc_recall_at_100_max
value: 53.06676443361575
- type: nauc_recall_at_100_std
value: 35.88980433138387
- type: nauc_recall_at_10_diff1
value: 38.095698552275756
- type: nauc_recall_at_10_max
value: 43.21866470802114
- type: nauc_recall_at_10_std
value: 10.055255790665134
- type: nauc_recall_at_1_diff1
value: 46.886698245684144
- type: nauc_recall_at_1_max
value: 34.23436427795755
- type: nauc_recall_at_1_std
value: -1.63247086935568
- type: nauc_recall_at_20_diff1
value: 39.0968003991353
- type: nauc_recall_at_20_max
value: 45.126688167134404
- type: nauc_recall_at_20_std
value: 15.411347479962858
- type: nauc_recall_at_3_diff1
value: 45.02281186238651
- type: nauc_recall_at_3_max
value: 33.51469893830599
- type: nauc_recall_at_3_std
value: 4.0471017429782385
- type: nauc_recall_at_5_diff1
value: 40.702224348966396
- type: nauc_recall_at_5_max
value: 38.8291162721674
- type: nauc_recall_at_5_std
value: 5.599714100970187
- type: ndcg_at_1
value: 34.666999999999994
- type: ndcg_at_10
value: 46.039
- type: ndcg_at_100
value: 50.88
- type: ndcg_at_1000
value: 52.516
- type: ndcg_at_20
value: 47.615
- type: ndcg_at_3
value: 40.425
- type: ndcg_at_5
value: 43.444
- type: precision_at_1
value: 34.666999999999994
- type: precision_at_10
value: 6.6000000000000005
- type: precision_at_100
value: 0.9400000000000001
- type: precision_at_1000
value: 0.108
- type: precision_at_20
value: 3.6670000000000003
- type: precision_at_3
value: 16.111
- type: precision_at_5
value: 11.333
- type: recall_at_1
value: 32.833
- type: recall_at_10
value: 59.955999999999996
- type: recall_at_100
value: 82.89999999999999
- type: recall_at_1000
value: 95.767
- type: recall_at_20
value: 65.789
- type: recall_at_3
value: 44.806000000000004
- type: recall_at_5
value: 52.111
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.71188118811881
- type: cosine_accuracy_threshold
value: 80.28961679083551
- type: cosine_ap
value: 89.87404753184795
- type: cosine_f1
value: 85.25088697415104
- type: cosine_f1_threshold
value: 78.87657179254246
- type: cosine_precision
value: 86.43371017471738
- type: cosine_recall
value: 84.1
- type: dot_accuracy
value: 99.71188118811881
- type: dot_accuracy_threshold
value: 80.28961582816035
- type: dot_ap
value: 89.87404753184795
- type: dot_f1
value: 85.25088697415104
- type: dot_f1_threshold
value: 78.87657197624056
- type: dot_precision
value: 86.43371017471738
- type: dot_recall
value: 84.1
- type: euclidean_accuracy
value: 99.71188118811881
- type: euclidean_accuracy_threshold
value: 62.785946440274465
- type: euclidean_ap
value: 89.87404753184795
- type: euclidean_f1
value: 85.25088697415104
- type: euclidean_f1_threshold
value: 64.9975660049523
- type: euclidean_precision
value: 86.43371017471738
- type: euclidean_recall
value: 84.1
- type: main_score
value: 89.87404753184795
- type: manhattan_accuracy
value: 99.71782178217822
- type: manhattan_accuracy_threshold
value: 571.5442430373514
- type: manhattan_ap
value: 89.86667222138405
- type: manhattan_f1
value: 85.3017019082001
- type: manhattan_f1_threshold
value: 571.5442430373514
- type: manhattan_precision
value: 88.07241746538871
- type: manhattan_recall
value: 82.69999999999999
- type: max_accuracy
value: 99.71782178217822
- type: max_ap
value: 89.87404753184795
- type: max_f1
value: 85.3017019082001
- type: max_precision
value: 88.07241746538871
- type: max_recall
value: 84.1
- type: similarity_accuracy
value: 99.71188118811881
- type: similarity_accuracy_threshold
value: 80.28961679083551
- type: similarity_ap
value: 89.87404753184795
- type: similarity_f1
value: 85.25088697415104
- type: similarity_f1_threshold
value: 78.87657179254246
- type: similarity_precision
value: 86.43371017471738
- type: similarity_recall
value: 84.1
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: main_score
value: 45.28623588344632
- type: v_measure
value: 45.28623588344632
- type: v_measure_std
value: 3.699756512710844
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: main_score
value: 31.36188637863386
- type: v_measure
value: 31.36188637863386
- type: v_measure_std
value: 1.479842367330655
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 41.90071199374392
- type: map
value: 41.90071199374392
- type: mrr
value: 42.24937133944486
- type: nAUC_map_diff1
value: 34.56201480309732
- type: nAUC_map_max
value: 13.244556287676348
- type: nAUC_map_std
value: 4.280183327551114
- type: nAUC_mrr_diff1
value: 33.70148851327892
- type: nAUC_mrr_max
value: 14.254825331290972
- type: nAUC_mrr_std
value: 4.529615444769097
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 30.390849690222034
- type: cosine_spearman
value: 28.891662569282467
- type: dot_pearson
value: 30.390849348187416
- type: dot_spearman
value: 28.798804320984324
- type: main_score
value: 28.891662569282467
- type: pearson
value: 30.390849690222034
- type: spearman
value: 28.891662569282467
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 43.236000000000004
- type: map_at_1
value: 0.145
- type: map_at_10
value: 0.9209999999999999
- type: map_at_100
value: 4.718
- type: map_at_1000
value: 11.262
- type: map_at_20
value: 1.637
- type: map_at_3
value: 0.35000000000000003
- type: map_at_5
value: 0.532
- type: mrr_at_1
value: 62.0
- type: mrr_at_10
value: 69.40238095238095
- type: mrr_at_100
value: 69.55750915750914
- type: mrr_at_1000
value: 69.59003822688032
- type: mrr_at_20
value: 69.40238095238095
- type: mrr_at_3
value: 67.66666666666667
- type: mrr_at_5
value: 67.66666666666667
- type: nauc_map_at_1000_diff1
value: -0.9866281041682196
- type: nauc_map_at_1000_max
value: 31.12085608035618
- type: nauc_map_at_1000_std
value: 53.009123272875236
- type: nauc_map_at_100_diff1
value: -10.423991731052672
- type: nauc_map_at_100_max
value: 21.253437633464
- type: nauc_map_at_100_std
value: 28.44817556481647
- type: nauc_map_at_10_diff1
value: 0.9108503211560519
- type: nauc_map_at_10_max
value: 24.561084063694974
- type: nauc_map_at_10_std
value: 18.05662846072466
- type: nauc_map_at_1_diff1
value: 2.163025554719988
- type: nauc_map_at_1_max
value: 4.173360349606284
- type: nauc_map_at_1_std
value: 3.8151957830662955
- type: nauc_map_at_20_diff1
value: -3.5278217716407774
- type: nauc_map_at_20_max
value: 21.530434946303384
- type: nauc_map_at_20_std
value: 17.503504606889667
- type: nauc_map_at_3_diff1
value: -5.37288514415413
- type: nauc_map_at_3_max
value: 19.159151414876334
- type: nauc_map_at_3_std
value: 10.438553350197065
- type: nauc_map_at_5_diff1
value: 0.2040960199712178
- type: nauc_map_at_5_max
value: 20.989057156573026
- type: nauc_map_at_5_std
value: 12.31339487014647
- type: nauc_mrr_at_1000_diff1
value: 16.231982255141002
- type: nauc_mrr_at_1000_max
value: 22.157032073031953
- type: nauc_mrr_at_1000_std
value: 17.25244660114329
- type: nauc_mrr_at_100_diff1
value: 16.291634278945995
- type: nauc_mrr_at_100_max
value: 22.111932462460885
- type: nauc_mrr_at_100_std
value: 17.175937439333218
- type: nauc_mrr_at_10_diff1
value: 15.916829499802285
- type: nauc_mrr_at_10_max
value: 22.02196974730754
- type: nauc_mrr_at_10_std
value: 17.095811543787327
- type: nauc_mrr_at_1_diff1
value: 13.58643817493768
- type: nauc_mrr_at_1_max
value: 21.816447712518837
- type: nauc_mrr_at_1_std
value: 17.924499276989756
- type: nauc_mrr_at_20_diff1
value: 15.916829499802285
- type: nauc_mrr_at_20_max
value: 22.02196974730754
- type: nauc_mrr_at_20_std
value: 17.095811543787327
- type: nauc_mrr_at_3_diff1
value: 16.861922990056758
- type: nauc_mrr_at_3_max
value: 23.67224734912763
- type: nauc_mrr_at_3_std
value: 18.77182517851052
- type: nauc_mrr_at_5_diff1
value: 16.861922990056758
- type: nauc_mrr_at_5_max
value: 23.67224734912763
- type: nauc_mrr_at_5_std
value: 18.77182517851052
- type: nauc_ndcg_at_1000_diff1
value: -3.6322351354234277
- type: nauc_ndcg_at_1000_max
value: 22.84735239467931
- type: nauc_ndcg_at_1000_std
value: 47.101995953544375
- type: nauc_ndcg_at_100_diff1
value: 1.2976318687207455
- type: nauc_ndcg_at_100_max
value: 25.603883117672627
- type: nauc_ndcg_at_100_std
value: 43.82225311236483
- type: nauc_ndcg_at_10_diff1
value: 1.4385026341900742
- type: nauc_ndcg_at_10_max
value: 26.983102845386192
- type: nauc_ndcg_at_10_std
value: 30.974303592515234
- type: nauc_ndcg_at_1_diff1
value: 11.626777860284411
- type: nauc_ndcg_at_1_max
value: 19.944879191180636
- type: nauc_ndcg_at_1_std
value: 17.19740675158504
- type: nauc_ndcg_at_20_diff1
value: 0.7222731371858458
- type: nauc_ndcg_at_20_max
value: 25.565239587362182
- type: nauc_ndcg_at_20_std
value: 33.250012456509396
- type: nauc_ndcg_at_3_diff1
value: -0.048425941543918084
- type: nauc_ndcg_at_3_max
value: 31.34942513461199
- type: nauc_ndcg_at_3_std
value: 23.849711658390376
- type: nauc_ndcg_at_5_diff1
value: 2.7179781299699624
- type: nauc_ndcg_at_5_max
value: 28.356065716200323
- type: nauc_ndcg_at_5_std
value: 27.038595761090995
- type: nauc_precision_at_1000_diff1
value: 8.820420006228579
- type: nauc_precision_at_1000_max
value: 27.589962032103767
- type: nauc_precision_at_1000_std
value: 55.91804871658855
- type: nauc_precision_at_100_diff1
value: 1.861909084323091
- type: nauc_precision_at_100_max
value: 24.679468330371577
- type: nauc_precision_at_100_std
value: 46.971622410582256
- type: nauc_precision_at_10_diff1
value: 0.9473942721845824
- type: nauc_precision_at_10_max
value: 27.373995617238855
- type: nauc_precision_at_10_std
value: 33.8121206014962
- type: nauc_precision_at_1_diff1
value: 13.58643817493768
- type: nauc_precision_at_1_max
value: 21.816447712518837
- type: nauc_precision_at_1_std
value: 17.924499276989756
- type: nauc_precision_at_20_diff1
value: -0.9496032133443041
- type: nauc_precision_at_20_max
value: 25.09536129203218
- type: nauc_precision_at_20_std
value: 34.94477064476087
- type: nauc_precision_at_3_diff1
value: -1.6270834605287547
- type: nauc_precision_at_3_max
value: 32.97922136068537
- type: nauc_precision_at_3_std
value: 27.004090603821968
- type: nauc_precision_at_5_diff1
value: 3.152498000145442
- type: nauc_precision_at_5_max
value: 28.41066104283325
- type: nauc_precision_at_5_std
value: 28.703367027852533
- type: nauc_recall_at_1000_diff1
value: -6.851615969002735
- type: nauc_recall_at_1000_max
value: 18.254946709759913
- type: nauc_recall_at_1000_std
value: 44.660282645336395
- type: nauc_recall_at_100_diff1
value: -15.060165572281289
- type: nauc_recall_at_100_max
value: 14.287315673289354
- type: nauc_recall_at_100_std
value: 24.585719052074662
- type: nauc_recall_at_10_diff1
value: -0.5156087338678611
- type: nauc_recall_at_10_max
value: 20.63199550876313
- type: nauc_recall_at_10_std
value: 16.05339234192207
- type: nauc_recall_at_1_diff1
value: 2.163025554719988
- type: nauc_recall_at_1_max
value: 4.173360349606284
- type: nauc_recall_at_1_std
value: 3.8151957830662955
- type: nauc_recall_at_20_diff1
value: -7.154067602130297
- type: nauc_recall_at_20_max
value: 15.224908904403495
- type: nauc_recall_at_20_std
value: 12.626459111226785
- type: nauc_recall_at_3_diff1
value: -3.619649071909071
- type: nauc_recall_at_3_max
value: 18.4012808687954
- type: nauc_recall_at_3_std
value: 7.9348810473575115
- type: nauc_recall_at_5_diff1
value: 1.7480268902181528
- type: nauc_recall_at_5_max
value: 18.308076072154737
- type: nauc_recall_at_5_std
value: 8.189069818854295
- type: ndcg_at_1
value: 56.00000000000001
- type: ndcg_at_10
value: 43.236000000000004
- type: ndcg_at_100
value: 32.002
- type: ndcg_at_1000
value: 28.841
- type: ndcg_at_20
value: 41.939
- type: ndcg_at_3
value: 49.397000000000006
- type: ndcg_at_5
value: 45.989000000000004
- type: precision_at_1
value: 62.0
- type: precision_at_10
value: 45.2
- type: precision_at_100
value: 32.98
- type: precision_at_1000
value: 13.654
- type: precision_at_20
value: 44.6
- type: precision_at_3
value: 52.0
- type: precision_at_5
value: 48.0
- type: recall_at_1
value: 0.145
- type: recall_at_10
value: 1.095
- type: recall_at_100
value: 7.23
- type: recall_at_1000
value: 27.381
- type: recall_at_20
value: 2.137
- type: recall_at_3
value: 0.38
- type: recall_at_5
value: 0.598
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 15.369
- type: map_at_1
value: 0.624
- type: map_at_10
value: 5.045999999999999
- type: map_at_100
value: 9.263
- type: map_at_1000
value: 10.685
- type: map_at_20
value: 6.802999999999999
- type: map_at_3
value: 2.096
- type: map_at_5
value: 3.0540000000000003
- type: mrr_at_1
value: 8.16326530612245
- type: mrr_at_10
value: 27.867670877874957
- type: mrr_at_100
value: 29.547080186435025
- type: mrr_at_1000
value: 29.547080186435025
- type: mrr_at_20
value: 29.159558218365945
- type: mrr_at_3
value: 23.809523809523807
- type: mrr_at_5
value: 26.462585034013603
- type: nauc_map_at_1000_diff1
value: 1.0582929159944574
- type: nauc_map_at_1000_max
value: -27.972526856689594
- type: nauc_map_at_1000_std
value: -13.966866642399777
- type: nauc_map_at_100_diff1
value: 1.6049379176721044
- type: nauc_map_at_100_max
value: -27.93768261006475
- type: nauc_map_at_100_std
value: -19.120569812088558
- type: nauc_map_at_10_diff1
value: -4.551284011489953
- type: nauc_map_at_10_max
value: -36.348822221003736
- type: nauc_map_at_10_std
value: -25.310440699574926
- type: nauc_map_at_1_diff1
value: -4.29133354793351
- type: nauc_map_at_1_max
value: -33.683902237924606
- type: nauc_map_at_1_std
value: -2.149083372866397
- type: nauc_map_at_20_diff1
value: -2.4993677210093415
- type: nauc_map_at_20_max
value: -34.56781126360638
- type: nauc_map_at_20_std
value: -27.270046086050996
- type: nauc_map_at_3_diff1
value: -8.863535339368541
- type: nauc_map_at_3_max
value: -33.915423919314165
- type: nauc_map_at_3_std
value: -20.931876097914717
- type: nauc_map_at_5_diff1
value: -6.112924399379883
- type: nauc_map_at_5_max
value: -35.51745928601429
- type: nauc_map_at_5_std
value: -26.71283272416072
- type: nauc_mrr_at_1000_diff1
value: -7.143214264658434
- type: nauc_mrr_at_1000_max
value: -31.863746808733406
- type: nauc_mrr_at_1000_std
value: -20.83112018798552
- type: nauc_mrr_at_100_diff1
value: -7.143214264658434
- type: nauc_mrr_at_100_max
value: -31.863746808733406
- type: nauc_mrr_at_100_std
value: -20.83112018798552
- type: nauc_mrr_at_10_diff1
value: -5.884787315885467
- type: nauc_mrr_at_10_max
value: -30.635220886655258
- type: nauc_mrr_at_10_std
value: -19.490662014520957
- type: nauc_mrr_at_1_diff1
value: -19.87621826159222
- type: nauc_mrr_at_1_max
value: -29.000455091255144
- type: nauc_mrr_at_1_std
value: -14.74961781962394
- type: nauc_mrr_at_20_diff1
value: -6.586786522775319
- type: nauc_mrr_at_20_max
value: -31.762465562178672
- type: nauc_mrr_at_20_std
value: -20.175801528907265
- type: nauc_mrr_at_3_diff1
value: -7.379742423129064
- type: nauc_mrr_at_3_max
value: -29.391649545988567
- type: nauc_mrr_at_3_std
value: -21.55556068358554
- type: nauc_mrr_at_5_diff1
value: -8.355170805869708
- type: nauc_mrr_at_5_max
value: -31.372339495284457
- type: nauc_mrr_at_5_std
value: -22.75382295756138
- type: nauc_ndcg_at_1000_diff1
value: 11.109947409844976
- type: nauc_ndcg_at_1000_max
value: -23.497394105384846
- type: nauc_ndcg_at_1000_std
value: 10.33864673546571
- type: nauc_ndcg_at_100_diff1
value: 10.309963888321153
- type: nauc_ndcg_at_100_max
value: -29.80240939206779
- type: nauc_ndcg_at_100_std
value: -12.225609266444376
- type: nauc_ndcg_at_10_diff1
value: 1.0618079883003713
- type: nauc_ndcg_at_10_max
value: -30.20694258627494
- type: nauc_ndcg_at_10_std
value: -20.899235269598666
- type: nauc_ndcg_at_1_diff1
value: -19.756295296761344
- type: nauc_ndcg_at_1_max
value: -28.516727659678804
- type: nauc_ndcg_at_1_std
value: -10.80797592567357
- type: nauc_ndcg_at_20_diff1
value: 5.732615761799287
- type: nauc_ndcg_at_20_max
value: -34.92333737881057
- type: nauc_ndcg_at_20_std
value: -26.461162552758942
- type: nauc_ndcg_at_3_diff1
value: -14.660143720588037
- type: nauc_ndcg_at_3_max
value: -26.62064265146035
- type: nauc_ndcg_at_3_std
value: -18.157487966395067
- type: nauc_ndcg_at_5_diff1
value: -7.731517563034629
- type: nauc_ndcg_at_5_max
value: -27.00395580552045
- type: nauc_ndcg_at_5_std
value: -24.039383478902586
- type: nauc_precision_at_1000_diff1
value: -4.030522868525787
- type: nauc_precision_at_1000_max
value: 35.26062641499173
- type: nauc_precision_at_1000_std
value: 56.17859102879932
- type: nauc_precision_at_100_diff1
value: 4.666878915081701
- type: nauc_precision_at_100_max
value: -6.403637691779489
- type: nauc_precision_at_100_std
value: 11.07070377101311
- type: nauc_precision_at_10_diff1
value: 0.05509998588231166
- type: nauc_precision_at_10_max
value: -28.377648043763603
- type: nauc_precision_at_10_std
value: -21.34157508908641
- type: nauc_precision_at_1_diff1
value: -19.87621826159222
- type: nauc_precision_at_1_max
value: -29.000455091255144
- type: nauc_precision_at_1_std
value: -14.74961781962394
- type: nauc_precision_at_20_diff1
value: 4.05836071238904
- type: nauc_precision_at_20_max
value: -24.70626402704997
- type: nauc_precision_at_20_std
value: -24.319709234669276
- type: nauc_precision_at_3_diff1
value: -14.934997211713059
- type: nauc_precision_at_3_max
value: -25.535532316716708
- type: nauc_precision_at_3_std
value: -22.977374631751008
- type: nauc_precision_at_5_diff1
value: -6.4331893193391405
- type: nauc_precision_at_5_max
value: -24.72694882355003
- type: nauc_precision_at_5_std
value: -27.54507044990821
- type: nauc_recall_at_1000_diff1
value: 12.952574652534027
- type: nauc_recall_at_1000_max
value: -19.55020441237283
- type: nauc_recall_at_1000_std
value: 44.97172549500198
- type: nauc_recall_at_100_diff1
value: 8.529360939874099
- type: nauc_recall_at_100_max
value: -30.32863940847708
- type: nauc_recall_at_100_std
value: -9.61948332450022
- type: nauc_recall_at_10_diff1
value: 2.4975692103190292
- type: nauc_recall_at_10_max
value: -38.15178448204205
- type: nauc_recall_at_10_std
value: -25.119879013303205
- type: nauc_recall_at_1_diff1
value: -4.29133354793351
- type: nauc_recall_at_1_max
value: -33.683902237924606
- type: nauc_recall_at_1_std
value: -2.149083372866397
- type: nauc_recall_at_20_diff1
value: 6.812191596907528
- type: nauc_recall_at_20_max
value: -38.779604712399255
- type: nauc_recall_at_20_std
value: -31.097428703581365
- type: nauc_recall_at_3_diff1
value: -5.858755837786076
- type: nauc_recall_at_3_max
value: -36.38554330826264
- type: nauc_recall_at_3_std
value: -27.587992095769547
- type: nauc_recall_at_5_diff1
value: -2.4757070734304856
- type: nauc_recall_at_5_max
value: -38.80369033497341
- type: nauc_recall_at_5_std
value: -32.378290142635706
- type: ndcg_at_1
value: 7.142999999999999
- type: ndcg_at_10
value: 15.369
- type: ndcg_at_100
value: 26.151999999999997
- type: ndcg_at_1000
value: 38.553
- type: ndcg_at_20
value: 17.325
- type: ndcg_at_3
value: 13.944999999999999
- type: ndcg_at_5
value: 14.565
- type: precision_at_1
value: 8.163
- type: precision_at_10
value: 16.735
- type: precision_at_100
value: 6.223999999999999
- type: precision_at_1000
value: 1.4200000000000002
- type: precision_at_20
value: 13.776
- type: precision_at_3
value: 17.687
- type: precision_at_5
value: 17.959
- type: recall_at_1
value: 0.624
- type: recall_at_10
value: 11.723
- type: recall_at_100
value: 38.072
- type: recall_at_1000
value: 76.011
- type: recall_at_20
value: 18.553
- type: recall_at_3
value: 3.7379999999999995
- type: recall_at_5
value: 6.2170000000000005
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 67.724609375
- type: ap
value: 12.118510465436508
- type: ap_weighted
value: 12.118510465436508
- type: f1
value: 51.502156902277044
- type: f1_weighted
value: 74.90031680337547
- type: main_score
value: 67.724609375
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 54.20486700622524
- type: f1
value: 54.430757063175975
- type: f1_weighted
value: 53.770651858268025
- type: main_score
value: 54.20486700622524
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: main_score
value: 31.416458059499856
- type: v_measure
value: 31.416458059499856
- type: v_measure_std
value: 1.7923550883286548
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 81.09912380044108
- type: cosine_accuracy_threshold
value: 78.23829613291026
- type: cosine_ap
value: 55.35060563890305
- type: cosine_f1
value: 53.80317025886646
- type: cosine_f1_threshold
value: 66.90525865927196
- type: cosine_precision
value: 47.37899176541474
- type: cosine_recall
value: 62.24274406332454
- type: dot_accuracy
value: 81.09912380044108
- type: dot_accuracy_threshold
value: 78.23829756344699
- type: dot_ap
value: 55.35060534827081
- type: dot_f1
value: 53.80317025886646
- type: dot_f1_threshold
value: 66.90525431322651
- type: dot_precision
value: 47.37899176541474
- type: dot_recall
value: 62.24274406332454
- type: euclidean_accuracy
value: 81.09912380044108
- type: euclidean_accuracy_threshold
value: 65.97227331408025
- type: euclidean_ap
value: 55.350603467922014
- type: euclidean_f1
value: 53.80317025886646
- type: euclidean_f1_threshold
value: 81.35691587916897
- type: euclidean_precision
value: 47.37899176541474
- type: euclidean_recall
value: 62.24274406332454
- type: main_score
value: 55.411799272092175
- type: manhattan_accuracy
value: 81.25409787208679
- type: manhattan_accuracy_threshold
value: 593.7671894840605
- type: manhattan_ap
value: 55.411799272092175
- type: manhattan_f1
value: 53.751250416805604
- type: manhattan_f1_threshold
value: 732.5377952336567
- type: manhattan_precision
value: 46.43748799692721
- type: manhattan_recall
value: 63.79947229551451
- type: max_accuracy
value: 81.25409787208679
- type: max_ap
value: 55.411799272092175
- type: max_f1
value: 53.80317025886646
- type: max_precision
value: 47.37899176541474
- type: max_recall
value: 63.79947229551451
- type: similarity_accuracy
value: 81.09912380044108
- type: similarity_accuracy_threshold
value: 78.23829613291026
- type: similarity_ap
value: 55.35060563890305
- type: similarity_f1
value: 53.80317025886646
- type: similarity_f1_threshold
value: 66.90525865927196
- type: similarity_precision
value: 47.37899176541474
- type: similarity_recall
value: 62.24274406332454
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 86.66123336049986
- type: cosine_accuracy_threshold
value: 65.02320188247097
- type: cosine_ap
value: 80.81687896238907
- type: cosine_f1
value: 73.12032134380135
- type: cosine_f1_threshold
value: 58.973089149680625
- type: cosine_precision
value: 69.54226574980899
- type: cosine_recall
value: 77.08654142285187
- type: dot_accuracy
value: 86.66123336049986
- type: dot_accuracy_threshold
value: 65.02319875482263
- type: dot_ap
value: 80.81688006755317
- type: dot_f1
value: 73.12032134380135
- type: dot_f1_threshold
value: 58.97308824803296
- type: dot_precision
value: 69.54226574980899
- type: dot_recall
value: 77.08654142285187
- type: euclidean_accuracy
value: 86.66123336049986
- type: euclidean_accuracy_threshold
value: 83.63826448345795
- type: euclidean_ap
value: 80.8168799506033
- type: euclidean_f1
value: 73.12032134380135
- type: euclidean_f1_threshold
value: 90.58356387644642
- type: euclidean_precision
value: 69.54226574980899
- type: euclidean_recall
value: 77.08654142285187
- type: main_score
value: 80.81688006755317
- type: manhattan_accuracy
value: 86.5564481701401
- type: manhattan_accuracy_threshold
value: 762.9837047696128
- type: manhattan_ap
value: 80.69253277787045
- type: manhattan_f1
value: 73.04996608636671
- type: manhattan_f1_threshold
value: 792.7533836003931
- type: manhattan_precision
value: 71.5350553505535
- type: manhattan_recall
value: 74.63042808746535
- type: max_accuracy
value: 86.66123336049986
- type: max_ap
value: 80.81688006755317
- type: max_f1
value: 73.12032134380135
- type: max_precision
value: 71.5350553505535
- type: max_recall
value: 77.08654142285187
- type: similarity_accuracy
value: 86.66123336049986
- type: similarity_accuracy_threshold
value: 65.02320188247097
- type: similarity_ap
value: 80.81687896238907
- type: similarity_f1
value: 73.12032134380135
- type: similarity_f1_threshold
value: 58.973089149680625
- type: similarity_precision
value: 69.54226574980899
- type: similarity_recall
value: 77.08654142285187
---
# potion-base-4M Model Card
<div align="center">
<img width="35%" alt="Model2Vec logo" src="https://raw.githubusercontent.com/MinishLab/model2vec/main/assets/images/logo_v2.png">
</div>
This [Model2Vec](https://github.com/MinishLab/model2vec) model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It is a distilled version of the [baai/bge-base-en-v1.5](https://huggingface.co/baai/bge-base-en-v1.5) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical.
## Installation
Install model2vec using pip:
```
pip install model2vec
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec import StaticModel
# Load a pretrained Model2Vec model
model = StaticModel.from_pretrained("minishlab/potion-base-4M")
# Compute text embeddings
embeddings = model.encode(["Example sentence"])
```
## How it works
Model2vec creates a small, static model that outperforms other static embedding models by a large margin on all tasks on [MTEB](https://huggingface.co/spaces/mteb/leaderboard). This model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It's created using the following steps:
- Distillation: first, a model is distilled from a sentence transformer model using Model2Vec.
- Training data creation: the sentence transformer model is used to create training data by creating mean output embeddings on a large corpus.
- Training: the distilled model is trained on the training data using Tokenlearn.
- Post-training re-regularization: after training, the model is re-regularized by weighting the tokens based on their frequency, applying PCA, and finally applying [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx).
The results for this model can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).
## Additional Resources
- [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Tokenlearn repo](https://github.com/MinishLab/tokenlearn)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/blob/main/results/README.md)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@software{minishlab2024model2vec,
authors = {Stephan Tulkens, Thomas van Dongen},
title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model},
year = {2024},
url = {https://github.com/MinishLab/model2vec},
}
``` | [
"BIOSSES",
"SCIFACT"
] |
abhinand/MedEmbed-small-v0.1 | abhinand | null | [
"sentence-transformers",
"safetensors",
"bert",
"medembed",
"medical-embedding",
"clinical-embedding",
"information-retrieval",
"mteb",
"en",
"dataset:MedicalQARetrieval",
"dataset:NFCorpus",
"dataset:PublicHealthQA",
"dataset:TRECCOVID",
"dataset:ArguAna",
"base_model:BAAI/bge-small-en-v1.5",
"base_model:finetune:BAAI/bge-small-en-v1.5",
"license:apache-2.0",
"model-index",
"region:us"
] | "2024-10-20T11:47:50Z" | 2024-10-23T14:49:50+00:00 | 6,846 | 8 | ---
base_model:
- BAAI/bge-small-en-v1.5
datasets:
- MedicalQARetrieval
- NFCorpus
- PublicHealthQA
- TRECCOVID
- ArguAna
language: en
license: apache-2.0
metrics:
- nDCG
- MAP
- Recall
- Precision
- MRR
tags:
- medembed
- medical-embedding
- clinical-embedding
- information-retrieval
- sentence-transformers
- mteb
model-index:
- name: abhinand/MedEmbed-small-v0.1
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 72.17391304347827
- type: ap
value: 21.757637881353535
- type: ap_weighted
value: 21.757637881353535
- type: f1
value: 59.80304692298741
- type: f1_weighted
value: 77.3761270422597
- type: main_score
value: 72.17391304347827
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.28358208955224
- type: ap
value: 33.51413347752456
- type: ap_weighted
value: 33.51413347752456
- type: f1
value: 65.07760889689999
- type: f1_weighted
value: 74.00602410875776
- type: main_score
value: 71.28358208955224
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.99472500000002
- type: ap
value: 88.24057492408383
- type: ap_weighted
value: 88.24057492408383
- type: f1
value: 91.97746777375899
- type: f1_weighted
value: 91.97746777375899
- type: main_score
value: 91.99472500000002
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.211999999999996
- type: f1
value: 46.94308842799891
- type: f1_weighted
value: 46.94308842799891
- type: main_score
value: 48.211999999999996
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 61.587
- type: map_at_1
value: 37.980000000000004
- type: map_at_10
value: 53.40200000000001
- type: map_at_100
value: 54.032000000000004
- type: map_at_1000
value: 54.038
- type: map_at_20
value: 53.898999999999994
- type: map_at_3
value: 49.123
- type: map_at_5
value: 51.747
- type: mrr_at_1
value: 38.26458036984353
- type: mrr_at_10
value: 53.522206416943355
- type: mrr_at_100
value: 54.145400691658374
- type: mrr_at_1000
value: 54.150812285856695
- type: mrr_at_20
value: 54.015571340811796
- type: mrr_at_3
value: 49.3006164058796
- type: mrr_at_5
value: 51.850403034613656
- type: nauc_map_at_1000_diff1
value: 12.462809218755954
- type: nauc_map_at_1000_max
value: -8.081945194296322
- type: nauc_map_at_1000_std
value: -6.165333174593185
- type: nauc_map_at_100_diff1
value: 12.46115346472636
- type: nauc_map_at_100_max
value: -8.07700864766809
- type: nauc_map_at_100_std
value: -6.154824360110573
- type: nauc_map_at_10_diff1
value: 12.247142312490714
- type: nauc_map_at_10_max
value: -8.05437952054825
- type: nauc_map_at_10_std
value: -5.98349855940482
- type: nauc_map_at_1_diff1
value: 15.505336965073605
- type: nauc_map_at_1_max
value: -10.866105149439845
- type: nauc_map_at_1_std
value: -9.694177220362505
- type: nauc_map_at_20_diff1
value: 12.449923215332698
- type: nauc_map_at_20_max
value: -8.061694795957425
- type: nauc_map_at_20_std
value: -6.048155776035038
- type: nauc_map_at_3_diff1
value: 11.777509442505403
- type: nauc_map_at_3_max
value: -8.619619751268965
- type: nauc_map_at_3_std
value: -7.029734930936095
- type: nauc_map_at_5_diff1
value: 12.072349873282578
- type: nauc_map_at_5_max
value: -7.9037810476976835
- type: nauc_map_at_5_std
value: -6.3962966098864
- type: nauc_mrr_at_1000_diff1
value: 11.55871613635287
- type: nauc_mrr_at_1000_max
value: -8.524668018179772
- type: nauc_mrr_at_1000_std
value: -5.821749837488739
- type: nauc_mrr_at_100_diff1
value: 11.557229356469213
- type: nauc_mrr_at_100_max
value: -8.519652075012466
- type: nauc_mrr_at_100_std
value: -5.811310846389489
- type: nauc_mrr_at_10_diff1
value: 11.386476038925435
- type: nauc_mrr_at_10_max
value: -8.45430627552755
- type: nauc_mrr_at_10_std
value: -5.65917735429017
- type: nauc_mrr_at_1_diff1
value: 14.693476121231305
- type: nauc_mrr_at_1_max
value: -10.94460265018313
- type: nauc_mrr_at_1_std
value: -8.77030471829497
- type: nauc_mrr_at_20_diff1
value: 11.541143108641904
- type: nauc_mrr_at_20_max
value: -8.508664836852851
- type: nauc_mrr_at_20_std
value: -5.718714620902282
- type: nauc_mrr_at_3_diff1
value: 11.065095966162826
- type: nauc_mrr_at_3_max
value: -8.88590386152548
- type: nauc_mrr_at_3_std
value: -6.741394531507113
- type: nauc_mrr_at_5_diff1
value: 11.143404810693896
- type: nauc_mrr_at_5_max
value: -8.410832856819567
- type: nauc_mrr_at_5_std
value: -6.101439716672843
- type: nauc_ndcg_at_1000_diff1
value: 12.251069053520732
- type: nauc_ndcg_at_1000_max
value: -7.386319921375587
- type: nauc_ndcg_at_1000_std
value: -5.2642773188011205
- type: nauc_ndcg_at_100_diff1
value: 12.205700301839183
- type: nauc_ndcg_at_100_max
value: -7.248372196650524
- type: nauc_ndcg_at_100_std
value: -4.970330352461419
- type: nauc_ndcg_at_10_diff1
value: 11.523326871708202
- type: nauc_ndcg_at_10_max
value: -6.816950583275555
- type: nauc_ndcg_at_10_std
value: -3.9784804860320198
- type: nauc_ndcg_at_1_diff1
value: 15.505336965073605
- type: nauc_ndcg_at_1_max
value: -10.866105149439845
- type: nauc_ndcg_at_1_std
value: -9.694177220362505
- type: nauc_ndcg_at_20_diff1
value: 12.270064495647071
- type: nauc_ndcg_at_20_max
value: -6.927364052923182
- type: nauc_ndcg_at_20_std
value: -4.168791551223215
- type: nauc_ndcg_at_3_diff1
value: 10.718998017465346
- type: nauc_ndcg_at_3_max
value: -7.968252808658605
- type: nauc_ndcg_at_3_std
value: -6.379316205846782
- type: nauc_ndcg_at_5_diff1
value: 11.132383943770357
- type: nauc_ndcg_at_5_max
value: -6.52591429832427
- type: nauc_ndcg_at_5_std
value: -5.216113688168761
- type: nauc_precision_at_1000_diff1
value: 16.1495781371987
- type: nauc_precision_at_1000_max
value: 39.995738985755196
- type: nauc_precision_at_1000_std
value: 50.855436172063065
- type: nauc_precision_at_100_diff1
value: 5.9156015470781265
- type: nauc_precision_at_100_max
value: 26.03608801637909
- type: nauc_precision_at_100_std
value: 54.70480941746274
- type: nauc_precision_at_10_diff1
value: 7.001835875439316
- type: nauc_precision_at_10_max
value: 2.135776035777977
- type: nauc_precision_at_10_std
value: 11.516009853432555
- type: nauc_precision_at_1_diff1
value: 15.505336965073605
- type: nauc_precision_at_1_max
value: -10.866105149439845
- type: nauc_precision_at_1_std
value: -9.694177220362505
- type: nauc_precision_at_20_diff1
value: 13.681914368809867
- type: nauc_precision_at_20_max
value: 9.479991446859016
- type: nauc_precision_at_20_std
value: 26.376943655091644
- type: nauc_precision_at_3_diff1
value: 7.325939191487269
- type: nauc_precision_at_3_max
value: -5.874501064035859
- type: nauc_precision_at_3_std
value: -4.340026468355782
- type: nauc_precision_at_5_diff1
value: 7.383019735342397
- type: nauc_precision_at_5_max
value: -0.5758672788087532
- type: nauc_precision_at_5_std
value: -0.3247880327348163
- type: nauc_recall_at_1000_diff1
value: 16.149578137193416
- type: nauc_recall_at_1000_max
value: 39.99573898574825
- type: nauc_recall_at_1000_std
value: 50.85543617205994
- type: nauc_recall_at_100_diff1
value: 5.915601547077784
- type: nauc_recall_at_100_max
value: 26.03608801637899
- type: nauc_recall_at_100_std
value: 54.704809417461085
- type: nauc_recall_at_10_diff1
value: 7.001835875439445
- type: nauc_recall_at_10_max
value: 2.1357760357780817
- type: nauc_recall_at_10_std
value: 11.516009853432491
- type: nauc_recall_at_1_diff1
value: 15.505336965073605
- type: nauc_recall_at_1_max
value: -10.866105149439845
- type: nauc_recall_at_1_std
value: -9.694177220362505
- type: nauc_recall_at_20_diff1
value: 13.681914368809581
- type: nauc_recall_at_20_max
value: 9.479991446859197
- type: nauc_recall_at_20_std
value: 26.37694365509119
- type: nauc_recall_at_3_diff1
value: 7.325939191487281
- type: nauc_recall_at_3_max
value: -5.874501064035827
- type: nauc_recall_at_3_std
value: -4.3400264683557825
- type: nauc_recall_at_5_diff1
value: 7.383019735342311
- type: nauc_recall_at_5_max
value: -0.575867278808783
- type: nauc_recall_at_5_std
value: -0.32478803273490514
- type: ndcg_at_1
value: 37.980000000000004
- type: ndcg_at_10
value: 61.587
- type: ndcg_at_100
value: 64.212
- type: ndcg_at_1000
value: 64.327
- type: ndcg_at_20
value: 63.365
- type: ndcg_at_3
value: 52.898999999999994
- type: ndcg_at_5
value: 57.62199999999999
- type: precision_at_1
value: 37.980000000000004
- type: precision_at_10
value: 8.748000000000001
- type: precision_at_100
value: 0.988
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.723
- type: precision_at_3
value: 21.29
- type: precision_at_5
value: 15.064
- type: recall_at_1
value: 37.980000000000004
- type: recall_at_10
value: 87.482
- type: recall_at_100
value: 98.791
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 94.452
- type: recall_at_3
value: 63.869
- type: recall_at_5
value: 75.32
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: main_score
value: 47.1311063882059
- type: v_measure
value: 47.1311063882059
- type: v_measure_std
value: 14.069209556131934
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: main_score
value: 39.590626960311226
- type: v_measure
value: 39.590626960311226
- type: v_measure_std
value: 14.382421237527772
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 62.68563238263294
- type: map
value: 62.68563238263294
- type: mrr
value: 75.61359539198872
- type: nAUC_map_diff1
value: 12.262339818337102
- type: nAUC_map_max
value: 27.16961840255215
- type: nAUC_map_std
value: 18.41854439312187
- type: nAUC_mrr_diff1
value: 17.929775567867427
- type: nAUC_mrr_max
value: 37.4634718998761
- type: nAUC_mrr_std
value: 22.75208941087266
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 86.81310198111923
- type: cosine_spearman
value: 87.203191803159
- type: euclidean_pearson
value: 85.99215953326265
- type: euclidean_spearman
value: 87.203191803159
- type: main_score
value: 87.203191803159
- type: manhattan_pearson
value: 85.9379635608278
- type: manhattan_spearman
value: 87.25861475275549
- type: pearson
value: 86.81310198111923
- type: spearman
value: 87.203191803159
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 81.012987012987
- type: f1
value: 80.07167813016267
- type: f1_weighted
value: 80.07167813016268
- type: main_score
value: 81.012987012987
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: main_score
value: 38.78797599586202
- type: v_measure
value: 38.78797599586202
- type: v_measure_std
value: 1.0363490868285057
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: main_score
value: 34.02215818630931
- type: v_measure
value: 34.02215818630931
- type: v_measure_std
value: 0.9696451651437041
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: main_score
value: 46.627
- type: map_at_1
value: 28.217
- type: map_at_10
value: 39.892
- type: map_at_100
value: 41.449000000000005
- type: map_at_1000
value: 41.579
- type: map_at_20
value: 40.762
- type: map_at_3
value: 36.195
- type: map_at_5
value: 38.305
- type: mrr_at_1
value: 35.1931330472103
- type: mrr_at_10
value: 45.828451075232195
- type: mrr_at_100
value: 46.57230049635246
- type: mrr_at_1000
value: 46.61709253893551
- type: mrr_at_20
value: 46.28287282124363
- type: mrr_at_3
value: 42.51311397234143
- type: mrr_at_5
value: 44.67334287076773
- type: nauc_map_at_1000_diff1
value: 48.71767769457138
- type: nauc_map_at_1000_max
value: 39.35739368614963
- type: nauc_map_at_1000_std
value: -2.1704456217464028
- type: nauc_map_at_100_diff1
value: 48.72787371204226
- type: nauc_map_at_100_max
value: 39.37274775045581
- type: nauc_map_at_100_std
value: -2.127591114741793
- type: nauc_map_at_10_diff1
value: 48.81205052330434
- type: nauc_map_at_10_max
value: 38.69733357092054
- type: nauc_map_at_10_std
value: -2.9875060424451596
- type: nauc_map_at_1_diff1
value: 54.74897730317293
- type: nauc_map_at_1_max
value: 36.20815199595291
- type: nauc_map_at_1_std
value: -4.9834209135466745
- type: nauc_map_at_20_diff1
value: 48.755892872921784
- type: nauc_map_at_20_max
value: 39.07765061538151
- type: nauc_map_at_20_std
value: -2.3776308458840165
- type: nauc_map_at_3_diff1
value: 50.16967741469197
- type: nauc_map_at_3_max
value: 38.585635380693624
- type: nauc_map_at_3_std
value: -4.221176794198626
- type: nauc_map_at_5_diff1
value: 49.23913187338483
- type: nauc_map_at_5_max
value: 37.90581077128227
- type: nauc_map_at_5_std
value: -3.976982817403684
- type: nauc_mrr_at_1000_diff1
value: 47.302576554982565
- type: nauc_mrr_at_1000_max
value: 39.42247557331803
- type: nauc_mrr_at_1000_std
value: -5.093001257632933
- type: nauc_mrr_at_100_diff1
value: 47.28081174156696
- type: nauc_mrr_at_100_max
value: 39.41937462480708
- type: nauc_mrr_at_100_std
value: -5.09795439703923
- type: nauc_mrr_at_10_diff1
value: 47.113269125719164
- type: nauc_mrr_at_10_max
value: 39.368581425469856
- type: nauc_mrr_at_10_std
value: -5.277228133429229
- type: nauc_mrr_at_1_diff1
value: 51.5649652720488
- type: nauc_mrr_at_1_max
value: 38.28526532925652
- type: nauc_mrr_at_1_std
value: -7.500007125478944
- type: nauc_mrr_at_20_diff1
value: 47.264033020877825
- type: nauc_mrr_at_20_max
value: 39.378664517788145
- type: nauc_mrr_at_20_std
value: -5.074502402009077
- type: nauc_mrr_at_3_diff1
value: 48.280167889883735
- type: nauc_mrr_at_3_max
value: 40.08468002595438
- type: nauc_mrr_at_3_std
value: -5.587010540450647
- type: nauc_mrr_at_5_diff1
value: 47.075331054632024
- type: nauc_mrr_at_5_max
value: 38.66614809652955
- type: nauc_mrr_at_5_std
value: -5.580429126374889
- type: nauc_ndcg_at_1000_diff1
value: 46.87312381595359
- type: nauc_ndcg_at_1000_max
value: 40.85262017311222
- type: nauc_ndcg_at_1000_std
value: -0.30623579781240073
- type: nauc_ndcg_at_100_diff1
value: 46.235157795940054
- type: nauc_ndcg_at_100_max
value: 40.92612671162398
- type: nauc_ndcg_at_100_std
value: 0.13207070143061483
- type: nauc_ndcg_at_10_diff1
value: 46.105580841531044
- type: nauc_ndcg_at_10_max
value: 39.25806212859237
- type: nauc_ndcg_at_10_std
value: -2.0479578136863483
- type: nauc_ndcg_at_1_diff1
value: 51.5649652720488
- type: nauc_ndcg_at_1_max
value: 38.28526532925652
- type: nauc_ndcg_at_1_std
value: -7.500007125478944
- type: nauc_ndcg_at_20_diff1
value: 46.107622786903654
- type: nauc_ndcg_at_20_max
value: 39.6477616907479
- type: nauc_ndcg_at_20_std
value: -0.7893045729851432
- type: nauc_ndcg_at_3_diff1
value: 47.78517331152383
- type: nauc_ndcg_at_3_max
value: 39.57887271602766
- type: nauc_ndcg_at_3_std
value: -3.7158851363814507
- type: nauc_ndcg_at_5_diff1
value: 46.33678372159624
- type: nauc_ndcg_at_5_max
value: 37.70592482456646
- type: nauc_ndcg_at_5_std
value: -3.463868685785821
- type: nauc_precision_at_1000_diff1
value: -21.647335193360824
- type: nauc_precision_at_1000_max
value: -10.332791963863814
- type: nauc_precision_at_1000_std
value: -4.585384160420304
- type: nauc_precision_at_100_diff1
value: -11.243893402087695
- type: nauc_precision_at_100_max
value: 6.61622760941563
- type: nauc_precision_at_100_std
value: 8.31890658946228
- type: nauc_precision_at_10_diff1
value: 11.992735889770284
- type: nauc_precision_at_10_max
value: 26.368661979039032
- type: nauc_precision_at_10_std
value: 7.257193178137085
- type: nauc_precision_at_1_diff1
value: 51.5649652720488
- type: nauc_precision_at_1_max
value: 38.28526532925652
- type: nauc_precision_at_1_std
value: -7.500007125478944
- type: nauc_precision_at_20_diff1
value: 2.788039468977995
- type: nauc_precision_at_20_max
value: 19.61829689410151
- type: nauc_precision_at_20_std
value: 10.454426854909613
- type: nauc_precision_at_3_diff1
value: 32.170103339905374
- type: nauc_precision_at_3_max
value: 37.69989711862568
- type: nauc_precision_at_3_std
value: -1.2665563798590034
- type: nauc_precision_at_5_diff1
value: 21.90723648268845
- type: nauc_precision_at_5_max
value: 28.934461907153274
- type: nauc_precision_at_5_std
value: 1.496963451309664
- type: nauc_recall_at_1000_diff1
value: 39.845193615005165
- type: nauc_recall_at_1000_max
value: 67.53429995472943
- type: nauc_recall_at_1000_std
value: 54.25541191889182
- type: nauc_recall_at_100_diff1
value: 30.48595510867637
- type: nauc_recall_at_100_max
value: 45.56799906157419
- type: nauc_recall_at_100_std
value: 18.803518480822365
- type: nauc_recall_at_10_diff1
value: 37.39314315072326
- type: nauc_recall_at_10_max
value: 36.58964403796781
- type: nauc_recall_at_10_std
value: 1.4221578063034934
- type: nauc_recall_at_1_diff1
value: 54.74897730317293
- type: nauc_recall_at_1_max
value: 36.20815199595291
- type: nauc_recall_at_1_std
value: -4.9834209135466745
- type: nauc_recall_at_20_diff1
value: 34.78809945590171
- type: nauc_recall_at_20_max
value: 36.24306666062695
- type: nauc_recall_at_20_std
value: 6.691638038251415
- type: nauc_recall_at_3_diff1
value: 45.15894238510486
- type: nauc_recall_at_3_max
value: 38.42252145730142
- type: nauc_recall_at_3_std
value: -3.1703672077384977
- type: nauc_recall_at_5_diff1
value: 39.99639508242837
- type: nauc_recall_at_5_max
value: 33.63188962949065
- type: nauc_recall_at_5_std
value: -2.463748471656163
- type: ndcg_at_1
value: 35.193000000000005
- type: ndcg_at_10
value: 46.627
- type: ndcg_at_100
value: 52.259
- type: ndcg_at_1000
value: 54.18300000000001
- type: ndcg_at_20
value: 48.869
- type: ndcg_at_3
value: 40.802
- type: ndcg_at_5
value: 43.826
- type: precision_at_1
value: 35.193000000000005
- type: precision_at_10
value: 9.084
- type: precision_at_100
value: 1.506
- type: precision_at_1000
value: 0.201
- type: precision_at_20
value: 5.515
- type: precision_at_3
value: 19.552
- type: precision_at_5
value: 14.707
- type: recall_at_1
value: 28.217
- type: recall_at_10
value: 60.148999999999994
- type: recall_at_100
value: 83.509
- type: recall_at_1000
value: 95.623
- type: recall_at_20
value: 67.87100000000001
- type: recall_at_3
value: 43.913999999999994
- type: recall_at_5
value: 51.626000000000005
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: main_score
value: 43.26
- type: map_at_1
value: 28.537000000000003
- type: map_at_10
value: 37.814
- type: map_at_100
value: 39.016
- type: map_at_1000
value: 39.141
- type: map_at_20
value: 38.438
- type: map_at_3
value: 35.119
- type: map_at_5
value: 36.635
- type: mrr_at_1
value: 35.6687898089172
- type: mrr_at_10
value: 43.89740673339401
- type: mrr_at_100
value: 44.595541925858406
- type: mrr_at_1000
value: 44.64146530556938
- type: mrr_at_20
value: 44.322503369933926
- type: mrr_at_3
value: 41.64543524416137
- type: mrr_at_5
value: 43.00212314225054
- type: nauc_map_at_1000_diff1
value: 50.38242920034188
- type: nauc_map_at_1000_max
value: 31.60097027148917
- type: nauc_map_at_1000_std
value: 0.9103551393313613
- type: nauc_map_at_100_diff1
value: 50.445666478760366
- type: nauc_map_at_100_max
value: 31.517660912977508
- type: nauc_map_at_100_std
value: 0.7775484115197918
- type: nauc_map_at_10_diff1
value: 50.661812695077316
- type: nauc_map_at_10_max
value: 30.609498777441285
- type: nauc_map_at_10_std
value: -0.6888710687447454
- type: nauc_map_at_1_diff1
value: 55.984295592830215
- type: nauc_map_at_1_max
value: 27.359981225642287
- type: nauc_map_at_1_std
value: -4.6372027497722925
- type: nauc_map_at_20_diff1
value: 50.6210701540613
- type: nauc_map_at_20_max
value: 30.97814546421626
- type: nauc_map_at_20_std
value: -0.00853770688951084
- type: nauc_map_at_3_diff1
value: 52.02665194423681
- type: nauc_map_at_3_max
value: 29.185613677490394
- type: nauc_map_at_3_std
value: -1.9976659466126225
- type: nauc_map_at_5_diff1
value: 51.19674489416761
- type: nauc_map_at_5_max
value: 30.160612226786988
- type: nauc_map_at_5_std
value: -1.3713739278786357
- type: nauc_mrr_at_1000_diff1
value: 48.263786175116394
- type: nauc_mrr_at_1000_max
value: 33.528582446000335
- type: nauc_mrr_at_1000_std
value: 3.997090643336205
- type: nauc_mrr_at_100_diff1
value: 48.261549498353794
- type: nauc_mrr_at_100_max
value: 33.53481236606367
- type: nauc_mrr_at_100_std
value: 3.999833501681202
- type: nauc_mrr_at_10_diff1
value: 48.15519091869044
- type: nauc_mrr_at_10_max
value: 33.45559294700087
- type: nauc_mrr_at_10_std
value: 3.63480527599511
- type: nauc_mrr_at_1_diff1
value: 53.101823173896314
- type: nauc_mrr_at_1_max
value: 33.32155831980044
- type: nauc_mrr_at_1_std
value: 1.7548676566607069
- type: nauc_mrr_at_20_diff1
value: 48.228190697254696
- type: nauc_mrr_at_20_max
value: 33.45847789439114
- type: nauc_mrr_at_20_std
value: 3.8424882676403405
- type: nauc_mrr_at_3_diff1
value: 48.962748652767296
- type: nauc_mrr_at_3_max
value: 33.110931453654366
- type: nauc_mrr_at_3_std
value: 3.2626108133115785
- type: nauc_mrr_at_5_diff1
value: 48.41529159773174
- type: nauc_mrr_at_5_max
value: 33.57404651404654
- type: nauc_mrr_at_5_std
value: 3.40495779898185
- type: nauc_ndcg_at_1000_diff1
value: 47.48984825963725
- type: nauc_ndcg_at_1000_max
value: 33.54130065771048
- type: nauc_ndcg_at_1000_std
value: 6.121693672230708
- type: nauc_ndcg_at_100_diff1
value: 47.548547556497454
- type: nauc_ndcg_at_100_max
value: 33.472952805068815
- type: nauc_ndcg_at_100_std
value: 5.781276334687519
- type: nauc_ndcg_at_10_diff1
value: 47.615354334764966
- type: nauc_ndcg_at_10_max
value: 32.18027911162887
- type: nauc_ndcg_at_10_std
value: 2.1717663696202183
- type: nauc_ndcg_at_1_diff1
value: 53.101823173896314
- type: nauc_ndcg_at_1_max
value: 33.32155831980044
- type: nauc_ndcg_at_1_std
value: 1.7548676566607069
- type: nauc_ndcg_at_20_diff1
value: 47.730317212864094
- type: nauc_ndcg_at_20_max
value: 32.245697290265426
- type: nauc_ndcg_at_20_std
value: 3.438922453415761
- type: nauc_ndcg_at_3_diff1
value: 49.02930101842743
- type: nauc_ndcg_at_3_max
value: 31.360355684228725
- type: nauc_ndcg_at_3_std
value: 1.6443840772752165
- type: nauc_ndcg_at_5_diff1
value: 48.224855926716394
- type: nauc_ndcg_at_5_max
value: 32.31325115635817
- type: nauc_ndcg_at_5_std
value: 1.730840438831435
- type: nauc_precision_at_1000_diff1
value: -18.403594567458207
- type: nauc_precision_at_1000_max
value: 21.49485514696995
- type: nauc_precision_at_1000_std
value: 31.712375598122332
- type: nauc_precision_at_100_diff1
value: -8.793614199073078
- type: nauc_precision_at_100_max
value: 30.913124236942203
- type: nauc_precision_at_100_std
value: 36.20921952482491
- type: nauc_precision_at_10_diff1
value: 13.321069551389805
- type: nauc_precision_at_10_max
value: 34.64171103330222
- type: nauc_precision_at_10_std
value: 21.814571428436768
- type: nauc_precision_at_1_diff1
value: 53.101823173896314
- type: nauc_precision_at_1_max
value: 33.32155831980044
- type: nauc_precision_at_1_std
value: 1.7548676566607069
- type: nauc_precision_at_20_diff1
value: 5.887493649538546
- type: nauc_precision_at_20_max
value: 33.9325045896976
- type: nauc_precision_at_20_std
value: 28.652312941049168
- type: nauc_precision_at_3_diff1
value: 31.511315134064876
- type: nauc_precision_at_3_max
value: 32.88348773453123
- type: nauc_precision_at_3_std
value: 10.46641443327759
- type: nauc_precision_at_5_diff1
value: 22.887506091181294
- type: nauc_precision_at_5_max
value: 35.416697921302806
- type: nauc_precision_at_5_std
value: 15.33616375317894
- type: nauc_recall_at_1000_diff1
value: 34.10586124707363
- type: nauc_recall_at_1000_max
value: 34.54304855921719
- type: nauc_recall_at_1000_std
value: 34.65621165539369
- type: nauc_recall_at_100_diff1
value: 36.022255136157874
- type: nauc_recall_at_100_max
value: 34.64999485306686
- type: nauc_recall_at_100_std
value: 22.671221118089825
- type: nauc_recall_at_10_diff1
value: 40.33647072966317
- type: nauc_recall_at_10_max
value: 28.705618140836826
- type: nauc_recall_at_10_std
value: 1.920768225117285
- type: nauc_recall_at_1_diff1
value: 55.984295592830215
- type: nauc_recall_at_1_max
value: 27.359981225642287
- type: nauc_recall_at_1_std
value: -4.6372027497722925
- type: nauc_recall_at_20_diff1
value: 39.05498416729996
- type: nauc_recall_at_20_max
value: 28.449080252085896
- type: nauc_recall_at_20_std
value: 7.336167777371156
- type: nauc_recall_at_3_diff1
value: 47.03085830864628
- type: nauc_recall_at_3_max
value: 27.45027142421863
- type: nauc_recall_at_3_std
value: -0.5843560184900182
- type: nauc_recall_at_5_diff1
value: 43.534508407363404
- type: nauc_recall_at_5_max
value: 28.823615210124515
- type: nauc_recall_at_5_std
value: 0.30711982604670324
- type: ndcg_at_1
value: 35.669000000000004
- type: ndcg_at_10
value: 43.26
- type: ndcg_at_100
value: 47.73
- type: ndcg_at_1000
value: 49.888
- type: ndcg_at_20
value: 44.931
- type: ndcg_at_3
value: 39.285
- type: ndcg_at_5
value: 41.185
- type: precision_at_1
value: 35.669000000000004
- type: precision_at_10
value: 8.108
- type: precision_at_100
value: 1.3299999999999998
- type: precision_at_1000
value: 0.181
- type: precision_at_20
value: 4.79
- type: precision_at_3
value: 18.875
- type: precision_at_5
value: 13.338
- type: recall_at_1
value: 28.537000000000003
- type: recall_at_10
value: 52.528
- type: recall_at_100
value: 71.544
- type: recall_at_1000
value: 85.52300000000001
- type: recall_at_20
value: 58.665
- type: recall_at_3
value: 40.682
- type: recall_at_5
value: 46.102
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: main_score
value: 55.482
- type: map_at_1
value: 37.155
- type: map_at_10
value: 49.467
- type: map_at_100
value: 50.597
- type: map_at_1000
value: 50.64999999999999
- type: map_at_20
value: 50.153000000000006
- type: map_at_3
value: 46.153
- type: map_at_5
value: 48.167
- type: mrr_at_1
value: 42.69592476489028
- type: mrr_at_10
value: 52.934890779718444
- type: mrr_at_100
value: 53.675559437654385
- type: mrr_at_1000
value: 53.700718829078795
- type: mrr_at_20
value: 53.38668059647668
- type: mrr_at_3
value: 50.428422152560145
- type: mrr_at_5
value: 51.95193312434701
- type: nauc_map_at_1000_diff1
value: 45.39853735301247
- type: nauc_map_at_1000_max
value: 35.88207570837637
- type: nauc_map_at_1000_std
value: -4.29738026780591
- type: nauc_map_at_100_diff1
value: 45.387618392967234
- type: nauc_map_at_100_max
value: 35.86260554726276
- type: nauc_map_at_100_std
value: -4.294613837825713
- type: nauc_map_at_10_diff1
value: 45.50417160033363
- type: nauc_map_at_10_max
value: 35.35533906436545
- type: nauc_map_at_10_std
value: -5.041866425981859
- type: nauc_map_at_1_diff1
value: 48.49418411014949
- type: nauc_map_at_1_max
value: 30.467103950355046
- type: nauc_map_at_1_std
value: -6.7511953844717585
- type: nauc_map_at_20_diff1
value: 45.40183877110559
- type: nauc_map_at_20_max
value: 35.67488678826502
- type: nauc_map_at_20_std
value: -4.542033283197055
- type: nauc_map_at_3_diff1
value: 45.828558019478685
- type: nauc_map_at_3_max
value: 33.811993497438046
- type: nauc_map_at_3_std
value: -7.022097202852565
- type: nauc_map_at_5_diff1
value: 45.55644758512818
- type: nauc_map_at_5_max
value: 34.539038617747174
- type: nauc_map_at_5_std
value: -6.108792115020993
- type: nauc_mrr_at_1000_diff1
value: 44.87714381142493
- type: nauc_mrr_at_1000_max
value: 37.33976418014246
- type: nauc_mrr_at_1000_std
value: -3.300901653609806
- type: nauc_mrr_at_100_diff1
value: 44.87248633704184
- type: nauc_mrr_at_100_max
value: 37.34859192418237
- type: nauc_mrr_at_100_std
value: -3.2870314069697337
- type: nauc_mrr_at_10_diff1
value: 44.69076109213016
- type: nauc_mrr_at_10_max
value: 37.30123464532984
- type: nauc_mrr_at_10_std
value: -3.325752153037405
- type: nauc_mrr_at_1_diff1
value: 48.19163276678239
- type: nauc_mrr_at_1_max
value: 34.61847854145463
- type: nauc_mrr_at_1_std
value: -5.370501121412354
- type: nauc_mrr_at_20_diff1
value: 44.840939385551216
- type: nauc_mrr_at_20_max
value: 37.384435797609505
- type: nauc_mrr_at_20_std
value: -3.2559923415768326
- type: nauc_mrr_at_3_diff1
value: 44.956318047816296
- type: nauc_mrr_at_3_max
value: 36.88636261611909
- type: nauc_mrr_at_3_std
value: -4.271260442740253
- type: nauc_mrr_at_5_diff1
value: 44.6576132493844
- type: nauc_mrr_at_5_max
value: 37.067740181380366
- type: nauc_mrr_at_5_std
value: -3.968886060963421
- type: nauc_ndcg_at_1000_diff1
value: 44.37434646459078
- type: nauc_ndcg_at_1000_max
value: 38.215572514193994
- type: nauc_ndcg_at_1000_std
value: -1.3042381057500214
- type: nauc_ndcg_at_100_diff1
value: 44.290728955986516
- type: nauc_ndcg_at_100_max
value: 38.3958306354721
- type: nauc_ndcg_at_100_std
value: -0.8730872184515021
- type: nauc_ndcg_at_10_diff1
value: 44.119091219198104
- type: nauc_ndcg_at_10_max
value: 37.70013992720767
- type: nauc_ndcg_at_10_std
value: -2.439834460321177
- type: nauc_ndcg_at_1_diff1
value: 48.19163276678239
- type: nauc_ndcg_at_1_max
value: 34.61847854145463
- type: nauc_ndcg_at_1_std
value: -5.370501121412354
- type: nauc_ndcg_at_20_diff1
value: 44.22301071777352
- type: nauc_ndcg_at_20_max
value: 38.13294450352038
- type: nauc_ndcg_at_20_std
value: -1.5320041255829162
- type: nauc_ndcg_at_3_diff1
value: 44.18839086666503
- type: nauc_ndcg_at_3_max
value: 35.530975247059544
- type: nauc_ndcg_at_3_std
value: -5.574269526409219
- type: nauc_ndcg_at_5_diff1
value: 43.968238482098926
- type: nauc_ndcg_at_5_max
value: 36.41757888561071
- type: nauc_ndcg_at_5_std
value: -4.532795858948274
- type: nauc_precision_at_1000_diff1
value: -9.234774982708476
- type: nauc_precision_at_1000_max
value: 22.127614179936824
- type: nauc_precision_at_1000_std
value: 22.646193222930773
- type: nauc_precision_at_100_diff1
value: -5.234665765188833
- type: nauc_precision_at_100_max
value: 27.271500842942746
- type: nauc_precision_at_100_std
value: 26.184067367482474
- type: nauc_precision_at_10_diff1
value: 13.037817071774949
- type: nauc_precision_at_10_max
value: 33.66318780774645
- type: nauc_precision_at_10_std
value: 13.312767253904342
- type: nauc_precision_at_1_diff1
value: 48.19163276678239
- type: nauc_precision_at_1_max
value: 34.61847854145463
- type: nauc_precision_at_1_std
value: -5.370501121412354
- type: nauc_precision_at_20_diff1
value: 5.741386063339354
- type: nauc_precision_at_20_max
value: 32.48331924084784
- type: nauc_precision_at_20_std
value: 20.06250876070363
- type: nauc_precision_at_3_diff1
value: 28.609002718352333
- type: nauc_precision_at_3_max
value: 34.6795736576386
- type: nauc_precision_at_3_std
value: -0.04417621858530164
- type: nauc_precision_at_5_diff1
value: 20.976308196400424
- type: nauc_precision_at_5_max
value: 33.3948604565235
- type: nauc_precision_at_5_std
value: 5.149959751504062
- type: nauc_recall_at_1000_diff1
value: 28.383977077680207
- type: nauc_recall_at_1000_max
value: 57.70769869998163
- type: nauc_recall_at_1000_std
value: 46.997952366562174
- type: nauc_recall_at_100_diff1
value: 35.63735101494906
- type: nauc_recall_at_100_max
value: 49.70285511610692
- type: nauc_recall_at_100_std
value: 25.56344297714899
- type: nauc_recall_at_10_diff1
value: 38.705113308372354
- type: nauc_recall_at_10_max
value: 40.20557937184269
- type: nauc_recall_at_10_std
value: 4.171468175806741
- type: nauc_recall_at_1_diff1
value: 48.49418411014949
- type: nauc_recall_at_1_max
value: 30.467103950355046
- type: nauc_recall_at_1_std
value: -6.7511953844717585
- type: nauc_recall_at_20_diff1
value: 38.48920202661439
- type: nauc_recall_at_20_max
value: 43.57168759518817
- type: nauc_recall_at_20_std
value: 10.269085411405069
- type: nauc_recall_at_3_diff1
value: 41.086532491390585
- type: nauc_recall_at_3_max
value: 34.81725796602349
- type: nauc_recall_at_3_std
value: -6.673864007702387
- type: nauc_recall_at_5_diff1
value: 39.1176927288211
- type: nauc_recall_at_5_max
value: 36.18158874606236
- type: nauc_recall_at_5_std
value: -3.4373454531511647
- type: ndcg_at_1
value: 42.696
- type: ndcg_at_10
value: 55.482
- type: ndcg_at_100
value: 59.927
- type: ndcg_at_1000
value: 60.919999999999995
- type: ndcg_at_20
value: 57.416999999999994
- type: ndcg_at_3
value: 49.888
- type: ndcg_at_5
value: 52.833
- type: precision_at_1
value: 42.696
- type: precision_at_10
value: 9.078
- type: precision_at_100
value: 1.218
- type: precision_at_1000
value: 0.135
- type: precision_at_20
value: 5.113
- type: precision_at_3
value: 22.445
- type: precision_at_5
value: 15.661
- type: recall_at_1
value: 37.155
- type: recall_at_10
value: 69.792
- type: recall_at_100
value: 89.035
- type: recall_at_1000
value: 95.943
- type: recall_at_20
value: 76.89099999999999
- type: recall_at_3
value: 54.969
- type: recall_at_5
value: 62.114000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: main_score
value: 37.686
- type: map_at_1
value: 24.194
- type: map_at_10
value: 32.706
- type: map_at_100
value: 33.696
- type: map_at_1000
value: 33.768
- type: map_at_20
value: 33.25
- type: map_at_3
value: 29.970000000000002
- type: map_at_5
value: 31.578
- type: mrr_at_1
value: 26.327683615819208
- type: mrr_at_10
value: 34.80033180880639
- type: mrr_at_100
value: 35.68493088802286
- type: mrr_at_1000
value: 35.73890763688848
- type: mrr_at_20
value: 35.284647683976026
- type: mrr_at_3
value: 32.20338983050847
- type: mrr_at_5
value: 33.689265536723155
- type: nauc_map_at_1000_diff1
value: 39.0058007993193
- type: nauc_map_at_1000_max
value: 31.9664848424503
- type: nauc_map_at_1000_std
value: 0.69708864063753
- type: nauc_map_at_100_diff1
value: 38.99740699853551
- type: nauc_map_at_100_max
value: 31.950173674106637
- type: nauc_map_at_100_std
value: 0.6831416203961035
- type: nauc_map_at_10_diff1
value: 39.16403477206109
- type: nauc_map_at_10_max
value: 31.801992594297484
- type: nauc_map_at_10_std
value: 0.08487527963355261
- type: nauc_map_at_1_diff1
value: 47.129030830065
- type: nauc_map_at_1_max
value: 30.9543809605351
- type: nauc_map_at_1_std
value: -2.616386042411576
- type: nauc_map_at_20_diff1
value: 39.016119588237004
- type: nauc_map_at_20_max
value: 31.966103550512486
- type: nauc_map_at_20_std
value: 0.5993010385451379
- type: nauc_map_at_3_diff1
value: 39.960423401096016
- type: nauc_map_at_3_max
value: 31.126852260003602
- type: nauc_map_at_3_std
value: -1.2432186078894505
- type: nauc_map_at_5_diff1
value: 39.350942260116916
- type: nauc_map_at_5_max
value: 31.477494706451516
- type: nauc_map_at_5_std
value: -0.332327514629881
- type: nauc_mrr_at_1000_diff1
value: 37.56861228659833
- type: nauc_mrr_at_1000_max
value: 32.77701183545048
- type: nauc_mrr_at_1000_std
value: 1.8573601025377928
- type: nauc_mrr_at_100_diff1
value: 37.56084842599138
- type: nauc_mrr_at_100_max
value: 32.77474646470676
- type: nauc_mrr_at_100_std
value: 1.8661824660967452
- type: nauc_mrr_at_10_diff1
value: 37.651655650043615
- type: nauc_mrr_at_10_max
value: 32.82210713728638
- type: nauc_mrr_at_10_std
value: 1.5178658325578909
- type: nauc_mrr_at_1_diff1
value: 44.932276757115815
- type: nauc_mrr_at_1_max
value: 32.66068226327021
- type: nauc_mrr_at_1_std
value: -0.9313870351409079
- type: nauc_mrr_at_20_diff1
value: 37.540979386031864
- type: nauc_mrr_at_20_max
value: 32.81440742182942
- type: nauc_mrr_at_20_std
value: 1.826591047299842
- type: nauc_mrr_at_3_diff1
value: 38.269772827885966
- type: nauc_mrr_at_3_max
value: 32.10537876507981
- type: nauc_mrr_at_3_std
value: 0.3024566400660873
- type: nauc_mrr_at_5_diff1
value: 37.84033535304918
- type: nauc_mrr_at_5_max
value: 32.452393894273584
- type: nauc_mrr_at_5_std
value: 1.0029016560532624
- type: nauc_ndcg_at_1000_diff1
value: 35.81763575917382
- type: nauc_ndcg_at_1000_max
value: 32.769876372777794
- type: nauc_ndcg_at_1000_std
value: 4.257684081453828
- type: nauc_ndcg_at_100_diff1
value: 35.62486527543234
- type: nauc_ndcg_at_100_max
value: 32.6865313439193
- type: nauc_ndcg_at_100_std
value: 4.493848690808405
- type: nauc_ndcg_at_10_diff1
value: 36.264350852558444
- type: nauc_ndcg_at_10_max
value: 32.46258658377739
- type: nauc_ndcg_at_10_std
value: 2.1785378510762112
- type: nauc_ndcg_at_1_diff1
value: 44.932276757115815
- type: nauc_ndcg_at_1_max
value: 32.66068226327021
- type: nauc_ndcg_at_1_std
value: -0.9313870351409079
- type: nauc_ndcg_at_20_diff1
value: 35.722983189942596
- type: nauc_ndcg_at_20_max
value: 32.877377599742964
- type: nauc_ndcg_at_20_std
value: 3.790875849871362
- type: nauc_ndcg_at_3_diff1
value: 37.63400271423685
- type: nauc_ndcg_at_3_max
value: 31.2739081815396
- type: nauc_ndcg_at_3_std
value: -0.29839390734625465
- type: nauc_ndcg_at_5_diff1
value: 36.62082003320047
- type: nauc_ndcg_at_5_max
value: 31.65589810609168
- type: nauc_ndcg_at_5_std
value: 1.216992770007969
- type: nauc_precision_at_1000_diff1
value: -5.24340167738406
- type: nauc_precision_at_1000_max
value: 15.455427903541539
- type: nauc_precision_at_1000_std
value: 16.49503077501681
- type: nauc_precision_at_100_diff1
value: 7.313598783241113
- type: nauc_precision_at_100_max
value: 27.10636757798661
- type: nauc_precision_at_100_std
value: 20.187644679960428
- type: nauc_precision_at_10_diff1
value: 22.200310338575214
- type: nauc_precision_at_10_max
value: 34.92118636200516
- type: nauc_precision_at_10_std
value: 10.234848073059426
- type: nauc_precision_at_1_diff1
value: 44.932276757115815
- type: nauc_precision_at_1_max
value: 32.66068226327021
- type: nauc_precision_at_1_std
value: -0.9313870351409079
- type: nauc_precision_at_20_diff1
value: 17.8901438402456
- type: nauc_precision_at_20_max
value: 34.65374091414346
- type: nauc_precision_at_20_std
value: 15.973547940494178
- type: nauc_precision_at_3_diff1
value: 29.04687567805014
- type: nauc_precision_at_3_max
value: 32.75971500796976
- type: nauc_precision_at_3_std
value: 2.9305507946156957
- type: nauc_precision_at_5_diff1
value: 24.888863498098704
- type: nauc_precision_at_5_max
value: 32.5731555578299
- type: nauc_precision_at_5_std
value: 6.791337976386832
- type: nauc_recall_at_1000_diff1
value: 8.037993412142983
- type: nauc_recall_at_1000_max
value: 33.615275538881626
- type: nauc_recall_at_1000_std
value: 37.22256855147328
- type: nauc_recall_at_100_diff1
value: 20.2507317736947
- type: nauc_recall_at_100_max
value: 31.661424125840178
- type: nauc_recall_at_100_std
value: 22.041159712662882
- type: nauc_recall_at_10_diff1
value: 28.048775208583177
- type: nauc_recall_at_10_max
value: 31.969139370292087
- type: nauc_recall_at_10_std
value: 6.644084230971351
- type: nauc_recall_at_1_diff1
value: 47.129030830065
- type: nauc_recall_at_1_max
value: 30.9543809605351
- type: nauc_recall_at_1_std
value: -2.616386042411576
- type: nauc_recall_at_20_diff1
value: 25.172877062002037
- type: nauc_recall_at_20_max
value: 33.432560257671156
- type: nauc_recall_at_20_std
value: 13.179799770289216
- type: nauc_recall_at_3_diff1
value: 32.76056599359956
- type: nauc_recall_at_3_max
value: 30.12736405148995
- type: nauc_recall_at_3_std
value: 1.1248390066659661
- type: nauc_recall_at_5_diff1
value: 29.375771822035233
- type: nauc_recall_at_5_max
value: 30.221436803204387
- type: nauc_recall_at_5_std
value: 4.140063667676888
- type: ndcg_at_1
value: 26.328000000000003
- type: ndcg_at_10
value: 37.686
- type: ndcg_at_100
value: 42.829
- type: ndcg_at_1000
value: 44.793
- type: ndcg_at_20
value: 39.646
- type: ndcg_at_3
value: 32.374
- type: ndcg_at_5
value: 35.08
- type: precision_at_1
value: 26.328000000000003
- type: precision_at_10
value: 5.853
- type: precision_at_100
value: 0.89
- type: precision_at_1000
value: 0.11
- type: precision_at_20
value: 3.39
- type: precision_at_3
value: 13.71
- type: precision_at_5
value: 9.853000000000002
- type: recall_at_1
value: 24.194
- type: recall_at_10
value: 51.11599999999999
- type: recall_at_100
value: 75.228
- type: recall_at_1000
value: 90.206
- type: recall_at_20
value: 58.684999999999995
- type: recall_at_3
value: 36.839
- type: recall_at_5
value: 43.275999999999996
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: main_score
value: 29.403000000000002
- type: map_at_1
value: 15.797
- type: map_at_10
value: 24.122
- type: map_at_100
value: 25.334
- type: map_at_1000
value: 25.444
- type: map_at_20
value: 24.783
- type: map_at_3
value: 21.718
- type: map_at_5
value: 23.104
- type: mrr_at_1
value: 19.154228855721392
- type: mrr_at_10
value: 28.551192450446177
- type: mrr_at_100
value: 29.498082834170386
- type: mrr_at_1000
value: 29.56293339499485
- type: mrr_at_20
value: 29.085609803416858
- type: mrr_at_3
value: 26.01575456053069
- type: mrr_at_5
value: 27.589137645107797
- type: nauc_map_at_1000_diff1
value: 27.36221687250577
- type: nauc_map_at_1000_max
value: 18.089424170411217
- type: nauc_map_at_1000_std
value: 0.5188935207421588
- type: nauc_map_at_100_diff1
value: 27.34379428055101
- type: nauc_map_at_100_max
value: 18.06293708742179
- type: nauc_map_at_100_std
value: 0.5190525693808369
- type: nauc_map_at_10_diff1
value: 27.308055008582066
- type: nauc_map_at_10_max
value: 17.726725077602694
- type: nauc_map_at_10_std
value: -0.21344892091498174
- type: nauc_map_at_1_diff1
value: 34.60126559188873
- type: nauc_map_at_1_max
value: 19.748244491317678
- type: nauc_map_at_1_std
value: -3.2201287026916625
- type: nauc_map_at_20_diff1
value: 27.226319415474943
- type: nauc_map_at_20_max
value: 17.956515675249072
- type: nauc_map_at_20_std
value: 0.4472031548873323
- type: nauc_map_at_3_diff1
value: 27.95165713417068
- type: nauc_map_at_3_max
value: 17.072686143179975
- type: nauc_map_at_3_std
value: -0.7411970021732948
- type: nauc_map_at_5_diff1
value: 27.593386851196893
- type: nauc_map_at_5_max
value: 17.45702849396662
- type: nauc_map_at_5_std
value: -0.8286937920403831
- type: nauc_mrr_at_1000_diff1
value: 28.74831279311148
- type: nauc_mrr_at_1000_max
value: 20.17411091929109
- type: nauc_mrr_at_1000_std
value: -0.0652738752409115
- type: nauc_mrr_at_100_diff1
value: 28.747440393282336
- type: nauc_mrr_at_100_max
value: 20.185108068951408
- type: nauc_mrr_at_100_std
value: -0.05333343570132689
- type: nauc_mrr_at_10_diff1
value: 28.744815155313024
- type: nauc_mrr_at_10_max
value: 20.04684911692695
- type: nauc_mrr_at_10_std
value: -0.4264784901487863
- type: nauc_mrr_at_1_diff1
value: 37.2441962865539
- type: nauc_mrr_at_1_max
value: 22.534613943885276
- type: nauc_mrr_at_1_std
value: -2.479501845567973
- type: nauc_mrr_at_20_diff1
value: 28.63646797885947
- type: nauc_mrr_at_20_max
value: 20.130624923076574
- type: nauc_mrr_at_20_std
value: -0.05655707131769798
- type: nauc_mrr_at_3_diff1
value: 29.3420984302583
- type: nauc_mrr_at_3_max
value: 19.791159534927232
- type: nauc_mrr_at_3_std
value: -0.98317898053703
- type: nauc_mrr_at_5_diff1
value: 29.057555082772467
- type: nauc_mrr_at_5_max
value: 20.093774401866142
- type: nauc_mrr_at_5_std
value: -0.9877016856465175
- type: nauc_ndcg_at_1000_diff1
value: 25.77793793755624
- type: nauc_ndcg_at_1000_max
value: 19.071095093248687
- type: nauc_ndcg_at_1000_std
value: 3.0917142331029663
- type: nauc_ndcg_at_100_diff1
value: 25.64757683875679
- type: nauc_ndcg_at_100_max
value: 18.775229437095444
- type: nauc_ndcg_at_100_std
value: 3.4174861916019523
- type: nauc_ndcg_at_10_diff1
value: 25.1442487582001
- type: nauc_ndcg_at_10_max
value: 17.838371789800192
- type: nauc_ndcg_at_10_std
value: 1.0998312769822474
- type: nauc_ndcg_at_1_diff1
value: 37.2441962865539
- type: nauc_ndcg_at_1_max
value: 22.534613943885276
- type: nauc_ndcg_at_1_std
value: -2.479501845567973
- type: nauc_ndcg_at_20_diff1
value: 24.723691897706757
- type: nauc_ndcg_at_20_max
value: 18.399201975361787
- type: nauc_ndcg_at_20_std
value: 2.8917844365812013
- type: nauc_ndcg_at_3_diff1
value: 26.599800600549084
- type: nauc_ndcg_at_3_max
value: 17.344488540994927
- type: nauc_ndcg_at_3_std
value: -0.17080783586921952
- type: nauc_ndcg_at_5_diff1
value: 25.984027442909515
- type: nauc_ndcg_at_5_max
value: 17.736902140905325
- type: nauc_ndcg_at_5_std
value: -0.20538546466798493
- type: nauc_precision_at_1000_diff1
value: 3.117372016834661
- type: nauc_precision_at_1000_max
value: 7.967798366288187
- type: nauc_precision_at_1000_std
value: 2.0188396778725726
- type: nauc_precision_at_100_diff1
value: 11.0493012267289
- type: nauc_precision_at_100_max
value: 15.29094702092163
- type: nauc_precision_at_100_std
value: 9.566781850851134
- type: nauc_precision_at_10_diff1
value: 16.185361455209947
- type: nauc_precision_at_10_max
value: 17.925890160877806
- type: nauc_precision_at_10_std
value: 4.125664833130542
- type: nauc_precision_at_1_diff1
value: 37.2441962865539
- type: nauc_precision_at_1_max
value: 22.534613943885276
- type: nauc_precision_at_1_std
value: -2.479501845567973
- type: nauc_precision_at_20_diff1
value: 13.992027549349888
- type: nauc_precision_at_20_max
value: 17.637015499360924
- type: nauc_precision_at_20_std
value: 8.696148386896645
- type: nauc_precision_at_3_diff1
value: 21.639032017471013
- type: nauc_precision_at_3_max
value: 16.289401791760103
- type: nauc_precision_at_3_std
value: 0.0870722852396641
- type: nauc_precision_at_5_diff1
value: 20.63295832944016
- type: nauc_precision_at_5_max
value: 17.295872773951523
- type: nauc_precision_at_5_std
value: 0.14307299914708274
- type: nauc_recall_at_1000_diff1
value: 13.57694892081493
- type: nauc_recall_at_1000_max
value: 20.109277095141024
- type: nauc_recall_at_1000_std
value: 21.931352956332276
- type: nauc_recall_at_100_diff1
value: 18.554121580441926
- type: nauc_recall_at_100_max
value: 16.735991072150373
- type: nauc_recall_at_100_std
value: 14.037608911733404
- type: nauc_recall_at_10_diff1
value: 17.9750116470627
- type: nauc_recall_at_10_max
value: 14.99747681641434
- type: nauc_recall_at_10_std
value: 3.9873903476195682
- type: nauc_recall_at_1_diff1
value: 34.60126559188873
- type: nauc_recall_at_1_max
value: 19.748244491317678
- type: nauc_recall_at_1_std
value: -3.2201287026916625
- type: nauc_recall_at_20_diff1
value: 15.361358977507825
- type: nauc_recall_at_20_max
value: 16.162769140091253
- type: nauc_recall_at_20_std
value: 9.552452165627919
- type: nauc_recall_at_3_diff1
value: 20.63223458359373
- type: nauc_recall_at_3_max
value: 14.003039719774163
- type: nauc_recall_at_3_std
value: 1.6065537387953692
- type: nauc_recall_at_5_diff1
value: 19.515171377833855
- type: nauc_recall_at_5_max
value: 15.099962639838937
- type: nauc_recall_at_5_std
value: 1.2965194340275676
- type: ndcg_at_1
value: 19.154
- type: ndcg_at_10
value: 29.403000000000002
- type: ndcg_at_100
value: 35.167
- type: ndcg_at_1000
value: 37.964
- type: ndcg_at_20
value: 31.557000000000002
- type: ndcg_at_3
value: 24.973
- type: ndcg_at_5
value: 27.112000000000002
- type: precision_at_1
value: 19.154
- type: precision_at_10
value: 5.535
- type: precision_at_100
value: 0.955
- type: precision_at_1000
value: 0.134
- type: precision_at_20
value: 3.3770000000000002
- type: precision_at_3
value: 12.272
- type: precision_at_5
value: 9.005
- type: recall_at_1
value: 15.797
- type: recall_at_10
value: 41.107
- type: recall_at_100
value: 66.52900000000001
- type: recall_at_1000
value: 86.768
- type: recall_at_20
value: 48.748999999999995
- type: recall_at_3
value: 28.716
- type: recall_at_5
value: 34.141
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: main_score
value: 43.516
- type: map_at_1
value: 27.477
- type: map_at_10
value: 37.554
- type: map_at_100
value: 38.876
- type: map_at_1000
value: 38.99
- type: map_at_20
value: 38.309
- type: map_at_3
value: 34.487
- type: map_at_5
value: 36.08
- type: mrr_at_1
value: 34.07122232916265
- type: mrr_at_10
value: 43.28058878347616
- type: mrr_at_100
value: 44.11679663484729
- type: mrr_at_1000
value: 44.16065088048062
- type: mrr_at_20
value: 43.75169948030771
- type: mrr_at_3
value: 40.648059031119644
- type: mrr_at_5
value: 42.144690407443
- type: nauc_map_at_1000_diff1
value: 53.11716806625181
- type: nauc_map_at_1000_max
value: 35.45664823064199
- type: nauc_map_at_1000_std
value: 2.1861361604480254
- type: nauc_map_at_100_diff1
value: 53.13756094020834
- type: nauc_map_at_100_max
value: 35.414022190155535
- type: nauc_map_at_100_std
value: 2.1172853626560584
- type: nauc_map_at_10_diff1
value: 53.362800758097116
- type: nauc_map_at_10_max
value: 35.120906104683144
- type: nauc_map_at_10_std
value: 1.3648401515609623
- type: nauc_map_at_1_diff1
value: 57.616491138132176
- type: nauc_map_at_1_max
value: 33.360475822897804
- type: nauc_map_at_1_std
value: -2.1517434693833706
- type: nauc_map_at_20_diff1
value: 53.28694534380964
- type: nauc_map_at_20_max
value: 35.27319158087644
- type: nauc_map_at_20_std
value: 1.8727333074364048
- type: nauc_map_at_3_diff1
value: 54.107154112179245
- type: nauc_map_at_3_max
value: 34.50940904457967
- type: nauc_map_at_3_std
value: -0.15769425621216243
- type: nauc_map_at_5_diff1
value: 53.42453940564339
- type: nauc_map_at_5_max
value: 34.94771385611006
- type: nauc_map_at_5_std
value: 0.6074409657139379
- type: nauc_mrr_at_1000_diff1
value: 52.27752417239682
- type: nauc_mrr_at_1000_max
value: 36.765948629971476
- type: nauc_mrr_at_1000_std
value: 4.302475616232717
- type: nauc_mrr_at_100_diff1
value: 52.269051770995176
- type: nauc_mrr_at_100_max
value: 36.76909035999622
- type: nauc_mrr_at_100_std
value: 4.299069865333679
- type: nauc_mrr_at_10_diff1
value: 52.377658822943985
- type: nauc_mrr_at_10_max
value: 36.707211313866004
- type: nauc_mrr_at_10_std
value: 3.944105976986153
- type: nauc_mrr_at_1_diff1
value: 55.83627754980158
- type: nauc_mrr_at_1_max
value: 37.08763266019038
- type: nauc_mrr_at_1_std
value: 3.0033119574631186
- type: nauc_mrr_at_20_diff1
value: 52.3480634575466
- type: nauc_mrr_at_20_max
value: 36.63972610802775
- type: nauc_mrr_at_20_std
value: 4.255643011583951
- type: nauc_mrr_at_3_diff1
value: 52.65151934971672
- type: nauc_mrr_at_3_max
value: 36.40720713989
- type: nauc_mrr_at_3_std
value: 3.197519381268911
- type: nauc_mrr_at_5_diff1
value: 52.3866756788575
- type: nauc_mrr_at_5_max
value: 36.731755062099644
- type: nauc_mrr_at_5_std
value: 3.8257443367009905
- type: nauc_ndcg_at_1000_diff1
value: 51.124410117397645
- type: nauc_ndcg_at_1000_max
value: 36.92297872228472
- type: nauc_ndcg_at_1000_std
value: 5.943098614351781
- type: nauc_ndcg_at_100_diff1
value: 50.9983428273292
- type: nauc_ndcg_at_100_max
value: 36.48405211151064
- type: nauc_ndcg_at_100_std
value: 5.488151511201609
- type: nauc_ndcg_at_10_diff1
value: 51.756184856988405
- type: nauc_ndcg_at_10_max
value: 35.38717328414983
- type: nauc_ndcg_at_10_std
value: 3.047458430921158
- type: nauc_ndcg_at_1_diff1
value: 55.83627754980158
- type: nauc_ndcg_at_1_max
value: 37.08763266019038
- type: nauc_ndcg_at_1_std
value: 3.0033119574631186
- type: nauc_ndcg_at_20_diff1
value: 51.63542460952658
- type: nauc_ndcg_at_20_max
value: 35.52888410473399
- type: nauc_ndcg_at_20_std
value: 4.38826631541566
- type: nauc_ndcg_at_3_diff1
value: 52.280381542128005
- type: nauc_ndcg_at_3_max
value: 35.2446928308368
- type: nauc_ndcg_at_3_std
value: 1.6071190136031377
- type: nauc_ndcg_at_5_diff1
value: 51.63085543217384
- type: nauc_ndcg_at_5_max
value: 35.38522586909386
- type: nauc_ndcg_at_5_std
value: 2.257550414928455
- type: nauc_precision_at_1000_diff1
value: -16.486915214707476
- type: nauc_precision_at_1000_max
value: 7.538275188391877
- type: nauc_precision_at_1000_std
value: 18.19269313673447
- type: nauc_precision_at_100_diff1
value: -1.9736731164148775
- type: nauc_precision_at_100_max
value: 16.539438828030338
- type: nauc_precision_at_100_std
value: 19.71975128874717
- type: nauc_precision_at_10_diff1
value: 22.941192836692938
- type: nauc_precision_at_10_max
value: 29.06408942754971
- type: nauc_precision_at_10_std
value: 13.706761382257538
- type: nauc_precision_at_1_diff1
value: 55.83627754980158
- type: nauc_precision_at_1_max
value: 37.08763266019038
- type: nauc_precision_at_1_std
value: 3.0033119574631186
- type: nauc_precision_at_20_diff1
value: 14.639428084708031
- type: nauc_precision_at_20_max
value: 25.194223713311846
- type: nauc_precision_at_20_std
value: 16.3724647158108
- type: nauc_precision_at_3_diff1
value: 39.24536487566087
- type: nauc_precision_at_3_max
value: 34.507130942854594
- type: nauc_precision_at_3_std
value: 7.604148713316975
- type: nauc_precision_at_5_diff1
value: 31.934728493246205
- type: nauc_precision_at_5_max
value: 32.79790114332321
- type: nauc_precision_at_5_std
value: 9.300713639365156
- type: nauc_recall_at_1000_diff1
value: 28.76947795717725
- type: nauc_recall_at_1000_max
value: 47.29845921439558
- type: nauc_recall_at_1000_std
value: 50.206579725929835
- type: nauc_recall_at_100_diff1
value: 35.99115119379463
- type: nauc_recall_at_100_max
value: 35.90016946217124
- type: nauc_recall_at_100_std
value: 20.36252722466296
- type: nauc_recall_at_10_diff1
value: 44.9035061323177
- type: nauc_recall_at_10_max
value: 31.55646682626508
- type: nauc_recall_at_10_std
value: 5.202368314746213
- type: nauc_recall_at_1_diff1
value: 57.616491138132176
- type: nauc_recall_at_1_max
value: 33.360475822897804
- type: nauc_recall_at_1_std
value: -2.1517434693833706
- type: nauc_recall_at_20_diff1
value: 44.082155347846786
- type: nauc_recall_at_20_max
value: 31.111947497273174
- type: nauc_recall_at_20_std
value: 10.74007442952765
- type: nauc_recall_at_3_diff1
value: 48.99683708882751
- type: nauc_recall_at_3_max
value: 31.591738499338323
- type: nauc_recall_at_3_std
value: -0.4970248113753141
- type: nauc_recall_at_5_diff1
value: 45.72255982322729
- type: nauc_recall_at_5_max
value: 31.9303024917854
- type: nauc_recall_at_5_std
value: 2.178007010965473
- type: ndcg_at_1
value: 34.071
- type: ndcg_at_10
value: 43.516
- type: ndcg_at_100
value: 49.001
- type: ndcg_at_1000
value: 51.176
- type: ndcg_at_20
value: 45.675
- type: ndcg_at_3
value: 38.471
- type: ndcg_at_5
value: 40.721000000000004
- type: precision_at_1
value: 34.071
- type: precision_at_10
value: 7.921
- type: precision_at_100
value: 1.238
- type: precision_at_1000
value: 0.161
- type: precision_at_20
value: 4.692
- type: precision_at_3
value: 18.062
- type: precision_at_5
value: 12.839
- type: recall_at_1
value: 27.477
- type: recall_at_10
value: 55.627
- type: recall_at_100
value: 78.999
- type: recall_at_1000
value: 93.388
- type: recall_at_20
value: 63.099000000000004
- type: recall_at_3
value: 41.396
- type: recall_at_5
value: 47.199000000000005
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: main_score
value: 38.024
- type: map_at_1
value: 23.173
- type: map_at_10
value: 32.297
- type: map_at_100
value: 33.672000000000004
- type: map_at_1000
value: 33.793
- type: map_at_20
value: 33.064
- type: map_at_3
value: 29.156
- type: map_at_5
value: 30.964999999999996
- type: mrr_at_1
value: 28.538812785388128
- type: mrr_at_10
value: 37.33076031021236
- type: mrr_at_100
value: 38.33757969963895
- type: mrr_at_1000
value: 38.39935336168593
- type: mrr_at_20
value: 37.936087860689724
- type: mrr_at_3
value: 34.855403348554034
- type: mrr_at_5
value: 36.19672754946727
- type: nauc_map_at_1000_diff1
value: 40.108286871576595
- type: nauc_map_at_1000_max
value: 34.932555227073095
- type: nauc_map_at_1000_std
value: 6.221807917311268
- type: nauc_map_at_100_diff1
value: 40.09828293293427
- type: nauc_map_at_100_max
value: 34.952917251621365
- type: nauc_map_at_100_std
value: 6.231287481156123
- type: nauc_map_at_10_diff1
value: 40.01528416311391
- type: nauc_map_at_10_max
value: 33.89944085012165
- type: nauc_map_at_10_std
value: 5.258003016169289
- type: nauc_map_at_1_diff1
value: 45.05748000688197
- type: nauc_map_at_1_max
value: 30.741952307152193
- type: nauc_map_at_1_std
value: 0.10027922648870957
- type: nauc_map_at_20_diff1
value: 40.213591831598336
- type: nauc_map_at_20_max
value: 34.62908891442373
- type: nauc_map_at_20_std
value: 5.763711381584264
- type: nauc_map_at_3_diff1
value: 40.89235452782516
- type: nauc_map_at_3_max
value: 33.1747621759765
- type: nauc_map_at_3_std
value: 3.331742393981075
- type: nauc_map_at_5_diff1
value: 40.403274490377534
- type: nauc_map_at_5_max
value: 33.94134091027758
- type: nauc_map_at_5_std
value: 4.360176315671494
- type: nauc_mrr_at_1000_diff1
value: 40.14241619166317
- type: nauc_mrr_at_1000_max
value: 38.65445721763423
- type: nauc_mrr_at_1000_std
value: 9.749476533081992
- type: nauc_mrr_at_100_diff1
value: 40.14319401324518
- type: nauc_mrr_at_100_max
value: 38.659012797855915
- type: nauc_mrr_at_100_std
value: 9.750005980569185
- type: nauc_mrr_at_10_diff1
value: 39.843622825414
- type: nauc_mrr_at_10_max
value: 38.25272189734047
- type: nauc_mrr_at_10_std
value: 9.455238241095982
- type: nauc_mrr_at_1_diff1
value: 45.544486458047764
- type: nauc_mrr_at_1_max
value: 38.36905133790403
- type: nauc_mrr_at_1_std
value: 6.313800371398363
- type: nauc_mrr_at_20_diff1
value: 40.168037291291945
- type: nauc_mrr_at_20_max
value: 38.588132492862286
- type: nauc_mrr_at_20_std
value: 9.59289103060053
- type: nauc_mrr_at_3_diff1
value: 40.77069874457395
- type: nauc_mrr_at_3_max
value: 39.17196241078363
- type: nauc_mrr_at_3_std
value: 8.617425759338197
- type: nauc_mrr_at_5_diff1
value: 40.06388436713267
- type: nauc_mrr_at_5_max
value: 38.459050270900846
- type: nauc_mrr_at_5_std
value: 9.01716272113449
- type: nauc_ndcg_at_1000_diff1
value: 38.28079417943546
- type: nauc_ndcg_at_1000_max
value: 37.373375829157126
- type: nauc_ndcg_at_1000_std
value: 10.915194308249555
- type: nauc_ndcg_at_100_diff1
value: 38.303029042268314
- type: nauc_ndcg_at_100_max
value: 37.874116564812326
- type: nauc_ndcg_at_100_std
value: 11.447496719900775
- type: nauc_ndcg_at_10_diff1
value: 37.8583307138946
- type: nauc_ndcg_at_10_max
value: 34.708345234497166
- type: nauc_ndcg_at_10_std
value: 8.020760282496871
- type: nauc_ndcg_at_1_diff1
value: 45.544486458047764
- type: nauc_ndcg_at_1_max
value: 38.36905133790403
- type: nauc_ndcg_at_1_std
value: 6.313800371398363
- type: nauc_ndcg_at_20_diff1
value: 38.70263255314536
- type: nauc_ndcg_at_20_max
value: 36.74873403813739
- type: nauc_ndcg_at_20_std
value: 9.245300863480727
- type: nauc_ndcg_at_3_diff1
value: 39.68243402945326
- type: nauc_ndcg_at_3_max
value: 35.80245947389082
- type: nauc_ndcg_at_3_std
value: 6.01195047461147
- type: nauc_ndcg_at_5_diff1
value: 38.60536509722538
- type: nauc_ndcg_at_5_max
value: 35.314432767482714
- type: nauc_ndcg_at_5_std
value: 6.5428970299886355
- type: nauc_precision_at_1000_diff1
value: -4.069384802622214
- type: nauc_precision_at_1000_max
value: 6.707725051629613
- type: nauc_precision_at_1000_std
value: 13.958586804597543
- type: nauc_precision_at_100_diff1
value: 3.6277603347565393
- type: nauc_precision_at_100_max
value: 25.52632391438941
- type: nauc_precision_at_100_std
value: 23.784864119867034
- type: nauc_precision_at_10_diff1
value: 18.261312841674247
- type: nauc_precision_at_10_max
value: 34.11796051379501
- type: nauc_precision_at_10_std
value: 19.77962411706688
- type: nauc_precision_at_1_diff1
value: 45.544486458047764
- type: nauc_precision_at_1_max
value: 38.36905133790403
- type: nauc_precision_at_1_std
value: 6.313800371398363
- type: nauc_precision_at_20_diff1
value: 14.653399217564534
- type: nauc_precision_at_20_max
value: 35.58870037452182
- type: nauc_precision_at_20_std
value: 22.622999716137446
- type: nauc_precision_at_3_diff1
value: 30.858809285910805
- type: nauc_precision_at_3_max
value: 40.875462270983995
- type: nauc_precision_at_3_std
value: 14.039083589242434
- type: nauc_precision_at_5_diff1
value: 24.894001411473027
- type: nauc_precision_at_5_max
value: 38.182725673958075
- type: nauc_precision_at_5_std
value: 16.206658306046783
- type: nauc_recall_at_1000_diff1
value: 16.53564900892544
- type: nauc_recall_at_1000_max
value: 46.72318966917282
- type: nauc_recall_at_1000_std
value: 54.442875812845855
- type: nauc_recall_at_100_diff1
value: 29.021625912783367
- type: nauc_recall_at_100_max
value: 42.51861007543889
- type: nauc_recall_at_100_std
value: 31.609526311067608
- type: nauc_recall_at_10_diff1
value: 29.824715829870073
- type: nauc_recall_at_10_max
value: 29.657124103804104
- type: nauc_recall_at_10_std
value: 11.250748700772178
- type: nauc_recall_at_1_diff1
value: 45.05748000688197
- type: nauc_recall_at_1_max
value: 30.741952307152193
- type: nauc_recall_at_1_std
value: 0.10027922648870957
- type: nauc_recall_at_20_diff1
value: 32.42540174551291
- type: nauc_recall_at_20_max
value: 35.98077437174156
- type: nauc_recall_at_20_std
value: 15.309458278296484
- type: nauc_recall_at_3_diff1
value: 35.45259519413173
- type: nauc_recall_at_3_max
value: 32.67176629682575
- type: nauc_recall_at_3_std
value: 4.565244871237187
- type: nauc_recall_at_5_diff1
value: 32.457520797399155
- type: nauc_recall_at_5_max
value: 31.85239341740217
- type: nauc_recall_at_5_std
value: 6.528652055169674
- type: ndcg_at_1
value: 28.538999999999998
- type: ndcg_at_10
value: 38.024
- type: ndcg_at_100
value: 44.062
- type: ndcg_at_1000
value: 46.539
- type: ndcg_at_20
value: 40.455000000000005
- type: ndcg_at_3
value: 32.818999999999996
- type: ndcg_at_5
value: 35.231
- type: precision_at_1
value: 28.538999999999998
- type: precision_at_10
value: 7.077999999999999
- type: precision_at_100
value: 1.183
- type: precision_at_1000
value: 0.156
- type: precision_at_20
value: 4.275
- type: precision_at_3
value: 15.943999999999999
- type: precision_at_5
value: 11.620999999999999
- type: recall_at_1
value: 23.173
- type: recall_at_10
value: 50.352
- type: recall_at_100
value: 76.087
- type: recall_at_1000
value: 92.92399999999999
- type: recall_at_20
value: 59.082
- type: recall_at_3
value: 35.544
- type: recall_at_5
value: 41.937999999999995
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 38.150083333333335
- type: ndcg_at_10
value: 38.150083333333335
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: main_score
value: 33.661
- type: map_at_1
value: 23.879
- type: map_at_10
value: 29.93
- type: map_at_100
value: 30.871
- type: map_at_1000
value: 30.963
- type: map_at_20
value: 30.455
- type: map_at_3
value: 28.162
- type: map_at_5
value: 29.182000000000002
- type: mrr_at_1
value: 26.68711656441718
- type: mrr_at_10
value: 32.58478186775732
- type: mrr_at_100
value: 33.439877614219206
- type: mrr_at_1000
value: 33.509744356192215
- type: mrr_at_20
value: 33.08638504959304
- type: mrr_at_3
value: 30.904907975460134
- type: mrr_at_5
value: 31.86349693251534
- type: nauc_map_at_1000_diff1
value: 48.53139009200422
- type: nauc_map_at_1000_max
value: 41.07136045901999
- type: nauc_map_at_1000_std
value: 11.677315277008843
- type: nauc_map_at_100_diff1
value: 48.50830887484553
- type: nauc_map_at_100_max
value: 41.033344784856354
- type: nauc_map_at_100_std
value: 11.664201973879315
- type: nauc_map_at_10_diff1
value: 48.91206176897672
- type: nauc_map_at_10_max
value: 40.80325462807101
- type: nauc_map_at_10_std
value: 11.14885787161969
- type: nauc_map_at_1_diff1
value: 55.659938675798394
- type: nauc_map_at_1_max
value: 39.66838947608073
- type: nauc_map_at_1_std
value: 6.825041531017375
- type: nauc_map_at_20_diff1
value: 48.591524746620266
- type: nauc_map_at_20_max
value: 40.78908497571411
- type: nauc_map_at_20_std
value: 11.367474736784935
- type: nauc_map_at_3_diff1
value: 49.999805605139244
- type: nauc_map_at_3_max
value: 40.7083589084763
- type: nauc_map_at_3_std
value: 9.539830643323945
- type: nauc_map_at_5_diff1
value: 49.41513832999669
- type: nauc_map_at_5_max
value: 40.682908322546446
- type: nauc_map_at_5_std
value: 10.401189036376163
- type: nauc_mrr_at_1000_diff1
value: 48.23812662173282
- type: nauc_mrr_at_1000_max
value: 42.89771775296582
- type: nauc_mrr_at_1000_std
value: 14.23723724292204
- type: nauc_mrr_at_100_diff1
value: 48.209766136073554
- type: nauc_mrr_at_100_max
value: 42.892924636996135
- type: nauc_mrr_at_100_std
value: 14.24054457950116
- type: nauc_mrr_at_10_diff1
value: 48.473273186214705
- type: nauc_mrr_at_10_max
value: 42.82520357348653
- type: nauc_mrr_at_10_std
value: 14.016153249262794
- type: nauc_mrr_at_1_diff1
value: 55.03641495962279
- type: nauc_mrr_at_1_max
value: 42.725997739916615
- type: nauc_mrr_at_1_std
value: 11.822056277995028
- type: nauc_mrr_at_20_diff1
value: 48.284200279599496
- type: nauc_mrr_at_20_max
value: 42.7371964321212
- type: nauc_mrr_at_20_std
value: 13.960829135523737
- type: nauc_mrr_at_3_diff1
value: 49.499792042223866
- type: nauc_mrr_at_3_max
value: 43.098227232894246
- type: nauc_mrr_at_3_std
value: 13.154632787036547
- type: nauc_mrr_at_5_diff1
value: 49.10361982716086
- type: nauc_mrr_at_5_max
value: 42.88372641833646
- type: nauc_mrr_at_5_std
value: 13.4614603500215
- type: nauc_ndcg_at_1000_diff1
value: 45.06608258942947
- type: nauc_ndcg_at_1000_max
value: 42.79644362867509
- type: nauc_ndcg_at_1000_std
value: 16.15949102798443
- type: nauc_ndcg_at_100_diff1
value: 44.266893620089554
- type: nauc_ndcg_at_100_max
value: 42.206424784327574
- type: nauc_ndcg_at_100_std
value: 16.05284758202025
- type: nauc_ndcg_at_10_diff1
value: 45.986130524985626
- type: nauc_ndcg_at_10_max
value: 41.19638299083851
- type: nauc_ndcg_at_10_std
value: 13.629470298951524
- type: nauc_ndcg_at_1_diff1
value: 55.03641495962279
- type: nauc_ndcg_at_1_max
value: 42.725997739916615
- type: nauc_ndcg_at_1_std
value: 11.822056277995028
- type: nauc_ndcg_at_20_diff1
value: 44.84752448706012
- type: nauc_ndcg_at_20_max
value: 40.844656950591634
- type: nauc_ndcg_at_20_std
value: 13.956165195086271
- type: nauc_ndcg_at_3_diff1
value: 47.93537280384065
- type: nauc_ndcg_at_3_max
value: 41.40364123527904
- type: nauc_ndcg_at_3_std
value: 11.195130884125609
- type: nauc_ndcg_at_5_diff1
value: 47.343700055586346
- type: nauc_ndcg_at_5_max
value: 41.24280986284959
- type: nauc_ndcg_at_5_std
value: 12.000132612812044
- type: nauc_precision_at_1000_diff1
value: 4.994176167963606
- type: nauc_precision_at_1000_max
value: 27.486847290176904
- type: nauc_precision_at_1000_std
value: 23.927151301162095
- type: nauc_precision_at_100_diff1
value: 15.07041459911376
- type: nauc_precision_at_100_max
value: 36.53781189328251
- type: nauc_precision_at_100_std
value: 29.5490135147151
- type: nauc_precision_at_10_diff1
value: 29.58860754340708
- type: nauc_precision_at_10_max
value: 40.30128439488323
- type: nauc_precision_at_10_std
value: 24.53133157634616
- type: nauc_precision_at_1_diff1
value: 55.03641495962279
- type: nauc_precision_at_1_max
value: 42.725997739916615
- type: nauc_precision_at_1_std
value: 11.822056277995028
- type: nauc_precision_at_20_diff1
value: 24.75997844201911
- type: nauc_precision_at_20_max
value: 37.42292478671453
- type: nauc_precision_at_20_std
value: 25.045588924299995
- type: nauc_precision_at_3_diff1
value: 39.700372389353454
- type: nauc_precision_at_3_max
value: 42.623221778268366
- type: nauc_precision_at_3_std
value: 17.754093140734657
- type: nauc_precision_at_5_diff1
value: 35.8446328417336
- type: nauc_precision_at_5_max
value: 41.77355878364959
- type: nauc_precision_at_5_std
value: 19.993565988703768
- type: nauc_recall_at_1000_diff1
value: 24.521138453207396
- type: nauc_recall_at_1000_max
value: 47.71668606929123
- type: nauc_recall_at_1000_std
value: 41.58965703674164
- type: nauc_recall_at_100_diff1
value: 25.24665773660013
- type: nauc_recall_at_100_max
value: 41.30250865497976
- type: nauc_recall_at_100_std
value: 30.672023026584007
- type: nauc_recall_at_10_diff1
value: 36.8832100241956
- type: nauc_recall_at_10_max
value: 38.49814277935064
- type: nauc_recall_at_10_std
value: 17.48144338977386
- type: nauc_recall_at_1_diff1
value: 55.659938675798394
- type: nauc_recall_at_1_max
value: 39.66838947608073
- type: nauc_recall_at_1_std
value: 6.825041531017375
- type: nauc_recall_at_20_diff1
value: 32.01354938288064
- type: nauc_recall_at_20_max
value: 36.63011334832695
- type: nauc_recall_at_20_std
value: 18.41097455462446
- type: nauc_recall_at_3_diff1
value: 42.76006973727167
- type: nauc_recall_at_3_max
value: 40.153203605070274
- type: nauc_recall_at_3_std
value: 11.005059866357977
- type: nauc_recall_at_5_diff1
value: 41.39165317018751
- type: nauc_recall_at_5_max
value: 39.736897424968035
- type: nauc_recall_at_5_std
value: 13.22928947133363
- type: ndcg_at_1
value: 26.687
- type: ndcg_at_10
value: 33.661
- type: ndcg_at_100
value: 38.35
- type: ndcg_at_1000
value: 40.8
- type: ndcg_at_20
value: 35.437000000000005
- type: ndcg_at_3
value: 30.342999999999996
- type: ndcg_at_5
value: 31.941000000000003
- type: precision_at_1
value: 26.687
- type: precision_at_10
value: 5.153
- type: precision_at_100
value: 0.814
- type: precision_at_1000
value: 0.11
- type: precision_at_20
value: 3.029
- type: precision_at_3
value: 12.883
- type: precision_at_5
value: 8.803999999999998
- type: recall_at_1
value: 23.879
- type: recall_at_10
value: 42.477
- type: recall_at_100
value: 63.906
- type: recall_at_1000
value: 82.211
- type: recall_at_20
value: 49.045
- type: recall_at_3
value: 33.332
- type: recall_at_5
value: 37.354
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: main_score
value: 26.76
- type: map_at_1
value: 15.662999999999998
- type: map_at_10
value: 22.35
- type: map_at_100
value: 23.427
- type: map_at_1000
value: 23.563000000000002
- type: map_at_20
value: 22.926
- type: map_at_3
value: 20.084
- type: map_at_5
value: 21.313
- type: mrr_at_1
value: 18.960770818995183
- type: mrr_at_10
value: 25.904983121948067
- type: mrr_at_100
value: 26.821542489430144
- type: mrr_at_1000
value: 26.906098040412544
- type: mrr_at_20
value: 26.403069282619253
- type: mrr_at_3
value: 23.692360633172754
- type: mrr_at_5
value: 24.924294562973202
- type: nauc_map_at_1000_diff1
value: 36.32845762325914
- type: nauc_map_at_1000_max
value: 33.55736291239209
- type: nauc_map_at_1000_std
value: 3.432229473309837
- type: nauc_map_at_100_diff1
value: 36.30089055071476
- type: nauc_map_at_100_max
value: 33.52021447234604
- type: nauc_map_at_100_std
value: 3.3949530646797705
- type: nauc_map_at_10_diff1
value: 36.706713645539004
- type: nauc_map_at_10_max
value: 33.36722158098282
- type: nauc_map_at_10_std
value: 2.7726772519273584
- type: nauc_map_at_1_diff1
value: 42.78539859955363
- type: nauc_map_at_1_max
value: 32.50849076879976
- type: nauc_map_at_1_std
value: 1.3954658101521349
- type: nauc_map_at_20_diff1
value: 36.44434182966826
- type: nauc_map_at_20_max
value: 33.4223606249205
- type: nauc_map_at_20_std
value: 3.056877020975398
- type: nauc_map_at_3_diff1
value: 38.09385217889672
- type: nauc_map_at_3_max
value: 33.444266093850466
- type: nauc_map_at_3_std
value: 1.4210812078047044
- type: nauc_map_at_5_diff1
value: 37.45455194954524
- type: nauc_map_at_5_max
value: 33.58297487933362
- type: nauc_map_at_5_std
value: 2.225792098397186
- type: nauc_mrr_at_1000_diff1
value: 34.97608766191874
- type: nauc_mrr_at_1000_max
value: 33.6349173107215
- type: nauc_mrr_at_1000_std
value: 3.0989650345980073
- type: nauc_mrr_at_100_diff1
value: 34.94255258229341
- type: nauc_mrr_at_100_max
value: 33.62631058099838
- type: nauc_mrr_at_100_std
value: 3.1051547505163493
- type: nauc_mrr_at_10_diff1
value: 35.194039255792454
- type: nauc_mrr_at_10_max
value: 33.604737843685626
- type: nauc_mrr_at_10_std
value: 2.5905553770990615
- type: nauc_mrr_at_1_diff1
value: 40.836866506372836
- type: nauc_mrr_at_1_max
value: 33.39325239663001
- type: nauc_mrr_at_1_std
value: 1.127754938660376
- type: nauc_mrr_at_20_diff1
value: 35.00502184255156
- type: nauc_mrr_at_20_max
value: 33.52420796858889
- type: nauc_mrr_at_20_std
value: 2.898811413334367
- type: nauc_mrr_at_3_diff1
value: 36.338551068937036
- type: nauc_mrr_at_3_max
value: 33.815881689155916
- type: nauc_mrr_at_3_std
value: 1.5498753093044315
- type: nauc_mrr_at_5_diff1
value: 35.873030664605885
- type: nauc_mrr_at_5_max
value: 33.897101810836226
- type: nauc_mrr_at_5_std
value: 2.1967073621343687
- type: nauc_ndcg_at_1000_diff1
value: 32.837773001140015
- type: nauc_ndcg_at_1000_max
value: 33.978063813852195
- type: nauc_ndcg_at_1000_std
value: 7.18061649572422
- type: nauc_ndcg_at_100_diff1
value: 32.23692228107245
- type: nauc_ndcg_at_100_max
value: 33.558149600646544
- type: nauc_ndcg_at_100_std
value: 6.814544306611417
- type: nauc_ndcg_at_10_diff1
value: 33.79758164734529
- type: nauc_ndcg_at_10_max
value: 33.16077004784226
- type: nauc_ndcg_at_10_std
value: 3.807132179198105
- type: nauc_ndcg_at_1_diff1
value: 40.836866506372836
- type: nauc_ndcg_at_1_max
value: 33.39325239663001
- type: nauc_ndcg_at_1_std
value: 1.127754938660376
- type: nauc_ndcg_at_20_diff1
value: 33.04159869018307
- type: nauc_ndcg_at_20_max
value: 33.095598392370086
- type: nauc_ndcg_at_20_std
value: 4.86129474656699
- type: nauc_ndcg_at_3_diff1
value: 36.32253988443199
- type: nauc_ndcg_at_3_max
value: 33.9538290861425
- type: nauc_ndcg_at_3_std
value: 1.3215696887170623
- type: nauc_ndcg_at_5_diff1
value: 35.47052283188967
- type: nauc_ndcg_at_5_max
value: 33.89612026096585
- type: nauc_ndcg_at_5_std
value: 2.6710425885570195
- type: nauc_precision_at_1000_diff1
value: 0.9916365417350987
- type: nauc_precision_at_1000_max
value: 18.94027390642169
- type: nauc_precision_at_1000_std
value: 11.991965258965426
- type: nauc_precision_at_100_diff1
value: 8.540728510260907
- type: nauc_precision_at_100_max
value: 25.34067366375036
- type: nauc_precision_at_100_std
value: 14.584127511948362
- type: nauc_precision_at_10_diff1
value: 21.425375464273117
- type: nauc_precision_at_10_max
value: 30.715529687561215
- type: nauc_precision_at_10_std
value: 7.050366947545752
- type: nauc_precision_at_1_diff1
value: 40.836866506372836
- type: nauc_precision_at_1_max
value: 33.39325239663001
- type: nauc_precision_at_1_std
value: 1.127754938660376
- type: nauc_precision_at_20_diff1
value: 17.126577160838767
- type: nauc_precision_at_20_max
value: 28.180350861048918
- type: nauc_precision_at_20_std
value: 9.204946568923095
- type: nauc_precision_at_3_diff1
value: 30.03248221152837
- type: nauc_precision_at_3_max
value: 34.469274514363576
- type: nauc_precision_at_3_std
value: 1.3169507336484703
- type: nauc_precision_at_5_diff1
value: 27.691321638789717
- type: nauc_precision_at_5_max
value: 34.448336681904514
- type: nauc_precision_at_5_std
value: 4.3727325951693565
- type: nauc_recall_at_1000_diff1
value: 13.813296274685182
- type: nauc_recall_at_1000_max
value: 32.53692936157239
- type: nauc_recall_at_1000_std
value: 33.6379690047766
- type: nauc_recall_at_100_diff1
value: 17.544425110662758
- type: nauc_recall_at_100_max
value: 29.99355188898577
- type: nauc_recall_at_100_std
value: 19.181138219276104
- type: nauc_recall_at_10_diff1
value: 25.579263146027888
- type: nauc_recall_at_10_max
value: 29.688994497442945
- type: nauc_recall_at_10_std
value: 6.101926427651782
- type: nauc_recall_at_1_diff1
value: 42.78539859955363
- type: nauc_recall_at_1_max
value: 32.50849076879976
- type: nauc_recall_at_1_std
value: 1.3954658101521349
- type: nauc_recall_at_20_diff1
value: 22.855697416129058
- type: nauc_recall_at_20_max
value: 29.016750276488402
- type: nauc_recall_at_20_std
value: 9.507542232520008
- type: nauc_recall_at_3_diff1
value: 32.74667430133546
- type: nauc_recall_at_3_max
value: 32.36180346979294
- type: nauc_recall_at_3_std
value: 1.5435126499493685
- type: nauc_recall_at_5_diff1
value: 30.35636475352035
- type: nauc_recall_at_5_max
value: 31.964366285189993
- type: nauc_recall_at_5_std
value: 3.7439177812212914
- type: ndcg_at_1
value: 18.961
- type: ndcg_at_10
value: 26.76
- type: ndcg_at_100
value: 31.987
- type: ndcg_at_1000
value: 35.14
- type: ndcg_at_20
value: 28.666000000000004
- type: ndcg_at_3
value: 22.611
- type: ndcg_at_5
value: 24.495
- type: precision_at_1
value: 18.961
- type: precision_at_10
value: 4.955
- type: precision_at_100
value: 0.886
- type: precision_at_1000
value: 0.134
- type: precision_at_20
value: 3.02
- type: precision_at_3
value: 10.679
- type: precision_at_5
value: 7.811
- type: recall_at_1
value: 15.662999999999998
- type: recall_at_10
value: 36.486000000000004
- type: recall_at_100
value: 60.13699999999999
- type: recall_at_1000
value: 82.674
- type: recall_at_20
value: 43.636
- type: recall_at_3
value: 24.895999999999997
- type: recall_at_5
value: 29.755
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: main_score
value: 37.25
- type: map_at_1
value: 23.52
- type: map_at_10
value: 32.04
- type: map_at_100
value: 33.265
- type: map_at_1000
value: 33.364
- type: map_at_20
value: 32.705
- type: map_at_3
value: 29.433
- type: map_at_5
value: 30.803000000000004
- type: mrr_at_1
value: 27.51865671641791
- type: mrr_at_10
value: 36.00424218194739
- type: mrr_at_100
value: 36.903107608606675
- type: mrr_at_1000
value: 36.96395251148347
- type: mrr_at_20
value: 36.459384561103356
- type: mrr_at_3
value: 33.62873134328357
- type: mrr_at_5
value: 34.91138059701488
- type: nauc_map_at_1000_diff1
value: 44.26760971600569
- type: nauc_map_at_1000_max
value: 37.03675061352433
- type: nauc_map_at_1000_std
value: -0.6748853500833264
- type: nauc_map_at_100_diff1
value: 44.26591155341421
- type: nauc_map_at_100_max
value: 37.0374608260786
- type: nauc_map_at_100_std
value: -0.6739130374083069
- type: nauc_map_at_10_diff1
value: 44.64333115475081
- type: nauc_map_at_10_max
value: 36.618375959258096
- type: nauc_map_at_10_std
value: -1.3282754617161208
- type: nauc_map_at_1_diff1
value: 51.61094035660931
- type: nauc_map_at_1_max
value: 35.24232228126847
- type: nauc_map_at_1_std
value: -4.805963422515798
- type: nauc_map_at_20_diff1
value: 44.41630684519036
- type: nauc_map_at_20_max
value: 37.02214474390442
- type: nauc_map_at_20_std
value: -0.8251824639491345
- type: nauc_map_at_3_diff1
value: 45.61815969575457
- type: nauc_map_at_3_max
value: 35.387991045369716
- type: nauc_map_at_3_std
value: -3.239524904892324
- type: nauc_map_at_5_diff1
value: 44.82439840305814
- type: nauc_map_at_5_max
value: 36.24725748815871
- type: nauc_map_at_5_std
value: -1.851648510167343
- type: nauc_mrr_at_1000_diff1
value: 42.03257519827712
- type: nauc_mrr_at_1000_max
value: 38.37966433606752
- type: nauc_mrr_at_1000_std
value: -0.15282541892993076
- type: nauc_mrr_at_100_diff1
value: 42.014741602279564
- type: nauc_mrr_at_100_max
value: 38.37840441614305
- type: nauc_mrr_at_100_std
value: -0.14610389460051212
- type: nauc_mrr_at_10_diff1
value: 42.15513668994741
- type: nauc_mrr_at_10_max
value: 38.30754832862629
- type: nauc_mrr_at_10_std
value: -0.5099123585689097
- type: nauc_mrr_at_1_diff1
value: 49.1101047164422
- type: nauc_mrr_at_1_max
value: 37.933671986494026
- type: nauc_mrr_at_1_std
value: -3.7731587131539976
- type: nauc_mrr_at_20_diff1
value: 42.06752969763786
- type: nauc_mrr_at_20_max
value: 38.36700308017657
- type: nauc_mrr_at_20_std
value: -0.3054736037276272
- type: nauc_mrr_at_3_diff1
value: 42.62372944034753
- type: nauc_mrr_at_3_max
value: 37.909468795649666
- type: nauc_mrr_at_3_std
value: -1.527800377472655
- type: nauc_mrr_at_5_diff1
value: 42.198527449928804
- type: nauc_mrr_at_5_max
value: 38.35215994800784
- type: nauc_mrr_at_5_std
value: -0.5485521166603851
- type: nauc_ndcg_at_1000_diff1
value: 40.855780678246724
- type: nauc_ndcg_at_1000_max
value: 38.394998686556
- type: nauc_ndcg_at_1000_std
value: 2.8353732609834514
- type: nauc_ndcg_at_100_diff1
value: 40.55606418953665
- type: nauc_ndcg_at_100_max
value: 38.454872156001805
- type: nauc_ndcg_at_100_std
value: 3.061615143253422
- type: nauc_ndcg_at_10_diff1
value: 41.90525124437928
- type: nauc_ndcg_at_10_max
value: 37.591000536129435
- type: nauc_ndcg_at_10_std
value: 0.7110197729123375
- type: nauc_ndcg_at_1_diff1
value: 49.1101047164422
- type: nauc_ndcg_at_1_max
value: 37.933671986494026
- type: nauc_ndcg_at_1_std
value: -3.7731587131539976
- type: nauc_ndcg_at_20_diff1
value: 41.307377431306556
- type: nauc_ndcg_at_20_max
value: 38.41832801024425
- type: nauc_ndcg_at_20_std
value: 1.9886496294555962
- type: nauc_ndcg_at_3_diff1
value: 42.986902248079836
- type: nauc_ndcg_at_3_max
value: 36.196771893007885
- type: nauc_ndcg_at_3_std
value: -2.2909240633804404
- type: nauc_ndcg_at_5_diff1
value: 42.11824383427997
- type: nauc_ndcg_at_5_max
value: 37.09158761390391
- type: nauc_ndcg_at_5_std
value: -0.1957306778551101
- type: nauc_precision_at_1000_diff1
value: -14.92219394812046
- type: nauc_precision_at_1000_max
value: 6.200453065515646
- type: nauc_precision_at_1000_std
value: 7.198226536807955
- type: nauc_precision_at_100_diff1
value: -0.933334477353504
- type: nauc_precision_at_100_max
value: 23.74769225281431
- type: nauc_precision_at_100_std
value: 13.760336011422103
- type: nauc_precision_at_10_diff1
value: 21.317504992362302
- type: nauc_precision_at_10_max
value: 36.64677303747258
- type: nauc_precision_at_10_std
value: 9.268521380662948
- type: nauc_precision_at_1_diff1
value: 49.1101047164422
- type: nauc_precision_at_1_max
value: 37.933671986494026
- type: nauc_precision_at_1_std
value: -3.7731587131539976
- type: nauc_precision_at_20_diff1
value: 13.657560976362785
- type: nauc_precision_at_20_max
value: 33.87541496378981
- type: nauc_precision_at_20_std
value: 12.548073724501604
- type: nauc_precision_at_3_diff1
value: 31.86603948675504
- type: nauc_precision_at_3_max
value: 36.7937804867161
- type: nauc_precision_at_3_std
value: 1.3747787278458556
- type: nauc_precision_at_5_diff1
value: 26.464128564884287
- type: nauc_precision_at_5_max
value: 38.421403615633615
- type: nauc_precision_at_5_std
value: 6.849484842483432
- type: nauc_recall_at_1000_diff1
value: 18.749722864106687
- type: nauc_recall_at_1000_max
value: 43.23340103124563
- type: nauc_recall_at_1000_std
value: 40.71445800815644
- type: nauc_recall_at_100_diff1
value: 25.75477193308326
- type: nauc_recall_at_100_max
value: 38.95166149979008
- type: nauc_recall_at_100_std
value: 20.086723446846307
- type: nauc_recall_at_10_diff1
value: 34.9465684232037
- type: nauc_recall_at_10_max
value: 36.310367249051446
- type: nauc_recall_at_10_std
value: 5.334139441477833
- type: nauc_recall_at_1_diff1
value: 51.61094035660931
- type: nauc_recall_at_1_max
value: 35.24232228126847
- type: nauc_recall_at_1_std
value: -4.805963422515798
- type: nauc_recall_at_20_diff1
value: 32.74344985990636
- type: nauc_recall_at_20_max
value: 38.70262442532749
- type: nauc_recall_at_20_std
value: 9.903515883710332
- type: nauc_recall_at_3_diff1
value: 38.44351038745494
- type: nauc_recall_at_3_max
value: 33.58936306504043
- type: nauc_recall_at_3_std
value: -1.4980811551146116
- type: nauc_recall_at_5_diff1
value: 35.90101189825282
- type: nauc_recall_at_5_max
value: 35.662369181706204
- type: nauc_recall_at_5_std
value: 3.0145054767330115
- type: ndcg_at_1
value: 27.519
- type: ndcg_at_10
value: 37.25
- type: ndcg_at_100
value: 42.848000000000006
- type: ndcg_at_1000
value: 45.254
- type: ndcg_at_20
value: 39.277
- type: ndcg_at_3
value: 32.399
- type: ndcg_at_5
value: 34.524
- type: precision_at_1
value: 27.519
- type: precision_at_10
value: 6.334
- type: precision_at_100
value: 1.026
- type: precision_at_1000
value: 0.134
- type: precision_at_20
value: 3.759
- type: precision_at_3
value: 14.677000000000001
- type: precision_at_5
value: 10.317
- type: recall_at_1
value: 23.52
- type: recall_at_10
value: 49.184
- type: recall_at_100
value: 73.733
- type: recall_at_1000
value: 90.77
- type: recall_at_20
value: 56.298
- type: recall_at_3
value: 35.973
- type: recall_at_5
value: 41.374
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: main_score
value: 36.565
- type: map_at_1
value: 23.105999999999998
- type: map_at_10
value: 31.290000000000003
- type: map_at_100
value: 32.84
- type: map_at_1000
value: 33.056999999999995
- type: map_at_20
value: 32.053
- type: map_at_3
value: 28.524
- type: map_at_5
value: 30.059
- type: mrr_at_1
value: 27.27272727272727
- type: mrr_at_10
value: 35.2733860342556
- type: mrr_at_100
value: 36.3053638836631
- type: mrr_at_1000
value: 36.37032482519805
- type: mrr_at_20
value: 35.859048151622396
- type: mrr_at_3
value: 32.83926218708829
- type: mrr_at_5
value: 34.12384716732543
- type: nauc_map_at_1000_diff1
value: 39.76272068657792
- type: nauc_map_at_1000_max
value: 29.790280297209893
- type: nauc_map_at_1000_std
value: 10.757488325628422
- type: nauc_map_at_100_diff1
value: 39.81480347795618
- type: nauc_map_at_100_max
value: 29.922166651619236
- type: nauc_map_at_100_std
value: 10.65010277811946
- type: nauc_map_at_10_diff1
value: 39.55904622384973
- type: nauc_map_at_10_max
value: 29.4537747039685
- type: nauc_map_at_10_std
value: 9.600423622583662
- type: nauc_map_at_1_diff1
value: 46.2974028098431
- type: nauc_map_at_1_max
value: 28.426406901170203
- type: nauc_map_at_1_std
value: 2.298735191126003
- type: nauc_map_at_20_diff1
value: 39.3449497565094
- type: nauc_map_at_20_max
value: 29.80594598624846
- type: nauc_map_at_20_std
value: 10.131168100104727
- type: nauc_map_at_3_diff1
value: 41.76837093706344
- type: nauc_map_at_3_max
value: 29.663230640722325
- type: nauc_map_at_3_std
value: 8.357883325471708
- type: nauc_map_at_5_diff1
value: 40.001875443538545
- type: nauc_map_at_5_max
value: 29.427859045507148
- type: nauc_map_at_5_std
value: 8.398905009560293
- type: nauc_mrr_at_1000_diff1
value: 40.471195736412206
- type: nauc_mrr_at_1000_max
value: 30.816676948801714
- type: nauc_mrr_at_1000_std
value: 11.159711491734067
- type: nauc_mrr_at_100_diff1
value: 40.47871261866228
- type: nauc_mrr_at_100_max
value: 30.821157171181696
- type: nauc_mrr_at_100_std
value: 11.178279050139082
- type: nauc_mrr_at_10_diff1
value: 40.43627989797811
- type: nauc_mrr_at_10_max
value: 30.68845552208875
- type: nauc_mrr_at_10_std
value: 11.082356764494767
- type: nauc_mrr_at_1_diff1
value: 45.50910903294914
- type: nauc_mrr_at_1_max
value: 31.3076070063755
- type: nauc_mrr_at_1_std
value: 5.37768597927747
- type: nauc_mrr_at_20_diff1
value: 40.145413037287746
- type: nauc_mrr_at_20_max
value: 30.78817829326666
- type: nauc_mrr_at_20_std
value: 11.135265444724569
- type: nauc_mrr_at_3_diff1
value: 41.67907201095954
- type: nauc_mrr_at_3_max
value: 30.935486674293628
- type: nauc_mrr_at_3_std
value: 9.999676547554822
- type: nauc_mrr_at_5_diff1
value: 40.63061020793853
- type: nauc_mrr_at_5_max
value: 30.65935831056293
- type: nauc_mrr_at_5_std
value: 10.253570942971265
- type: nauc_ndcg_at_1000_diff1
value: 38.31679453625091
- type: nauc_ndcg_at_1000_max
value: 30.42490674886122
- type: nauc_ndcg_at_1000_std
value: 14.214535852825216
- type: nauc_ndcg_at_100_diff1
value: 38.25066725250533
- type: nauc_ndcg_at_100_max
value: 30.44191906381211
- type: nauc_ndcg_at_100_std
value: 14.901162385978845
- type: nauc_ndcg_at_10_diff1
value: 37.69901106502627
- type: nauc_ndcg_at_10_max
value: 29.64235402905151
- type: nauc_ndcg_at_10_std
value: 13.16074821157373
- type: nauc_ndcg_at_1_diff1
value: 45.50910903294914
- type: nauc_ndcg_at_1_max
value: 31.3076070063755
- type: nauc_ndcg_at_1_std
value: 5.37768597927747
- type: nauc_ndcg_at_20_diff1
value: 36.28568865631326
- type: nauc_ndcg_at_20_max
value: 30.050385172275394
- type: nauc_ndcg_at_20_std
value: 13.754810821651981
- type: nauc_ndcg_at_3_diff1
value: 41.651315048123216
- type: nauc_ndcg_at_3_max
value: 31.443490740638612
- type: nauc_ndcg_at_3_std
value: 11.384365369343216
- type: nauc_ndcg_at_5_diff1
value: 39.128045954408535
- type: nauc_ndcg_at_5_max
value: 30.294182805626523
- type: nauc_ndcg_at_5_std
value: 11.455518736657039
- type: nauc_precision_at_1000_diff1
value: -2.5588471818616236
- type: nauc_precision_at_1000_max
value: -8.40564077817957
- type: nauc_precision_at_1000_std
value: 17.178789287436377
- type: nauc_precision_at_100_diff1
value: 10.20179378901254
- type: nauc_precision_at_100_max
value: 6.9826053319142485
- type: nauc_precision_at_100_std
value: 24.31302168417932
- type: nauc_precision_at_10_diff1
value: 21.64226817804198
- type: nauc_precision_at_10_max
value: 25.95797802850366
- type: nauc_precision_at_10_std
value: 23.463222960924217
- type: nauc_precision_at_1_diff1
value: 45.50910903294914
- type: nauc_precision_at_1_max
value: 31.3076070063755
- type: nauc_precision_at_1_std
value: 5.37768597927747
- type: nauc_precision_at_20_diff1
value: 16.188528114667015
- type: nauc_precision_at_20_max
value: 22.711717515357932
- type: nauc_precision_at_20_std
value: 25.92900601366098
- type: nauc_precision_at_3_diff1
value: 33.38289089598491
- type: nauc_precision_at_3_max
value: 33.0613762828467
- type: nauc_precision_at_3_std
value: 18.26750139224793
- type: nauc_precision_at_5_diff1
value: 25.299183198738884
- type: nauc_precision_at_5_max
value: 27.95155532864501
- type: nauc_precision_at_5_std
value: 17.69547733910105
- type: nauc_recall_at_1000_diff1
value: 22.127156020725522
- type: nauc_recall_at_1000_max
value: 36.32198236414703
- type: nauc_recall_at_1000_std
value: 46.0024764987062
- type: nauc_recall_at_100_diff1
value: 30.41962941522361
- type: nauc_recall_at_100_max
value: 29.658332453198888
- type: nauc_recall_at_100_std
value: 32.76645418495392
- type: nauc_recall_at_10_diff1
value: 27.94562925698465
- type: nauc_recall_at_10_max
value: 26.023394389331383
- type: nauc_recall_at_10_std
value: 18.394527204627348
- type: nauc_recall_at_1_diff1
value: 46.2974028098431
- type: nauc_recall_at_1_max
value: 28.426406901170203
- type: nauc_recall_at_1_std
value: 2.298735191126003
- type: nauc_recall_at_20_diff1
value: 22.776623977857145
- type: nauc_recall_at_20_max
value: 27.21001817636621
- type: nauc_recall_at_20_std
value: 21.282932443508354
- type: nauc_recall_at_3_diff1
value: 36.884749050164295
- type: nauc_recall_at_3_max
value: 28.465498877250873
- type: nauc_recall_at_3_std
value: 12.711247426442371
- type: nauc_recall_at_5_diff1
value: 31.283845178999254
- type: nauc_recall_at_5_max
value: 27.061848538009027
- type: nauc_recall_at_5_std
value: 13.469960961026883
- type: ndcg_at_1
value: 27.272999999999996
- type: ndcg_at_10
value: 36.565
- type: ndcg_at_100
value: 42.9
- type: ndcg_at_1000
value: 45.608
- type: ndcg_at_20
value: 38.751000000000005
- type: ndcg_at_3
value: 31.939
- type: ndcg_at_5
value: 34.101
- type: precision_at_1
value: 27.272999999999996
- type: precision_at_10
value: 6.917
- type: precision_at_100
value: 1.455
- type: precision_at_1000
value: 0.232
- type: precision_at_20
value: 4.447
- type: precision_at_3
value: 14.69
- type: precision_at_5
value: 10.870000000000001
- type: recall_at_1
value: 23.105999999999998
- type: recall_at_10
value: 46.894999999999996
- type: recall_at_100
value: 75.594
- type: recall_at_1000
value: 92.732
- type: recall_at_20
value: 55.257999999999996
- type: recall_at_3
value: 33.934999999999995
- type: recall_at_5
value: 39.222
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 29.567
- type: map_at_1
value: 17.904999999999998
- type: map_at_10
value: 24.938
- type: map_at_100
value: 25.909
- type: map_at_1000
value: 26.027
- type: map_at_20
value: 25.451
- type: map_at_3
value: 22.259999999999998
- type: map_at_5
value: 23.834
- type: mrr_at_1
value: 19.223659889094268
- type: mrr_at_10
value: 26.62845113399643
- type: mrr_at_100
value: 27.499845907183552
- type: mrr_at_1000
value: 27.593472908486984
- type: mrr_at_20
value: 27.123214255946344
- type: mrr_at_3
value: 23.813924830560687
- type: mrr_at_5
value: 25.551447935921136
- type: nauc_map_at_1000_diff1
value: 38.89606010868926
- type: nauc_map_at_1000_max
value: 31.538856803290884
- type: nauc_map_at_1000_std
value: -1.305075788649935
- type: nauc_map_at_100_diff1
value: 38.82639909571271
- type: nauc_map_at_100_max
value: 31.497525225584177
- type: nauc_map_at_100_std
value: -1.309646997856667
- type: nauc_map_at_10_diff1
value: 39.29347922607974
- type: nauc_map_at_10_max
value: 31.79078705023462
- type: nauc_map_at_10_std
value: -1.876636004896723
- type: nauc_map_at_1_diff1
value: 48.21195607823574
- type: nauc_map_at_1_max
value: 32.939940404152814
- type: nauc_map_at_1_std
value: -2.598175888025344
- type: nauc_map_at_20_diff1
value: 38.97329850846901
- type: nauc_map_at_20_max
value: 31.517768894234088
- type: nauc_map_at_20_std
value: -1.7582312182435884
- type: nauc_map_at_3_diff1
value: 41.14141970209535
- type: nauc_map_at_3_max
value: 32.30972428641846
- type: nauc_map_at_3_std
value: -1.8883058706632543
- type: nauc_map_at_5_diff1
value: 40.09562382270429
- type: nauc_map_at_5_max
value: 31.933391253205627
- type: nauc_map_at_5_std
value: -2.100889221871347
- type: nauc_mrr_at_1000_diff1
value: 39.01910001476905
- type: nauc_mrr_at_1000_max
value: 33.08207505682323
- type: nauc_mrr_at_1000_std
value: -0.6237855979344884
- type: nauc_mrr_at_100_diff1
value: 38.93803750185852
- type: nauc_mrr_at_100_max
value: 33.048836543873975
- type: nauc_mrr_at_100_std
value: -0.6062208268461757
- type: nauc_mrr_at_10_diff1
value: 39.270583896754644
- type: nauc_mrr_at_10_max
value: 33.24795051204245
- type: nauc_mrr_at_10_std
value: -0.9725090570441313
- type: nauc_mrr_at_1_diff1
value: 47.999638413846505
- type: nauc_mrr_at_1_max
value: 35.36138863519551
- type: nauc_mrr_at_1_std
value: -1.880235814636017
- type: nauc_mrr_at_20_diff1
value: 39.021750324405396
- type: nauc_mrr_at_20_max
value: 33.03808863518709
- type: nauc_mrr_at_20_std
value: -0.9591151055995247
- type: nauc_mrr_at_3_diff1
value: 41.80927533235213
- type: nauc_mrr_at_3_max
value: 34.29227659304729
- type: nauc_mrr_at_3_std
value: -1.1645238886922333
- type: nauc_mrr_at_5_diff1
value: 40.090198362725445
- type: nauc_mrr_at_5_max
value: 33.38020362155669
- type: nauc_mrr_at_5_std
value: -0.9765029348699578
- type: nauc_ndcg_at_1000_diff1
value: 35.50789376303437
- type: nauc_ndcg_at_1000_max
value: 31.615759544374693
- type: nauc_ndcg_at_1000_std
value: 2.1204304391621855
- type: nauc_ndcg_at_100_diff1
value: 33.57315272127493
- type: nauc_ndcg_at_100_max
value: 30.086482858827026
- type: nauc_ndcg_at_100_std
value: 2.0440427140431576
- type: nauc_ndcg_at_10_diff1
value: 35.34492455018914
- type: nauc_ndcg_at_10_max
value: 31.02089117001684
- type: nauc_ndcg_at_10_std
value: -1.1048933497920645
- type: nauc_ndcg_at_1_diff1
value: 47.999638413846505
- type: nauc_ndcg_at_1_max
value: 35.36138863519551
- type: nauc_ndcg_at_1_std
value: -1.880235814636017
- type: nauc_ndcg_at_20_diff1
value: 34.26215274432466
- type: nauc_ndcg_at_20_max
value: 30.20225190792415
- type: nauc_ndcg_at_20_std
value: -0.7509261018709115
- type: nauc_ndcg_at_3_diff1
value: 39.389519747059026
- type: nauc_ndcg_at_3_max
value: 32.63411653129123
- type: nauc_ndcg_at_3_std
value: -0.993678872804903
- type: nauc_ndcg_at_5_diff1
value: 37.188814736325924
- type: nauc_ndcg_at_5_max
value: 31.495832182127202
- type: nauc_ndcg_at_5_std
value: -1.2778445014948332
- type: nauc_precision_at_1000_diff1
value: -9.97486529251133
- type: nauc_precision_at_1000_max
value: -0.7480260820564806
- type: nauc_precision_at_1000_std
value: 11.340009034047164
- type: nauc_precision_at_100_diff1
value: 3.9801856363648436
- type: nauc_precision_at_100_max
value: 13.379133650650818
- type: nauc_precision_at_100_std
value: 19.09971792064424
- type: nauc_precision_at_10_diff1
value: 21.999340108469816
- type: nauc_precision_at_10_max
value: 27.787090972478723
- type: nauc_precision_at_10_std
value: 3.666717149158269
- type: nauc_precision_at_1_diff1
value: 47.999638413846505
- type: nauc_precision_at_1_max
value: 35.36138863519551
- type: nauc_precision_at_1_std
value: -1.880235814636017
- type: nauc_precision_at_20_diff1
value: 16.517223912074233
- type: nauc_precision_at_20_max
value: 23.937166410814513
- type: nauc_precision_at_20_std
value: 8.146414485970688
- type: nauc_precision_at_3_diff1
value: 32.928185060716544
- type: nauc_precision_at_3_max
value: 33.32909830966484
- type: nauc_precision_at_3_std
value: 1.7607783669388026
- type: nauc_precision_at_5_diff1
value: 27.617896173358826
- type: nauc_precision_at_5_max
value: 31.07062829318418
- type: nauc_precision_at_5_std
value: 2.5159680374410023
- type: nauc_recall_at_1000_diff1
value: 25.828881504446947
- type: nauc_recall_at_1000_max
value: 41.72839366554471
- type: nauc_recall_at_1000_std
value: 32.88040232676994
- type: nauc_recall_at_100_diff1
value: 13.845109468247148
- type: nauc_recall_at_100_max
value: 21.81619945923323
- type: nauc_recall_at_100_std
value: 15.182307774891207
- type: nauc_recall_at_10_diff1
value: 24.07889524419303
- type: nauc_recall_at_10_max
value: 26.924752181722017
- type: nauc_recall_at_10_std
value: -0.011546334534046606
- type: nauc_recall_at_1_diff1
value: 48.21195607823574
- type: nauc_recall_at_1_max
value: 32.939940404152814
- type: nauc_recall_at_1_std
value: -2.598175888025344
- type: nauc_recall_at_20_diff1
value: 19.964045605188886
- type: nauc_recall_at_20_max
value: 23.885666727839393
- type: nauc_recall_at_20_std
value: 0.42285441592789197
- type: nauc_recall_at_3_diff1
value: 33.929457814927375
- type: nauc_recall_at_3_max
value: 30.910764244335205
- type: nauc_recall_at_3_std
value: 0.3174639322018935
- type: nauc_recall_at_5_diff1
value: 29.092298121601694
- type: nauc_recall_at_5_max
value: 28.363390941448102
- type: nauc_recall_at_5_std
value: -0.2037623526882392
- type: ndcg_at_1
value: 19.224
- type: ndcg_at_10
value: 29.567
- type: ndcg_at_100
value: 34.521
- type: ndcg_at_1000
value: 37.525999999999996
- type: ndcg_at_20
value: 31.385999999999996
- type: ndcg_at_3
value: 24.104999999999997
- type: ndcg_at_5
value: 26.956000000000003
- type: precision_at_1
value: 19.224
- type: precision_at_10
value: 4.898000000000001
- type: precision_at_100
value: 0.8
- type: precision_at_1000
value: 0.117
- type: precision_at_20
value: 2.8930000000000002
- type: precision_at_3
value: 10.228
- type: precision_at_5
value: 7.8
- type: recall_at_1
value: 17.904999999999998
- type: recall_at_10
value: 42.236000000000004
- type: recall_at_100
value: 65.31
- type: recall_at_1000
value: 87.725
- type: recall_at_20
value: 49.122
- type: recall_at_3
value: 27.659
- type: recall_at_5
value: 34.476
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 26.737
- type: map_at_1
value: 11.047
- type: map_at_10
value: 19.031000000000002
- type: map_at_100
value: 20.811
- type: map_at_1000
value: 21.004
- type: map_at_20
value: 19.906
- type: map_at_3
value: 16.154
- type: map_at_5
value: 17.637
- type: mrr_at_1
value: 24.7557003257329
- type: mrr_at_10
value: 36.00248177446872
- type: mrr_at_100
value: 37.022765746266224
- type: mrr_at_1000
value: 37.06412282708337
- type: mrr_at_20
value: 36.613242481766875
- type: mrr_at_3
value: 32.99674267100971
- type: mrr_at_5
value: 34.77198697068397
- type: nauc_map_at_1000_diff1
value: 22.95284162051679
- type: nauc_map_at_1000_max
value: 41.05657553737428
- type: nauc_map_at_1000_std
value: 18.834903528536966
- type: nauc_map_at_100_diff1
value: 22.98481765525261
- type: nauc_map_at_100_max
value: 41.03975029590201
- type: nauc_map_at_100_std
value: 18.771562130707093
- type: nauc_map_at_10_diff1
value: 23.13821422467576
- type: nauc_map_at_10_max
value: 39.82209459044267
- type: nauc_map_at_10_std
value: 16.550430053938996
- type: nauc_map_at_1_diff1
value: 27.763657551345815
- type: nauc_map_at_1_max
value: 36.12475370802807
- type: nauc_map_at_1_std
value: 8.813087776045409
- type: nauc_map_at_20_diff1
value: 22.989816492876976
- type: nauc_map_at_20_max
value: 40.47306627293731
- type: nauc_map_at_20_std
value: 17.922541923299242
- type: nauc_map_at_3_diff1
value: 25.177638524660594
- type: nauc_map_at_3_max
value: 38.39188053307798
- type: nauc_map_at_3_std
value: 12.43002831643714
- type: nauc_map_at_5_diff1
value: 24.11240452332388
- type: nauc_map_at_5_max
value: 39.78597831033908
- type: nauc_map_at_5_std
value: 15.348832909388102
- type: nauc_mrr_at_1000_diff1
value: 22.953724268315007
- type: nauc_mrr_at_1000_max
value: 36.75873655295118
- type: nauc_mrr_at_1000_std
value: 18.86900175143143
- type: nauc_mrr_at_100_diff1
value: 22.94708169148642
- type: nauc_mrr_at_100_max
value: 36.77692171237133
- type: nauc_mrr_at_100_std
value: 18.90049139812642
- type: nauc_mrr_at_10_diff1
value: 22.961392194546697
- type: nauc_mrr_at_10_max
value: 36.5664392762182
- type: nauc_mrr_at_10_std
value: 18.61258791439757
- type: nauc_mrr_at_1_diff1
value: 25.264729979176337
- type: nauc_mrr_at_1_max
value: 32.00533151772989
- type: nauc_mrr_at_1_std
value: 11.28963976428763
- type: nauc_mrr_at_20_diff1
value: 22.89202299597813
- type: nauc_mrr_at_20_max
value: 36.81591748654397
- type: nauc_mrr_at_20_std
value: 18.957871797322213
- type: nauc_mrr_at_3_diff1
value: 23.32679875268354
- type: nauc_mrr_at_3_max
value: 35.77247598730184
- type: nauc_mrr_at_3_std
value: 16.998072713674137
- type: nauc_mrr_at_5_diff1
value: 22.940494982850357
- type: nauc_mrr_at_5_max
value: 36.4761572989835
- type: nauc_mrr_at_5_std
value: 18.247716522394114
- type: nauc_ndcg_at_1000_diff1
value: 20.33208895418013
- type: nauc_ndcg_at_1000_max
value: 43.43624293116895
- type: nauc_ndcg_at_1000_std
value: 26.692682553388043
- type: nauc_ndcg_at_100_diff1
value: 20.683371851614915
- type: nauc_ndcg_at_100_max
value: 43.23955154318779
- type: nauc_ndcg_at_100_std
value: 26.255509612217846
- type: nauc_ndcg_at_10_diff1
value: 21.4076909300414
- type: nauc_ndcg_at_10_max
value: 39.940378122809996
- type: nauc_ndcg_at_10_std
value: 20.34199980826332
- type: nauc_ndcg_at_1_diff1
value: 25.264729979176337
- type: nauc_ndcg_at_1_max
value: 32.00533151772989
- type: nauc_ndcg_at_1_std
value: 11.28963976428763
- type: nauc_ndcg_at_20_diff1
value: 21.06028073012518
- type: nauc_ndcg_at_20_max
value: 41.39323714162508
- type: nauc_ndcg_at_20_std
value: 23.294473172219288
- type: nauc_ndcg_at_3_diff1
value: 23.795439983732766
- type: nauc_ndcg_at_3_max
value: 37.670223262411994
- type: nauc_ndcg_at_3_std
value: 14.988047358058045
- type: nauc_ndcg_at_5_diff1
value: 22.549509904412304
- type: nauc_ndcg_at_5_max
value: 39.97171597626144
- type: nauc_ndcg_at_5_std
value: 18.522092622834307
- type: nauc_precision_at_1000_diff1
value: -2.966526326664724
- type: nauc_precision_at_1000_max
value: 19.35956305205282
- type: nauc_precision_at_1000_std
value: 29.208694771321802
- type: nauc_precision_at_100_diff1
value: 3.89594831569403
- type: nauc_precision_at_100_max
value: 30.93107729730319
- type: nauc_precision_at_100_std
value: 35.65762513251467
- type: nauc_precision_at_10_diff1
value: 11.55435573260231
- type: nauc_precision_at_10_max
value: 33.6858401099601
- type: nauc_precision_at_10_std
value: 27.844293535879206
- type: nauc_precision_at_1_diff1
value: 25.264729979176337
- type: nauc_precision_at_1_max
value: 32.00533151772989
- type: nauc_precision_at_1_std
value: 11.28963976428763
- type: nauc_precision_at_20_diff1
value: 9.19449929503659
- type: nauc_precision_at_20_max
value: 34.04253984479287
- type: nauc_precision_at_20_std
value: 33.26324613378763
- type: nauc_precision_at_3_diff1
value: 19.686045361727484
- type: nauc_precision_at_3_max
value: 36.03726542607104
- type: nauc_precision_at_3_std
value: 19.73290312758754
- type: nauc_precision_at_5_diff1
value: 15.192260787856585
- type: nauc_precision_at_5_max
value: 37.448062698115095
- type: nauc_precision_at_5_std
value: 26.272485409517117
- type: nauc_recall_at_1000_diff1
value: 3.8258182870161943
- type: nauc_recall_at_1000_max
value: 43.71178689615702
- type: nauc_recall_at_1000_std
value: 45.551384524629576
- type: nauc_recall_at_100_diff1
value: 9.602166248337264
- type: nauc_recall_at_100_max
value: 40.222401344352136
- type: nauc_recall_at_100_std
value: 36.19019924878991
- type: nauc_recall_at_10_diff1
value: 14.698199205269786
- type: nauc_recall_at_10_max
value: 35.961298718387326
- type: nauc_recall_at_10_std
value: 21.970115975467966
- type: nauc_recall_at_1_diff1
value: 27.763657551345815
- type: nauc_recall_at_1_max
value: 36.12475370802807
- type: nauc_recall_at_1_std
value: 8.813087776045409
- type: nauc_recall_at_20_diff1
value: 13.109375978076127
- type: nauc_recall_at_20_max
value: 37.72229474207071
- type: nauc_recall_at_20_std
value: 27.908697340918625
- type: nauc_recall_at_3_diff1
value: 20.97044679859558
- type: nauc_recall_at_3_max
value: 37.050460347469986
- type: nauc_recall_at_3_std
value: 14.204226826731455
- type: nauc_recall_at_5_diff1
value: 18.139967176831718
- type: nauc_recall_at_5_max
value: 38.69687411453869
- type: nauc_recall_at_5_std
value: 19.825425230717368
- type: ndcg_at_1
value: 24.756
- type: ndcg_at_10
value: 26.737
- type: ndcg_at_100
value: 34.097
- type: ndcg_at_1000
value: 37.653999999999996
- type: ndcg_at_20
value: 29.341
- type: ndcg_at_3
value: 22.209
- type: ndcg_at_5
value: 23.726
- type: precision_at_1
value: 24.756
- type: precision_at_10
value: 8.28
- type: precision_at_100
value: 1.6199999999999999
- type: precision_at_1000
value: 0.22799999999999998
- type: precision_at_20
value: 5.261
- type: precision_at_3
value: 16.678
- type: precision_at_5
value: 12.598999999999998
- type: recall_at_1
value: 11.047
- type: recall_at_10
value: 31.939
- type: recall_at_100
value: 57.66
- type: recall_at_1000
value: 77.676
- type: recall_at_20
value: 39.375
- type: recall_at_3
value: 20.534
- type: recall_at_5
value: 25.113000000000003
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 38.553
- type: map_at_1
value: 8.427
- type: map_at_10
value: 17.947
- type: map_at_100
value: 24.859
- type: map_at_1000
value: 26.284999999999997
- type: map_at_20
value: 20.529
- type: map_at_3
value: 13.032
- type: map_at_5
value: 15.087
- type: mrr_at_1
value: 63.74999999999999
- type: mrr_at_10
value: 72.26726190476191
- type: mrr_at_100
value: 72.60264087536868
- type: mrr_at_1000
value: 72.6117769251391
- type: mrr_at_20
value: 72.48660991785995
- type: mrr_at_3
value: 70.29166666666669
- type: mrr_at_5
value: 71.72916666666667
- type: nauc_map_at_1000_diff1
value: 16.885215876440295
- type: nauc_map_at_1000_max
value: 24.251410480294357
- type: nauc_map_at_1000_std
value: 30.442486178306797
- type: nauc_map_at_100_diff1
value: 17.77376546461243
- type: nauc_map_at_100_max
value: 22.397423178877666
- type: nauc_map_at_100_std
value: 27.80993039204801
- type: nauc_map_at_10_diff1
value: 23.34667275277926
- type: nauc_map_at_10_max
value: 10.594143100766155
- type: nauc_map_at_10_std
value: 10.585594861156142
- type: nauc_map_at_1_diff1
value: 41.31179058216469
- type: nauc_map_at_1_max
value: 2.7789106998022595
- type: nauc_map_at_1_std
value: -5.629361745337226
- type: nauc_map_at_20_diff1
value: 21.171735707940826
- type: nauc_map_at_20_max
value: 14.91112453141777
- type: nauc_map_at_20_std
value: 16.852537320237083
- type: nauc_map_at_3_diff1
value: 27.764297506590797
- type: nauc_map_at_3_max
value: 3.350829180020233
- type: nauc_map_at_3_std
value: 0.6093126325885707
- type: nauc_map_at_5_diff1
value: 24.65278591199583
- type: nauc_map_at_5_max
value: 4.879335188280108
- type: nauc_map_at_5_std
value: 3.7215226421650267
- type: nauc_mrr_at_1000_diff1
value: 46.334418500628054
- type: nauc_mrr_at_1000_max
value: 61.28184640697816
- type: nauc_mrr_at_1000_std
value: 39.24492154930731
- type: nauc_mrr_at_100_diff1
value: 46.330131722627435
- type: nauc_mrr_at_100_max
value: 61.28413429173713
- type: nauc_mrr_at_100_std
value: 39.24030745947179
- type: nauc_mrr_at_10_diff1
value: 46.31370888820881
- type: nauc_mrr_at_10_max
value: 61.3280839283407
- type: nauc_mrr_at_10_std
value: 39.4561235573134
- type: nauc_mrr_at_1_diff1
value: 49.415410285441865
- type: nauc_mrr_at_1_max
value: 58.67786981308228
- type: nauc_mrr_at_1_std
value: 34.349164729952484
- type: nauc_mrr_at_20_diff1
value: 46.44394246082444
- type: nauc_mrr_at_20_max
value: 61.349381938107015
- type: nauc_mrr_at_20_std
value: 39.329379002565865
- type: nauc_mrr_at_3_diff1
value: 46.5466532654621
- type: nauc_mrr_at_3_max
value: 60.738204480647994
- type: nauc_mrr_at_3_std
value: 39.75962812429745
- type: nauc_mrr_at_5_diff1
value: 45.573755866755
- type: nauc_mrr_at_5_max
value: 61.37737255344052
- type: nauc_mrr_at_5_std
value: 39.48646682460037
- type: nauc_ndcg_at_1000_diff1
value: 16.736755471969026
- type: nauc_ndcg_at_1000_max
value: 38.94665722868098
- type: nauc_ndcg_at_1000_std
value: 41.67473161838855
- type: nauc_ndcg_at_100_diff1
value: 18.410722578049988
- type: nauc_ndcg_at_100_max
value: 32.48401439716438
- type: nauc_ndcg_at_100_std
value: 34.71840405905395
- type: nauc_ndcg_at_10_diff1
value: 23.046713516949357
- type: nauc_ndcg_at_10_max
value: 36.41251437514339
- type: nauc_ndcg_at_10_std
value: 33.85064850271241
- type: nauc_ndcg_at_1_diff1
value: 44.98121223766516
- type: nauc_ndcg_at_1_max
value: 49.651287744543346
- type: nauc_ndcg_at_1_std
value: 29.780916188076894
- type: nauc_ndcg_at_20_diff1
value: 22.22814399555328
- type: nauc_ndcg_at_20_max
value: 32.27357130353916
- type: nauc_ndcg_at_20_std
value: 31.075769289452598
- type: nauc_ndcg_at_3_diff1
value: 25.535588030138996
- type: nauc_ndcg_at_3_max
value: 39.83735223382875
- type: nauc_ndcg_at_3_std
value: 31.56662105223355
- type: nauc_ndcg_at_5_diff1
value: 24.200992920951915
- type: nauc_ndcg_at_5_max
value: 38.983334609042664
- type: nauc_ndcg_at_5_std
value: 32.815778747524064
- type: nauc_precision_at_1000_diff1
value: -13.042988259065188
- type: nauc_precision_at_1000_max
value: 14.592773793416065
- type: nauc_precision_at_1000_std
value: 18.54030566512939
- type: nauc_precision_at_100_diff1
value: -8.839880525325949
- type: nauc_precision_at_100_max
value: 35.27222519062242
- type: nauc_precision_at_100_std
value: 42.48049287957863
- type: nauc_precision_at_10_diff1
value: -0.30622683334044837
- type: nauc_precision_at_10_max
value: 43.863332528297384
- type: nauc_precision_at_10_std
value: 45.99630936149964
- type: nauc_precision_at_1_diff1
value: 49.415410285441865
- type: nauc_precision_at_1_max
value: 58.67786981308228
- type: nauc_precision_at_1_std
value: 34.349164729952484
- type: nauc_precision_at_20_diff1
value: -3.0634928461658135
- type: nauc_precision_at_20_max
value: 40.58489408271218
- type: nauc_precision_at_20_std
value: 44.78991176526987
- type: nauc_precision_at_3_diff1
value: 7.030183506370981
- type: nauc_precision_at_3_max
value: 39.4877838164423
- type: nauc_precision_at_3_std
value: 36.35500887750183
- type: nauc_precision_at_5_diff1
value: 2.7154599702814086
- type: nauc_precision_at_5_max
value: 43.340435401319304
- type: nauc_precision_at_5_std
value: 42.78969754624864
- type: nauc_recall_at_1000_diff1
value: 2.0440148038106543
- type: nauc_recall_at_1000_max
value: 27.80788064711282
- type: nauc_recall_at_1000_std
value: 43.56435465984963
- type: nauc_recall_at_100_diff1
value: 7.249759444328031
- type: nauc_recall_at_100_max
value: 18.51578835482464
- type: nauc_recall_at_100_std
value: 28.176910509170515
- type: nauc_recall_at_10_diff1
value: 18.095470021097675
- type: nauc_recall_at_10_max
value: 4.0380084324985415
- type: nauc_recall_at_10_std
value: 6.188126602282033
- type: nauc_recall_at_1_diff1
value: 41.31179058216469
- type: nauc_recall_at_1_max
value: 2.7789106998022595
- type: nauc_recall_at_1_std
value: -5.629361745337226
- type: nauc_recall_at_20_diff1
value: 15.124098206152278
- type: nauc_recall_at_20_max
value: 8.168146286216665
- type: nauc_recall_at_20_std
value: 12.163295762335588
- type: nauc_recall_at_3_diff1
value: 23.242634056765034
- type: nauc_recall_at_3_max
value: -1.2044999492508157
- type: nauc_recall_at_3_std
value: -0.9756022011856826
- type: nauc_recall_at_5_diff1
value: 18.51030489728696
- type: nauc_recall_at_5_max
value: -1.02698451199236
- type: nauc_recall_at_5_std
value: 0.9103887215447328
- type: ndcg_at_1
value: 51.74999999999999
- type: ndcg_at_10
value: 38.553
- type: ndcg_at_100
value: 42.603
- type: ndcg_at_1000
value: 49.996
- type: ndcg_at_20
value: 37.624
- type: ndcg_at_3
value: 43.129
- type: ndcg_at_5
value: 40.286
- type: precision_at_1
value: 63.74999999999999
- type: precision_at_10
value: 30.8
- type: precision_at_100
value: 9.47
- type: precision_at_1000
value: 1.8350000000000002
- type: precision_at_20
value: 22.662
- type: precision_at_3
value: 46.666999999999994
- type: precision_at_5
value: 39.050000000000004
- type: recall_at_1
value: 8.427
- type: recall_at_10
value: 23.385
- type: recall_at_100
value: 48.498999999999995
- type: recall_at_1000
value: 72.161
- type: recall_at_20
value: 29.683999999999997
- type: recall_at_3
value: 14.401
- type: recall_at_5
value: 17.803
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 49.754999999999995
- type: f1
value: 43.36982442562564
- type: f1_weighted
value: 51.61952910603824
- type: main_score
value: 49.754999999999995
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 84.936
- type: map_at_1
value: 72.57400000000001
- type: map_at_10
value: 81.066
- type: map_at_100
value: 81.297
- type: map_at_1000
value: 81.312
- type: map_at_20
value: 81.207
- type: map_at_3
value: 79.986
- type: map_at_5
value: 80.69800000000001
- type: mrr_at_1
value: 78.38283828382838
- type: mrr_at_10
value: 85.85126965077451
- type: mrr_at_100
value: 85.94789108942497
- type: mrr_at_1000
value: 85.95083700548771
- type: mrr_at_20
value: 85.92198402529328
- type: mrr_at_3
value: 85.09850985098504
- type: mrr_at_5
value: 85.60856085608543
- type: nauc_map_at_1000_diff1
value: 50.66119889176923
- type: nauc_map_at_1000_max
value: 27.580944486960778
- type: nauc_map_at_1000_std
value: 2.476183923102915
- type: nauc_map_at_100_diff1
value: 50.62017790161358
- type: nauc_map_at_100_max
value: 27.56129936780716
- type: nauc_map_at_100_std
value: 2.4766366012578596
- type: nauc_map_at_10_diff1
value: 50.419141534275646
- type: nauc_map_at_10_max
value: 27.356650851579005
- type: nauc_map_at_10_std
value: 2.3350604474354455
- type: nauc_map_at_1_diff1
value: 54.29468230013946
- type: nauc_map_at_1_max
value: 22.58894354165319
- type: nauc_map_at_1_std
value: -2.7297280069759613
- type: nauc_map_at_20_diff1
value: 50.53772247796323
- type: nauc_map_at_20_max
value: 27.47288741660889
- type: nauc_map_at_20_std
value: 2.4731058048920134
- type: nauc_map_at_3_diff1
value: 50.44147113679276
- type: nauc_map_at_3_max
value: 26.61390529181397
- type: nauc_map_at_3_std
value: 0.7317631152076722
- type: nauc_map_at_5_diff1
value: 50.35927561260093
- type: nauc_map_at_5_max
value: 27.171327197638924
- type: nauc_map_at_5_std
value: 2.005685096668936
- type: nauc_mrr_at_1000_diff1
value: 66.66956741241363
- type: nauc_mrr_at_1000_max
value: 34.60696986415113
- type: nauc_mrr_at_1000_std
value: -0.664668306469195
- type: nauc_mrr_at_100_diff1
value: 66.66794471782865
- type: nauc_mrr_at_100_max
value: 34.61677889901239
- type: nauc_mrr_at_100_std
value: -0.656402933928221
- type: nauc_mrr_at_10_diff1
value: 66.68304426013808
- type: nauc_mrr_at_10_max
value: 34.73024103786049
- type: nauc_mrr_at_10_std
value: -0.6353888738825407
- type: nauc_mrr_at_1_diff1
value: 67.19771091736617
- type: nauc_mrr_at_1_max
value: 29.860207317348003
- type: nauc_mrr_at_1_std
value: -3.6568452043648385
- type: nauc_mrr_at_20_diff1
value: 66.68308645971901
- type: nauc_mrr_at_20_max
value: 34.714325975079156
- type: nauc_mrr_at_20_std
value: -0.5677886371954249
- type: nauc_mrr_at_3_diff1
value: 66.51153384715913
- type: nauc_mrr_at_3_max
value: 34.452498948880596
- type: nauc_mrr_at_3_std
value: -1.7332465728437143
- type: nauc_mrr_at_5_diff1
value: 66.59225232490988
- type: nauc_mrr_at_5_max
value: 34.7512528049011
- type: nauc_mrr_at_5_std
value: -0.7375111171529252
- type: nauc_ndcg_at_1000_diff1
value: 52.70447792725332
- type: nauc_ndcg_at_1000_max
value: 31.099714402668877
- type: nauc_ndcg_at_1000_std
value: 4.952576129141146
- type: nauc_ndcg_at_100_diff1
value: 51.8680556343591
- type: nauc_ndcg_at_100_max
value: 30.899433878567578
- type: nauc_ndcg_at_100_std
value: 5.15165187665861
- type: nauc_ndcg_at_10_diff1
value: 51.13133494726316
- type: nauc_ndcg_at_10_max
value: 30.350385714960144
- type: nauc_ndcg_at_10_std
value: 4.788310908509855
- type: nauc_ndcg_at_1_diff1
value: 67.19771091736617
- type: nauc_ndcg_at_1_max
value: 29.860207317348003
- type: nauc_ndcg_at_1_std
value: -3.6568452043648385
- type: nauc_ndcg_at_20_diff1
value: 51.430338783177845
- type: nauc_ndcg_at_20_max
value: 30.66830067670468
- type: nauc_ndcg_at_20_std
value: 5.321140832352313
- type: nauc_ndcg_at_3_diff1
value: 52.45624793046263
- type: nauc_ndcg_at_3_max
value: 29.934052260543847
- type: nauc_ndcg_at_3_std
value: 1.5120530275817168
- type: nauc_ndcg_at_5_diff1
value: 51.3969061446885
- type: nauc_ndcg_at_5_max
value: 30.239907029985897
- type: nauc_ndcg_at_5_std
value: 3.960594477502144
- type: nauc_precision_at_1000_diff1
value: 1.0422268465313624
- type: nauc_precision_at_1000_max
value: 15.84092949003887
- type: nauc_precision_at_1000_std
value: 9.963760763573108
- type: nauc_precision_at_100_diff1
value: 0.04282213273969017
- type: nauc_precision_at_100_max
value: 20.801404126556278
- type: nauc_precision_at_100_std
value: 14.868023073502593
- type: nauc_precision_at_10_diff1
value: 12.009370034101515
- type: nauc_precision_at_10_max
value: 31.401749097136626
- type: nauc_precision_at_10_std
value: 20.31851789650492
- type: nauc_precision_at_1_diff1
value: 67.19771091736617
- type: nauc_precision_at_1_max
value: 29.860207317348003
- type: nauc_precision_at_1_std
value: -3.6568452043648385
- type: nauc_precision_at_20_diff1
value: 6.2515537022637835
- type: nauc_precision_at_20_max
value: 27.36775832291631
- type: nauc_precision_at_20_std
value: 20.08032001724466
- type: nauc_precision_at_3_diff1
value: 35.00061054285493
- type: nauc_precision_at_3_max
value: 37.27790982101606
- type: nauc_precision_at_3_std
value: 9.236135982360096
- type: nauc_precision_at_5_diff1
value: 22.165859212913382
- type: nauc_precision_at_5_max
value: 35.223908290124776
- type: nauc_precision_at_5_std
value: 17.42571822680717
- type: nauc_recall_at_1000_diff1
value: 15.54216884685085
- type: nauc_recall_at_1000_max
value: 47.34980103888308
- type: nauc_recall_at_1000_std
value: 54.29278330007617
- type: nauc_recall_at_100_diff1
value: 15.804892954178532
- type: nauc_recall_at_100_max
value: 38.94488759227265
- type: nauc_recall_at_100_std
value: 39.15674768221356
- type: nauc_recall_at_10_diff1
value: 26.705107043813843
- type: nauc_recall_at_10_max
value: 33.52349469470716
- type: nauc_recall_at_10_std
value: 23.113004953511055
- type: nauc_recall_at_1_diff1
value: 54.29468230013946
- type: nauc_recall_at_1_max
value: 22.58894354165319
- type: nauc_recall_at_1_std
value: -2.7297280069759613
- type: nauc_recall_at_20_diff1
value: 23.16005062188733
- type: nauc_recall_at_20_max
value: 35.90277692951498
- type: nauc_recall_at_20_std
value: 30.83357455111629
- type: nauc_recall_at_3_diff1
value: 37.845329065879305
- type: nauc_recall_at_3_max
value: 29.827530624825272
- type: nauc_recall_at_3_std
value: 6.738499485390652
- type: nauc_recall_at_5_diff1
value: 32.32928010117198
- type: nauc_recall_at_5_max
value: 32.14388883263825
- type: nauc_recall_at_5_std
value: 16.086201199214255
- type: ndcg_at_1
value: 78.38300000000001
- type: ndcg_at_10
value: 84.936
- type: ndcg_at_100
value: 85.794
- type: ndcg_at_1000
value: 86.075
- type: ndcg_at_20
value: 85.341
- type: ndcg_at_3
value: 83.22800000000001
- type: ndcg_at_5
value: 84.224
- type: precision_at_1
value: 78.38300000000001
- type: precision_at_10
value: 10.181999999999999
- type: precision_at_100
value: 1.081
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 5.209
- type: precision_at_3
value: 31.852999999999998
- type: precision_at_5
value: 19.778000000000002
- type: recall_at_1
value: 72.57400000000001
- type: recall_at_10
value: 92.166
- type: recall_at_100
value: 95.634
- type: recall_at_1000
value: 97.432
- type: recall_at_20
value: 93.577
- type: recall_at_3
value: 87.46000000000001
- type: recall_at_5
value: 90.044
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 38.496
- type: map_at_1
value: 19.184
- type: map_at_10
value: 31.161
- type: map_at_100
value: 33.043
- type: map_at_1000
value: 33.232
- type: map_at_20
value: 32.226
- type: map_at_3
value: 27.607
- type: map_at_5
value: 29.499
- type: mrr_at_1
value: 37.808641975308646
- type: mrr_at_10
value: 46.674382716049365
- type: mrr_at_100
value: 47.52932976593473
- type: mrr_at_1000
value: 47.58129814456106
- type: mrr_at_20
value: 47.16211081543323
- type: mrr_at_3
value: 44.753086419753096
- type: mrr_at_5
value: 45.70216049382716
- type: nauc_map_at_1000_diff1
value: 41.13556588085034
- type: nauc_map_at_1000_max
value: 26.446518169258436
- type: nauc_map_at_1000_std
value: 4.947054879978255
- type: nauc_map_at_100_diff1
value: 41.07818713362254
- type: nauc_map_at_100_max
value: 26.358031657016213
- type: nauc_map_at_100_std
value: 4.962050092923268
- type: nauc_map_at_10_diff1
value: 41.44482937397835
- type: nauc_map_at_10_max
value: 25.721025003207565
- type: nauc_map_at_10_std
value: 3.329956561698185
- type: nauc_map_at_1_diff1
value: 46.26531369764426
- type: nauc_map_at_1_max
value: 18.364933647270643
- type: nauc_map_at_1_std
value: -2.262414956846059
- type: nauc_map_at_20_diff1
value: 41.02884195313503
- type: nauc_map_at_20_max
value: 25.825932384455264
- type: nauc_map_at_20_std
value: 4.228083176777648
- type: nauc_map_at_3_diff1
value: 43.106018762558875
- type: nauc_map_at_3_max
value: 24.77226948960475
- type: nauc_map_at_3_std
value: 1.8680539073320452
- type: nauc_map_at_5_diff1
value: 42.15001342294521
- type: nauc_map_at_5_max
value: 25.226226502657116
- type: nauc_map_at_5_std
value: 2.2239341498092804
- type: nauc_mrr_at_1000_diff1
value: 45.75815475829176
- type: nauc_mrr_at_1000_max
value: 33.16308247045093
- type: nauc_mrr_at_1000_std
value: 4.865912289812554
- type: nauc_mrr_at_100_diff1
value: 45.72090839837304
- type: nauc_mrr_at_100_max
value: 33.146147463070754
- type: nauc_mrr_at_100_std
value: 4.894576902832264
- type: nauc_mrr_at_10_diff1
value: 45.64332996509239
- type: nauc_mrr_at_10_max
value: 33.406770043256024
- type: nauc_mrr_at_10_std
value: 4.39074822608675
- type: nauc_mrr_at_1_diff1
value: 48.924390583495665
- type: nauc_mrr_at_1_max
value: 30.378798819048026
- type: nauc_mrr_at_1_std
value: 1.941425436753191
- type: nauc_mrr_at_20_diff1
value: 45.690917800161515
- type: nauc_mrr_at_20_max
value: 33.10823443798682
- type: nauc_mrr_at_20_std
value: 4.779855297102603
- type: nauc_mrr_at_3_diff1
value: 46.204867899757055
- type: nauc_mrr_at_3_max
value: 33.30076707231032
- type: nauc_mrr_at_3_std
value: 4.507678674711717
- type: nauc_mrr_at_5_diff1
value: 45.811627759116455
- type: nauc_mrr_at_5_max
value: 33.37895652871395
- type: nauc_mrr_at_5_std
value: 4.501784832453282
- type: nauc_ndcg_at_1000_diff1
value: 41.6125334158319
- type: nauc_ndcg_at_1000_max
value: 30.16303539863395
- type: nauc_ndcg_at_1000_std
value: 9.320860296325897
- type: nauc_ndcg_at_100_diff1
value: 40.58309967897852
- type: nauc_ndcg_at_100_max
value: 29.266226796484496
- type: nauc_ndcg_at_100_std
value: 10.31534341767162
- type: nauc_ndcg_at_10_diff1
value: 41.05940444122101
- type: nauc_ndcg_at_10_max
value: 27.96328418422611
- type: nauc_ndcg_at_10_std
value: 4.692298775524114
- type: nauc_ndcg_at_1_diff1
value: 48.924390583495665
- type: nauc_ndcg_at_1_max
value: 30.378798819048026
- type: nauc_ndcg_at_1_std
value: 1.941425436753191
- type: nauc_ndcg_at_20_diff1
value: 40.157160957917014
- type: nauc_ndcg_at_20_max
value: 27.493518163331522
- type: nauc_ndcg_at_20_std
value: 6.809059359656342
- type: nauc_ndcg_at_3_diff1
value: 41.63951276991973
- type: nauc_ndcg_at_3_max
value: 29.15518654994495
- type: nauc_ndcg_at_3_std
value: 4.836914696725136
- type: nauc_ndcg_at_5_diff1
value: 41.325178314736036
- type: nauc_ndcg_at_5_max
value: 28.050168266490928
- type: nauc_ndcg_at_5_std
value: 3.898848874816655
- type: nauc_precision_at_1000_diff1
value: 0.9996077037868993
- type: nauc_precision_at_1000_max
value: 23.48150040925757
- type: nauc_precision_at_1000_std
value: 12.864187472849862
- type: nauc_precision_at_100_diff1
value: 6.832487632948481
- type: nauc_precision_at_100_max
value: 26.9080049604059
- type: nauc_precision_at_100_std
value: 20.278561164143323
- type: nauc_precision_at_10_diff1
value: 18.571173078039145
- type: nauc_precision_at_10_max
value: 29.625927319287975
- type: nauc_precision_at_10_std
value: 12.543363741883576
- type: nauc_precision_at_1_diff1
value: 48.924390583495665
- type: nauc_precision_at_1_max
value: 30.378798819048026
- type: nauc_precision_at_1_std
value: 1.941425436753191
- type: nauc_precision_at_20_diff1
value: 13.515647907611536
- type: nauc_precision_at_20_max
value: 26.353132950858065
- type: nauc_precision_at_20_std
value: 14.887387015957195
- type: nauc_precision_at_3_diff1
value: 28.87824381197347
- type: nauc_precision_at_3_max
value: 30.99331486275142
- type: nauc_precision_at_3_std
value: 9.310818980550453
- type: nauc_precision_at_5_diff1
value: 23.21025248054266
- type: nauc_precision_at_5_max
value: 29.580877930541057
- type: nauc_precision_at_5_std
value: 9.593048125924087
- type: nauc_recall_at_1000_diff1
value: 30.10835562862456
- type: nauc_recall_at_1000_max
value: 24.149255779667854
- type: nauc_recall_at_1000_std
value: 37.07994398705662
- type: nauc_recall_at_100_diff1
value: 26.12210815380886
- type: nauc_recall_at_100_max
value: 22.570853805396553
- type: nauc_recall_at_100_std
value: 29.144304590338294
- type: nauc_recall_at_10_diff1
value: 31.94641026009961
- type: nauc_recall_at_10_max
value: 22.175120874773736
- type: nauc_recall_at_10_std
value: 4.761095246287363
- type: nauc_recall_at_1_diff1
value: 46.26531369764426
- type: nauc_recall_at_1_max
value: 18.364933647270643
- type: nauc_recall_at_1_std
value: -2.262414956846059
- type: nauc_recall_at_20_diff1
value: 27.64677435734486
- type: nauc_recall_at_20_max
value: 19.516676410346868
- type: nauc_recall_at_20_std
value: 10.872851154845188
- type: nauc_recall_at_3_diff1
value: 36.71090149814694
- type: nauc_recall_at_3_max
value: 23.731583063719967
- type: nauc_recall_at_3_std
value: 3.003592433785659
- type: nauc_recall_at_5_diff1
value: 34.94516645771627
- type: nauc_recall_at_5_max
value: 22.485817201833626
- type: nauc_recall_at_5_std
value: 2.8783986999083204
- type: ndcg_at_1
value: 37.809
- type: ndcg_at_10
value: 38.496
- type: ndcg_at_100
value: 45.251000000000005
- type: ndcg_at_1000
value: 48.583999999999996
- type: ndcg_at_20
value: 41.136
- type: ndcg_at_3
value: 35.759
- type: ndcg_at_5
value: 36.291000000000004
- type: precision_at_1
value: 37.809
- type: precision_at_10
value: 10.602
- type: precision_at_100
value: 1.7590000000000001
- type: precision_at_1000
value: 0.233
- type: precision_at_20
value: 6.465999999999999
- type: precision_at_3
value: 24.279999999999998
- type: precision_at_5
value: 17.438000000000002
- type: recall_at_1
value: 19.184
- type: recall_at_10
value: 44.335
- type: recall_at_100
value: 69.11500000000001
- type: recall_at_1000
value: 89.441
- type: recall_at_20
value: 52.193
- type: recall_at_3
value: 32.61
- type: recall_at_5
value: 37.018
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 69.21000000000001
- type: map_at_1
value: 38.785
- type: map_at_10
value: 60.838
- type: map_at_100
value: 61.696
- type: map_at_1000
value: 61.758
- type: map_at_20
value: 61.328
- type: map_at_3
value: 57.521
- type: map_at_5
value: 59.618
- type: mrr_at_1
value: 77.5692099932478
- type: mrr_at_10
value: 83.49855310118625
- type: mrr_at_100
value: 83.66645235605773
- type: mrr_at_1000
value: 83.67374499665621
- type: mrr_at_20
value: 83.6002145349913
- type: mrr_at_3
value: 82.49155975692081
- type: mrr_at_5
value: 83.17825793382818
- type: nauc_map_at_1000_diff1
value: 18.956900221394175
- type: nauc_map_at_1000_max
value: 16.964305368821428
- type: nauc_map_at_1000_std
value: 15.655849134524265
- type: nauc_map_at_100_diff1
value: 18.929114512218085
- type: nauc_map_at_100_max
value: 16.94710742970695
- type: nauc_map_at_100_std
value: 15.674964988072324
- type: nauc_map_at_10_diff1
value: 18.782047255838393
- type: nauc_map_at_10_max
value: 16.797329471843735
- type: nauc_map_at_10_std
value: 15.135148500192287
- type: nauc_map_at_1_diff1
value: 67.2370046355765
- type: nauc_map_at_1_max
value: 45.20986007464327
- type: nauc_map_at_1_std
value: 5.491336801263256
- type: nauc_map_at_20_diff1
value: 18.86964339327235
- type: nauc_map_at_20_max
value: 16.832263221676456
- type: nauc_map_at_20_std
value: 15.484857381790839
- type: nauc_map_at_3_diff1
value: 19.42608968562529
- type: nauc_map_at_3_max
value: 16.528325865015052
- type: nauc_map_at_3_std
value: 12.534151821941256
- type: nauc_map_at_5_diff1
value: 18.832060314354084
- type: nauc_map_at_5_max
value: 16.674177380965602
- type: nauc_map_at_5_std
value: 14.243688579695046
- type: nauc_mrr_at_1000_diff1
value: 66.1869057892041
- type: nauc_mrr_at_1000_max
value: 47.004199753631724
- type: nauc_mrr_at_1000_std
value: 8.368361737748069
- type: nauc_mrr_at_100_diff1
value: 66.18828485330391
- type: nauc_mrr_at_100_max
value: 47.01194361501428
- type: nauc_mrr_at_100_std
value: 8.382829386160866
- type: nauc_mrr_at_10_diff1
value: 66.16092867475533
- type: nauc_mrr_at_10_max
value: 47.07790111504346
- type: nauc_mrr_at_10_std
value: 8.464495756292754
- type: nauc_mrr_at_1_diff1
value: 67.2370046355765
- type: nauc_mrr_at_1_max
value: 45.20986007464327
- type: nauc_mrr_at_1_std
value: 5.491336801263256
- type: nauc_mrr_at_20_diff1
value: 66.1793742427507
- type: nauc_mrr_at_20_max
value: 47.02809343642448
- type: nauc_mrr_at_20_std
value: 8.386363287213086
- type: nauc_mrr_at_3_diff1
value: 66.16684538242693
- type: nauc_mrr_at_3_max
value: 47.142557308711616
- type: nauc_mrr_at_3_std
value: 8.141804487345757
- type: nauc_mrr_at_5_diff1
value: 65.96429788916728
- type: nauc_mrr_at_5_max
value: 46.93768012767146
- type: nauc_mrr_at_5_std
value: 8.208692767558844
- type: nauc_ndcg_at_1000_diff1
value: 24.84858425094176
- type: nauc_ndcg_at_1000_max
value: 21.82162743473047
- type: nauc_ndcg_at_1000_std
value: 18.342909152128044
- type: nauc_ndcg_at_100_diff1
value: 24.085422928773593
- type: nauc_ndcg_at_100_max
value: 21.3499532544156
- type: nauc_ndcg_at_100_std
value: 18.844827203764993
- type: nauc_ndcg_at_10_diff1
value: 23.623559226099033
- type: nauc_ndcg_at_10_max
value: 20.690583026235615
- type: nauc_ndcg_at_10_std
value: 16.715017586341173
- type: nauc_ndcg_at_1_diff1
value: 67.2370046355765
- type: nauc_ndcg_at_1_max
value: 45.20986007464327
- type: nauc_ndcg_at_1_std
value: 5.491336801263256
- type: nauc_ndcg_at_20_diff1
value: 23.713499963173195
- type: nauc_ndcg_at_20_max
value: 20.668447040323397
- type: nauc_ndcg_at_20_std
value: 17.629112144669932
- type: nauc_ndcg_at_3_diff1
value: 25.27768681334773
- type: nauc_ndcg_at_3_max
value: 20.828823134048164
- type: nauc_ndcg_at_3_std
value: 12.70796767520854
- type: nauc_ndcg_at_5_diff1
value: 23.89598796213276
- type: nauc_ndcg_at_5_max
value: 20.58599241532738
- type: nauc_ndcg_at_5_std
value: 14.95835803756551
- type: nauc_precision_at_1000_diff1
value: -3.4292836680950116
- type: nauc_precision_at_1000_max
value: 11.313613371375729
- type: nauc_precision_at_1000_std
value: 45.62746731220966
- type: nauc_precision_at_100_diff1
value: 1.506841269626321
- type: nauc_precision_at_100_max
value: 11.036489056981475
- type: nauc_precision_at_100_std
value: 37.47159150833276
- type: nauc_precision_at_10_diff1
value: 6.95635710197309
- type: nauc_precision_at_10_max
value: 11.562888984720791
- type: nauc_precision_at_10_std
value: 23.511130408518152
- type: nauc_precision_at_1_diff1
value: 67.2370046355765
- type: nauc_precision_at_1_max
value: 45.20986007464327
- type: nauc_precision_at_1_std
value: 5.491336801263256
- type: nauc_precision_at_20_diff1
value: 5.505741459315741
- type: nauc_precision_at_20_max
value: 10.507089080488106
- type: nauc_precision_at_20_std
value: 27.23927147632133
- type: nauc_precision_at_3_diff1
value: 13.412154109447352
- type: nauc_precision_at_3_max
value: 13.930584715797645
- type: nauc_precision_at_3_std
value: 15.064854663569433
- type: nauc_precision_at_5_diff1
value: 9.659656667775913
- type: nauc_precision_at_5_max
value: 12.713155451309499
- type: nauc_precision_at_5_std
value: 19.270448197611838
- type: nauc_recall_at_1000_diff1
value: -3.4292836680946994
- type: nauc_recall_at_1000_max
value: 11.313613371375997
- type: nauc_recall_at_1000_std
value: 45.62746731220985
- type: nauc_recall_at_100_diff1
value: 1.5068412696263371
- type: nauc_recall_at_100_max
value: 11.036489056981324
- type: nauc_recall_at_100_std
value: 37.471591508332594
- type: nauc_recall_at_10_diff1
value: 6.956357101973093
- type: nauc_recall_at_10_max
value: 11.562888984720738
- type: nauc_recall_at_10_std
value: 23.51113040851825
- type: nauc_recall_at_1_diff1
value: 67.2370046355765
- type: nauc_recall_at_1_max
value: 45.20986007464327
- type: nauc_recall_at_1_std
value: 5.491336801263256
- type: nauc_recall_at_20_diff1
value: 5.505741459315786
- type: nauc_recall_at_20_max
value: 10.507089080488091
- type: nauc_recall_at_20_std
value: 27.2392714763214
- type: nauc_recall_at_3_diff1
value: 13.412154109447364
- type: nauc_recall_at_3_max
value: 13.930584715797615
- type: nauc_recall_at_3_std
value: 15.064854663569433
- type: nauc_recall_at_5_diff1
value: 9.659656667775886
- type: nauc_recall_at_5_max
value: 12.713155451309596
- type: nauc_recall_at_5_std
value: 19.270448197611813
- type: ndcg_at_1
value: 77.569
- type: ndcg_at_10
value: 69.21000000000001
- type: ndcg_at_100
value: 72.21499999999999
- type: ndcg_at_1000
value: 73.418
- type: ndcg_at_20
value: 70.407
- type: ndcg_at_3
value: 64.5
- type: ndcg_at_5
value: 67.183
- type: precision_at_1
value: 77.569
- type: precision_at_10
value: 14.435999999999998
- type: precision_at_100
value: 1.68
- type: precision_at_1000
value: 0.184
- type: precision_at_20
value: 7.602
- type: precision_at_3
value: 41.215
- type: precision_at_5
value: 26.844
- type: recall_at_1
value: 38.785
- type: recall_at_10
value: 72.181
- type: recall_at_100
value: 84.018
- type: recall_at_1000
value: 91.972
- type: recall_at_20
value: 76.023
- type: recall_at_3
value: 61.82299999999999
- type: recall_at_5
value: 67.11
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 91.30639999999998
- type: ap
value: 87.52850875096853
- type: ap_weighted
value: 87.52850875096853
- type: f1
value: 91.29841749475374
- type: f1_weighted
value: 91.29841749475374
- type: main_score
value: 91.30639999999998
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 69.801
- type: map_at_1
value: 2.451
- type: map_at_10
value: 15.669
- type: map_at_100
value: 38.479
- type: map_at_1000
value: 45.692
- type: map_at_20
value: 22.442
- type: map_at_3
value: 6.361999999999999
- type: map_at_5
value: 9.041
- type: mrr_at_1
value: 93.02325581395348
- type: mrr_at_10
value: 95.63953488372093
- type: mrr_at_100
value: 95.63953488372093
- type: mrr_at_1000
value: 95.63953488372093
- type: mrr_at_20
value: 95.63953488372093
- type: mrr_at_3
value: 95.34883720930233
- type: mrr_at_5
value: 95.34883720930233
- type: nauc_map_at_1000_diff1
value: -34.77360607000261
- type: nauc_map_at_1000_max
value: 37.105245787173835
- type: nauc_map_at_1000_std
value: 38.520309199886455
- type: nauc_map_at_100_diff1
value: -21.42480611783042
- type: nauc_map_at_100_max
value: 20.50633133517426
- type: nauc_map_at_100_std
value: 17.726069370578543
- type: nauc_map_at_10_diff1
value: -1.1900473891638557
- type: nauc_map_at_10_max
value: -4.327696460661841
- type: nauc_map_at_10_std
value: -22.9353425409415
- type: nauc_map_at_1_diff1
value: 8.887948006513117
- type: nauc_map_at_1_max
value: -28.392221850180484
- type: nauc_map_at_1_std
value: -36.713671179054636
- type: nauc_map_at_20_diff1
value: -4.063108213547096
- type: nauc_map_at_20_max
value: 2.5748738626205303
- type: nauc_map_at_20_std
value: -13.84602498035036
- type: nauc_map_at_3_diff1
value: 2.242735363640109
- type: nauc_map_at_3_max
value: -22.59145084951087
- type: nauc_map_at_3_std
value: -34.62574649864125
- type: nauc_map_at_5_diff1
value: 0.6216057852370439
- type: nauc_map_at_5_max
value: -13.727700828370892
- type: nauc_map_at_5_std
value: -29.642718215652135
- type: nauc_mrr_at_1000_diff1
value: -26.460535747732973
- type: nauc_mrr_at_1000_max
value: 66.59497826279839
- type: nauc_mrr_at_1000_std
value: 43.162508643477295
- type: nauc_mrr_at_100_diff1
value: -26.460535747732973
- type: nauc_mrr_at_100_max
value: 66.59497826279839
- type: nauc_mrr_at_100_std
value: 43.162508643477295
- type: nauc_mrr_at_10_diff1
value: -26.460535747732973
- type: nauc_mrr_at_10_max
value: 66.59497826279839
- type: nauc_mrr_at_10_std
value: 43.162508643477295
- type: nauc_mrr_at_1_diff1
value: -4.79052153792628
- type: nauc_mrr_at_1_max
value: 74.2862212758406
- type: nauc_mrr_at_1_std
value: 28.953135804346815
- type: nauc_mrr_at_20_diff1
value: -26.460535747732973
- type: nauc_mrr_at_20_max
value: 66.59497826279839
- type: nauc_mrr_at_20_std
value: 43.162508643477295
- type: nauc_mrr_at_3_diff1
value: -31.878039300184707
- type: nauc_mrr_at_3_max
value: 64.67216750953789
- type: nauc_mrr_at_3_std
value: 46.71485185326015
- type: nauc_mrr_at_5_diff1
value: -31.878039300184707
- type: nauc_mrr_at_5_max
value: 64.67216750953789
- type: nauc_mrr_at_5_std
value: 46.71485185326015
- type: nauc_ndcg_at_1000_diff1
value: -44.15085027848325
- type: nauc_ndcg_at_1000_max
value: 56.25521046667954
- type: nauc_ndcg_at_1000_std
value: 46.36970379223632
- type: nauc_ndcg_at_100_diff1
value: -39.50083793730437
- type: nauc_ndcg_at_100_max
value: 41.82457895330969
- type: nauc_ndcg_at_100_std
value: 43.75463835115521
- type: nauc_ndcg_at_10_diff1
value: -20.601212170311666
- type: nauc_ndcg_at_10_max
value: 39.636237142037565
- type: nauc_ndcg_at_10_std
value: 19.452478646271373
- type: nauc_ndcg_at_1_diff1
value: 22.80050548927079
- type: nauc_ndcg_at_1_max
value: 31.358862371469264
- type: nauc_ndcg_at_1_std
value: -7.142182820398638
- type: nauc_ndcg_at_20_diff1
value: -34.11753790748588
- type: nauc_ndcg_at_20_max
value: 32.1122313276435
- type: nauc_ndcg_at_20_std
value: 28.105554366760018
- type: nauc_ndcg_at_3_diff1
value: 2.6372016977509594
- type: nauc_ndcg_at_3_max
value: 35.156005404237845
- type: nauc_ndcg_at_3_std
value: 6.261468803699801
- type: nauc_ndcg_at_5_diff1
value: -9.474268053778937
- type: nauc_ndcg_at_5_max
value: 33.21925931881887
- type: nauc_ndcg_at_5_std
value: 7.458434415980239
- type: nauc_precision_at_1000_diff1
value: -40.07799532530941
- type: nauc_precision_at_1000_max
value: 31.156456417174205
- type: nauc_precision_at_1000_std
value: 48.27480631876068
- type: nauc_precision_at_100_diff1
value: -42.02250569966725
- type: nauc_precision_at_100_max
value: 33.58973907303474
- type: nauc_precision_at_100_std
value: 55.06366799570662
- type: nauc_precision_at_10_diff1
value: -49.71439650639399
- type: nauc_precision_at_10_max
value: 58.113349127681545
- type: nauc_precision_at_10_std
value: 55.03130750422891
- type: nauc_precision_at_1_diff1
value: -4.79052153792628
- type: nauc_precision_at_1_max
value: 74.2862212758406
- type: nauc_precision_at_1_std
value: 28.953135804346815
- type: nauc_precision_at_20_diff1
value: -44.7658587995923
- type: nauc_precision_at_20_max
value: 37.95609687942612
- type: nauc_precision_at_20_std
value: 50.32119458805291
- type: nauc_precision_at_3_diff1
value: -46.00414842286393
- type: nauc_precision_at_3_max
value: 61.74015379253264
- type: nauc_precision_at_3_std
value: 56.4136278482117
- type: nauc_precision_at_5_diff1
value: -51.7601573366637
- type: nauc_precision_at_5_max
value: 55.953703102236965
- type: nauc_precision_at_5_std
value: 51.41803894746122
- type: nauc_recall_at_1000_diff1
value: -47.522392809524945
- type: nauc_recall_at_1000_max
value: 53.589786470310806
- type: nauc_recall_at_1000_std
value: 46.470512981921274
- type: nauc_recall_at_100_diff1
value: -15.907347162724578
- type: nauc_recall_at_100_max
value: 21.680423810119056
- type: nauc_recall_at_100_std
value: 15.973645761855645
- type: nauc_recall_at_10_diff1
value: 0.10781311427713663
- type: nauc_recall_at_10_max
value: -9.277386241567552
- type: nauc_recall_at_10_std
value: -24.949282177180258
- type: nauc_recall_at_1_diff1
value: 8.887948006513117
- type: nauc_recall_at_1_max
value: -28.392221850180484
- type: nauc_recall_at_1_std
value: -36.713671179054636
- type: nauc_recall_at_20_diff1
value: -2.930230134017464
- type: nauc_recall_at_20_max
value: -1.739131611687823
- type: nauc_recall_at_20_std
value: -16.2461103824525
- type: nauc_recall_at_3_diff1
value: 1.7811229328074583
- type: nauc_recall_at_3_max
value: -24.815459645928094
- type: nauc_recall_at_3_std
value: -34.963317879895826
- type: nauc_recall_at_5_diff1
value: -0.07179290440344144
- type: nauc_recall_at_5_max
value: -17.45693684826598
- type: nauc_recall_at_5_std
value: -31.10276136562734
- type: ndcg_at_1
value: 74.419
- type: ndcg_at_10
value: 69.801
- type: ndcg_at_100
value: 62.514
- type: ndcg_at_1000
value: 69.173
- type: ndcg_at_20
value: 66.247
- type: ndcg_at_3
value: 72.752
- type: ndcg_at_5
value: 70.795
- type: precision_at_1
value: 93.023
- type: precision_at_10
value: 79.767
- type: precision_at_100
value: 37.023
- type: precision_at_1000
value: 6.63
- type: precision_at_20
value: 67.907
- type: precision_at_3
value: 86.822
- type: precision_at_5
value: 83.256
- type: recall_at_1
value: 2.451
- type: recall_at_10
value: 17.041
- type: recall_at_100
value: 50.346999999999994
- type: recall_at_1000
value: 74.842
- type: recall_at_20
value: 24.94
- type: recall_at_3
value: 6.548
- type: recall_at_5
value: 9.497
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.49202006383948
- type: f1
value: 92.33980048261546
- type: f1_weighted
value: 92.44985105058221
- type: main_score
value: 92.49202006383948
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 63.23301413588691
- type: f1
value: 44.554720819218964
- type: f1_weighted
value: 65.47524300339032
- type: main_score
value: 63.23301413588691
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 70.43375924680566
- type: f1
value: 68.02391267335155
- type: f1_weighted
value: 69.25139312466567
- type: main_score
value: 70.43375924680566
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 75.12104909213181
- type: f1
value: 74.58688682730612
- type: f1_weighted
value: 74.76872548200055
- type: main_score
value: 75.12104909213181
- task:
type: Retrieval
dataset:
name: MTEB MedicalQARetrieval (default)
type: mteb/medical_qa
config: default
split: test
revision: ae763399273d8b20506b80cf6f6f9a31a6a2b238
metrics:
- type: main_score
value: 70.316
- type: map_at_1
value: 55.762
- type: map_at_10
value: 65.617
- type: map_at_100
value: 66.07499999999999
- type: map_at_1000
value: 66.098
- type: map_at_20
value: 65.926
- type: map_at_3
value: 63.46000000000001
- type: map_at_5
value: 64.81
- type: mrr_at_1
value: 55.76171875
- type: mrr_at_10
value: 65.61734638516852
- type: mrr_at_100
value: 66.07564323944077
- type: mrr_at_1000
value: 66.09885409027784
- type: mrr_at_20
value: 65.92394787011318
- type: mrr_at_3
value: 63.46028645833318
- type: mrr_at_5
value: 64.81038411458326
- type: nauc_map_at_1000_diff1
value: 55.117921948917704
- type: nauc_map_at_1000_max
value: 40.329646871994434
- type: nauc_map_at_1000_std
value: -2.7447494458084516
- type: nauc_map_at_100_diff1
value: 55.08707565824308
- type: nauc_map_at_100_max
value: 40.35427405860057
- type: nauc_map_at_100_std
value: -2.7521388878942994
- type: nauc_map_at_10_diff1
value: 54.987359148416616
- type: nauc_map_at_10_max
value: 40.2168179457375
- type: nauc_map_at_10_std
value: -2.978624864409744
- type: nauc_map_at_1_diff1
value: 61.239951679175974
- type: nauc_map_at_1_max
value: 39.49150430490776
- type: nauc_map_at_1_std
value: -1.8142615816830427
- type: nauc_map_at_20_diff1
value: 54.980346172896766
- type: nauc_map_at_20_max
value: 40.388274220840984
- type: nauc_map_at_20_std
value: -2.7917130558799648
- type: nauc_map_at_3_diff1
value: 55.540250455236176
- type: nauc_map_at_3_max
value: 39.01408945261429
- type: nauc_map_at_3_std
value: -2.804709321224132
- type: nauc_map_at_5_diff1
value: 55.17728028457556
- type: nauc_map_at_5_max
value: 39.67456707836799
- type: nauc_map_at_5_std
value: -2.9985665760830456
- type: nauc_mrr_at_1000_diff1
value: 55.119408854006814
- type: nauc_mrr_at_1000_max
value: 40.386764886119956
- type: nauc_mrr_at_1000_std
value: -2.5256541513637263
- type: nauc_mrr_at_100_diff1
value: 55.08855646650919
- type: nauc_mrr_at_100_max
value: 40.41133635338564
- type: nauc_mrr_at_100_std
value: -2.533239161326411
- type: nauc_mrr_at_10_diff1
value: 54.988649543503385
- type: nauc_mrr_at_10_max
value: 40.27285482782524
- type: nauc_mrr_at_10_std
value: -2.762984128910569
- type: nauc_mrr_at_1_diff1
value: 61.239951679175974
- type: nauc_mrr_at_1_max
value: 39.586560519712386
- type: nauc_mrr_at_1_std
value: -1.4746589950499525
- type: nauc_mrr_at_20_diff1
value: 54.985183128082305
- type: nauc_mrr_at_20_max
value: 40.448217601766494
- type: nauc_mrr_at_20_std
value: -2.575271717637722
- type: nauc_mrr_at_3_diff1
value: 55.540250455236176
- type: nauc_mrr_at_3_max
value: 39.051677641594125
- type: nauc_mrr_at_3_std
value: -2.5883569220502896
- type: nauc_mrr_at_5_diff1
value: 55.17728028457556
- type: nauc_mrr_at_5_max
value: 39.71664203575019
- type: nauc_mrr_at_5_std
value: -2.770350063430267
- type: nauc_ndcg_at_1000_diff1
value: 53.6068186160231
- type: nauc_ndcg_at_1000_max
value: 41.16895263409432
- type: nauc_ndcg_at_1000_std
value: -2.668077069688034
- type: nauc_ndcg_at_100_diff1
value: 52.72931924038622
- type: nauc_ndcg_at_100_max
value: 41.92759552302126
- type: nauc_ndcg_at_100_std
value: -2.5890899194293304
- type: nauc_ndcg_at_10_diff1
value: 52.007628100401234
- type: nauc_ndcg_at_10_max
value: 41.737827206310705
- type: nauc_ndcg_at_10_std
value: -3.542176180209694
- type: nauc_ndcg_at_1_diff1
value: 61.239951679175974
- type: nauc_ndcg_at_1_max
value: 39.49150430490776
- type: nauc_ndcg_at_1_std
value: -1.8142615816830427
- type: nauc_ndcg_at_20_diff1
value: 51.847691200116586
- type: nauc_ndcg_at_20_max
value: 42.42280333674705
- type: nauc_ndcg_at_20_std
value: -2.850352004423232
- type: nauc_ndcg_at_3_diff1
value: 53.51791263993053
- type: nauc_ndcg_at_3_max
value: 38.862920843577655
- type: nauc_ndcg_at_3_std
value: -3.187427589360101
- type: nauc_ndcg_at_5_diff1
value: 52.645322320026466
- type: nauc_ndcg_at_5_max
value: 40.18836539232817
- type: nauc_ndcg_at_5_std
value: -3.615361739188517
- type: nauc_precision_at_1000_diff1
value: 41.51993887005676
- type: nauc_precision_at_1000_max
value: 31.92569580445928
- type: nauc_precision_at_1000_std
value: 13.578742907797217
- type: nauc_precision_at_100_diff1
value: 21.604666213166603
- type: nauc_precision_at_100_max
value: 67.69955190694637
- type: nauc_precision_at_100_std
value: 4.356106302996764
- type: nauc_precision_at_10_diff1
value: 35.06077106721305
- type: nauc_precision_at_10_max
value: 51.73865588486901
- type: nauc_precision_at_10_std
value: -6.637691880259535
- type: nauc_precision_at_1_diff1
value: 61.239951679175974
- type: nauc_precision_at_1_max
value: 39.49150430490776
- type: nauc_precision_at_1_std
value: -1.8142615816830427
- type: nauc_precision_at_20_diff1
value: 27.691560548393458
- type: nauc_precision_at_20_max
value: 60.735172992308385
- type: nauc_precision_at_20_std
value: -2.087850725674345
- type: nauc_precision_at_3_diff1
value: 46.443339144235736
- type: nauc_precision_at_3_max
value: 38.34121270977754
- type: nauc_precision_at_3_std
value: -4.53847034769947
- type: nauc_precision_at_5_diff1
value: 41.99220857335789
- type: nauc_precision_at_5_max
value: 42.64971733556552
- type: nauc_precision_at_5_std
value: -6.288726238529177
- type: nauc_recall_at_1000_diff1
value: 41.51993887005676
- type: nauc_recall_at_1000_max
value: 31.925695804460947
- type: nauc_recall_at_1000_std
value: 13.578742907798885
- type: nauc_recall_at_100_diff1
value: 21.604666213166638
- type: nauc_recall_at_100_max
value: 67.69955190694643
- type: nauc_recall_at_100_std
value: 4.356106302997579
- type: nauc_recall_at_10_diff1
value: 35.060771067213025
- type: nauc_recall_at_10_max
value: 51.738655884869054
- type: nauc_recall_at_10_std
value: -6.637691880259386
- type: nauc_recall_at_1_diff1
value: 61.239951679175974
- type: nauc_recall_at_1_max
value: 39.49150430490776
- type: nauc_recall_at_1_std
value: -1.8142615816830427
- type: nauc_recall_at_20_diff1
value: 27.691560548393547
- type: nauc_recall_at_20_max
value: 60.73517299230855
- type: nauc_recall_at_20_std
value: -2.0878507256741576
- type: nauc_recall_at_3_diff1
value: 46.44333914423575
- type: nauc_recall_at_3_max
value: 38.34121270977744
- type: nauc_recall_at_3_std
value: -4.538470347699562
- type: nauc_recall_at_5_diff1
value: 41.992208573358035
- type: nauc_recall_at_5_max
value: 42.64971733556567
- type: nauc_recall_at_5_std
value: -6.2887262385288984
- type: ndcg_at_1
value: 55.762
- type: ndcg_at_10
value: 70.316
- type: ndcg_at_100
value: 72.499
- type: ndcg_at_1000
value: 73.08
- type: ndcg_at_20
value: 71.416
- type: ndcg_at_3
value: 65.926
- type: ndcg_at_5
value: 68.35900000000001
- type: precision_at_1
value: 55.762
- type: precision_at_10
value: 8.501
- type: precision_at_100
value: 0.9520000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.465
- type: precision_at_3
value: 24.349
- type: precision_at_5
value: 15.791
- type: recall_at_1
value: 55.762
- type: recall_at_10
value: 85.00999999999999
- type: recall_at_100
value: 95.166
- type: recall_at_1000
value: 99.658
- type: recall_at_20
value: 89.307
- type: recall_at_3
value: 73.047
- type: recall_at_5
value: 78.955
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: main_score
value: 32.88590429483386
- type: v_measure
value: 32.88590429483386
- type: v_measure_std
value: 1.2486157627386651
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: main_score
value: 30.63686758451441
- type: v_measure
value: 30.63686758451441
- type: v_measure_std
value: 1.5635535104381142
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: main_score
value: 31.716756843517015
- type: map
value: 31.716756843517015
- type: mrr
value: 32.866394172957655
- type: nAUC_map_diff1
value: 15.654229044661353
- type: nAUC_map_max
value: -22.25897993906556
- type: nAUC_map_std
value: 0.367638815729836
- type: nAUC_mrr_diff1
value: 14.466390859042203
- type: nAUC_mrr_max
value: -16.66565819268613
- type: nAUC_mrr_std
value: 1.389862783951572
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 34.777
- type: map_at_1
value: 6.0249999999999995
- type: map_at_10
value: 13.017999999999999
- type: map_at_100
value: 16.358
- type: map_at_1000
value: 17.801000000000002
- type: map_at_20
value: 14.563
- type: map_at_3
value: 9.611
- type: map_at_5
value: 11.136
- type: mrr_at_1
value: 44.58204334365325
- type: mrr_at_10
value: 53.830655069045164
- type: mrr_at_100
value: 54.46820987161318
- type: mrr_at_1000
value: 54.511938990208975
- type: mrr_at_20
value: 54.285959410205784
- type: mrr_at_3
value: 52.167182662538714
- type: mrr_at_5
value: 53.1733746130031
- type: nauc_map_at_1000_diff1
value: 25.967815322021565
- type: nauc_map_at_1000_max
value: 28.327078445483668
- type: nauc_map_at_1000_std
value: 19.120652749371374
- type: nauc_map_at_100_diff1
value: 26.951232790374526
- type: nauc_map_at_100_max
value: 26.902092532931434
- type: nauc_map_at_100_std
value: 15.699072220565489
- type: nauc_map_at_10_diff1
value: 31.257086882033242
- type: nauc_map_at_10_max
value: 20.52720655255051
- type: nauc_map_at_10_std
value: 4.404750581767724
- type: nauc_map_at_1_diff1
value: 47.62591630591148
- type: nauc_map_at_1_max
value: 9.558540429651298
- type: nauc_map_at_1_std
value: -6.045890488872336
- type: nauc_map_at_20_diff1
value: 28.474824272816917
- type: nauc_map_at_20_max
value: 23.333197224732306
- type: nauc_map_at_20_std
value: 9.263916337302483
- type: nauc_map_at_3_diff1
value: 38.471834690020316
- type: nauc_map_at_3_max
value: 13.696518596133291
- type: nauc_map_at_3_std
value: -3.5625552745508533
- type: nauc_map_at_5_diff1
value: 34.52907976674023
- type: nauc_map_at_5_max
value: 16.13732934020574
- type: nauc_map_at_5_std
value: -0.7543340982584198
- type: nauc_mrr_at_1000_diff1
value: 31.33476913665314
- type: nauc_mrr_at_1000_max
value: 46.958109189628935
- type: nauc_mrr_at_1000_std
value: 28.044556451367423
- type: nauc_mrr_at_100_diff1
value: 31.339069159264355
- type: nauc_mrr_at_100_max
value: 46.98656300883579
- type: nauc_mrr_at_100_std
value: 28.0900577359196
- type: nauc_mrr_at_10_diff1
value: 31.342505233934997
- type: nauc_mrr_at_10_max
value: 46.97823869966797
- type: nauc_mrr_at_10_std
value: 27.4601265013717
- type: nauc_mrr_at_1_diff1
value: 33.4378541215048
- type: nauc_mrr_at_1_max
value: 41.15562154589828
- type: nauc_mrr_at_1_std
value: 19.90780249506625
- type: nauc_mrr_at_20_diff1
value: 31.360572539137888
- type: nauc_mrr_at_20_max
value: 47.00390756684394
- type: nauc_mrr_at_20_std
value: 28.13990587820234
- type: nauc_mrr_at_3_diff1
value: 32.093115382725216
- type: nauc_mrr_at_3_max
value: 46.30933548142642
- type: nauc_mrr_at_3_std
value: 26.241763806261552
- type: nauc_mrr_at_5_diff1
value: 31.551702480820225
- type: nauc_mrr_at_5_max
value: 46.194614393756375
- type: nauc_mrr_at_5_std
value: 27.324586188062337
- type: nauc_ndcg_at_1000_diff1
value: 25.311180709157977
- type: nauc_ndcg_at_1000_max
value: 44.92771338176505
- type: nauc_ndcg_at_1000_std
value: 37.27892149005223
- type: nauc_ndcg_at_100_diff1
value: 25.662285786793
- type: nauc_ndcg_at_100_max
value: 41.08725464946671
- type: nauc_ndcg_at_100_std
value: 31.647308668978567
- type: nauc_ndcg_at_10_diff1
value: 22.814244065959365
- type: nauc_ndcg_at_10_max
value: 38.94186160526081
- type: nauc_ndcg_at_10_std
value: 28.739546916606184
- type: nauc_ndcg_at_1_diff1
value: 33.92055290582491
- type: nauc_ndcg_at_1_max
value: 39.7746239892313
- type: nauc_ndcg_at_1_std
value: 21.403337562252666
- type: nauc_ndcg_at_20_diff1
value: 22.147194739989953
- type: nauc_ndcg_at_20_max
value: 38.331435685309486
- type: nauc_ndcg_at_20_std
value: 30.001574369100286
- type: nauc_ndcg_at_3_diff1
value: 26.551315174426477
- type: nauc_ndcg_at_3_max
value: 40.95235936186754
- type: nauc_ndcg_at_3_std
value: 25.814502311046923
- type: nauc_ndcg_at_5_diff1
value: 23.30015530643268
- type: nauc_ndcg_at_5_max
value: 39.112038419598846
- type: nauc_ndcg_at_5_std
value: 27.014662420712636
- type: nauc_precision_at_1000_diff1
value: -9.31122599724474
- type: nauc_precision_at_1000_max
value: 15.828254499573301
- type: nauc_precision_at_1000_std
value: 31.90284644408184
- type: nauc_precision_at_100_diff1
value: -5.607783322273428
- type: nauc_precision_at_100_max
value: 28.044293136935156
- type: nauc_precision_at_100_std
value: 44.33306673952984
- type: nauc_precision_at_10_diff1
value: 3.672329984381369
- type: nauc_precision_at_10_max
value: 40.22743872425158
- type: nauc_precision_at_10_std
value: 38.03616890730788
- type: nauc_precision_at_1_diff1
value: 33.4378541215048
- type: nauc_precision_at_1_max
value: 41.15562154589828
- type: nauc_precision_at_1_std
value: 19.90780249506625
- type: nauc_precision_at_20_diff1
value: -2.1150512386488014
- type: nauc_precision_at_20_max
value: 36.304499614907
- type: nauc_precision_at_20_std
value: 42.6230212264936
- type: nauc_precision_at_3_diff1
value: 15.845993825652796
- type: nauc_precision_at_3_max
value: 42.887373246287616
- type: nauc_precision_at_3_std
value: 29.489599796549705
- type: nauc_precision_at_5_diff1
value: 6.777054989797422
- type: nauc_precision_at_5_max
value: 39.54397793435193
- type: nauc_precision_at_5_std
value: 32.47818021039132
- type: nauc_recall_at_1000_diff1
value: 11.315947856942906
- type: nauc_recall_at_1000_max
value: 21.01998620182054
- type: nauc_recall_at_1000_std
value: 26.8227846588364
- type: nauc_recall_at_100_diff1
value: 18.899757056503482
- type: nauc_recall_at_100_max
value: 28.57869305089085
- type: nauc_recall_at_100_std
value: 25.90208233770403
- type: nauc_recall_at_10_diff1
value: 26.671963776958673
- type: nauc_recall_at_10_max
value: 20.085669076192627
- type: nauc_recall_at_10_std
value: 4.64306341080659
- type: nauc_recall_at_1_diff1
value: 47.62591630591148
- type: nauc_recall_at_1_max
value: 9.558540429651298
- type: nauc_recall_at_1_std
value: -6.045890488872336
- type: nauc_recall_at_20_diff1
value: 21.352657194561484
- type: nauc_recall_at_20_max
value: 22.287907898181967
- type: nauc_recall_at_20_std
value: 11.591359883790235
- type: nauc_recall_at_3_diff1
value: 37.883426141495484
- type: nauc_recall_at_3_max
value: 13.541910021778506
- type: nauc_recall_at_3_std
value: -3.5291589555216265
- type: nauc_recall_at_5_diff1
value: 31.497983991389315
- type: nauc_recall_at_5_max
value: 15.615278638126394
- type: nauc_recall_at_5_std
value: 0.3332620589500228
- type: ndcg_at_1
value: 43.189
- type: ndcg_at_10
value: 34.777
- type: ndcg_at_100
value: 31.298
- type: ndcg_at_1000
value: 40.472
- type: ndcg_at_20
value: 32.651
- type: ndcg_at_3
value: 40.176
- type: ndcg_at_5
value: 37.708000000000006
- type: precision_at_1
value: 44.582
- type: precision_at_10
value: 25.944
- type: precision_at_100
value: 7.8759999999999994
- type: precision_at_1000
value: 2.0789999999999997
- type: precision_at_20
value: 19.365
- type: precision_at_3
value: 37.771
- type: precision_at_5
value: 32.693
- type: recall_at_1
value: 6.0249999999999995
- type: recall_at_10
value: 16.744999999999997
- type: recall_at_100
value: 30.962
- type: recall_at_1000
value: 64.862
- type: recall_at_20
value: 21.083
- type: recall_at_3
value: 10.437000000000001
- type: recall_at_5
value: 12.919
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 45.429
- type: map_at_1
value: 24.348
- type: map_at_10
value: 37.979
- type: map_at_100
value: 39.152
- type: map_at_1000
value: 39.196
- type: map_at_20
value: 38.698
- type: map_at_3
value: 33.576
- type: map_at_5
value: 36.313
- type: mrr_at_1
value: 27.896871378910777
- type: mrr_at_10
value: 40.57155732126759
- type: mrr_at_100
value: 41.505776028088356
- type: mrr_at_1000
value: 41.536949900301714
- type: mrr_at_20
value: 41.16254355270229
- type: mrr_at_3
value: 36.73232908458862
- type: mrr_at_5
value: 39.15990730011593
- type: nauc_map_at_1000_diff1
value: 32.46093433815888
- type: nauc_map_at_1000_max
value: 19.394096123431115
- type: nauc_map_at_1000_std
value: -1.4164718950716537
- type: nauc_map_at_100_diff1
value: 32.45486165462264
- type: nauc_map_at_100_max
value: 19.421234606093616
- type: nauc_map_at_100_std
value: -1.3862594418165226
- type: nauc_map_at_10_diff1
value: 32.46141882554964
- type: nauc_map_at_10_max
value: 19.0209806089726
- type: nauc_map_at_10_std
value: -2.1299605104758528
- type: nauc_map_at_1_diff1
value: 33.91219452872979
- type: nauc_map_at_1_max
value: 15.243617612429572
- type: nauc_map_at_1_std
value: -4.118372460673027
- type: nauc_map_at_20_diff1
value: 32.447816129738385
- type: nauc_map_at_20_max
value: 19.375630035882168
- type: nauc_map_at_20_std
value: -1.6126821757328305
- type: nauc_map_at_3_diff1
value: 32.22584317116853
- type: nauc_map_at_3_max
value: 17.027294527302406
- type: nauc_map_at_3_std
value: -3.900453065296092
- type: nauc_map_at_5_diff1
value: 32.21812147700183
- type: nauc_map_at_5_max
value: 18.22808737031908
- type: nauc_map_at_5_std
value: -3.0121231831131237
- type: nauc_mrr_at_1000_diff1
value: 32.19391640024058
- type: nauc_mrr_at_1000_max
value: 19.94471248318332
- type: nauc_mrr_at_1000_std
value: 0.1932185073583155
- type: nauc_mrr_at_100_diff1
value: 32.18470462640416
- type: nauc_mrr_at_100_max
value: 19.969167766004155
- type: nauc_mrr_at_100_std
value: 0.22192687584423115
- type: nauc_mrr_at_10_diff1
value: 32.09991820831007
- type: nauc_mrr_at_10_max
value: 19.739187658158095
- type: nauc_mrr_at_10_std
value: -0.2495140041359092
- type: nauc_mrr_at_1_diff1
value: 34.08999204509866
- type: nauc_mrr_at_1_max
value: 16.991478512680224
- type: nauc_mrr_at_1_std
value: -1.7552861996068096
- type: nauc_mrr_at_20_diff1
value: 32.15333867489741
- type: nauc_mrr_at_20_max
value: 20.020143250873225
- type: nauc_mrr_at_20_std
value: 0.16862155425262013
- type: nauc_mrr_at_3_diff1
value: 32.21444644438222
- type: nauc_mrr_at_3_max
value: 18.21605348829081
- type: nauc_mrr_at_3_std
value: -1.6925892502509188
- type: nauc_mrr_at_5_diff1
value: 32.0478706880025
- type: nauc_mrr_at_5_max
value: 19.148865007333306
- type: nauc_mrr_at_5_std
value: -0.8802261956751949
- type: nauc_ndcg_at_1000_diff1
value: 31.983119738355253
- type: nauc_ndcg_at_1000_max
value: 21.86567501654561
- type: nauc_ndcg_at_1000_std
value: 2.0860659105814148
- type: nauc_ndcg_at_100_diff1
value: 31.746023533636002
- type: nauc_ndcg_at_100_max
value: 22.638912158683294
- type: nauc_ndcg_at_100_std
value: 3.052454394775229
- type: nauc_ndcg_at_10_diff1
value: 31.778039167442216
- type: nauc_ndcg_at_10_max
value: 21.36084508699706
- type: nauc_ndcg_at_10_std
value: 0.16693686698101765
- type: nauc_ndcg_at_1_diff1
value: 34.19354942363811
- type: nauc_ndcg_at_1_max
value: 16.848591473066378
- type: nauc_ndcg_at_1_std
value: -1.7454800127927512
- type: nauc_ndcg_at_20_diff1
value: 31.77653905325226
- type: nauc_ndcg_at_20_max
value: 22.61652208672153
- type: nauc_ndcg_at_20_std
value: 1.9910242035042571
- type: nauc_ndcg_at_3_diff1
value: 31.611292003047026
- type: nauc_ndcg_at_3_max
value: 17.664647025493103
- type: nauc_ndcg_at_3_std
value: -3.2746665435363482
- type: nauc_ndcg_at_5_diff1
value: 31.44128924743772
- type: nauc_ndcg_at_5_max
value: 19.652825980411436
- type: nauc_ndcg_at_5_std
value: -1.7539721730598645
- type: nauc_precision_at_1000_diff1
value: 2.096637497842706
- type: nauc_precision_at_1000_max
value: 15.200656933478845
- type: nauc_precision_at_1000_std
value: 19.38757583859173
- type: nauc_precision_at_100_diff1
value: 8.3623454469704
- type: nauc_precision_at_100_max
value: 24.522778919091383
- type: nauc_precision_at_100_std
value: 24.992853351936056
- type: nauc_precision_at_10_diff1
value: 22.246801149334065
- type: nauc_precision_at_10_max
value: 25.72788595807844
- type: nauc_precision_at_10_std
value: 10.335074726940642
- type: nauc_precision_at_1_diff1
value: 34.19354942363811
- type: nauc_precision_at_1_max
value: 16.848591473066378
- type: nauc_precision_at_1_std
value: -1.7454800127927512
- type: nauc_precision_at_20_diff1
value: 18.201890751037624
- type: nauc_precision_at_20_max
value: 28.207641511669657
- type: nauc_precision_at_20_std
value: 17.62549448063055
- type: nauc_precision_at_3_diff1
value: 28.262955611874673
- type: nauc_precision_at_3_max
value: 19.7314384498553
- type: nauc_precision_at_3_std
value: -0.15343939521694802
- type: nauc_precision_at_5_diff1
value: 25.546944946047333
- type: nauc_precision_at_5_max
value: 23.209224602801903
- type: nauc_precision_at_5_std
value: 4.096562516124445
- type: nauc_recall_at_1000_diff1
value: 26.810486933487848
- type: nauc_recall_at_1000_max
value: 62.062724387206416
- type: nauc_recall_at_1000_std
value: 72.53854144185586
- type: nauc_recall_at_100_diff1
value: 24.30748295669883
- type: nauc_recall_at_100_max
value: 47.86108978852899
- type: nauc_recall_at_100_std
value: 41.70104695267924
- type: nauc_recall_at_10_diff1
value: 28.014038418716364
- type: nauc_recall_at_10_max
value: 27.454742318511876
- type: nauc_recall_at_10_std
value: 6.129323504299465
- type: nauc_recall_at_1_diff1
value: 33.91219452872979
- type: nauc_recall_at_1_max
value: 15.243617612429572
- type: nauc_recall_at_1_std
value: -4.118372460673027
- type: nauc_recall_at_20_diff1
value: 27.51152553934221
- type: nauc_recall_at_20_max
value: 35.04009531047778
- type: nauc_recall_at_20_std
value: 16.086467991188023
- type: nauc_recall_at_3_diff1
value: 28.528898212602833
- type: nauc_recall_at_3_max
value: 17.667467627988895
- type: nauc_recall_at_3_std
value: -3.354082134238416
- type: nauc_recall_at_5_diff1
value: 27.54111394521828
- type: nauc_recall_at_5_max
value: 21.864229857719994
- type: nauc_recall_at_5_std
value: -0.010012005902089142
- type: ndcg_at_1
value: 27.868
- type: ndcg_at_10
value: 45.429
- type: ndcg_at_100
value: 50.676
- type: ndcg_at_1000
value: 51.727999999999994
- type: ndcg_at_20
value: 47.818
- type: ndcg_at_3
value: 37.079
- type: ndcg_at_5
value: 41.711
- type: precision_at_1
value: 27.868
- type: precision_at_10
value: 7.853000000000001
- type: precision_at_100
value: 1.079
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_20
value: 4.486
- type: precision_at_3
value: 17.207
- type: precision_at_5
value: 12.943
- type: recall_at_1
value: 24.348
- type: recall_at_10
value: 65.667
- type: recall_at_100
value: 89.047
- type: recall_at_1000
value: 96.937
- type: recall_at_20
value: 74.611
- type: recall_at_3
value: 44.124
- type: recall_at_5
value: 54.847
- task:
type: Retrieval
dataset:
name: MTEB PublicHealthQA (english)
type: xhluca/publichealth-qa
config: english
split: test
revision: main
metrics:
- type: main_score
value: 81.797
- type: map_at_1
value: 67.44200000000001
- type: map_at_10
value: 77.40899999999999
- type: map_at_100
value: 77.58800000000001
- type: map_at_1000
value: 77.59700000000001
- type: map_at_20
value: 77.563
- type: map_at_3
value: 75.775
- type: map_at_5
value: 76.676
- type: mrr_at_1
value: 67.44186046511628
- type: mrr_at_10
value: 77.40933001107419
- type: mrr_at_100
value: 77.58758776090153
- type: mrr_at_1000
value: 77.59701476623081
- type: mrr_at_20
value: 77.56332082460221
- type: mrr_at_3
value: 75.7751937984496
- type: mrr_at_5
value: 76.67635658914729
- type: nauc_map_at_1000_diff1
value: 68.03862212120946
- type: nauc_map_at_1000_max
value: 45.571493373890284
- type: nauc_map_at_1000_std
value: -9.513610168308675
- type: nauc_map_at_100_diff1
value: 68.04692169460982
- type: nauc_map_at_100_max
value: 45.597744584746174
- type: nauc_map_at_100_std
value: -9.46079106577722
- type: nauc_map_at_10_diff1
value: 68.12206434240572
- type: nauc_map_at_10_max
value: 45.87818916623179
- type: nauc_map_at_10_std
value: -9.07755836461079
- type: nauc_map_at_1_diff1
value: 67.12290625195008
- type: nauc_map_at_1_max
value: 41.961375907271766
- type: nauc_map_at_1_std
value: -14.305894005739376
- type: nauc_map_at_20_diff1
value: 68.03994283236055
- type: nauc_map_at_20_max
value: 45.55410799331842
- type: nauc_map_at_20_std
value: -9.446523820020174
- type: nauc_map_at_3_diff1
value: 68.37489368079838
- type: nauc_map_at_3_max
value: 46.36986654238148
- type: nauc_map_at_3_std
value: -10.310951850957865
- type: nauc_map_at_5_diff1
value: 67.59677966909759
- type: nauc_map_at_5_max
value: 44.92160517102712
- type: nauc_map_at_5_std
value: -9.80872574347567
- type: nauc_mrr_at_1000_diff1
value: 68.03866688403615
- type: nauc_mrr_at_1000_max
value: 45.571464182248114
- type: nauc_mrr_at_1000_std
value: -9.513668903745707
- type: nauc_mrr_at_100_diff1
value: 68.04692169460982
- type: nauc_mrr_at_100_max
value: 45.597744584746174
- type: nauc_mrr_at_100_std
value: -9.46079106577722
- type: nauc_mrr_at_10_diff1
value: 68.12206434240572
- type: nauc_mrr_at_10_max
value: 45.87818916623179
- type: nauc_mrr_at_10_std
value: -9.07755836461079
- type: nauc_mrr_at_1_diff1
value: 67.12290625195008
- type: nauc_mrr_at_1_max
value: 41.961375907271766
- type: nauc_mrr_at_1_std
value: -14.305894005739376
- type: nauc_mrr_at_20_diff1
value: 68.03994283236055
- type: nauc_mrr_at_20_max
value: 45.55410799331842
- type: nauc_mrr_at_20_std
value: -9.446523820020174
- type: nauc_mrr_at_3_diff1
value: 68.37489368079838
- type: nauc_mrr_at_3_max
value: 46.36986654238148
- type: nauc_mrr_at_3_std
value: -10.310951850957865
- type: nauc_mrr_at_5_diff1
value: 67.59677966909759
- type: nauc_mrr_at_5_max
value: 44.92160517102712
- type: nauc_mrr_at_5_std
value: -9.80872574347567
- type: nauc_ndcg_at_1000_diff1
value: 68.19001086715403
- type: nauc_ndcg_at_1000_max
value: 46.15089790137622
- type: nauc_ndcg_at_1000_std
value: -8.412159613801633
- type: nauc_ndcg_at_100_diff1
value: 68.38436319007278
- type: nauc_ndcg_at_100_max
value: 46.7399567648645
- type: nauc_ndcg_at_100_std
value: -7.226231881646415
- type: nauc_ndcg_at_10_diff1
value: 68.66691333519046
- type: nauc_ndcg_at_10_max
value: 47.676855724705206
- type: nauc_ndcg_at_10_std
value: -5.73932115133516
- type: nauc_ndcg_at_1_diff1
value: 67.12290625195008
- type: nauc_ndcg_at_1_max
value: 41.961375907271766
- type: nauc_ndcg_at_1_std
value: -14.305894005739376
- type: nauc_ndcg_at_20_diff1
value: 68.2939167825507
- type: nauc_ndcg_at_20_max
value: 46.24310319611011
- type: nauc_ndcg_at_20_std
value: -7.125543051802564
- type: nauc_ndcg_at_3_diff1
value: 68.80845744009801
- type: nauc_ndcg_at_3_max
value: 48.06608134910292
- type: nauc_ndcg_at_3_std
value: -9.416751601725604
- type: nauc_ndcg_at_5_diff1
value: 67.20191468584295
- type: nauc_ndcg_at_5_max
value: 45.17104294409719
- type: nauc_ndcg_at_5_std
value: -8.11265697724823
- type: nauc_precision_at_1000_diff1
value: 100.0
- type: nauc_precision_at_1000_max
value: 100.0
- type: nauc_precision_at_1000_std
value: 100.0
- type: nauc_precision_at_100_diff1
value: 86.14085746500498
- type: nauc_precision_at_100_max
value: 100.0
- type: nauc_precision_at_100_std
value: 100.0
- type: nauc_precision_at_10_diff1
value: 76.20567449736176
- type: nauc_precision_at_10_max
value: 70.13176535200981
- type: nauc_precision_at_10_std
value: 38.95128572868472
- type: nauc_precision_at_1_diff1
value: 67.12290625195008
- type: nauc_precision_at_1_max
value: 41.961375907271766
- type: nauc_precision_at_1_std
value: -14.305894005739376
- type: nauc_precision_at_20_diff1
value: 73.74993491997736
- type: nauc_precision_at_20_max
value: 54.67254536177645
- type: nauc_precision_at_20_std
value: 49.85551772921538
- type: nauc_precision_at_3_diff1
value: 70.72764096781087
- type: nauc_precision_at_3_max
value: 55.67372625764705
- type: nauc_precision_at_3_std
value: -5.745071196827823
- type: nauc_precision_at_5_diff1
value: 64.27540794356823
- type: nauc_precision_at_5_max
value: 45.6262640317178
- type: nauc_precision_at_5_std
value: 2.0638422618860512
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_100_diff1
value: 86.14085746500531
- type: nauc_recall_at_100_max
value: 100.0
- type: nauc_recall_at_100_std
value: 100.0
- type: nauc_recall_at_10_diff1
value: 76.20567449736204
- type: nauc_recall_at_10_max
value: 70.13176535201025
- type: nauc_recall_at_10_std
value: 38.951285728684546
- type: nauc_recall_at_1_diff1
value: 67.12290625195008
- type: nauc_recall_at_1_max
value: 41.961375907271766
- type: nauc_recall_at_1_std
value: -14.305894005739376
- type: nauc_recall_at_20_diff1
value: 73.74993491997758
- type: nauc_recall_at_20_max
value: 54.67254536177716
- type: nauc_recall_at_20_std
value: 49.85551772921467
- type: nauc_recall_at_3_diff1
value: 70.72764096781106
- type: nauc_recall_at_3_max
value: 55.67372625764696
- type: nauc_recall_at_3_std
value: -5.745071196827833
- type: nauc_recall_at_5_diff1
value: 64.27540794356815
- type: nauc_recall_at_5_max
value: 45.626264031717625
- type: nauc_recall_at_5_std
value: 2.06384226188602
- type: ndcg_at_1
value: 67.44200000000001
- type: ndcg_at_10
value: 81.797
- type: ndcg_at_100
value: 82.582
- type: ndcg_at_1000
value: 82.749
- type: ndcg_at_20
value: 82.375
- type: ndcg_at_3
value: 78.41900000000001
- type: ndcg_at_5
value: 80.07
- type: precision_at_1
value: 67.44200000000001
- type: precision_at_10
value: 9.535
- type: precision_at_100
value: 0.988
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.884
- type: precision_at_3
value: 28.682000000000002
- type: precision_at_5
value: 18.023
- type: recall_at_1
value: 67.44200000000001
- type: recall_at_10
value: 95.34899999999999
- type: recall_at_100
value: 98.837
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 97.674
- type: recall_at_3
value: 86.047
- type: recall_at_5
value: 90.116
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 88.57199999999999
- type: map_at_1
value: 71.039
- type: map_at_10
value: 84.88900000000001
- type: map_at_100
value: 85.508
- type: map_at_1000
value: 85.524
- type: map_at_20
value: 85.302
- type: map_at_3
value: 81.894
- type: map_at_5
value: 83.8
- type: mrr_at_1
value: 81.78
- type: mrr_at_10
value: 87.8229365079363
- type: mrr_at_100
value: 87.91981638363609
- type: mrr_at_1000
value: 87.92063508831636
- type: mrr_at_20
value: 87.89576415509134
- type: mrr_at_3
value: 86.88499999999978
- type: mrr_at_5
value: 87.54249999999972
- type: nauc_map_at_1000_diff1
value: 76.15890287923096
- type: nauc_map_at_1000_max
value: 36.128747651916996
- type: nauc_map_at_1000_std
value: -48.66753596117505
- type: nauc_map_at_100_diff1
value: 76.16493038931165
- type: nauc_map_at_100_max
value: 36.09495057926168
- type: nauc_map_at_100_std
value: -48.723830300602586
- type: nauc_map_at_10_diff1
value: 76.36797035099488
- type: nauc_map_at_10_max
value: 35.620469333933464
- type: nauc_map_at_10_std
value: -50.54189078709537
- type: nauc_map_at_1_diff1
value: 79.8895751613965
- type: nauc_map_at_1_max
value: 26.317532572218223
- type: nauc_map_at_1_std
value: -44.938160229108206
- type: nauc_map_at_20_diff1
value: 76.24244671018226
- type: nauc_map_at_20_max
value: 36.001635565564364
- type: nauc_map_at_20_std
value: -49.3849748462351
- type: nauc_map_at_3_diff1
value: 76.65833912779706
- type: nauc_map_at_3_max
value: 32.98606836293959
- type: nauc_map_at_3_std
value: -52.50628417471894
- type: nauc_map_at_5_diff1
value: 76.61272599340525
- type: nauc_map_at_5_max
value: 34.74469655483763
- type: nauc_map_at_5_std
value: -51.913131454588054
- type: nauc_mrr_at_1000_diff1
value: 76.7068128582022
- type: nauc_mrr_at_1000_max
value: 39.109592270843066
- type: nauc_mrr_at_1000_std
value: -45.26766550271522
- type: nauc_mrr_at_100_diff1
value: 76.70661450396209
- type: nauc_mrr_at_100_max
value: 39.111095758039355
- type: nauc_mrr_at_100_std
value: -45.26836021466902
- type: nauc_mrr_at_10_diff1
value: 76.70726141027455
- type: nauc_mrr_at_10_max
value: 39.17777339514055
- type: nauc_mrr_at_10_std
value: -45.41161126837498
- type: nauc_mrr_at_1_diff1
value: 77.71262801682967
- type: nauc_mrr_at_1_max
value: 38.287583279692356
- type: nauc_mrr_at_1_std
value: -43.29857832293737
- type: nauc_mrr_at_20_diff1
value: 76.7037527994321
- type: nauc_mrr_at_20_max
value: 39.1385505965502
- type: nauc_mrr_at_20_std
value: -45.302717228670424
- type: nauc_mrr_at_3_diff1
value: 76.44715349862805
- type: nauc_mrr_at_3_max
value: 38.66923766796163
- type: nauc_mrr_at_3_std
value: -46.07826188003206
- type: nauc_mrr_at_5_diff1
value: 76.6862619651444
- type: nauc_mrr_at_5_max
value: 39.42029839009645
- type: nauc_mrr_at_5_std
value: -45.42521512596518
- type: nauc_ndcg_at_1000_diff1
value: 75.94606214928126
- type: nauc_ndcg_at_1000_max
value: 37.78639646594005
- type: nauc_ndcg_at_1000_std
value: -46.65092081733429
- type: nauc_ndcg_at_100_diff1
value: 75.95908789988027
- type: nauc_ndcg_at_100_max
value: 37.681560061965456
- type: nauc_ndcg_at_100_std
value: -46.86467727271376
- type: nauc_ndcg_at_10_diff1
value: 76.09039824441281
- type: nauc_ndcg_at_10_max
value: 36.98935573651128
- type: nauc_ndcg_at_10_std
value: -49.89313085062566
- type: nauc_ndcg_at_1_diff1
value: 77.731542287149
- type: nauc_ndcg_at_1_max
value: 38.21475789687958
- type: nauc_ndcg_at_1_std
value: -43.23518829879814
- type: nauc_ndcg_at_20_diff1
value: 76.0333735368683
- type: nauc_ndcg_at_20_max
value: 37.5117691727701
- type: nauc_ndcg_at_20_std
value: -48.43247167069298
- type: nauc_ndcg_at_3_diff1
value: 75.32521926923286
- type: nauc_ndcg_at_3_max
value: 35.635616145975426
- type: nauc_ndcg_at_3_std
value: -50.277808575751536
- type: nauc_ndcg_at_5_diff1
value: 75.98733426779356
- type: nauc_ndcg_at_5_max
value: 36.64628740946612
- type: nauc_ndcg_at_5_std
value: -50.466293598058165
- type: nauc_precision_at_1000_diff1
value: -43.7530546029045
- type: nauc_precision_at_1000_max
value: -5.161360102935574
- type: nauc_precision_at_1000_std
value: 41.238651766827935
- type: nauc_precision_at_100_diff1
value: -43.384152578104406
- type: nauc_precision_at_100_max
value: -5.034918821151737
- type: nauc_precision_at_100_std
value: 39.84731397760794
- type: nauc_precision_at_10_diff1
value: -38.02145942820818
- type: nauc_precision_at_10_max
value: -0.20339619978834741
- type: nauc_precision_at_10_std
value: 27.826961259650158
- type: nauc_precision_at_1_diff1
value: 77.731542287149
- type: nauc_precision_at_1_max
value: 38.21475789687958
- type: nauc_precision_at_1_std
value: -43.23518829879814
- type: nauc_precision_at_20_diff1
value: -41.175410744014805
- type: nauc_precision_at_20_max
value: -2.431406075907586
- type: nauc_precision_at_20_std
value: 34.28163431050591
- type: nauc_precision_at_3_diff1
value: -18.20941252484291
- type: nauc_precision_at_3_max
value: 9.49505880687624
- type: nauc_precision_at_3_std
value: 5.21470816880769
- type: nauc_precision_at_5_diff1
value: -30.71663355802905
- type: nauc_precision_at_5_max
value: 4.250820844712598
- type: nauc_precision_at_5_std
value: 18.068800455982604
- type: nauc_recall_at_1000_diff1
value: 42.20093621124488
- type: nauc_recall_at_1000_max
value: 42.975727501073955
- type: nauc_recall_at_1000_std
value: 17.039145897932887
- type: nauc_recall_at_100_diff1
value: 71.01797230503367
- type: nauc_recall_at_100_max
value: 36.8913110697839
- type: nauc_recall_at_100_std
value: -46.789986224693166
- type: nauc_recall_at_10_diff1
value: 72.78216200857327
- type: nauc_recall_at_10_max
value: 34.447888880887575
- type: nauc_recall_at_10_std
value: -67.03966745406017
- type: nauc_recall_at_1_diff1
value: 79.8895751613965
- type: nauc_recall_at_1_max
value: 26.317532572218223
- type: nauc_recall_at_1_std
value: -44.938160229108206
- type: nauc_recall_at_20_diff1
value: 72.39748025024522
- type: nauc_recall_at_20_max
value: 37.28031232611157
- type: nauc_recall_at_20_std
value: -63.744619826134475
- type: nauc_recall_at_3_diff1
value: 72.4158737180374
- type: nauc_recall_at_3_max
value: 29.671800523250326
- type: nauc_recall_at_3_std
value: -59.47563372923962
- type: nauc_recall_at_5_diff1
value: 72.26170447475917
- type: nauc_recall_at_5_max
value: 33.23785397256845
- type: nauc_recall_at_5_std
value: -62.34801264606157
- type: ndcg_at_1
value: 81.77
- type: ndcg_at_10
value: 88.57199999999999
- type: ndcg_at_100
value: 89.755
- type: ndcg_at_1000
value: 89.852
- type: ndcg_at_20
value: 89.22099999999999
- type: ndcg_at_3
value: 85.707
- type: ndcg_at_5
value: 87.345
- type: precision_at_1
value: 81.77
- type: precision_at_10
value: 13.431000000000001
- type: precision_at_100
value: 1.529
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.124
- type: precision_at_3
value: 37.41
- type: precision_at_5
value: 24.684
- type: recall_at_1
value: 71.039
- type: recall_at_10
value: 95.537
- type: recall_at_100
value: 99.557
- type: recall_at_1000
value: 99.982
- type: recall_at_20
value: 97.603
- type: recall_at_3
value: 87.384
- type: recall_at_5
value: 91.927
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: main_score
value: 51.59936496159815
- type: v_measure
value: 51.59936496159815
- type: v_measure_std
value: 4.565966577664143
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: main_score
value: 60.83096246995603
- type: v_measure
value: 60.83096246995603
- type: v_measure_std
value: 13.183082420642975
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 20.278
- type: map_at_1
value: 4.573
- type: map_at_10
value: 12.081999999999999
- type: map_at_100
value: 14.229
- type: map_at_1000
value: 14.587
- type: map_at_20
value: 13.145999999999999
- type: map_at_3
value: 8.488
- type: map_at_5
value: 10.324
- type: mrr_at_1
value: 22.6
- type: mrr_at_10
value: 33.95575396825393
- type: mrr_at_100
value: 35.03843505353784
- type: mrr_at_1000
value: 35.092323037408
- type: mrr_at_20
value: 34.589859035013795
- type: mrr_at_3
value: 30.299999999999986
- type: mrr_at_5
value: 32.42999999999995
- type: nauc_map_at_1000_diff1
value: 15.47158773019753
- type: nauc_map_at_1000_max
value: 33.15677973691845
- type: nauc_map_at_1000_std
value: 22.069088941975316
- type: nauc_map_at_100_diff1
value: 15.5473749771496
- type: nauc_map_at_100_max
value: 33.11669390716216
- type: nauc_map_at_100_std
value: 21.902092120156556
- type: nauc_map_at_10_diff1
value: 15.598319272907935
- type: nauc_map_at_10_max
value: 31.02834975480241
- type: nauc_map_at_10_std
value: 17.48586034447307
- type: nauc_map_at_1_diff1
value: 24.716824356435037
- type: nauc_map_at_1_max
value: 25.609675193046776
- type: nauc_map_at_1_std
value: 7.726550604844593
- type: nauc_map_at_20_diff1
value: 15.421255798642786
- type: nauc_map_at_20_max
value: 32.57491990876195
- type: nauc_map_at_20_std
value: 19.87590330146735
- type: nauc_map_at_3_diff1
value: 18.233165819869967
- type: nauc_map_at_3_max
value: 28.423341132169515
- type: nauc_map_at_3_std
value: 9.36105104315201
- type: nauc_map_at_5_diff1
value: 17.147755240157387
- type: nauc_map_at_5_max
value: 29.750818593195355
- type: nauc_map_at_5_std
value: 13.474425753774613
- type: nauc_mrr_at_1000_diff1
value: 19.54973813770631
- type: nauc_mrr_at_1000_max
value: 28.445637386785215
- type: nauc_mrr_at_1000_std
value: 14.759817199201834
- type: nauc_mrr_at_100_diff1
value: 19.528262971483187
- type: nauc_mrr_at_100_max
value: 28.471618042623042
- type: nauc_mrr_at_100_std
value: 14.802649900373577
- type: nauc_mrr_at_10_diff1
value: 19.297787878540934
- type: nauc_mrr_at_10_max
value: 28.250197248199598
- type: nauc_mrr_at_10_std
value: 14.530515441921136
- type: nauc_mrr_at_1_diff1
value: 24.448279147241337
- type: nauc_mrr_at_1_max
value: 25.44984341914804
- type: nauc_mrr_at_1_std
value: 7.8912754194185
- type: nauc_mrr_at_20_diff1
value: 19.526532015966378
- type: nauc_mrr_at_20_max
value: 28.45090107869856
- type: nauc_mrr_at_20_std
value: 14.872405983073964
- type: nauc_mrr_at_3_diff1
value: 19.309620003727055
- type: nauc_mrr_at_3_max
value: 27.545469950426288
- type: nauc_mrr_at_3_std
value: 12.904936858178626
- type: nauc_mrr_at_5_diff1
value: 19.262661292664838
- type: nauc_mrr_at_5_max
value: 27.77287008915389
- type: nauc_mrr_at_5_std
value: 14.068995148507335
- type: nauc_ndcg_at_1000_diff1
value: 15.228929487905193
- type: nauc_ndcg_at_1000_max
value: 34.92476744512219
- type: nauc_ndcg_at_1000_std
value: 28.862558988104897
- type: nauc_ndcg_at_100_diff1
value: 15.71824526700594
- type: nauc_ndcg_at_100_max
value: 35.335966205958385
- type: nauc_ndcg_at_100_std
value: 29.265053975009824
- type: nauc_ndcg_at_10_diff1
value: 15.334175443268217
- type: nauc_ndcg_at_10_max
value: 32.04474177693103
- type: nauc_ndcg_at_10_std
value: 20.246349040690838
- type: nauc_ndcg_at_1_diff1
value: 24.448279147241337
- type: nauc_ndcg_at_1_max
value: 25.44984341914804
- type: nauc_ndcg_at_1_std
value: 7.8912754194185
- type: nauc_ndcg_at_20_diff1
value: 15.4150287559633
- type: nauc_ndcg_at_20_max
value: 34.028257354205486
- type: nauc_ndcg_at_20_std
value: 23.94574408901984
- type: nauc_ndcg_at_3_diff1
value: 17.449798425957905
- type: nauc_ndcg_at_3_max
value: 28.472381850170684
- type: nauc_ndcg_at_3_std
value: 11.534878901481072
- type: nauc_ndcg_at_5_diff1
value: 16.863645323278014
- type: nauc_ndcg_at_5_max
value: 30.00515223685507
- type: nauc_ndcg_at_5_std
value: 15.778660328214492
- type: nauc_precision_at_1000_diff1
value: 4.713757187643959
- type: nauc_precision_at_1000_max
value: 28.438129482659463
- type: nauc_precision_at_1000_std
value: 39.88656841872898
- type: nauc_precision_at_100_diff1
value: 10.086356192787497
- type: nauc_precision_at_100_max
value: 33.7661746052316
- type: nauc_precision_at_100_std
value: 41.39520819343154
- type: nauc_precision_at_10_diff1
value: 10.656776714725792
- type: nauc_precision_at_10_max
value: 32.31524121764866
- type: nauc_precision_at_10_std
value: 25.54547973903815
- type: nauc_precision_at_1_diff1
value: 24.448279147241337
- type: nauc_precision_at_1_max
value: 25.44984341914804
- type: nauc_precision_at_1_std
value: 7.8912754194185
- type: nauc_precision_at_20_diff1
value: 10.413346149454274
- type: nauc_precision_at_20_max
value: 34.53151230080728
- type: nauc_precision_at_20_std
value: 31.606365417824104
- type: nauc_precision_at_3_diff1
value: 15.157946205596032
- type: nauc_precision_at_3_max
value: 29.285029432750626
- type: nauc_precision_at_3_std
value: 12.641270832271559
- type: nauc_precision_at_5_diff1
value: 13.726235144512325
- type: nauc_precision_at_5_max
value: 30.48174953294508
- type: nauc_precision_at_5_std
value: 19.16196995148913
- type: nauc_recall_at_1000_diff1
value: 4.52213727715021
- type: nauc_recall_at_1000_max
value: 27.895720746906093
- type: nauc_recall_at_1000_std
value: 41.74948907995246
- type: nauc_recall_at_100_diff1
value: 9.948729646333705
- type: nauc_recall_at_100_max
value: 33.31174530944116
- type: nauc_recall_at_100_std
value: 41.82269139039194
- type: nauc_recall_at_10_diff1
value: 10.708140509065931
- type: nauc_recall_at_10_max
value: 32.18578429711753
- type: nauc_recall_at_10_std
value: 25.465993578536622
- type: nauc_recall_at_1_diff1
value: 24.716824356435037
- type: nauc_recall_at_1_max
value: 25.609675193046776
- type: nauc_recall_at_1_std
value: 7.726550604844593
- type: nauc_recall_at_20_diff1
value: 10.432417124902676
- type: nauc_recall_at_20_max
value: 34.396161706840886
- type: nauc_recall_at_20_std
value: 31.6442301437761
- type: nauc_recall_at_3_diff1
value: 15.2335776286663
- type: nauc_recall_at_3_max
value: 29.312743939019057
- type: nauc_recall_at_3_std
value: 12.508295313824938
- type: nauc_recall_at_5_diff1
value: 13.819038065126835
- type: nauc_recall_at_5_max
value: 30.38801944210637
- type: nauc_recall_at_5_std
value: 18.99078644070936
- type: ndcg_at_1
value: 22.6
- type: ndcg_at_10
value: 20.278
- type: ndcg_at_100
value: 28.701
- type: ndcg_at_1000
value: 34.681
- type: ndcg_at_20
value: 23.179
- type: ndcg_at_3
value: 18.879
- type: ndcg_at_5
value: 16.749
- type: precision_at_1
value: 22.6
- type: precision_at_10
value: 10.66
- type: precision_at_100
value: 2.289
- type: precision_at_1000
value: 0.372
- type: precision_at_20
value: 7.015000000000001
- type: precision_at_3
value: 17.732999999999997
- type: precision_at_5
value: 14.899999999999999
- type: recall_at_1
value: 4.573
- type: recall_at_10
value: 21.573
- type: recall_at_100
value: 46.5
- type: recall_at_1000
value: 75.558
- type: recall_at_20
value: 28.397
- type: recall_at_3
value: 10.783
- type: recall_at_5
value: 15.082999999999998
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 84.62498017213524
- type: cosine_spearman
value: 79.65689515219194
- type: euclidean_pearson
value: 81.88054634002948
- type: euclidean_spearman
value: 79.6568911391733
- type: main_score
value: 79.65689515219194
- type: manhattan_pearson
value: 81.80542963904064
- type: manhattan_spearman
value: 79.56424367841001
- type: pearson
value: 84.62498017213524
- type: spearman
value: 79.65689515219194
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 84.72310952504792
- type: cosine_spearman
value: 76.22109828443048
- type: euclidean_pearson
value: 82.38443833180979
- type: euclidean_spearman
value: 76.21894143370454
- type: main_score
value: 76.22109828443048
- type: manhattan_pearson
value: 82.40542669545772
- type: manhattan_spearman
value: 76.28736748590586
- type: pearson
value: 84.72310952504792
- type: spearman
value: 76.22109828443048
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 81.68062265316888
- type: cosine_spearman
value: 83.4553090866614
- type: euclidean_pearson
value: 82.40491202375253
- type: euclidean_spearman
value: 83.4553090866614
- type: main_score
value: 83.4553090866614
- type: manhattan_pearson
value: 82.22067409773605
- type: manhattan_spearman
value: 83.20448906783335
- type: pearson
value: 81.68062265316888
- type: spearman
value: 83.4553090866614
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 81.57051225494406
- type: cosine_spearman
value: 80.39864986197945
- type: euclidean_pearson
value: 81.05178156883875
- type: euclidean_spearman
value: 80.39865535033431
- type: main_score
value: 80.39864986197945
- type: manhattan_pearson
value: 81.05410761923022
- type: manhattan_spearman
value: 80.44259250171525
- type: pearson
value: 81.57051225494406
- type: spearman
value: 80.39864986197945
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 84.79212184526739
- type: cosine_spearman
value: 86.40909639583371
- type: euclidean_pearson
value: 85.87613482648442
- type: euclidean_spearman
value: 86.40909578136895
- type: main_score
value: 86.40909639583371
- type: manhattan_pearson
value: 85.74723618868677
- type: manhattan_spearman
value: 86.28775839228958
- type: pearson
value: 84.79212184526739
- type: spearman
value: 86.40909639583371
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 80.9001128553287
- type: cosine_spearman
value: 83.28982485088675
- type: euclidean_pearson
value: 82.42648548297315
- type: euclidean_spearman
value: 83.28990050342193
- type: main_score
value: 83.28982485088675
- type: manhattan_pearson
value: 82.25070148571425
- type: manhattan_spearman
value: 83.07757318740721
- type: pearson
value: 80.9001128553287
- type: spearman
value: 83.28982485088675
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 24.18877892078201
- type: cosine_spearman
value: 20.233596577843038
- type: euclidean_pearson
value: 24.542177362845315
- type: euclidean_spearman
value: 20.233596577843038
- type: main_score
value: 20.233596577843038
- type: manhattan_pearson
value: 24.01700616075699
- type: manhattan_spearman
value: 19.446659958484517
- type: pearson
value: 24.18877892078201
- type: spearman
value: 20.233596577843038
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 8.614199975001977
- type: cosine_spearman
value: 5.012961284277124
- type: euclidean_pearson
value: 8.84952193581556
- type: euclidean_spearman
value: 5.012961284277124
- type: main_score
value: 5.012961284277124
- type: manhattan_pearson
value: 8.745277048601178
- type: manhattan_spearman
value: 5.409735174524082
- type: pearson
value: 8.614199975001977
- type: spearman
value: 5.012961284277124
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 32.392432370287786
- type: cosine_spearman
value: 29.30493234698128
- type: euclidean_pearson
value: 32.966478634610255
- type: euclidean_spearman
value: 29.30493234698128
- type: main_score
value: 29.30493234698128
- type: manhattan_pearson
value: 32.755965728091894
- type: manhattan_spearman
value: 29.146714726559253
- type: pearson
value: 32.392432370287786
- type: spearman
value: 29.30493234698128
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 20.254702485801023
- type: cosine_spearman
value: 19.721956722605672
- type: euclidean_pearson
value: 19.871717953344167
- type: euclidean_spearman
value: 19.721956722605672
- type: main_score
value: 19.721956722605672
- type: manhattan_pearson
value: 20.449457320012122
- type: manhattan_spearman
value: 20.169665776497684
- type: pearson
value: 20.254702485801023
- type: spearman
value: 19.721956722605672
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 28.074886980533577
- type: cosine_spearman
value: 24.306393355436498
- type: euclidean_pearson
value: 29.01202135632306
- type: euclidean_spearman
value: 24.306393355436498
- type: main_score
value: 24.306393355436498
- type: manhattan_pearson
value: 29.1296157400599
- type: manhattan_spearman
value: 23.73491100295491
- type: pearson
value: 28.074886980533577
- type: spearman
value: 24.306393355436498
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: -0.5773611433810728
- type: cosine_spearman
value: -1.0982086986987292
- type: euclidean_pearson
value: -0.5206158458966739
- type: euclidean_spearman
value: -1.0982086986987292
- type: main_score
value: -1.0982086986987292
- type: manhattan_pearson
value: -1.0668301997346301
- type: manhattan_spearman
value: -0.8412954712140625
- type: pearson
value: -0.5773611433810728
- type: spearman
value: -1.0982086986987292
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 86.27108126511854
- type: cosine_spearman
value: 86.53957993982179
- type: euclidean_pearson
value: 87.62799362362965
- type: euclidean_spearman
value: 86.53957993982179
- type: main_score
value: 86.53957993982179
- type: manhattan_pearson
value: 87.6959515498115
- type: manhattan_spearman
value: 86.64863324136145
- type: pearson
value: 86.27108126511854
- type: spearman
value: 86.53957993982179
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 26.150575010131767
- type: cosine_spearman
value: 22.06712968681051
- type: euclidean_pearson
value: 26.604960551656553
- type: euclidean_spearman
value: 22.06712968681051
- type: main_score
value: 22.06712968681051
- type: manhattan_pearson
value: 26.88338799013417
- type: manhattan_spearman
value: 22.431306979297936
- type: pearson
value: 26.150575010131767
- type: spearman
value: 22.06712968681051
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 56.43553760517022
- type: cosine_spearman
value: 61.54782397245725
- type: euclidean_pearson
value: 57.49144139445497
- type: euclidean_spearman
value: 61.54782397245725
- type: main_score
value: 61.54782397245725
- type: manhattan_pearson
value: 57.23292330897806
- type: manhattan_spearman
value: 61.072557803031756
- type: pearson
value: 56.43553760517022
- type: spearman
value: 61.54782397245725
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 42.54975380534044
- type: cosine_spearman
value: 46.810373173640016
- type: euclidean_pearson
value: 45.28349759462344
- type: euclidean_spearman
value: 46.810373173640016
- type: main_score
value: 46.810373173640016
- type: manhattan_pearson
value: 46.16729933212417
- type: manhattan_spearman
value: 46.249145972529426
- type: pearson
value: 42.54975380534044
- type: spearman
value: 46.810373173640016
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 42.33771713953653
- type: cosine_spearman
value: 41.91423247431431
- type: euclidean_pearson
value: 43.03252081424651
- type: euclidean_spearman
value: 41.91423247431431
- type: main_score
value: 41.91423247431431
- type: manhattan_pearson
value: 41.39868682401022
- type: manhattan_spearman
value: 40.26808563589977
- type: pearson
value: 42.33771713953653
- type: spearman
value: 41.91423247431431
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 48.18269761507854
- type: cosine_spearman
value: 50.6785956820247
- type: euclidean_pearson
value: 48.610255848327895
- type: euclidean_spearman
value: 50.6785956820247
- type: main_score
value: 50.6785956820247
- type: manhattan_pearson
value: 48.558643114423774
- type: manhattan_spearman
value: 50.40531034934534
- type: pearson
value: 48.18269761507854
- type: spearman
value: 50.6785956820247
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 65.33289638983779
- type: cosine_spearman
value: 66.80763004782261
- type: euclidean_pearson
value: 67.9778359567448
- type: euclidean_spearman
value: 66.80763004782261
- type: main_score
value: 66.80763004782261
- type: manhattan_pearson
value: 68.49657450051612
- type: manhattan_spearman
value: 67.36431350100104
- type: pearson
value: 65.33289638983779
- type: spearman
value: 66.80763004782261
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 83.11688439720268
- type: cosine_spearman
value: 84.81184678969443
- type: euclidean_pearson
value: 84.74087810156583
- type: euclidean_spearman
value: 84.81189525583689
- type: main_score
value: 84.81184678969443
- type: manhattan_pearson
value: 84.55725669112154
- type: manhattan_spearman
value: 84.65629518341167
- type: pearson
value: 83.11688439720268
- type: spearman
value: 84.81184678969443
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 85.79326406191477
- type: map
value: 85.79326406191477
- type: mrr
value: 96.01126632989377
- type: nAUC_map_diff1
value: -1.9960063892305635
- type: nAUC_map_max
value: 52.28855245081865
- type: nAUC_map_std
value: 66.17006861709118
- type: nAUC_mrr_diff1
value: 37.199120271359995
- type: nAUC_mrr_max
value: 83.25191469254256
- type: nAUC_mrr_std
value: 77.46103699775429
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 70.781
- type: map_at_1
value: 56.15
- type: map_at_10
value: 66.068
- type: map_at_100
value: 66.606
- type: map_at_1000
value: 66.62700000000001
- type: map_at_20
value: 66.393
- type: map_at_3
value: 63.273999999999994
- type: map_at_5
value: 64.97699999999999
- type: mrr_at_1
value: 59.0
- type: mrr_at_10
value: 67.14100529100529
- type: mrr_at_100
value: 67.52274973457133
- type: mrr_at_1000
value: 67.54192035738791
- type: mrr_at_20
value: 67.33274717485244
- type: mrr_at_3
value: 64.77777777777779
- type: mrr_at_5
value: 66.39444444444446
- type: nauc_map_at_1000_diff1
value: 69.09690829345494
- type: nauc_map_at_1000_max
value: 50.70824678659478
- type: nauc_map_at_1000_std
value: 12.985689664716407
- type: nauc_map_at_100_diff1
value: 69.09924687148899
- type: nauc_map_at_100_max
value: 50.7337506059534
- type: nauc_map_at_100_std
value: 13.006358158080097
- type: nauc_map_at_10_diff1
value: 69.10893207723633
- type: nauc_map_at_10_max
value: 50.82945412215302
- type: nauc_map_at_10_std
value: 12.301972176252288
- type: nauc_map_at_1_diff1
value: 73.44608750237268
- type: nauc_map_at_1_max
value: 43.85599731941668
- type: nauc_map_at_1_std
value: 5.168582672370025
- type: nauc_map_at_20_diff1
value: 69.03143295499125
- type: nauc_map_at_20_max
value: 50.87627099813432
- type: nauc_map_at_20_std
value: 12.949145762693659
- type: nauc_map_at_3_diff1
value: 68.51699125737602
- type: nauc_map_at_3_max
value: 47.24273828014918
- type: nauc_map_at_3_std
value: 10.527871858030505
- type: nauc_map_at_5_diff1
value: 68.99381046083316
- type: nauc_map_at_5_max
value: 48.23432046662487
- type: nauc_map_at_5_std
value: 11.26317964615511
- type: nauc_mrr_at_1000_diff1
value: 69.79095737751194
- type: nauc_mrr_at_1000_max
value: 52.29374297281226
- type: nauc_mrr_at_1000_std
value: 15.13894630994255
- type: nauc_mrr_at_100_diff1
value: 69.79188651557479
- type: nauc_mrr_at_100_max
value: 52.315846778587485
- type: nauc_mrr_at_100_std
value: 15.15521556772456
- type: nauc_mrr_at_10_diff1
value: 69.73040149143365
- type: nauc_mrr_at_10_max
value: 52.50283292011064
- type: nauc_mrr_at_10_std
value: 15.069372709963726
- type: nauc_mrr_at_1_diff1
value: 73.20400506747669
- type: nauc_mrr_at_1_max
value: 50.10100713653324
- type: nauc_mrr_at_1_std
value: 12.827172631712807
- type: nauc_mrr_at_20_diff1
value: 69.72611022122446
- type: nauc_mrr_at_20_max
value: 52.464578579728396
- type: nauc_mrr_at_20_std
value: 15.208083826332011
- type: nauc_mrr_at_3_diff1
value: 69.1985393007592
- type: nauc_mrr_at_3_max
value: 50.81792260544604
- type: nauc_mrr_at_3_std
value: 14.332022309785128
- type: nauc_mrr_at_5_diff1
value: 69.50993371969486
- type: nauc_mrr_at_5_max
value: 51.64106508314771
- type: nauc_mrr_at_5_std
value: 15.358698285953956
- type: nauc_ndcg_at_1000_diff1
value: 68.78498267947889
- type: nauc_ndcg_at_1000_max
value: 52.57359656549474
- type: nauc_ndcg_at_1000_std
value: 15.538452139114579
- type: nauc_ndcg_at_100_diff1
value: 68.78480580681969
- type: nauc_ndcg_at_100_max
value: 53.32698295972621
- type: nauc_ndcg_at_100_std
value: 16.314594204287538
- type: nauc_ndcg_at_10_diff1
value: 68.33131449324236
- type: nauc_ndcg_at_10_max
value: 54.28393862675376
- type: nauc_ndcg_at_10_std
value: 14.440188370799826
- type: nauc_ndcg_at_1_diff1
value: 73.20400506747669
- type: nauc_ndcg_at_1_max
value: 50.10100713653324
- type: nauc_ndcg_at_1_std
value: 12.827172631712807
- type: nauc_ndcg_at_20_diff1
value: 68.15031723936488
- type: nauc_ndcg_at_20_max
value: 54.34582376960946
- type: nauc_ndcg_at_20_std
value: 16.386097496285466
- type: nauc_ndcg_at_3_diff1
value: 66.62543891885512
- type: nauc_ndcg_at_3_max
value: 49.462685336422716
- type: nauc_ndcg_at_3_std
value: 13.103889815379736
- type: nauc_ndcg_at_5_diff1
value: 67.82774135743375
- type: nauc_ndcg_at_5_max
value: 49.88962452868594
- type: nauc_ndcg_at_5_std
value: 13.512352768231784
- type: nauc_precision_at_1000_diff1
value: -24.455744262517246
- type: nauc_precision_at_1000_max
value: 29.194209973219483
- type: nauc_precision_at_1000_std
value: 53.45333740126795
- type: nauc_precision_at_100_diff1
value: -9.02373932196674
- type: nauc_precision_at_100_max
value: 39.31730511496725
- type: nauc_precision_at_100_std
value: 54.23916463691773
- type: nauc_precision_at_10_diff1
value: 16.237081629717945
- type: nauc_precision_at_10_max
value: 58.7670275934335
- type: nauc_precision_at_10_std
value: 41.54681432475195
- type: nauc_precision_at_1_diff1
value: 73.20400506747669
- type: nauc_precision_at_1_max
value: 50.10100713653324
- type: nauc_precision_at_1_std
value: 12.827172631712807
- type: nauc_precision_at_20_diff1
value: 6.486397217756261
- type: nauc_precision_at_20_max
value: 49.69520636107963
- type: nauc_precision_at_20_std
value: 48.330799457928784
- type: nauc_precision_at_3_diff1
value: 36.84804465641589
- type: nauc_precision_at_3_max
value: 48.964626880227385
- type: nauc_precision_at_3_std
value: 27.19694612530361
- type: nauc_precision_at_5_diff1
value: 29.08407956902661
- type: nauc_precision_at_5_max
value: 51.33405026324234
- type: nauc_precision_at_5_std
value: 35.64245923947663
- type: nauc_recall_at_1000_diff1
value: 100.0
- type: nauc_recall_at_1000_max
value: 12.278244631182748
- type: nauc_recall_at_1000_std
value: 86.92810457516407
- type: nauc_recall_at_100_diff1
value: 70.17611642358091
- type: nauc_recall_at_100_max
value: 76.0037348272645
- type: nauc_recall_at_100_std
value: 49.35606426478642
- type: nauc_recall_at_10_diff1
value: 63.26936092042931
- type: nauc_recall_at_10_max
value: 68.32557561359651
- type: nauc_recall_at_10_std
value: 18.518390629963744
- type: nauc_recall_at_1_diff1
value: 73.44608750237268
- type: nauc_recall_at_1_max
value: 43.85599731941668
- type: nauc_recall_at_1_std
value: 5.168582672370025
- type: nauc_recall_at_20_diff1
value: 61.67969675432364
- type: nauc_recall_at_20_max
value: 72.38960477117521
- type: nauc_recall_at_20_std
value: 31.439077902413377
- type: nauc_recall_at_3_diff1
value: 60.63550355416961
- type: nauc_recall_at_3_max
value: 45.64273650955856
- type: nauc_recall_at_3_std
value: 12.284278729729534
- type: nauc_recall_at_5_diff1
value: 62.23932232627379
- type: nauc_recall_at_5_max
value: 49.84844962005709
- type: nauc_recall_at_5_std
value: 15.689932929513267
- type: ndcg_at_1
value: 59.0
- type: ndcg_at_10
value: 70.781
- type: ndcg_at_100
value: 73.162
- type: ndcg_at_1000
value: 73.737
- type: ndcg_at_20
value: 71.722
- type: ndcg_at_3
value: 65.839
- type: ndcg_at_5
value: 68.557
- type: precision_at_1
value: 59.0
- type: precision_at_10
value: 9.467
- type: precision_at_100
value: 1.08
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_20
value: 4.983
- type: precision_at_3
value: 25.889
- type: precision_at_5
value: 17.267
- type: recall_at_1
value: 56.15
- type: recall_at_10
value: 84.222
- type: recall_at_100
value: 95.167
- type: recall_at_1000
value: 99.667
- type: recall_at_20
value: 87.6
- type: recall_at_3
value: 70.672
- type: recall_at_5
value: 77.694
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.84059405940594
- type: cosine_accuracy_threshold
value: 84.68618392944336
- type: cosine_ap
value: 96.16611732034018
- type: cosine_f1
value: 91.87279151943464
- type: cosine_f1_threshold
value: 84.60279107093811
- type: cosine_precision
value: 92.7624872579001
- type: cosine_recall
value: 91.0
- type: dot_accuracy
value: 99.84059405940594
- type: dot_accuracy_threshold
value: 84.68618392944336
- type: dot_ap
value: 96.16611732034019
- type: dot_f1
value: 91.87279151943464
- type: dot_f1_threshold
value: 84.60279107093811
- type: dot_precision
value: 92.7624872579001
- type: dot_recall
value: 91.0
- type: euclidean_accuracy
value: 99.84059405940594
- type: euclidean_accuracy_threshold
value: 55.34223914146423
- type: euclidean_ap
value: 96.16611732034018
- type: euclidean_f1
value: 91.87279151943464
- type: euclidean_f1_threshold
value: 55.49271106719971
- type: euclidean_precision
value: 92.7624872579001
- type: euclidean_recall
value: 91.0
- type: main_score
value: 96.16611732034019
- type: manhattan_accuracy
value: 99.84257425742574
- type: manhattan_accuracy_threshold
value: 853.6725997924805
- type: manhattan_ap
value: 96.1656773251653
- type: manhattan_f1
value: 91.96563921172309
- type: manhattan_f1_threshold
value: 861.8800163269043
- type: manhattan_precision
value: 92.95199182839632
- type: manhattan_recall
value: 91.0
- type: max_accuracy
value: 99.84257425742574
- type: max_ap
value: 96.16611732034019
- type: max_f1
value: 91.96563921172309
- type: max_precision
value: 92.95199182839632
- type: max_recall
value: 91.0
- type: similarity_accuracy
value: 99.84059405940594
- type: similarity_accuracy_threshold
value: 84.68618392944336
- type: similarity_ap
value: 96.16611732034018
- type: similarity_f1
value: 91.87279151943464
- type: similarity_f1_threshold
value: 84.60279107093811
- type: similarity_precision
value: 92.7624872579001
- type: similarity_recall
value: 91.0
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: main_score
value: 60.02250015167472
- type: v_measure
value: 60.02250015167472
- type: v_measure_std
value: 3.6859565919222845
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: main_score
value: 35.10613915314228
- type: v_measure
value: 35.10613915314228
- type: v_measure_std
value: 1.498102043653137
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 53.319664095625406
- type: map
value: 53.319664095625406
- type: mrr
value: 54.17945208386384
- type: nAUC_map_diff1
value: 40.00267732755458
- type: nAUC_map_max
value: 13.527855683708992
- type: nAUC_map_std
value: 9.041618850046866
- type: nAUC_mrr_diff1
value: 39.62764426841398
- type: nAUC_mrr_max
value: 14.339311048868952
- type: nAUC_mrr_std
value: 9.226051974058887
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 30.5114222288775
- type: cosine_spearman
value: 30.485886091810034
- type: dot_pearson
value: 30.511430485066025
- type: dot_spearman
value: 30.49983580953373
- type: main_score
value: 30.485886091810034
- type: pearson
value: 30.5114222288775
- type: spearman
value: 30.485886091810034
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 77.75999999999999
- type: map_at_1
value: 0.23900000000000002
- type: map_at_10
value: 1.949
- type: map_at_100
value: 11.116
- type: map_at_1000
value: 26.684
- type: map_at_20
value: 3.45
- type: map_at_3
value: 0.651
- type: map_at_5
value: 1.0410000000000001
- type: mrr_at_1
value: 90.0
- type: mrr_at_10
value: 93.95238095238096
- type: mrr_at_100
value: 93.95238095238096
- type: mrr_at_1000
value: 93.95238095238096
- type: mrr_at_20
value: 93.95238095238096
- type: mrr_at_3
value: 93.66666666666667
- type: mrr_at_5
value: 93.66666666666667
- type: nauc_map_at_1000_diff1
value: -20.160585435121543
- type: nauc_map_at_1000_max
value: 38.8630983037078
- type: nauc_map_at_1000_std
value: 75.1359498809274
- type: nauc_map_at_100_diff1
value: -11.770967928603136
- type: nauc_map_at_100_max
value: 29.51565445249646
- type: nauc_map_at_100_std
value: 48.742088874863185
- type: nauc_map_at_10_diff1
value: 16.02141979872306
- type: nauc_map_at_10_max
value: 15.04591660201791
- type: nauc_map_at_10_std
value: 12.788311897845276
- type: nauc_map_at_1_diff1
value: 6.725038753955455
- type: nauc_map_at_1_max
value: 5.632652286527743
- type: nauc_map_at_1_std
value: -0.6518088466576922
- type: nauc_map_at_20_diff1
value: 10.282985568907463
- type: nauc_map_at_20_max
value: 17.483835968348743
- type: nauc_map_at_20_std
value: 18.33987447808943
- type: nauc_map_at_3_diff1
value: 10.44764101228141
- type: nauc_map_at_3_max
value: 8.393374035568426
- type: nauc_map_at_3_std
value: 4.3627693885700785
- type: nauc_map_at_5_diff1
value: 17.02341733651586
- type: nauc_map_at_5_max
value: 13.106044347786833
- type: nauc_map_at_5_std
value: 7.008036861123736
- type: nauc_mrr_at_1000_diff1
value: -32.12502848908622
- type: nauc_mrr_at_1000_max
value: 82.01327775204561
- type: nauc_mrr_at_1000_std
value: 64.92717822036941
- type: nauc_mrr_at_100_diff1
value: -32.12502848908622
- type: nauc_mrr_at_100_max
value: 82.01327775204561
- type: nauc_mrr_at_100_std
value: 64.92717822036941
- type: nauc_mrr_at_10_diff1
value: -32.12502848908622
- type: nauc_mrr_at_10_max
value: 82.01327775204561
- type: nauc_mrr_at_10_std
value: 64.92717822036941
- type: nauc_mrr_at_1_diff1
value: -39.09430438842211
- type: nauc_mrr_at_1_max
value: 78.2446311858077
- type: nauc_mrr_at_1_std
value: 64.51914098972921
- type: nauc_mrr_at_20_diff1
value: -32.12502848908622
- type: nauc_mrr_at_20_max
value: 82.01327775204561
- type: nauc_mrr_at_20_std
value: 64.92717822036941
- type: nauc_mrr_at_3_diff1
value: -28.175831736202845
- type: nauc_mrr_at_3_max
value: 82.82470883090078
- type: nauc_mrr_at_3_std
value: 65.25627794977638
- type: nauc_mrr_at_5_diff1
value: -28.175831736202845
- type: nauc_mrr_at_5_max
value: 82.82470883090078
- type: nauc_mrr_at_5_std
value: 65.25627794977638
- type: nauc_ndcg_at_1000_diff1
value: -18.54726131921605
- type: nauc_ndcg_at_1000_max
value: 29.95310477201888
- type: nauc_ndcg_at_1000_std
value: 70.82243454153097
- type: nauc_ndcg_at_100_diff1
value: -22.637249582808078
- type: nauc_ndcg_at_100_max
value: 36.348125192786654
- type: nauc_ndcg_at_100_std
value: 75.19596861423354
- type: nauc_ndcg_at_10_diff1
value: -19.91104943802517
- type: nauc_ndcg_at_10_max
value: 34.8418323803163
- type: nauc_ndcg_at_10_std
value: 57.580684501146926
- type: nauc_ndcg_at_1_diff1
value: -38.8728816184899
- type: nauc_ndcg_at_1_max
value: 26.635065216717795
- type: nauc_ndcg_at_1_std
value: 66.18954673606594
- type: nauc_ndcg_at_20_diff1
value: -19.199510111936828
- type: nauc_ndcg_at_20_max
value: 36.16805193195719
- type: nauc_ndcg_at_20_std
value: 64.03214954101703
- type: nauc_ndcg_at_3_diff1
value: -28.79507246353434
- type: nauc_ndcg_at_3_max
value: 29.623193200204902
- type: nauc_ndcg_at_3_std
value: 48.53958096552628
- type: nauc_ndcg_at_5_diff1
value: -20.153745604675404
- type: nauc_ndcg_at_5_max
value: 38.55119400658675
- type: nauc_ndcg_at_5_std
value: 52.05268467045925
- type: nauc_precision_at_1000_diff1
value: -16.27868015856243
- type: nauc_precision_at_1000_max
value: 31.57510838019923
- type: nauc_precision_at_1000_std
value: 57.73923801374279
- type: nauc_precision_at_100_diff1
value: -20.501173646320325
- type: nauc_precision_at_100_max
value: 40.777625226055484
- type: nauc_precision_at_100_std
value: 73.83079368622825
- type: nauc_precision_at_10_diff1
value: -9.965760097987248
- type: nauc_precision_at_10_max
value: 43.831250173983214
- type: nauc_precision_at_10_std
value: 59.253820671992926
- type: nauc_precision_at_1_diff1
value: -39.09430438842211
- type: nauc_precision_at_1_max
value: 78.2446311858077
- type: nauc_precision_at_1_std
value: 64.51914098972921
- type: nauc_precision_at_20_diff1
value: -8.638035851947166
- type: nauc_precision_at_20_max
value: 44.103880220277084
- type: nauc_precision_at_20_std
value: 64.70525093435604
- type: nauc_precision_at_3_diff1
value: -21.841031859772837
- type: nauc_precision_at_3_max
value: 44.674236578106004
- type: nauc_precision_at_3_std
value: 42.478227317825976
- type: nauc_precision_at_5_diff1
value: -6.236840001066146
- type: nauc_precision_at_5_max
value: 51.207388256616696
- type: nauc_precision_at_5_std
value: 48.96452464084871
- type: nauc_recall_at_1000_diff1
value: -10.99581357598733
- type: nauc_recall_at_1000_max
value: 24.78131457526207
- type: nauc_recall_at_1000_std
value: 58.616353090231456
- type: nauc_recall_at_100_diff1
value: -7.391122888251769
- type: nauc_recall_at_100_max
value: 13.48733379483525
- type: nauc_recall_at_100_std
value: 30.021453850557478
- type: nauc_recall_at_10_diff1
value: 18.655482095342737
- type: nauc_recall_at_10_max
value: 7.711145130239254
- type: nauc_recall_at_10_std
value: 4.714005963492534
- type: nauc_recall_at_1_diff1
value: 6.725038753955455
- type: nauc_recall_at_1_max
value: 5.632652286527743
- type: nauc_recall_at_1_std
value: -0.6518088466576922
- type: nauc_recall_at_20_diff1
value: 13.388708452075319
- type: nauc_recall_at_20_max
value: 7.968138289992421
- type: nauc_recall_at_20_std
value: 6.945001828898886
- type: nauc_recall_at_3_diff1
value: 13.1846212620345
- type: nauc_recall_at_3_max
value: 5.67166800633548
- type: nauc_recall_at_3_std
value: 0.4607538722304717
- type: nauc_recall_at_5_diff1
value: 20.396178452142838
- type: nauc_recall_at_5_max
value: 8.470737892964241
- type: nauc_recall_at_5_std
value: 1.3229988346689756
- type: ndcg_at_1
value: 84.0
- type: ndcg_at_10
value: 77.75999999999999
- type: ndcg_at_100
value: 58.162000000000006
- type: ndcg_at_1000
value: 52.235
- type: ndcg_at_20
value: 73.04
- type: ndcg_at_3
value: 79.061
- type: ndcg_at_5
value: 78.242
- type: precision_at_1
value: 90.0
- type: precision_at_10
value: 81.6
- type: precision_at_100
value: 59.540000000000006
- type: precision_at_1000
value: 22.918
- type: precision_at_20
value: 76.4
- type: precision_at_3
value: 83.333
- type: precision_at_5
value: 82.39999999999999
- type: recall_at_1
value: 0.23900000000000002
- type: recall_at_10
value: 2.1510000000000002
- type: recall_at_100
value: 14.457
- type: recall_at_1000
value: 49.112
- type: recall_at_20
value: 3.968
- type: recall_at_3
value: 0.672
- type: recall_at_5
value: 1.1079999999999999
- task:
type: Retrieval
dataset:
name: MTEB Touche2020Retrieval.v3 (default)
type: mteb/webis-touche2020-v3
config: default
split: test
revision: 431886eaecc48f067a3975b70d0949ea2862463c
metrics:
- type: main_score
value: 56.196
- type: map_at_1
value: 2.946
- type: map_at_10
value: 18.725
- type: map_at_100
value: 36.925999999999995
- type: map_at_1000
value: 39.741
- type: map_at_20
value: 26.534000000000002
- type: map_at_3
value: 7.083
- type: map_at_5
value: 11.187999999999999
- type: mrr_at_1
value: 73.46938775510205
- type: mrr_at_10
value: 83.67346938775512
- type: mrr_at_100
value: 83.67346938775512
- type: mrr_at_1000
value: 83.67346938775512
- type: mrr_at_20
value: 83.67346938775512
- type: mrr_at_3
value: 81.6326530612245
- type: mrr_at_5
value: 83.67346938775512
- type: nauc_map_at_1000_diff1
value: -2.991437116771111
- type: nauc_map_at_1000_max
value: -11.67772152587661
- type: nauc_map_at_1000_std
value: 30.75490471184306
- type: nauc_map_at_100_diff1
value: -2.95737316254561
- type: nauc_map_at_100_max
value: -15.02583478654141
- type: nauc_map_at_100_std
value: 26.630398365349656
- type: nauc_map_at_10_diff1
value: -10.212425455350994
- type: nauc_map_at_10_max
value: -24.03187999524167
- type: nauc_map_at_10_std
value: -0.014679526577675323
- type: nauc_map_at_1_diff1
value: -20.82132515478208
- type: nauc_map_at_1_max
value: -40.886965604054176
- type: nauc_map_at_1_std
value: -23.05338042822077
- type: nauc_map_at_20_diff1
value: -5.077469934765774
- type: nauc_map_at_20_max
value: -15.699607051137168
- type: nauc_map_at_20_std
value: 7.679788317888087
- type: nauc_map_at_3_diff1
value: -7.8949208792660555
- type: nauc_map_at_3_max
value: -33.62859118751235
- type: nauc_map_at_3_std
value: -9.004325158650554
- type: nauc_map_at_5_diff1
value: -5.264771799791715
- type: nauc_map_at_5_max
value: -31.357780951814874
- type: nauc_map_at_5_std
value: -0.7165057953194318
- type: nauc_mrr_at_1000_diff1
value: -5.024511068781128
- type: nauc_mrr_at_1000_max
value: -40.77907972701954
- type: nauc_mrr_at_1000_std
value: 15.946175002676071
- type: nauc_mrr_at_100_diff1
value: -5.024511068781128
- type: nauc_mrr_at_100_max
value: -40.77907972701954
- type: nauc_mrr_at_100_std
value: 15.946175002676071
- type: nauc_mrr_at_10_diff1
value: -5.024511068781128
- type: nauc_mrr_at_10_max
value: -40.77907972701954
- type: nauc_mrr_at_10_std
value: 15.946175002676071
- type: nauc_mrr_at_1_diff1
value: -4.991894795838693
- type: nauc_mrr_at_1_max
value: -38.83508536411747
- type: nauc_mrr_at_1_std
value: 15.246738247246094
- type: nauc_mrr_at_20_diff1
value: -5.024511068781128
- type: nauc_mrr_at_20_max
value: -40.77907972701954
- type: nauc_mrr_at_20_std
value: 15.946175002676071
- type: nauc_mrr_at_3_diff1
value: -4.9009070566281245
- type: nauc_mrr_at_3_max
value: -39.257034415652896
- type: nauc_mrr_at_3_std
value: 17.02621296101872
- type: nauc_mrr_at_5_diff1
value: -5.024511068781128
- type: nauc_mrr_at_5_max
value: -40.77907972701954
- type: nauc_mrr_at_5_std
value: 15.946175002676071
- type: nauc_ndcg_at_1000_diff1
value: 4.877492348633252
- type: nauc_ndcg_at_1000_max
value: -3.2969805314117404
- type: nauc_ndcg_at_1000_std
value: 55.98792969695613
- type: nauc_ndcg_at_100_diff1
value: -0.038028291353188436
- type: nauc_ndcg_at_100_max
value: -23.001016457410532
- type: nauc_ndcg_at_100_std
value: 41.898883840979764
- type: nauc_ndcg_at_10_diff1
value: -5.1015740530562175
- type: nauc_ndcg_at_10_max
value: -8.7971501887686
- type: nauc_ndcg_at_10_std
value: 38.76126472444422
- type: nauc_ndcg_at_1_diff1
value: -8.898461488020045
- type: nauc_ndcg_at_1_max
value: -12.226428291827384
- type: nauc_ndcg_at_1_std
value: 20.89258738535739
- type: nauc_ndcg_at_20_diff1
value: -5.019424969386717
- type: nauc_ndcg_at_20_max
value: -8.40375826680385
- type: nauc_ndcg_at_20_std
value: 33.50966709609865
- type: nauc_ndcg_at_3_diff1
value: 0.22327484809688333
- type: nauc_ndcg_at_3_max
value: -13.27467982106787
- type: nauc_ndcg_at_3_std
value: 30.51511997926173
- type: nauc_ndcg_at_5_diff1
value: 0.09938628362624732
- type: nauc_ndcg_at_5_max
value: -17.931135627985192
- type: nauc_ndcg_at_5_std
value: 38.57726727005374
- type: nauc_precision_at_1000_diff1
value: 2.106041432080759
- type: nauc_precision_at_1000_max
value: 49.528293004180455
- type: nauc_precision_at_1000_std
value: 36.49921447274295
- type: nauc_precision_at_100_diff1
value: -1.225455548663038
- type: nauc_precision_at_100_max
value: 19.605316746110887
- type: nauc_precision_at_100_std
value: 71.37044623385614
- type: nauc_precision_at_10_diff1
value: -1.8080350322595757
- type: nauc_precision_at_10_max
value: -3.453940682448408
- type: nauc_precision_at_10_std
value: 36.75225348961599
- type: nauc_precision_at_1_diff1
value: -4.991894795838693
- type: nauc_precision_at_1_max
value: -38.83508536411747
- type: nauc_precision_at_1_std
value: 15.246738247246094
- type: nauc_precision_at_20_diff1
value: 11.092767632848723
- type: nauc_precision_at_20_max
value: 10.218443043089982
- type: nauc_precision_at_20_std
value: 47.63494142738728
- type: nauc_precision_at_3_diff1
value: 12.20603394911171
- type: nauc_precision_at_3_max
value: -17.251065315072193
- type: nauc_precision_at_3_std
value: 26.867651256647452
- type: nauc_precision_at_5_diff1
value: 10.093913963838736
- type: nauc_precision_at_5_max
value: -20.946372820355073
- type: nauc_precision_at_5_std
value: 42.58398961954329
- type: nauc_recall_at_1000_diff1
value: 27.541259514336
- type: nauc_recall_at_1000_max
value: 26.488575954326027
- type: nauc_recall_at_1000_std
value: 77.42345371512604
- type: nauc_recall_at_100_diff1
value: 0.3196527391909681
- type: nauc_recall_at_100_max
value: -24.479150613828303
- type: nauc_recall_at_100_std
value: 39.2629664046755
- type: nauc_recall_at_10_diff1
value: -12.59639639211954
- type: nauc_recall_at_10_max
value: -28.209370861454307
- type: nauc_recall_at_10_std
value: -7.833213547133838
- type: nauc_recall_at_1_diff1
value: -20.82132515478208
- type: nauc_recall_at_1_max
value: -40.886965604054176
- type: nauc_recall_at_1_std
value: -23.05338042822077
- type: nauc_recall_at_20_diff1
value: -5.180606615847058
- type: nauc_recall_at_20_max
value: -19.492523770094547
- type: nauc_recall_at_20_std
value: 3.0890655409078276
- type: nauc_recall_at_3_diff1
value: -7.4383614317036715
- type: nauc_recall_at_3_max
value: -33.467231727496504
- type: nauc_recall_at_3_std
value: -10.871143037448503
- type: nauc_recall_at_5_diff1
value: -6.729176537186017
- type: nauc_recall_at_5_max
value: -34.57305958555233
- type: nauc_recall_at_5_std
value: -4.486225513133468
- type: ndcg_at_1
value: 60.204
- type: ndcg_at_10
value: 56.196
- type: ndcg_at_100
value: 58.08
- type: ndcg_at_1000
value: 69.069
- type: ndcg_at_20
value: 50.604000000000006
- type: ndcg_at_3
value: 59.114
- type: ndcg_at_5
value: 59.52499999999999
- type: precision_at_1
value: 73.469
- type: precision_at_10
value: 63.26500000000001
- type: precision_at_100
value: 19.796
- type: precision_at_1000
value: 3.102
- type: precision_at_20
value: 49.592000000000006
- type: precision_at_3
value: 69.388
- type: precision_at_5
value: 70.612
- type: recall_at_1
value: 2.946
- type: recall_at_10
value: 22.479
- type: recall_at_100
value: 61.507
- type: recall_at_1000
value: 88.495
- type: recall_at_20
value: 34.344
- type: recall_at_3
value: 7.571
- type: recall_at_5
value: 12.606
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 65.8447265625
- type: ap
value: 11.790127057253194
- type: ap_weighted
value: 11.790127057253194
- type: f1
value: 50.28742613560235
- type: f1_weighted
value: 73.24450181406255
- type: main_score
value: 65.8447265625
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.349745331069606
- type: f1
value: 61.502480965412744
- type: f1_weighted
value: 60.39561856225271
- type: main_score
value: 61.349745331069606
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: main_score
value: 47.338360343180106
- type: v_measure
value: 47.338360343180106
- type: v_measure_std
value: 2.01314014968057
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 85.49204267747511
- type: cosine_accuracy_threshold
value: 86.85047030448914
- type: cosine_ap
value: 72.98051397210814
- type: cosine_f1
value: 66.8282725184996
- type: cosine_f1_threshold
value: 84.59665775299072
- type: cosine_precision
value: 64.69861660079052
- type: cosine_recall
value: 69.10290237467018
- type: dot_accuracy
value: 85.49204267747511
- type: dot_accuracy_threshold
value: 86.85047030448914
- type: dot_ap
value: 72.98051075246349
- type: dot_f1
value: 66.8282725184996
- type: dot_f1_threshold
value: 84.59665775299072
- type: dot_precision
value: 64.69861660079052
- type: dot_recall
value: 69.10290237467018
- type: euclidean_accuracy
value: 85.49204267747511
- type: euclidean_accuracy_threshold
value: 51.28260850906372
- type: euclidean_ap
value: 72.98052075606988
- type: euclidean_f1
value: 66.8282725184996
- type: euclidean_f1_threshold
value: 55.50377368927002
- type: euclidean_precision
value: 64.69861660079052
- type: euclidean_recall
value: 69.10290237467018
- type: main_score
value: 72.98052075606988
- type: manhattan_accuracy
value: 85.43839780652083
- type: manhattan_accuracy_threshold
value: 796.9008445739746
- type: manhattan_ap
value: 72.80895903518599
- type: manhattan_f1
value: 66.64168852254278
- type: manhattan_f1_threshold
value: 871.8400955200195
- type: manhattan_precision
value: 63.267725871472614
- type: manhattan_recall
value: 70.3957783641161
- type: max_accuracy
value: 85.49204267747511
- type: max_ap
value: 72.98052075606988
- type: max_f1
value: 66.8282725184996
- type: max_precision
value: 64.69861660079052
- type: max_recall
value: 70.3957783641161
- type: similarity_accuracy
value: 85.49204267747511
- type: similarity_accuracy_threshold
value: 86.85047030448914
- type: similarity_ap
value: 72.98051397210814
- type: similarity_f1
value: 66.8282725184996
- type: similarity_f1_threshold
value: 84.59665775299072
- type: similarity_precision
value: 64.69861660079052
- type: similarity_recall
value: 69.10290237467018
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 88.4192959987581
- type: cosine_accuracy_threshold
value: 82.84748792648315
- type: cosine_ap
value: 84.98986658033178
- type: cosine_f1
value: 77.24466264970617
- type: cosine_f1_threshold
value: 81.41384720802307
- type: cosine_precision
value: 74.71578644409269
- type: cosine_recall
value: 79.95072374499537
- type: dot_accuracy
value: 88.4192959987581
- type: dot_accuracy_threshold
value: 82.84748792648315
- type: dot_ap
value: 84.98983415174361
- type: dot_f1
value: 77.24466264970617
- type: dot_f1_threshold
value: 81.41384720802307
- type: dot_precision
value: 74.71578644409269
- type: dot_recall
value: 79.95072374499537
- type: euclidean_accuracy
value: 88.4192959987581
- type: euclidean_accuracy_threshold
value: 58.57049226760864
- type: euclidean_ap
value: 84.9898314712826
- type: euclidean_f1
value: 77.24466264970617
- type: euclidean_f1_threshold
value: 60.96909046173096
- type: euclidean_precision
value: 74.71578644409269
- type: euclidean_recall
value: 79.95072374499537
- type: main_score
value: 84.98986658033178
- type: manhattan_accuracy
value: 88.4192959987581
- type: manhattan_accuracy_threshold
value: 907.758617401123
- type: manhattan_ap
value: 84.92522577660164
- type: manhattan_f1
value: 76.9788698516079
- type: manhattan_f1_threshold
value: 952.1110534667969
- type: manhattan_precision
value: 74.10758817242608
- type: manhattan_recall
value: 80.08161379735141
- type: max_accuracy
value: 88.4192959987581
- type: max_ap
value: 84.98986658033178
- type: max_f1
value: 77.24466264970617
- type: max_precision
value: 74.71578644409269
- type: max_recall
value: 80.08161379735141
- type: similarity_accuracy
value: 88.4192959987581
- type: similarity_accuracy_threshold
value: 82.84748792648315
- type: similarity_ap
value: 84.98986658033178
- type: similarity_f1
value: 77.24466264970617
- type: similarity_f1_threshold
value: 81.41384720802307
- type: similarity_precision
value: 74.71578644409269
- type: similarity_recall
value: 79.95072374499537
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 22.198999999999998
- type: map_at_1
value: 1.932
- type: map_at_10
value: 9.105
- type: map_at_100
value: 14.99
- type: map_at_1000
value: 16.502
- type: map_at_20
value: 11.283
- type: map_at_3
value: 4.832
- type: map_at_5
value: 6.944999999999999
- type: mrr_at_1
value: 26.53061224489796
- type: mrr_at_10
value: 43.61030126336249
- type: mrr_at_100
value: 44.75538656374139
- type: mrr_at_1000
value: 44.75538656374139
- type: mrr_at_20
value: 44.37315402351417
- type: mrr_at_3
value: 40.136054421768705
- type: mrr_at_5
value: 42.68707482993197
- type: nauc_map_at_1000_diff1
value: 5.571019818745702
- type: nauc_map_at_1000_max
value: -11.439908189694366
- type: nauc_map_at_1000_std
value: 3.492870285000601
- type: nauc_map_at_100_diff1
value: 6.3857496898544825
- type: nauc_map_at_100_max
value: -10.684360218709237
- type: nauc_map_at_100_std
value: -1.3788744378787143
- type: nauc_map_at_10_diff1
value: -3.2307453267757613
- type: nauc_map_at_10_max
value: -11.982307021752293
- type: nauc_map_at_10_std
value: -17.038119838763336
- type: nauc_map_at_1_diff1
value: -12.065806764609652
- type: nauc_map_at_1_max
value: -18.42316476528604
- type: nauc_map_at_1_std
value: -5.338503094268672
- type: nauc_map_at_20_diff1
value: 2.060946421753866
- type: nauc_map_at_20_max
value: -9.648155355543604
- type: nauc_map_at_20_std
value: -14.167331436206121
- type: nauc_map_at_3_diff1
value: -6.1582621880288135
- type: nauc_map_at_3_max
value: -22.097550216296806
- type: nauc_map_at_3_std
value: -19.199284745576712
- type: nauc_map_at_5_diff1
value: -7.802919708793224
- type: nauc_map_at_5_max
value: -17.70019332797913
- type: nauc_map_at_5_std
value: -15.991138654326342
- type: nauc_mrr_at_1000_diff1
value: 5.315700846697389
- type: nauc_mrr_at_1000_max
value: -29.55043481865213
- type: nauc_mrr_at_1000_std
value: -8.769041254229224
- type: nauc_mrr_at_100_diff1
value: 5.315700846697389
- type: nauc_mrr_at_100_max
value: -29.55043481865213
- type: nauc_mrr_at_100_std
value: -8.769041254229224
- type: nauc_mrr_at_10_diff1
value: 5.342627942794191
- type: nauc_mrr_at_10_max
value: -29.8876417651037
- type: nauc_mrr_at_10_std
value: -8.925134053814258
- type: nauc_mrr_at_1_diff1
value: -5.853396683618596
- type: nauc_mrr_at_1_max
value: -24.66468805788406
- type: nauc_mrr_at_1_std
value: -2.9097438384537346
- type: nauc_mrr_at_20_diff1
value: 5.614614325342419
- type: nauc_mrr_at_20_max
value: -29.57233189732013
- type: nauc_mrr_at_20_std
value: -8.901826109523945
- type: nauc_mrr_at_3_diff1
value: 3.926726061167271
- type: nauc_mrr_at_3_max
value: -29.133917047617896
- type: nauc_mrr_at_3_std
value: -10.817130618828164
- type: nauc_mrr_at_5_diff1
value: 6.866536020293703
- type: nauc_mrr_at_5_max
value: -27.22246522106795
- type: nauc_mrr_at_5_std
value: -9.223799569500295
- type: nauc_ndcg_at_1000_diff1
value: 4.912125181204877
- type: nauc_ndcg_at_1000_max
value: -19.911079119060137
- type: nauc_ndcg_at_1000_std
value: 31.204098714668948
- type: nauc_ndcg_at_100_diff1
value: 8.050987112499488
- type: nauc_ndcg_at_100_max
value: -24.237414173651416
- type: nauc_ndcg_at_100_std
value: 19.15875595335081
- type: nauc_ndcg_at_10_diff1
value: 2.5354767183863816
- type: nauc_ndcg_at_10_max
value: -19.384946931074236
- type: nauc_ndcg_at_10_std
value: -12.474145803872345
- type: nauc_ndcg_at_1_diff1
value: -6.385670878766842
- type: nauc_ndcg_at_1_max
value: -26.888516826897597
- type: nauc_ndcg_at_1_std
value: 4.6644465028244495
- type: nauc_ndcg_at_20_diff1
value: 5.589354383855214
- type: nauc_ndcg_at_20_max
value: -19.6270331947477
- type: nauc_ndcg_at_20_std
value: -8.94059836915274
- type: nauc_ndcg_at_3_diff1
value: -2.9174040900462406
- type: nauc_ndcg_at_3_max
value: -27.05606242350417
- type: nauc_ndcg_at_3_std
value: -11.987391689874753
- type: nauc_ndcg_at_5_diff1
value: -0.962392407401707
- type: nauc_ndcg_at_5_max
value: -22.053428062249598
- type: nauc_ndcg_at_5_std
value: -9.713594416902245
- type: nauc_precision_at_1000_diff1
value: 2.203417821108256
- type: nauc_precision_at_1000_max
value: 34.33612400063248
- type: nauc_precision_at_1000_std
value: 43.96264641409255
- type: nauc_precision_at_100_diff1
value: 16.62707023479431
- type: nauc_precision_at_100_max
value: -8.941729500754416
- type: nauc_precision_at_100_std
value: 62.443164771048
- type: nauc_precision_at_10_diff1
value: 13.230088341821533
- type: nauc_precision_at_10_max
value: -9.557587026278982
- type: nauc_precision_at_10_std
value: -13.903821725694145
- type: nauc_precision_at_1_diff1
value: -5.853396683618596
- type: nauc_precision_at_1_max
value: -24.66468805788406
- type: nauc_precision_at_1_std
value: -2.9097438384537346
- type: nauc_precision_at_20_diff1
value: 20.01420656558271
- type: nauc_precision_at_20_max
value: -3.610511982629168
- type: nauc_precision_at_20_std
value: 3.3028512582216196
- type: nauc_precision_at_3_diff1
value: 4.543784490391635
- type: nauc_precision_at_3_max
value: -25.438739747558976
- type: nauc_precision_at_3_std
value: -23.527100799773606
- type: nauc_precision_at_5_diff1
value: 4.918050559436191
- type: nauc_precision_at_5_max
value: -17.82587578128468
- type: nauc_precision_at_5_std
value: -15.917371534686687
- type: nauc_recall_at_1000_diff1
value: -0.8380945098365681
- type: nauc_recall_at_1000_max
value: -13.542228290393272
- type: nauc_recall_at_1000_std
value: 78.43177045214168
- type: nauc_recall_at_100_diff1
value: 6.01120074173763
- type: nauc_recall_at_100_max
value: -27.262764699369907
- type: nauc_recall_at_100_std
value: 34.11660757682217
- type: nauc_recall_at_10_diff1
value: -0.3618473898428649
- type: nauc_recall_at_10_max
value: -17.245131880022484
- type: nauc_recall_at_10_std
value: -20.126269566717603
- type: nauc_recall_at_1_diff1
value: -12.065806764609652
- type: nauc_recall_at_1_max
value: -18.42316476528604
- type: nauc_recall_at_1_std
value: -5.338503094268672
- type: nauc_recall_at_20_diff1
value: 5.300185381681294
- type: nauc_recall_at_20_max
value: -16.939840786187844
- type: nauc_recall_at_20_std
value: -11.448793742632803
- type: nauc_recall_at_3_diff1
value: -2.90066753150224
- type: nauc_recall_at_3_max
value: -27.41339431526332
- type: nauc_recall_at_3_std
value: -23.23954755854574
- type: nauc_recall_at_5_diff1
value: -2.8599531525072495
- type: nauc_recall_at_5_max
value: -19.68001489065482
- type: nauc_recall_at_5_std
value: -16.335162845490004
- type: ndcg_at_1
value: 22.448999999999998
- type: ndcg_at_10
value: 22.198999999999998
- type: ndcg_at_100
value: 34.79
- type: ndcg_at_1000
value: 45.921
- type: ndcg_at_20
value: 23.751
- type: ndcg_at_3
value: 25.185000000000002
- type: ndcg_at_5
value: 24.751
- type: precision_at_1
value: 26.531
- type: precision_at_10
value: 19.592000000000002
- type: precision_at_100
value: 7.327
- type: precision_at_1000
value: 1.486
- type: precision_at_20
value: 15.612
- type: precision_at_3
value: 28.571
- type: precision_at_5
value: 26.939
- type: recall_at_1
value: 1.932
- type: recall_at_10
value: 14.896999999999998
- type: recall_at_100
value: 46.132
- type: recall_at_1000
value: 80.26100000000001
- type: recall_at_20
value: 22.304
- type: recall_at_3
value: 6.237
- type: recall_at_5
value: 9.945
---
# MedEmbed: Specialized Embedding Model for Medical and Clinical Information Retrieval

## Model Description
MedEmbed is a family of embedding models fine-tuned specifically for medical and clinical data, designed to enhance performance in healthcare-related natural language processing (NLP) tasks, particularly information retrieval.
**GitHub Repo:** [https://github.com/abhinand5/MedEmbed](https://github.com/abhinand5/MedEmbed)
**Technical Blog Post:** [https://huggingface.co/blog/abhinand/medembed-finetuned-embedding-models-for-medical-ir](https://huggingface.co/blog/abhinand/medembed-finetuned-embedding-models-for-medical-ir)
## Intended Use
This model is intended for use in medical and clinical contexts to improve information retrieval, question answering, and semantic search tasks. It can be integrated into healthcare systems, research tools, and medical literature databases to enhance search capabilities and information access.
## Training Data

The model was trained using a simple yet effective synthetic data generation pipeline:
1. Source: Clinical notes from PubMed Central (PMC)
2. Processing: [LLaMA 3.1 70B](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) model used to generate query-response pairs
3. Augmentation: Negative sampling for challenging examples
4. Format: Triplets (query, positive response, negative response) for contrastive learning
## Performance
MedEmbed consistently outperforms general-purpose embedding models across various medical NLP benchmarks:
- ArguAna
- MedicalQARetrieval
- NFCorpus
- PublicHealthQA
- TRECCOVID
Specific performance metrics (nDCG, MAP, Recall, Precision, MRR) are available in the full documentation.
## Limitations
While highly effective for medical and clinical data, this model may not generalize well to non-medical domains. It should be used with caution in general-purpose NLP tasks.
## Ethical Considerations
Users should be aware of potential biases in medical data and the ethical implications of AI in healthcare. This model should be used as a tool to assist, not replace, human expertise in medical decision-making.
## Citation
If you use this model in your research, please cite:
```bibtex
@software{balachandran2024medembed,
author = {Balachandran, Abhinand},
title = {MedEmbed: Medical-Focused Embedding Models},
year = {2024},
url = {https://github.com/abhinand5/MedEmbed}
}
```
For more detailed information, visit our GitHub repository.
| [
"BIOSSES",
"MEDICAL DATA",
"SCIFACT"
] |
EleutherAI/pythia-12b-deduped | EleutherAI | text-generation | [
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"causal-lm",
"pythia",
"en",
"dataset:EleutherAI/the_pile_deduplicated",
"arxiv:2304.01373",
"arxiv:2101.00027",
"arxiv:2201.07311",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2023-02-27T14:01:34Z" | 2023-06-08T13:07:07+00:00 | 6,792 | 51 | ---
datasets:
- EleutherAI/the_pile_deduplicated
language:
- en
license: apache-2.0
tags:
- pytorch
- causal-lm
- pythia
---
The *Pythia Scaling Suite* is a collection of models developed to facilitate
interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf).
It contains two sets of eight models of sizes
70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two
models: one trained on the Pile, and one trained on the Pile after the dataset
has been globally deduplicated. All 8 model sizes are trained on the exact
same data, in the exact same order. We also provide 154 intermediate
checkpoints per model, hosted on Hugging Face as branches.
The Pythia model suite was designed to promote scientific
research on large language models, especially interpretability research.
Despite not centering downstream performance as a design goal, we find the
models <a href="#evaluations">match or exceed</a> the performance of
similar and same-sized models, such as those in the OPT and GPT-Neo suites.
<details>
<summary style="font-weight:600">Details on previous early release and naming convention.</summary>
Previously, we released an early version of the Pythia suite to the public.
However, we decided to retrain the model suite to address a few hyperparameter
discrepancies. This model card <a href="#changelog">lists the changes</a>;
see appendix B in the Pythia paper for further discussion. We found no
difference in benchmark performance between the two Pythia versions.
The old models are
[still available](https://huggingface.co/models?other=pythia_v0), but we
suggest the retrained suite if you are just starting to use Pythia.<br>
**This is the current release.**
Please note that all models in the *Pythia* suite were renamed in January
2023. For clarity, a <a href="#naming-convention-and-parameter-count">table
comparing the old and new names</a> is provided in this model card, together
with exact parameter counts.
</details>
<br>
# Pythia-12B-deduped
## Model Details
- Developed by: [EleutherAI](http://eleuther.ai)
- Model type: Transformer-based Language Model
- Language: English
- Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia)
for training procedure, config files, and details on how to use.
[See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation
details.
- Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
- License: Apache 2.0
- Contact: to ask questions about this model, join the [EleutherAI
Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`.
Please read the existing *Pythia* documentation before asking about it in the
EleutherAI Discord. For general correspondence: [contact@eleuther.
ai](mailto:[email protected]).
<figure>
| Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models |
| -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: |
| 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — |
| 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M |
| 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M |
| 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — |
| 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B |
| 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B |
| 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B |
| 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — |
<figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and
non-deduped models of a given size have the same hyperparameters. “Equivalent”
models have <b>exactly</b> the same architecture, and the same number of
non-embedding parameters.</figcaption>
</figure>
## Uses and Limitations
### Intended Use
The primary intended use of Pythia is research on the behavior, functionality,
and limitations of large language models. This suite is intended to provide
a controlled setting for performing scientific experiments. We also provide
154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints
`step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to
`step143000`. These checkpoints are hosted on Hugging Face as branches. Note
that branch `143000` corresponds exactly to the model checkpoint on the `main`
branch of each model.
You may also further fine-tune and adapt Pythia-12B-deduped for deployment,
as long as your use is in accordance with the Apache 2.0 license. Pythia
models work with the Hugging Face [Transformers
Library](https://huggingface.co/docs/transformers/index). If you decide to use
pre-trained Pythia-12B-deduped as a basis for your fine-tuned model, please
conduct your own risk and bias assessment.
### Out-of-scope use
The Pythia Suite is **not** intended for deployment. It is not a in itself
a product and cannot be used for human-facing interactions. For example,
the model may generate harmful or offensive text. Please evaluate the risks
associated with your particular use case.
Pythia models are English-language only, and are not suitable for translation
or generating text in other languages.
Pythia-12B-deduped has not been fine-tuned for downstream contexts in which
language models are commonly deployed, such as writing genre prose,
or commercial chatbots. This means Pythia-12B-deduped will **not**
respond to a given prompt the way a product like ChatGPT does. This is because,
unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
Learning from Human Feedback (RLHF) to better “follow” human instructions.
### Limitations and biases
The core functionality of a large language model is to take a string of text
and predict the next token. The token used by the model need not produce the
most “accurate” text. Never rely on Pythia-12B-deduped to produce factually accurate
output.
This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset
known to contain profanity and texts that are lewd or otherwise offensive.
See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a
discussion of documented biases with regards to gender, religion, and race.
Pythia-12B-deduped may produce socially unacceptable or undesirable text, *even if*
the prompt itself does not include anything explicitly offensive.
If you plan on using text generated through, for example, the Hosted Inference
API, we recommend having a human curate the outputs of this language model
before presenting it to other people. Please inform your audience that the
text was generated by Pythia-12B-deduped.
### Quickstart
Pythia models can be loaded and used via the following code, demonstrated here
for the third `pythia-70m-deduped` checkpoint:
```python
from transformers import GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained(
"EleutherAI/pythia-70m-deduped",
revision="step3000",
cache_dir="./pythia-70m-deduped/step3000",
)
tokenizer = AutoTokenizer.from_pretrained(
"EleutherAI/pythia-70m-deduped",
revision="step3000",
cache_dir="./pythia-70m-deduped/step3000",
)
inputs = tokenizer("Hello, I am", return_tensors="pt")
tokens = model.generate(**inputs)
tokenizer.decode(tokens[0])
```
Revision/branch `step143000` corresponds exactly to the model checkpoint on
the `main` branch of each model.<br>
For more information on how to use all Pythia models, see [documentation on
GitHub](https://github.com/EleutherAI/pythia).
## Training
### Training data
Pythia-12B-deduped was trained on the Pile **after the dataset has been globally
deduplicated**.<br>
[The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in
English. It was created by EleutherAI specifically for training large language
models. It contains texts from 22 diverse sources, roughly broken down into
five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl),
prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and
miscellaneous (e.g. GitHub, Enron Emails). See [the Pile
paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources,
methodology, and a discussion of ethical implications. Consult [the
datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation
about the Pile and its component datasets. The Pile can be downloaded from
the [official website](https://pile.eleuther.ai/), or from a [community
mirror](https://the-eye.eu/public/AI/pile/).
### Training procedure
All models were trained on the exact same data, in the exact same order. Each
model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
model are saved every 2,097,152,000 tokens, spaced evenly throughout training,
from `step1000` to `step143000` (which is the same as `main`). In addition, we
also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`.
This corresponds to training for just under 1 epoch on the Pile for
non-deduplicated models, and about 1.5 epochs on the deduplicated Pile.
All *Pythia* models trained for 143000 steps at a batch size
of 2M (2,097,152 tokens).<br>
See [GitHub](https://github.com/EleutherAI/pythia) for more details on training
procedure, including [how to reproduce
it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br>
Pythia uses the same tokenizer as [GPT-NeoX-
20B](https://huggingface.co/EleutherAI/gpt-neox-20b).
## Evaluations
All 16 *Pythia* models were evaluated using the [LM Evaluation
Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access
the results by model and step at `results/json/*` in the [GitHub
repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br>
Expand the sections below to see plots of evaluation results for all
Pythia and Pythia-deduped models compared with OPT and BLOOM.
<details>
<summary>LAMBADA – OpenAI</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/>
</details>
<details>
<summary>Physical Interaction: Question Answering (PIQA)</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/>
</details>
<details>
<summary>WinoGrande</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/>
</details>
<details>
<summary>AI2 Reasoning Challenge—Easy Set</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/>
</details>
<details>
<summary>SciQ</summary>
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/>
</details>
## Changelog
This section compares differences between previously released
[Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current
models. See Appendix B of the Pythia paper for further discussion of these
changes and the motivation behind them. We found that retraining Pythia had no
impact on benchmark performance.
- All model sizes are now trained with uniform batch size of 2M tokens.
Previously, the models of size 160M, 410M, and 1.4B parameters were trained
with batch sizes of 4M tokens.
- We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64,
128,256,512} in addition to every 1000 training steps.
- Flash Attention was used in the new retrained suite.
- We remedied a minor inconsistency that existed in the original suite: all
models of size 2.8B parameters or smaller had a learning rate (LR) schedule
which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and
12B models all used an LR schedule which decayed to a minimum LR of 0. In
the redone training runs, we rectified this inconsistency: all models now were
trained with LR decaying to a minimum of 0.1× their maximum LR.
### Naming convention and parameter count
*Pythia* models were renamed in January 2023. It is possible that the old
naming convention still persists in some documentation by accident. The
current naming convention (70M, 160M, etc.) is based on total parameter count.
<figure style="width:32em">
| current Pythia suffix | old suffix | total params | non-embedding params |
| --------------------: | ---------: | -------------: | -------------------: |
| 70M | 19M | 70,426,624 | 18,915,328 |
| 160M | 125M | 162,322,944 | 85,056,000 |
| 410M | 350M | 405,334,016 | 302,311,424 |
| 1B | 800M | 1,011,781,632 | 805,736,448 |
| 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 |
| 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 |
| 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 |
| 12B | 13B | 11,846,072,320 | 11,327,027,200 |
</figure> | [
"SCIQ"
] |
ibm-granite/granite-embedding-107m-multilingual | ibm-granite | sentence-similarity | [
"sentence-transformers",
"pytorch",
"safetensors",
"xlm-roberta",
"feature-extraction",
"language",
"granite",
"embeddings",
"multilingual",
"mteb",
"transformers",
"sentence-similarity",
"en",
"ar",
"cs",
"de",
"es",
"fr",
"it",
"ja",
"ko",
"nl",
"pt",
"zh",
"arxiv:0000.00000",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-12-04T20:29:00Z" | 2025-03-04T15:11:23+00:00 | 6,783 | 19 | ---
language:
- en
- ar
- cs
- de
- es
- fr
- it
- ja
- ko
- nl
- pt
- zh
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- language
- granite
- embeddings
- multilingual
- mteb
- transformers
model-index:
- name: ibm-granite/granite-embedding-107m-multilingual
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 72.7136
- type: f1
value: 60.44540000000001
- type: f1_weighted
value: 77.8541
- type: ap
value: 22.4958
- type: ap_weighted
value: 22.4958
- type: main_score
value: 72.7136
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.6716
- type: f1
value: 65.4221
- type: f1_weighted
value: 74.3533
- type: ap
value: 33.7567
- type: ap_weighted
value: 33.7567
- type: main_score
value: 71.6716
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 66.5804
- type: f1
value: 66.2191
- type: f1_weighted
value: 66.2191
- type: ap
value: 61.340799999999994
- type: ap_weighted
value: 61.340799999999994
- type: main_score
value: 66.5804
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 36.412
- type: f1
value: 35.633199999999995
- type: f1_weighted
value: 35.633199999999995
- type: main_score
value: 36.412
- task:
type: Retrieval
dataset:
name: MTEB AppsRetrieval (default)
type: CoIR-Retrieval/apps
config: default
split: test
revision: f22508f96b7a36c2415181ed8bb76f76e04ae2d5
metrics:
- type: ndcg_at_1
value: 2.39
- type: ndcg_at_3
value: 3.527
- type: ndcg_at_5
value: 3.9759999999999995
- type: ndcg_at_10
value: 4.537
- type: ndcg_at_20
value: 5.140000000000001
- type: ndcg_at_100
value: 6.526
- type: ndcg_at_1000
value: 9.797
- type: map_at_1
value: 2.39
- type: map_at_3
value: 3.2489999999999997
- type: map_at_5
value: 3.499
- type: map_at_10
value: 3.7220000000000004
- type: map_at_20
value: 3.887
- type: map_at_100
value: 4.058
- type: map_at_1000
value: 4.146
- type: recall_at_1
value: 2.39
- type: recall_at_3
value: 4.329000000000001
- type: recall_at_5
value: 5.418
- type: recall_at_10
value: 7.198
- type: recall_at_20
value: 9.588000000000001
- type: recall_at_100
value: 17.371
- type: recall_at_1000
value: 45.206
- type: precision_at_1
value: 2.39
- type: precision_at_3
value: 1.443
- type: precision_at_5
value: 1.084
- type: precision_at_10
value: 0.72
- type: precision_at_20
value: 0.479
- type: precision_at_100
value: 0.174
- type: precision_at_1000
value: 0.045
- type: mrr_at_1
value: 2.3904
- type: mrr_at_3
value: 3.2492
- type: mrr_at_5
value: 3.4989
- type: mrr_at_10
value: 3.7220000000000004
- type: mrr_at_20
value: 3.8869000000000002
- type: mrr_at_100
value: 4.0578
- type: mrr_at_1000
value: 4.1463
- type: nauc_ndcg_at_1_max
value: 37.599700000000006
- type: nauc_ndcg_at_1_std
value: 20.302899999999998
- type: nauc_ndcg_at_1_diff1
value: 40.4987
- type: nauc_ndcg_at_3_max
value: 31.119400000000002
- type: nauc_ndcg_at_3_std
value: 11.7335
- type: nauc_ndcg_at_3_diff1
value: 28.788000000000004
- type: nauc_ndcg_at_5_max
value: 28.505399999999998
- type: nauc_ndcg_at_5_std
value: 12.1402
- type: nauc_ndcg_at_5_diff1
value: 25.730900000000002
- type: nauc_ndcg_at_10_max
value: 27.0656
- type: nauc_ndcg_at_10_std
value: 12.648699999999998
- type: nauc_ndcg_at_10_diff1
value: 22.0832
- type: nauc_ndcg_at_20_max
value: 25.953599999999998
- type: nauc_ndcg_at_20_std
value: 12.550500000000001
- type: nauc_ndcg_at_20_diff1
value: 19.3722
- type: nauc_ndcg_at_100_max
value: 23.268
- type: nauc_ndcg_at_100_std
value: 12.8176
- type: nauc_ndcg_at_100_diff1
value: 15.9275
- type: nauc_ndcg_at_1000_max
value: 21.921499999999998
- type: nauc_ndcg_at_1000_std
value: 12.656300000000002
- type: nauc_ndcg_at_1000_diff1
value: 13.9004
- type: nauc_map_at_1_max
value: 37.599700000000006
- type: nauc_map_at_1_std
value: 20.302899999999998
- type: nauc_map_at_1_diff1
value: 40.4987
- type: nauc_map_at_3_max
value: 32.2818
- type: nauc_map_at_3_std
value: 13.276399999999999
- type: nauc_map_at_3_diff1
value: 30.9064
- type: nauc_map_at_5_max
value: 30.5166
- type: nauc_map_at_5_std
value: 13.406
- type: nauc_map_at_5_diff1
value: 28.8213
- type: nauc_map_at_10_max
value: 29.731999999999996
- type: nauc_map_at_10_std
value: 13.5688
- type: nauc_map_at_10_diff1
value: 26.888499999999997
- type: nauc_map_at_20_max
value: 29.211399999999998
- type: nauc_map_at_20_std
value: 13.4739
- type: nauc_map_at_20_diff1
value: 25.6814
- type: nauc_map_at_100_max
value: 28.578300000000002
- type: nauc_map_at_100_std
value: 13.5385
- type: nauc_map_at_100_diff1
value: 24.793100000000003
- type: nauc_map_at_1000_max
value: 28.3912
- type: nauc_map_at_1000_std
value: 13.5039
- type: nauc_map_at_1000_diff1
value: 24.570600000000002
- type: nauc_recall_at_1_max
value: 37.599700000000006
- type: nauc_recall_at_1_std
value: 20.302899999999998
- type: nauc_recall_at_1_diff1
value: 40.4987
- type: nauc_recall_at_3_max
value: 28.598000000000003
- type: nauc_recall_at_3_std
value: 8.3847
- type: nauc_recall_at_3_diff1
value: 24.1871
- type: nauc_recall_at_5_max
value: 24.5381
- type: nauc_recall_at_5_std
value: 9.8274
- type: nauc_recall_at_5_diff1
value: 19.6821
- type: nauc_recall_at_10_max
value: 22.5445
- type: nauc_recall_at_10_std
value: 11.4415
- type: nauc_recall_at_10_diff1
value: 13.8268
- type: nauc_recall_at_20_max
value: 21.3196
- type: nauc_recall_at_20_std
value: 11.5932
- type: nauc_recall_at_20_diff1
value: 10.1991
- type: nauc_recall_at_100_max
value: 16.9415
- type: nauc_recall_at_100_std
value: 12.353200000000001
- type: nauc_recall_at_100_diff1
value: 5.7534
- type: nauc_recall_at_1000_max
value: 15.9223
- type: nauc_recall_at_1000_std
value: 12.2848
- type: nauc_recall_at_1000_diff1
value: 3.5477000000000003
- type: nauc_precision_at_1_max
value: 37.599700000000006
- type: nauc_precision_at_1_std
value: 20.302899999999998
- type: nauc_precision_at_1_diff1
value: 40.4987
- type: nauc_precision_at_3_max
value: 28.598000000000003
- type: nauc_precision_at_3_std
value: 8.3847
- type: nauc_precision_at_3_diff1
value: 24.1871
- type: nauc_precision_at_5_max
value: 24.5381
- type: nauc_precision_at_5_std
value: 9.8274
- type: nauc_precision_at_5_diff1
value: 19.6821
- type: nauc_precision_at_10_max
value: 22.5445
- type: nauc_precision_at_10_std
value: 11.4415
- type: nauc_precision_at_10_diff1
value: 13.8268
- type: nauc_precision_at_20_max
value: 21.3196
- type: nauc_precision_at_20_std
value: 11.5932
- type: nauc_precision_at_20_diff1
value: 10.1991
- type: nauc_precision_at_100_max
value: 16.9415
- type: nauc_precision_at_100_std
value: 12.353200000000001
- type: nauc_precision_at_100_diff1
value: 5.7534
- type: nauc_precision_at_1000_max
value: 15.9223
- type: nauc_precision_at_1000_std
value: 12.2848
- type: nauc_precision_at_1000_diff1
value: 3.5477000000000003
- type: nauc_mrr_at_1_max
value: 37.599700000000006
- type: nauc_mrr_at_1_std
value: 20.302899999999998
- type: nauc_mrr_at_1_diff1
value: 40.4987
- type: nauc_mrr_at_3_max
value: 32.2818
- type: nauc_mrr_at_3_std
value: 13.276399999999999
- type: nauc_mrr_at_3_diff1
value: 30.9064
- type: nauc_mrr_at_5_max
value: 30.5166
- type: nauc_mrr_at_5_std
value: 13.406
- type: nauc_mrr_at_5_diff1
value: 28.8213
- type: nauc_mrr_at_10_max
value: 29.731999999999996
- type: nauc_mrr_at_10_std
value: 13.5688
- type: nauc_mrr_at_10_diff1
value: 26.888499999999997
- type: nauc_mrr_at_20_max
value: 29.211399999999998
- type: nauc_mrr_at_20_std
value: 13.4739
- type: nauc_mrr_at_20_diff1
value: 25.6814
- type: nauc_mrr_at_100_max
value: 28.578300000000002
- type: nauc_mrr_at_100_std
value: 13.5385
- type: nauc_mrr_at_100_diff1
value: 24.793100000000003
- type: nauc_mrr_at_1000_max
value: 28.3912
- type: nauc_mrr_at_1000_std
value: 13.5039
- type: nauc_mrr_at_1000_diff1
value: 24.570600000000002
- type: main_score
value: 4.537
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: ndcg_at_1
value: 27.168999999999997
- type: ndcg_at_3
value: 41.08
- type: ndcg_at_5
value: 46.375
- type: ndcg_at_10
value: 51.663000000000004
- type: ndcg_at_20
value: 54.339999999999996
- type: ndcg_at_100
value: 55.656000000000006
- type: ndcg_at_1000
value: 55.875
- type: map_at_1
value: 27.168999999999997
- type: map_at_3
value: 37.482
- type: map_at_5
value: 40.416000000000004
- type: map_at_10
value: 42.624
- type: map_at_20
value: 43.376999999999995
- type: map_at_100
value: 43.578
- type: map_at_1000
value: 43.588
- type: recall_at_1
value: 27.168999999999997
- type: recall_at_3
value: 51.565000000000005
- type: recall_at_5
value: 64.43799999999999
- type: recall_at_10
value: 80.654
- type: recall_at_20
value: 91.11
- type: recall_at_100
value: 97.937
- type: recall_at_1000
value: 99.57300000000001
- type: precision_at_1
value: 27.168999999999997
- type: precision_at_3
value: 17.188
- type: precision_at_5
value: 12.888
- type: precision_at_10
value: 8.065
- type: precision_at_20
value: 4.555
- type: precision_at_100
value: 0.979
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 27.6671
- type: mrr_at_3
value: 37.6245
- type: mrr_at_5
value: 40.6188
- type: mrr_at_10
value: 42.8016
- type: mrr_at_20
value: 43.5582
- type: mrr_at_100
value: 43.7551
- type: mrr_at_1000
value: 43.765
- type: nauc_ndcg_at_1_max
value: -4.3233
- type: nauc_ndcg_at_1_std
value: -3.5458000000000003
- type: nauc_ndcg_at_1_diff1
value: 10.8118
- type: nauc_ndcg_at_3_max
value: -1.1566
- type: nauc_ndcg_at_3_std
value: -2.5897
- type: nauc_ndcg_at_3_diff1
value: 8.3298
- type: nauc_ndcg_at_5_max
value: -1.399
- type: nauc_ndcg_at_5_std
value: -1.9604
- type: nauc_ndcg_at_5_diff1
value: 7.6803
- type: nauc_ndcg_at_10_max
value: 0.7746000000000001
- type: nauc_ndcg_at_10_std
value: -0.9521
- type: nauc_ndcg_at_10_diff1
value: 9.1107
- type: nauc_ndcg_at_20_max
value: 1.0111999999999999
- type: nauc_ndcg_at_20_std
value: 0.1519
- type: nauc_ndcg_at_20_diff1
value: 9.5802
- type: nauc_ndcg_at_100_max
value: -0.3616
- type: nauc_ndcg_at_100_std
value: -0.6704
- type: nauc_ndcg_at_100_diff1
value: 9.2401
- type: nauc_ndcg_at_1000_max
value: -0.6766
- type: nauc_ndcg_at_1000_std
value: -1.0513
- type: nauc_ndcg_at_1000_diff1
value: 9.0561
- type: nauc_map_at_1_max
value: -4.3233
- type: nauc_map_at_1_std
value: -3.5458000000000003
- type: nauc_map_at_1_diff1
value: 10.8118
- type: nauc_map_at_3_max
value: -1.9845000000000002
- type: nauc_map_at_3_std
value: -2.6683
- type: nauc_map_at_3_diff1
value: 8.7329
- type: nauc_map_at_5_max
value: -2.1342
- type: nauc_map_at_5_std
value: -2.3612
- type: nauc_map_at_5_diff1
value: 8.4139
- type: nauc_map_at_10_max
value: -1.331
- type: nauc_map_at_10_std
value: -1.982
- type: nauc_map_at_10_diff1
value: 9.004199999999999
- type: nauc_map_at_20_max
value: -1.3376000000000001
- type: nauc_map_at_20_std
value: -1.7424
- type: nauc_map_at_20_diff1
value: 9.1012
- type: nauc_map_at_100_max
value: -1.5152
- type: nauc_map_at_100_std
value: -1.8418
- type: nauc_map_at_100_diff1
value: 9.0513
- type: nauc_map_at_1000_max
value: -1.5264
- type: nauc_map_at_1000_std
value: -1.8530000000000002
- type: nauc_map_at_1000_diff1
value: 9.043800000000001
- type: nauc_recall_at_1_max
value: -4.3233
- type: nauc_recall_at_1_std
value: -3.5458000000000003
- type: nauc_recall_at_1_diff1
value: 10.8118
- type: nauc_recall_at_3_max
value: 1.2361
- type: nauc_recall_at_3_std
value: -2.4248
- type: nauc_recall_at_3_diff1
value: 7.2543
- type: nauc_recall_at_5_max
value: 0.9835999999999999
- type: nauc_recall_at_5_std
value: -0.5726
- type: nauc_recall_at_5_diff1
value: 5.2376
- type: nauc_recall_at_10_max
value: 12.7099
- type: nauc_recall_at_10_std
value: 4.9688
- type: nauc_recall_at_10_diff1
value: 10.5016
- type: nauc_recall_at_20_max
value: 28.2615
- type: nauc_recall_at_20_std
value: 23.7662
- type: nauc_recall_at_20_diff1
value: 17.6392
- type: nauc_recall_at_100_max
value: 31.295099999999998
- type: nauc_recall_at_100_std
value: 47.1556
- type: nauc_recall_at_100_diff1
value: 24.055699999999998
- type: nauc_recall_at_1000_max
value: 14.418000000000001
- type: nauc_recall_at_1000_std
value: 56.899699999999996
- type: nauc_recall_at_1000_diff1
value: 3.7199999999999998
- type: nauc_precision_at_1_max
value: -4.3233
- type: nauc_precision_at_1_std
value: -3.5458000000000003
- type: nauc_precision_at_1_diff1
value: 10.8118
- type: nauc_precision_at_3_max
value: 1.2361
- type: nauc_precision_at_3_std
value: -2.4248
- type: nauc_precision_at_3_diff1
value: 7.2543
- type: nauc_precision_at_5_max
value: 0.9835999999999999
- type: nauc_precision_at_5_std
value: -0.5726
- type: nauc_precision_at_5_diff1
value: 5.2376
- type: nauc_precision_at_10_max
value: 12.7099
- type: nauc_precision_at_10_std
value: 4.9688
- type: nauc_precision_at_10_diff1
value: 10.5016
- type: nauc_precision_at_20_max
value: 28.2615
- type: nauc_precision_at_20_std
value: 23.7662
- type: nauc_precision_at_20_diff1
value: 17.6392
- type: nauc_precision_at_100_max
value: 31.295099999999998
- type: nauc_precision_at_100_std
value: 47.1556
- type: nauc_precision_at_100_diff1
value: 24.055699999999998
- type: nauc_precision_at_1000_max
value: 14.418000000000001
- type: nauc_precision_at_1000_std
value: 56.899699999999996
- type: nauc_precision_at_1000_diff1
value: 3.7199999999999998
- type: nauc_mrr_at_1_max
value: -4.2285
- type: nauc_mrr_at_1_std
value: -2.9951
- type: nauc_mrr_at_1_diff1
value: 9.2226
- type: nauc_mrr_at_3_max
value: -2.8361
- type: nauc_mrr_at_3_std
value: -2.5372
- type: nauc_mrr_at_3_diff1
value: 7.205
- type: nauc_mrr_at_5_max
value: -2.827
- type: nauc_mrr_at_5_std
value: -2.1469
- type: nauc_mrr_at_5_diff1
value: 6.9564
- type: nauc_mrr_at_10_max
value: -2.0531
- type: nauc_mrr_at_10_std
value: -1.8227
- type: nauc_mrr_at_10_diff1
value: 7.500500000000001
- type: nauc_mrr_at_20_max
value: -2.0823
- type: nauc_mrr_at_20_std
value: -1.585
- type: nauc_mrr_at_20_diff1
value: 7.5577000000000005
- type: nauc_mrr_at_100_max
value: -2.2609
- type: nauc_mrr_at_100_std
value: -1.6787
- type: nauc_mrr_at_100_diff1
value: 7.500500000000001
- type: nauc_mrr_at_1000_max
value: -2.2721999999999998
- type: nauc_mrr_at_1000_std
value: -1.6898
- type: nauc_mrr_at_1000_diff1
value: 7.492400000000001
- type: main_score
value: 51.663000000000004
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 41.4944
- type: v_measure_std
value: 13.6458
- type: main_score
value: 41.4944
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 30.6155
- type: v_measure_std
value: 14.377999999999998
- type: main_score
value: 30.6155
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.9001
- type: mrr
value: 77.0427
- type: nAUC_map_max
value: 27.7273
- type: nAUC_map_std
value: 14.369299999999999
- type: nAUC_map_diff1
value: 10.7899
- type: nAUC_mrr_max
value: 35.606100000000005
- type: nAUC_mrr_std
value: 20.2621
- type: nAUC_mrr_diff1
value: 17.814
- type: main_score
value: 61.9001
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: pearson
value: 81.5558
- type: spearman
value: 79.2952
- type: cosine_pearson
value: 81.5558
- type: cosine_spearman
value: 79.2952
- type: manhattan_pearson
value: 79.4434
- type: manhattan_spearman
value: 78.803
- type: euclidean_pearson
value: 80.0336
- type: euclidean_spearman
value: 79.2952
- type: main_score
value: 79.2952
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 75.9481
- type: f1
value: 74.9851
- type: f1_weighted
value: 74.9851
- type: main_score
value: 75.9481
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.6038
- type: v_measure_std
value: 0.5428999999999999
- type: main_score
value: 35.6038
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.3652
- type: v_measure_std
value: 1.0767
- type: main_score
value: 28.3652
- task:
type: Retrieval
dataset:
name: MTEB COIRCodeSearchNetRetrieval (python)
type: CoIR-Retrieval/CodeSearchNet
config: python
split: test
revision: 4adc7bc41202b5c13543c9c886a25f340634dab3
metrics:
- type: ndcg_at_1
value: 78.69699999999999
- type: ndcg_at_3
value: 82.666
- type: ndcg_at_5
value: 83.607
- type: ndcg_at_10
value: 84.407
- type: ndcg_at_20
value: 84.92699999999999
- type: ndcg_at_100
value: 85.641
- type: ndcg_at_1000
value: 85.978
- type: map_at_1
value: 78.69699999999999
- type: map_at_3
value: 81.723
- type: map_at_5
value: 82.245
- type: map_at_10
value: 82.577
- type: map_at_20
value: 82.722
- type: map_at_100
value: 82.821
- type: map_at_1000
value: 82.834
- type: recall_at_1
value: 78.69699999999999
- type: recall_at_3
value: 85.38
- type: recall_at_5
value: 87.666
- type: recall_at_10
value: 90.133
- type: recall_at_20
value: 92.171
- type: recall_at_100
value: 96.012
- type: recall_at_1000
value: 98.68599999999999
- type: precision_at_1
value: 78.69699999999999
- type: precision_at_3
value: 28.46
- type: precision_at_5
value: 17.533
- type: precision_at_10
value: 9.013
- type: precision_at_20
value: 4.609
- type: precision_at_100
value: 0.96
- type: precision_at_1000
value: 0.099
- type: mrr_at_1
value: 78.7036
- type: mrr_at_3
value: 81.7223
- type: mrr_at_5
value: 82.24719999999999
- type: mrr_at_10
value: 82.5792
- type: mrr_at_20
value: 82.72460000000001
- type: mrr_at_100
value: 82.82350000000001
- type: mrr_at_1000
value: 82.8357
- type: nauc_ndcg_at_1_max
value: 84.22319999999999
- type: nauc_ndcg_at_1_std
value: 23.538999999999998
- type: nauc_ndcg_at_1_diff1
value: 90.73750000000001
- type: nauc_ndcg_at_3_max
value: 85.0914
- type: nauc_ndcg_at_3_std
value: 25.0172
- type: nauc_ndcg_at_3_diff1
value: 89.3858
- type: nauc_ndcg_at_5_max
value: 84.9112
- type: nauc_ndcg_at_5_std
value: 25.732899999999997
- type: nauc_ndcg_at_5_diff1
value: 89.1327
- type: nauc_ndcg_at_10_max
value: 84.6806
- type: nauc_ndcg_at_10_std
value: 26.488
- type: nauc_ndcg_at_10_diff1
value: 88.83879999999999
- type: nauc_ndcg_at_20_max
value: 84.8315
- type: nauc_ndcg_at_20_std
value: 26.9453
- type: nauc_ndcg_at_20_diff1
value: 88.9755
- type: nauc_ndcg_at_100_max
value: 84.924
- type: nauc_ndcg_at_100_std
value: 26.9297
- type: nauc_ndcg_at_100_diff1
value: 89.1861
- type: nauc_ndcg_at_1000_max
value: 84.9058
- type: nauc_ndcg_at_1000_std
value: 26.5904
- type: nauc_ndcg_at_1000_diff1
value: 89.2659
- type: nauc_map_at_1_max
value: 84.22319999999999
- type: nauc_map_at_1_std
value: 23.538999999999998
- type: nauc_map_at_1_diff1
value: 90.73750000000001
- type: nauc_map_at_3_max
value: 84.9005
- type: nauc_map_at_3_std
value: 24.622
- type: nauc_map_at_3_diff1
value: 89.74069999999999
- type: nauc_map_at_5_max
value: 84.8017
- type: nauc_map_at_5_std
value: 24.9739
- type: nauc_map_at_5_diff1
value: 89.61970000000001
- type: nauc_map_at_10_max
value: 84.7091
- type: nauc_map_at_10_std
value: 25.223699999999997
- type: nauc_map_at_10_diff1
value: 89.51639999999999
- type: nauc_map_at_20_max
value: 84.7458
- type: nauc_map_at_20_std
value: 25.3151
- type: nauc_map_at_20_diff1
value: 89.5589
- type: nauc_map_at_100_max
value: 84.75930000000001
- type: nauc_map_at_100_std
value: 25.318099999999998
- type: nauc_map_at_100_diff1
value: 89.58850000000001
- type: nauc_map_at_1000_max
value: 84.75880000000001
- type: nauc_map_at_1000_std
value: 25.3086
- type: nauc_map_at_1000_diff1
value: 89.591
- type: nauc_recall_at_1_max
value: 84.22319999999999
- type: nauc_recall_at_1_std
value: 23.538999999999998
- type: nauc_recall_at_1_diff1
value: 90.73750000000001
- type: nauc_recall_at_3_max
value: 85.7389
- type: nauc_recall_at_3_std
value: 26.4015
- type: nauc_recall_at_3_diff1
value: 88.1462
- type: nauc_recall_at_5_max
value: 85.2854
- type: nauc_recall_at_5_std
value: 28.9065
- type: nauc_recall_at_5_diff1
value: 87.15039999999999
- type: nauc_recall_at_10_max
value: 84.3391
- type: nauc_recall_at_10_std
value: 33.2602
- type: nauc_recall_at_10_diff1
value: 85.3733
- type: nauc_recall_at_20_max
value: 85.3385
- type: nauc_recall_at_20_std
value: 38.4429
- type: nauc_recall_at_20_diff1
value: 85.40299999999999
- type: nauc_recall_at_100_max
value: 87.3325
- type: nauc_recall_at_100_std
value: 48.357
- type: nauc_recall_at_100_diff1
value: 85.7283
- type: nauc_recall_at_1000_max
value: 90.63419999999999
- type: nauc_recall_at_1000_std
value: 63.489399999999996
- type: nauc_recall_at_1000_diff1
value: 85.1443
- type: nauc_precision_at_1_max
value: 84.22319999999999
- type: nauc_precision_at_1_std
value: 23.538999999999998
- type: nauc_precision_at_1_diff1
value: 90.73750000000001
- type: nauc_precision_at_3_max
value: 85.7389
- type: nauc_precision_at_3_std
value: 26.4015
- type: nauc_precision_at_3_diff1
value: 88.1462
- type: nauc_precision_at_5_max
value: 85.2854
- type: nauc_precision_at_5_std
value: 28.9065
- type: nauc_precision_at_5_diff1
value: 87.15039999999999
- type: nauc_precision_at_10_max
value: 84.3391
- type: nauc_precision_at_10_std
value: 33.2602
- type: nauc_precision_at_10_diff1
value: 85.3733
- type: nauc_precision_at_20_max
value: 85.3385
- type: nauc_precision_at_20_std
value: 38.4429
- type: nauc_precision_at_20_diff1
value: 85.40299999999999
- type: nauc_precision_at_100_max
value: 87.3325
- type: nauc_precision_at_100_std
value: 48.357
- type: nauc_precision_at_100_diff1
value: 85.7283
- type: nauc_precision_at_1000_max
value: 90.63419999999999
- type: nauc_precision_at_1000_std
value: 63.489399999999996
- type: nauc_precision_at_1000_diff1
value: 85.1443
- type: nauc_mrr_at_1_max
value: 84.1909
- type: nauc_mrr_at_1_std
value: 23.5506
- type: nauc_mrr_at_1_diff1
value: 90.7257
- type: nauc_mrr_at_3_max
value: 84.883
- type: nauc_mrr_at_3_std
value: 24.630499999999998
- type: nauc_mrr_at_3_diff1
value: 89.7361
- type: nauc_mrr_at_5_max
value: 84.783
- type: nauc_mrr_at_5_std
value: 24.9813
- type: nauc_mrr_at_5_diff1
value: 89.6132
- type: nauc_mrr_at_10_max
value: 84.6899
- type: nauc_mrr_at_10_std
value: 25.230200000000004
- type: nauc_mrr_at_10_diff1
value: 89.5099
- type: nauc_mrr_at_20_max
value: 84.7264
- type: nauc_mrr_at_20_std
value: 25.3216
- type: nauc_mrr_at_20_diff1
value: 89.5523
- type: nauc_mrr_at_100_max
value: 84.7398
- type: nauc_mrr_at_100_std
value: 25.324799999999996
- type: nauc_mrr_at_100_diff1
value: 89.5818
- type: nauc_mrr_at_1000_max
value: 84.7393
- type: nauc_mrr_at_1000_std
value: 25.315199999999997
- type: nauc_mrr_at_1000_diff1
value: 89.5843
- type: main_score
value: 84.407
- task:
type: Retrieval
dataset:
name: MTEB COIRCodeSearchNetRetrieval (javascript)
type: CoIR-Retrieval/CodeSearchNet
config: javascript
split: test
revision: 4adc7bc41202b5c13543c9c886a25f340634dab3
metrics:
- type: ndcg_at_1
value: 22.03
- type: ndcg_at_3
value: 27.577
- type: ndcg_at_5
value: 29.465000000000003
- type: ndcg_at_10
value: 31.297000000000004
- type: ndcg_at_20
value: 32.666000000000004
- type: ndcg_at_100
value: 34.905
- type: ndcg_at_1000
value: 37.126
- type: map_at_1
value: 22.03
- type: map_at_3
value: 26.208
- type: map_at_5
value: 27.255000000000003
- type: map_at_10
value: 28.014
- type: map_at_20
value: 28.394000000000002
- type: map_at_100
value: 28.676000000000002
- type: map_at_1000
value: 28.747
- type: recall_at_1
value: 22.03
- type: recall_at_3
value: 31.541000000000004
- type: recall_at_5
value: 36.129
- type: recall_at_10
value: 41.781
- type: recall_at_20
value: 47.159
- type: recall_at_100
value: 59.648
- type: recall_at_1000
value: 77.818
- type: precision_at_1
value: 22.03
- type: precision_at_3
value: 10.514
- type: precision_at_5
value: 7.226000000000001
- type: precision_at_10
value: 4.178
- type: precision_at_20
value: 2.358
- type: precision_at_100
value: 0.596
- type: precision_at_1000
value: 0.078
- type: mrr_at_1
value: 22.029799999999998
- type: mrr_at_3
value: 26.2078
- type: mrr_at_5
value: 27.2546
- type: mrr_at_10
value: 28.0138
- type: mrr_at_20
value: 28.393800000000002
- type: mrr_at_100
value: 28.6755
- type: mrr_at_1000
value: 28.7473
- type: nauc_ndcg_at_1_max
value: 43.7913
- type: nauc_ndcg_at_1_std
value: 5.8822
- type: nauc_ndcg_at_1_diff1
value: 57.5892
- type: nauc_ndcg_at_3_max
value: 43.6608
- type: nauc_ndcg_at_3_std
value: 7.308199999999999
- type: nauc_ndcg_at_3_diff1
value: 50.727199999999996
- type: nauc_ndcg_at_5_max
value: 43.540099999999995
- type: nauc_ndcg_at_5_std
value: 8.2882
- type: nauc_ndcg_at_5_diff1
value: 49.7273
- type: nauc_ndcg_at_10_max
value: 43.290800000000004
- type: nauc_ndcg_at_10_std
value: 9.177
- type: nauc_ndcg_at_10_diff1
value: 48.6902
- type: nauc_ndcg_at_20_max
value: 43.1726
- type: nauc_ndcg_at_20_std
value: 9.9537
- type: nauc_ndcg_at_20_diff1
value: 48.2511
- type: nauc_ndcg_at_100_max
value: 43.0801
- type: nauc_ndcg_at_100_std
value: 11.2629
- type: nauc_ndcg_at_100_diff1
value: 47.7496
- type: nauc_ndcg_at_1000_max
value: 43.0087
- type: nauc_ndcg_at_1000_std
value: 11.3454
- type: nauc_ndcg_at_1000_diff1
value: 47.7628
- type: nauc_map_at_1_max
value: 43.7913
- type: nauc_map_at_1_std
value: 5.8822
- type: nauc_map_at_1_diff1
value: 57.5892
- type: nauc_map_at_3_max
value: 43.623200000000004
- type: nauc_map_at_3_std
value: 6.9021
- type: nauc_map_at_3_diff1
value: 52.296600000000005
- type: nauc_map_at_5_max
value: 43.567099999999996
- type: nauc_map_at_5_std
value: 7.4779
- type: nauc_map_at_5_diff1
value: 51.7259
- type: nauc_map_at_10_max
value: 43.4204
- type: nauc_map_at_10_std
value: 7.82
- type: nauc_map_at_10_diff1
value: 51.266
- type: nauc_map_at_20_max
value: 43.3827
- type: nauc_map_at_20_std
value: 8.0332
- type: nauc_map_at_20_diff1
value: 51.139599999999994
- type: nauc_map_at_100_max
value: 43.3681
- type: nauc_map_at_100_std
value: 8.205400000000001
- type: nauc_map_at_100_diff1
value: 51.054
- type: nauc_map_at_1000_max
value: 43.3619
- type: nauc_map_at_1000_std
value: 8.2009
- type: nauc_map_at_1000_diff1
value: 51.0517
- type: nauc_recall_at_1_max
value: 43.7913
- type: nauc_recall_at_1_std
value: 5.8822
- type: nauc_recall_at_1_diff1
value: 57.5892
- type: nauc_recall_at_3_max
value: 43.7869
- type: nauc_recall_at_3_std
value: 8.4252
- type: nauc_recall_at_3_diff1
value: 46.5268
- type: nauc_recall_at_5_max
value: 43.4642
- type: nauc_recall_at_5_std
value: 10.5594
- type: nauc_recall_at_5_diff1
value: 44.329800000000006
- type: nauc_recall_at_10_max
value: 42.9497
- type: nauc_recall_at_10_std
value: 13.252
- type: nauc_recall_at_10_diff1
value: 41.5027
- type: nauc_recall_at_20_max
value: 42.5357
- type: nauc_recall_at_20_std
value: 16.2323
- type: nauc_recall_at_20_diff1
value: 39.7814
- type: nauc_recall_at_100_max
value: 41.963899999999995
- type: nauc_recall_at_100_std
value: 24.3312
- type: nauc_recall_at_100_diff1
value: 36.321
- type: nauc_recall_at_1000_max
value: 40.839999999999996
- type: nauc_recall_at_1000_std
value: 32.861000000000004
- type: nauc_recall_at_1000_diff1
value: 30.7145
- type: nauc_precision_at_1_max
value: 43.7913
- type: nauc_precision_at_1_std
value: 5.8822
- type: nauc_precision_at_1_diff1
value: 57.5892
- type: nauc_precision_at_3_max
value: 43.7869
- type: nauc_precision_at_3_std
value: 8.4252
- type: nauc_precision_at_3_diff1
value: 46.5268
- type: nauc_precision_at_5_max
value: 43.4642
- type: nauc_precision_at_5_std
value: 10.5594
- type: nauc_precision_at_5_diff1
value: 44.329800000000006
- type: nauc_precision_at_10_max
value: 42.9497
- type: nauc_precision_at_10_std
value: 13.252
- type: nauc_precision_at_10_diff1
value: 41.5027
- type: nauc_precision_at_20_max
value: 42.5357
- type: nauc_precision_at_20_std
value: 16.2323
- type: nauc_precision_at_20_diff1
value: 39.7814
- type: nauc_precision_at_100_max
value: 41.963899999999995
- type: nauc_precision_at_100_std
value: 24.3312
- type: nauc_precision_at_100_diff1
value: 36.321
- type: nauc_precision_at_1000_max
value: 40.839999999999996
- type: nauc_precision_at_1000_std
value: 32.861000000000004
- type: nauc_precision_at_1000_diff1
value: 30.7145
- type: nauc_mrr_at_1_max
value: 43.7913
- type: nauc_mrr_at_1_std
value: 5.8822
- type: nauc_mrr_at_1_diff1
value: 57.5892
- type: nauc_mrr_at_3_max
value: 43.623200000000004
- type: nauc_mrr_at_3_std
value: 6.9021
- type: nauc_mrr_at_3_diff1
value: 52.296600000000005
- type: nauc_mrr_at_5_max
value: 43.567099999999996
- type: nauc_mrr_at_5_std
value: 7.4779
- type: nauc_mrr_at_5_diff1
value: 51.7259
- type: nauc_mrr_at_10_max
value: 43.4204
- type: nauc_mrr_at_10_std
value: 7.82
- type: nauc_mrr_at_10_diff1
value: 51.266
- type: nauc_mrr_at_20_max
value: 43.3827
- type: nauc_mrr_at_20_std
value: 8.0332
- type: nauc_mrr_at_20_diff1
value: 51.139599999999994
- type: nauc_mrr_at_100_max
value: 43.3681
- type: nauc_mrr_at_100_std
value: 8.2055
- type: nauc_mrr_at_100_diff1
value: 51.054100000000005
- type: nauc_mrr_at_1000_max
value: 43.3619
- type: nauc_mrr_at_1000_std
value: 8.2009
- type: nauc_mrr_at_1000_diff1
value: 51.0518
- type: main_score
value: 31.297000000000004
- task:
type: Retrieval
dataset:
name: MTEB COIRCodeSearchNetRetrieval (go)
type: CoIR-Retrieval/CodeSearchNet
config: go
split: test
revision: 4adc7bc41202b5c13543c9c886a25f340634dab3
metrics:
- type: ndcg_at_1
value: 36.58
- type: ndcg_at_3
value: 44.633
- type: ndcg_at_5
value: 46.766000000000005
- type: ndcg_at_10
value: 48.921
- type: ndcg_at_20
value: 50.52100000000001
- type: ndcg_at_100
value: 52.795
- type: ndcg_at_1000
value: 54.291
- type: map_at_1
value: 36.58
- type: map_at_3
value: 42.666
- type: map_at_5
value: 43.852000000000004
- type: map_at_10
value: 44.744
- type: map_at_20
value: 45.188
- type: map_at_100
value: 45.493
- type: map_at_1000
value: 45.544000000000004
- type: recall_at_1
value: 36.58
- type: recall_at_3
value: 50.32
- type: recall_at_5
value: 55.491
- type: recall_at_10
value: 62.13999999999999
- type: recall_at_20
value: 68.431
- type: recall_at_100
value: 80.83
- type: recall_at_1000
value: 92.896
- type: precision_at_1
value: 36.58
- type: precision_at_3
value: 16.773
- type: precision_at_5
value: 11.097999999999999
- type: precision_at_10
value: 6.214
- type: precision_at_20
value: 3.422
- type: precision_at_100
value: 0.808
- type: precision_at_1000
value: 0.093
- type: mrr_at_1
value: 36.579699999999995
- type: mrr_at_3
value: 42.666
- type: mrr_at_5
value: 43.8517
- type: mrr_at_10
value: 44.7436
- type: mrr_at_20
value: 45.1875
- type: mrr_at_100
value: 45.493
- type: mrr_at_1000
value: 45.544200000000004
- type: nauc_ndcg_at_1_max
value: 41.7601
- type: nauc_ndcg_at_1_std
value: 4.5455000000000005
- type: nauc_ndcg_at_1_diff1
value: 58.6454
- type: nauc_ndcg_at_3_max
value: 42.3992
- type: nauc_ndcg_at_3_std
value: 6.3083
- type: nauc_ndcg_at_3_diff1
value: 52.4271
- type: nauc_ndcg_at_5_max
value: 42.2462
- type: nauc_ndcg_at_5_std
value: 6.8773
- type: nauc_ndcg_at_5_diff1
value: 51.75880000000001
- type: nauc_ndcg_at_10_max
value: 41.7943
- type: nauc_ndcg_at_10_std
value: 7.2982000000000005
- type: nauc_ndcg_at_10_diff1
value: 51.0016
- type: nauc_ndcg_at_20_max
value: 41.5875
- type: nauc_ndcg_at_20_std
value: 7.8825
- type: nauc_ndcg_at_20_diff1
value: 50.7648
- type: nauc_ndcg_at_100_max
value: 41.6971
- type: nauc_ndcg_at_100_std
value: 8.4077
- type: nauc_ndcg_at_100_diff1
value: 50.9386
- type: nauc_ndcg_at_1000_max
value: 41.7837
- type: nauc_ndcg_at_1000_std
value: 8.250300000000001
- type: nauc_ndcg_at_1000_diff1
value: 51.4691
- type: nauc_map_at_1_max
value: 41.7601
- type: nauc_map_at_1_std
value: 4.5455000000000005
- type: nauc_map_at_1_diff1
value: 58.6454
- type: nauc_map_at_3_max
value: 42.2864
- type: nauc_map_at_3_std
value: 5.8461
- type: nauc_map_at_3_diff1
value: 53.9381
- type: nauc_map_at_5_max
value: 42.1957
- type: nauc_map_at_5_std
value: 6.142
- type: nauc_map_at_5_diff1
value: 53.600300000000004
- type: nauc_map_at_10_max
value: 42.005900000000004
- type: nauc_map_at_10_std
value: 6.2986
- type: nauc_map_at_10_diff1
value: 53.296200000000006
- type: nauc_map_at_20_max
value: 41.946099999999994
- type: nauc_map_at_20_std
value: 6.452299999999999
- type: nauc_map_at_20_diff1
value: 53.2485
- type: nauc_map_at_100_max
value: 41.9563
- type: nauc_map_at_100_std
value: 6.511
- type: nauc_map_at_100_diff1
value: 53.2816
- type: nauc_map_at_1000_max
value: 41.9598
- type: nauc_map_at_1000_std
value: 6.5069
- type: nauc_map_at_1000_diff1
value: 53.3008
- type: nauc_recall_at_1_max
value: 41.7601
- type: nauc_recall_at_1_std
value: 4.5455000000000005
- type: nauc_recall_at_1_diff1
value: 58.6454
- type: nauc_recall_at_3_max
value: 42.7117
- type: nauc_recall_at_3_std
value: 7.674799999999999
- type: nauc_recall_at_3_diff1
value: 48.0061
- type: nauc_recall_at_5_max
value: 42.365399999999994
- type: nauc_recall_at_5_std
value: 9.2378
- type: nauc_recall_at_5_diff1
value: 46.0218
- type: nauc_recall_at_10_max
value: 40.8705
- type: nauc_recall_at_10_std
value: 10.9253
- type: nauc_recall_at_10_diff1
value: 43.0092
- type: nauc_recall_at_20_max
value: 39.818599999999996
- type: nauc_recall_at_20_std
value: 14.1425
- type: nauc_recall_at_20_diff1
value: 40.8455
- type: nauc_recall_at_100_max
value: 40.1229
- type: nauc_recall_at_100_std
value: 22.0804
- type: nauc_recall_at_100_diff1
value: 37.6538
- type: nauc_recall_at_1000_max
value: 40.4194
- type: nauc_recall_at_1000_std
value: 36.7051
- type: nauc_recall_at_1000_diff1
value: 35.3088
- type: nauc_precision_at_1_max
value: 41.7601
- type: nauc_precision_at_1_std
value: 4.5455000000000005
- type: nauc_precision_at_1_diff1
value: 58.6454
- type: nauc_precision_at_3_max
value: 42.7117
- type: nauc_precision_at_3_std
value: 7.674799999999999
- type: nauc_precision_at_3_diff1
value: 48.0061
- type: nauc_precision_at_5_max
value: 42.365399999999994
- type: nauc_precision_at_5_std
value: 9.2378
- type: nauc_precision_at_5_diff1
value: 46.0218
- type: nauc_precision_at_10_max
value: 40.8705
- type: nauc_precision_at_10_std
value: 10.9253
- type: nauc_precision_at_10_diff1
value: 43.0092
- type: nauc_precision_at_20_max
value: 39.818599999999996
- type: nauc_precision_at_20_std
value: 14.1425
- type: nauc_precision_at_20_diff1
value: 40.8455
- type: nauc_precision_at_100_max
value: 40.1229
- type: nauc_precision_at_100_std
value: 22.0804
- type: nauc_precision_at_100_diff1
value: 37.6538
- type: nauc_precision_at_1000_max
value: 40.4194
- type: nauc_precision_at_1000_std
value: 36.7051
- type: nauc_precision_at_1000_diff1
value: 35.3088
- type: nauc_mrr_at_1_max
value: 41.7601
- type: nauc_mrr_at_1_std
value: 4.5455000000000005
- type: nauc_mrr_at_1_diff1
value: 58.6454
- type: nauc_mrr_at_3_max
value: 42.2864
- type: nauc_mrr_at_3_std
value: 5.8461
- type: nauc_mrr_at_3_diff1
value: 53.9381
- type: nauc_mrr_at_5_max
value: 42.1957
- type: nauc_mrr_at_5_std
value: 6.142
- type: nauc_mrr_at_5_diff1
value: 53.600300000000004
- type: nauc_mrr_at_10_max
value: 42.005900000000004
- type: nauc_mrr_at_10_std
value: 6.2986
- type: nauc_mrr_at_10_diff1
value: 53.296200000000006
- type: nauc_mrr_at_20_max
value: 41.946099999999994
- type: nauc_mrr_at_20_std
value: 6.452299999999999
- type: nauc_mrr_at_20_diff1
value: 53.2485
- type: nauc_mrr_at_100_max
value: 41.9563
- type: nauc_mrr_at_100_std
value: 6.511
- type: nauc_mrr_at_100_diff1
value: 53.2816
- type: nauc_mrr_at_1000_max
value: 41.9598
- type: nauc_mrr_at_1000_std
value: 6.5069
- type: nauc_mrr_at_1000_diff1
value: 53.3008
- type: main_score
value: 48.921
- task:
type: Retrieval
dataset:
name: MTEB COIRCodeSearchNetRetrieval (ruby)
type: CoIR-Retrieval/CodeSearchNet
config: ruby
split: test
revision: 4adc7bc41202b5c13543c9c886a25f340634dab3
metrics:
- type: ndcg_at_1
value: 27.359
- type: ndcg_at_3
value: 33.405
- type: ndcg_at_5
value: 35.111
- type: ndcg_at_10
value: 37.124
- type: ndcg_at_20
value: 38.637
- type: ndcg_at_100
value: 40.809
- type: ndcg_at_1000
value: 43.206
- type: map_at_1
value: 27.359
- type: map_at_3
value: 31.906000000000002
- type: map_at_5
value: 32.838
- type: map_at_10
value: 33.677
- type: map_at_20
value: 34.086
- type: map_at_100
value: 34.379
- type: map_at_1000
value: 34.458
- type: recall_at_1
value: 27.359
- type: recall_at_3
value: 37.748
- type: recall_at_5
value: 41.951
- type: recall_at_10
value: 48.136
- type: recall_at_20
value: 54.163
- type: recall_at_100
value: 65.979
- type: recall_at_1000
value: 85.488
- type: precision_at_1
value: 27.359
- type: precision_at_3
value: 12.583
- type: precision_at_5
value: 8.39
- type: precision_at_10
value: 4.814
- type: precision_at_20
value: 2.708
- type: precision_at_100
value: 0.66
- type: precision_at_1000
value: 0.08499999999999999
- type: mrr_at_1
value: 27.3592
- type: mrr_at_3
value: 31.9059
- type: mrr_at_5
value: 32.8377
- type: mrr_at_10
value: 33.677099999999996
- type: mrr_at_20
value: 34.086
- type: mrr_at_100
value: 34.3787
- type: mrr_at_1000
value: 34.4575
- type: nauc_ndcg_at_1_max
value: 41.336
- type: nauc_ndcg_at_1_std
value: 4.9167000000000005
- type: nauc_ndcg_at_1_diff1
value: 59.489599999999996
- type: nauc_ndcg_at_3_max
value: 42.3939
- type: nauc_ndcg_at_3_std
value: 9.324200000000001
- type: nauc_ndcg_at_3_diff1
value: 53.886
- type: nauc_ndcg_at_5_max
value: 41.523700000000005
- type: nauc_ndcg_at_5_std
value: 8.7661
- type: nauc_ndcg_at_5_diff1
value: 52.6116
- type: nauc_ndcg_at_10_max
value: 40.7362
- type: nauc_ndcg_at_10_std
value: 9.3454
- type: nauc_ndcg_at_10_diff1
value: 51.226000000000006
- type: nauc_ndcg_at_20_max
value: 40.1284
- type: nauc_ndcg_at_20_std
value: 10.1067
- type: nauc_ndcg_at_20_diff1
value: 50.6354
- type: nauc_ndcg_at_100_max
value: 40.109899999999996
- type: nauc_ndcg_at_100_std
value: 11.125599999999999
- type: nauc_ndcg_at_100_diff1
value: 50.021499999999996
- type: nauc_ndcg_at_1000_max
value: 39.9325
- type: nauc_ndcg_at_1000_std
value: 10.9899
- type: nauc_ndcg_at_1000_diff1
value: 50.3713
- type: nauc_map_at_1_max
value: 41.336
- type: nauc_map_at_1_std
value: 4.9167000000000005
- type: nauc_map_at_1_diff1
value: 59.489599999999996
- type: nauc_map_at_3_max
value: 42.1793
- type: nauc_map_at_3_std
value: 8.149099999999999
- type: nauc_map_at_3_diff1
value: 55.1967
- type: nauc_map_at_5_max
value: 41.6768
- type: nauc_map_at_5_std
value: 7.8223
- type: nauc_map_at_5_diff1
value: 54.4705
- type: nauc_map_at_10_max
value: 41.3395
- type: nauc_map_at_10_std
value: 8.076
- type: nauc_map_at_10_diff1
value: 53.87929999999999
- type: nauc_map_at_20_max
value: 41.1762
- type: nauc_map_at_20_std
value: 8.2845
- type: nauc_map_at_20_diff1
value: 53.7144
- type: nauc_map_at_100_max
value: 41.1731
- type: nauc_map_at_100_std
value: 8.394
- type: nauc_map_at_100_diff1
value: 53.64919999999999
- type: nauc_map_at_1000_max
value: 41.165600000000005
- type: nauc_map_at_1000_std
value: 8.3923
- type: nauc_map_at_1000_diff1
value: 53.654199999999996
- type: nauc_recall_at_1_max
value: 41.336
- type: nauc_recall_at_1_std
value: 4.9167000000000005
- type: nauc_recall_at_1_diff1
value: 59.489599999999996
- type: nauc_recall_at_3_max
value: 42.9746
- type: nauc_recall_at_3_std
value: 12.632399999999999
- type: nauc_recall_at_3_diff1
value: 50.259100000000004
- type: nauc_recall_at_5_max
value: 40.9855
- type: nauc_recall_at_5_std
value: 11.368300000000001
- type: nauc_recall_at_5_diff1
value: 47.3165
- type: nauc_recall_at_10_max
value: 38.6473
- type: nauc_recall_at_10_std
value: 13.1083
- type: nauc_recall_at_10_diff1
value: 43.1086
- type: nauc_recall_at_20_max
value: 36.0858
- type: nauc_recall_at_20_std
value: 16.345100000000002
- type: nauc_recall_at_20_diff1
value: 40.3971
- type: nauc_recall_at_100_max
value: 35.3344
- type: nauc_recall_at_100_std
value: 24.4293
- type: nauc_recall_at_100_diff1
value: 34.4263
- type: nauc_recall_at_1000_max
value: 27.814
- type: nauc_recall_at_1000_std
value: 34.5865
- type: nauc_recall_at_1000_diff1
value: 26.621
- type: nauc_precision_at_1_max
value: 41.336
- type: nauc_precision_at_1_std
value: 4.9167000000000005
- type: nauc_precision_at_1_diff1
value: 59.489599999999996
- type: nauc_precision_at_3_max
value: 42.9746
- type: nauc_precision_at_3_std
value: 12.632399999999999
- type: nauc_precision_at_3_diff1
value: 50.259100000000004
- type: nauc_precision_at_5_max
value: 40.9855
- type: nauc_precision_at_5_std
value: 11.368300000000001
- type: nauc_precision_at_5_diff1
value: 47.3165
- type: nauc_precision_at_10_max
value: 38.6473
- type: nauc_precision_at_10_std
value: 13.1083
- type: nauc_precision_at_10_diff1
value: 43.1086
- type: nauc_precision_at_20_max
value: 36.0858
- type: nauc_precision_at_20_std
value: 16.345100000000002
- type: nauc_precision_at_20_diff1
value: 40.3971
- type: nauc_precision_at_100_max
value: 35.3344
- type: nauc_precision_at_100_std
value: 24.4293
- type: nauc_precision_at_100_diff1
value: 34.4263
- type: nauc_precision_at_1000_max
value: 27.814
- type: nauc_precision_at_1000_std
value: 34.5865
- type: nauc_precision_at_1000_diff1
value: 26.621
- type: nauc_mrr_at_1_max
value: 41.336
- type: nauc_mrr_at_1_std
value: 4.9167000000000005
- type: nauc_mrr_at_1_diff1
value: 59.489599999999996
- type: nauc_mrr_at_3_max
value: 42.1793
- type: nauc_mrr_at_3_std
value: 8.149099999999999
- type: nauc_mrr_at_3_diff1
value: 55.1967
- type: nauc_mrr_at_5_max
value: 41.6768
- type: nauc_mrr_at_5_std
value: 7.8223
- type: nauc_mrr_at_5_diff1
value: 54.4705
- type: nauc_mrr_at_10_max
value: 41.3395
- type: nauc_mrr_at_10_std
value: 8.076
- type: nauc_mrr_at_10_diff1
value: 53.87929999999999
- type: nauc_mrr_at_20_max
value: 41.1762
- type: nauc_mrr_at_20_std
value: 8.2845
- type: nauc_mrr_at_20_diff1
value: 53.7144
- type: nauc_mrr_at_100_max
value: 41.1731
- type: nauc_mrr_at_100_std
value: 8.394
- type: nauc_mrr_at_100_diff1
value: 53.64919999999999
- type: nauc_mrr_at_1000_max
value: 41.165600000000005
- type: nauc_mrr_at_1000_std
value: 8.3923
- type: nauc_mrr_at_1000_diff1
value: 53.654199999999996
- type: main_score
value: 37.124
- task:
type: Retrieval
dataset:
name: MTEB COIRCodeSearchNetRetrieval (java)
type: CoIR-Retrieval/CodeSearchNet
config: java
split: test
revision: 4adc7bc41202b5c13543c9c886a25f340634dab3
metrics:
- type: ndcg_at_1
value: 29.621
- type: ndcg_at_3
value: 36.388999999999996
- type: ndcg_at_5
value: 38.071
- type: ndcg_at_10
value: 39.856
- type: ndcg_at_20
value: 41.189
- type: ndcg_at_100
value: 43.391999999999996
- type: ndcg_at_1000
value: 45.080999999999996
- type: map_at_1
value: 29.621
- type: map_at_3
value: 34.733000000000004
- type: map_at_5
value: 35.668
- type: map_at_10
value: 36.411
- type: map_at_20
value: 36.778
- type: map_at_100
value: 37.077
- type: map_at_1000
value: 37.133
- type: recall_at_1
value: 29.621
- type: recall_at_3
value: 41.178
- type: recall_at_5
value: 45.257999999999996
- type: recall_at_10
value: 50.744
- type: recall_at_20
value: 56.001999999999995
- type: recall_at_100
value: 67.96
- type: recall_at_1000
value: 81.707
- type: precision_at_1
value: 29.621
- type: precision_at_3
value: 13.725999999999999
- type: precision_at_5
value: 9.052
- type: precision_at_10
value: 5.074
- type: precision_at_20
value: 2.8000000000000003
- type: precision_at_100
value: 0.6799999999999999
- type: precision_at_1000
value: 0.082
- type: mrr_at_1
value: 29.593799999999998
- type: mrr_at_3
value: 34.7254
- type: mrr_at_5
value: 35.6583
- type: mrr_at_10
value: 36.4022
- type: mrr_at_20
value: 36.7689
- type: mrr_at_100
value: 37.0681
- type: mrr_at_1000
value: 37.124
- type: nauc_ndcg_at_1_max
value: 39.7113
- type: nauc_ndcg_at_1_std
value: -1.3535
- type: nauc_ndcg_at_1_diff1
value: 57.7222
- type: nauc_ndcg_at_3_max
value: 40.4493
- type: nauc_ndcg_at_3_std
value: 1.4639
- type: nauc_ndcg_at_3_diff1
value: 52.145799999999994
- type: nauc_ndcg_at_5_max
value: 40.1219
- type: nauc_ndcg_at_5_std
value: 2.1448
- type: nauc_ndcg_at_5_diff1
value: 51.2694
- type: nauc_ndcg_at_10_max
value: 39.4187
- type: nauc_ndcg_at_10_std
value: 2.5085
- type: nauc_ndcg_at_10_diff1
value: 50.171699999999994
- type: nauc_ndcg_at_20_max
value: 39.2822
- type: nauc_ndcg_at_20_std
value: 3.1015
- type: nauc_ndcg_at_20_diff1
value: 49.8837
- type: nauc_ndcg_at_100_max
value: 39.1352
- type: nauc_ndcg_at_100_std
value: 3.8505
- type: nauc_ndcg_at_100_diff1
value: 49.7104
- type: nauc_ndcg_at_1000_max
value: 39.1441
- type: nauc_ndcg_at_1000_std
value: 4.1791
- type: nauc_ndcg_at_1000_diff1
value: 49.806200000000004
- type: nauc_map_at_1_max
value: 39.7113
- type: nauc_map_at_1_std
value: -1.3535
- type: nauc_map_at_1_diff1
value: 57.7222
- type: nauc_map_at_3_max
value: 40.3518
- type: nauc_map_at_3_std
value: 0.7879
- type: nauc_map_at_3_diff1
value: 53.4756
- type: nauc_map_at_5_max
value: 40.1793
- type: nauc_map_at_5_std
value: 1.1596
- type: nauc_map_at_5_diff1
value: 52.993900000000004
- type: nauc_map_at_10_max
value: 39.8893
- type: nauc_map_at_10_std
value: 1.3074000000000001
- type: nauc_map_at_10_diff1
value: 52.53679999999999
- type: nauc_map_at_20_max
value: 39.8583
- type: nauc_map_at_20_std
value: 1.4666000000000001
- type: nauc_map_at_20_diff1
value: 52.4664
- type: nauc_map_at_100_max
value: 39.8303
- type: nauc_map_at_100_std
value: 1.5578
- type: nauc_map_at_100_diff1
value: 52.44950000000001
- type: nauc_map_at_1000_max
value: 39.827400000000004
- type: nauc_map_at_1000_std
value: 1.568
- type: nauc_map_at_1000_diff1
value: 52.452600000000004
- type: nauc_recall_at_1_max
value: 39.7113
- type: nauc_recall_at_1_std
value: -1.3535
- type: nauc_recall_at_1_diff1
value: 57.7222
- type: nauc_recall_at_3_max
value: 40.6926
- type: nauc_recall_at_3_std
value: 3.3686000000000003
- type: nauc_recall_at_3_diff1
value: 48.4023
- type: nauc_recall_at_5_max
value: 39.8681
- type: nauc_recall_at_5_std
value: 5.0524
- type: nauc_recall_at_5_diff1
value: 46.2361
- type: nauc_recall_at_10_max
value: 37.6778
- type: nauc_recall_at_10_std
value: 6.2486
- type: nauc_recall_at_10_diff1
value: 42.7533
- type: nauc_recall_at_20_max
value: 36.9831
- type: nauc_recall_at_20_std
value: 8.9021
- type: nauc_recall_at_20_diff1
value: 41.1453
- type: nauc_recall_at_100_max
value: 35.6903
- type: nauc_recall_at_100_std
value: 15.161
- type: nauc_recall_at_100_diff1
value: 38.1673
- type: nauc_recall_at_1000_max
value: 34.2718
- type: nauc_recall_at_1000_std
value: 26.3982
- type: nauc_recall_at_1000_diff1
value: 33.3322
- type: nauc_precision_at_1_max
value: 39.7113
- type: nauc_precision_at_1_std
value: -1.3535
- type: nauc_precision_at_1_diff1
value: 57.7222
- type: nauc_precision_at_3_max
value: 40.6926
- type: nauc_precision_at_3_std
value: 3.3686000000000003
- type: nauc_precision_at_3_diff1
value: 48.4023
- type: nauc_precision_at_5_max
value: 39.8681
- type: nauc_precision_at_5_std
value: 5.0524
- type: nauc_precision_at_5_diff1
value: 46.2361
- type: nauc_precision_at_10_max
value: 37.6778
- type: nauc_precision_at_10_std
value: 6.2486
- type: nauc_precision_at_10_diff1
value: 42.7533
- type: nauc_precision_at_20_max
value: 36.9831
- type: nauc_precision_at_20_std
value: 8.9021
- type: nauc_precision_at_20_diff1
value: 41.1453
- type: nauc_precision_at_100_max
value: 35.6903
- type: nauc_precision_at_100_std
value: 15.161
- type: nauc_precision_at_100_diff1
value: 38.1673
- type: nauc_precision_at_1000_max
value: 34.2718
- type: nauc_precision_at_1000_std
value: 26.3982
- type: nauc_precision_at_1000_diff1
value: 33.3322
- type: nauc_mrr_at_1_max
value: 39.6284
- type: nauc_mrr_at_1_std
value: -1.345
- type: nauc_mrr_at_1_diff1
value: 57.828
- type: nauc_mrr_at_3_max
value: 40.3036
- type: nauc_mrr_at_3_std
value: 0.7952000000000001
- type: nauc_mrr_at_3_diff1
value: 53.524499999999996
- type: nauc_mrr_at_5_max
value: 40.1366
- type: nauc_mrr_at_5_std
value: 1.1708
- type: nauc_mrr_at_5_diff1
value: 53.0405
- type: nauc_mrr_at_10_max
value: 39.848
- type: nauc_mrr_at_10_std
value: 1.3195000000000001
- type: nauc_mrr_at_10_diff1
value: 52.5868
- type: nauc_mrr_at_20_max
value: 39.815400000000004
- type: nauc_mrr_at_20_std
value: 1.4787
- type: nauc_mrr_at_20_diff1
value: 52.513299999999994
- type: nauc_mrr_at_100_max
value: 39.787299999999995
- type: nauc_mrr_at_100_std
value: 1.5699999999999998
- type: nauc_mrr_at_100_diff1
value: 52.496500000000005
- type: nauc_mrr_at_1000_max
value: 39.7844
- type: nauc_mrr_at_1000_std
value: 1.5803
- type: nauc_mrr_at_1000_diff1
value: 52.4996
- type: main_score
value: 39.856
- task:
type: Retrieval
dataset:
name: MTEB COIRCodeSearchNetRetrieval (php)
type: CoIR-Retrieval/CodeSearchNet
config: php
split: test
revision: 4adc7bc41202b5c13543c9c886a25f340634dab3
metrics:
- type: ndcg_at_1
value: 25.211
- type: ndcg_at_3
value: 31.994
- type: ndcg_at_5
value: 33.986
- type: ndcg_at_10
value: 36.086
- type: ndcg_at_20
value: 37.638
- type: ndcg_at_100
value: 40.268
- type: ndcg_at_1000
value: 42.309999999999995
- type: map_at_1
value: 25.211
- type: map_at_3
value: 30.346
- type: map_at_5
value: 31.452
- type: map_at_10
value: 32.323
- type: map_at_20
value: 32.751000000000005
- type: map_at_100
value: 33.097
- type: map_at_1000
value: 33.165
- type: recall_at_1
value: 25.211
- type: recall_at_3
value: 36.756
- type: recall_at_5
value: 41.587
- type: recall_at_10
value: 48.059000000000005
- type: recall_at_20
value: 54.189
- type: recall_at_100
value: 68.61
- type: recall_at_1000
value: 85.172
- type: precision_at_1
value: 25.211
- type: precision_at_3
value: 12.252
- type: precision_at_5
value: 8.317
- type: precision_at_10
value: 4.806
- type: precision_at_20
value: 2.709
- type: precision_at_100
value: 0.6859999999999999
- type: precision_at_1000
value: 0.08499999999999999
- type: mrr_at_1
value: 25.1962
- type: mrr_at_3
value: 30.335099999999997
- type: mrr_at_5
value: 31.4426
- type: mrr_at_10
value: 32.3121
- type: mrr_at_20
value: 32.741
- type: mrr_at_100
value: 33.0877
- type: mrr_at_1000
value: 33.1558
- type: nauc_ndcg_at_1_max
value: 38.358799999999995
- type: nauc_ndcg_at_1_std
value: 4.3283000000000005
- type: nauc_ndcg_at_1_diff1
value: 53.33520000000001
- type: nauc_ndcg_at_3_max
value: 38.0766
- type: nauc_ndcg_at_3_std
value: 6.0852
- type: nauc_ndcg_at_3_diff1
value: 45.5009
- type: nauc_ndcg_at_5_max
value: 37.788199999999996
- type: nauc_ndcg_at_5_std
value: 7.0073
- type: nauc_ndcg_at_5_diff1
value: 44.3577
- type: nauc_ndcg_at_10_max
value: 37.674
- type: nauc_ndcg_at_10_std
value: 7.954700000000001
- type: nauc_ndcg_at_10_diff1
value: 43.6869
- type: nauc_ndcg_at_20_max
value: 37.4368
- type: nauc_ndcg_at_20_std
value: 8.4592
- type: nauc_ndcg_at_20_diff1
value: 43.3112
- type: nauc_ndcg_at_100_max
value: 37.5955
- type: nauc_ndcg_at_100_std
value: 9.5313
- type: nauc_ndcg_at_100_diff1
value: 42.9187
- type: nauc_ndcg_at_1000_max
value: 37.8056
- type: nauc_ndcg_at_1000_std
value: 9.7477
- type: nauc_ndcg_at_1000_diff1
value: 43.3862
- type: nauc_map_at_1_max
value: 38.358799999999995
- type: nauc_map_at_1_std
value: 4.3283000000000005
- type: nauc_map_at_1_diff1
value: 53.33520000000001
- type: nauc_map_at_3_max
value: 38.1738
- type: nauc_map_at_3_std
value: 5.6814
- type: nauc_map_at_3_diff1
value: 47.229
- type: nauc_map_at_5_max
value: 38.005100000000006
- type: nauc_map_at_5_std
value: 6.1966
- type: nauc_map_at_5_diff1
value: 46.559200000000004
- type: nauc_map_at_10_max
value: 37.9741
- type: nauc_map_at_10_std
value: 6.5971
- type: nauc_map_at_10_diff1
value: 46.285
- type: nauc_map_at_20_max
value: 37.9009
- type: nauc_map_at_20_std
value: 6.7273
- type: nauc_map_at_20_diff1
value: 46.1825
- type: nauc_map_at_100_max
value: 37.9135
- type: nauc_map_at_100_std
value: 6.8602
- type: nauc_map_at_100_diff1
value: 46.1376
- type: nauc_map_at_1000_max
value: 37.918
- type: nauc_map_at_1000_std
value: 6.8636
- type: nauc_map_at_1000_diff1
value: 46.1515
- type: nauc_recall_at_1_max
value: 38.358799999999995
- type: nauc_recall_at_1_std
value: 4.3283000000000005
- type: nauc_recall_at_1_diff1
value: 53.33520000000001
- type: nauc_recall_at_3_max
value: 37.7993
- type: nauc_recall_at_3_std
value: 7.1854000000000005
- type: nauc_recall_at_3_diff1
value: 40.8217
- type: nauc_recall_at_5_max
value: 37.1564
- type: nauc_recall_at_5_std
value: 9.3324
- type: nauc_recall_at_5_diff1
value: 38.2991
- type: nauc_recall_at_10_max
value: 36.721399999999996
- type: nauc_recall_at_10_std
value: 12.1836
- type: nauc_recall_at_10_diff1
value: 36.1617
- type: nauc_recall_at_20_max
value: 35.7969
- type: nauc_recall_at_20_std
value: 14.4368
- type: nauc_recall_at_20_diff1
value: 34.3383
- type: nauc_recall_at_100_max
value: 36.6044
- type: nauc_recall_at_100_std
value: 23.055500000000002
- type: nauc_recall_at_100_diff1
value: 29.555500000000002
- type: nauc_recall_at_1000_max
value: 39.7315
- type: nauc_recall_at_1000_std
value: 38.601600000000005
- type: nauc_recall_at_1000_diff1
value: 26.7047
- type: nauc_precision_at_1_max
value: 38.358799999999995
- type: nauc_precision_at_1_std
value: 4.3283000000000005
- type: nauc_precision_at_1_diff1
value: 53.33520000000001
- type: nauc_precision_at_3_max
value: 37.7993
- type: nauc_precision_at_3_std
value: 7.1854000000000005
- type: nauc_precision_at_3_diff1
value: 40.8217
- type: nauc_precision_at_5_max
value: 37.1564
- type: nauc_precision_at_5_std
value: 9.3324
- type: nauc_precision_at_5_diff1
value: 38.2991
- type: nauc_precision_at_10_max
value: 36.721399999999996
- type: nauc_precision_at_10_std
value: 12.1836
- type: nauc_precision_at_10_diff1
value: 36.1617
- type: nauc_precision_at_20_max
value: 35.7969
- type: nauc_precision_at_20_std
value: 14.4368
- type: nauc_precision_at_20_diff1
value: 34.3383
- type: nauc_precision_at_100_max
value: 36.6044
- type: nauc_precision_at_100_std
value: 23.055500000000002
- type: nauc_precision_at_100_diff1
value: 29.555500000000002
- type: nauc_precision_at_1000_max
value: 39.7315
- type: nauc_precision_at_1000_std
value: 38.601600000000005
- type: nauc_precision_at_1000_diff1
value: 26.7047
- type: nauc_mrr_at_1_max
value: 38.3753
- type: nauc_mrr_at_1_std
value: 4.3651
- type: nauc_mrr_at_1_diff1
value: 53.3935
- type: nauc_mrr_at_3_max
value: 38.183299999999996
- type: nauc_mrr_at_3_std
value: 5.7071
- type: nauc_mrr_at_3_diff1
value: 47.2578
- type: nauc_mrr_at_5_max
value: 38.0161
- type: nauc_mrr_at_5_std
value: 6.2222
- type: nauc_mrr_at_5_diff1
value: 46.5907
- type: nauc_mrr_at_10_max
value: 37.9882
- type: nauc_mrr_at_10_std
value: 6.6221000000000005
- type: nauc_mrr_at_10_diff1
value: 46.3178
- type: nauc_mrr_at_20_max
value: 37.912
- type: nauc_mrr_at_20_std
value: 6.752700000000001
- type: nauc_mrr_at_20_diff1
value: 46.2141
- type: nauc_mrr_at_100_max
value: 37.9247
- type: nauc_mrr_at_100_std
value: 6.8857
- type: nauc_mrr_at_100_diff1
value: 46.169399999999996
- type: nauc_mrr_at_1000_max
value: 37.9292
- type: nauc_mrr_at_1000_std
value: 6.889099999999999
- type: nauc_mrr_at_1000_diff1
value: 46.1833
- type: main_score
value: 36.086
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: ndcg_at_1
value: 41.059
- type: ndcg_at_3
value: 45.091
- type: ndcg_at_5
value: 47.754000000000005
- type: ndcg_at_10
value: 50.403
- type: ndcg_at_20
value: 52.629999999999995
- type: ndcg_at_100
value: 55.669999999999995
- type: ndcg_at_1000
value: 57.645
- type: map_at_1
value: 33.304
- type: map_at_3
value: 40.428999999999995
- type: map_at_5
value: 42.638999999999996
- type: map_at_10
value: 44.239
- type: map_at_20
value: 45.144
- type: map_at_100
value: 45.783
- type: map_at_1000
value: 45.911
- type: recall_at_1
value: 33.304
- type: recall_at_3
value: 46.509
- type: recall_at_5
value: 53.849999999999994
- type: recall_at_10
value: 61.694
- type: recall_at_20
value: 69.708
- type: recall_at_100
value: 83.314
- type: recall_at_1000
value: 95.955
- type: precision_at_1
value: 41.059
- type: precision_at_3
value: 21.316
- type: precision_at_5
value: 15.651000000000002
- type: precision_at_10
value: 9.642000000000001
- type: precision_at_20
value: 5.744
- type: precision_at_100
value: 1.538
- type: precision_at_1000
value: 0.20500000000000002
- type: mrr_at_1
value: 41.058699999999995
- type: mrr_at_3
value: 47.258
- type: mrr_at_5
value: 49.082
- type: mrr_at_10
value: 50.0836
- type: mrr_at_20
value: 50.5221
- type: mrr_at_100
value: 50.8217
- type: mrr_at_1000
value: 50.8713
- type: nauc_ndcg_at_1_max
value: 40.6525
- type: nauc_ndcg_at_1_std
value: -9.376
- type: nauc_ndcg_at_1_diff1
value: 50.0125
- type: nauc_ndcg_at_3_max
value: 40.9809
- type: nauc_ndcg_at_3_std
value: -7.1297
- type: nauc_ndcg_at_3_diff1
value: 47.0051
- type: nauc_ndcg_at_5_max
value: 40.037800000000004
- type: nauc_ndcg_at_5_std
value: -4.3972999999999995
- type: nauc_ndcg_at_5_diff1
value: 45.8909
- type: nauc_ndcg_at_10_max
value: 39.939400000000006
- type: nauc_ndcg_at_10_std
value: -4.5747
- type: nauc_ndcg_at_10_diff1
value: 45.0088
- type: nauc_ndcg_at_20_max
value: 40.144999999999996
- type: nauc_ndcg_at_20_std
value: -4.2649
- type: nauc_ndcg_at_20_diff1
value: 45.6565
- type: nauc_ndcg_at_100_max
value: 41.2015
- type: nauc_ndcg_at_100_std
value: -3.0772
- type: nauc_ndcg_at_100_diff1
value: 45.8564
- type: nauc_ndcg_at_1000_max
value: 41.2273
- type: nauc_ndcg_at_1000_std
value: -3.8580000000000005
- type: nauc_ndcg_at_1000_diff1
value: 46.0075
- type: nauc_map_at_1_max
value: 33.681400000000004
- type: nauc_map_at_1_std
value: -10.792499999999999
- type: nauc_map_at_1_diff1
value: 51.6292
- type: nauc_map_at_3_max
value: 38.5132
- type: nauc_map_at_3_std
value: -9.085899999999999
- type: nauc_map_at_3_diff1
value: 48.516
- type: nauc_map_at_5_max
value: 38.7849
- type: nauc_map_at_5_std
value: -7.2336
- type: nauc_map_at_5_diff1
value: 47.9868
- type: nauc_map_at_10_max
value: 39.3231
- type: nauc_map_at_10_std
value: -7.1676
- type: nauc_map_at_10_diff1
value: 47.446
- type: nauc_map_at_20_max
value: 39.589
- type: nauc_map_at_20_std
value: -6.8943
- type: nauc_map_at_20_diff1
value: 47.4397
- type: nauc_map_at_100_max
value: 39.875
- type: nauc_map_at_100_std
value: -6.549199999999999
- type: nauc_map_at_100_diff1
value: 47.4459
- type: nauc_map_at_1000_max
value: 39.8847
- type: nauc_map_at_1000_std
value: -6.5965
- type: nauc_map_at_1000_diff1
value: 47.4298
- type: nauc_recall_at_1_max
value: 33.681400000000004
- type: nauc_recall_at_1_std
value: -10.792499999999999
- type: nauc_recall_at_1_diff1
value: 51.6292
- type: nauc_recall_at_3_max
value: 37.3654
- type: nauc_recall_at_3_std
value: -6.1476999999999995
- type: nauc_recall_at_3_diff1
value: 43.147400000000005
- type: nauc_recall_at_5_max
value: 35.3328
- type: nauc_recall_at_5_std
value: 1.0517
- type: nauc_recall_at_5_diff1
value: 39.7709
- type: nauc_recall_at_10_max
value: 34.6109
- type: nauc_recall_at_10_std
value: 1.5653000000000001
- type: nauc_recall_at_10_diff1
value: 35.5858
- type: nauc_recall_at_20_max
value: 34.2941
- type: nauc_recall_at_20_std
value: 3.9570000000000003
- type: nauc_recall_at_20_diff1
value: 36.910199999999996
- type: nauc_recall_at_100_max
value: 41.6344
- type: nauc_recall_at_100_std
value: 18.614
- type: nauc_recall_at_100_diff1
value: 35.9742
- type: nauc_recall_at_1000_max
value: 53.67960000000001
- type: nauc_recall_at_1000_std
value: 46.8911
- type: nauc_recall_at_1000_diff1
value: 35.167500000000004
- type: nauc_precision_at_1_max
value: 40.6525
- type: nauc_precision_at_1_std
value: -9.376
- type: nauc_precision_at_1_diff1
value: 50.0125
- type: nauc_precision_at_3_max
value: 40.7269
- type: nauc_precision_at_3_std
value: -1.2473
- type: nauc_precision_at_3_diff1
value: 31.521500000000003
- type: nauc_precision_at_5_max
value: 34.9193
- type: nauc_precision_at_5_std
value: 6.758699999999999
- type: nauc_precision_at_5_diff1
value: 20.958399999999997
- type: nauc_precision_at_10_max
value: 29.1675
- type: nauc_precision_at_10_std
value: 8.4146
- type: nauc_precision_at_10_diff1
value: 9.517000000000001
- type: nauc_precision_at_20_max
value: 23.0603
- type: nauc_precision_at_20_std
value: 9.5615
- type: nauc_precision_at_20_diff1
value: 3.3520000000000003
- type: nauc_precision_at_100_max
value: 10.3906
- type: nauc_precision_at_100_std
value: 8.8378
- type: nauc_precision_at_100_diff1
value: -8.2594
- type: nauc_precision_at_1000_max
value: -4.7287
- type: nauc_precision_at_1000_std
value: -2.5721000000000003
- type: nauc_precision_at_1000_diff1
value: -19.5341
- type: nauc_mrr_at_1_max
value: 40.6525
- type: nauc_mrr_at_1_std
value: -9.376
- type: nauc_mrr_at_1_diff1
value: 50.0125
- type: nauc_mrr_at_3_max
value: 42.4409
- type: nauc_mrr_at_3_std
value: -7.4642
- type: nauc_mrr_at_3_diff1
value: 47.773199999999996
- type: nauc_mrr_at_5_max
value: 41.8687
- type: nauc_mrr_at_5_std
value: -6.0165999999999995
- type: nauc_mrr_at_5_diff1
value: 46.929500000000004
- type: nauc_mrr_at_10_max
value: 41.6607
- type: nauc_mrr_at_10_std
value: -5.8776
- type: nauc_mrr_at_10_diff1
value: 46.5117
- type: nauc_mrr_at_20_max
value: 41.6088
- type: nauc_mrr_at_20_std
value: -6.0403
- type: nauc_mrr_at_20_diff1
value: 46.7355
- type: nauc_mrr_at_100_max
value: 41.6881
- type: nauc_mrr_at_100_std
value: -6.0445
- type: nauc_mrr_at_100_diff1
value: 46.7504
- type: nauc_mrr_at_1000_max
value: 41.6981
- type: nauc_mrr_at_1000_std
value: -6.0584
- type: nauc_mrr_at_1000_diff1
value: 46.7686
- type: main_score
value: 50.403
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: ndcg_at_1
value: 32.293
- type: ndcg_at_3
value: 35.357
- type: ndcg_at_5
value: 37.135
- type: ndcg_at_10
value: 39.682
- type: ndcg_at_20
value: 41.477000000000004
- type: ndcg_at_100
value: 44.594
- type: ndcg_at_1000
value: 46.938
- type: map_at_1
value: 25.084
- type: map_at_3
value: 31.134
- type: map_at_5
value: 32.693
- type: map_at_10
value: 34.072
- type: map_at_20
value: 34.719
- type: map_at_100
value: 35.327999999999996
- type: map_at_1000
value: 35.461
- type: recall_at_1
value: 25.084
- type: recall_at_3
value: 36.678
- type: recall_at_5
value: 41.839999999999996
- type: recall_at_10
value: 49.782
- type: recall_at_20
value: 56.442
- type: recall_at_100
value: 71.114
- type: recall_at_1000
value: 86.372
- type: precision_at_1
value: 32.293
- type: precision_at_3
value: 17.452
- type: precision_at_5
value: 12.446
- type: precision_at_10
value: 7.758
- type: precision_at_20
value: 4.634
- type: precision_at_100
value: 1.324
- type: precision_at_1000
value: 0.184
- type: mrr_at_1
value: 32.293
- type: mrr_at_3
value: 37.8344
- type: mrr_at_5
value: 39.0223
- type: mrr_at_10
value: 40.1805
- type: mrr_at_20
value: 40.6083
- type: mrr_at_100
value: 40.928799999999995
- type: mrr_at_1000
value: 40.9754
- type: nauc_ndcg_at_1_max
value: 45.3161
- type: nauc_ndcg_at_1_std
value: 4.444
- type: nauc_ndcg_at_1_diff1
value: 46.0858
- type: nauc_ndcg_at_3_max
value: 46.1152
- type: nauc_ndcg_at_3_std
value: 3.2603
- type: nauc_ndcg_at_3_diff1
value: 42.6324
- type: nauc_ndcg_at_5_max
value: 46.3649
- type: nauc_ndcg_at_5_std
value: 2.5442
- type: nauc_ndcg_at_5_diff1
value: 42.9534
- type: nauc_ndcg_at_10_max
value: 45.9638
- type: nauc_ndcg_at_10_std
value: 3.849
- type: nauc_ndcg_at_10_diff1
value: 42.3058
- type: nauc_ndcg_at_20_max
value: 45.6402
- type: nauc_ndcg_at_20_std
value: 4.6758
- type: nauc_ndcg_at_20_diff1
value: 41.8551
- type: nauc_ndcg_at_100_max
value: 45.7963
- type: nauc_ndcg_at_100_std
value: 6.154599999999999
- type: nauc_ndcg_at_100_diff1
value: 41.1414
- type: nauc_ndcg_at_1000_max
value: 45.9794
- type: nauc_ndcg_at_1000_std
value: 6.9567000000000005
- type: nauc_ndcg_at_1000_diff1
value: 40.8964
- type: nauc_map_at_1_max
value: 40.1856
- type: nauc_map_at_1_std
value: -4.0307
- type: nauc_map_at_1_diff1
value: 49.675999999999995
- type: nauc_map_at_3_max
value: 43.8311
- type: nauc_map_at_3_std
value: -1.2912
- type: nauc_map_at_3_diff1
value: 45.9441
- type: nauc_map_at_5_max
value: 44.818400000000004
- type: nauc_map_at_5_std
value: -0.7452000000000001
- type: nauc_map_at_5_diff1
value: 45.6591
- type: nauc_map_at_10_max
value: 44.9988
- type: nauc_map_at_10_std
value: 0.41960000000000003
- type: nauc_map_at_10_diff1
value: 45.1582
- type: nauc_map_at_20_max
value: 45.0395
- type: nauc_map_at_20_std
value: 0.9468000000000001
- type: nauc_map_at_20_diff1
value: 44.890600000000006
- type: nauc_map_at_100_max
value: 45.311
- type: nauc_map_at_100_std
value: 1.5421
- type: nauc_map_at_100_diff1
value: 44.7203
- type: nauc_map_at_1000_max
value: 45.364399999999996
- type: nauc_map_at_1000_std
value: 1.6643000000000001
- type: nauc_map_at_1000_diff1
value: 44.6926
- type: nauc_recall_at_1_max
value: 40.1856
- type: nauc_recall_at_1_std
value: -4.0307
- type: nauc_recall_at_1_diff1
value: 49.675999999999995
- type: nauc_recall_at_3_max
value: 43.0698
- type: nauc_recall_at_3_std
value: 0.4071
- type: nauc_recall_at_3_diff1
value: 39.6364
- type: nauc_recall_at_5_max
value: 44.056200000000004
- type: nauc_recall_at_5_std
value: 0.6597000000000001
- type: nauc_recall_at_5_diff1
value: 38.5431
- type: nauc_recall_at_10_max
value: 42.5643
- type: nauc_recall_at_10_std
value: 5.446899999999999
- type: nauc_recall_at_10_diff1
value: 35.3363
- type: nauc_recall_at_20_max
value: 40.9176
- type: nauc_recall_at_20_std
value: 8.6434
- type: nauc_recall_at_20_diff1
value: 33.0525
- type: nauc_recall_at_100_max
value: 41.2899
- type: nauc_recall_at_100_std
value: 17.3979
- type: nauc_recall_at_100_diff1
value: 28.0707
- type: nauc_recall_at_1000_max
value: 43.2786
- type: nauc_recall_at_1000_std
value: 33.6676
- type: nauc_recall_at_1000_diff1
value: 19.6489
- type: nauc_precision_at_1_max
value: 45.3161
- type: nauc_precision_at_1_std
value: 4.444
- type: nauc_precision_at_1_diff1
value: 46.0858
- type: nauc_precision_at_3_max
value: 45.937400000000004
- type: nauc_precision_at_3_std
value: 13.606599999999998
- type: nauc_precision_at_3_diff1
value: 28.8887
- type: nauc_precision_at_5_max
value: 43.6409
- type: nauc_precision_at_5_std
value: 15.3222
- type: nauc_precision_at_5_diff1
value: 23.5428
- type: nauc_precision_at_10_max
value: 38.8973
- type: nauc_precision_at_10_std
value: 21.049300000000002
- type: nauc_precision_at_10_diff1
value: 15.912200000000002
- type: nauc_precision_at_20_max
value: 33.1485
- type: nauc_precision_at_20_std
value: 26.1451
- type: nauc_precision_at_20_diff1
value: 7.7276
- type: nauc_precision_at_100_max
value: 24.1577
- type: nauc_precision_at_100_std
value: 31.4656
- type: nauc_precision_at_100_diff1
value: -4.0066999999999995
- type: nauc_precision_at_1000_max
value: 12.3639
- type: nauc_precision_at_1000_std
value: 28.9285
- type: nauc_precision_at_1000_diff1
value: -11.7577
- type: nauc_mrr_at_1_max
value: 45.3161
- type: nauc_mrr_at_1_std
value: 4.444
- type: nauc_mrr_at_1_diff1
value: 46.0858
- type: nauc_mrr_at_3_max
value: 45.9129
- type: nauc_mrr_at_3_std
value: 5.743
- type: nauc_mrr_at_3_diff1
value: 41.6507
- type: nauc_mrr_at_5_max
value: 45.8273
- type: nauc_mrr_at_5_std
value: 5.57
- type: nauc_mrr_at_5_diff1
value: 41.531400000000005
- type: nauc_mrr_at_10_max
value: 45.8144
- type: nauc_mrr_at_10_std
value: 6.263000000000001
- type: nauc_mrr_at_10_diff1
value: 41.2348
- type: nauc_mrr_at_20_max
value: 45.7975
- type: nauc_mrr_at_20_std
value: 6.392200000000001
- type: nauc_mrr_at_20_diff1
value: 41.259499999999996
- type: nauc_mrr_at_100_max
value: 45.7286
- type: nauc_mrr_at_100_std
value: 6.456099999999999
- type: nauc_mrr_at_100_diff1
value: 41.185100000000006
- type: nauc_mrr_at_1000_max
value: 45.7325
- type: nauc_mrr_at_1000_std
value: 6.4614
- type: nauc_mrr_at_1000_diff1
value: 41.188
- type: main_score
value: 39.682
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: ndcg_at_1
value: 41.379
- type: ndcg_at_3
value: 48.789
- type: ndcg_at_5
value: 51.535
- type: ndcg_at_10
value: 53.654999999999994
- type: ndcg_at_20
value: 55.559999999999995
- type: ndcg_at_100
value: 57.911
- type: ndcg_at_1000
value: 59.275
- type: map_at_1
value: 36.224000000000004
- type: map_at_3
value: 45.190999999999995
- type: map_at_5
value: 47.012
- type: map_at_10
value: 48.141
- type: map_at_20
value: 48.802
- type: map_at_100
value: 49.214
- type: map_at_1000
value: 49.278
- type: recall_at_1
value: 36.224000000000004
- type: recall_at_3
value: 53.513
- type: recall_at_5
value: 60.221000000000004
- type: recall_at_10
value: 66.346
- type: recall_at_20
value: 73.359
- type: recall_at_100
value: 84.77
- type: recall_at_1000
value: 94.547
- type: precision_at_1
value: 41.379
- type: precision_at_3
value: 21.902
- type: precision_at_5
value: 15.197
- type: precision_at_10
value: 8.639
- type: precision_at_20
value: 4.887
- type: precision_at_100
value: 1.164
- type: precision_at_1000
value: 0.133
- type: mrr_at_1
value: 41.3793
- type: mrr_at_3
value: 49.0282
- type: mrr_at_5
value: 50.7022
- type: mrr_at_10
value: 51.462399999999995
- type: mrr_at_20
value: 51.9372
- type: mrr_at_100
value: 52.1984
- type: mrr_at_1000
value: 52.2374
- type: nauc_ndcg_at_1_max
value: 45.521499999999996
- type: nauc_ndcg_at_1_std
value: -3.2632000000000003
- type: nauc_ndcg_at_1_diff1
value: 55.017799999999994
- type: nauc_ndcg_at_3_max
value: 43.343399999999995
- type: nauc_ndcg_at_3_std
value: -4.4684
- type: nauc_ndcg_at_3_diff1
value: 49.7562
- type: nauc_ndcg_at_5_max
value: 44.034600000000005
- type: nauc_ndcg_at_5_std
value: -2.8813
- type: nauc_ndcg_at_5_diff1
value: 48.7767
- type: nauc_ndcg_at_10_max
value: 45.0674
- type: nauc_ndcg_at_10_std
value: -1.332
- type: nauc_ndcg_at_10_diff1
value: 48.448600000000006
- type: nauc_ndcg_at_20_max
value: 45.6717
- type: nauc_ndcg_at_20_std
value: 0.0107
- type: nauc_ndcg_at_20_diff1
value: 48.6492
- type: nauc_ndcg_at_100_max
value: 45.974
- type: nauc_ndcg_at_100_std
value: 1.1665999999999999
- type: nauc_ndcg_at_100_diff1
value: 48.9852
- type: nauc_ndcg_at_1000_max
value: 46.0653
- type: nauc_ndcg_at_1000_std
value: 0.7539
- type: nauc_ndcg_at_1000_diff1
value: 49.453399999999995
- type: nauc_map_at_1_max
value: 39.5162
- type: nauc_map_at_1_std
value: -4.4784
- type: nauc_map_at_1_diff1
value: 54.076
- type: nauc_map_at_3_max
value: 42.022999999999996
- type: nauc_map_at_3_std
value: -5.5131
- type: nauc_map_at_3_diff1
value: 50.727199999999996
- type: nauc_map_at_5_max
value: 42.700700000000005
- type: nauc_map_at_5_std
value: -4.3487
- type: nauc_map_at_5_diff1
value: 50.058499999999995
- type: nauc_map_at_10_max
value: 43.4533
- type: nauc_map_at_10_std
value: -3.3632000000000004
- type: nauc_map_at_10_diff1
value: 49.8247
- type: nauc_map_at_20_max
value: 43.7821
- type: nauc_map_at_20_std
value: -2.8057
- type: nauc_map_at_20_diff1
value: 49.8795
- type: nauc_map_at_100_max
value: 43.9125
- type: nauc_map_at_100_std
value: -2.5162
- type: nauc_map_at_100_diff1
value: 49.9437
- type: nauc_map_at_1000_max
value: 43.9371
- type: nauc_map_at_1000_std
value: -2.5118
- type: nauc_map_at_1000_diff1
value: 49.973600000000005
- type: nauc_recall_at_1_max
value: 39.5162
- type: nauc_recall_at_1_std
value: -4.4784
- type: nauc_recall_at_1_diff1
value: 54.076
- type: nauc_recall_at_3_max
value: 40.1719
- type: nauc_recall_at_3_std
value: -5.8908000000000005
- type: nauc_recall_at_3_diff1
value: 46.1075
- type: nauc_recall_at_5_max
value: 41.3221
- type: nauc_recall_at_5_std
value: -1.7418
- type: nauc_recall_at_5_diff1
value: 42.4571
- type: nauc_recall_at_10_max
value: 44.1382
- type: nauc_recall_at_10_std
value: 3.0869
- type: nauc_recall_at_10_diff1
value: 40.6674
- type: nauc_recall_at_20_max
value: 47.0264
- type: nauc_recall_at_20_std
value: 10.7409
- type: nauc_recall_at_20_diff1
value: 39.8838
- type: nauc_recall_at_100_max
value: 49.660700000000006
- type: nauc_recall_at_100_std
value: 26.1413
- type: nauc_recall_at_100_diff1
value: 38.1192
- type: nauc_recall_at_1000_max
value: 58.9341
- type: nauc_recall_at_1000_std
value: 47.4146
- type: nauc_recall_at_1000_diff1
value: 39.7378
- type: nauc_precision_at_1_max
value: 45.521499999999996
- type: nauc_precision_at_1_std
value: -3.2632000000000003
- type: nauc_precision_at_1_diff1
value: 55.017799999999994
- type: nauc_precision_at_3_max
value: 41.9576
- type: nauc_precision_at_3_std
value: 0.3431
- type: nauc_precision_at_3_diff1
value: 33.5013
- type: nauc_precision_at_5_max
value: 41.024
- type: nauc_precision_at_5_std
value: 6.962400000000001
- type: nauc_precision_at_5_diff1
value: 26.0905
- type: nauc_precision_at_10_max
value: 38.4505
- type: nauc_precision_at_10_std
value: 13.459
- type: nauc_precision_at_10_diff1
value: 18.2984
- type: nauc_precision_at_20_max
value: 35.6898
- type: nauc_precision_at_20_std
value: 19.7287
- type: nauc_precision_at_20_diff1
value: 12.3455
- type: nauc_precision_at_100_max
value: 29.284
- type: nauc_precision_at_100_std
value: 26.509100000000004
- type: nauc_precision_at_100_diff1
value: 4.118200000000001
- type: nauc_precision_at_1000_max
value: 22.5188
- type: nauc_precision_at_1000_std
value: 26.6978
- type: nauc_precision_at_1000_diff1
value: -2.4383
- type: nauc_mrr_at_1_max
value: 45.521499999999996
- type: nauc_mrr_at_1_std
value: -3.2632000000000003
- type: nauc_mrr_at_1_diff1
value: 55.017799999999994
- type: nauc_mrr_at_3_max
value: 45.2583
- type: nauc_mrr_at_3_std
value: -4.0796
- type: nauc_mrr_at_3_diff1
value: 51.3842
- type: nauc_mrr_at_5_max
value: 45.683099999999996
- type: nauc_mrr_at_5_std
value: -3.0403
- type: nauc_mrr_at_5_diff1
value: 50.928
- type: nauc_mrr_at_10_max
value: 46.0254
- type: nauc_mrr_at_10_std
value: -2.5618
- type: nauc_mrr_at_10_diff1
value: 50.9016
- type: nauc_mrr_at_20_max
value: 46.1397
- type: nauc_mrr_at_20_std
value: -2.2378
- type: nauc_mrr_at_20_diff1
value: 50.983900000000006
- type: nauc_mrr_at_100_max
value: 46.0813
- type: nauc_mrr_at_100_std
value: -2.1819
- type: nauc_mrr_at_100_diff1
value: 50.9924
- type: nauc_mrr_at_1000_max
value: 46.075700000000005
- type: nauc_mrr_at_1000_std
value: -2.2086
- type: nauc_mrr_at_1000_diff1
value: 51.004400000000004
- type: main_score
value: 53.654999999999994
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: ndcg_at_1
value: 28.701
- type: ndcg_at_3
value: 35.095
- type: ndcg_at_5
value: 37.533
- type: ndcg_at_10
value: 40.224
- type: ndcg_at_20
value: 41.818
- type: ndcg_at_100
value: 44.651999999999994
- type: ndcg_at_1000
value: 47.05
- type: map_at_1
value: 26.251
- type: map_at_3
value: 32.49
- type: map_at_5
value: 33.931
- type: map_at_10
value: 35.154
- type: map_at_20
value: 35.641
- type: map_at_100
value: 36.032
- type: map_at_1000
value: 36.132
- type: recall_at_1
value: 26.251
- type: recall_at_3
value: 39.76
- type: recall_at_5
value: 45.739999999999995
- type: recall_at_10
value: 53.698
- type: recall_at_20
value: 59.48
- type: recall_at_100
value: 74.298
- type: recall_at_1000
value: 92.06299999999999
- type: precision_at_1
value: 28.701
- type: precision_at_3
value: 14.953
- type: precision_at_5
value: 10.328
- type: precision_at_10
value: 6.158
- type: precision_at_20
value: 3.469
- type: precision_at_100
value: 0.886
- type: precision_at_1000
value: 0.11199999999999999
- type: mrr_at_1
value: 28.700599999999998
- type: mrr_at_3
value: 34.9906
- type: mrr_at_5
value: 36.3917
- type: mrr_at_10
value: 37.4735
- type: mrr_at_20
value: 37.896
- type: mrr_at_100
value: 38.229600000000005
- type: mrr_at_1000
value: 38.3107
- type: nauc_ndcg_at_1_max
value: 35.5663
- type: nauc_ndcg_at_1_std
value: -11.130700000000001
- type: nauc_ndcg_at_1_diff1
value: 47.2971
- type: nauc_ndcg_at_3_max
value: 33.591300000000004
- type: nauc_ndcg_at_3_std
value: -8.8712
- type: nauc_ndcg_at_3_diff1
value: 43.9366
- type: nauc_ndcg_at_5_max
value: 32.8546
- type: nauc_ndcg_at_5_std
value: -7.764799999999999
- type: nauc_ndcg_at_5_diff1
value: 42.896699999999996
- type: nauc_ndcg_at_10_max
value: 33.8862
- type: nauc_ndcg_at_10_std
value: -5.8975
- type: nauc_ndcg_at_10_diff1
value: 42.0493
- type: nauc_ndcg_at_20_max
value: 34.4891
- type: nauc_ndcg_at_20_std
value: -4.7832
- type: nauc_ndcg_at_20_diff1
value: 41.857499999999995
- type: nauc_ndcg_at_100_max
value: 34.2737
- type: nauc_ndcg_at_100_std
value: -4.8904000000000005
- type: nauc_ndcg_at_100_diff1
value: 41.3476
- type: nauc_ndcg_at_1000_max
value: 34.031800000000004
- type: nauc_ndcg_at_1000_std
value: -5.5376
- type: nauc_ndcg_at_1000_diff1
value: 41.8603
- type: nauc_map_at_1_max
value: 33.128299999999996
- type: nauc_map_at_1_std
value: -12.1157
- type: nauc_map_at_1_diff1
value: 49.8448
- type: nauc_map_at_3_max
value: 33.283699999999996
- type: nauc_map_at_3_std
value: -9.7518
- type: nauc_map_at_3_diff1
value: 45.4875
- type: nauc_map_at_5_max
value: 32.9355
- type: nauc_map_at_5_std
value: -9.1755
- type: nauc_map_at_5_diff1
value: 44.8675
- type: nauc_map_at_10_max
value: 33.5532
- type: nauc_map_at_10_std
value: -8.3763
- type: nauc_map_at_10_diff1
value: 44.670700000000004
- type: nauc_map_at_20_max
value: 33.8065
- type: nauc_map_at_20_std
value: -8.0253
- type: nauc_map_at_20_diff1
value: 44.5987
- type: nauc_map_at_100_max
value: 33.7647
- type: nauc_map_at_100_std
value: -8.0399
- type: nauc_map_at_100_diff1
value: 44.5212
- type: nauc_map_at_1000_max
value: 33.752700000000004
- type: nauc_map_at_1000_std
value: -8.0557
- type: nauc_map_at_1000_diff1
value: 44.5285
- type: nauc_recall_at_1_max
value: 33.128299999999996
- type: nauc_recall_at_1_std
value: -12.1157
- type: nauc_recall_at_1_diff1
value: 49.8448
- type: nauc_recall_at_3_max
value: 31.5403
- type: nauc_recall_at_3_std
value: -6.862699999999999
- type: nauc_recall_at_3_diff1
value: 40.4438
- type: nauc_recall_at_5_max
value: 29.549300000000002
- type: nauc_recall_at_5_std
value: -4.8186
- type: nauc_recall_at_5_diff1
value: 37.7652
- type: nauc_recall_at_10_max
value: 32.0106
- type: nauc_recall_at_10_std
value: 1.1384999999999998
- type: nauc_recall_at_10_diff1
value: 34.4037
- type: nauc_recall_at_20_max
value: 34.1547
- type: nauc_recall_at_20_std
value: 6.0514
- type: nauc_recall_at_20_diff1
value: 33.4793
- type: nauc_recall_at_100_max
value: 32.610099999999996
- type: nauc_recall_at_100_std
value: 9.046899999999999
- type: nauc_recall_at_100_diff1
value: 27.256999999999998
- type: nauc_recall_at_1000_max
value: 26.3079
- type: nauc_recall_at_1000_std
value: 16.963900000000002
- type: nauc_recall_at_1000_diff1
value: 22.1857
- type: nauc_precision_at_1_max
value: 35.5663
- type: nauc_precision_at_1_std
value: -11.130700000000001
- type: nauc_precision_at_1_diff1
value: 47.2971
- type: nauc_precision_at_3_max
value: 34.8919
- type: nauc_precision_at_3_std
value: -4.6598
- type: nauc_precision_at_3_diff1
value: 36.1773
- type: nauc_precision_at_5_max
value: 32.9054
- type: nauc_precision_at_5_std
value: -2.0126999999999997
- type: nauc_precision_at_5_diff1
value: 32.6994
- type: nauc_precision_at_10_max
value: 33.683600000000006
- type: nauc_precision_at_10_std
value: 3.2531999999999996
- type: nauc_precision_at_10_diff1
value: 28.099800000000002
- type: nauc_precision_at_20_max
value: 33.7297
- type: nauc_precision_at_20_std
value: 7.0116
- type: nauc_precision_at_20_diff1
value: 23.663999999999998
- type: nauc_precision_at_100_max
value: 26.119300000000003
- type: nauc_precision_at_100_std
value: 7.8559
- type: nauc_precision_at_100_diff1
value: 9.9931
- type: nauc_precision_at_1000_max
value: 11.0973
- type: nauc_precision_at_1000_std
value: 4.6916
- type: nauc_precision_at_1000_diff1
value: -6.2033
- type: nauc_mrr_at_1_max
value: 35.5663
- type: nauc_mrr_at_1_std
value: -11.130700000000001
- type: nauc_mrr_at_1_diff1
value: 47.2971
- type: nauc_mrr_at_3_max
value: 35.0322
- type: nauc_mrr_at_3_std
value: -8.6242
- type: nauc_mrr_at_3_diff1
value: 43.435
- type: nauc_mrr_at_5_max
value: 34.796899999999994
- type: nauc_mrr_at_5_std
value: -8.1215
- type: nauc_mrr_at_5_diff1
value: 42.9234
- type: nauc_mrr_at_10_max
value: 35.0315
- type: nauc_mrr_at_10_std
value: -7.4498
- type: nauc_mrr_at_10_diff1
value: 42.348
- type: nauc_mrr_at_20_max
value: 35.0761
- type: nauc_mrr_at_20_std
value: -7.246700000000001
- type: nauc_mrr_at_20_diff1
value: 42.3282
- type: nauc_mrr_at_100_max
value: 35.0173
- type: nauc_mrr_at_100_std
value: -7.269699999999999
- type: nauc_mrr_at_100_diff1
value: 42.306
- type: nauc_mrr_at_1000_max
value: 35.015
- type: nauc_mrr_at_1000_std
value: -7.2973
- type: nauc_mrr_at_1000_diff1
value: 42.3292
- type: main_score
value: 40.224
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: ndcg_at_1
value: 20.398
- type: ndcg_at_3
value: 25.701
- type: ndcg_at_5
value: 27.503
- type: ndcg_at_10
value: 30.016
- type: ndcg_at_20
value: 31.941000000000003
- type: ndcg_at_100
value: 35.995
- type: ndcg_at_1000
value: 38.732
- type: map_at_1
value: 15.827
- type: map_at_3
value: 22.185
- type: map_at_5
value: 23.398
- type: map_at_10
value: 24.576
- type: map_at_20
value: 25.158
- type: map_at_100
value: 25.790000000000003
- type: map_at_1000
value: 25.906000000000002
- type: recall_at_1
value: 15.827
- type: recall_at_3
value: 29.404000000000003
- type: recall_at_5
value: 34.408
- type: recall_at_10
value: 41.802
- type: recall_at_20
value: 48.775
- type: recall_at_100
value: 68.643
- type: recall_at_1000
value: 88.022
- type: precision_at_1
value: 20.398
- type: precision_at_3
value: 12.769
- type: precision_at_5
value: 9.030000000000001
- type: precision_at_10
value: 5.684
- type: precision_at_20
value: 3.408
- type: precision_at_100
value: 1.004
- type: precision_at_1000
value: 0.13699999999999998
- type: mrr_at_1
value: 20.398
- type: mrr_at_3
value: 27.1144
- type: mrr_at_5
value: 28.4453
- type: mrr_at_10
value: 29.5935
- type: mrr_at_20
value: 30.0591
- type: mrr_at_100
value: 30.516399999999997
- type: mrr_at_1000
value: 30.5831
- type: nauc_ndcg_at_1_max
value: 26.8727
- type: nauc_ndcg_at_1_std
value: -2.0329
- type: nauc_ndcg_at_1_diff1
value: 28.792099999999998
- type: nauc_ndcg_at_3_max
value: 29.210900000000002
- type: nauc_ndcg_at_3_std
value: 1.357
- type: nauc_ndcg_at_3_diff1
value: 25.153399999999998
- type: nauc_ndcg_at_5_max
value: 28.031499999999998
- type: nauc_ndcg_at_5_std
value: 1.546
- type: nauc_ndcg_at_5_diff1
value: 23.6489
- type: nauc_ndcg_at_10_max
value: 27.2909
- type: nauc_ndcg_at_10_std
value: 1.8301
- type: nauc_ndcg_at_10_diff1
value: 21.7899
- type: nauc_ndcg_at_20_max
value: 27.934900000000003
- type: nauc_ndcg_at_20_std
value: 2.3472
- type: nauc_ndcg_at_20_diff1
value: 22.322
- type: nauc_ndcg_at_100_max
value: 28.1958
- type: nauc_ndcg_at_100_std
value: 3.5208000000000004
- type: nauc_ndcg_at_100_diff1
value: 23.156499999999998
- type: nauc_ndcg_at_1000_max
value: 28.766000000000002
- type: nauc_ndcg_at_1000_std
value: 3.4803
- type: nauc_ndcg_at_1000_diff1
value: 23.096600000000002
- type: nauc_map_at_1_max
value: 26.271099999999997
- type: nauc_map_at_1_std
value: -0.8499
- type: nauc_map_at_1_diff1
value: 32.0953
- type: nauc_map_at_3_max
value: 28.1188
- type: nauc_map_at_3_std
value: 0.42040000000000005
- type: nauc_map_at_3_diff1
value: 26.6573
- type: nauc_map_at_5_max
value: 27.5138
- type: nauc_map_at_5_std
value: 0.43010000000000004
- type: nauc_map_at_5_diff1
value: 25.6081
- type: nauc_map_at_10_max
value: 27.313900000000004
- type: nauc_map_at_10_std
value: 0.644
- type: nauc_map_at_10_diff1
value: 24.6459
- type: nauc_map_at_20_max
value: 27.5519
- type: nauc_map_at_20_std
value: 0.7802
- type: nauc_map_at_20_diff1
value: 24.7392
- type: nauc_map_at_100_max
value: 27.717999999999996
- type: nauc_map_at_100_std
value: 1.078
- type: nauc_map_at_100_diff1
value: 24.884500000000003
- type: nauc_map_at_1000_max
value: 27.7366
- type: nauc_map_at_1000_std
value: 1.0739
- type: nauc_map_at_1000_diff1
value: 24.9131
- type: nauc_recall_at_1_max
value: 26.271099999999997
- type: nauc_recall_at_1_std
value: -0.8499
- type: nauc_recall_at_1_diff1
value: 32.0953
- type: nauc_recall_at_3_max
value: 28.034399999999998
- type: nauc_recall_at_3_std
value: 2.7848
- type: nauc_recall_at_3_diff1
value: 21.845
- type: nauc_recall_at_5_max
value: 25.510899999999996
- type: nauc_recall_at_5_std
value: 3.2032
- type: nauc_recall_at_5_diff1
value: 18.1497
- type: nauc_recall_at_10_max
value: 23.6985
- type: nauc_recall_at_10_std
value: 4.2382
- type: nauc_recall_at_10_diff1
value: 13.4018
- type: nauc_recall_at_20_max
value: 25.0105
- type: nauc_recall_at_20_std
value: 6.2892
- type: nauc_recall_at_20_diff1
value: 14.6347
- type: nauc_recall_at_100_max
value: 23.6484
- type: nauc_recall_at_100_std
value: 12.826299999999998
- type: nauc_recall_at_100_diff1
value: 16.372999999999998
- type: nauc_recall_at_1000_max
value: 34.1999
- type: nauc_recall_at_1000_std
value: 26.1497
- type: nauc_recall_at_1000_diff1
value: 7.666199999999999
- type: nauc_precision_at_1_max
value: 26.8727
- type: nauc_precision_at_1_std
value: -2.0329
- type: nauc_precision_at_1_diff1
value: 28.792099999999998
- type: nauc_precision_at_3_max
value: 31.689
- type: nauc_precision_at_3_std
value: 4.5703000000000005
- type: nauc_precision_at_3_diff1
value: 20.0233
- type: nauc_precision_at_5_max
value: 27.807
- type: nauc_precision_at_5_std
value: 4.209899999999999
- type: nauc_precision_at_5_diff1
value: 15.3505
- type: nauc_precision_at_10_max
value: 22.672800000000002
- type: nauc_precision_at_10_std
value: 3.624
- type: nauc_precision_at_10_diff1
value: 8.4378
- type: nauc_precision_at_20_max
value: 23.3401
- type: nauc_precision_at_20_std
value: 3.6032
- type: nauc_precision_at_20_diff1
value: 9.2764
- type: nauc_precision_at_100_max
value: 16.516000000000002
- type: nauc_precision_at_100_std
value: 5.7479000000000005
- type: nauc_precision_at_100_diff1
value: 5.733499999999999
- type: nauc_precision_at_1000_max
value: 6.1677
- type: nauc_precision_at_1000_std
value: 0.4491
- type: nauc_precision_at_1000_diff1
value: 0.2477
- type: nauc_mrr_at_1_max
value: 26.8727
- type: nauc_mrr_at_1_std
value: -2.0329
- type: nauc_mrr_at_1_diff1
value: 28.792099999999998
- type: nauc_mrr_at_3_max
value: 29.6131
- type: nauc_mrr_at_3_std
value: 0.6053000000000001
- type: nauc_mrr_at_3_diff1
value: 25.8043
- type: nauc_mrr_at_5_max
value: 29.0205
- type: nauc_mrr_at_5_std
value: 0.8692
- type: nauc_mrr_at_5_diff1
value: 24.8413
- type: nauc_mrr_at_10_max
value: 28.459400000000002
- type: nauc_mrr_at_10_std
value: 0.5887
- type: nauc_mrr_at_10_diff1
value: 24.364
- type: nauc_mrr_at_20_max
value: 28.5242
- type: nauc_mrr_at_20_std
value: 0.6396
- type: nauc_mrr_at_20_diff1
value: 24.4579
- type: nauc_mrr_at_100_max
value: 28.540599999999998
- type: nauc_mrr_at_100_std
value: 0.7425
- type: nauc_mrr_at_100_diff1
value: 24.5761
- type: nauc_mrr_at_1000_max
value: 28.5429
- type: nauc_mrr_at_1000_std
value: 0.7348
- type: nauc_mrr_at_1000_diff1
value: 24.562800000000003
- type: main_score
value: 30.016
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: ndcg_at_1
value: 34.937000000000005
- type: ndcg_at_3
value: 39.366
- type: ndcg_at_5
value: 41.980000000000004
- type: ndcg_at_10
value: 44.674
- type: ndcg_at_20
value: 46.671
- type: ndcg_at_100
value: 50.041999999999994
- type: ndcg_at_1000
value: 52.120999999999995
- type: map_at_1
value: 27.750000000000004
- type: map_at_3
value: 35.027
- type: map_at_5
value: 36.952
- type: map_at_10
value: 38.382
- type: map_at_20
value: 39.072
- type: map_at_100
value: 39.694
- type: map_at_1000
value: 39.81
- type: recall_at_1
value: 27.750000000000004
- type: recall_at_3
value: 42.321999999999996
- type: recall_at_5
value: 49.209
- type: recall_at_10
value: 57.282
- type: recall_at_20
value: 64.30399999999999
- type: recall_at_100
value: 80.143
- type: recall_at_1000
value: 93.664
- type: precision_at_1
value: 34.937000000000005
- type: precision_at_3
value: 18.993
- type: precision_at_5
value: 13.648
- type: precision_at_10
value: 8.412
- type: precision_at_20
value: 4.885
- type: precision_at_100
value: 1.302
- type: precision_at_1000
value: 0.167
- type: mrr_at_1
value: 34.937400000000004
- type: mrr_at_3
value: 41.7389
- type: mrr_at_5
value: 43.4184
- type: mrr_at_10
value: 44.4776
- type: mrr_at_20
value: 44.8859
- type: mrr_at_100
value: 45.2197
- type: mrr_at_1000
value: 45.2704
- type: nauc_ndcg_at_1_max
value: 41.1314
- type: nauc_ndcg_at_1_std
value: 0.6393
- type: nauc_ndcg_at_1_diff1
value: 52.494
- type: nauc_ndcg_at_3_max
value: 38.8915
- type: nauc_ndcg_at_3_std
value: -1.1358
- type: nauc_ndcg_at_3_diff1
value: 48.8256
- type: nauc_ndcg_at_5_max
value: 38.6924
- type: nauc_ndcg_at_5_std
value: -2.2843999999999998
- type: nauc_ndcg_at_5_diff1
value: 47.9194
- type: nauc_ndcg_at_10_max
value: 37.8751
- type: nauc_ndcg_at_10_std
value: -1.5187000000000002
- type: nauc_ndcg_at_10_diff1
value: 46.455400000000004
- type: nauc_ndcg_at_20_max
value: 38.1022
- type: nauc_ndcg_at_20_std
value: -0.7692
- type: nauc_ndcg_at_20_diff1
value: 46.5041
- type: nauc_ndcg_at_100_max
value: 40.396100000000004
- type: nauc_ndcg_at_100_std
value: 1.8087
- type: nauc_ndcg_at_100_diff1
value: 47.2332
- type: nauc_ndcg_at_1000_max
value: 40.2539
- type: nauc_ndcg_at_1000_std
value: 2.1609
- type: nauc_ndcg_at_1000_diff1
value: 47.185700000000004
- type: nauc_map_at_1_max
value: 34.3255
- type: nauc_map_at_1_std
value: -6.783599999999999
- type: nauc_map_at_1_diff1
value: 54.6668
- type: nauc_map_at_3_max
value: 36.5777
- type: nauc_map_at_3_std
value: -3.8482000000000003
- type: nauc_map_at_3_diff1
value: 50.1703
- type: nauc_map_at_5_max
value: 37.229
- type: nauc_map_at_5_std
value: -3.9170000000000003
- type: nauc_map_at_5_diff1
value: 49.5882
- type: nauc_map_at_10_max
value: 37.318400000000004
- type: nauc_map_at_10_std
value: -3.2477
- type: nauc_map_at_10_diff1
value: 48.8387
- type: nauc_map_at_20_max
value: 37.5075
- type: nauc_map_at_20_std
value: -2.8737
- type: nauc_map_at_20_diff1
value: 48.896699999999996
- type: nauc_map_at_100_max
value: 37.965199999999996
- type: nauc_map_at_100_std
value: -2.3644
- type: nauc_map_at_100_diff1
value: 48.9583
- type: nauc_map_at_1000_max
value: 37.9824
- type: nauc_map_at_1000_std
value: -2.2945
- type: nauc_map_at_1000_diff1
value: 48.9472
- type: nauc_recall_at_1_max
value: 34.3255
- type: nauc_recall_at_1_std
value: -6.783599999999999
- type: nauc_recall_at_1_diff1
value: 54.6668
- type: nauc_recall_at_3_max
value: 33.823100000000004
- type: nauc_recall_at_3_std
value: -3.7593
- type: nauc_recall_at_3_diff1
value: 44.3225
- type: nauc_recall_at_5_max
value: 34.271499999999996
- type: nauc_recall_at_5_std
value: -4.8704
- type: nauc_recall_at_5_diff1
value: 41.3594
- type: nauc_recall_at_10_max
value: 32.2652
- type: nauc_recall_at_10_std
value: -1.5755000000000001
- type: nauc_recall_at_10_diff1
value: 35.9057
- type: nauc_recall_at_20_max
value: 32.1614
- type: nauc_recall_at_20_std
value: 0.8789
- type: nauc_recall_at_20_diff1
value: 34.6074
- type: nauc_recall_at_100_max
value: 44.527499999999996
- type: nauc_recall_at_100_std
value: 17.735500000000002
- type: nauc_recall_at_100_diff1
value: 36.446
- type: nauc_recall_at_1000_max
value: 47.751
- type: nauc_recall_at_1000_std
value: 41.8399
- type: nauc_recall_at_1000_diff1
value: 26.7075
- type: nauc_precision_at_1_max
value: 41.1314
- type: nauc_precision_at_1_std
value: 0.6393
- type: nauc_precision_at_1_diff1
value: 52.494
- type: nauc_precision_at_3_max
value: 40.7504
- type: nauc_precision_at_3_std
value: 8.6914
- type: nauc_precision_at_3_diff1
value: 34.590900000000005
- type: nauc_precision_at_5_max
value: 38.5891
- type: nauc_precision_at_5_std
value: 8.7898
- type: nauc_precision_at_5_diff1
value: 27.122200000000003
- type: nauc_precision_at_10_max
value: 32.5422
- type: nauc_precision_at_10_std
value: 13.9757
- type: nauc_precision_at_10_diff1
value: 15.504000000000001
- type: nauc_precision_at_20_max
value: 28.212799999999998
- type: nauc_precision_at_20_std
value: 17.0921
- type: nauc_precision_at_20_diff1
value: 10.264800000000001
- type: nauc_precision_at_100_max
value: 23.9818
- type: nauc_precision_at_100_std
value: 24.7802
- type: nauc_precision_at_100_diff1
value: -0.1275
- type: nauc_precision_at_1000_max
value: 11.8968
- type: nauc_precision_at_1000_std
value: 24.0201
- type: nauc_precision_at_1000_diff1
value: -12.1507
- type: nauc_mrr_at_1_max
value: 41.1314
- type: nauc_mrr_at_1_std
value: 0.6393
- type: nauc_mrr_at_1_diff1
value: 52.494
- type: nauc_mrr_at_3_max
value: 41.0145
- type: nauc_mrr_at_3_std
value: 1.7641
- type: nauc_mrr_at_3_diff1
value: 49.3663
- type: nauc_mrr_at_5_max
value: 41.4664
- type: nauc_mrr_at_5_std
value: 1.6695000000000002
- type: nauc_mrr_at_5_diff1
value: 49.0033
- type: nauc_mrr_at_10_max
value: 41.2351
- type: nauc_mrr_at_10_std
value: 2.0388
- type: nauc_mrr_at_10_diff1
value: 48.7703
- type: nauc_mrr_at_20_max
value: 41.2064
- type: nauc_mrr_at_20_std
value: 2.081
- type: nauc_mrr_at_20_diff1
value: 48.6787
- type: nauc_mrr_at_100_max
value: 41.3966
- type: nauc_mrr_at_100_std
value: 2.2723
- type: nauc_mrr_at_100_diff1
value: 48.746
- type: nauc_mrr_at_1000_max
value: 41.3803
- type: nauc_mrr_at_1000_std
value: 2.2632
- type: nauc_mrr_at_1000_diff1
value: 48.7541
- type: main_score
value: 44.674
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: ndcg_at_1
value: 29.909000000000002
- type: ndcg_at_3
value: 35.056
- type: ndcg_at_5
value: 37.076
- type: ndcg_at_10
value: 40.093
- type: ndcg_at_20
value: 42.254999999999995
- type: ndcg_at_100
value: 45.692
- type: ndcg_at_1000
value: 48.204
- type: map_at_1
value: 24.68
- type: map_at_3
value: 31.379
- type: map_at_5
value: 32.92
- type: map_at_10
value: 34.391
- type: map_at_20
value: 35.109
- type: map_at_100
value: 35.686
- type: map_at_1000
value: 35.804
- type: recall_at_1
value: 24.68
- type: recall_at_3
value: 38.190000000000005
- type: recall_at_5
value: 43.519999999999996
- type: recall_at_10
value: 52.364999999999995
- type: recall_at_20
value: 60.02499999999999
- type: recall_at_100
value: 76.229
- type: recall_at_1000
value: 93.31099999999999
- type: precision_at_1
value: 29.909000000000002
- type: precision_at_3
value: 16.667
- type: precision_at_5
value: 11.781
- type: precision_at_10
value: 7.340000000000001
- type: precision_at_20
value: 4.315
- type: precision_at_100
value: 1.18
- type: precision_at_1000
value: 0.158
- type: mrr_at_1
value: 29.9087
- type: mrr_at_3
value: 36.6438
- type: mrr_at_5
value: 37.939499999999995
- type: mrr_at_10
value: 39.1699
- type: mrr_at_20
value: 39.6872
- type: mrr_at_100
value: 40.0648
- type: mrr_at_1000
value: 40.1254
- type: nauc_ndcg_at_1_max
value: 37.3397
- type: nauc_ndcg_at_1_std
value: 5.9699
- type: nauc_ndcg_at_1_diff1
value: 46.6563
- type: nauc_ndcg_at_3_max
value: 39.0153
- type: nauc_ndcg_at_3_std
value: 8.5756
- type: nauc_ndcg_at_3_diff1
value: 41.2988
- type: nauc_ndcg_at_5_max
value: 39.4932
- type: nauc_ndcg_at_5_std
value: 9.4963
- type: nauc_ndcg_at_5_diff1
value: 40.0798
- type: nauc_ndcg_at_10_max
value: 40.0787
- type: nauc_ndcg_at_10_std
value: 10.312100000000001
- type: nauc_ndcg_at_10_diff1
value: 39.6584
- type: nauc_ndcg_at_20_max
value: 40.9003
- type: nauc_ndcg_at_20_std
value: 11.991100000000001
- type: nauc_ndcg_at_20_diff1
value: 39.4373
- type: nauc_ndcg_at_100_max
value: 41.4069
- type: nauc_ndcg_at_100_std
value: 13.6103
- type: nauc_ndcg_at_100_diff1
value: 40.0088
- type: nauc_ndcg_at_1000_max
value: 41.505900000000004
- type: nauc_ndcg_at_1000_std
value: 12.742400000000002
- type: nauc_ndcg_at_1000_diff1
value: 40.1457
- type: nauc_map_at_1_max
value: 34.739
- type: nauc_map_at_1_std
value: 0.9294
- type: nauc_map_at_1_diff1
value: 48.1138
- type: nauc_map_at_3_max
value: 37.0441
- type: nauc_map_at_3_std
value: 5.5666
- type: nauc_map_at_3_diff1
value: 42.7429
- type: nauc_map_at_5_max
value: 37.891799999999996
- type: nauc_map_at_5_std
value: 6.7185999999999995
- type: nauc_map_at_5_diff1
value: 41.9849
- type: nauc_map_at_10_max
value: 38.556000000000004
- type: nauc_map_at_10_std
value: 7.4627
- type: nauc_map_at_10_diff1
value: 41.8061
- type: nauc_map_at_20_max
value: 38.8822
- type: nauc_map_at_20_std
value: 8.0747
- type: nauc_map_at_20_diff1
value: 41.7518
- type: nauc_map_at_100_max
value: 39.0912
- type: nauc_map_at_100_std
value: 8.4627
- type: nauc_map_at_100_diff1
value: 41.8958
- type: nauc_map_at_1000_max
value: 39.112700000000004
- type: nauc_map_at_1000_std
value: 8.4459
- type: nauc_map_at_1000_diff1
value: 41.903400000000005
- type: nauc_recall_at_1_max
value: 34.739
- type: nauc_recall_at_1_std
value: 0.9294
- type: nauc_recall_at_1_diff1
value: 48.1138
- type: nauc_recall_at_3_max
value: 37.3971
- type: nauc_recall_at_3_std
value: 9.2075
- type: nauc_recall_at_3_diff1
value: 36.4624
- type: nauc_recall_at_5_max
value: 38.1516
- type: nauc_recall_at_5_std
value: 11.5318
- type: nauc_recall_at_5_diff1
value: 33.3421
- type: nauc_recall_at_10_max
value: 38.8221
- type: nauc_recall_at_10_std
value: 14.0268
- type: nauc_recall_at_10_diff1
value: 31.4088
- type: nauc_recall_at_20_max
value: 40.9493
- type: nauc_recall_at_20_std
value: 20.2136
- type: nauc_recall_at_20_diff1
value: 29.9447
- type: nauc_recall_at_100_max
value: 43.149300000000004
- type: nauc_recall_at_100_std
value: 33.7709
- type: nauc_recall_at_100_diff1
value: 29.3082
- type: nauc_recall_at_1000_max
value: 55.435500000000005
- type: nauc_recall_at_1000_std
value: 51.8958
- type: nauc_recall_at_1000_diff1
value: 19.3816
- type: nauc_precision_at_1_max
value: 37.3397
- type: nauc_precision_at_1_std
value: 5.9699
- type: nauc_precision_at_1_diff1
value: 46.6563
- type: nauc_precision_at_3_max
value: 40.3693
- type: nauc_precision_at_3_std
value: 17.0552
- type: nauc_precision_at_3_diff1
value: 29.498400000000004
- type: nauc_precision_at_5_max
value: 39.7607
- type: nauc_precision_at_5_std
value: 20.274
- type: nauc_precision_at_5_diff1
value: 23.061300000000003
- type: nauc_precision_at_10_max
value: 38.0299
- type: nauc_precision_at_10_std
value: 22.256899999999998
- type: nauc_precision_at_10_diff1
value: 17.0507
- type: nauc_precision_at_20_max
value: 36.0867
- type: nauc_precision_at_20_std
value: 25.936700000000002
- type: nauc_precision_at_20_diff1
value: 12.1754
- type: nauc_precision_at_100_max
value: 24.1493
- type: nauc_precision_at_100_std
value: 23.8361
- type: nauc_precision_at_100_diff1
value: 5.2714
- type: nauc_precision_at_1000_max
value: 7.033499999999999
- type: nauc_precision_at_1000_std
value: 9.0198
- type: nauc_precision_at_1000_diff1
value: -4.8427999999999995
- type: nauc_mrr_at_1_max
value: 37.3397
- type: nauc_mrr_at_1_std
value: 5.9699
- type: nauc_mrr_at_1_diff1
value: 46.6563
- type: nauc_mrr_at_3_max
value: 40.2205
- type: nauc_mrr_at_3_std
value: 9.8833
- type: nauc_mrr_at_3_diff1
value: 42.3963
- type: nauc_mrr_at_5_max
value: 40.1911
- type: nauc_mrr_at_5_std
value: 10.3282
- type: nauc_mrr_at_5_diff1
value: 41.796499999999995
- type: nauc_mrr_at_10_max
value: 40.3748
- type: nauc_mrr_at_10_std
value: 10.567699999999999
- type: nauc_mrr_at_10_diff1
value: 41.643299999999996
- type: nauc_mrr_at_20_max
value: 40.4527
- type: nauc_mrr_at_20_std
value: 10.8016
- type: nauc_mrr_at_20_diff1
value: 41.594300000000004
- type: nauc_mrr_at_100_max
value: 40.395199999999996
- type: nauc_mrr_at_100_std
value: 10.8396
- type: nauc_mrr_at_100_diff1
value: 41.706700000000005
- type: nauc_mrr_at_1000_max
value: 40.3932
- type: nauc_mrr_at_1000_std
value: 10.8097
- type: nauc_mrr_at_1000_diff1
value: 41.7124
- type: main_score
value: 40.093
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: ndcg_at_1
value: 30.19958333333333
- type: ndcg_at_3
value: 35.01541666666667
- type: ndcg_at_5
value: 37.22058333333334
- type: ndcg_at_10
value: 39.84525000000001
- type: ndcg_at_20
value: 41.81666666666667
- type: ndcg_at_100
value: 44.973
- type: ndcg_at_1000
value: 47.338583333333325
- type: map_at_1
value: 25.296916666666668
- type: map_at_3
value: 31.593166666666665
- type: map_at_5
value: 33.145916666666665
- type: map_at_10
value: 34.45275
- type: map_at_20
value: 35.10883333333334
- type: map_at_100
value: 35.647499999999994
- type: map_at_1000
value: 35.768166666666666
- type: recall_at_1
value: 25.296916666666668
- type: recall_at_3
value: 38.05166666666666
- type: recall_at_5
value: 43.82625
- type: recall_at_10
value: 51.58916666666668
- type: recall_at_20
value: 58.77308333333334
- type: recall_at_100
value: 74.15658333333333
- type: recall_at_1000
value: 90.51333333333335
- type: precision_at_1
value: 30.19958333333333
- type: precision_at_3
value: 16.167999999999996
- type: precision_at_5
value: 11.49225
- type: precision_at_10
value: 7.057666666666666
- type: precision_at_20
value: 4.174083333333333
- type: precision_at_100
value: 1.1363333333333332
- type: precision_at_1000
value: 0.15383333333333332
- type: mrr_at_1
value: 30.199658333333335
- type: mrr_at_3
value: 36.21564166666667
- type: mrr_at_5
value: 37.627291666666665
- type: mrr_at_10
value: 38.70535
- type: mrr_at_20
value: 39.193799999999996
- type: mrr_at_100
value: 39.55041666666666
- type: mrr_at_1000
value: 39.61140833333333
- type: nauc_ndcg_at_1_max
value: 39.3715
- type: nauc_ndcg_at_1_std
value: -1.2167000000000008
- type: nauc_ndcg_at_1_diff1
value: 47.05770833333333
- type: nauc_ndcg_at_3_max
value: 38.67278333333333
- type: nauc_ndcg_at_3_std
value: -0.10360000000000005
- type: nauc_ndcg_at_3_diff1
value: 42.23506666666667
- type: nauc_ndcg_at_5_max
value: 38.421591666666664
- type: nauc_ndcg_at_5_std
value: 0.9004833333333335
- type: nauc_ndcg_at_5_diff1
value: 41.46895
- type: nauc_ndcg_at_10_max
value: 38.31713333333333
- type: nauc_ndcg_at_10_std
value: 1.6739333333333335
- type: nauc_ndcg_at_10_diff1
value: 40.52259166666667
- type: nauc_ndcg_at_20_max
value: 38.61266666666667
- type: nauc_ndcg_at_20_std
value: 2.7783666666666673
- type: nauc_ndcg_at_20_diff1
value: 40.28085833333333
- type: nauc_ndcg_at_100_max
value: 39.27558333333333
- type: nauc_ndcg_at_100_std
value: 3.9398000000000004
- type: nauc_ndcg_at_100_diff1
value: 40.39787499999999
- type: nauc_ndcg_at_1000_max
value: 39.44075
- type: nauc_ndcg_at_1000_std
value: 3.9607833333333327
- type: nauc_ndcg_at_1000_diff1
value: 40.683225
- type: nauc_map_at_1_max
value: 35.66645
- type: nauc_map_at_1_std
value: -4.276391666666667
- type: nauc_map_at_1_diff1
value: 48.810141666666674
- type: nauc_map_at_3_max
value: 37.424108333333336
- type: nauc_map_at_3_std
value: -2.064866666666667
- type: nauc_map_at_3_diff1
value: 44.115075
- type: nauc_map_at_5_max
value: 37.693016666666665
- type: nauc_map_at_5_std
value: -1.1872749999999994
- type: nauc_map_at_5_diff1
value: 43.554458333333336
- type: nauc_map_at_10_max
value: 37.9333
- type: nauc_map_at_10_std
value: -0.6246583333333332
- type: nauc_map_at_10_diff1
value: 43.05175
- type: nauc_map_at_20_max
value: 38.11316666666667
- type: nauc_map_at_20_std
value: -0.17139166666666622
- type: nauc_map_at_20_diff1
value: 42.929925000000004
- type: nauc_map_at_100_max
value: 38.296825
- type: nauc_map_at_100_std
value: 0.1448500000000002
- type: nauc_map_at_100_diff1
value: 42.91681666666667
- type: nauc_map_at_1000_max
value: 38.308891666666675
- type: nauc_map_at_1000_std
value: 0.17599166666666682
- type: nauc_map_at_1000_diff1
value: 42.91478333333333
- type: nauc_recall_at_1_max
value: 35.66645
- type: nauc_recall_at_1_std
value: -4.276391666666667
- type: nauc_recall_at_1_diff1
value: 48.810141666666674
- type: nauc_recall_at_3_max
value: 36.144949999999994
- type: nauc_recall_at_3_std
value: -0.07622500000000007
- type: nauc_recall_at_3_diff1
value: 38.39805833333333
- type: nauc_recall_at_5_max
value: 35.599016666666664
- type: nauc_recall_at_5_std
value: 2.6147583333333335
- type: nauc_recall_at_5_diff1
value: 35.84809166666666
- type: nauc_recall_at_10_max
value: 34.73115833333333
- type: nauc_recall_at_10_std
value: 5.2187166666666664
- type: nauc_recall_at_10_diff1
value: 32.22850833333333
- type: nauc_recall_at_20_max
value: 35.11221666666667
- type: nauc_recall_at_20_std
value: 9.564958333333331
- type: nauc_recall_at_20_diff1
value: 30.415991666666663
- type: nauc_recall_at_100_max
value: 37.735958333333336
- type: nauc_recall_at_100_std
value: 19.1386
- type: nauc_recall_at_100_diff1
value: 28.129675
- type: nauc_recall_at_1000_max
value: 43.71879166666667
- type: nauc_recall_at_1000_std
value: 39.80074166666667
- type: nauc_recall_at_1000_diff1
value: 23.800666666666668
- type: nauc_precision_at_1_max
value: 39.3715
- type: nauc_precision_at_1_std
value: -1.2167000000000008
- type: nauc_precision_at_1_diff1
value: 47.05770833333333
- type: nauc_precision_at_3_max
value: 39.00785833333333
- type: nauc_precision_at_3_std
value: 5.753050000000001
- type: nauc_precision_at_3_diff1
value: 31.4196
- type: nauc_precision_at_5_max
value: 36.98677500000001
- type: nauc_precision_at_5_std
value: 9.464608333333333
- type: nauc_precision_at_5_diff1
value: 25.906116666666662
- type: nauc_precision_at_10_max
value: 33.26575833333333
- type: nauc_precision_at_10_std
value: 12.540025
- type: nauc_precision_at_10_diff1
value: 18.274116666666668
- type: nauc_precision_at_20_max
value: 30.13705833333334
- type: nauc_precision_at_20_std
value: 16.549291666666665
- type: nauc_precision_at_20_diff1
value: 12.541983333333334
- type: nauc_precision_at_100_max
value: 22.078525000000003
- type: nauc_precision_at_100_std
value: 19.263416666666664
- type: nauc_precision_at_100_diff1
value: 2.293625
- type: nauc_precision_at_1000_max
value: 8.336641666666667
- type: nauc_precision_at_1000_std
value: 14.828683333333334
- type: nauc_precision_at_1000_diff1
value: -8.852525
- type: nauc_mrr_at_1_max
value: 39.3715
- type: nauc_mrr_at_1_std
value: -1.2167000000000008
- type: nauc_mrr_at_1_diff1
value: 47.05770833333333
- type: nauc_mrr_at_3_max
value: 39.90615
- type: nauc_mrr_at_3_std
value: 0.7366500000000004
- type: nauc_mrr_at_3_diff1
value: 42.96046666666666
- type: nauc_mrr_at_5_max
value: 39.78708333333334
- type: nauc_mrr_at_5_std
value: 1.3970916666666666
- type: nauc_mrr_at_5_diff1
value: 42.44258333333333
- type: nauc_mrr_at_10_max
value: 39.65595
- type: nauc_mrr_at_10_std
value: 1.6633916666666666
- type: nauc_mrr_at_10_diff1
value: 42.084358333333334
- type: nauc_mrr_at_20_max
value: 39.67735
- type: nauc_mrr_at_20_std
value: 1.8360749999999995
- type: nauc_mrr_at_20_diff1
value: 42.04530833333333
- type: nauc_mrr_at_100_max
value: 39.71681666666667
- type: nauc_mrr_at_100_std
value: 1.8971666666666671
- type: nauc_mrr_at_100_diff1
value: 42.075141666666674
- type: nauc_mrr_at_1000_max
value: 39.72038333333334
- type: nauc_mrr_at_1000_std
value: 1.8916749999999996
- type: nauc_mrr_at_1000_diff1
value: 42.091208333333334
- type: main_score
value: 39.84525000000001
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 39.84525000000001
- type: ndcg_at_10
value: 39.84525000000001
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: ndcg_at_1
value: 27.454
- type: ndcg_at_3
value: 31.464
- type: ndcg_at_5
value: 33.533
- type: ndcg_at_10
value: 35.477
- type: ndcg_at_20
value: 37.092999999999996
- type: ndcg_at_100
value: 39.808
- type: ndcg_at_1000
value: 42.309000000000005
- type: map_at_1
value: 24.489
- type: map_at_3
value: 29.204
- type: map_at_5
value: 30.496000000000002
- type: map_at_10
value: 31.415
- type: map_at_20
value: 31.897
- type: map_at_100
value: 32.259
- type: map_at_1000
value: 32.361000000000004
- type: recall_at_1
value: 24.489
- type: recall_at_3
value: 34.333999999999996
- type: recall_at_5
value: 39.550999999999995
- type: recall_at_10
value: 45.275999999999996
- type: recall_at_20
value: 51.241
- type: recall_at_100
value: 65.398
- type: recall_at_1000
value: 83.685
- type: precision_at_1
value: 27.454
- type: precision_at_3
value: 13.344000000000001
- type: precision_at_5
value: 9.417
- type: precision_at_10
value: 5.567
- type: precision_at_20
value: 3.221
- type: precision_at_100
value: 0.845
- type: precision_at_1000
value: 0.11499999999999999
- type: mrr_at_1
value: 27.454
- type: mrr_at_3
value: 32.1063
- type: mrr_at_5
value: 33.2797
- type: mrr_at_10
value: 34.0563
- type: mrr_at_20
value: 34.4952
- type: mrr_at_100
value: 34.8327
- type: mrr_at_1000
value: 34.9002
- type: nauc_ndcg_at_1_max
value: 45.7913
- type: nauc_ndcg_at_1_std
value: 10.6304
- type: nauc_ndcg_at_1_diff1
value: 51.58160000000001
- type: nauc_ndcg_at_3_max
value: 42.992599999999996
- type: nauc_ndcg_at_3_std
value: 10.1454
- type: nauc_ndcg_at_3_diff1
value: 45.330799999999996
- type: nauc_ndcg_at_5_max
value: 43.081399999999995
- type: nauc_ndcg_at_5_std
value: 11.7829
- type: nauc_ndcg_at_5_diff1
value: 45.8734
- type: nauc_ndcg_at_10_max
value: 45.2554
- type: nauc_ndcg_at_10_std
value: 14.2953
- type: nauc_ndcg_at_10_diff1
value: 45.908
- type: nauc_ndcg_at_20_max
value: 45.7565
- type: nauc_ndcg_at_20_std
value: 15.1327
- type: nauc_ndcg_at_20_diff1
value: 45.512
- type: nauc_ndcg_at_100_max
value: 45.602599999999995
- type: nauc_ndcg_at_100_std
value: 15.6507
- type: nauc_ndcg_at_100_diff1
value: 44.3626
- type: nauc_ndcg_at_1000_max
value: 45.6835
- type: nauc_ndcg_at_1000_std
value: 16.3352
- type: nauc_ndcg_at_1000_diff1
value: 44.9838
- type: nauc_map_at_1_max
value: 41.989900000000006
- type: nauc_map_at_1_std
value: 5.3356
- type: nauc_map_at_1_diff1
value: 52.711200000000005
- type: nauc_map_at_3_max
value: 42.363
- type: nauc_map_at_3_std
value: 8.1615
- type: nauc_map_at_3_diff1
value: 47.1827
- type: nauc_map_at_5_max
value: 42.6039
- type: nauc_map_at_5_std
value: 9.500300000000001
- type: nauc_map_at_5_diff1
value: 47.4177
- type: nauc_map_at_10_max
value: 43.703399999999995
- type: nauc_map_at_10_std
value: 10.729
- type: nauc_map_at_10_diff1
value: 47.4334
- type: nauc_map_at_20_max
value: 43.9336
- type: nauc_map_at_20_std
value: 11.0612
- type: nauc_map_at_20_diff1
value: 47.321600000000004
- type: nauc_map_at_100_max
value: 43.978899999999996
- type: nauc_map_at_100_std
value: 11.148299999999999
- type: nauc_map_at_100_diff1
value: 47.1738
- type: nauc_map_at_1000_max
value: 43.985400000000006
- type: nauc_map_at_1000_std
value: 11.1754
- type: nauc_map_at_1000_diff1
value: 47.197
- type: nauc_recall_at_1_max
value: 41.989900000000006
- type: nauc_recall_at_1_std
value: 5.3356
- type: nauc_recall_at_1_diff1
value: 52.711200000000005
- type: nauc_recall_at_3_max
value: 40.8671
- type: nauc_recall_at_3_std
value: 9.4511
- type: nauc_recall_at_3_diff1
value: 41.2041
- type: nauc_recall_at_5_max
value: 40.9279
- type: nauc_recall_at_5_std
value: 13.688600000000001
- type: nauc_recall_at_5_diff1
value: 41.9126
- type: nauc_recall_at_10_max
value: 46.1436
- type: nauc_recall_at_10_std
value: 20.8837
- type: nauc_recall_at_10_diff1
value: 41.0814
- type: nauc_recall_at_20_max
value: 47.245599999999996
- type: nauc_recall_at_20_std
value: 23.405
- type: nauc_recall_at_20_diff1
value: 38.864599999999996
- type: nauc_recall_at_100_max
value: 45.457
- type: nauc_recall_at_100_std
value: 28.075
- type: nauc_recall_at_100_diff1
value: 30.213600000000003
- type: nauc_recall_at_1000_max
value: 48.8291
- type: nauc_recall_at_1000_std
value: 47.8416
- type: nauc_recall_at_1000_diff1
value: 30.387199999999996
- type: nauc_precision_at_1_max
value: 45.7913
- type: nauc_precision_at_1_std
value: 10.6304
- type: nauc_precision_at_1_diff1
value: 51.58160000000001
- type: nauc_precision_at_3_max
value: 44.710899999999995
- type: nauc_precision_at_3_std
value: 17.7458
- type: nauc_precision_at_3_diff1
value: 36.7588
- type: nauc_precision_at_5_max
value: 44.0582
- type: nauc_precision_at_5_std
value: 22.7864
- type: nauc_precision_at_5_diff1
value: 35.3597
- type: nauc_precision_at_10_max
value: 45.5849
- type: nauc_precision_at_10_std
value: 28.758899999999997
- type: nauc_precision_at_10_diff1
value: 30.3452
- type: nauc_precision_at_20_max
value: 43.6996
- type: nauc_precision_at_20_std
value: 30.314799999999998
- type: nauc_precision_at_20_diff1
value: 25.916299999999996
- type: nauc_precision_at_100_max
value: 33.6976
- type: nauc_precision_at_100_std
value: 28.7876
- type: nauc_precision_at_100_diff1
value: 11.670300000000001
- type: nauc_precision_at_1000_max
value: 14.089599999999999
- type: nauc_precision_at_1000_std
value: 23.8288
- type: nauc_precision_at_1000_diff1
value: -1.8387
- type: nauc_mrr_at_1_max
value: 45.7913
- type: nauc_mrr_at_1_std
value: 10.6304
- type: nauc_mrr_at_1_diff1
value: 51.58160000000001
- type: nauc_mrr_at_3_max
value: 45.5677
- type: nauc_mrr_at_3_std
value: 12.692800000000002
- type: nauc_mrr_at_3_diff1
value: 46.578599999999994
- type: nauc_mrr_at_5_max
value: 45.4634
- type: nauc_mrr_at_5_std
value: 13.386999999999999
- type: nauc_mrr_at_5_diff1
value: 46.7306
- type: nauc_mrr_at_10_max
value: 46.1532
- type: nauc_mrr_at_10_std
value: 14.3297
- type: nauc_mrr_at_10_diff1
value: 46.6835
- type: nauc_mrr_at_20_max
value: 46.1552
- type: nauc_mrr_at_20_std
value: 14.492099999999999
- type: nauc_mrr_at_20_diff1
value: 46.611000000000004
- type: nauc_mrr_at_100_max
value: 46.1171
- type: nauc_mrr_at_100_std
value: 14.4984
- type: nauc_mrr_at_100_diff1
value: 46.4837
- type: nauc_mrr_at_1000_max
value: 46.1231
- type: nauc_mrr_at_1000_std
value: 14.516000000000002
- type: nauc_mrr_at_1000_diff1
value: 46.5135
- type: main_score
value: 35.477
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: ndcg_at_1
value: 21.266
- type: ndcg_at_3
value: 25.337
- type: ndcg_at_5
value: 27.18
- type: ndcg_at_10
value: 29.452
- type: ndcg_at_20
value: 31.226
- type: ndcg_at_100
value: 34.409
- type: ndcg_at_1000
value: 37.577
- type: map_at_1
value: 17.363
- type: map_at_3
value: 22.448999999999998
- type: map_at_5
value: 23.686
- type: map_at_10
value: 24.769
- type: map_at_20
value: 25.295
- type: map_at_100
value: 25.790999999999997
- type: map_at_1000
value: 25.929000000000002
- type: recall_at_1
value: 17.363
- type: recall_at_3
value: 28.022000000000002
- type: recall_at_5
value: 32.817
- type: recall_at_10
value: 39.639
- type: recall_at_20
value: 46.245999999999995
- type: recall_at_100
value: 61.934
- type: recall_at_1000
value: 84.507
- type: precision_at_1
value: 21.266
- type: precision_at_3
value: 12.056000000000001
- type: precision_at_5
value: 8.727
- type: precision_at_10
value: 5.382
- type: precision_at_20
value: 3.2300000000000004
- type: precision_at_100
value: 0.922
- type: precision_at_1000
value: 0.13799999999999998
- type: mrr_at_1
value: 21.266299999999998
- type: mrr_at_3
value: 26.5887
- type: mrr_at_5
value: 27.7931
- type: mrr_at_10
value: 28.7136
- type: mrr_at_20
value: 29.1995
- type: mrr_at_100
value: 29.5953
- type: mrr_at_1000
value: 29.677999999999997
- type: nauc_ndcg_at_1_max
value: 32.1973
- type: nauc_ndcg_at_1_std
value: -3.8459
- type: nauc_ndcg_at_1_diff1
value: 40.2485
- type: nauc_ndcg_at_3_max
value: 31.338300000000004
- type: nauc_ndcg_at_3_std
value: -3.2641000000000004
- type: nauc_ndcg_at_3_diff1
value: 34.212199999999996
- type: nauc_ndcg_at_5_max
value: 30.9515
- type: nauc_ndcg_at_5_std
value: -2.5583
- type: nauc_ndcg_at_5_diff1
value: 33.3896
- type: nauc_ndcg_at_10_max
value: 31.1472
- type: nauc_ndcg_at_10_std
value: -1.4321000000000002
- type: nauc_ndcg_at_10_diff1
value: 33.057700000000004
- type: nauc_ndcg_at_20_max
value: 31.513099999999998
- type: nauc_ndcg_at_20_std
value: 0.4013
- type: nauc_ndcg_at_20_diff1
value: 32.2353
- type: nauc_ndcg_at_100_max
value: 31.8931
- type: nauc_ndcg_at_100_std
value: 2.0259
- type: nauc_ndcg_at_100_diff1
value: 31.966499999999996
- type: nauc_ndcg_at_1000_max
value: 32.1421
- type: nauc_ndcg_at_1000_std
value: 1.9602000000000002
- type: nauc_ndcg_at_1000_diff1
value: 32.6747
- type: nauc_map_at_1_max
value: 28.973
- type: nauc_map_at_1_std
value: -4.6768
- type: nauc_map_at_1_diff1
value: 40.726600000000005
- type: nauc_map_at_3_max
value: 29.9942
- type: nauc_map_at_3_std
value: -3.7635
- type: nauc_map_at_3_diff1
value: 35.5655
- type: nauc_map_at_5_max
value: 30.157099999999996
- type: nauc_map_at_5_std
value: -3.3414
- type: nauc_map_at_5_diff1
value: 35.085699999999996
- type: nauc_map_at_10_max
value: 30.4178
- type: nauc_map_at_10_std
value: -2.7081999999999997
- type: nauc_map_at_10_diff1
value: 34.834700000000005
- type: nauc_map_at_20_max
value: 30.5785
- type: nauc_map_at_20_std
value: -2.1469
- type: nauc_map_at_20_diff1
value: 34.6132
- type: nauc_map_at_100_max
value: 30.755100000000002
- type: nauc_map_at_100_std
value: -1.846
- type: nauc_map_at_100_diff1
value: 34.5596
- type: nauc_map_at_1000_max
value: 30.818800000000003
- type: nauc_map_at_1000_std
value: -1.8256000000000001
- type: nauc_map_at_1000_diff1
value: 34.602199999999996
- type: nauc_recall_at_1_max
value: 28.973
- type: nauc_recall_at_1_std
value: -4.6768
- type: nauc_recall_at_1_diff1
value: 40.726600000000005
- type: nauc_recall_at_3_max
value: 28.962300000000003
- type: nauc_recall_at_3_std
value: -2.8797
- type: nauc_recall_at_3_diff1
value: 29.9765
- type: nauc_recall_at_5_max
value: 28.193
- type: nauc_recall_at_5_std
value: -1.6741
- type: nauc_recall_at_5_diff1
value: 27.825100000000003
- type: nauc_recall_at_10_max
value: 28.266099999999998
- type: nauc_recall_at_10_std
value: 0.9544
- type: nauc_recall_at_10_diff1
value: 26.365499999999997
- type: nauc_recall_at_20_max
value: 28.839
- type: nauc_recall_at_20_std
value: 6.809
- type: nauc_recall_at_20_diff1
value: 22.761400000000002
- type: nauc_recall_at_100_max
value: 29.2235
- type: nauc_recall_at_100_std
value: 15.3679
- type: nauc_recall_at_100_diff1
value: 19.3302
- type: nauc_recall_at_1000_max
value: 27.954800000000002
- type: nauc_recall_at_1000_std
value: 25.5618
- type: nauc_recall_at_1000_diff1
value: 17.749100000000002
- type: nauc_precision_at_1_max
value: 32.1973
- type: nauc_precision_at_1_std
value: -3.8459
- type: nauc_precision_at_1_diff1
value: 40.2485
- type: nauc_precision_at_3_max
value: 33.3915
- type: nauc_precision_at_3_std
value: -1.7868
- type: nauc_precision_at_3_diff1
value: 29.0619
- type: nauc_precision_at_5_max
value: 33.0357
- type: nauc_precision_at_5_std
value: 0.7308
- type: nauc_precision_at_5_diff1
value: 25.966299999999997
- type: nauc_precision_at_10_max
value: 33.1657
- type: nauc_precision_at_10_std
value: 4.3635
- type: nauc_precision_at_10_diff1
value: 23.5546
- type: nauc_precision_at_20_max
value: 32.9354
- type: nauc_precision_at_20_std
value: 10.2754
- type: nauc_precision_at_20_diff1
value: 18.9755
- type: nauc_precision_at_100_max
value: 30.0047
- type: nauc_precision_at_100_std
value: 14.9007
- type: nauc_precision_at_100_diff1
value: 10.6748
- type: nauc_precision_at_1000_max
value: 24.2685
- type: nauc_precision_at_1000_std
value: 10.8307
- type: nauc_precision_at_1000_diff1
value: 1.3375
- type: nauc_mrr_at_1_max
value: 32.1973
- type: nauc_mrr_at_1_std
value: -3.8459
- type: nauc_mrr_at_1_diff1
value: 40.2485
- type: nauc_mrr_at_3_max
value: 32.670100000000005
- type: nauc_mrr_at_3_std
value: -2.7189
- type: nauc_mrr_at_3_diff1
value: 35.8073
- type: nauc_mrr_at_5_max
value: 32.4756
- type: nauc_mrr_at_5_std
value: -2.2318000000000002
- type: nauc_mrr_at_5_diff1
value: 35.2567
- type: nauc_mrr_at_10_max
value: 32.594699999999996
- type: nauc_mrr_at_10_std
value: -1.8573
- type: nauc_mrr_at_10_diff1
value: 35.268100000000004
- type: nauc_mrr_at_20_max
value: 32.7337
- type: nauc_mrr_at_20_std
value: -1.3544
- type: nauc_mrr_at_20_diff1
value: 35.0493
- type: nauc_mrr_at_100_max
value: 32.775999999999996
- type: nauc_mrr_at_100_std
value: -1.2326
- type: nauc_mrr_at_100_diff1
value: 35.0304
- type: nauc_mrr_at_1000_max
value: 32.7772
- type: nauc_mrr_at_1000_std
value: -1.2438
- type: nauc_mrr_at_1000_diff1
value: 35.0535
- type: main_score
value: 29.452
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: ndcg_at_1
value: 32.556000000000004
- type: ndcg_at_3
value: 36.928
- type: ndcg_at_5
value: 39.116
- type: ndcg_at_10
value: 41.801
- type: ndcg_at_20
value: 44.080999999999996
- type: ndcg_at_100
value: 47.138999999999996
- type: ndcg_at_1000
value: 49.372
- type: map_at_1
value: 27.062
- type: map_at_3
value: 33.616
- type: map_at_5
value: 35.181000000000004
- type: map_at_10
value: 36.431000000000004
- type: map_at_20
value: 37.15
- type: map_at_100
value: 37.662
- type: map_at_1000
value: 37.763999999999996
- type: recall_at_1
value: 27.062
- type: recall_at_3
value: 40.199
- type: recall_at_5
value: 46.025
- type: recall_at_10
value: 53.973000000000006
- type: recall_at_20
value: 61.989000000000004
- type: recall_at_100
value: 76.537
- type: recall_at_1000
value: 92.087
- type: precision_at_1
value: 32.556000000000004
- type: precision_at_3
value: 16.915
- type: precision_at_5
value: 11.791
- type: precision_at_10
value: 7.034
- type: precision_at_20
value: 4.1739999999999995
- type: precision_at_100
value: 1.089
- type: precision_at_1000
value: 0.13799999999999998
- type: mrr_at_1
value: 32.556000000000004
- type: mrr_at_3
value: 38.339600000000004
- type: mrr_at_5
value: 39.696799999999996
- type: mrr_at_10
value: 40.7987
- type: mrr_at_20
value: 41.3962
- type: mrr_at_100
value: 41.7337
- type: mrr_at_1000
value: 41.794399999999996
- type: nauc_ndcg_at_1_max
value: 43.5112
- type: nauc_ndcg_at_1_std
value: -9.9968
- type: nauc_ndcg_at_1_diff1
value: 54.4148
- type: nauc_ndcg_at_3_max
value: 44.4173
- type: nauc_ndcg_at_3_std
value: -4.9704999999999995
- type: nauc_ndcg_at_3_diff1
value: 49.746
- type: nauc_ndcg_at_5_max
value: 43.944100000000006
- type: nauc_ndcg_at_5_std
value: -3.8952
- type: nauc_ndcg_at_5_diff1
value: 48.2127
- type: nauc_ndcg_at_10_max
value: 43.0905
- type: nauc_ndcg_at_10_std
value: -3.6698
- type: nauc_ndcg_at_10_diff1
value: 46.8763
- type: nauc_ndcg_at_20_max
value: 42.6245
- type: nauc_ndcg_at_20_std
value: -4.1508
- type: nauc_ndcg_at_20_diff1
value: 46.0823
- type: nauc_ndcg_at_100_max
value: 42.9829
- type: nauc_ndcg_at_100_std
value: -3.2881
- type: nauc_ndcg_at_100_diff1
value: 46.9669
- type: nauc_ndcg_at_1000_max
value: 43.3769
- type: nauc_ndcg_at_1000_std
value: -2.6679
- type: nauc_ndcg_at_1000_diff1
value: 47.3983
- type: nauc_map_at_1_max
value: 41.5528
- type: nauc_map_at_1_std
value: -11.307599999999999
- type: nauc_map_at_1_diff1
value: 54.931700000000006
- type: nauc_map_at_3_max
value: 43.2776
- type: nauc_map_at_3_std
value: -7.421800000000001
- type: nauc_map_at_3_diff1
value: 51.1883
- type: nauc_map_at_5_max
value: 43.4821
- type: nauc_map_at_5_std
value: -6.2339
- type: nauc_map_at_5_diff1
value: 50.1494
- type: nauc_map_at_10_max
value: 43.3333
- type: nauc_map_at_10_std
value: -6.065
- type: nauc_map_at_10_diff1
value: 49.661100000000005
- type: nauc_map_at_20_max
value: 43.231
- type: nauc_map_at_20_std
value: -6.2244
- type: nauc_map_at_20_diff1
value: 49.407000000000004
- type: nauc_map_at_100_max
value: 43.3803
- type: nauc_map_at_100_std
value: -5.9752
- type: nauc_map_at_100_diff1
value: 49.5411
- type: nauc_map_at_1000_max
value: 43.4007
- type: nauc_map_at_1000_std
value: -5.9336
- type: nauc_map_at_1000_diff1
value: 49.5578
- type: nauc_recall_at_1_max
value: 41.5528
- type: nauc_recall_at_1_std
value: -11.307599999999999
- type: nauc_recall_at_1_diff1
value: 54.931700000000006
- type: nauc_recall_at_3_max
value: 42.6893
- type: nauc_recall_at_3_std
value: -2.3828
- type: nauc_recall_at_3_diff1
value: 46.050999999999995
- type: nauc_recall_at_5_max
value: 41.6989
- type: nauc_recall_at_5_std
value: 1.0116
- type: nauc_recall_at_5_diff1
value: 41.5014
- type: nauc_recall_at_10_max
value: 37.9823
- type: nauc_recall_at_10_std
value: 1.9809
- type: nauc_recall_at_10_diff1
value: 36.3968
- type: nauc_recall_at_20_max
value: 35.5843
- type: nauc_recall_at_20_std
value: 0.1044
- type: nauc_recall_at_20_diff1
value: 32.377
- type: nauc_recall_at_100_max
value: 35.316900000000004
- type: nauc_recall_at_100_std
value: 5.6158
- type: nauc_recall_at_100_diff1
value: 34.8474
- type: nauc_recall_at_1000_max
value: 40.3589
- type: nauc_recall_at_1000_std
value: 36.2315
- type: nauc_recall_at_1000_diff1
value: 32.7652
- type: nauc_precision_at_1_max
value: 43.5112
- type: nauc_precision_at_1_std
value: -9.9968
- type: nauc_precision_at_1_diff1
value: 54.4148
- type: nauc_precision_at_3_max
value: 43.5357
- type: nauc_precision_at_3_std
value: 1.8129
- type: nauc_precision_at_3_diff1
value: 39.4033
- type: nauc_precision_at_5_max
value: 41.2383
- type: nauc_precision_at_5_std
value: 5.952500000000001
- type: nauc_precision_at_5_diff1
value: 32.6387
- type: nauc_precision_at_10_max
value: 35.8673
- type: nauc_precision_at_10_std
value: 6.9601
- type: nauc_precision_at_10_diff1
value: 25.1842
- type: nauc_precision_at_20_max
value: 28.9362
- type: nauc_precision_at_20_std
value: 7.607800000000001
- type: nauc_precision_at_20_diff1
value: 16.7232
- type: nauc_precision_at_100_max
value: 18.434800000000003
- type: nauc_precision_at_100_std
value: 12.987000000000002
- type: nauc_precision_at_100_diff1
value: 6.9893
- type: nauc_precision_at_1000_max
value: 1.0569
- type: nauc_precision_at_1000_std
value: 12.5503
- type: nauc_precision_at_1000_diff1
value: -7.3416
- type: nauc_mrr_at_1_max
value: 43.5112
- type: nauc_mrr_at_1_std
value: -9.9968
- type: nauc_mrr_at_1_diff1
value: 54.4148
- type: nauc_mrr_at_3_max
value: 44.642900000000004
- type: nauc_mrr_at_3_std
value: -5.3517
- type: nauc_mrr_at_3_diff1
value: 50.2935
- type: nauc_mrr_at_5_max
value: 44.4732
- type: nauc_mrr_at_5_std
value: -4.608099999999999
- type: nauc_mrr_at_5_diff1
value: 49.346000000000004
- type: nauc_mrr_at_10_max
value: 43.9489
- type: nauc_mrr_at_10_std
value: -4.5868
- type: nauc_mrr_at_10_diff1
value: 48.7018
- type: nauc_mrr_at_20_max
value: 43.7826
- type: nauc_mrr_at_20_std
value: -4.8502
- type: nauc_mrr_at_20_diff1
value: 48.5755
- type: nauc_mrr_at_100_max
value: 43.7991
- type: nauc_mrr_at_100_std
value: -4.8094
- type: nauc_mrr_at_100_diff1
value: 48.7361
- type: nauc_mrr_at_1000_max
value: 43.8348
- type: nauc_mrr_at_1000_std
value: -4.7897
- type: nauc_mrr_at_1000_diff1
value: 48.7638
- type: main_score
value: 41.801
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: ndcg_at_1
value: 30.631999999999998
- type: ndcg_at_3
value: 34.528999999999996
- type: ndcg_at_5
value: 36.547000000000004
- type: ndcg_at_10
value: 40.105000000000004
- type: ndcg_at_20
value: 42.34
- type: ndcg_at_100
value: 45.712
- type: ndcg_at_1000
value: 48.314
- type: map_at_1
value: 25.19
- type: map_at_3
value: 30.656
- type: map_at_5
value: 32.161
- type: map_at_10
value: 33.928000000000004
- type: map_at_20
value: 34.782999999999994
- type: map_at_100
value: 35.493
- type: map_at_1000
value: 35.713
- type: recall_at_1
value: 25.19
- type: recall_at_3
value: 36.007
- type: recall_at_5
value: 41.772
- type: recall_at_10
value: 52.117999999999995
- type: recall_at_20
value: 60.458
- type: recall_at_100
value: 77.34400000000001
- type: recall_at_1000
value: 93.77
- type: precision_at_1
value: 30.631999999999998
- type: precision_at_3
value: 15.942
- type: precision_at_5
value: 11.462
- type: precision_at_10
value: 7.826
- type: precision_at_20
value: 4.9799999999999995
- type: precision_at_100
value: 1.528
- type: precision_at_1000
value: 0.242
- type: mrr_at_1
value: 30.632399999999997
- type: mrr_at_3
value: 35.8037
- type: mrr_at_5
value: 37.2661
- type: mrr_at_10
value: 38.8381
- type: mrr_at_20
value: 39.4229
- type: mrr_at_100
value: 39.7673
- type: mrr_at_1000
value: 39.8227
- type: nauc_ndcg_at_1_max
value: 45.7418
- type: nauc_ndcg_at_1_std
value: 7.7497
- type: nauc_ndcg_at_1_diff1
value: 47.656
- type: nauc_ndcg_at_3_max
value: 45.6597
- type: nauc_ndcg_at_3_std
value: 9.6418
- type: nauc_ndcg_at_3_diff1
value: 43.1631
- type: nauc_ndcg_at_5_max
value: 44.893100000000004
- type: nauc_ndcg_at_5_std
value: 12.2393
- type: nauc_ndcg_at_5_diff1
value: 42.7159
- type: nauc_ndcg_at_10_max
value: 43.6388
- type: nauc_ndcg_at_10_std
value: 12.0574
- type: nauc_ndcg_at_10_diff1
value: 41.4018
- type: nauc_ndcg_at_20_max
value: 43.8549
- type: nauc_ndcg_at_20_std
value: 14.065900000000001
- type: nauc_ndcg_at_20_diff1
value: 41.056
- type: nauc_ndcg_at_100_max
value: 44.770700000000005
- type: nauc_ndcg_at_100_std
value: 14.8343
- type: nauc_ndcg_at_100_diff1
value: 42.2405
- type: nauc_ndcg_at_1000_max
value: 45.524100000000004
- type: nauc_ndcg_at_1000_std
value: 14.578199999999999
- type: nauc_ndcg_at_1000_diff1
value: 42.3126
- type: nauc_map_at_1_max
value: 44.1517
- type: nauc_map_at_1_std
value: 3.4579
- type: nauc_map_at_1_diff1
value: 53.915
- type: nauc_map_at_3_max
value: 45.8324
- type: nauc_map_at_3_std
value: 6.8385
- type: nauc_map_at_3_diff1
value: 47.8444
- type: nauc_map_at_5_max
value: 45.4063
- type: nauc_map_at_5_std
value: 8.3539
- type: nauc_map_at_5_diff1
value: 47.0671
- type: nauc_map_at_10_max
value: 45.0727
- type: nauc_map_at_10_std
value: 8.6699
- type: nauc_map_at_10_diff1
value: 46.050200000000004
- type: nauc_map_at_20_max
value: 45.2504
- type: nauc_map_at_20_std
value: 9.7359
- type: nauc_map_at_20_diff1
value: 45.711200000000005
- type: nauc_map_at_100_max
value: 45.2055
- type: nauc_map_at_100_std
value: 10.2755
- type: nauc_map_at_100_diff1
value: 45.5556
- type: nauc_map_at_1000_max
value: 45.1304
- type: nauc_map_at_1000_std
value: 10.3956
- type: nauc_map_at_1000_diff1
value: 45.4084
- type: nauc_recall_at_1_max
value: 44.1517
- type: nauc_recall_at_1_std
value: 3.4579
- type: nauc_recall_at_1_diff1
value: 53.915
- type: nauc_recall_at_3_max
value: 44.349199999999996
- type: nauc_recall_at_3_std
value: 9.464599999999999
- type: nauc_recall_at_3_diff1
value: 41.302499999999995
- type: nauc_recall_at_5_max
value: 42.2726
- type: nauc_recall_at_5_std
value: 14.7778
- type: nauc_recall_at_5_diff1
value: 38.1663
- type: nauc_recall_at_10_max
value: 37.0689
- type: nauc_recall_at_10_std
value: 14.760699999999998
- type: nauc_recall_at_10_diff1
value: 32.1674
- type: nauc_recall_at_20_max
value: 36.1879
- type: nauc_recall_at_20_std
value: 22.6902
- type: nauc_recall_at_20_diff1
value: 28.933999999999997
- type: nauc_recall_at_100_max
value: 38.5222
- type: nauc_recall_at_100_std
value: 31.595299999999998
- type: nauc_recall_at_100_diff1
value: 30.495499999999996
- type: nauc_recall_at_1000_max
value: 59.5012
- type: nauc_recall_at_1000_std
value: 61.421499999999995
- type: nauc_recall_at_1000_diff1
value: 30.153000000000002
- type: nauc_precision_at_1_max
value: 45.7418
- type: nauc_precision_at_1_std
value: 7.7497
- type: nauc_precision_at_1_diff1
value: 47.656
- type: nauc_precision_at_3_max
value: 41.5197
- type: nauc_precision_at_3_std
value: 14.416200000000002
- type: nauc_precision_at_3_diff1
value: 27.4448
- type: nauc_precision_at_5_max
value: 37.372699999999995
- type: nauc_precision_at_5_std
value: 20.4825
- type: nauc_precision_at_5_diff1
value: 20.4335
- type: nauc_precision_at_10_max
value: 26.792899999999996
- type: nauc_precision_at_10_std
value: 20.895
- type: nauc_precision_at_10_diff1
value: 6.9729
- type: nauc_precision_at_20_max
value: 19.3562
- type: nauc_precision_at_20_std
value: 26.9338
- type: nauc_precision_at_20_diff1
value: -2.5024
- type: nauc_precision_at_100_max
value: 2.6254
- type: nauc_precision_at_100_std
value: 24.4194
- type: nauc_precision_at_100_diff1
value: -14.6956
- type: nauc_precision_at_1000_max
value: -7.0939000000000005
- type: nauc_precision_at_1000_std
value: 17.2116
- type: nauc_precision_at_1000_diff1
value: -23.3519
- type: nauc_mrr_at_1_max
value: 45.7418
- type: nauc_mrr_at_1_std
value: 7.7497
- type: nauc_mrr_at_1_diff1
value: 47.656
- type: nauc_mrr_at_3_max
value: 44.974799999999995
- type: nauc_mrr_at_3_std
value: 10.0484
- type: nauc_mrr_at_3_diff1
value: 42.5053
- type: nauc_mrr_at_5_max
value: 45.0004
- type: nauc_mrr_at_5_std
value: 11.505700000000001
- type: nauc_mrr_at_5_diff1
value: 42.0568
- type: nauc_mrr_at_10_max
value: 44.5236
- type: nauc_mrr_at_10_std
value: 11.6009
- type: nauc_mrr_at_10_diff1
value: 41.5394
- type: nauc_mrr_at_20_max
value: 44.568400000000004
- type: nauc_mrr_at_20_std
value: 11.9612
- type: nauc_mrr_at_20_diff1
value: 41.4954
- type: nauc_mrr_at_100_max
value: 44.6377
- type: nauc_mrr_at_100_std
value: 12.0293
- type: nauc_mrr_at_100_diff1
value: 41.6504
- type: nauc_mrr_at_1000_max
value: 44.650099999999995
- type: nauc_mrr_at_1000_std
value: 12.0106
- type: nauc_mrr_at_1000_diff1
value: 41.6595
- type: main_score
value: 40.105000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: ndcg_at_1
value: 21.811
- type: ndcg_at_3
value: 27.472
- type: ndcg_at_5
value: 29.755
- type: ndcg_at_10
value: 32.561
- type: ndcg_at_20
value: 34.708
- type: ndcg_at_100
value: 38.052
- type: ndcg_at_1000
value: 40.526
- type: map_at_1
value: 20.339
- type: map_at_3
value: 25.358000000000004
- type: map_at_5
value: 26.682
- type: map_at_10
value: 27.935
- type: map_at_20
value: 28.536
- type: map_at_100
value: 29.038000000000004
- type: map_at_1000
value: 29.149
- type: recall_at_1
value: 20.339
- type: recall_at_3
value: 31.682
- type: recall_at_5
value: 36.962
- type: recall_at_10
value: 45.095
- type: recall_at_20
value: 53.25
- type: recall_at_100
value: 70.155
- type: recall_at_1000
value: 88.177
- type: precision_at_1
value: 21.811
- type: precision_at_3
value: 11.706999999999999
- type: precision_at_5
value: 8.429
- type: precision_at_10
value: 5.25
- type: precision_at_20
value: 3.1419999999999995
- type: precision_at_100
value: 0.8540000000000001
- type: precision_at_1000
value: 0.117
- type: mrr_at_1
value: 21.8115
- type: mrr_at_3
value: 27.1411
- type: mrr_at_5
value: 28.490399999999998
- type: mrr_at_10
value: 29.616500000000002
- type: mrr_at_20
value: 30.215999999999998
- type: mrr_at_100
value: 30.6966
- type: mrr_at_1000
value: 30.767899999999997
- type: nauc_ndcg_at_1_max
value: 32.8162
- type: nauc_ndcg_at_1_std
value: -4.388199999999999
- type: nauc_ndcg_at_1_diff1
value: 44.436
- type: nauc_ndcg_at_3_max
value: 28.517
- type: nauc_ndcg_at_3_std
value: -4.3836
- type: nauc_ndcg_at_3_diff1
value: 35.7606
- type: nauc_ndcg_at_5_max
value: 28.68
- type: nauc_ndcg_at_5_std
value: -3.0216
- type: nauc_ndcg_at_5_diff1
value: 35.27
- type: nauc_ndcg_at_10_max
value: 26.572200000000002
- type: nauc_ndcg_at_10_std
value: -3.8319
- type: nauc_ndcg_at_10_diff1
value: 33.311099999999996
- type: nauc_ndcg_at_20_max
value: 26.7196
- type: nauc_ndcg_at_20_std
value: -1.3162
- type: nauc_ndcg_at_20_diff1
value: 32.202999999999996
- type: nauc_ndcg_at_100_max
value: 28.8134
- type: nauc_ndcg_at_100_std
value: -0.2386
- type: nauc_ndcg_at_100_diff1
value: 31.5089
- type: nauc_ndcg_at_1000_max
value: 28.732799999999997
- type: nauc_ndcg_at_1000_std
value: 0.6251
- type: nauc_ndcg_at_1000_diff1
value: 32.1837
- type: nauc_map_at_1_max
value: 29.4829
- type: nauc_map_at_1_std
value: -6.0044
- type: nauc_map_at_1_diff1
value: 43.3353
- type: nauc_map_at_3_max
value: 28.230499999999996
- type: nauc_map_at_3_std
value: -5.0899
- type: nauc_map_at_3_diff1
value: 37.3547
- type: nauc_map_at_5_max
value: 28.7927
- type: nauc_map_at_5_std
value: -4.254899999999999
- type: nauc_map_at_5_diff1
value: 37.1805
- type: nauc_map_at_10_max
value: 28.1557
- type: nauc_map_at_10_std
value: -4.4931
- type: nauc_map_at_10_diff1
value: 36.2513
- type: nauc_map_at_20_max
value: 28.205799999999996
- type: nauc_map_at_20_std
value: -3.6852000000000005
- type: nauc_map_at_20_diff1
value: 35.9099
- type: nauc_map_at_100_max
value: 28.604499999999998
- type: nauc_map_at_100_std
value: -3.4775
- type: nauc_map_at_100_diff1
value: 35.802
- type: nauc_map_at_1000_max
value: 28.6008
- type: nauc_map_at_1000_std
value: -3.4255
- type: nauc_map_at_1000_diff1
value: 35.8238
- type: nauc_recall_at_1_max
value: 29.4829
- type: nauc_recall_at_1_std
value: -6.0044
- type: nauc_recall_at_1_diff1
value: 43.3353
- type: nauc_recall_at_3_max
value: 25.4695
- type: nauc_recall_at_3_std
value: -4.3068
- type: nauc_recall_at_3_diff1
value: 30.2776
- type: nauc_recall_at_5_max
value: 25.901400000000002
- type: nauc_recall_at_5_std
value: -1.4424
- type: nauc_recall_at_5_diff1
value: 29.3842
- type: nauc_recall_at_10_max
value: 19.203200000000002
- type: nauc_recall_at_10_std
value: -3.8822
- type: nauc_recall_at_10_diff1
value: 24.0215
- type: nauc_recall_at_20_max
value: 18.9758
- type: nauc_recall_at_20_std
value: 4.9965
- type: nauc_recall_at_20_diff1
value: 19.5423
- type: nauc_recall_at_100_max
value: 27.7916
- type: nauc_recall_at_100_std
value: 13.4764
- type: nauc_recall_at_100_diff1
value: 11.1211
- type: nauc_recall_at_1000_max
value: 28.3949
- type: nauc_recall_at_1000_std
value: 41.7299
- type: nauc_recall_at_1000_diff1
value: 4.0583
- type: nauc_precision_at_1_max
value: 32.8162
- type: nauc_precision_at_1_std
value: -4.388199999999999
- type: nauc_precision_at_1_diff1
value: 44.436
- type: nauc_precision_at_3_max
value: 28.614
- type: nauc_precision_at_3_std
value: -1.5110000000000001
- type: nauc_precision_at_3_diff1
value: 30.165
- type: nauc_precision_at_5_max
value: 29.49
- type: nauc_precision_at_5_std
value: 3.3188000000000004
- type: nauc_precision_at_5_diff1
value: 27.6501
- type: nauc_precision_at_10_max
value: 24.334500000000002
- type: nauc_precision_at_10_std
value: 3.4701000000000004
- type: nauc_precision_at_10_diff1
value: 20.4126
- type: nauc_precision_at_20_max
value: 23.4494
- type: nauc_precision_at_20_std
value: 14.380799999999999
- type: nauc_precision_at_20_diff1
value: 12.5855
- type: nauc_precision_at_100_max
value: 25.5811
- type: nauc_precision_at_100_std
value: 21.0337
- type: nauc_precision_at_100_diff1
value: 0.1621
- type: nauc_precision_at_1000_max
value: 1.3693
- type: nauc_precision_at_1000_std
value: 22.288
- type: nauc_precision_at_1000_diff1
value: -18.3564
- type: nauc_mrr_at_1_max
value: 32.8162
- type: nauc_mrr_at_1_std
value: -4.388199999999999
- type: nauc_mrr_at_1_diff1
value: 44.436
- type: nauc_mrr_at_3_max
value: 31.5259
- type: nauc_mrr_at_3_std
value: -3.6585
- type: nauc_mrr_at_3_diff1
value: 38.5309
- type: nauc_mrr_at_5_max
value: 31.1784
- type: nauc_mrr_at_5_std
value: -2.5462
- type: nauc_mrr_at_5_diff1
value: 37.9675
- type: nauc_mrr_at_10_max
value: 30.0497
- type: nauc_mrr_at_10_std
value: -3.0947999999999998
- type: nauc_mrr_at_10_diff1
value: 37.0458
- type: nauc_mrr_at_20_max
value: 30.082900000000002
- type: nauc_mrr_at_20_std
value: -2.6054
- type: nauc_mrr_at_20_diff1
value: 36.774499999999996
- type: nauc_mrr_at_100_max
value: 30.424200000000003
- type: nauc_mrr_at_100_std
value: -2.5341
- type: nauc_mrr_at_100_diff1
value: 36.7384
- type: nauc_mrr_at_1000_max
value: 30.4217
- type: nauc_mrr_at_1000_std
value: -2.4978
- type: nauc_mrr_at_1000_diff1
value: 36.7847
- type: main_score
value: 32.561
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: ndcg_at_1
value: 23.388
- type: ndcg_at_3
value: 20.198
- type: ndcg_at_5
value: 21.959
- type: ndcg_at_10
value: 24.97
- type: ndcg_at_20
value: 27.26
- type: ndcg_at_100
value: 31.244
- type: ndcg_at_1000
value: 34.694
- type: map_at_1
value: 10.738
- type: map_at_3
value: 14.707
- type: map_at_5
value: 16.123
- type: map_at_10
value: 17.45
- type: map_at_20
value: 18.251
- type: map_at_100
value: 18.979
- type: map_at_1000
value: 19.154
- type: recall_at_1
value: 10.738
- type: recall_at_3
value: 18.590999999999998
- type: recall_at_5
value: 23.427
- type: recall_at_10
value: 30.144
- type: recall_at_20
value: 36.586999999999996
- type: recall_at_100
value: 51.757
- type: recall_at_1000
value: 71.353
- type: precision_at_1
value: 23.388
- type: precision_at_3
value: 14.527999999999999
- type: precision_at_5
value: 11.375
- type: precision_at_10
value: 7.674
- type: precision_at_20
value: 4.824
- type: precision_at_100
value: 1.4460000000000002
- type: precision_at_1000
value: 0.208
- type: mrr_at_1
value: 23.3876
- type: mrr_at_3
value: 30.640600000000003
- type: mrr_at_5
value: 32.7416
- type: mrr_at_10
value: 34.2082
- type: mrr_at_20
value: 34.696
- type: mrr_at_100
value: 35.0613
- type: mrr_at_1000
value: 35.1158
- type: nauc_ndcg_at_1_max
value: 34.0809
- type: nauc_ndcg_at_1_std
value: 11.4587
- type: nauc_ndcg_at_1_diff1
value: 24.7702
- type: nauc_ndcg_at_3_max
value: 36.7061
- type: nauc_ndcg_at_3_std
value: 15.8194
- type: nauc_ndcg_at_3_diff1
value: 22.0991
- type: nauc_ndcg_at_5_max
value: 40.0278
- type: nauc_ndcg_at_5_std
value: 19.442
- type: nauc_ndcg_at_5_diff1
value: 22.0353
- type: nauc_ndcg_at_10_max
value: 41.8522
- type: nauc_ndcg_at_10_std
value: 22.2665
- type: nauc_ndcg_at_10_diff1
value: 21.9219
- type: nauc_ndcg_at_20_max
value: 42.111599999999996
- type: nauc_ndcg_at_20_std
value: 24.7003
- type: nauc_ndcg_at_20_diff1
value: 21.1493
- type: nauc_ndcg_at_100_max
value: 41.4285
- type: nauc_ndcg_at_100_std
value: 26.8766
- type: nauc_ndcg_at_100_diff1
value: 20.658
- type: nauc_ndcg_at_1000_max
value: 41.7107
- type: nauc_ndcg_at_1000_std
value: 27.8879
- type: nauc_ndcg_at_1000_diff1
value: 20.249
- type: nauc_map_at_1_max
value: 39.0907
- type: nauc_map_at_1_std
value: 10.9155
- type: nauc_map_at_1_diff1
value: 27.478799999999996
- type: nauc_map_at_3_max
value: 39.1964
- type: nauc_map_at_3_std
value: 14.1844
- type: nauc_map_at_3_diff1
value: 24.5869
- type: nauc_map_at_5_max
value: 40.8907
- type: nauc_map_at_5_std
value: 16.6955
- type: nauc_map_at_5_diff1
value: 24.1453
- type: nauc_map_at_10_max
value: 41.8968
- type: nauc_map_at_10_std
value: 18.4835
- type: nauc_map_at_10_diff1
value: 24.0071
- type: nauc_map_at_20_max
value: 42.1779
- type: nauc_map_at_20_std
value: 19.831599999999998
- type: nauc_map_at_20_diff1
value: 23.6712
- type: nauc_map_at_100_max
value: 42.0617
- type: nauc_map_at_100_std
value: 20.524700000000003
- type: nauc_map_at_100_diff1
value: 23.5193
- type: nauc_map_at_1000_max
value: 42.080400000000004
- type: nauc_map_at_1000_std
value: 20.6099
- type: nauc_map_at_1000_diff1
value: 23.48
- type: nauc_recall_at_1_max
value: 39.0907
- type: nauc_recall_at_1_std
value: 10.9155
- type: nauc_recall_at_1_diff1
value: 27.478799999999996
- type: nauc_recall_at_3_max
value: 36.479099999999995
- type: nauc_recall_at_3_std
value: 16.370199999999997
- type: nauc_recall_at_3_diff1
value: 21.0061
- type: nauc_recall_at_5_max
value: 39.3227
- type: nauc_recall_at_5_std
value: 21.753800000000002
- type: nauc_recall_at_5_diff1
value: 18.6069
- type: nauc_recall_at_10_max
value: 40.7894
- type: nauc_recall_at_10_std
value: 25.6917
- type: nauc_recall_at_10_diff1
value: 17.7339
- type: nauc_recall_at_20_max
value: 39.6829
- type: nauc_recall_at_20_std
value: 30.0384
- type: nauc_recall_at_20_diff1
value: 15.3931
- type: nauc_recall_at_100_max
value: 34.9178
- type: nauc_recall_at_100_std
value: 34.6884
- type: nauc_recall_at_100_diff1
value: 13.1482
- type: nauc_recall_at_1000_max
value: 34.3804
- type: nauc_recall_at_1000_std
value: 41.778
- type: nauc_recall_at_1000_diff1
value: 9.3052
- type: nauc_precision_at_1_max
value: 34.0809
- type: nauc_precision_at_1_std
value: 11.4587
- type: nauc_precision_at_1_diff1
value: 24.7702
- type: nauc_precision_at_3_max
value: 31.784000000000002
- type: nauc_precision_at_3_std
value: 18.567700000000002
- type: nauc_precision_at_3_diff1
value: 16.1653
- type: nauc_precision_at_5_max
value: 34.9086
- type: nauc_precision_at_5_std
value: 25.0212
- type: nauc_precision_at_5_diff1
value: 14.2787
- type: nauc_precision_at_10_max
value: 35.1734
- type: nauc_precision_at_10_std
value: 30.2243
- type: nauc_precision_at_10_diff1
value: 11.4396
- type: nauc_precision_at_20_max
value: 31.347599999999996
- type: nauc_precision_at_20_std
value: 33.2444
- type: nauc_precision_at_20_diff1
value: 8.0151
- type: nauc_precision_at_100_max
value: 21.0705
- type: nauc_precision_at_100_std
value: 33.561800000000005
- type: nauc_precision_at_100_diff1
value: 3.1647000000000003
- type: nauc_precision_at_1000_max
value: 10.1267
- type: nauc_precision_at_1000_std
value: 28.746199999999998
- type: nauc_precision_at_1000_diff1
value: -4.6774000000000004
- type: nauc_mrr_at_1_max
value: 34.0809
- type: nauc_mrr_at_1_std
value: 11.4587
- type: nauc_mrr_at_1_diff1
value: 24.7702
- type: nauc_mrr_at_3_max
value: 33.799
- type: nauc_mrr_at_3_std
value: 16.0923
- type: nauc_mrr_at_3_diff1
value: 20.8456
- type: nauc_mrr_at_5_max
value: 35.1249
- type: nauc_mrr_at_5_std
value: 17.8145
- type: nauc_mrr_at_5_diff1
value: 20.467299999999998
- type: nauc_mrr_at_10_max
value: 35.856500000000004
- type: nauc_mrr_at_10_std
value: 18.4864
- type: nauc_mrr_at_10_diff1
value: 20.6532
- type: nauc_mrr_at_20_max
value: 35.787200000000006
- type: nauc_mrr_at_20_std
value: 18.607599999999998
- type: nauc_mrr_at_20_diff1
value: 20.6192
- type: nauc_mrr_at_100_max
value: 35.7134
- type: nauc_mrr_at_100_std
value: 18.5964
- type: nauc_mrr_at_100_diff1
value: 20.5979
- type: nauc_mrr_at_1000_max
value: 35.713499999999996
- type: nauc_mrr_at_1000_std
value: 18.5792
- type: nauc_mrr_at_1000_diff1
value: 20.610300000000002
- type: main_score
value: 24.97
- task:
type: Retrieval
dataset:
name: MTEB CodeFeedbackMT (default)
type: CoIR-Retrieval/codefeedback-mt
config: default
split: test
revision: b0f12fa0c0dd67f59c95a5c33d02aeeb4c398c5f
metrics:
- type: ndcg_at_1
value: 15.403
- type: ndcg_at_3
value: 20.087
- type: ndcg_at_5
value: 21.72
- type: ndcg_at_10
value: 23.458000000000002
- type: ndcg_at_20
value: 24.990000000000002
- type: ndcg_at_100
value: 27.933000000000003
- type: ndcg_at_1000
value: 30.642999999999997
- type: map_at_1
value: 15.403
- type: map_at_3
value: 18.925
- type: map_at_5
value: 19.832
- type: map_at_10
value: 20.549999999999997
- type: map_at_20
value: 20.97
- type: map_at_100
value: 21.358
- type: map_at_1000
value: 21.447
- type: recall_at_1
value: 15.403
- type: recall_at_3
value: 23.454
- type: recall_at_5
value: 27.416
- type: recall_at_10
value: 32.786
- type: recall_at_20
value: 38.849000000000004
- type: recall_at_100
value: 54.99699999999999
- type: recall_at_1000
value: 77.096
- type: precision_at_1
value: 15.403
- type: precision_at_3
value: 7.818
- type: precision_at_5
value: 5.483
- type: precision_at_10
value: 3.279
- type: precision_at_20
value: 1.942
- type: precision_at_100
value: 0.5499999999999999
- type: precision_at_1000
value: 0.077
- type: mrr_at_1
value: 15.4026
- type: mrr_at_3
value: 18.925
- type: mrr_at_5
value: 19.8322
- type: mrr_at_10
value: 20.5497
- type: mrr_at_20
value: 20.9696
- type: mrr_at_100
value: 21.3582
- type: mrr_at_1000
value: 21.4471
- type: nauc_ndcg_at_1_max
value: 14.524799999999999
- type: nauc_ndcg_at_1_std
value: -14.704500000000001
- type: nauc_ndcg_at_1_diff1
value: 45.3337
- type: nauc_ndcg_at_3_max
value: 12.3014
- type: nauc_ndcg_at_3_std
value: -14.977199999999998
- type: nauc_ndcg_at_3_diff1
value: 37.6118
- type: nauc_ndcg_at_5_max
value: 12.015099999999999
- type: nauc_ndcg_at_5_std
value: -14.844399999999998
- type: nauc_ndcg_at_5_diff1
value: 36.439
- type: nauc_ndcg_at_10_max
value: 11.886800000000001
- type: nauc_ndcg_at_10_std
value: -14.274600000000001
- type: nauc_ndcg_at_10_diff1
value: 35.0552
- type: nauc_ndcg_at_20_max
value: 11.843
- type: nauc_ndcg_at_20_std
value: -13.729099999999999
- type: nauc_ndcg_at_20_diff1
value: 34.172999999999995
- type: nauc_ndcg_at_100_max
value: 12.570700000000002
- type: nauc_ndcg_at_100_std
value: -11.956999999999999
- type: nauc_ndcg_at_100_diff1
value: 33.5916
- type: nauc_ndcg_at_1000_max
value: 13.3025
- type: nauc_ndcg_at_1000_std
value: -10.6411
- type: nauc_ndcg_at_1000_diff1
value: 33.535900000000005
- type: nauc_map_at_1_max
value: 14.524799999999999
- type: nauc_map_at_1_std
value: -14.704500000000001
- type: nauc_map_at_1_diff1
value: 45.3337
- type: nauc_map_at_3_max
value: 12.7833
- type: nauc_map_at_3_std
value: -14.9312
- type: nauc_map_at_3_diff1
value: 39.2273
- type: nauc_map_at_5_max
value: 12.606200000000001
- type: nauc_map_at_5_std
value: -14.846200000000001
- type: nauc_map_at_5_diff1
value: 38.5015
- type: nauc_map_at_10_max
value: 12.5202
- type: nauc_map_at_10_std
value: -14.5979
- type: nauc_map_at_10_diff1
value: 37.8521
- type: nauc_map_at_20_max
value: 12.5101
- type: nauc_map_at_20_std
value: -14.444899999999999
- type: nauc_map_at_20_diff1
value: 37.5942
- type: nauc_map_at_100_max
value: 12.601399999999998
- type: nauc_map_at_100_std
value: -14.2092
- type: nauc_map_at_100_diff1
value: 37.4992
- type: nauc_map_at_1000_max
value: 12.6334
- type: nauc_map_at_1000_std
value: -14.1545
- type: nauc_map_at_1000_diff1
value: 37.4959
- type: nauc_recall_at_1_max
value: 14.524799999999999
- type: nauc_recall_at_1_std
value: -14.704500000000001
- type: nauc_recall_at_1_diff1
value: 45.3337
- type: nauc_recall_at_3_max
value: 11.0823
- type: nauc_recall_at_3_std
value: -15.088899999999999
- type: nauc_recall_at_3_diff1
value: 33.5456
- type: nauc_recall_at_5_max
value: 10.5617
- type: nauc_recall_at_5_std
value: -14.8289
- type: nauc_recall_at_5_diff1
value: 31.3732
- type: nauc_recall_at_10_max
value: 10.4061
- type: nauc_recall_at_10_std
value: -13.3346
- type: nauc_recall_at_10_diff1
value: 28.131099999999996
- type: nauc_recall_at_20_max
value: 10.2817
- type: nauc_recall_at_20_std
value: -11.5314
- type: nauc_recall_at_20_diff1
value: 25.3998
- type: nauc_recall_at_100_max
value: 13.818
- type: nauc_recall_at_100_std
value: -2.6188
- type: nauc_recall_at_100_diff1
value: 22.0747
- type: nauc_recall_at_1000_max
value: 21.893099999999997
- type: nauc_recall_at_1000_std
value: 16.1546
- type: nauc_recall_at_1000_diff1
value: 15.1476
- type: nauc_precision_at_1_max
value: 14.524799999999999
- type: nauc_precision_at_1_std
value: -14.704500000000001
- type: nauc_precision_at_1_diff1
value: 45.3337
- type: nauc_precision_at_3_max
value: 11.0823
- type: nauc_precision_at_3_std
value: -15.088899999999999
- type: nauc_precision_at_3_diff1
value: 33.5456
- type: nauc_precision_at_5_max
value: 10.5617
- type: nauc_precision_at_5_std
value: -14.8289
- type: nauc_precision_at_5_diff1
value: 31.3732
- type: nauc_precision_at_10_max
value: 10.4061
- type: nauc_precision_at_10_std
value: -13.3346
- type: nauc_precision_at_10_diff1
value: 28.131099999999996
- type: nauc_precision_at_20_max
value: 10.2817
- type: nauc_precision_at_20_std
value: -11.5314
- type: nauc_precision_at_20_diff1
value: 25.3998
- type: nauc_precision_at_100_max
value: 13.818
- type: nauc_precision_at_100_std
value: -2.6188
- type: nauc_precision_at_100_diff1
value: 22.0747
- type: nauc_precision_at_1000_max
value: 21.893099999999997
- type: nauc_precision_at_1000_std
value: 16.1546
- type: nauc_precision_at_1000_diff1
value: 15.1476
- type: nauc_mrr_at_1_max
value: 14.524799999999999
- type: nauc_mrr_at_1_std
value: -14.704500000000001
- type: nauc_mrr_at_1_diff1
value: 45.3337
- type: nauc_mrr_at_3_max
value: 12.7833
- type: nauc_mrr_at_3_std
value: -14.9312
- type: nauc_mrr_at_3_diff1
value: 39.2273
- type: nauc_mrr_at_5_max
value: 12.606200000000001
- type: nauc_mrr_at_5_std
value: -14.846200000000001
- type: nauc_mrr_at_5_diff1
value: 38.5015
- type: nauc_mrr_at_10_max
value: 12.5202
- type: nauc_mrr_at_10_std
value: -14.5979
- type: nauc_mrr_at_10_diff1
value: 37.8521
- type: nauc_mrr_at_20_max
value: 12.5101
- type: nauc_mrr_at_20_std
value: -14.444899999999999
- type: nauc_mrr_at_20_diff1
value: 37.5942
- type: nauc_mrr_at_100_max
value: 12.601399999999998
- type: nauc_mrr_at_100_std
value: -14.2092
- type: nauc_mrr_at_100_diff1
value: 37.4992
- type: nauc_mrr_at_1000_max
value: 12.6334
- type: nauc_mrr_at_1000_std
value: -14.1545
- type: nauc_mrr_at_1000_diff1
value: 37.4959
- type: main_score
value: 23.458000000000002
- task:
type: Retrieval
dataset:
name: MTEB CodeFeedbackST (default)
type: CoIR-Retrieval/codefeedback-st
config: default
split: test
revision: d213819e87aab9010628da8b73ab4eb337c89340
metrics:
- type: ndcg_at_1
value: 42.781000000000006
- type: ndcg_at_3
value: 53.547999999999995
- type: ndcg_at_5
value: 56.184999999999995
- type: ndcg_at_10
value: 58.455
- type: ndcg_at_20
value: 59.897
- type: ndcg_at_100
value: 61.806000000000004
- type: ndcg_at_1000
value: 62.769
- type: map_at_1
value: 42.781000000000006
- type: map_at_3
value: 50.92100000000001
- type: map_at_5
value: 52.38699999999999
- type: map_at_10
value: 53.335
- type: map_at_20
value: 53.733
- type: map_at_100
value: 53.998999999999995
- type: map_at_1000
value: 54.035
- type: recall_at_1
value: 42.781000000000006
- type: recall_at_3
value: 61.141999999999996
- type: recall_at_5
value: 67.533
- type: recall_at_10
value: 74.491
- type: recall_at_20
value: 80.17999999999999
- type: recall_at_100
value: 90.443
- type: recall_at_1000
value: 98.051
- type: precision_at_1
value: 42.781000000000006
- type: precision_at_3
value: 20.381
- type: precision_at_5
value: 13.507
- type: precision_at_10
value: 7.449
- type: precision_at_20
value: 4.009
- type: precision_at_100
value: 0.9039999999999999
- type: precision_at_1000
value: 0.098
- type: mrr_at_1
value: 42.8193
- type: mrr_at_3
value: 50.9333
- type: mrr_at_5
value: 52.4157
- type: mrr_at_10
value: 53.3551
- type: mrr_at_20
value: 53.7532
- type: mrr_at_100
value: 54.0192
- type: mrr_at_1000
value: 54.0547
- type: nauc_ndcg_at_1_max
value: 8.1476
- type: nauc_ndcg_at_1_std
value: -18.415599999999998
- type: nauc_ndcg_at_1_diff1
value: 61.467499999999994
- type: nauc_ndcg_at_3_max
value: 14.5702
- type: nauc_ndcg_at_3_std
value: -18.4765
- type: nauc_ndcg_at_3_diff1
value: 54.7928
- type: nauc_ndcg_at_5_max
value: 15.2642
- type: nauc_ndcg_at_5_std
value: -18.2014
- type: nauc_ndcg_at_5_diff1
value: 53.9847
- type: nauc_ndcg_at_10_max
value: 15.0742
- type: nauc_ndcg_at_10_std
value: -17.8811
- type: nauc_ndcg_at_10_diff1
value: 53.9565
- type: nauc_ndcg_at_20_max
value: 14.7067
- type: nauc_ndcg_at_20_std
value: -17.618000000000002
- type: nauc_ndcg_at_20_diff1
value: 54.041399999999996
- type: nauc_ndcg_at_100_max
value: 14.4373
- type: nauc_ndcg_at_100_std
value: -17.1309
- type: nauc_ndcg_at_100_diff1
value: 54.5959
- type: nauc_ndcg_at_1000_max
value: 14.1768
- type: nauc_ndcg_at_1000_std
value: -17.2829
- type: nauc_ndcg_at_1000_diff1
value: 55.053799999999995
- type: nauc_map_at_1_max
value: 8.1476
- type: nauc_map_at_1_std
value: -18.415599999999998
- type: nauc_map_at_1_diff1
value: 61.467499999999994
- type: nauc_map_at_3_max
value: 12.961400000000001
- type: nauc_map_at_3_std
value: -18.4454
- type: nauc_map_at_3_diff1
value: 56.42
- type: nauc_map_at_5_max
value: 13.295599999999999
- type: nauc_map_at_5_std
value: -18.293599999999998
- type: nauc_map_at_5_diff1
value: 56.033
- type: nauc_map_at_10_max
value: 13.189600000000002
- type: nauc_map_at_10_std
value: -18.169
- type: nauc_map_at_10_diff1
value: 56.0467
- type: nauc_map_at_20_max
value: 13.0847
- type: nauc_map_at_20_std
value: -18.1099
- type: nauc_map_at_20_diff1
value: 56.0909
- type: nauc_map_at_100_max
value: 13.0384
- type: nauc_map_at_100_std
value: -18.0582
- type: nauc_map_at_100_diff1
value: 56.1735
- type: nauc_map_at_1000_max
value: 13.03
- type: nauc_map_at_1000_std
value: -18.0598
- type: nauc_map_at_1000_diff1
value: 56.1901
- type: nauc_recall_at_1_max
value: 8.1476
- type: nauc_recall_at_1_std
value: -18.415599999999998
- type: nauc_recall_at_1_diff1
value: 61.467499999999994
- type: nauc_recall_at_3_max
value: 19.6416
- type: nauc_recall_at_3_std
value: -18.582099999999997
- type: nauc_recall_at_3_diff1
value: 49.6845
- type: nauc_recall_at_5_max
value: 22.2239
- type: nauc_recall_at_5_std
value: -17.847099999999998
- type: nauc_recall_at_5_diff1
value: 46.739999999999995
- type: nauc_recall_at_10_max
value: 22.8276
- type: nauc_recall_at_10_std
value: -16.486600000000003
- type: nauc_recall_at_10_diff1
value: 45.2586
- type: nauc_recall_at_20_max
value: 22.2364
- type: nauc_recall_at_20_std
value: -14.5036
- type: nauc_recall_at_20_diff1
value: 43.7903
- type: nauc_recall_at_100_max
value: 25.254700000000003
- type: nauc_recall_at_100_std
value: -3.9357
- type: nauc_recall_at_100_diff1
value: 42.6367
- type: nauc_recall_at_1000_max
value: 38.3787
- type: nauc_recall_at_1000_std
value: 27.075100000000003
- type: nauc_recall_at_1000_diff1
value: 44.277
- type: nauc_precision_at_1_max
value: 8.1476
- type: nauc_precision_at_1_std
value: -18.415599999999998
- type: nauc_precision_at_1_diff1
value: 61.467499999999994
- type: nauc_precision_at_3_max
value: 19.6416
- type: nauc_precision_at_3_std
value: -18.582099999999997
- type: nauc_precision_at_3_diff1
value: 49.6845
- type: nauc_precision_at_5_max
value: 22.2239
- type: nauc_precision_at_5_std
value: -17.847099999999998
- type: nauc_precision_at_5_diff1
value: 46.739999999999995
- type: nauc_precision_at_10_max
value: 22.8276
- type: nauc_precision_at_10_std
value: -16.486600000000003
- type: nauc_precision_at_10_diff1
value: 45.2586
- type: nauc_precision_at_20_max
value: 22.2364
- type: nauc_precision_at_20_std
value: -14.5036
- type: nauc_precision_at_20_diff1
value: 43.7903
- type: nauc_precision_at_100_max
value: 25.254700000000003
- type: nauc_precision_at_100_std
value: -3.9357
- type: nauc_precision_at_100_diff1
value: 42.6367
- type: nauc_precision_at_1000_max
value: 38.3787
- type: nauc_precision_at_1000_std
value: 27.075100000000003
- type: nauc_precision_at_1000_diff1
value: 44.277
- type: nauc_mrr_at_1_max
value: 7.7336
- type: nauc_mrr_at_1_std
value: -18.2617
- type: nauc_mrr_at_1_diff1
value: 61.3653
- type: nauc_mrr_at_3_max
value: 12.6751
- type: nauc_mrr_at_3_std
value: -18.3779
- type: nauc_mrr_at_3_diff1
value: 56.383
- type: nauc_mrr_at_5_max
value: 13.031200000000002
- type: nauc_mrr_at_5_std
value: -18.252499999999998
- type: nauc_mrr_at_5_diff1
value: 55.9734
- type: nauc_mrr_at_10_max
value: 12.934399999999998
- type: nauc_mrr_at_10_std
value: -18.0918
- type: nauc_mrr_at_10_diff1
value: 55.9883
- type: nauc_mrr_at_20_max
value: 12.8271
- type: nauc_mrr_at_20_std
value: -18.0345
- type: nauc_mrr_at_20_diff1
value: 56.033100000000005
- type: nauc_mrr_at_100_max
value: 12.7798
- type: nauc_mrr_at_100_std
value: -17.983
- type: nauc_mrr_at_100_diff1
value: 56.115700000000004
- type: nauc_mrr_at_1000_max
value: 12.771099999999999
- type: nauc_mrr_at_1000_std
value: -17.9844
- type: nauc_mrr_at_1000_diff1
value: 56.1323
- type: main_score
value: 58.455
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetCCRetrieval (python)
type: CoIR-Retrieval/CodeSearchNet-ccr
config: python
split: test
revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8
metrics:
- type: ndcg_at_1
value: 29.32
- type: ndcg_at_3
value: 37.202
- type: ndcg_at_5
value: 39.399
- type: ndcg_at_10
value: 41.583
- type: ndcg_at_20
value: 43.156
- type: ndcg_at_100
value: 45.506
- type: ndcg_at_1000
value: 47.28
- type: map_at_1
value: 29.32
- type: map_at_3
value: 35.266999999999996
- type: map_at_5
value: 36.489
- type: map_at_10
value: 37.399
- type: map_at_20
value: 37.829
- type: map_at_100
value: 38.149
- type: map_at_1000
value: 38.208
- type: recall_at_1
value: 29.32
- type: recall_at_3
value: 42.801
- type: recall_at_5
value: 48.123
- type: recall_at_10
value: 54.82599999999999
- type: recall_at_20
value: 61.06700000000001
- type: recall_at_100
value: 73.817
- type: recall_at_1000
value: 88.189
- type: precision_at_1
value: 29.32
- type: precision_at_3
value: 14.267
- type: precision_at_5
value: 9.625
- type: precision_at_10
value: 5.483
- type: precision_at_20
value: 3.053
- type: precision_at_100
value: 0.738
- type: precision_at_1000
value: 0.08800000000000001
- type: mrr_at_1
value: 29.3203
- type: mrr_at_3
value: 35.2661
- type: mrr_at_5
value: 36.4878
- type: mrr_at_10
value: 37.398399999999995
- type: mrr_at_20
value: 37.8278
- type: mrr_at_100
value: 38.1474
- type: mrr_at_1000
value: 38.2072
- type: nauc_ndcg_at_1_max
value: 27.608
- type: nauc_ndcg_at_1_std
value: -0.1578
- type: nauc_ndcg_at_1_diff1
value: 50.7213
- type: nauc_ndcg_at_3_max
value: 28.488799999999998
- type: nauc_ndcg_at_3_std
value: 0.8798
- type: nauc_ndcg_at_3_diff1
value: 46.4513
- type: nauc_ndcg_at_5_max
value: 28.2088
- type: nauc_ndcg_at_5_std
value: 1.536
- type: nauc_ndcg_at_5_diff1
value: 45.5291
- type: nauc_ndcg_at_10_max
value: 28.076600000000003
- type: nauc_ndcg_at_10_std
value: 2.4101999999999997
- type: nauc_ndcg_at_10_diff1
value: 45.0789
- type: nauc_ndcg_at_20_max
value: 28.1814
- type: nauc_ndcg_at_20_std
value: 3.1981999999999995
- type: nauc_ndcg_at_20_diff1
value: 44.8012
- type: nauc_ndcg_at_100_max
value: 27.9818
- type: nauc_ndcg_at_100_std
value: 3.8790999999999998
- type: nauc_ndcg_at_100_diff1
value: 44.7506
- type: nauc_ndcg_at_1000_max
value: 28.1483
- type: nauc_ndcg_at_1000_std
value: 3.8562
- type: nauc_ndcg_at_1000_diff1
value: 45.1726
- type: nauc_map_at_1_max
value: 27.608
- type: nauc_map_at_1_std
value: -0.1578
- type: nauc_map_at_1_diff1
value: 50.7213
- type: nauc_map_at_3_max
value: 28.3097
- type: nauc_map_at_3_std
value: 0.6224000000000001
- type: nauc_map_at_3_diff1
value: 47.4366
- type: nauc_map_at_5_max
value: 28.157500000000002
- type: nauc_map_at_5_std
value: 0.9838
- type: nauc_map_at_5_diff1
value: 46.9294
- type: nauc_map_at_10_max
value: 28.097
- type: nauc_map_at_10_std
value: 1.3426
- type: nauc_map_at_10_diff1
value: 46.7574
- type: nauc_map_at_20_max
value: 28.124100000000002
- type: nauc_map_at_20_std
value: 1.5459
- type: nauc_map_at_20_diff1
value: 46.6828
- type: nauc_map_at_100_max
value: 28.0887
- type: nauc_map_at_100_std
value: 1.6311
- type: nauc_map_at_100_diff1
value: 46.684599999999996
- type: nauc_map_at_1000_max
value: 28.0938
- type: nauc_map_at_1000_std
value: 1.6345999999999998
- type: nauc_map_at_1000_diff1
value: 46.6979
- type: nauc_recall_at_1_max
value: 27.608
- type: nauc_recall_at_1_std
value: -0.1578
- type: nauc_recall_at_1_diff1
value: 50.7213
- type: nauc_recall_at_3_max
value: 28.982000000000003
- type: nauc_recall_at_3_std
value: 1.6101
- type: nauc_recall_at_3_diff1
value: 43.6847
- type: nauc_recall_at_5_max
value: 28.297800000000002
- type: nauc_recall_at_5_std
value: 3.2162
- type: nauc_recall_at_5_diff1
value: 41.402899999999995
- type: nauc_recall_at_10_max
value: 27.915499999999998
- type: nauc_recall_at_10_std
value: 6.0788
- type: nauc_recall_at_10_diff1
value: 39.7106
- type: nauc_recall_at_20_max
value: 28.3661
- type: nauc_recall_at_20_std
value: 9.8068
- type: nauc_recall_at_20_diff1
value: 38.153
- type: nauc_recall_at_100_max
value: 27.114300000000004
- type: nauc_recall_at_100_std
value: 17.0125
- type: nauc_recall_at_100_diff1
value: 35.6053
- type: nauc_recall_at_1000_max
value: 29.8655
- type: nauc_recall_at_1000_std
value: 28.480800000000002
- type: nauc_recall_at_1000_diff1
value: 35.9375
- type: nauc_precision_at_1_max
value: 27.608
- type: nauc_precision_at_1_std
value: -0.1578
- type: nauc_precision_at_1_diff1
value: 50.7213
- type: nauc_precision_at_3_max
value: 28.982000000000003
- type: nauc_precision_at_3_std
value: 1.6101
- type: nauc_precision_at_3_diff1
value: 43.6847
- type: nauc_precision_at_5_max
value: 28.297800000000002
- type: nauc_precision_at_5_std
value: 3.2162
- type: nauc_precision_at_5_diff1
value: 41.402899999999995
- type: nauc_precision_at_10_max
value: 27.915499999999998
- type: nauc_precision_at_10_std
value: 6.0788
- type: nauc_precision_at_10_diff1
value: 39.7106
- type: nauc_precision_at_20_max
value: 28.3661
- type: nauc_precision_at_20_std
value: 9.8068
- type: nauc_precision_at_20_diff1
value: 38.153
- type: nauc_precision_at_100_max
value: 27.114300000000004
- type: nauc_precision_at_100_std
value: 17.0125
- type: nauc_precision_at_100_diff1
value: 35.6053
- type: nauc_precision_at_1000_max
value: 29.8655
- type: nauc_precision_at_1000_std
value: 28.480800000000002
- type: nauc_precision_at_1000_diff1
value: 35.9375
- type: nauc_mrr_at_1_max
value: 27.608
- type: nauc_mrr_at_1_std
value: -0.1578
- type: nauc_mrr_at_1_diff1
value: 50.7213
- type: nauc_mrr_at_3_max
value: 28.310200000000002
- type: nauc_mrr_at_3_std
value: 0.6187
- type: nauc_mrr_at_3_diff1
value: 47.4396
- type: nauc_mrr_at_5_max
value: 28.1581
- type: nauc_mrr_at_5_std
value: 0.9801000000000001
- type: nauc_mrr_at_5_diff1
value: 46.9325
- type: nauc_mrr_at_10_max
value: 28.097499999999997
- type: nauc_mrr_at_10_std
value: 1.3393
- type: nauc_mrr_at_10_diff1
value: 46.760600000000004
- type: nauc_mrr_at_20_max
value: 28.124700000000004
- type: nauc_mrr_at_20_std
value: 1.5427
- type: nauc_mrr_at_20_diff1
value: 46.686
- type: nauc_mrr_at_100_max
value: 28.0893
- type: nauc_mrr_at_100_std
value: 1.6274
- type: nauc_mrr_at_100_diff1
value: 46.6879
- type: nauc_mrr_at_1000_max
value: 28.0943
- type: nauc_mrr_at_1000_std
value: 1.6312
- type: nauc_mrr_at_1000_diff1
value: 46.7012
- type: main_score
value: 41.583
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetCCRetrieval (javascript)
type: CoIR-Retrieval/CodeSearchNet-ccr
config: javascript
split: test
revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8
metrics:
- type: ndcg_at_1
value: 30.294999999999998
- type: ndcg_at_3
value: 38.102000000000004
- type: ndcg_at_5
value: 40.164
- type: ndcg_at_10
value: 42.041000000000004
- type: ndcg_at_20
value: 43.464000000000006
- type: ndcg_at_100
value: 45.791
- type: ndcg_at_1000
value: 47.689
- type: map_at_1
value: 30.294999999999998
- type: map_at_3
value: 36.19
- type: map_at_5
value: 37.332
- type: map_at_10
value: 38.112
- type: map_at_20
value: 38.507999999999996
- type: map_at_100
value: 38.812999999999995
- type: map_at_1000
value: 38.875
- type: recall_at_1
value: 30.294999999999998
- type: recall_at_3
value: 43.634
- type: recall_at_5
value: 48.648
- type: recall_at_10
value: 54.421
- type: recall_at_20
value: 60.012
- type: recall_at_100
value: 72.80499999999999
- type: recall_at_1000
value: 88.271
- type: precision_at_1
value: 30.294999999999998
- type: precision_at_3
value: 14.545
- type: precision_at_5
value: 9.73
- type: precision_at_10
value: 5.442
- type: precision_at_20
value: 3.001
- type: precision_at_100
value: 0.728
- type: precision_at_1000
value: 0.08800000000000001
- type: mrr_at_1
value: 30.294700000000002
- type: mrr_at_3
value: 36.1845
- type: mrr_at_5
value: 37.3271
- type: mrr_at_10
value: 38.1071
- type: mrr_at_20
value: 38.502700000000004
- type: mrr_at_100
value: 38.8081
- type: mrr_at_1000
value: 38.8701
- type: nauc_ndcg_at_1_max
value: 26.3264
- type: nauc_ndcg_at_1_std
value: -4.8982
- type: nauc_ndcg_at_1_diff1
value: 50.14189999999999
- type: nauc_ndcg_at_3_max
value: 27.4968
- type: nauc_ndcg_at_3_std
value: -4.1065
- type: nauc_ndcg_at_3_diff1
value: 46.0956
- type: nauc_ndcg_at_5_max
value: 28.409299999999998
- type: nauc_ndcg_at_5_std
value: -3.7853
- type: nauc_ndcg_at_5_diff1
value: 45.6748
- type: nauc_ndcg_at_10_max
value: 27.942
- type: nauc_ndcg_at_10_std
value: -3.3216
- type: nauc_ndcg_at_10_diff1
value: 44.6236
- type: nauc_ndcg_at_20_max
value: 27.47
- type: nauc_ndcg_at_20_std
value: -3.1514
- type: nauc_ndcg_at_20_diff1
value: 44.74
- type: nauc_ndcg_at_100_max
value: 27.4711
- type: nauc_ndcg_at_100_std
value: -3.0054999999999996
- type: nauc_ndcg_at_100_diff1
value: 44.5073
- type: nauc_ndcg_at_1000_max
value: 27.7016
- type: nauc_ndcg_at_1000_std
value: -3.0528
- type: nauc_ndcg_at_1000_diff1
value: 44.8851
- type: nauc_map_at_1_max
value: 26.3264
- type: nauc_map_at_1_std
value: -4.8982
- type: nauc_map_at_1_diff1
value: 50.14189999999999
- type: nauc_map_at_3_max
value: 27.279500000000002
- type: nauc_map_at_3_std
value: -4.2798
- type: nauc_map_at_3_diff1
value: 47.0454
- type: nauc_map_at_5_max
value: 27.776600000000002
- type: nauc_map_at_5_std
value: -4.1068
- type: nauc_map_at_5_diff1
value: 46.8171
- type: nauc_map_at_10_max
value: 27.589399999999998
- type: nauc_map_at_10_std
value: -3.8844
- type: nauc_map_at_10_diff1
value: 46.4013
- type: nauc_map_at_20_max
value: 27.455099999999998
- type: nauc_map_at_20_std
value: -3.8475
- type: nauc_map_at_20_diff1
value: 46.4395
- type: nauc_map_at_100_max
value: 27.470299999999998
- type: nauc_map_at_100_std
value: -3.8240000000000003
- type: nauc_map_at_100_diff1
value: 46.4176
- type: nauc_map_at_1000_max
value: 27.473
- type: nauc_map_at_1000_std
value: -3.8289999999999997
- type: nauc_map_at_1000_diff1
value: 46.427
- type: nauc_recall_at_1_max
value: 26.3264
- type: nauc_recall_at_1_std
value: -4.8982
- type: nauc_recall_at_1_diff1
value: 50.14189999999999
- type: nauc_recall_at_3_max
value: 28.089599999999997
- type: nauc_recall_at_3_std
value: -3.6197
- type: nauc_recall_at_3_diff1
value: 43.4007
- type: nauc_recall_at_5_max
value: 30.3494
- type: nauc_recall_at_5_std
value: -2.8134
- type: nauc_recall_at_5_diff1
value: 42.3267
- type: nauc_recall_at_10_max
value: 28.9106
- type: nauc_recall_at_10_std
value: -1.4690999999999999
- type: nauc_recall_at_10_diff1
value: 38.7477
- type: nauc_recall_at_20_max
value: 27.0023
- type: nauc_recall_at_20_std
value: -0.5613
- type: nauc_recall_at_20_diff1
value: 38.874700000000004
- type: nauc_recall_at_100_max
value: 26.4945
- type: nauc_recall_at_100_std
value: 1.1353
- type: nauc_recall_at_100_diff1
value: 35.297200000000004
- type: nauc_recall_at_1000_max
value: 31.464100000000002
- type: nauc_recall_at_1000_std
value: 5.16
- type: nauc_recall_at_1000_diff1
value: 34.5536
- type: nauc_precision_at_1_max
value: 26.3264
- type: nauc_precision_at_1_std
value: -4.8982
- type: nauc_precision_at_1_diff1
value: 50.14189999999999
- type: nauc_precision_at_3_max
value: 28.089599999999997
- type: nauc_precision_at_3_std
value: -3.6197
- type: nauc_precision_at_3_diff1
value: 43.4007
- type: nauc_precision_at_5_max
value: 30.3494
- type: nauc_precision_at_5_std
value: -2.8134
- type: nauc_precision_at_5_diff1
value: 42.3267
- type: nauc_precision_at_10_max
value: 28.9106
- type: nauc_precision_at_10_std
value: -1.4690999999999999
- type: nauc_precision_at_10_diff1
value: 38.7477
- type: nauc_precision_at_20_max
value: 27.0023
- type: nauc_precision_at_20_std
value: -0.5613
- type: nauc_precision_at_20_diff1
value: 38.874700000000004
- type: nauc_precision_at_100_max
value: 26.4945
- type: nauc_precision_at_100_std
value: 1.1353
- type: nauc_precision_at_100_diff1
value: 35.297200000000004
- type: nauc_precision_at_1000_max
value: 31.464100000000002
- type: nauc_precision_at_1000_std
value: 5.16
- type: nauc_precision_at_1000_diff1
value: 34.5536
- type: nauc_mrr_at_1_max
value: 26.464199999999998
- type: nauc_mrr_at_1_std
value: -4.6967
- type: nauc_mrr_at_1_diff1
value: 50.14189999999999
- type: nauc_mrr_at_3_max
value: 27.3495
- type: nauc_mrr_at_3_std
value: -4.1872
- type: nauc_mrr_at_3_diff1
value: 47.0534
- type: nauc_mrr_at_5_max
value: 27.8469
- type: nauc_mrr_at_5_std
value: -4.0137
- type: nauc_mrr_at_5_diff1
value: 46.8252
- type: nauc_mrr_at_10_max
value: 27.660200000000003
- type: nauc_mrr_at_10_std
value: -3.7907
- type: nauc_mrr_at_10_diff1
value: 46.4094
- type: nauc_mrr_at_20_max
value: 27.526699999999998
- type: nauc_mrr_at_20_std
value: -3.7532
- type: nauc_mrr_at_20_diff1
value: 46.448
- type: nauc_mrr_at_100_max
value: 27.5422
- type: nauc_mrr_at_100_std
value: -3.7292
- type: nauc_mrr_at_100_diff1
value: 46.4261
- type: nauc_mrr_at_1000_max
value: 27.544999999999998
- type: nauc_mrr_at_1000_std
value: -3.734
- type: nauc_mrr_at_1000_diff1
value: 46.435500000000005
- type: main_score
value: 42.041000000000004
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetCCRetrieval (go)
type: CoIR-Retrieval/CodeSearchNet-ccr
config: go
split: test
revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8
metrics:
- type: ndcg_at_1
value: 23.615
- type: ndcg_at_3
value: 29.892999999999997
- type: ndcg_at_5
value: 31.953
- type: ndcg_at_10
value: 33.861000000000004
- type: ndcg_at_20
value: 35.402
- type: ndcg_at_100
value: 37.891000000000005
- type: ndcg_at_1000
value: 40.036
- type: map_at_1
value: 23.615
- type: map_at_3
value: 28.366999999999997
- type: map_at_5
value: 29.511
- type: map_at_10
value: 30.304
- type: map_at_20
value: 30.732
- type: map_at_100
value: 31.062
- type: map_at_1000
value: 31.133
- type: recall_at_1
value: 23.615
- type: recall_at_3
value: 34.302
- type: recall_at_5
value: 39.301
- type: recall_at_10
value: 45.174
- type: recall_at_20
value: 51.231
- type: recall_at_100
value: 64.849
- type: recall_at_1000
value: 82.307
- type: precision_at_1
value: 23.615
- type: precision_at_3
value: 11.434
- type: precision_at_5
value: 7.86
- type: precision_at_10
value: 4.517
- type: precision_at_20
value: 2.562
- type: precision_at_100
value: 0.6479999999999999
- type: precision_at_1000
value: 0.082
- type: mrr_at_1
value: 23.5902
- type: mrr_at_3
value: 28.353
- type: mrr_at_5
value: 29.4987
- type: mrr_at_10
value: 30.292099999999998
- type: mrr_at_20
value: 30.72
- type: mrr_at_100
value: 31.049599999999998
- type: mrr_at_1000
value: 31.120399999999997
- type: nauc_ndcg_at_1_max
value: 29.1258
- type: nauc_ndcg_at_1_std
value: 1.0401
- type: nauc_ndcg_at_1_diff1
value: 47.328199999999995
- type: nauc_ndcg_at_3_max
value: 27.8848
- type: nauc_ndcg_at_3_std
value: 0.2671
- type: nauc_ndcg_at_3_diff1
value: 41.4436
- type: nauc_ndcg_at_5_max
value: 27.475300000000004
- type: nauc_ndcg_at_5_std
value: -0.1773
- type: nauc_ndcg_at_5_diff1
value: 40.184999999999995
- type: nauc_ndcg_at_10_max
value: 27.1682
- type: nauc_ndcg_at_10_std
value: -0.0666
- type: nauc_ndcg_at_10_diff1
value: 39.698
- type: nauc_ndcg_at_20_max
value: 26.822699999999998
- type: nauc_ndcg_at_20_std
value: 0.3046
- type: nauc_ndcg_at_20_diff1
value: 39.0465
- type: nauc_ndcg_at_100_max
value: 26.55
- type: nauc_ndcg_at_100_std
value: 0.9386
- type: nauc_ndcg_at_100_diff1
value: 38.4816
- type: nauc_ndcg_at_1000_max
value: 26.8464
- type: nauc_ndcg_at_1000_std
value: 1.601
- type: nauc_ndcg_at_1000_diff1
value: 38.75
- type: nauc_map_at_1_max
value: 29.1258
- type: nauc_map_at_1_std
value: 1.0401
- type: nauc_map_at_1_diff1
value: 47.328199999999995
- type: nauc_map_at_3_max
value: 28.1313
- type: nauc_map_at_3_std
value: 0.4596
- type: nauc_map_at_3_diff1
value: 42.743199999999995
- type: nauc_map_at_5_max
value: 27.91
- type: nauc_map_at_5_std
value: 0.1926
- type: nauc_map_at_5_diff1
value: 42.0283
- type: nauc_map_at_10_max
value: 27.7964
- type: nauc_map_at_10_std
value: 0.2326
- type: nauc_map_at_10_diff1
value: 41.8324
- type: nauc_map_at_20_max
value: 27.6958
- type: nauc_map_at_20_std
value: 0.3369
- type: nauc_map_at_20_diff1
value: 41.6458
- type: nauc_map_at_100_max
value: 27.6475
- type: nauc_map_at_100_std
value: 0.4118
- type: nauc_map_at_100_diff1
value: 41.5667
- type: nauc_map_at_1000_max
value: 27.654899999999998
- type: nauc_map_at_1000_std
value: 0.43439999999999995
- type: nauc_map_at_1000_diff1
value: 41.578199999999995
- type: nauc_recall_at_1_max
value: 29.1258
- type: nauc_recall_at_1_std
value: 1.0401
- type: nauc_recall_at_1_diff1
value: 47.328199999999995
- type: nauc_recall_at_3_max
value: 27.232200000000002
- type: nauc_recall_at_3_std
value: -0.25980000000000003
- type: nauc_recall_at_3_diff1
value: 37.946200000000005
- type: nauc_recall_at_5_max
value: 26.266000000000002
- type: nauc_recall_at_5_std
value: -1.2084
- type: nauc_recall_at_5_diff1
value: 35.1318
- type: nauc_recall_at_10_max
value: 25.2762
- type: nauc_recall_at_10_std
value: -0.8635
- type: nauc_recall_at_10_diff1
value: 33.6001
- type: nauc_recall_at_20_max
value: 23.9389
- type: nauc_recall_at_20_std
value: 0.5331
- type: nauc_recall_at_20_diff1
value: 30.9907
- type: nauc_recall_at_100_max
value: 21.9631
- type: nauc_recall_at_100_std
value: 4.6604
- type: nauc_recall_at_100_diff1
value: 26.1225
- type: nauc_recall_at_1000_max
value: 23.450699999999998
- type: nauc_recall_at_1000_std
value: 17.0092
- type: nauc_recall_at_1000_diff1
value: 21.3813
- type: nauc_precision_at_1_max
value: 29.1258
- type: nauc_precision_at_1_std
value: 1.0401
- type: nauc_precision_at_1_diff1
value: 47.328199999999995
- type: nauc_precision_at_3_max
value: 27.232200000000002
- type: nauc_precision_at_3_std
value: -0.25980000000000003
- type: nauc_precision_at_3_diff1
value: 37.946200000000005
- type: nauc_precision_at_5_max
value: 26.266000000000002
- type: nauc_precision_at_5_std
value: -1.2084
- type: nauc_precision_at_5_diff1
value: 35.1318
- type: nauc_precision_at_10_max
value: 25.2762
- type: nauc_precision_at_10_std
value: -0.8635
- type: nauc_precision_at_10_diff1
value: 33.6001
- type: nauc_precision_at_20_max
value: 23.9389
- type: nauc_precision_at_20_std
value: 0.5331
- type: nauc_precision_at_20_diff1
value: 30.9907
- type: nauc_precision_at_100_max
value: 21.9631
- type: nauc_precision_at_100_std
value: 4.6604
- type: nauc_precision_at_100_diff1
value: 26.1225
- type: nauc_precision_at_1000_max
value: 23.450699999999998
- type: nauc_precision_at_1000_std
value: 17.0092
- type: nauc_precision_at_1000_diff1
value: 21.3813
- type: nauc_mrr_at_1_max
value: 29.1731
- type: nauc_mrr_at_1_std
value: 1.0801
- type: nauc_mrr_at_1_diff1
value: 47.429
- type: nauc_mrr_at_3_max
value: 28.1768
- type: nauc_mrr_at_3_std
value: 0.4919
- type: nauc_mrr_at_3_diff1
value: 42.830200000000005
- type: nauc_mrr_at_5_max
value: 27.9396
- type: nauc_mrr_at_5_std
value: 0.2168
- type: nauc_mrr_at_5_diff1
value: 42.0956
- type: nauc_mrr_at_10_max
value: 27.8301
- type: nauc_mrr_at_10_std
value: 0.2567
- type: nauc_mrr_at_10_diff1
value: 41.8926
- type: nauc_mrr_at_20_max
value: 27.7297
- type: nauc_mrr_at_20_std
value: 0.3648
- type: nauc_mrr_at_20_diff1
value: 41.7068
- type: nauc_mrr_at_100_max
value: 27.6788
- type: nauc_mrr_at_100_std
value: 0.43550000000000005
- type: nauc_mrr_at_100_diff1
value: 41.626000000000005
- type: nauc_mrr_at_1000_max
value: 27.6876
- type: nauc_mrr_at_1000_std
value: 0.4594
- type: nauc_mrr_at_1000_diff1
value: 41.6377
- type: main_score
value: 33.861000000000004
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetCCRetrieval (ruby)
type: CoIR-Retrieval/CodeSearchNet-ccr
config: ruby
split: test
revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8
metrics:
- type: ndcg_at_1
value: 32.99
- type: ndcg_at_3
value: 40.416999999999994
- type: ndcg_at_5
value: 42.492000000000004
- type: ndcg_at_10
value: 44.528
- type: ndcg_at_20
value: 46.135999999999996
- type: ndcg_at_100
value: 48.33
- type: ndcg_at_1000
value: 50.047
- type: map_at_1
value: 32.99
- type: map_at_3
value: 38.647
- type: map_at_5
value: 39.789
- type: map_at_10
value: 40.62
- type: map_at_20
value: 41.062
- type: map_at_100
value: 41.366
- type: map_at_1000
value: 41.422
- type: recall_at_1
value: 32.99
- type: recall_at_3
value: 45.519
- type: recall_at_5
value: 50.595
- type: recall_at_10
value: 56.93899999999999
- type: recall_at_20
value: 63.283
- type: recall_at_100
value: 75.099
- type: recall_at_1000
value: 89.13600000000001
- type: precision_at_1
value: 32.99
- type: precision_at_3
value: 15.173
- type: precision_at_5
value: 10.119
- type: precision_at_10
value: 5.694
- type: precision_at_20
value: 3.164
- type: precision_at_100
value: 0.751
- type: precision_at_1000
value: 0.089
- type: mrr_at_1
value: 33.068999999999996
- type: mrr_at_3
value: 38.6862
- type: mrr_at_5
value: 39.8282
- type: mrr_at_10
value: 40.6593
- type: mrr_at_20
value: 41.1016
- type: mrr_at_100
value: 41.4058
- type: mrr_at_1000
value: 41.4614
- type: nauc_ndcg_at_1_max
value: 34.985699999999994
- type: nauc_ndcg_at_1_std
value: -7.5317
- type: nauc_ndcg_at_1_diff1
value: 55.82899999999999
- type: nauc_ndcg_at_3_max
value: 34.3163
- type: nauc_ndcg_at_3_std
value: -7.0863
- type: nauc_ndcg_at_3_diff1
value: 50.0509
- type: nauc_ndcg_at_5_max
value: 33.7316
- type: nauc_ndcg_at_5_std
value: -7.3946
- type: nauc_ndcg_at_5_diff1
value: 48.7525
- type: nauc_ndcg_at_10_max
value: 34.6192
- type: nauc_ndcg_at_10_std
value: -6.7839
- type: nauc_ndcg_at_10_diff1
value: 48.6166
- type: nauc_ndcg_at_20_max
value: 34.334399999999995
- type: nauc_ndcg_at_20_std
value: -7.0675
- type: nauc_ndcg_at_20_diff1
value: 48.0635
- type: nauc_ndcg_at_100_max
value: 34.6406
- type: nauc_ndcg_at_100_std
value: -6.8653
- type: nauc_ndcg_at_100_diff1
value: 48.617
- type: nauc_ndcg_at_1000_max
value: 34.2365
- type: nauc_ndcg_at_1000_std
value: -7.0976
- type: nauc_ndcg_at_1000_diff1
value: 48.464200000000005
- type: nauc_map_at_1_max
value: 34.985699999999994
- type: nauc_map_at_1_std
value: -7.5317
- type: nauc_map_at_1_diff1
value: 55.82899999999999
- type: nauc_map_at_3_max
value: 34.577000000000005
- type: nauc_map_at_3_std
value: -7.1427000000000005
- type: nauc_map_at_3_diff1
value: 51.4256
- type: nauc_map_at_5_max
value: 34.2296
- type: nauc_map_at_5_std
value: -7.322299999999999
- type: nauc_map_at_5_diff1
value: 50.709700000000005
- type: nauc_map_at_10_max
value: 34.633900000000004
- type: nauc_map_at_10_std
value: -7.056900000000001
- type: nauc_map_at_10_diff1
value: 50.714099999999995
- type: nauc_map_at_20_max
value: 34.5386
- type: nauc_map_at_20_std
value: -7.142900000000001
- type: nauc_map_at_20_diff1
value: 50.568900000000006
- type: nauc_map_at_100_max
value: 34.5697
- type: nauc_map_at_100_std
value: -7.1189
- type: nauc_map_at_100_diff1
value: 50.6351
- type: nauc_map_at_1000_max
value: 34.558499999999995
- type: nauc_map_at_1000_std
value: -7.1173
- type: nauc_map_at_1000_diff1
value: 50.6277
- type: nauc_recall_at_1_max
value: 34.985699999999994
- type: nauc_recall_at_1_std
value: -7.5317
- type: nauc_recall_at_1_diff1
value: 55.82899999999999
- type: nauc_recall_at_3_max
value: 33.5265
- type: nauc_recall_at_3_std
value: -6.9448
- type: nauc_recall_at_3_diff1
value: 46.1063
- type: nauc_recall_at_5_max
value: 32.1817
- type: nauc_recall_at_5_std
value: -7.6609
- type: nauc_recall_at_5_diff1
value: 42.8551
- type: nauc_recall_at_10_max
value: 34.7502
- type: nauc_recall_at_10_std
value: -5.7719
- type: nauc_recall_at_10_diff1
value: 41.7549
- type: nauc_recall_at_20_max
value: 33.6546
- type: nauc_recall_at_20_std
value: -6.862500000000001
- type: nauc_recall_at_20_diff1
value: 38.6947
- type: nauc_recall_at_100_max
value: 36.095699999999994
- type: nauc_recall_at_100_std
value: -5.2094000000000005
- type: nauc_recall_at_100_diff1
value: 40.336800000000004
- type: nauc_recall_at_1000_max
value: 27.8549
- type: nauc_recall_at_1000_std
value: -10.570699999999999
- type: nauc_recall_at_1000_diff1
value: 28.6812
- type: nauc_precision_at_1_max
value: 34.985699999999994
- type: nauc_precision_at_1_std
value: -7.5317
- type: nauc_precision_at_1_diff1
value: 55.82899999999999
- type: nauc_precision_at_3_max
value: 33.5265
- type: nauc_precision_at_3_std
value: -6.9448
- type: nauc_precision_at_3_diff1
value: 46.1063
- type: nauc_precision_at_5_max
value: 32.1817
- type: nauc_precision_at_5_std
value: -7.6609
- type: nauc_precision_at_5_diff1
value: 42.8551
- type: nauc_precision_at_10_max
value: 34.7502
- type: nauc_precision_at_10_std
value: -5.7719
- type: nauc_precision_at_10_diff1
value: 41.7549
- type: nauc_precision_at_20_max
value: 33.6546
- type: nauc_precision_at_20_std
value: -6.862500000000001
- type: nauc_precision_at_20_diff1
value: 38.6947
- type: nauc_precision_at_100_max
value: 36.095699999999994
- type: nauc_precision_at_100_std
value: -5.2094000000000005
- type: nauc_precision_at_100_diff1
value: 40.336800000000004
- type: nauc_precision_at_1000_max
value: 27.8549
- type: nauc_precision_at_1000_std
value: -10.570699999999999
- type: nauc_precision_at_1000_diff1
value: 28.6812
- type: nauc_mrr_at_1_max
value: 35.099599999999995
- type: nauc_mrr_at_1_std
value: -7.268199999999999
- type: nauc_mrr_at_1_diff1
value: 55.5813
- type: nauc_mrr_at_3_max
value: 34.6335
- type: nauc_mrr_at_3_std
value: -7.012300000000001
- type: nauc_mrr_at_3_diff1
value: 51.3038
- type: nauc_mrr_at_5_max
value: 34.2864
- type: nauc_mrr_at_5_std
value: -7.1912
- type: nauc_mrr_at_5_diff1
value: 50.5873
- type: nauc_mrr_at_10_max
value: 34.6912
- type: nauc_mrr_at_10_std
value: -6.9247000000000005
- type: nauc_mrr_at_10_diff1
value: 50.5908
- type: nauc_mrr_at_20_max
value: 34.596199999999996
- type: nauc_mrr_at_20_std
value: -7.01
- type: nauc_mrr_at_20_diff1
value: 50.4448
- type: nauc_mrr_at_100_max
value: 34.6274
- type: nauc_mrr_at_100_std
value: -6.984999999999999
- type: nauc_mrr_at_100_diff1
value: 50.510200000000005
- type: nauc_mrr_at_1000_max
value: 34.6163
- type: nauc_mrr_at_1000_std
value: -6.9832
- type: nauc_mrr_at_1000_diff1
value: 50.5026
- type: main_score
value: 44.528
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetCCRetrieval (java)
type: CoIR-Retrieval/CodeSearchNet-ccr
config: java
split: test
revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8
metrics:
- type: ndcg_at_1
value: 26.407999999999998
- type: ndcg_at_3
value: 33.356
- type: ndcg_at_5
value: 35.143
- type: ndcg_at_10
value: 37.008
- type: ndcg_at_20
value: 38.394
- type: ndcg_at_100
value: 40.726
- type: ndcg_at_1000
value: 42.648
- type: map_at_1
value: 26.407999999999998
- type: map_at_3
value: 31.663000000000004
- type: map_at_5
value: 32.651
- type: map_at_10
value: 33.424
- type: map_at_20
value: 33.808
- type: map_at_100
value: 34.121
- type: map_at_1000
value: 34.184
- type: recall_at_1
value: 26.407999999999998
- type: recall_at_3
value: 38.247
- type: recall_at_5
value: 42.602000000000004
- type: recall_at_10
value: 48.352000000000004
- type: recall_at_20
value: 53.811
- type: recall_at_100
value: 66.508
- type: recall_at_1000
value: 82.173
- type: precision_at_1
value: 26.407999999999998
- type: precision_at_3
value: 12.748999999999999
- type: precision_at_5
value: 8.52
- type: precision_at_10
value: 4.835
- type: precision_at_20
value: 2.691
- type: precision_at_100
value: 0.6649999999999999
- type: precision_at_1000
value: 0.082
- type: mrr_at_1
value: 26.4263
- type: mrr_at_3
value: 31.673499999999997
- type: mrr_at_5
value: 32.6607
- type: mrr_at_10
value: 33.4314
- type: mrr_at_20
value: 33.8153
- type: mrr_at_100
value: 34.1293
- type: mrr_at_1000
value: 34.192499999999995
- type: nauc_ndcg_at_1_max
value: 29.026600000000002
- type: nauc_ndcg_at_1_std
value: -5.3401
- type: nauc_ndcg_at_1_diff1
value: 51.7505
- type: nauc_ndcg_at_3_max
value: 30.0657
- type: nauc_ndcg_at_3_std
value: -4.2413
- type: nauc_ndcg_at_3_diff1
value: 46.476600000000005
- type: nauc_ndcg_at_5_max
value: 29.7155
- type: nauc_ndcg_at_5_std
value: -3.8619
- type: nauc_ndcg_at_5_diff1
value: 45.5131
- type: nauc_ndcg_at_10_max
value: 29.4459
- type: nauc_ndcg_at_10_std
value: -3.3680000000000003
- type: nauc_ndcg_at_10_diff1
value: 44.6258
- type: nauc_ndcg_at_20_max
value: 29.135499999999997
- type: nauc_ndcg_at_20_std
value: -3.0517
- type: nauc_ndcg_at_20_diff1
value: 44.1
- type: nauc_ndcg_at_100_max
value: 29.131400000000003
- type: nauc_ndcg_at_100_std
value: -2.03
- type: nauc_ndcg_at_100_diff1
value: 43.7972
- type: nauc_ndcg_at_1000_max
value: 29.285099999999996
- type: nauc_ndcg_at_1000_std
value: -1.9141
- type: nauc_ndcg_at_1000_diff1
value: 44.1738
- type: nauc_map_at_1_max
value: 29.026600000000002
- type: nauc_map_at_1_std
value: -5.3401
- type: nauc_map_at_1_diff1
value: 51.7505
- type: nauc_map_at_3_max
value: 29.8237
- type: nauc_map_at_3_std
value: -4.5517
- type: nauc_map_at_3_diff1
value: 47.6757
- type: nauc_map_at_5_max
value: 29.624200000000002
- type: nauc_map_at_5_std
value: -4.338100000000001
- type: nauc_map_at_5_diff1
value: 47.1309
- type: nauc_map_at_10_max
value: 29.5078
- type: nauc_map_at_10_std
value: -4.1374
- type: nauc_map_at_10_diff1
value: 46.7589
- type: nauc_map_at_20_max
value: 29.421000000000003
- type: nauc_map_at_20_std
value: -4.0543000000000005
- type: nauc_map_at_20_diff1
value: 46.6131
- type: nauc_map_at_100_max
value: 29.411199999999997
- type: nauc_map_at_100_std
value: -3.9336
- type: nauc_map_at_100_diff1
value: 46.578199999999995
- type: nauc_map_at_1000_max
value: 29.4134
- type: nauc_map_at_1000_std
value: -3.9301000000000004
- type: nauc_map_at_1000_diff1
value: 46.5892
- type: nauc_recall_at_1_max
value: 29.026600000000002
- type: nauc_recall_at_1_std
value: -5.3401
- type: nauc_recall_at_1_diff1
value: 51.7505
- type: nauc_recall_at_3_max
value: 30.7299
- type: nauc_recall_at_3_std
value: -3.3682999999999996
- type: nauc_recall_at_3_diff1
value: 43.1978
- type: nauc_recall_at_5_max
value: 29.9215
- type: nauc_recall_at_5_std
value: -2.4814
- type: nauc_recall_at_5_diff1
value: 40.9532
- type: nauc_recall_at_10_max
value: 29.1323
- type: nauc_recall_at_10_std
value: -0.9436999999999999
- type: nauc_recall_at_10_diff1
value: 38.221199999999996
- type: nauc_recall_at_20_max
value: 27.889999999999997
- type: nauc_recall_at_20_std
value: 0.4464
- type: nauc_recall_at_20_diff1
value: 35.8795
- type: nauc_recall_at_100_max
value: 27.8094
- type: nauc_recall_at_100_std
value: 7.914499999999999
- type: nauc_recall_at_100_diff1
value: 32.3117
- type: nauc_recall_at_1000_max
value: 29.6608
- type: nauc_recall_at_1000_std
value: 15.9532
- type: nauc_recall_at_1000_diff1
value: 31.069799999999997
- type: nauc_precision_at_1_max
value: 29.026600000000002
- type: nauc_precision_at_1_std
value: -5.3401
- type: nauc_precision_at_1_diff1
value: 51.7505
- type: nauc_precision_at_3_max
value: 30.7299
- type: nauc_precision_at_3_std
value: -3.3682999999999996
- type: nauc_precision_at_3_diff1
value: 43.1978
- type: nauc_precision_at_5_max
value: 29.9215
- type: nauc_precision_at_5_std
value: -2.4814
- type: nauc_precision_at_5_diff1
value: 40.9532
- type: nauc_precision_at_10_max
value: 29.1323
- type: nauc_precision_at_10_std
value: -0.9436999999999999
- type: nauc_precision_at_10_diff1
value: 38.221199999999996
- type: nauc_precision_at_20_max
value: 27.889999999999997
- type: nauc_precision_at_20_std
value: 0.4464
- type: nauc_precision_at_20_diff1
value: 35.8795
- type: nauc_precision_at_100_max
value: 27.8094
- type: nauc_precision_at_100_std
value: 7.914499999999999
- type: nauc_precision_at_100_diff1
value: 32.3117
- type: nauc_precision_at_1000_max
value: 29.6608
- type: nauc_precision_at_1000_std
value: 15.9532
- type: nauc_precision_at_1000_diff1
value: 31.069799999999997
- type: nauc_mrr_at_1_max
value: 29.0947
- type: nauc_mrr_at_1_std
value: -5.2643
- type: nauc_mrr_at_1_diff1
value: 51.678000000000004
- type: nauc_mrr_at_3_max
value: 29.8523
- type: nauc_mrr_at_3_std
value: -4.5234000000000005
- type: nauc_mrr_at_3_diff1
value: 47.653099999999995
- type: nauc_mrr_at_5_max
value: 29.648799999999998
- type: nauc_mrr_at_5_std
value: -4.3013
- type: nauc_mrr_at_5_diff1
value: 47.105799999999995
- type: nauc_mrr_at_10_max
value: 29.5336
- type: nauc_mrr_at_10_std
value: -4.1075
- type: nauc_mrr_at_10_diff1
value: 46.733799999999995
- type: nauc_mrr_at_20_max
value: 29.451500000000003
- type: nauc_mrr_at_20_std
value: -4.0183
- type: nauc_mrr_at_20_diff1
value: 46.5858
- type: nauc_mrr_at_100_max
value: 29.440699999999996
- type: nauc_mrr_at_100_std
value: -3.8987000000000003
- type: nauc_mrr_at_100_diff1
value: 46.5526
- type: nauc_mrr_at_1000_max
value: 29.442899999999998
- type: nauc_mrr_at_1000_std
value: -3.8952
- type: nauc_mrr_at_1000_diff1
value: 46.563500000000005
- type: main_score
value: 37.008
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetCCRetrieval (php)
type: CoIR-Retrieval/CodeSearchNet-ccr
config: php
split: test
revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8
metrics:
- type: ndcg_at_1
value: 21.022
- type: ndcg_at_3
value: 27.082
- type: ndcg_at_5
value: 28.956
- type: ndcg_at_10
value: 30.791
- type: ndcg_at_20
value: 32.301
- type: ndcg_at_100
value: 34.794000000000004
- type: ndcg_at_1000
value: 37.082
- type: map_at_1
value: 21.022
- type: map_at_3
value: 25.593
- type: map_at_5
value: 26.634999999999998
- type: map_at_10
value: 27.395000000000003
- type: map_at_20
value: 27.811000000000003
- type: map_at_100
value: 28.143
- type: map_at_1000
value: 28.218
- type: recall_at_1
value: 21.022
- type: recall_at_3
value: 31.39
- type: recall_at_5
value: 35.935
- type: recall_at_10
value: 41.593999999999994
- type: recall_at_20
value: 47.552
- type: recall_at_100
value: 61.18900000000001
- type: recall_at_1000
value: 79.827
- type: precision_at_1
value: 21.022
- type: precision_at_3
value: 10.463000000000001
- type: precision_at_5
value: 7.187
- type: precision_at_10
value: 4.159
- type: precision_at_20
value: 2.378
- type: precision_at_100
value: 0.612
- type: precision_at_1000
value: 0.08
- type: mrr_at_1
value: 21.0218
- type: mrr_at_3
value: 25.588699999999996
- type: mrr_at_5
value: 26.631899999999998
- type: mrr_at_10
value: 27.3915
- type: mrr_at_20
value: 27.807900000000004
- type: mrr_at_100
value: 28.138800000000003
- type: mrr_at_1000
value: 28.2141
- type: nauc_ndcg_at_1_max
value: 22.1861
- type: nauc_ndcg_at_1_std
value: -3.218
- type: nauc_ndcg_at_1_diff1
value: 46.4989
- type: nauc_ndcg_at_3_max
value: 21.7282
- type: nauc_ndcg_at_3_std
value: -2.1185
- type: nauc_ndcg_at_3_diff1
value: 40.8096
- type: nauc_ndcg_at_5_max
value: 21.339199999999998
- type: nauc_ndcg_at_5_std
value: -1.6541000000000001
- type: nauc_ndcg_at_5_diff1
value: 39.6483
- type: nauc_ndcg_at_10_max
value: 20.9441
- type: nauc_ndcg_at_10_std
value: -0.8141
- type: nauc_ndcg_at_10_diff1
value: 38.5517
- type: nauc_ndcg_at_20_max
value: 20.7702
- type: nauc_ndcg_at_20_std
value: -0.293
- type: nauc_ndcg_at_20_diff1
value: 38.2386
- type: nauc_ndcg_at_100_max
value: 20.569100000000002
- type: nauc_ndcg_at_100_std
value: 0.8404
- type: nauc_ndcg_at_100_diff1
value: 37.6899
- type: nauc_ndcg_at_1000_max
value: 20.72
- type: nauc_ndcg_at_1000_std
value: 0.9279000000000001
- type: nauc_ndcg_at_1000_diff1
value: 37.9486
- type: nauc_map_at_1_max
value: 22.1861
- type: nauc_map_at_1_std
value: -3.218
- type: nauc_map_at_1_diff1
value: 46.4989
- type: nauc_map_at_3_max
value: 21.86
- type: nauc_map_at_3_std
value: -2.4015999999999997
- type: nauc_map_at_3_diff1
value: 42.0695
- type: nauc_map_at_5_max
value: 21.6404
- type: nauc_map_at_5_std
value: -2.1305
- type: nauc_map_at_5_diff1
value: 41.3954
- type: nauc_map_at_10_max
value: 21.4897
- type: nauc_map_at_10_std
value: -1.76
- type: nauc_map_at_10_diff1
value: 40.9264
- type: nauc_map_at_20_max
value: 21.4368
- type: nauc_map_at_20_std
value: -1.6178000000000001
- type: nauc_map_at_20_diff1
value: 40.847
- type: nauc_map_at_100_max
value: 21.3978
- type: nauc_map_at_100_std
value: -1.4705
- type: nauc_map_at_100_diff1
value: 40.775
- type: nauc_map_at_1000_max
value: 21.4068
- type: nauc_map_at_1000_std
value: -1.4657
- type: nauc_map_at_1000_diff1
value: 40.7824
- type: nauc_recall_at_1_max
value: 22.1861
- type: nauc_recall_at_1_std
value: -3.218
- type: nauc_recall_at_1_diff1
value: 46.4989
- type: nauc_recall_at_3_max
value: 21.3684
- type: nauc_recall_at_3_std
value: -1.3554
- type: nauc_recall_at_3_diff1
value: 37.4804
- type: nauc_recall_at_5_max
value: 20.4902
- type: nauc_recall_at_5_std
value: -0.3449
- type: nauc_recall_at_5_diff1
value: 34.9587
- type: nauc_recall_at_10_max
value: 19.2959
- type: nauc_recall_at_10_std
value: 1.9666
- type: nauc_recall_at_10_diff1
value: 31.903
- type: nauc_recall_at_20_max
value: 18.6516
- type: nauc_recall_at_20_std
value: 3.9671
- type: nauc_recall_at_20_diff1
value: 30.576999999999998
- type: nauc_recall_at_100_max
value: 17.383699999999997
- type: nauc_recall_at_100_std
value: 11.050699999999999
- type: nauc_recall_at_100_diff1
value: 26.4222
- type: nauc_recall_at_1000_max
value: 17.1265
- type: nauc_recall_at_1000_std
value: 18.235699999999998
- type: nauc_recall_at_1000_diff1
value: 23.186300000000003
- type: nauc_precision_at_1_max
value: 22.1861
- type: nauc_precision_at_1_std
value: -3.218
- type: nauc_precision_at_1_diff1
value: 46.4989
- type: nauc_precision_at_3_max
value: 21.3684
- type: nauc_precision_at_3_std
value: -1.3554
- type: nauc_precision_at_3_diff1
value: 37.4804
- type: nauc_precision_at_5_max
value: 20.4902
- type: nauc_precision_at_5_std
value: -0.3449
- type: nauc_precision_at_5_diff1
value: 34.9587
- type: nauc_precision_at_10_max
value: 19.2959
- type: nauc_precision_at_10_std
value: 1.9666
- type: nauc_precision_at_10_diff1
value: 31.903
- type: nauc_precision_at_20_max
value: 18.6516
- type: nauc_precision_at_20_std
value: 3.9671
- type: nauc_precision_at_20_diff1
value: 30.576999999999998
- type: nauc_precision_at_100_max
value: 17.383699999999997
- type: nauc_precision_at_100_std
value: 11.050699999999999
- type: nauc_precision_at_100_diff1
value: 26.4222
- type: nauc_precision_at_1000_max
value: 17.1265
- type: nauc_precision_at_1000_std
value: 18.235699999999998
- type: nauc_precision_at_1000_diff1
value: 23.186300000000003
- type: nauc_mrr_at_1_max
value: 22.159000000000002
- type: nauc_mrr_at_1_std
value: -3.2346
- type: nauc_mrr_at_1_diff1
value: 46.4989
- type: nauc_mrr_at_3_max
value: 21.8304
- type: nauc_mrr_at_3_std
value: -2.4013
- type: nauc_mrr_at_3_diff1
value: 42.0356
- type: nauc_mrr_at_5_max
value: 21.617900000000002
- type: nauc_mrr_at_5_std
value: -2.1397
- type: nauc_mrr_at_5_diff1
value: 41.3793
- type: nauc_mrr_at_10_max
value: 21.467200000000002
- type: nauc_mrr_at_10_std
value: -1.7682
- type: nauc_mrr_at_10_diff1
value: 40.912
- type: nauc_mrr_at_20_max
value: 21.415200000000002
- type: nauc_mrr_at_20_std
value: -1.6295
- type: nauc_mrr_at_20_diff1
value: 40.8319
- type: nauc_mrr_at_100_max
value: 21.376800000000003
- type: nauc_mrr_at_100_std
value: -1.4815
- type: nauc_mrr_at_100_diff1
value: 40.760400000000004
- type: nauc_mrr_at_1000_max
value: 21.3858
- type: nauc_mrr_at_1000_std
value: -1.4767000000000001
- type: nauc_mrr_at_1000_diff1
value: 40.7677
- type: main_score
value: 30.791
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetRetrieval (python)
type: code-search-net/code_search_net
config: python
split: test
revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759
metrics:
- type: ndcg_at_1
value: 65.2
- type: ndcg_at_3
value: 76.41
- type: ndcg_at_5
value: 77.981
- type: ndcg_at_10
value: 79.044
- type: ndcg_at_20
value: 79.855
- type: ndcg_at_100
value: 80.622
- type: ndcg_at_1000
value: 80.806
- type: map_at_1
value: 65.2
- type: map_at_3
value: 73.65
- type: map_at_5
value: 74.52499999999999
- type: map_at_10
value: 74.98
- type: map_at_20
value: 75.203
- type: map_at_100
value: 75.319
- type: map_at_1000
value: 75.327
- type: recall_at_1
value: 65.2
- type: recall_at_3
value: 84.39999999999999
- type: recall_at_5
value: 88.2
- type: recall_at_10
value: 91.4
- type: recall_at_20
value: 94.6
- type: recall_at_100
value: 98.6
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 65.2
- type: precision_at_3
value: 28.133000000000003
- type: precision_at_5
value: 17.64
- type: precision_at_10
value: 9.139999999999999
- type: precision_at_20
value: 4.73
- type: precision_at_100
value: 0.9860000000000001
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 65.2
- type: mrr_at_3
value: 73.65
- type: mrr_at_5
value: 74.52499999999999
- type: mrr_at_10
value: 74.9802
- type: mrr_at_20
value: 75.20320000000001
- type: mrr_at_100
value: 75.319
- type: mrr_at_1000
value: 75.3269
- type: nauc_ndcg_at_1_max
value: 36.4698
- type: nauc_ndcg_at_1_std
value: -10.8058
- type: nauc_ndcg_at_1_diff1
value: 70.5679
- type: nauc_ndcg_at_3_max
value: 40.582499999999996
- type: nauc_ndcg_at_3_std
value: -9.3767
- type: nauc_ndcg_at_3_diff1
value: 64.8235
- type: nauc_ndcg_at_5_max
value: 41.191100000000006
- type: nauc_ndcg_at_5_std
value: -8.6758
- type: nauc_ndcg_at_5_diff1
value: 64.70179999999999
- type: nauc_ndcg_at_10_max
value: 41.5913
- type: nauc_ndcg_at_10_std
value: -8.8502
- type: nauc_ndcg_at_10_diff1
value: 65.7197
- type: nauc_ndcg_at_20_max
value: 41.4419
- type: nauc_ndcg_at_20_std
value: -9.0406
- type: nauc_ndcg_at_20_diff1
value: 66.1819
- type: nauc_ndcg_at_100_max
value: 40.6791
- type: nauc_ndcg_at_100_std
value: -8.343499999999999
- type: nauc_ndcg_at_100_diff1
value: 66.468
- type: nauc_ndcg_at_1000_max
value: 40.3153
- type: nauc_ndcg_at_1000_std
value: -8.7689
- type: nauc_ndcg_at_1000_diff1
value: 66.49249999999999
- type: nauc_map_at_1_max
value: 36.4698
- type: nauc_map_at_1_std
value: -10.8058
- type: nauc_map_at_1_diff1
value: 70.5679
- type: nauc_map_at_3_max
value: 39.3299
- type: nauc_map_at_3_std
value: -9.4675
- type: nauc_map_at_3_diff1
value: 66.3583
- type: nauc_map_at_5_max
value: 39.5636
- type: nauc_map_at_5_std
value: -9.1881
- type: nauc_map_at_5_diff1
value: 66.37910000000001
- type: nauc_map_at_10_max
value: 39.6806
- type: nauc_map_at_10_std
value: -9.3088
- type: nauc_map_at_10_diff1
value: 66.8131
- type: nauc_map_at_20_max
value: 39.635999999999996
- type: nauc_map_at_20_std
value: -9.3305
- type: nauc_map_at_20_diff1
value: 66.93430000000001
- type: nauc_map_at_100_max
value: 39.536500000000004
- type: nauc_map_at_100_std
value: -9.1873
- type: nauc_map_at_100_diff1
value: 66.96419999999999
- type: nauc_map_at_1000_max
value: 39.5233
- type: nauc_map_at_1000_std
value: -9.200999999999999
- type: nauc_map_at_1000_diff1
value: 66.9634
- type: nauc_recall_at_1_max
value: 36.4698
- type: nauc_recall_at_1_std
value: -10.8058
- type: nauc_recall_at_1_diff1
value: 70.5679
- type: nauc_recall_at_3_max
value: 46.0932
- type: nauc_recall_at_3_std
value: -9.193900000000001
- type: nauc_recall_at_3_diff1
value: 58.2067
- type: nauc_recall_at_5_max
value: 50.2927
- type: nauc_recall_at_5_std
value: -5.8297
- type: nauc_recall_at_5_diff1
value: 55.6113
- type: nauc_recall_at_10_max
value: 55.961099999999995
- type: nauc_recall_at_10_std
value: -5.3568999999999996
- type: nauc_recall_at_10_diff1
value: 58.6075
- type: nauc_recall_at_20_max
value: 62.2869
- type: nauc_recall_at_20_std
value: -6.4927
- type: nauc_recall_at_20_diff1
value: 60.207699999999996
- type: nauc_recall_at_100_max
value: 73.4427
- type: nauc_recall_at_100_std
value: 31.606
- type: nauc_recall_at_100_diff1
value: 63.0919
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 36.4698
- type: nauc_precision_at_1_std
value: -10.8058
- type: nauc_precision_at_1_diff1
value: 70.5679
- type: nauc_precision_at_3_max
value: 46.0932
- type: nauc_precision_at_3_std
value: -9.193900000000001
- type: nauc_precision_at_3_diff1
value: 58.2067
- type: nauc_precision_at_5_max
value: 50.2927
- type: nauc_precision_at_5_std
value: -5.8297
- type: nauc_precision_at_5_diff1
value: 55.6113
- type: nauc_precision_at_10_max
value: 55.961099999999995
- type: nauc_precision_at_10_std
value: -5.3568999999999996
- type: nauc_precision_at_10_diff1
value: 58.6075
- type: nauc_precision_at_20_max
value: 62.2869
- type: nauc_precision_at_20_std
value: -6.4927
- type: nauc_precision_at_20_diff1
value: 60.207699999999996
- type: nauc_precision_at_100_max
value: 73.4427
- type: nauc_precision_at_100_std
value: 31.606
- type: nauc_precision_at_100_diff1
value: 63.0919
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_mrr_at_1_max
value: 36.4698
- type: nauc_mrr_at_1_std
value: -10.8058
- type: nauc_mrr_at_1_diff1
value: 70.5679
- type: nauc_mrr_at_3_max
value: 39.3299
- type: nauc_mrr_at_3_std
value: -9.4675
- type: nauc_mrr_at_3_diff1
value: 66.3583
- type: nauc_mrr_at_5_max
value: 39.5636
- type: nauc_mrr_at_5_std
value: -9.1881
- type: nauc_mrr_at_5_diff1
value: 66.37910000000001
- type: nauc_mrr_at_10_max
value: 39.6806
- type: nauc_mrr_at_10_std
value: -9.3088
- type: nauc_mrr_at_10_diff1
value: 66.8131
- type: nauc_mrr_at_20_max
value: 39.635999999999996
- type: nauc_mrr_at_20_std
value: -9.3305
- type: nauc_mrr_at_20_diff1
value: 66.93430000000001
- type: nauc_mrr_at_100_max
value: 39.536500000000004
- type: nauc_mrr_at_100_std
value: -9.1873
- type: nauc_mrr_at_100_diff1
value: 66.96419999999999
- type: nauc_mrr_at_1000_max
value: 39.5233
- type: nauc_mrr_at_1000_std
value: -9.200999999999999
- type: nauc_mrr_at_1000_diff1
value: 66.9634
- type: main_score
value: 79.044
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetRetrieval (javascript)
type: code-search-net/code_search_net
config: javascript
split: test
revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759
metrics:
- type: ndcg_at_1
value: 55.2
- type: ndcg_at_3
value: 63.709
- type: ndcg_at_5
value: 65.267
- type: ndcg_at_10
value: 67.239
- type: ndcg_at_20
value: 68.372
- type: ndcg_at_100
value: 69.854
- type: ndcg_at_1000
value: 70.831
- type: map_at_1
value: 55.2
- type: map_at_3
value: 61.667
- type: map_at_5
value: 62.527
- type: map_at_10
value: 63.339999999999996
- type: map_at_20
value: 63.648
- type: map_at_100
value: 63.854
- type: map_at_1000
value: 63.885999999999996
- type: recall_at_1
value: 55.2
- type: recall_at_3
value: 69.6
- type: recall_at_5
value: 73.4
- type: recall_at_10
value: 79.5
- type: recall_at_20
value: 84.0
- type: recall_at_100
value: 92.0
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 55.2
- type: precision_at_3
value: 23.200000000000003
- type: precision_at_5
value: 14.680000000000001
- type: precision_at_10
value: 7.95
- type: precision_at_20
value: 4.2
- type: precision_at_100
value: 0.9199999999999999
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 55.2
- type: mrr_at_3
value: 61.6667
- type: mrr_at_5
value: 62.526700000000005
- type: mrr_at_10
value: 63.339999999999996
- type: mrr_at_20
value: 63.6484
- type: mrr_at_100
value: 63.854200000000006
- type: mrr_at_1000
value: 63.88549999999999
- type: nauc_ndcg_at_1_max
value: 48.821
- type: nauc_ndcg_at_1_std
value: 19.6886
- type: nauc_ndcg_at_1_diff1
value: 65.515
- type: nauc_ndcg_at_3_max
value: 56.316
- type: nauc_ndcg_at_3_std
value: 26.6555
- type: nauc_ndcg_at_3_diff1
value: 61.755300000000005
- type: nauc_ndcg_at_5_max
value: 57.566300000000005
- type: nauc_ndcg_at_5_std
value: 29.5288
- type: nauc_ndcg_at_5_diff1
value: 61.655300000000004
- type: nauc_ndcg_at_10_max
value: 58.89339999999999
- type: nauc_ndcg_at_10_std
value: 32.1136
- type: nauc_ndcg_at_10_diff1
value: 61.7916
- type: nauc_ndcg_at_20_max
value: 58.675999999999995
- type: nauc_ndcg_at_20_std
value: 32.2575
- type: nauc_ndcg_at_20_diff1
value: 62.5682
- type: nauc_ndcg_at_100_max
value: 57.6832
- type: nauc_ndcg_at_100_std
value: 31.2476
- type: nauc_ndcg_at_100_diff1
value: 62.356100000000005
- type: nauc_ndcg_at_1000_max
value: 56.9118
- type: nauc_ndcg_at_1000_std
value: 29.624499999999998
- type: nauc_ndcg_at_1000_diff1
value: 62.4914
- type: nauc_map_at_1_max
value: 48.821
- type: nauc_map_at_1_std
value: 19.6886
- type: nauc_map_at_1_diff1
value: 65.515
- type: nauc_map_at_3_max
value: 54.47260000000001
- type: nauc_map_at_3_std
value: 24.864800000000002
- type: nauc_map_at_3_diff1
value: 62.6644
- type: nauc_map_at_5_max
value: 55.1021
- type: nauc_map_at_5_std
value: 26.2921
- type: nauc_map_at_5_diff1
value: 62.624100000000006
- type: nauc_map_at_10_max
value: 55.552
- type: nauc_map_at_10_std
value: 27.199
- type: nauc_map_at_10_diff1
value: 62.7054
- type: nauc_map_at_20_max
value: 55.4708
- type: nauc_map_at_20_std
value: 27.2067
- type: nauc_map_at_20_diff1
value: 62.8945
- type: nauc_map_at_100_max
value: 55.3465
- type: nauc_map_at_100_std
value: 27.0926
- type: nauc_map_at_100_diff1
value: 62.8575
- type: nauc_map_at_1000_max
value: 55.3249
- type: nauc_map_at_1000_std
value: 27.0527
- type: nauc_map_at_1000_diff1
value: 62.8617
- type: nauc_recall_at_1_max
value: 48.821
- type: nauc_recall_at_1_std
value: 19.6886
- type: nauc_recall_at_1_diff1
value: 65.515
- type: nauc_recall_at_3_max
value: 62.36279999999999
- type: nauc_recall_at_3_std
value: 32.569199999999995
- type: nauc_recall_at_3_diff1
value: 58.781499999999994
- type: nauc_recall_at_5_max
value: 66.6246
- type: nauc_recall_at_5_std
value: 41.813
- type: nauc_recall_at_5_diff1
value: 58.1854
- type: nauc_recall_at_10_max
value: 74.4567
- type: nauc_recall_at_10_std
value: 55.835
- type: nauc_recall_at_10_diff1
value: 57.89189999999999
- type: nauc_recall_at_20_max
value: 76.9008
- type: nauc_recall_at_20_std
value: 62.54110000000001
- type: nauc_recall_at_20_diff1
value: 62.200500000000005
- type: nauc_recall_at_100_max
value: 76.46300000000001
- type: nauc_recall_at_100_std
value: 71.4723
- type: nauc_recall_at_100_diff1
value: 59.0844
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 48.821
- type: nauc_precision_at_1_std
value: 19.6886
- type: nauc_precision_at_1_diff1
value: 65.515
- type: nauc_precision_at_3_max
value: 62.36279999999999
- type: nauc_precision_at_3_std
value: 32.569199999999995
- type: nauc_precision_at_3_diff1
value: 58.781499999999994
- type: nauc_precision_at_5_max
value: 66.6246
- type: nauc_precision_at_5_std
value: 41.813
- type: nauc_precision_at_5_diff1
value: 58.1854
- type: nauc_precision_at_10_max
value: 74.4567
- type: nauc_precision_at_10_std
value: 55.835
- type: nauc_precision_at_10_diff1
value: 57.89189999999999
- type: nauc_precision_at_20_max
value: 76.9008
- type: nauc_precision_at_20_std
value: 62.54110000000001
- type: nauc_precision_at_20_diff1
value: 62.200500000000005
- type: nauc_precision_at_100_max
value: 76.46300000000001
- type: nauc_precision_at_100_std
value: 71.4723
- type: nauc_precision_at_100_diff1
value: 59.0844
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_mrr_at_1_max
value: 48.821
- type: nauc_mrr_at_1_std
value: 19.6886
- type: nauc_mrr_at_1_diff1
value: 65.515
- type: nauc_mrr_at_3_max
value: 54.47260000000001
- type: nauc_mrr_at_3_std
value: 24.864800000000002
- type: nauc_mrr_at_3_diff1
value: 62.6644
- type: nauc_mrr_at_5_max
value: 55.1021
- type: nauc_mrr_at_5_std
value: 26.2921
- type: nauc_mrr_at_5_diff1
value: 62.624100000000006
- type: nauc_mrr_at_10_max
value: 55.552
- type: nauc_mrr_at_10_std
value: 27.199
- type: nauc_mrr_at_10_diff1
value: 62.7054
- type: nauc_mrr_at_20_max
value: 55.4708
- type: nauc_mrr_at_20_std
value: 27.2067
- type: nauc_mrr_at_20_diff1
value: 62.8945
- type: nauc_mrr_at_100_max
value: 55.3465
- type: nauc_mrr_at_100_std
value: 27.0926
- type: nauc_mrr_at_100_diff1
value: 62.8575
- type: nauc_mrr_at_1000_max
value: 55.3249
- type: nauc_mrr_at_1000_std
value: 27.0527
- type: nauc_mrr_at_1000_diff1
value: 62.8617
- type: main_score
value: 67.239
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetRetrieval (go)
type: code-search-net/code_search_net
config: go
split: test
revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759
metrics:
- type: ndcg_at_1
value: 70.19999999999999
- type: ndcg_at_3
value: 79.566
- type: ndcg_at_5
value: 81.012
- type: ndcg_at_10
value: 82.217
- type: ndcg_at_20
value: 82.97
- type: ndcg_at_100
value: 83.43199999999999
- type: ndcg_at_1000
value: 83.597
- type: map_at_1
value: 70.19999999999999
- type: map_at_3
value: 77.333
- type: map_at_5
value: 78.13799999999999
- type: map_at_10
value: 78.641
- type: map_at_20
value: 78.84400000000001
- type: map_at_100
value: 78.908
- type: map_at_1000
value: 78.914
- type: recall_at_1
value: 70.19999999999999
- type: recall_at_3
value: 86.0
- type: recall_at_5
value: 89.5
- type: recall_at_10
value: 93.2
- type: recall_at_20
value: 96.2
- type: recall_at_100
value: 98.7
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 70.19999999999999
- type: precision_at_3
value: 28.666999999999998
- type: precision_at_5
value: 17.9
- type: precision_at_10
value: 9.32
- type: precision_at_20
value: 4.81
- type: precision_at_100
value: 0.987
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 70.19999999999999
- type: mrr_at_3
value: 77.33330000000001
- type: mrr_at_5
value: 78.1383
- type: mrr_at_10
value: 78.6408
- type: mrr_at_20
value: 78.8441
- type: mrr_at_100
value: 78.9075
- type: mrr_at_1000
value: 78.91369999999999
- type: nauc_ndcg_at_1_max
value: 54.447199999999995
- type: nauc_ndcg_at_1_std
value: 5.7226
- type: nauc_ndcg_at_1_diff1
value: 71.1626
- type: nauc_ndcg_at_3_max
value: 60.4446
- type: nauc_ndcg_at_3_std
value: 6.2227
- type: nauc_ndcg_at_3_diff1
value: 69.419
- type: nauc_ndcg_at_5_max
value: 59.7692
- type: nauc_ndcg_at_5_std
value: 7.4161
- type: nauc_ndcg_at_5_diff1
value: 68.9958
- type: nauc_ndcg_at_10_max
value: 59.559
- type: nauc_ndcg_at_10_std
value: 6.792199999999999
- type: nauc_ndcg_at_10_diff1
value: 68.42099999999999
- type: nauc_ndcg_at_20_max
value: 59.1576
- type: nauc_ndcg_at_20_std
value: 6.762600000000001
- type: nauc_ndcg_at_20_diff1
value: 69.1402
- type: nauc_ndcg_at_100_max
value: 58.729699999999994
- type: nauc_ndcg_at_100_std
value: 6.6151
- type: nauc_ndcg_at_100_diff1
value: 69.3485
- type: nauc_ndcg_at_1000_max
value: 58.68879999999999
- type: nauc_ndcg_at_1000_std
value: 6.5546999999999995
- type: nauc_ndcg_at_1000_diff1
value: 69.3974
- type: nauc_map_at_1_max
value: 54.447199999999995
- type: nauc_map_at_1_std
value: 5.7226
- type: nauc_map_at_1_diff1
value: 71.1626
- type: nauc_map_at_3_max
value: 58.82150000000001
- type: nauc_map_at_3_std
value: 6.111
- type: nauc_map_at_3_diff1
value: 69.8853
- type: nauc_map_at_5_max
value: 58.4332
- type: nauc_map_at_5_std
value: 6.6455
- type: nauc_map_at_5_diff1
value: 69.6593
- type: nauc_map_at_10_max
value: 58.3284
- type: nauc_map_at_10_std
value: 6.3941
- type: nauc_map_at_10_diff1
value: 69.4544
- type: nauc_map_at_20_max
value: 58.2269
- type: nauc_map_at_20_std
value: 6.3983
- type: nauc_map_at_20_diff1
value: 69.634
- type: nauc_map_at_100_max
value: 58.180299999999995
- type: nauc_map_at_100_std
value: 6.372
- type: nauc_map_at_100_diff1
value: 69.6674
- type: nauc_map_at_1000_max
value: 58.1796
- type: nauc_map_at_1000_std
value: 6.3696
- type: nauc_map_at_1000_diff1
value: 69.6689
- type: nauc_recall_at_1_max
value: 54.447199999999995
- type: nauc_recall_at_1_std
value: 5.7226
- type: nauc_recall_at_1_diff1
value: 71.1626
- type: nauc_recall_at_3_max
value: 67.3635
- type: nauc_recall_at_3_std
value: 6.682499999999999
- type: nauc_recall_at_3_diff1
value: 67.4356
- type: nauc_recall_at_5_max
value: 66.6632
- type: nauc_recall_at_5_std
value: 11.969899999999999
- type: nauc_recall_at_5_diff1
value: 65.4311
- type: nauc_recall_at_10_max
value: 68.76339999999999
- type: nauc_recall_at_10_std
value: 10.0319
- type: nauc_recall_at_10_diff1
value: 59.6357
- type: nauc_recall_at_20_max
value: 69.58569999999999
- type: nauc_recall_at_20_std
value: 11.5374
- type: nauc_recall_at_20_diff1
value: 63.8926
- type: nauc_recall_at_100_max
value: 62.5009
- type: nauc_recall_at_100_std
value: 12.447
- type: nauc_recall_at_100_diff1
value: 65.065
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 54.447199999999995
- type: nauc_precision_at_1_std
value: 5.7226
- type: nauc_precision_at_1_diff1
value: 71.1626
- type: nauc_precision_at_3_max
value: 67.3635
- type: nauc_precision_at_3_std
value: 6.682499999999999
- type: nauc_precision_at_3_diff1
value: 67.4356
- type: nauc_precision_at_5_max
value: 66.6632
- type: nauc_precision_at_5_std
value: 11.969899999999999
- type: nauc_precision_at_5_diff1
value: 65.4311
- type: nauc_precision_at_10_max
value: 68.76339999999999
- type: nauc_precision_at_10_std
value: 10.0319
- type: nauc_precision_at_10_diff1
value: 59.6357
- type: nauc_precision_at_20_max
value: 69.58569999999999
- type: nauc_precision_at_20_std
value: 11.5374
- type: nauc_precision_at_20_diff1
value: 63.8926
- type: nauc_precision_at_100_max
value: 62.5009
- type: nauc_precision_at_100_std
value: 12.447
- type: nauc_precision_at_100_diff1
value: 65.065
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_mrr_at_1_max
value: 54.447199999999995
- type: nauc_mrr_at_1_std
value: 5.7226
- type: nauc_mrr_at_1_diff1
value: 71.1626
- type: nauc_mrr_at_3_max
value: 58.82150000000001
- type: nauc_mrr_at_3_std
value: 6.111
- type: nauc_mrr_at_3_diff1
value: 69.8853
- type: nauc_mrr_at_5_max
value: 58.4332
- type: nauc_mrr_at_5_std
value: 6.6455
- type: nauc_mrr_at_5_diff1
value: 69.6593
- type: nauc_mrr_at_10_max
value: 58.3284
- type: nauc_mrr_at_10_std
value: 6.3941
- type: nauc_mrr_at_10_diff1
value: 69.4544
- type: nauc_mrr_at_20_max
value: 58.2269
- type: nauc_mrr_at_20_std
value: 6.3983
- type: nauc_mrr_at_20_diff1
value: 69.634
- type: nauc_mrr_at_100_max
value: 58.180299999999995
- type: nauc_mrr_at_100_std
value: 6.372
- type: nauc_mrr_at_100_diff1
value: 69.6674
- type: nauc_mrr_at_1000_max
value: 58.1796
- type: nauc_mrr_at_1000_std
value: 6.3696
- type: nauc_mrr_at_1000_diff1
value: 69.6689
- type: main_score
value: 82.217
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetRetrieval (ruby)
type: code-search-net/code_search_net
config: ruby
split: test
revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759
metrics:
- type: ndcg_at_1
value: 56.49999999999999
- type: ndcg_at_3
value: 66.597
- type: ndcg_at_5
value: 68.98100000000001
- type: ndcg_at_10
value: 70.829
- type: ndcg_at_20
value: 71.77799999999999
- type: ndcg_at_100
value: 72.85199999999999
- type: ndcg_at_1000
value: 73.563
- type: map_at_1
value: 56.49999999999999
- type: map_at_3
value: 64.2
- type: map_at_5
value: 65.52
- type: map_at_10
value: 66.305
- type: map_at_20
value: 66.572
- type: map_at_100
value: 66.733
- type: map_at_1000
value: 66.756
- type: recall_at_1
value: 56.49999999999999
- type: recall_at_3
value: 73.5
- type: recall_at_5
value: 79.3
- type: recall_at_10
value: 84.89999999999999
- type: recall_at_20
value: 88.6
- type: recall_at_100
value: 94.19999999999999
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 56.49999999999999
- type: precision_at_3
value: 24.5
- type: precision_at_5
value: 15.86
- type: precision_at_10
value: 8.49
- type: precision_at_20
value: 4.43
- type: precision_at_100
value: 0.942
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 56.49999999999999
- type: mrr_at_3
value: 64.2
- type: mrr_at_5
value: 65.52
- type: mrr_at_10
value: 66.30460000000001
- type: mrr_at_20
value: 66.5724
- type: mrr_at_100
value: 66.7334
- type: mrr_at_1000
value: 66.7564
- type: nauc_ndcg_at_1_max
value: 55.3207
- type: nauc_ndcg_at_1_std
value: 7.2139
- type: nauc_ndcg_at_1_diff1
value: 72.6385
- type: nauc_ndcg_at_3_max
value: 58.4997
- type: nauc_ndcg_at_3_std
value: 8.3729
- type: nauc_ndcg_at_3_diff1
value: 69.0137
- type: nauc_ndcg_at_5_max
value: 58.213899999999995
- type: nauc_ndcg_at_5_std
value: 11.8464
- type: nauc_ndcg_at_5_diff1
value: 67.8369
- type: nauc_ndcg_at_10_max
value: 58.2068
- type: nauc_ndcg_at_10_std
value: 13.320000000000002
- type: nauc_ndcg_at_10_diff1
value: 67.8139
- type: nauc_ndcg_at_20_max
value: 58.0545
- type: nauc_ndcg_at_20_std
value: 13.601199999999999
- type: nauc_ndcg_at_20_diff1
value: 67.814
- type: nauc_ndcg_at_100_max
value: 58.1651
- type: nauc_ndcg_at_100_std
value: 13.946900000000001
- type: nauc_ndcg_at_100_diff1
value: 68.07180000000001
- type: nauc_ndcg_at_1000_max
value: 57.9397
- type: nauc_ndcg_at_1000_std
value: 12.188400000000001
- type: nauc_ndcg_at_1000_diff1
value: 68.6001
- type: nauc_map_at_1_max
value: 55.3207
- type: nauc_map_at_1_std
value: 7.2139
- type: nauc_map_at_1_diff1
value: 72.6385
- type: nauc_map_at_3_max
value: 57.678399999999996
- type: nauc_map_at_3_std
value: 7.900500000000001
- type: nauc_map_at_3_diff1
value: 69.8646
- type: nauc_map_at_5_max
value: 57.5229
- type: nauc_map_at_5_std
value: 9.7157
- type: nauc_map_at_5_diff1
value: 69.2704
- type: nauc_map_at_10_max
value: 57.5133
- type: nauc_map_at_10_std
value: 10.2078
- type: nauc_map_at_10_diff1
value: 69.2876
- type: nauc_map_at_20_max
value: 57.4843
- type: nauc_map_at_20_std
value: 10.2501
- type: nauc_map_at_20_diff1
value: 69.303
- type: nauc_map_at_100_max
value: 57.4927
- type: nauc_map_at_100_std
value: 10.3077
- type: nauc_map_at_100_diff1
value: 69.3295
- type: nauc_map_at_1000_max
value: 57.4921
- type: nauc_map_at_1000_std
value: 10.2661
- type: nauc_map_at_1000_diff1
value: 69.3497
- type: nauc_recall_at_1_max
value: 55.3207
- type: nauc_recall_at_1_std
value: 7.2139
- type: nauc_recall_at_1_diff1
value: 72.6385
- type: nauc_recall_at_3_max
value: 61.36899999999999
- type: nauc_recall_at_3_std
value: 10.1165
- type: nauc_recall_at_3_diff1
value: 66.0874
- type: nauc_recall_at_5_max
value: 60.956999999999994
- type: nauc_recall_at_5_std
value: 21.409
- type: nauc_recall_at_5_diff1
value: 61.770199999999996
- type: nauc_recall_at_10_max
value: 61.73689999999999
- type: nauc_recall_at_10_std
value: 32.1058
- type: nauc_recall_at_10_diff1
value: 59.7434
- type: nauc_recall_at_20_max
value: 61.2737
- type: nauc_recall_at_20_std
value: 39.7564
- type: nauc_recall_at_20_diff1
value: 57.3813
- type: nauc_recall_at_100_max
value: 66.6667
- type: nauc_recall_at_100_std
value: 69.0613
- type: nauc_recall_at_100_diff1
value: 53.7574
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 55.3207
- type: nauc_precision_at_1_std
value: 7.2139
- type: nauc_precision_at_1_diff1
value: 72.6385
- type: nauc_precision_at_3_max
value: 61.36899999999999
- type: nauc_precision_at_3_std
value: 10.1165
- type: nauc_precision_at_3_diff1
value: 66.0874
- type: nauc_precision_at_5_max
value: 60.956999999999994
- type: nauc_precision_at_5_std
value: 21.409
- type: nauc_precision_at_5_diff1
value: 61.770199999999996
- type: nauc_precision_at_10_max
value: 61.73689999999999
- type: nauc_precision_at_10_std
value: 32.1058
- type: nauc_precision_at_10_diff1
value: 59.7434
- type: nauc_precision_at_20_max
value: 61.2737
- type: nauc_precision_at_20_std
value: 39.7564
- type: nauc_precision_at_20_diff1
value: 57.3813
- type: nauc_precision_at_100_max
value: 66.6667
- type: nauc_precision_at_100_std
value: 69.0613
- type: nauc_precision_at_100_diff1
value: 53.7574
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_mrr_at_1_max
value: 55.3207
- type: nauc_mrr_at_1_std
value: 7.2139
- type: nauc_mrr_at_1_diff1
value: 72.6385
- type: nauc_mrr_at_3_max
value: 57.678399999999996
- type: nauc_mrr_at_3_std
value: 7.900500000000001
- type: nauc_mrr_at_3_diff1
value: 69.8646
- type: nauc_mrr_at_5_max
value: 57.5229
- type: nauc_mrr_at_5_std
value: 9.7157
- type: nauc_mrr_at_5_diff1
value: 69.2704
- type: nauc_mrr_at_10_max
value: 57.5133
- type: nauc_mrr_at_10_std
value: 10.2078
- type: nauc_mrr_at_10_diff1
value: 69.2876
- type: nauc_mrr_at_20_max
value: 57.4843
- type: nauc_mrr_at_20_std
value: 10.2501
- type: nauc_mrr_at_20_diff1
value: 69.303
- type: nauc_mrr_at_100_max
value: 57.4927
- type: nauc_mrr_at_100_std
value: 10.3077
- type: nauc_mrr_at_100_diff1
value: 69.3295
- type: nauc_mrr_at_1000_max
value: 57.4921
- type: nauc_mrr_at_1000_std
value: 10.2661
- type: nauc_mrr_at_1000_diff1
value: 69.3497
- type: main_score
value: 70.829
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetRetrieval (java)
type: code-search-net/code_search_net
config: java
split: test
revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759
metrics:
- type: ndcg_at_1
value: 50.3
- type: ndcg_at_3
value: 62.883
- type: ndcg_at_5
value: 65.11200000000001
- type: ndcg_at_10
value: 67.044
- type: ndcg_at_20
value: 68.326
- type: ndcg_at_100
value: 69.592
- type: ndcg_at_1000
value: 70.209
- type: map_at_1
value: 50.3
- type: map_at_3
value: 59.8
- type: map_at_5
value: 61.040000000000006
- type: map_at_10
value: 61.852
- type: map_at_20
value: 62.212999999999994
- type: map_at_100
value: 62.397000000000006
- type: map_at_1000
value: 62.416000000000004
- type: recall_at_1
value: 50.3
- type: recall_at_3
value: 71.8
- type: recall_at_5
value: 77.2
- type: recall_at_10
value: 83.1
- type: recall_at_20
value: 88.1
- type: recall_at_100
value: 94.8
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 50.3
- type: precision_at_3
value: 23.933
- type: precision_at_5
value: 15.440000000000001
- type: precision_at_10
value: 8.309999999999999
- type: precision_at_20
value: 4.405
- type: precision_at_100
value: 0.9480000000000001
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 50.3
- type: mrr_at_3
value: 59.8
- type: mrr_at_5
value: 61.040000000000006
- type: mrr_at_10
value: 61.8522
- type: mrr_at_20
value: 62.21339999999999
- type: mrr_at_100
value: 62.397499999999994
- type: mrr_at_1000
value: 62.415600000000005
- type: nauc_ndcg_at_1_max
value: 27.9845
- type: nauc_ndcg_at_1_std
value: -16.28
- type: nauc_ndcg_at_1_diff1
value: 61.9927
- type: nauc_ndcg_at_3_max
value: 33.0521
- type: nauc_ndcg_at_3_std
value: -10.3558
- type: nauc_ndcg_at_3_diff1
value: 56.8436
- type: nauc_ndcg_at_5_max
value: 34.6635
- type: nauc_ndcg_at_5_std
value: -7.1861
- type: nauc_ndcg_at_5_diff1
value: 56.39999999999999
- type: nauc_ndcg_at_10_max
value: 36.0742
- type: nauc_ndcg_at_10_std
value: -6.1496
- type: nauc_ndcg_at_10_diff1
value: 57.239
- type: nauc_ndcg_at_20_max
value: 36.5836
- type: nauc_ndcg_at_20_std
value: -5.3723
- type: nauc_ndcg_at_20_diff1
value: 57.7333
- type: nauc_ndcg_at_100_max
value: 36.0909
- type: nauc_ndcg_at_100_std
value: -5.655799999999999
- type: nauc_ndcg_at_100_diff1
value: 58.411699999999996
- type: nauc_ndcg_at_1000_max
value: 34.8377
- type: nauc_ndcg_at_1000_std
value: -7.542999999999999
- type: nauc_ndcg_at_1000_diff1
value: 58.198899999999995
- type: nauc_map_at_1_max
value: 27.9845
- type: nauc_map_at_1_std
value: -16.28
- type: nauc_map_at_1_diff1
value: 61.9927
- type: nauc_map_at_3_max
value: 31.7824
- type: nauc_map_at_3_std
value: -11.9282
- type: nauc_map_at_3_diff1
value: 58.2543
- type: nauc_map_at_5_max
value: 32.5811
- type: nauc_map_at_5_std
value: -10.3315
- type: nauc_map_at_5_diff1
value: 58.046
- type: nauc_map_at_10_max
value: 33.0525
- type: nauc_map_at_10_std
value: -10.0071
- type: nauc_map_at_10_diff1
value: 58.3778
- type: nauc_map_at_20_max
value: 33.164
- type: nauc_map_at_20_std
value: -9.8753
- type: nauc_map_at_20_diff1
value: 58.5075
- type: nauc_map_at_100_max
value: 33.0857
- type: nauc_map_at_100_std
value: -9.9373
- type: nauc_map_at_100_diff1
value: 58.581399999999995
- type: nauc_map_at_1000_max
value: 33.0589
- type: nauc_map_at_1000_std
value: -9.9773
- type: nauc_map_at_1000_diff1
value: 58.5777
- type: nauc_recall_at_1_max
value: 27.9845
- type: nauc_recall_at_1_std
value: -16.28
- type: nauc_recall_at_1_diff1
value: 61.9927
- type: nauc_recall_at_3_max
value: 37.5284
- type: nauc_recall_at_3_std
value: -4.7627999999999995
- type: nauc_recall_at_3_diff1
value: 51.8022
- type: nauc_recall_at_5_max
value: 43.4852
- type: nauc_recall_at_5_std
value: 6.3649
- type: nauc_recall_at_5_diff1
value: 49.5664
- type: nauc_recall_at_10_max
value: 53.156000000000006
- type: nauc_recall_at_10_std
value: 15.4361
- type: nauc_recall_at_10_diff1
value: 51.865300000000005
- type: nauc_recall_at_20_max
value: 63.3834
- type: nauc_recall_at_20_std
value: 30.2094
- type: nauc_recall_at_20_diff1
value: 54.013999999999996
- type: nauc_recall_at_100_max
value: 84.36399999999999
- type: nauc_recall_at_100_std
value: 67.20089999999999
- type: nauc_recall_at_100_diff1
value: 66.6146
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 27.9845
- type: nauc_precision_at_1_std
value: -16.28
- type: nauc_precision_at_1_diff1
value: 61.9927
- type: nauc_precision_at_3_max
value: 37.5284
- type: nauc_precision_at_3_std
value: -4.7627999999999995
- type: nauc_precision_at_3_diff1
value: 51.8022
- type: nauc_precision_at_5_max
value: 43.4852
- type: nauc_precision_at_5_std
value: 6.3649
- type: nauc_precision_at_5_diff1
value: 49.5664
- type: nauc_precision_at_10_max
value: 53.156000000000006
- type: nauc_precision_at_10_std
value: 15.4361
- type: nauc_precision_at_10_diff1
value: 51.865300000000005
- type: nauc_precision_at_20_max
value: 63.3834
- type: nauc_precision_at_20_std
value: 30.2094
- type: nauc_precision_at_20_diff1
value: 54.013999999999996
- type: nauc_precision_at_100_max
value: 84.36399999999999
- type: nauc_precision_at_100_std
value: 67.20089999999999
- type: nauc_precision_at_100_diff1
value: 66.6146
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_mrr_at_1_max
value: 27.9845
- type: nauc_mrr_at_1_std
value: -16.28
- type: nauc_mrr_at_1_diff1
value: 61.9927
- type: nauc_mrr_at_3_max
value: 31.7824
- type: nauc_mrr_at_3_std
value: -11.9282
- type: nauc_mrr_at_3_diff1
value: 58.2543
- type: nauc_mrr_at_5_max
value: 32.5811
- type: nauc_mrr_at_5_std
value: -10.3315
- type: nauc_mrr_at_5_diff1
value: 58.046
- type: nauc_mrr_at_10_max
value: 33.0525
- type: nauc_mrr_at_10_std
value: -10.0071
- type: nauc_mrr_at_10_diff1
value: 58.3778
- type: nauc_mrr_at_20_max
value: 33.164
- type: nauc_mrr_at_20_std
value: -9.8753
- type: nauc_mrr_at_20_diff1
value: 58.5075
- type: nauc_mrr_at_100_max
value: 33.0857
- type: nauc_mrr_at_100_std
value: -9.9373
- type: nauc_mrr_at_100_diff1
value: 58.581399999999995
- type: nauc_mrr_at_1000_max
value: 33.0589
- type: nauc_mrr_at_1000_std
value: -9.9773
- type: nauc_mrr_at_1000_diff1
value: 58.5777
- type: main_score
value: 67.044
- task:
type: Retrieval
dataset:
name: MTEB CodeSearchNetRetrieval (php)
type: code-search-net/code_search_net
config: php
split: test
revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759
metrics:
- type: ndcg_at_1
value: 52.5
- type: ndcg_at_3
value: 65.362
- type: ndcg_at_5
value: 67.797
- type: ndcg_at_10
value: 69.791
- type: ndcg_at_20
value: 70.787
- type: ndcg_at_100
value: 71.607
- type: ndcg_at_1000
value: 72.24000000000001
- type: map_at_1
value: 52.5
- type: map_at_3
value: 62.233000000000004
- type: map_at_5
value: 63.588
- type: map_at_10
value: 64.424
- type: map_at_20
value: 64.703
- type: map_at_100
value: 64.825
- type: map_at_1000
value: 64.84100000000001
- type: recall_at_1
value: 52.5
- type: recall_at_3
value: 74.4
- type: recall_at_5
value: 80.30000000000001
- type: recall_at_10
value: 86.4
- type: recall_at_20
value: 90.3
- type: recall_at_100
value: 94.6
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 52.5
- type: precision_at_3
value: 24.8
- type: precision_at_5
value: 16.06
- type: precision_at_10
value: 8.64
- type: precision_at_20
value: 4.515000000000001
- type: precision_at_100
value: 0.946
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 52.5
- type: mrr_at_3
value: 62.2333
- type: mrr_at_5
value: 63.5883
- type: mrr_at_10
value: 64.4237
- type: mrr_at_20
value: 64.7029
- type: mrr_at_100
value: 64.8249
- type: mrr_at_1000
value: 64.84140000000001
- type: nauc_ndcg_at_1_max
value: 28.977700000000002
- type: nauc_ndcg_at_1_std
value: 5.5688
- type: nauc_ndcg_at_1_diff1
value: 62.8127
- type: nauc_ndcg_at_3_max
value: 42.5053
- type: nauc_ndcg_at_3_std
value: 13.8126
- type: nauc_ndcg_at_3_diff1
value: 60.791700000000006
- type: nauc_ndcg_at_5_max
value: 43.521100000000004
- type: nauc_ndcg_at_5_std
value: 14.5838
- type: nauc_ndcg_at_5_diff1
value: 61.267700000000005
- type: nauc_ndcg_at_10_max
value: 43.2523
- type: nauc_ndcg_at_10_std
value: 16.2237
- type: nauc_ndcg_at_10_diff1
value: 61.642300000000006
- type: nauc_ndcg_at_20_max
value: 42.7707
- type: nauc_ndcg_at_20_std
value: 17.0607
- type: nauc_ndcg_at_20_diff1
value: 61.5855
- type: nauc_ndcg_at_100_max
value: 42.127900000000004
- type: nauc_ndcg_at_100_std
value: 16.582900000000002
- type: nauc_ndcg_at_100_diff1
value: 61.916700000000006
- type: nauc_ndcg_at_1000_max
value: 40.7945
- type: nauc_ndcg_at_1000_std
value: 14.6562
- type: nauc_ndcg_at_1000_diff1
value: 61.7069
- type: nauc_map_at_1_max
value: 28.977700000000002
- type: nauc_map_at_1_std
value: 5.5688
- type: nauc_map_at_1_diff1
value: 62.8127
- type: nauc_map_at_3_max
value: 38.5313
- type: nauc_map_at_3_std
value: 11.2395
- type: nauc_map_at_3_diff1
value: 61.1888
- type: nauc_map_at_5_max
value: 38.8835
- type: nauc_map_at_5_std
value: 11.5395
- type: nauc_map_at_5_diff1
value: 61.449
- type: nauc_map_at_10_max
value: 38.6822
- type: nauc_map_at_10_std
value: 12.0181
- type: nauc_map_at_10_diff1
value: 61.5846
- type: nauc_map_at_20_max
value: 38.5328
- type: nauc_map_at_20_std
value: 12.182500000000001
- type: nauc_map_at_20_diff1
value: 61.578599999999994
- type: nauc_map_at_100_max
value: 38.4484
- type: nauc_map_at_100_std
value: 12.1157
- type: nauc_map_at_100_diff1
value: 61.6247
- type: nauc_map_at_1000_max
value: 38.418600000000005
- type: nauc_map_at_1000_std
value: 12.0795
- type: nauc_map_at_1000_diff1
value: 61.6214
- type: nauc_recall_at_1_max
value: 28.977700000000002
- type: nauc_recall_at_1_std
value: 5.5688
- type: nauc_recall_at_1_diff1
value: 62.8127
- type: nauc_recall_at_3_max
value: 57.338699999999996
- type: nauc_recall_at_3_std
value: 23.4946
- type: nauc_recall_at_3_diff1
value: 59.4094
- type: nauc_recall_at_5_max
value: 64.4058
- type: nauc_recall_at_5_std
value: 28.382
- type: nauc_recall_at_5_diff1
value: 60.671600000000005
- type: nauc_recall_at_10_max
value: 71.11070000000001
- type: nauc_recall_at_10_std
value: 43.6152
- type: nauc_recall_at_10_diff1
value: 62.6013
- type: nauc_recall_at_20_max
value: 76.3142
- type: nauc_recall_at_20_std
value: 61.0644
- type: nauc_recall_at_20_diff1
value: 62.244600000000005
- type: nauc_recall_at_100_max
value: 87.9526
- type: nauc_recall_at_100_std
value: 84.63619999999999
- type: nauc_recall_at_100_diff1
value: 69.6848
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 28.977700000000002
- type: nauc_precision_at_1_std
value: 5.5688
- type: nauc_precision_at_1_diff1
value: 62.8127
- type: nauc_precision_at_3_max
value: 57.338699999999996
- type: nauc_precision_at_3_std
value: 23.4946
- type: nauc_precision_at_3_diff1
value: 59.4094
- type: nauc_precision_at_5_max
value: 64.4058
- type: nauc_precision_at_5_std
value: 28.382
- type: nauc_precision_at_5_diff1
value: 60.671600000000005
- type: nauc_precision_at_10_max
value: 71.11070000000001
- type: nauc_precision_at_10_std
value: 43.6152
- type: nauc_precision_at_10_diff1
value: 62.6013
- type: nauc_precision_at_20_max
value: 76.3142
- type: nauc_precision_at_20_std
value: 61.0644
- type: nauc_precision_at_20_diff1
value: 62.244600000000005
- type: nauc_precision_at_100_max
value: 87.9526
- type: nauc_precision_at_100_std
value: 84.63619999999999
- type: nauc_precision_at_100_diff1
value: 69.6848
- type: nauc_precision_at_1000_max
value: .nan
- type: nauc_precision_at_1000_std
value: .nan
- type: nauc_precision_at_1000_diff1
value: .nan
- type: nauc_mrr_at_1_max
value: 28.977700000000002
- type: nauc_mrr_at_1_std
value: 5.5688
- type: nauc_mrr_at_1_diff1
value: 62.8127
- type: nauc_mrr_at_3_max
value: 38.5313
- type: nauc_mrr_at_3_std
value: 11.2395
- type: nauc_mrr_at_3_diff1
value: 61.1888
- type: nauc_mrr_at_5_max
value: 38.8835
- type: nauc_mrr_at_5_std
value: 11.5395
- type: nauc_mrr_at_5_diff1
value: 61.449
- type: nauc_mrr_at_10_max
value: 38.6822
- type: nauc_mrr_at_10_std
value: 12.0181
- type: nauc_mrr_at_10_diff1
value: 61.5846
- type: nauc_mrr_at_20_max
value: 38.5328
- type: nauc_mrr_at_20_std
value: 12.182500000000001
- type: nauc_mrr_at_20_diff1
value: 61.578599999999994
- type: nauc_mrr_at_100_max
value: 38.4484
- type: nauc_mrr_at_100_std
value: 12.1157
- type: nauc_mrr_at_100_diff1
value: 61.6247
- type: nauc_mrr_at_1000_max
value: 38.418600000000005
- type: nauc_mrr_at_1000_std
value: 12.0795
- type: nauc_mrr_at_1000_diff1
value: 61.6214
- type: main_score
value: 69.791
- task:
type: Retrieval
dataset:
name: MTEB CodeTransOceanContest (default)
type: CoIR-Retrieval/codetrans-contest
config: default
split: test
revision: 20da4eb20a4b17300c0986ee148c90867a7f2a4d
metrics:
- type: ndcg_at_1
value: 33.032000000000004
- type: ndcg_at_3
value: 38.041000000000004
- type: ndcg_at_5
value: 40.67
- type: ndcg_at_10
value: 43.651
- type: ndcg_at_20
value: 45.255
- type: ndcg_at_100
value: 48.41
- type: ndcg_at_1000
value: 50.775000000000006
- type: map_at_1
value: 33.032000000000004
- type: map_at_3
value: 36.802
- type: map_at_5
value: 38.273
- type: map_at_10
value: 39.45
- type: map_at_20
value: 39.891
- type: map_at_100
value: 40.312
- type: map_at_1000
value: 40.396
- type: recall_at_1
value: 33.032000000000004
- type: recall_at_3
value: 41.629
- type: recall_at_5
value: 47.964
- type: recall_at_10
value: 57.465999999999994
- type: recall_at_20
value: 63.800999999999995
- type: recall_at_100
value: 80.99499999999999
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 33.032000000000004
- type: precision_at_3
value: 13.876
- type: precision_at_5
value: 9.593
- type: precision_at_10
value: 5.747
- type: precision_at_20
value: 3.19
- type: precision_at_100
value: 0.8099999999999999
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 33.0317
- type: mrr_at_3
value: 36.8024
- type: mrr_at_5
value: 38.273
- type: mrr_at_10
value: 39.4504
- type: mrr_at_20
value: 39.8911
- type: mrr_at_100
value: 40.3122
- type: mrr_at_1000
value: 40.3955
- type: nauc_ndcg_at_1_max
value: 53.0197
- type: nauc_ndcg_at_1_std
value: 0.8863
- type: nauc_ndcg_at_1_diff1
value: 67.8151
- type: nauc_ndcg_at_3_max
value: 50.37350000000001
- type: nauc_ndcg_at_3_std
value: 1.3549
- type: nauc_ndcg_at_3_diff1
value: 61.698699999999995
- type: nauc_ndcg_at_5_max
value: 49.1498
- type: nauc_ndcg_at_5_std
value: 2.5727
- type: nauc_ndcg_at_5_diff1
value: 58.0748
- type: nauc_ndcg_at_10_max
value: 47.5197
- type: nauc_ndcg_at_10_std
value: 2.7498
- type: nauc_ndcg_at_10_diff1
value: 56.9398
- type: nauc_ndcg_at_20_max
value: 47.5836
- type: nauc_ndcg_at_20_std
value: 3.4302
- type: nauc_ndcg_at_20_diff1
value: 55.8913
- type: nauc_ndcg_at_100_max
value: 48.079499999999996
- type: nauc_ndcg_at_100_std
value: 3.7983999999999996
- type: nauc_ndcg_at_100_diff1
value: 56.7706
- type: nauc_ndcg_at_1000_max
value: 48.7136
- type: nauc_ndcg_at_1000_std
value: 2.949
- type: nauc_ndcg_at_1000_diff1
value: 58.0488
- type: nauc_map_at_1_max
value: 53.0197
- type: nauc_map_at_1_std
value: 0.8863
- type: nauc_map_at_1_diff1
value: 67.8151
- type: nauc_map_at_3_max
value: 51.1105
- type: nauc_map_at_3_std
value: 1.5191
- type: nauc_map_at_3_diff1
value: 63.005900000000004
- type: nauc_map_at_5_max
value: 50.4462
- type: nauc_map_at_5_std
value: 2.0751
- type: nauc_map_at_5_diff1
value: 61.0287
- type: nauc_map_at_10_max
value: 49.772499999999994
- type: nauc_map_at_10_std
value: 2.1092
- type: nauc_map_at_10_diff1
value: 60.528000000000006
- type: nauc_map_at_20_max
value: 49.7904
- type: nauc_map_at_20_std
value: 2.3456
- type: nauc_map_at_20_diff1
value: 60.2416
- type: nauc_map_at_100_max
value: 49.8742
- type: nauc_map_at_100_std
value: 2.3747000000000003
- type: nauc_map_at_100_diff1
value: 60.390600000000006
- type: nauc_map_at_1000_max
value: 49.8875
- type: nauc_map_at_1000_std
value: 2.3390999999999997
- type: nauc_map_at_1000_diff1
value: 60.41180000000001
- type: nauc_recall_at_1_max
value: 53.0197
- type: nauc_recall_at_1_std
value: 0.8863
- type: nauc_recall_at_1_diff1
value: 67.8151
- type: nauc_recall_at_3_max
value: 48.2306
- type: nauc_recall_at_3_std
value: 0.7745
- type: nauc_recall_at_3_diff1
value: 58.0358
- type: nauc_recall_at_5_max
value: 45.1577
- type: nauc_recall_at_5_std
value: 4.228400000000001
- type: nauc_recall_at_5_diff1
value: 49.0182
- type: nauc_recall_at_10_max
value: 39.584
- type: nauc_recall_at_10_std
value: 5.1647
- type: nauc_recall_at_10_diff1
value: 44.864399999999996
- type: nauc_recall_at_20_max
value: 39.1616
- type: nauc_recall_at_20_std
value: 7.9384
- type: nauc_recall_at_20_diff1
value: 39.124700000000004
- type: nauc_recall_at_100_max
value: 38.4356
- type: nauc_recall_at_100_std
value: 14.498
- type: nauc_recall_at_100_diff1
value: 36.8934
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 53.0197
- type: nauc_precision_at_1_std
value: 0.8863
- type: nauc_precision_at_1_diff1
value: 67.8151
- type: nauc_precision_at_3_max
value: 48.2306
- type: nauc_precision_at_3_std
value: 0.7745
- type: nauc_precision_at_3_diff1
value: 58.0358
- type: nauc_precision_at_5_max
value: 45.1577
- type: nauc_precision_at_5_std
value: 4.228400000000001
- type: nauc_precision_at_5_diff1
value: 49.0182
- type: nauc_precision_at_10_max
value: 39.584
- type: nauc_precision_at_10_std
value: 5.1647
- type: nauc_precision_at_10_diff1
value: 44.864399999999996
- type: nauc_precision_at_20_max
value: 39.1616
- type: nauc_precision_at_20_std
value: 7.9384
- type: nauc_precision_at_20_diff1
value: 39.124700000000004
- type: nauc_precision_at_100_max
value: 38.4356
- type: nauc_precision_at_100_std
value: 14.498
- type: nauc_precision_at_100_diff1
value: 36.8934
- type: nauc_precision_at_1000_max
value: 100.0
- type: nauc_precision_at_1000_std
value: 100.0
- type: nauc_precision_at_1000_diff1
value: 100.0
- type: nauc_mrr_at_1_max
value: 53.0197
- type: nauc_mrr_at_1_std
value: 0.8863
- type: nauc_mrr_at_1_diff1
value: 67.8151
- type: nauc_mrr_at_3_max
value: 51.1105
- type: nauc_mrr_at_3_std
value: 1.5191
- type: nauc_mrr_at_3_diff1
value: 63.005900000000004
- type: nauc_mrr_at_5_max
value: 50.4462
- type: nauc_mrr_at_5_std
value: 2.0751
- type: nauc_mrr_at_5_diff1
value: 61.0287
- type: nauc_mrr_at_10_max
value: 49.772499999999994
- type: nauc_mrr_at_10_std
value: 2.1092
- type: nauc_mrr_at_10_diff1
value: 60.528000000000006
- type: nauc_mrr_at_20_max
value: 49.7904
- type: nauc_mrr_at_20_std
value: 2.3456
- type: nauc_mrr_at_20_diff1
value: 60.2416
- type: nauc_mrr_at_100_max
value: 49.8742
- type: nauc_mrr_at_100_std
value: 2.3747000000000003
- type: nauc_mrr_at_100_diff1
value: 60.390600000000006
- type: nauc_mrr_at_1000_max
value: 49.8875
- type: nauc_mrr_at_1000_std
value: 2.3390999999999997
- type: nauc_mrr_at_1000_diff1
value: 60.41180000000001
- type: main_score
value: 43.651
- task:
type: Retrieval
dataset:
name: MTEB CodeTransOceanDL (default)
type: CoIR-Retrieval/codetrans-dl
config: default
split: test
revision: 281562cb8a1265ab5c0824bfa6ddcd9b0a15618f
metrics:
- type: ndcg_at_1
value: 8.333
- type: ndcg_at_3
value: 9.795
- type: ndcg_at_5
value: 13.286999999999999
- type: ndcg_at_10
value: 18.151999999999997
- type: ndcg_at_20
value: 21.914
- type: ndcg_at_100
value: 28.576
- type: ndcg_at_1000
value: 30.407
- type: map_at_1
value: 8.333
- type: map_at_3
value: 9.352
- type: map_at_5
value: 11.324
- type: map_at_10
value: 13.233
- type: map_at_20
value: 14.325
- type: map_at_100
value: 15.153
- type: map_at_1000
value: 15.243
- type: recall_at_1
value: 8.333
- type: recall_at_3
value: 11.111
- type: recall_at_5
value: 19.444
- type: recall_at_10
value: 35.0
- type: recall_at_20
value: 49.444
- type: recall_at_100
value: 86.667
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 8.333
- type: precision_at_3
value: 3.7039999999999997
- type: precision_at_5
value: 3.8890000000000002
- type: precision_at_10
value: 3.5000000000000004
- type: precision_at_20
value: 2.472
- type: precision_at_100
value: 0.8670000000000001
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 3.3333000000000004
- type: mrr_at_3
value: 6.6667000000000005
- type: mrr_at_5
value: 7.7778
- type: mrr_at_10
value: 10.247100000000001
- type: mrr_at_20
value: 11.3458
- type: mrr_at_100
value: 12.177
- type: mrr_at_1000
value: 12.2675
- type: nauc_ndcg_at_1_max
value: -39.772800000000004
- type: nauc_ndcg_at_1_std
value: -34.0524
- type: nauc_ndcg_at_1_diff1
value: -32.8146
- type: nauc_ndcg_at_3_max
value: -39.8776
- type: nauc_ndcg_at_3_std
value: -34.6862
- type: nauc_ndcg_at_3_diff1
value: -19.3707
- type: nauc_ndcg_at_5_max
value: -40.8597
- type: nauc_ndcg_at_5_std
value: -38.1022
- type: nauc_ndcg_at_5_diff1
value: -6.4628000000000005
- type: nauc_ndcg_at_10_max
value: -40.2327
- type: nauc_ndcg_at_10_std
value: -47.2976
- type: nauc_ndcg_at_10_diff1
value: -4.4762
- type: nauc_ndcg_at_20_max
value: -41.7987
- type: nauc_ndcg_at_20_std
value: -54.2481
- type: nauc_ndcg_at_20_diff1
value: -8.6146
- type: nauc_ndcg_at_100_max
value: -39.463100000000004
- type: nauc_ndcg_at_100_std
value: -45.7414
- type: nauc_ndcg_at_100_diff1
value: -9.2455
- type: nauc_ndcg_at_1000_max
value: -40.8904
- type: nauc_ndcg_at_1000_std
value: -46.5535
- type: nauc_ndcg_at_1000_diff1
value: -11.476799999999999
- type: nauc_map_at_1_max
value: -39.772800000000004
- type: nauc_map_at_1_std
value: -34.0524
- type: nauc_map_at_1_diff1
value: -32.8146
- type: nauc_map_at_3_max
value: -39.894200000000005
- type: nauc_map_at_3_std
value: -34.4818
- type: nauc_map_at_3_diff1
value: -23.0092
- type: nauc_map_at_5_max
value: -40.5148
- type: nauc_map_at_5_std
value: -36.6914
- type: nauc_map_at_5_diff1
value: -14.0244
- type: nauc_map_at_10_max
value: -40.3751
- type: nauc_map_at_10_std
value: -41.0546
- type: nauc_map_at_10_diff1
value: -12.7255
- type: nauc_map_at_20_max
value: -40.8992
- type: nauc_map_at_20_std
value: -43.580999999999996
- type: nauc_map_at_20_diff1
value: -14.1348
- type: nauc_map_at_100_max
value: -40.8422
- type: nauc_map_at_100_std
value: -42.7572
- type: nauc_map_at_100_diff1
value: -14.5847
- type: nauc_map_at_1000_max
value: -40.8622
- type: nauc_map_at_1000_std
value: -42.7255
- type: nauc_map_at_1000_diff1
value: -14.716099999999999
- type: nauc_recall_at_1_max
value: -39.772800000000004
- type: nauc_recall_at_1_std
value: -34.0524
- type: nauc_recall_at_1_diff1
value: -32.8146
- type: nauc_recall_at_3_max
value: -39.8223
- type: nauc_recall_at_3_std
value: -35.2166
- type: nauc_recall_at_3_diff1
value: -10.0944
- type: nauc_recall_at_5_max
value: -41.574
- type: nauc_recall_at_5_std
value: -41.0135
- type: nauc_recall_at_5_diff1
value: 8.5898
- type: nauc_recall_at_10_max
value: -39.7009
- type: nauc_recall_at_10_std
value: -59.587900000000005
- type: nauc_recall_at_10_diff1
value: 9.6476
- type: nauc_recall_at_20_max
value: -43.7116
- type: nauc_recall_at_20_std
value: -76.6625
- type: nauc_recall_at_20_diff1
value: -0.7394999999999999
- type: nauc_recall_at_100_max
value: -22.023799999999998
- type: nauc_recall_at_100_std
value: -33.848099999999995
- type: nauc_recall_at_100_diff1
value: 12.5282
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: -39.772800000000004
- type: nauc_precision_at_1_std
value: -34.0524
- type: nauc_precision_at_1_diff1
value: -32.8146
- type: nauc_precision_at_3_max
value: -39.8223
- type: nauc_precision_at_3_std
value: -35.2166
- type: nauc_precision_at_3_diff1
value: -10.0944
- type: nauc_precision_at_5_max
value: -41.574
- type: nauc_precision_at_5_std
value: -41.0135
- type: nauc_precision_at_5_diff1
value: 8.5898
- type: nauc_precision_at_10_max
value: -39.7009
- type: nauc_precision_at_10_std
value: -59.587900000000005
- type: nauc_precision_at_10_diff1
value: 9.6476
- type: nauc_precision_at_20_max
value: -43.7116
- type: nauc_precision_at_20_std
value: -76.6625
- type: nauc_precision_at_20_diff1
value: -0.7394999999999999
- type: nauc_precision_at_100_max
value: -22.023799999999998
- type: nauc_precision_at_100_std
value: -33.848099999999995
- type: nauc_precision_at_100_diff1
value: 12.5282
- type: nauc_precision_at_1000_max
value: 100.0
- type: nauc_precision_at_1000_std
value: 100.0
- type: nauc_precision_at_1000_diff1
value: 100.0
- type: nauc_mrr_at_1_max
value: -37.1478
- type: nauc_mrr_at_1_std
value: -38.2256
- type: nauc_mrr_at_1_diff1
value: -19.2648
- type: nauc_mrr_at_3_max
value: -38.5609
- type: nauc_mrr_at_3_std
value: -36.7946
- type: nauc_mrr_at_3_diff1
value: 15.8383
- type: nauc_mrr_at_5_max
value: -38.6003
- type: nauc_mrr_at_5_std
value: -38.6368
- type: nauc_mrr_at_5_diff1
value: 10.5538
- type: nauc_mrr_at_10_max
value: -40.3107
- type: nauc_mrr_at_10_std
value: -44.6633
- type: nauc_mrr_at_10_diff1
value: 12.0739
- type: nauc_mrr_at_20_max
value: -40.2119
- type: nauc_mrr_at_20_std
value: -47.942099999999996
- type: nauc_mrr_at_20_diff1
value: 9.2441
- type: nauc_mrr_at_100_max
value: -40.095
- type: nauc_mrr_at_100_std
value: -46.9315
- type: nauc_mrr_at_100_diff1
value: 9.4182
- type: nauc_mrr_at_1000_max
value: -40.117799999999995
- type: nauc_mrr_at_1000_std
value: -46.914699999999996
- type: nauc_mrr_at_1000_diff1
value: 9.3917
- type: main_score
value: 18.151999999999997
- task:
type: Retrieval
dataset:
name: MTEB CosQA (default)
type: CoIR-Retrieval/cosqa
config: default
split: test
revision: bc5efb7e9d437246ce393ed19d772e08e4a79535
metrics:
- type: ndcg_at_1
value: 12.6
- type: ndcg_at_3
value: 19.259
- type: ndcg_at_5
value: 24.078
- type: ndcg_at_10
value: 28.288999999999998
- type: ndcg_at_20
value: 31.706
- type: ndcg_at_100
value: 36.05
- type: ndcg_at_1000
value: 37.632
- type: map_at_1
value: 12.6
- type: map_at_3
value: 17.5
- type: map_at_5
value: 20.150000000000002
- type: map_at_10
value: 21.931
- type: map_at_20
value: 22.884
- type: map_at_100
value: 23.502000000000002
- type: map_at_1000
value: 23.566000000000003
- type: recall_at_1
value: 12.6
- type: recall_at_3
value: 24.4
- type: recall_at_5
value: 36.199999999999996
- type: recall_at_10
value: 49.0
- type: recall_at_20
value: 62.4
- type: recall_at_100
value: 85.6
- type: recall_at_1000
value: 97.8
- type: precision_at_1
value: 12.6
- type: precision_at_3
value: 8.133
- type: precision_at_5
value: 7.24
- type: precision_at_10
value: 4.9
- type: precision_at_20
value: 3.1199999999999997
- type: precision_at_100
value: 0.856
- type: precision_at_1000
value: 0.098
- type: mrr_at_1
value: 12.2
- type: mrr_at_3
value: 17.6333
- type: mrr_at_5
value: 19.453300000000002
- type: mrr_at_10
value: 21.3205
- type: mrr_at_20
value: 22.315199999999997
- type: mrr_at_100
value: 22.9331
- type: mrr_at_1000
value: 22.9955
- type: nauc_ndcg_at_1_max
value: 10.2948
- type: nauc_ndcg_at_1_std
value: -13.1709
- type: nauc_ndcg_at_1_diff1
value: 31.4251
- type: nauc_ndcg_at_3_max
value: 15.477599999999999
- type: nauc_ndcg_at_3_std
value: -11.7827
- type: nauc_ndcg_at_3_diff1
value: 17.4257
- type: nauc_ndcg_at_5_max
value: 17.7434
- type: nauc_ndcg_at_5_std
value: -10.7058
- type: nauc_ndcg_at_5_diff1
value: 13.955100000000002
- type: nauc_ndcg_at_10_max
value: 17.799100000000003
- type: nauc_ndcg_at_10_std
value: -8.629000000000001
- type: nauc_ndcg_at_10_diff1
value: 12.266399999999999
- type: nauc_ndcg_at_20_max
value: 18.454
- type: nauc_ndcg_at_20_std
value: -8.0871
- type: nauc_ndcg_at_20_diff1
value: 11.4802
- type: nauc_ndcg_at_100_max
value: 18.8607
- type: nauc_ndcg_at_100_std
value: -5.8566
- type: nauc_ndcg_at_100_diff1
value: 12.559899999999999
- type: nauc_ndcg_at_1000_max
value: 18.1409
- type: nauc_ndcg_at_1000_std
value: -6.894799999999999
- type: nauc_ndcg_at_1000_diff1
value: 13.9734
- type: nauc_map_at_1_max
value: 10.2948
- type: nauc_map_at_1_std
value: -13.1709
- type: nauc_map_at_1_diff1
value: 31.4251
- type: nauc_map_at_3_max
value: 14.4256
- type: nauc_map_at_3_std
value: -12.173
- type: nauc_map_at_3_diff1
value: 20.4742
- type: nauc_map_at_5_max
value: 15.842400000000001
- type: nauc_map_at_5_std
value: -11.5686
- type: nauc_map_at_5_diff1
value: 18.195800000000002
- type: nauc_map_at_10_max
value: 15.786200000000001
- type: nauc_map_at_10_std
value: -10.564
- type: nauc_map_at_10_diff1
value: 17.227899999999998
- type: nauc_map_at_20_max
value: 15.987199999999998
- type: nauc_map_at_20_std
value: -10.4241
- type: nauc_map_at_20_diff1
value: 17.0317
- type: nauc_map_at_100_max
value: 16.1125
- type: nauc_map_at_100_std
value: -9.9394
- type: nauc_map_at_100_diff1
value: 17.191100000000002
- type: nauc_map_at_1000_max
value: 16.0868
- type: nauc_map_at_1000_std
value: -9.9615
- type: nauc_map_at_1000_diff1
value: 17.241999999999997
- type: nauc_recall_at_1_max
value: 10.2948
- type: nauc_recall_at_1_std
value: -13.1709
- type: nauc_recall_at_1_diff1
value: 31.4251
- type: nauc_recall_at_3_max
value: 17.924799999999998
- type: nauc_recall_at_3_std
value: -10.84
- type: nauc_recall_at_3_diff1
value: 10.267800000000001
- type: nauc_recall_at_5_max
value: 22.0265
- type: nauc_recall_at_5_std
value: -8.6675
- type: nauc_recall_at_5_diff1
value: 4.5511
- type: nauc_recall_at_10_max
value: 22.5353
- type: nauc_recall_at_10_std
value: -3.7438
- type: nauc_recall_at_10_diff1
value: 1.05
- type: nauc_recall_at_20_max
value: 25.4119
- type: nauc_recall_at_20_std
value: -1.0668
- type: nauc_recall_at_20_diff1
value: -3.4072999999999998
- type: nauc_recall_at_100_max
value: 34.5952
- type: nauc_recall_at_100_std
value: 22.4855
- type: nauc_recall_at_100_diff1
value: -9.0738
- type: nauc_recall_at_1000_max
value: 56.485
- type: nauc_recall_at_1000_std
value: 72.184
- type: nauc_recall_at_1000_diff1
value: -5.3136
- type: nauc_precision_at_1_max
value: 10.2948
- type: nauc_precision_at_1_std
value: -13.1709
- type: nauc_precision_at_1_diff1
value: 31.4251
- type: nauc_precision_at_3_max
value: 17.924799999999998
- type: nauc_precision_at_3_std
value: -10.84
- type: nauc_precision_at_3_diff1
value: 10.267800000000001
- type: nauc_precision_at_5_max
value: 22.0265
- type: nauc_precision_at_5_std
value: -8.6675
- type: nauc_precision_at_5_diff1
value: 4.5511
- type: nauc_precision_at_10_max
value: 22.5353
- type: nauc_precision_at_10_std
value: -3.7438
- type: nauc_precision_at_10_diff1
value: 1.05
- type: nauc_precision_at_20_max
value: 25.4119
- type: nauc_precision_at_20_std
value: -1.0668
- type: nauc_precision_at_20_diff1
value: -3.4072999999999998
- type: nauc_precision_at_100_max
value: 34.5952
- type: nauc_precision_at_100_std
value: 22.4855
- type: nauc_precision_at_100_diff1
value: -9.0738
- type: nauc_precision_at_1000_max
value: 56.485
- type: nauc_precision_at_1000_std
value: 72.184
- type: nauc_precision_at_1000_diff1
value: -5.3136
- type: nauc_mrr_at_1_max
value: 12.3113
- type: nauc_mrr_at_1_std
value: -16.7186
- type: nauc_mrr_at_1_diff1
value: 32.4301
- type: nauc_mrr_at_3_max
value: 11.8664
- type: nauc_mrr_at_3_std
value: -15.562500000000002
- type: nauc_mrr_at_3_diff1
value: 20.180600000000002
- type: nauc_mrr_at_5_max
value: 11.9561
- type: nauc_mrr_at_5_std
value: -15.1641
- type: nauc_mrr_at_5_diff1
value: 19.1071
- type: nauc_mrr_at_10_max
value: 12.867899999999999
- type: nauc_mrr_at_10_std
value: -14.1707
- type: nauc_mrr_at_10_diff1
value: 17.613599999999998
- type: nauc_mrr_at_20_max
value: 13.3821
- type: nauc_mrr_at_20_std
value: -13.727800000000002
- type: nauc_mrr_at_20_diff1
value: 17.712600000000002
- type: nauc_mrr_at_100_max
value: 13.530100000000001
- type: nauc_mrr_at_100_std
value: -13.292599999999998
- type: nauc_mrr_at_100_diff1
value: 17.8945
- type: nauc_mrr_at_1000_max
value: 13.492899999999999
- type: nauc_mrr_at_1000_std
value: -13.3262
- type: nauc_mrr_at_1000_diff1
value: 17.945
- type: main_score
value: 28.288999999999998
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: ndcg_at_1
value: 46.625
- type: ndcg_at_3
value: 37.483
- type: ndcg_at_5
value: 34.943000000000005
- type: ndcg_at_10
value: 32.805
- type: ndcg_at_20
value: 31.857999999999997
- type: ndcg_at_100
value: 36.504
- type: ndcg_at_1000
value: 44.015
- type: map_at_1
value: 7.455
- type: map_at_3
value: 11.231
- type: map_at_5
value: 12.76
- type: map_at_10
value: 14.927000000000001
- type: map_at_20
value: 16.732
- type: map_at_100
value: 19.903000000000002
- type: map_at_1000
value: 21.227
- type: recall_at_1
value: 7.455
- type: recall_at_3
value: 12.423
- type: recall_at_5
value: 15.326
- type: recall_at_10
value: 19.858
- type: recall_at_20
value: 24.929000000000002
- type: recall_at_100
value: 42.799
- type: recall_at_1000
value: 66.485
- type: precision_at_1
value: 58.75
- type: precision_at_3
value: 40.916999999999994
- type: precision_at_5
value: 34.050000000000004
- type: precision_at_10
value: 25.75
- type: precision_at_20
value: 18.712
- type: precision_at_100
value: 7.904999999999999
- type: precision_at_1000
value: 1.754
- type: mrr_at_1
value: 58.75
- type: mrr_at_3
value: 65.2083
- type: mrr_at_5
value: 66.7708
- type: mrr_at_10
value: 67.4141
- type: mrr_at_20
value: 67.6811
- type: mrr_at_100
value: 67.8579
- type: mrr_at_1000
value: 67.8709
- type: nauc_ndcg_at_1_max
value: 29.0439
- type: nauc_ndcg_at_1_std
value: 20.5015
- type: nauc_ndcg_at_1_diff1
value: 35.499199999999995
- type: nauc_ndcg_at_3_max
value: 29.8709
- type: nauc_ndcg_at_3_std
value: 23.020699999999998
- type: nauc_ndcg_at_3_diff1
value: 28.618100000000002
- type: nauc_ndcg_at_5_max
value: 27.7184
- type: nauc_ndcg_at_5_std
value: 23.0527
- type: nauc_ndcg_at_5_diff1
value: 25.526
- type: nauc_ndcg_at_10_max
value: 25.145400000000002
- type: nauc_ndcg_at_10_std
value: 21.6828
- type: nauc_ndcg_at_10_diff1
value: 25.123
- type: nauc_ndcg_at_20_max
value: 24.1687
- type: nauc_ndcg_at_20_std
value: 18.192800000000002
- type: nauc_ndcg_at_20_diff1
value: 25.2305
- type: nauc_ndcg_at_100_max
value: 26.4048
- type: nauc_ndcg_at_100_std
value: 22.2057
- type: nauc_ndcg_at_100_diff1
value: 23.2848
- type: nauc_ndcg_at_1000_max
value: 30.6232
- type: nauc_ndcg_at_1000_std
value: 30.4798
- type: nauc_ndcg_at_1000_diff1
value: 22.5713
- type: nauc_map_at_1_max
value: 4.2514
- type: nauc_map_at_1_std
value: -16.109
- type: nauc_map_at_1_diff1
value: 31.521300000000004
- type: nauc_map_at_3_max
value: 10.5699
- type: nauc_map_at_3_std
value: -13.2038
- type: nauc_map_at_3_diff1
value: 27.992099999999997
- type: nauc_map_at_5_max
value: 12.110999999999999
- type: nauc_map_at_5_std
value: -9.2883
- type: nauc_map_at_5_diff1
value: 24.2311
- type: nauc_map_at_10_max
value: 15.5794
- type: nauc_map_at_10_std
value: -1.9084
- type: nauc_map_at_10_diff1
value: 23.5487
- type: nauc_map_at_20_max
value: 19.2937
- type: nauc_map_at_20_std
value: 5.1674
- type: nauc_map_at_20_diff1
value: 23.1231
- type: nauc_map_at_100_max
value: 23.7248
- type: nauc_map_at_100_std
value: 15.6969
- type: nauc_map_at_100_diff1
value: 22.087899999999998
- type: nauc_map_at_1000_max
value: 25.3616
- type: nauc_map_at_1000_std
value: 18.9624
- type: nauc_map_at_1000_diff1
value: 22.3491
- type: nauc_recall_at_1_max
value: 4.2514
- type: nauc_recall_at_1_std
value: -16.109
- type: nauc_recall_at_1_diff1
value: 31.521300000000004
- type: nauc_recall_at_3_max
value: 9.579600000000001
- type: nauc_recall_at_3_std
value: -14.1439
- type: nauc_recall_at_3_diff1
value: 24.0237
- type: nauc_recall_at_5_max
value: 7.7634
- type: nauc_recall_at_5_std
value: -11.6212
- type: nauc_recall_at_5_diff1
value: 15.8449
- type: nauc_recall_at_10_max
value: 12.070500000000001
- type: nauc_recall_at_10_std
value: -3.6641
- type: nauc_recall_at_10_diff1
value: 16.755
- type: nauc_recall_at_20_max
value: 16.974600000000002
- type: nauc_recall_at_20_std
value: 4.442
- type: nauc_recall_at_20_diff1
value: 16.2465
- type: nauc_recall_at_100_max
value: 20.0143
- type: nauc_recall_at_100_std
value: 19.0564
- type: nauc_recall_at_100_diff1
value: 11.2073
- type: nauc_recall_at_1000_max
value: 25.826999999999998
- type: nauc_recall_at_1000_std
value: 31.867600000000003
- type: nauc_recall_at_1000_diff1
value: 7.5985
- type: nauc_precision_at_1_max
value: 46.4049
- type: nauc_precision_at_1_std
value: 34.9663
- type: nauc_precision_at_1_diff1
value: 41.281099999999995
- type: nauc_precision_at_3_max
value: 40.3772
- type: nauc_precision_at_3_std
value: 39.231700000000004
- type: nauc_precision_at_3_diff1
value: 20.8721
- type: nauc_precision_at_5_max
value: 35.3251
- type: nauc_precision_at_5_std
value: 45.041399999999996
- type: nauc_precision_at_5_diff1
value: 12.377699999999999
- type: nauc_precision_at_10_max
value: 33.1469
- type: nauc_precision_at_10_std
value: 50.484700000000004
- type: nauc_precision_at_10_diff1
value: 9.9524
- type: nauc_precision_at_20_max
value: 31.897599999999997
- type: nauc_precision_at_20_std
value: 53.0212
- type: nauc_precision_at_20_diff1
value: 9.0274
- type: nauc_precision_at_100_max
value: 27.060499999999998
- type: nauc_precision_at_100_std
value: 51.7917
- type: nauc_precision_at_100_diff1
value: 5.3346
- type: nauc_precision_at_1000_max
value: 10.5127
- type: nauc_precision_at_1000_std
value: 27.1389
- type: nauc_precision_at_1000_diff1
value: 4.072
- type: nauc_mrr_at_1_max
value: 46.4049
- type: nauc_mrr_at_1_std
value: 34.9663
- type: nauc_mrr_at_1_diff1
value: 41.281099999999995
- type: nauc_mrr_at_3_max
value: 49.1925
- type: nauc_mrr_at_3_std
value: 38.4208
- type: nauc_mrr_at_3_diff1
value: 39.4442
- type: nauc_mrr_at_5_max
value: 49.4555
- type: nauc_mrr_at_5_std
value: 39.9529
- type: nauc_mrr_at_5_diff1
value: 39.4985
- type: nauc_mrr_at_10_max
value: 49.215900000000005
- type: nauc_mrr_at_10_std
value: 39.846199999999996
- type: nauc_mrr_at_10_diff1
value: 39.6351
- type: nauc_mrr_at_20_max
value: 49.2931
- type: nauc_mrr_at_20_std
value: 39.7556
- type: nauc_mrr_at_20_diff1
value: 39.536500000000004
- type: nauc_mrr_at_100_max
value: 49.236799999999995
- type: nauc_mrr_at_100_std
value: 39.7146
- type: nauc_mrr_at_100_diff1
value: 39.5436
- type: nauc_mrr_at_1000_max
value: 49.2376
- type: nauc_mrr_at_1000_std
value: 39.7079
- type: nauc_mrr_at_1000_diff1
value: 39.5441
- type: main_score
value: 32.805
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 33.755
- type: f1
value: 30.109
- type: f1_weighted
value: 35.891
- type: main_score
value: 33.755
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: ndcg_at_1
value: 75.203
- type: ndcg_at_3
value: 81.208
- type: ndcg_at_5
value: 82.319
- type: ndcg_at_10
value: 83.155
- type: ndcg_at_20
value: 83.524
- type: ndcg_at_100
value: 83.852
- type: ndcg_at_1000
value: 84.052
- type: map_at_1
value: 69.63000000000001
- type: map_at_3
value: 77.50200000000001
- type: map_at_5
value: 78.251
- type: map_at_10
value: 78.648
- type: map_at_20
value: 78.767
- type: map_at_100
value: 78.82400000000001
- type: map_at_1000
value: 78.834
- type: recall_at_1
value: 69.63000000000001
- type: recall_at_3
value: 86.444
- type: recall_at_5
value: 89.298
- type: recall_at_10
value: 91.843
- type: recall_at_20
value: 93.195
- type: recall_at_100
value: 94.77799999999999
- type: recall_at_1000
value: 96.068
- type: precision_at_1
value: 75.203
- type: precision_at_3
value: 31.293
- type: precision_at_5
value: 19.448
- type: precision_at_10
value: 10.024
- type: precision_at_20
value: 5.102
- type: precision_at_100
value: 1.045
- type: precision_at_1000
value: 0.107
- type: mrr_at_1
value: 75.2025
- type: mrr_at_3
value: 83.0608
- type: mrr_at_5
value: 83.6871
- type: mrr_at_10
value: 84.0239
- type: mrr_at_20
value: 84.1082
- type: mrr_at_100
value: 84.1355
- type: mrr_at_1000
value: 84.137
- type: nauc_ndcg_at_1_max
value: 29.9781
- type: nauc_ndcg_at_1_std
value: -27.174799999999998
- type: nauc_ndcg_at_1_diff1
value: 65.8967
- type: nauc_ndcg_at_3_max
value: 24.2173
- type: nauc_ndcg_at_3_std
value: -22.2349
- type: nauc_ndcg_at_3_diff1
value: 48.9054
- type: nauc_ndcg_at_5_max
value: 22.6904
- type: nauc_ndcg_at_5_std
value: -21.4784
- type: nauc_ndcg_at_5_diff1
value: 48.186099999999996
- type: nauc_ndcg_at_10_max
value: 22.2573
- type: nauc_ndcg_at_10_std
value: -20.415
- type: nauc_ndcg_at_10_diff1
value: 47.7873
- type: nauc_ndcg_at_20_max
value: 22.0394
- type: nauc_ndcg_at_20_std
value: -19.7697
- type: nauc_ndcg_at_20_diff1
value: 47.958099999999995
- type: nauc_ndcg_at_100_max
value: 21.6255
- type: nauc_ndcg_at_100_std
value: -19.778200000000002
- type: nauc_ndcg_at_100_diff1
value: 48.0176
- type: nauc_ndcg_at_1000_max
value: 21.8334
- type: nauc_ndcg_at_1000_std
value: -19.947699999999998
- type: nauc_ndcg_at_1000_diff1
value: 48.491800000000005
- type: nauc_map_at_1_max
value: 22.7733
- type: nauc_map_at_1_std
value: -22.9147
- type: nauc_map_at_1_diff1
value: 54.33480000000001
- type: nauc_map_at_3_max
value: 21.7638
- type: nauc_map_at_3_std
value: -21.5291
- type: nauc_map_at_3_diff1
value: 48.4323
- type: nauc_map_at_5_max
value: 21.3712
- type: nauc_map_at_5_std
value: -21.1705
- type: nauc_map_at_5_diff1
value: 48.302499999999995
- type: nauc_map_at_10_max
value: 21.2869
- type: nauc_map_at_10_std
value: -20.826900000000002
- type: nauc_map_at_10_diff1
value: 48.238
- type: nauc_map_at_20_max
value: 21.259700000000002
- type: nauc_map_at_20_std
value: -20.6727
- type: nauc_map_at_20_diff1
value: 48.280499999999996
- type: nauc_map_at_100_max
value: 21.2305
- type: nauc_map_at_100_std
value: -20.6466
- type: nauc_map_at_100_diff1
value: 48.3009
- type: nauc_map_at_1000_max
value: 21.2364
- type: nauc_map_at_1000_std
value: -20.6521
- type: nauc_map_at_1000_diff1
value: 48.3154
- type: nauc_recall_at_1_max
value: 22.7733
- type: nauc_recall_at_1_std
value: -22.9147
- type: nauc_recall_at_1_diff1
value: 54.33480000000001
- type: nauc_recall_at_3_max
value: 17.147100000000002
- type: nauc_recall_at_3_std
value: -16.8494
- type: nauc_recall_at_3_diff1
value: 30.9712
- type: nauc_recall_at_5_max
value: 12.0947
- type: nauc_recall_at_5_std
value: -13.142000000000001
- type: nauc_recall_at_5_diff1
value: 24.760099999999998
- type: nauc_recall_at_10_max
value: 7.1945
- type: nauc_recall_at_10_std
value: -5.1164000000000005
- type: nauc_recall_at_10_diff1
value: 15.933900000000001
- type: nauc_recall_at_20_max
value: 2.3306
- type: nauc_recall_at_20_std
value: 2.748
- type: nauc_recall_at_20_diff1
value: 11.4733
- type: nauc_recall_at_100_max
value: -9.991999999999999
- type: nauc_recall_at_100_std
value: 7.362299999999999
- type: nauc_recall_at_100_diff1
value: 2.2306
- type: nauc_recall_at_1000_max
value: -15.401200000000001
- type: nauc_recall_at_1000_std
value: 10.616100000000001
- type: nauc_recall_at_1000_diff1
value: 1.9488999999999999
- type: nauc_precision_at_1_max
value: 29.9781
- type: nauc_precision_at_1_std
value: -27.174799999999998
- type: nauc_precision_at_1_diff1
value: 65.8967
- type: nauc_precision_at_3_max
value: 29.6113
- type: nauc_precision_at_3_std
value: -21.1606
- type: nauc_precision_at_3_diff1
value: 37.9441
- type: nauc_precision_at_5_max
value: 23.069300000000002
- type: nauc_precision_at_5_std
value: -13.168099999999999
- type: nauc_precision_at_5_diff1
value: 25.095299999999998
- type: nauc_precision_at_10_max
value: 17.7956
- type: nauc_precision_at_10_std
value: -0.28609999999999997
- type: nauc_precision_at_10_diff1
value: 9.4407
- type: nauc_precision_at_20_max
value: 13.2934
- type: nauc_precision_at_20_std
value: 10.9965
- type: nauc_precision_at_20_diff1
value: 0.43470000000000003
- type: nauc_precision_at_100_max
value: 5.1414
- type: nauc_precision_at_100_std
value: 16.2173
- type: nauc_precision_at_100_diff1
value: -10.2967
- type: nauc_precision_at_1000_max
value: 6.0449
- type: nauc_precision_at_1000_std
value: 12.698899999999998
- type: nauc_precision_at_1000_diff1
value: -8.3748
- type: nauc_mrr_at_1_max
value: 29.9781
- type: nauc_mrr_at_1_std
value: -27.174799999999998
- type: nauc_mrr_at_1_diff1
value: 65.8967
- type: nauc_mrr_at_3_max
value: 33.2001
- type: nauc_mrr_at_3_std
value: -27.142699999999998
- type: nauc_mrr_at_3_diff1
value: 62.546400000000006
- type: nauc_mrr_at_5_max
value: 32.9296
- type: nauc_mrr_at_5_std
value: -27.0933
- type: nauc_mrr_at_5_diff1
value: 62.8135
- type: nauc_mrr_at_10_max
value: 32.9972
- type: nauc_mrr_at_10_std
value: -26.7892
- type: nauc_mrr_at_10_diff1
value: 62.936099999999996
- type: nauc_mrr_at_20_max
value: 32.9283
- type: nauc_mrr_at_20_std
value: -26.6706
- type: nauc_mrr_at_20_diff1
value: 63.0346
- type: nauc_mrr_at_100_max
value: 32.8554
- type: nauc_mrr_at_100_std
value: -26.7179
- type: nauc_mrr_at_100_diff1
value: 63.0571
- type: nauc_mrr_at_1000_max
value: 32.8523
- type: nauc_mrr_at_1000_std
value: -26.7208
- type: nauc_mrr_at_1000_diff1
value: 63.0605
- type: main_score
value: 83.155
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: ndcg_at_1
value: 27.468999999999998
- type: ndcg_at_3
value: 25.183
- type: ndcg_at_5
value: 26.148
- type: ndcg_at_10
value: 28.404
- type: ndcg_at_20
value: 30.891999999999996
- type: ndcg_at_100
value: 35.167
- type: ndcg_at_1000
value: 38.803
- type: map_at_1
value: 13.864
- type: map_at_3
value: 18.989
- type: map_at_5
value: 20.521
- type: map_at_10
value: 21.858
- type: map_at_20
value: 22.686999999999998
- type: map_at_100
value: 23.491
- type: map_at_1000
value: 23.674
- type: recall_at_1
value: 13.864
- type: recall_at_3
value: 23.327
- type: recall_at_5
value: 28.015
- type: recall_at_10
value: 34.977999999999994
- type: recall_at_20
value: 42.495
- type: recall_at_100
value: 59.967999999999996
- type: recall_at_1000
value: 82.39800000000001
- type: precision_at_1
value: 27.468999999999998
- type: precision_at_3
value: 16.409000000000002
- type: precision_at_5
value: 12.099
- type: precision_at_10
value: 7.701
- type: precision_at_20
value: 4.877
- type: precision_at_100
value: 1.465
- type: precision_at_1000
value: 0.211
- type: mrr_at_1
value: 27.4691
- type: mrr_at_3
value: 32.844699999999996
- type: mrr_at_5
value: 34.110099999999996
- type: mrr_at_10
value: 35.1631
- type: mrr_at_20
value: 35.869099999999996
- type: mrr_at_100
value: 36.2438
- type: mrr_at_1000
value: 36.304700000000004
- type: nauc_ndcg_at_1_max
value: 31.897
- type: nauc_ndcg_at_1_std
value: 1.7016
- type: nauc_ndcg_at_1_diff1
value: 46.680899999999994
- type: nauc_ndcg_at_3_max
value: 28.7103
- type: nauc_ndcg_at_3_std
value: 0.08220000000000001
- type: nauc_ndcg_at_3_diff1
value: 38.1892
- type: nauc_ndcg_at_5_max
value: 27.988000000000003
- type: nauc_ndcg_at_5_std
value: 2.6533
- type: nauc_ndcg_at_5_diff1
value: 37.1171
- type: nauc_ndcg_at_10_max
value: 28.205400000000004
- type: nauc_ndcg_at_10_std
value: 3.6081000000000003
- type: nauc_ndcg_at_10_diff1
value: 37.0636
- type: nauc_ndcg_at_20_max
value: 28.708
- type: nauc_ndcg_at_20_std
value: 4.999
- type: nauc_ndcg_at_20_diff1
value: 35.5315
- type: nauc_ndcg_at_100_max
value: 30.000300000000003
- type: nauc_ndcg_at_100_std
value: 8.0321
- type: nauc_ndcg_at_100_diff1
value: 35.0261
- type: nauc_ndcg_at_1000_max
value: 31.476399999999998
- type: nauc_ndcg_at_1000_std
value: 8.7892
- type: nauc_ndcg_at_1000_diff1
value: 35.8262
- type: nauc_map_at_1_max
value: 19.6103
- type: nauc_map_at_1_std
value: -1.459
- type: nauc_map_at_1_diff1
value: 43.7768
- type: nauc_map_at_3_max
value: 23.213800000000003
- type: nauc_map_at_3_std
value: -1.0172
- type: nauc_map_at_3_diff1
value: 38.4649
- type: nauc_map_at_5_max
value: 24.4147
- type: nauc_map_at_5_std
value: 0.6049
- type: nauc_map_at_5_diff1
value: 38.278800000000004
- type: nauc_map_at_10_max
value: 25.1577
- type: nauc_map_at_10_std
value: 1.5727000000000002
- type: nauc_map_at_10_diff1
value: 37.8236
- type: nauc_map_at_20_max
value: 25.5774
- type: nauc_map_at_20_std
value: 2.3826
- type: nauc_map_at_20_diff1
value: 37.2606
- type: nauc_map_at_100_max
value: 26.1034
- type: nauc_map_at_100_std
value: 3.0844
- type: nauc_map_at_100_diff1
value: 37.1361
- type: nauc_map_at_1000_max
value: 26.2481
- type: nauc_map_at_1000_std
value: 3.1667
- type: nauc_map_at_1000_diff1
value: 37.2042
- type: nauc_recall_at_1_max
value: 19.6103
- type: nauc_recall_at_1_std
value: -1.459
- type: nauc_recall_at_1_diff1
value: 43.7768
- type: nauc_recall_at_3_max
value: 21.9254
- type: nauc_recall_at_3_std
value: -1.2038
- type: nauc_recall_at_3_diff1
value: 32.2851
- type: nauc_recall_at_5_max
value: 21.9256
- type: nauc_recall_at_5_std
value: 3.1369000000000002
- type: nauc_recall_at_5_diff1
value: 29.456500000000002
- type: nauc_recall_at_10_max
value: 23.393900000000002
- type: nauc_recall_at_10_std
value: 5.2703
- type: nauc_recall_at_10_diff1
value: 28.5136
- type: nauc_recall_at_20_max
value: 24.5427
- type: nauc_recall_at_20_std
value: 9.1449
- type: nauc_recall_at_20_diff1
value: 23.919
- type: nauc_recall_at_100_max
value: 25.683600000000002
- type: nauc_recall_at_100_std
value: 21.0368
- type: nauc_recall_at_100_diff1
value: 18.8564
- type: nauc_recall_at_1000_max
value: 34.0063
- type: nauc_recall_at_1000_std
value: 38.035799999999995
- type: nauc_recall_at_1000_diff1
value: 17.1266
- type: nauc_precision_at_1_max
value: 31.897
- type: nauc_precision_at_1_std
value: 1.7016
- type: nauc_precision_at_1_diff1
value: 46.680899999999994
- type: nauc_precision_at_3_max
value: 33.503699999999995
- type: nauc_precision_at_3_std
value: 1.7436
- type: nauc_precision_at_3_diff1
value: 31.8292
- type: nauc_precision_at_5_max
value: 35.5747
- type: nauc_precision_at_5_std
value: 8.4447
- type: nauc_precision_at_5_diff1
value: 27.433600000000002
- type: nauc_precision_at_10_max
value: 35.7915
- type: nauc_precision_at_10_std
value: 12.0952
- type: nauc_precision_at_10_diff1
value: 23.2614
- type: nauc_precision_at_20_max
value: 35.421
- type: nauc_precision_at_20_std
value: 14.863399999999999
- type: nauc_precision_at_20_diff1
value: 17.186899999999998
- type: nauc_precision_at_100_max
value: 33.7497
- type: nauc_precision_at_100_std
value: 18.5334
- type: nauc_precision_at_100_diff1
value: 10.678600000000001
- type: nauc_precision_at_1000_max
value: 29.8247
- type: nauc_precision_at_1000_std
value: 14.4755
- type: nauc_precision_at_1000_diff1
value: 4.1042000000000005
- type: nauc_mrr_at_1_max
value: 31.897
- type: nauc_mrr_at_1_std
value: 1.7016
- type: nauc_mrr_at_1_diff1
value: 46.680899999999994
- type: nauc_mrr_at_3_max
value: 32.8019
- type: nauc_mrr_at_3_std
value: 1.609
- type: nauc_mrr_at_3_diff1
value: 41.2746
- type: nauc_mrr_at_5_max
value: 32.9538
- type: nauc_mrr_at_5_std
value: 2.884
- type: nauc_mrr_at_5_diff1
value: 40.2619
- type: nauc_mrr_at_10_max
value: 33.2905
- type: nauc_mrr_at_10_std
value: 3.024
- type: nauc_mrr_at_10_diff1
value: 40.7879
- type: nauc_mrr_at_20_max
value: 33.117000000000004
- type: nauc_mrr_at_20_std
value: 3.1062
- type: nauc_mrr_at_20_diff1
value: 40.484700000000004
- type: nauc_mrr_at_100_max
value: 33.083
- type: nauc_mrr_at_100_std
value: 3.405
- type: nauc_mrr_at_100_diff1
value: 40.4873
- type: nauc_mrr_at_1000_max
value: 33.1046
- type: nauc_mrr_at_1000_std
value: 3.4228
- type: nauc_mrr_at_1000_diff1
value: 40.5107
- type: main_score
value: 28.404
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: ndcg_at_1
value: 73.801
- type: ndcg_at_3
value: 54.882
- type: ndcg_at_5
value: 56.916999999999994
- type: ndcg_at_10
value: 58.766
- type: ndcg_at_20
value: 59.946999999999996
- type: ndcg_at_100
value: 61.893
- type: ndcg_at_1000
value: 63.408
- type: map_at_1
value: 36.901
- type: map_at_3
value: 46.527
- type: map_at_5
value: 48.035
- type: map_at_10
value: 49.101
- type: map_at_20
value: 49.567
- type: map_at_100
value: 49.948
- type: map_at_1000
value: 50.022
- type: recall_at_1
value: 36.901
- type: recall_at_3
value: 50.176
- type: recall_at_5
value: 54.193000000000005
- type: recall_at_10
value: 58.831999999999994
- type: recall_at_20
value: 62.633
- type: recall_at_100
value: 71.242
- type: recall_at_1000
value: 81.337
- type: precision_at_1
value: 73.801
- type: precision_at_3
value: 33.45
- type: precision_at_5
value: 21.677
- type: precision_at_10
value: 11.766
- type: precision_at_20
value: 6.263000000000001
- type: precision_at_100
value: 1.425
- type: precision_at_1000
value: 0.163
- type: mrr_at_1
value: 73.8015
- type: mrr_at_3
value: 78.44250000000001
- type: mrr_at_5
value: 79.1204
- type: mrr_at_10
value: 79.4947
- type: mrr_at_20
value: 79.6248
- type: mrr_at_100
value: 79.7258
- type: mrr_at_1000
value: 79.7391
- type: nauc_ndcg_at_1_max
value: 52.782
- type: nauc_ndcg_at_1_std
value: -7.0408
- type: nauc_ndcg_at_1_diff1
value: 72.8754
- type: nauc_ndcg_at_3_max
value: 34.7845
- type: nauc_ndcg_at_3_std
value: -2.6474
- type: nauc_ndcg_at_3_diff1
value: 36.7492
- type: nauc_ndcg_at_5_max
value: 32.488299999999995
- type: nauc_ndcg_at_5_std
value: -1.6659
- type: nauc_ndcg_at_5_diff1
value: 33.1499
- type: nauc_ndcg_at_10_max
value: 31.2128
- type: nauc_ndcg_at_10_std
value: -0.6525000000000001
- type: nauc_ndcg_at_10_diff1
value: 31.3173
- type: nauc_ndcg_at_20_max
value: 30.319000000000003
- type: nauc_ndcg_at_20_std
value: 0.0078
- type: nauc_ndcg_at_20_diff1
value: 30.281799999999997
- type: nauc_ndcg_at_100_max
value: 29.873300000000004
- type: nauc_ndcg_at_100_std
value: 1.2557
- type: nauc_ndcg_at_100_diff1
value: 29.3753
- type: nauc_ndcg_at_1000_max
value: 29.8655
- type: nauc_ndcg_at_1000_std
value: 1.1226999999999998
- type: nauc_ndcg_at_1000_diff1
value: 29.602899999999998
- type: nauc_map_at_1_max
value: 52.782
- type: nauc_map_at_1_std
value: -7.0408
- type: nauc_map_at_1_diff1
value: 72.8754
- type: nauc_map_at_3_max
value: 30.2396
- type: nauc_map_at_3_std
value: -2.9367
- type: nauc_map_at_3_diff1
value: 30.315900000000003
- type: nauc_map_at_5_max
value: 28.6694
- type: nauc_map_at_5_std
value: -2.2835
- type: nauc_map_at_5_diff1
value: 27.9185
- type: nauc_map_at_10_max
value: 28.058899999999998
- type: nauc_map_at_10_std
value: -1.8286
- type: nauc_map_at_10_diff1
value: 27.106400000000004
- type: nauc_map_at_20_max
value: 27.763199999999998
- type: nauc_map_at_20_std
value: -1.5711
- type: nauc_map_at_20_diff1
value: 26.7588
- type: nauc_map_at_100_max
value: 27.700000000000003
- type: nauc_map_at_100_std
value: -1.3389
- type: nauc_map_at_100_diff1
value: 26.615499999999997
- type: nauc_map_at_1000_max
value: 27.701999999999998
- type: nauc_map_at_1000_std
value: -1.3391
- type: nauc_map_at_1000_diff1
value: 26.628800000000002
- type: nauc_recall_at_1_max
value: 52.782
- type: nauc_recall_at_1_std
value: -7.0408
- type: nauc_recall_at_1_diff1
value: 72.8754
- type: nauc_recall_at_3_max
value: 26.899800000000003
- type: nauc_recall_at_3_std
value: -0.7169
- type: nauc_recall_at_3_diff1
value: 21.875
- type: nauc_recall_at_5_max
value: 22.0409
- type: nauc_recall_at_5_std
value: 1.0630000000000002
- type: nauc_recall_at_5_diff1
value: 14.9439
- type: nauc_recall_at_10_max
value: 17.8827
- type: nauc_recall_at_10_std
value: 3.4513000000000003
- type: nauc_recall_at_10_diff1
value: 9.6887
- type: nauc_recall_at_20_max
value: 14.6979
- type: nauc_recall_at_20_std
value: 5.4514
- type: nauc_recall_at_20_diff1
value: 6.103800000000001
- type: nauc_recall_at_100_max
value: 10.054599999999999
- type: nauc_recall_at_100_std
value: 11.4136
- type: nauc_recall_at_100_diff1
value: -1.2643
- type: nauc_recall_at_1000_max
value: 3.9052000000000002
- type: nauc_recall_at_1000_std
value: 13.176099999999998
- type: nauc_recall_at_1000_diff1
value: -8.8098
- type: nauc_precision_at_1_max
value: 52.782
- type: nauc_precision_at_1_std
value: -7.0408
- type: nauc_precision_at_1_diff1
value: 72.8754
- type: nauc_precision_at_3_max
value: 26.899800000000003
- type: nauc_precision_at_3_std
value: -0.7169
- type: nauc_precision_at_3_diff1
value: 21.875
- type: nauc_precision_at_5_max
value: 22.0409
- type: nauc_precision_at_5_std
value: 1.0630000000000002
- type: nauc_precision_at_5_diff1
value: 14.9439
- type: nauc_precision_at_10_max
value: 17.8827
- type: nauc_precision_at_10_std
value: 3.4513000000000003
- type: nauc_precision_at_10_diff1
value: 9.6887
- type: nauc_precision_at_20_max
value: 14.6979
- type: nauc_precision_at_20_std
value: 5.4514
- type: nauc_precision_at_20_diff1
value: 6.103800000000001
- type: nauc_precision_at_100_max
value: 10.054599999999999
- type: nauc_precision_at_100_std
value: 11.4136
- type: nauc_precision_at_100_diff1
value: -1.2643
- type: nauc_precision_at_1000_max
value: 3.9052000000000002
- type: nauc_precision_at_1000_std
value: 13.176099999999998
- type: nauc_precision_at_1000_diff1
value: -8.8098
- type: nauc_mrr_at_1_max
value: 52.782
- type: nauc_mrr_at_1_std
value: -7.0408
- type: nauc_mrr_at_1_diff1
value: 72.8754
- type: nauc_mrr_at_3_max
value: 54.295700000000004
- type: nauc_mrr_at_3_std
value: -4.637700000000001
- type: nauc_mrr_at_3_diff1
value: 70.1027
- type: nauc_mrr_at_5_max
value: 54.3589
- type: nauc_mrr_at_5_std
value: -4.1942
- type: nauc_mrr_at_5_diff1
value: 69.9827
- type: nauc_mrr_at_10_max
value: 54.3287
- type: nauc_mrr_at_10_std
value: -3.8112
- type: nauc_mrr_at_10_diff1
value: 69.857
- type: nauc_mrr_at_20_max
value: 54.325199999999995
- type: nauc_mrr_at_20_std
value: -3.7948999999999997
- type: nauc_mrr_at_20_diff1
value: 69.92699999999999
- type: nauc_mrr_at_100_max
value: 54.3234
- type: nauc_mrr_at_100_std
value: -3.8176
- type: nauc_mrr_at_100_diff1
value: 69.963
- type: nauc_mrr_at_1000_max
value: 54.3152
- type: nauc_mrr_at_1000_std
value: -3.8351
- type: nauc_mrr_at_1000_diff1
value: 69.9678
- type: main_score
value: 58.766
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 62.91
- type: f1
value: 62.572799999999994
- type: f1_weighted
value: 62.572799999999994
- type: ap
value: 58.2831
- type: ap_weighted
value: 58.2831
- type: main_score
value: 62.91
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (ar)
type: miracl/mmteb-miracl
config: ar
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 55.559000000000005
- type: ndcg_at_3
value: 56.43899999999999
- type: ndcg_at_5
value: 59.34700000000001
- type: ndcg_at_10
value: 62.541000000000004
- type: ndcg_at_20
value: 64.739
- type: ndcg_at_100
value: 67.101
- type: ndcg_at_1000
value: 68.05
- type: map_at_1
value: 37.009
- type: map_at_3
value: 49.559
- type: map_at_5
value: 52.766999999999996
- type: map_at_10
value: 54.891
- type: map_at_20
value: 55.818
- type: map_at_100
value: 56.364000000000004
- type: map_at_1000
value: 56.418
- type: recall_at_1
value: 37.009
- type: recall_at_3
value: 56.903000000000006
- type: recall_at_5
value: 65.18
- type: recall_at_10
value: 73.317
- type: recall_at_20
value: 80.205
- type: recall_at_100
value: 90.066
- type: recall_at_1000
value: 96.272
- type: precision_at_1
value: 55.559000000000005
- type: precision_at_3
value: 32.056000000000004
- type: precision_at_5
value: 22.942
- type: precision_at_10
value: 13.483999999999998
- type: precision_at_20
value: 7.548000000000001
- type: precision_at_100
value: 1.752
- type: precision_at_1000
value: 0.189
- type: mrr_at_1
value: 55.559400000000004
- type: mrr_at_3
value: 63.7201
- type: mrr_at_5
value: 65.0996
- type: mrr_at_10
value: 65.8096
- type: mrr_at_20
value: 66.1023
- type: mrr_at_100
value: 66.2427
- type: mrr_at_1000
value: 66.2595
- type: nauc_ndcg_at_1_max
value: 39.1686
- type: nauc_ndcg_at_1_std
value: 1.7862
- type: nauc_ndcg_at_1_diff1
value: 45.7904
- type: nauc_ndcg_at_3_max
value: 37.2044
- type: nauc_ndcg_at_3_std
value: -1.6014
- type: nauc_ndcg_at_3_diff1
value: 37.9844
- type: nauc_ndcg_at_5_max
value: 39.2524
- type: nauc_ndcg_at_5_std
value: -0.6319
- type: nauc_ndcg_at_5_diff1
value: 38.2785
- type: nauc_ndcg_at_10_max
value: 40.1167
- type: nauc_ndcg_at_10_std
value: 0.3359
- type: nauc_ndcg_at_10_diff1
value: 37.4785
- type: nauc_ndcg_at_20_max
value: 41.3886
- type: nauc_ndcg_at_20_std
value: 2.8987
- type: nauc_ndcg_at_20_diff1
value: 37.0635
- type: nauc_ndcg_at_100_max
value: 42.357299999999995
- type: nauc_ndcg_at_100_std
value: 5.2258
- type: nauc_ndcg_at_100_diff1
value: 37.3142
- type: nauc_ndcg_at_1000_max
value: 41.9076
- type: nauc_ndcg_at_1000_std
value: 4.539499999999999
- type: nauc_ndcg_at_1000_diff1
value: 37.703399999999995
- type: nauc_map_at_1_max
value: 21.7624
- type: nauc_map_at_1_std
value: -10.1554
- type: nauc_map_at_1_diff1
value: 45.413599999999995
- type: nauc_map_at_3_max
value: 32.231
- type: nauc_map_at_3_std
value: -5.7029000000000005
- type: nauc_map_at_3_diff1
value: 39.678799999999995
- type: nauc_map_at_5_max
value: 35.3238
- type: nauc_map_at_5_std
value: -3.3897999999999997
- type: nauc_map_at_5_diff1
value: 38.901599999999995
- type: nauc_map_at_10_max
value: 36.248799999999996
- type: nauc_map_at_10_std
value: -2.5503
- type: nauc_map_at_10_diff1
value: 38.2086
- type: nauc_map_at_20_max
value: 36.8226
- type: nauc_map_at_20_std
value: -1.5142
- type: nauc_map_at_20_diff1
value: 37.9922
- type: nauc_map_at_100_max
value: 37.0911
- type: nauc_map_at_100_std
value: -0.9837
- type: nauc_map_at_100_diff1
value: 37.9955
- type: nauc_map_at_1000_max
value: 37.0788
- type: nauc_map_at_1000_std
value: -0.9948
- type: nauc_map_at_1000_diff1
value: 38.016299999999994
- type: nauc_recall_at_1_max
value: 21.7624
- type: nauc_recall_at_1_std
value: -10.1554
- type: nauc_recall_at_1_diff1
value: 45.413599999999995
- type: nauc_recall_at_3_max
value: 32.4031
- type: nauc_recall_at_3_std
value: -5.2341999999999995
- type: nauc_recall_at_3_diff1
value: 33.6415
- type: nauc_recall_at_5_max
value: 37.6932
- type: nauc_recall_at_5_std
value: -1.2136
- type: nauc_recall_at_5_diff1
value: 31.629600000000003
- type: nauc_recall_at_10_max
value: 39.6688
- type: nauc_recall_at_10_std
value: 1.3085
- type: nauc_recall_at_10_diff1
value: 28.184900000000003
- type: nauc_recall_at_20_max
value: 45.1114
- type: nauc_recall_at_20_std
value: 11.9353
- type: nauc_recall_at_20_diff1
value: 24.9804
- type: nauc_recall_at_100_max
value: 58.7538
- type: nauc_recall_at_100_std
value: 40.016200000000005
- type: nauc_recall_at_100_diff1
value: 22.0195
- type: nauc_recall_at_1000_max
value: 69.68910000000001
- type: nauc_recall_at_1000_std
value: 61.42959999999999
- type: nauc_recall_at_1000_diff1
value: 18.6353
- type: nauc_precision_at_1_max
value: 39.1686
- type: nauc_precision_at_1_std
value: 1.7862
- type: nauc_precision_at_1_diff1
value: 45.7904
- type: nauc_precision_at_3_max
value: 38.101400000000005
- type: nauc_precision_at_3_std
value: 13.7012
- type: nauc_precision_at_3_diff1
value: 9.3923
- type: nauc_precision_at_5_max
value: 36.4465
- type: nauc_precision_at_5_std
value: 18.3961
- type: nauc_precision_at_5_diff1
value: 1.5756
- type: nauc_precision_at_10_max
value: 29.869600000000002
- type: nauc_precision_at_10_std
value: 19.869899999999998
- type: nauc_precision_at_10_diff1
value: -5.9939
- type: nauc_precision_at_20_max
value: 26.564700000000002
- type: nauc_precision_at_20_std
value: 24.7639
- type: nauc_precision_at_20_diff1
value: -10.8804
- type: nauc_precision_at_100_max
value: 20.137
- type: nauc_precision_at_100_std
value: 28.4182
- type: nauc_precision_at_100_diff1
value: -15.1979
- type: nauc_precision_at_1000_max
value: 14.4263
- type: nauc_precision_at_1000_std
value: 25.336199999999998
- type: nauc_precision_at_1000_diff1
value: -17.149800000000003
- type: nauc_mrr_at_1_max
value: 39.1686
- type: nauc_mrr_at_1_std
value: 1.7862
- type: nauc_mrr_at_1_diff1
value: 45.7904
- type: nauc_mrr_at_3_max
value: 43.3345
- type: nauc_mrr_at_3_std
value: 3.6245
- type: nauc_mrr_at_3_diff1
value: 42.332300000000004
- type: nauc_mrr_at_5_max
value: 43.7305
- type: nauc_mrr_at_5_std
value: 4.18
- type: nauc_mrr_at_5_diff1
value: 42.3171
- type: nauc_mrr_at_10_max
value: 43.8493
- type: nauc_mrr_at_10_std
value: 4.3809000000000005
- type: nauc_mrr_at_10_diff1
value: 42.3117
- type: nauc_mrr_at_20_max
value: 43.8121
- type: nauc_mrr_at_20_std
value: 4.526
- type: nauc_mrr_at_20_diff1
value: 42.3117
- type: nauc_mrr_at_100_max
value: 43.7806
- type: nauc_mrr_at_100_std
value: 4.5652
- type: nauc_mrr_at_100_diff1
value: 42.3692
- type: nauc_mrr_at_1000_max
value: 43.7629
- type: nauc_mrr_at_1000_std
value: 4.5475
- type: nauc_mrr_at_1000_diff1
value: 42.373
- type: main_score
value: 62.541000000000004
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (bn)
type: miracl/mmteb-miracl
config: bn
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 56.691
- type: ndcg_at_3
value: 59.88
- type: ndcg_at_5
value: 62.717999999999996
- type: ndcg_at_10
value: 65.484
- type: ndcg_at_20
value: 67.838
- type: ndcg_at_100
value: 70.14200000000001
- type: ndcg_at_1000
value: 70.994
- type: map_at_1
value: 36.05
- type: map_at_3
value: 51.734
- type: map_at_5
value: 55.093
- type: map_at_10
value: 57.053
- type: map_at_20
value: 58.196999999999996
- type: map_at_100
value: 58.786
- type: map_at_1000
value: 58.841
- type: recall_at_1
value: 36.05
- type: recall_at_3
value: 61.596
- type: recall_at_5
value: 69.76599999999999
- type: recall_at_10
value: 76.854
- type: recall_at_20
value: 83.667
- type: recall_at_100
value: 92.85
- type: recall_at_1000
value: 97.928
- type: precision_at_1
value: 56.691
- type: precision_at_3
value: 35.848
- type: precision_at_5
value: 25.499
- type: precision_at_10
value: 14.793000000000001
- type: precision_at_20
value: 8.37
- type: precision_at_100
value: 1.925
- type: precision_at_1000
value: 0.20600000000000002
- type: mrr_at_1
value: 56.691
- type: mrr_at_3
value: 67.1127
- type: mrr_at_5
value: 68.5604
- type: mrr_at_10
value: 69.1703
- type: mrr_at_20
value: 69.35289999999999
- type: mrr_at_100
value: 69.4819
- type: mrr_at_1000
value: 69.4957
- type: nauc_ndcg_at_1_max
value: 41.866
- type: nauc_ndcg_at_1_std
value: 11.7317
- type: nauc_ndcg_at_1_diff1
value: 40.4762
- type: nauc_ndcg_at_3_max
value: 36.677
- type: nauc_ndcg_at_3_std
value: 0.4032
- type: nauc_ndcg_at_3_diff1
value: 36.459
- type: nauc_ndcg_at_5_max
value: 38.7948
- type: nauc_ndcg_at_5_std
value: 2.169
- type: nauc_ndcg_at_5_diff1
value: 34.9733
- type: nauc_ndcg_at_10_max
value: 41.2916
- type: nauc_ndcg_at_10_std
value: 4.6691
- type: nauc_ndcg_at_10_diff1
value: 34.972300000000004
- type: nauc_ndcg_at_20_max
value: 42.0471
- type: nauc_ndcg_at_20_std
value: 6.9529
- type: nauc_ndcg_at_20_diff1
value: 35.2909
- type: nauc_ndcg_at_100_max
value: 43.2206
- type: nauc_ndcg_at_100_std
value: 9.8597
- type: nauc_ndcg_at_100_diff1
value: 34.7908
- type: nauc_ndcg_at_1000_max
value: 42.9023
- type: nauc_ndcg_at_1000_std
value: 9.1978
- type: nauc_ndcg_at_1000_diff1
value: 35.5526
- type: nauc_map_at_1_max
value: 20.435
- type: nauc_map_at_1_std
value: -8.3764
- type: nauc_map_at_1_diff1
value: 45.6061
- type: nauc_map_at_3_max
value: 29.855900000000002
- type: nauc_map_at_3_std
value: -6.9869
- type: nauc_map_at_3_diff1
value: 39.475
- type: nauc_map_at_5_max
value: 33.9572
- type: nauc_map_at_5_std
value: -3.164
- type: nauc_map_at_5_diff1
value: 37.4095
- type: nauc_map_at_10_max
value: 35.8339
- type: nauc_map_at_10_std
value: -0.8439
- type: nauc_map_at_10_diff1
value: 36.903999999999996
- type: nauc_map_at_20_max
value: 36.1995
- type: nauc_map_at_20_std
value: 0.2973
- type: nauc_map_at_20_diff1
value: 36.8904
- type: nauc_map_at_100_max
value: 36.5903
- type: nauc_map_at_100_std
value: 1.2213999999999998
- type: nauc_map_at_100_diff1
value: 36.6721
- type: nauc_map_at_1000_max
value: 36.5844
- type: nauc_map_at_1000_std
value: 1.2026000000000001
- type: nauc_map_at_1000_diff1
value: 36.7259
- type: nauc_recall_at_1_max
value: 20.435
- type: nauc_recall_at_1_std
value: -8.3764
- type: nauc_recall_at_1_diff1
value: 45.6061
- type: nauc_recall_at_3_max
value: 26.366600000000002
- type: nauc_recall_at_3_std
value: -10.0911
- type: nauc_recall_at_3_diff1
value: 33.1969
- type: nauc_recall_at_5_max
value: 34.080799999999996
- type: nauc_recall_at_5_std
value: -3.2670999999999997
- type: nauc_recall_at_5_diff1
value: 26.939
- type: nauc_recall_at_10_max
value: 39.6727
- type: nauc_recall_at_10_std
value: 3.5848999999999998
- type: nauc_recall_at_10_diff1
value: 25.359399999999997
- type: nauc_recall_at_20_max
value: 42.824400000000004
- type: nauc_recall_at_20_std
value: 10.9569
- type: nauc_recall_at_20_diff1
value: 25.8988
- type: nauc_recall_at_100_max
value: 56.9357
- type: nauc_recall_at_100_std
value: 40.6576
- type: nauc_recall_at_100_diff1
value: 17.9669
- type: nauc_recall_at_1000_max
value: 77.9855
- type: nauc_recall_at_1000_std
value: 69.14519999999999
- type: nauc_recall_at_1000_diff1
value: 31.317
- type: nauc_precision_at_1_max
value: 41.866
- type: nauc_precision_at_1_std
value: 11.7317
- type: nauc_precision_at_1_diff1
value: 40.4762
- type: nauc_precision_at_3_max
value: 41.7292
- type: nauc_precision_at_3_std
value: 19.4845
- type: nauc_precision_at_3_diff1
value: 2.3043
- type: nauc_precision_at_5_max
value: 41.165600000000005
- type: nauc_precision_at_5_std
value: 28.4709
- type: nauc_precision_at_5_diff1
value: -8.5182
- type: nauc_precision_at_10_max
value: 36.8002
- type: nauc_precision_at_10_std
value: 33.0094
- type: nauc_precision_at_10_diff1
value: -13.6996
- type: nauc_precision_at_20_max
value: 29.5172
- type: nauc_precision_at_20_std
value: 34.6802
- type: nauc_precision_at_20_diff1
value: -15.762
- type: nauc_precision_at_100_max
value: 23.539099999999998
- type: nauc_precision_at_100_std
value: 38.3806
- type: nauc_precision_at_100_diff1
value: -21.1116
- type: nauc_precision_at_1000_max
value: 18.6827
- type: nauc_precision_at_1000_std
value: 34.7766
- type: nauc_precision_at_1000_diff1
value: -20.9498
- type: nauc_mrr_at_1_max
value: 41.866
- type: nauc_mrr_at_1_std
value: 11.7317
- type: nauc_mrr_at_1_diff1
value: 40.4762
- type: nauc_mrr_at_3_max
value: 47.225
- type: nauc_mrr_at_3_std
value: 13.6943
- type: nauc_mrr_at_3_diff1
value: 37.979600000000005
- type: nauc_mrr_at_5_max
value: 47.478500000000004
- type: nauc_mrr_at_5_std
value: 15.2375
- type: nauc_mrr_at_5_diff1
value: 36.6924
- type: nauc_mrr_at_10_max
value: 47.7794
- type: nauc_mrr_at_10_std
value: 15.620899999999999
- type: nauc_mrr_at_10_diff1
value: 36.9685
- type: nauc_mrr_at_20_max
value: 47.6434
- type: nauc_mrr_at_20_std
value: 15.4696
- type: nauc_mrr_at_20_diff1
value: 37.1096
- type: nauc_mrr_at_100_max
value: 47.5377
- type: nauc_mrr_at_100_std
value: 15.360499999999998
- type: nauc_mrr_at_100_diff1
value: 37.1581
- type: nauc_mrr_at_1000_max
value: 47.5182
- type: nauc_mrr_at_1000_std
value: 15.345600000000001
- type: nauc_mrr_at_1000_diff1
value: 37.1651
- type: main_score
value: 65.484
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (de)
type: miracl/mmteb-miracl
config: de
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 41.967
- type: ndcg_at_3
value: 39.486
- type: ndcg_at_5
value: 41.496
- type: ndcg_at_10
value: 45.141
- type: ndcg_at_20
value: 49.012
- type: ndcg_at_100
value: 53.461000000000006
- type: ndcg_at_1000
value: 55.462999999999994
- type: map_at_1
value: 19.494
- type: map_at_3
value: 29.866999999999997
- type: map_at_5
value: 33.183
- type: map_at_10
value: 35.82
- type: map_at_20
value: 37.405
- type: map_at_100
value: 38.486
- type: map_at_1000
value: 38.624
- type: recall_at_1
value: 19.494
- type: recall_at_3
value: 35.56
- type: recall_at_5
value: 44.448
- type: recall_at_10
value: 53.774
- type: recall_at_20
value: 65.659
- type: recall_at_100
value: 83.314
- type: recall_at_1000
value: 95.045
- type: precision_at_1
value: 41.967
- type: precision_at_3
value: 28.633999999999997
- type: precision_at_5
value: 21.836
- type: precision_at_10
value: 13.869000000000002
- type: precision_at_20
value: 8.443000000000001
- type: precision_at_100
value: 2.193
- type: precision_at_1000
value: 0.252
- type: mrr_at_1
value: 41.9672
- type: mrr_at_3
value: 49.8361
- type: mrr_at_5
value: 51.9016
- type: mrr_at_10
value: 52.847500000000004
- type: mrr_at_20
value: 53.3528
- type: mrr_at_100
value: 53.6068
- type: mrr_at_1000
value: 53.632999999999996
- type: nauc_ndcg_at_1_max
value: 47.2596
- type: nauc_ndcg_at_1_std
value: 10.462100000000001
- type: nauc_ndcg_at_1_diff1
value: 30.1962
- type: nauc_ndcg_at_3_max
value: 44.2307
- type: nauc_ndcg_at_3_std
value: 17.5815
- type: nauc_ndcg_at_3_diff1
value: 29.371399999999998
- type: nauc_ndcg_at_5_max
value: 44.07
- type: nauc_ndcg_at_5_std
value: 13.7942
- type: nauc_ndcg_at_5_diff1
value: 31.1618
- type: nauc_ndcg_at_10_max
value: 43.406800000000004
- type: nauc_ndcg_at_10_std
value: 13.1051
- type: nauc_ndcg_at_10_diff1
value: 30.198399999999996
- type: nauc_ndcg_at_20_max
value: 44.2888
- type: nauc_ndcg_at_20_std
value: 16.2174
- type: nauc_ndcg_at_20_diff1
value: 31.1847
- type: nauc_ndcg_at_100_max
value: 47.042899999999996
- type: nauc_ndcg_at_100_std
value: 18.6719
- type: nauc_ndcg_at_100_diff1
value: 31.4178
- type: nauc_ndcg_at_1000_max
value: 47.2147
- type: nauc_ndcg_at_1000_std
value: 19.165
- type: nauc_ndcg_at_1000_diff1
value: 31.229400000000002
- type: nauc_map_at_1_max
value: 28.3144
- type: nauc_map_at_1_std
value: 4.6845
- type: nauc_map_at_1_diff1
value: 29.528
- type: nauc_map_at_3_max
value: 36.9973
- type: nauc_map_at_3_std
value: 11.669
- type: nauc_map_at_3_diff1
value: 32.3092
- type: nauc_map_at_5_max
value: 39.4916
- type: nauc_map_at_5_std
value: 12.0862
- type: nauc_map_at_5_diff1
value: 31.7635
- type: nauc_map_at_10_max
value: 40.2979
- type: nauc_map_at_10_std
value: 12.536
- type: nauc_map_at_10_diff1
value: 30.584600000000002
- type: nauc_map_at_20_max
value: 40.7003
- type: nauc_map_at_20_std
value: 13.5966
- type: nauc_map_at_20_diff1
value: 30.8718
- type: nauc_map_at_100_max
value: 41.6514
- type: nauc_map_at_100_std
value: 14.360500000000002
- type: nauc_map_at_100_diff1
value: 31.1345
- type: nauc_map_at_1000_max
value: 41.6996
- type: nauc_map_at_1000_std
value: 14.4203
- type: nauc_map_at_1000_diff1
value: 31.128600000000002
- type: nauc_recall_at_1_max
value: 28.3144
- type: nauc_recall_at_1_std
value: 4.6845
- type: nauc_recall_at_1_diff1
value: 29.528
- type: nauc_recall_at_3_max
value: 33.567
- type: nauc_recall_at_3_std
value: 12.7075
- type: nauc_recall_at_3_diff1
value: 27.9119
- type: nauc_recall_at_5_max
value: 36.5991
- type: nauc_recall_at_5_std
value: 8.7177
- type: nauc_recall_at_5_diff1
value: 28.3433
- type: nauc_recall_at_10_max
value: 36.5863
- type: nauc_recall_at_10_std
value: 8.2944
- type: nauc_recall_at_10_diff1
value: 26.411299999999997
- type: nauc_recall_at_20_max
value: 35.970200000000006
- type: nauc_recall_at_20_std
value: 15.487
- type: nauc_recall_at_20_diff1
value: 29.0362
- type: nauc_recall_at_100_max
value: 48.892
- type: nauc_recall_at_100_std
value: 30.1672
- type: nauc_recall_at_100_diff1
value: 29.9305
- type: nauc_recall_at_1000_max
value: 66.36410000000001
- type: nauc_recall_at_1000_std
value: 64.2413
- type: nauc_recall_at_1000_diff1
value: 32.7869
- type: nauc_precision_at_1_max
value: 47.2596
- type: nauc_precision_at_1_std
value: 10.462100000000001
- type: nauc_precision_at_1_diff1
value: 30.1962
- type: nauc_precision_at_3_max
value: 46.6036
- type: nauc_precision_at_3_std
value: 22.917
- type: nauc_precision_at_3_diff1
value: 21.104200000000002
- type: nauc_precision_at_5_max
value: 44.357
- type: nauc_precision_at_5_std
value: 21.4999
- type: nauc_precision_at_5_diff1
value: 16.378899999999998
- type: nauc_precision_at_10_max
value: 39.1332
- type: nauc_precision_at_10_std
value: 20.241500000000002
- type: nauc_precision_at_10_diff1
value: 10.2133
- type: nauc_precision_at_20_max
value: 36.7308
- type: nauc_precision_at_20_std
value: 26.994699999999998
- type: nauc_precision_at_20_diff1
value: 8.2737
- type: nauc_precision_at_100_max
value: 33.8289
- type: nauc_precision_at_100_std
value: 29.243000000000002
- type: nauc_precision_at_100_diff1
value: 2.6802
- type: nauc_precision_at_1000_max
value: 27.7792
- type: nauc_precision_at_1000_std
value: 30.017899999999997
- type: nauc_precision_at_1000_diff1
value: -2.3043
- type: nauc_mrr_at_1_max
value: 47.2596
- type: nauc_mrr_at_1_std
value: 10.462100000000001
- type: nauc_mrr_at_1_diff1
value: 30.1962
- type: nauc_mrr_at_3_max
value: 47.8206
- type: nauc_mrr_at_3_std
value: 15.509999999999998
- type: nauc_mrr_at_3_diff1
value: 28.4831
- type: nauc_mrr_at_5_max
value: 48.4225
- type: nauc_mrr_at_5_std
value: 14.0032
- type: nauc_mrr_at_5_diff1
value: 30.2989
- type: nauc_mrr_at_10_max
value: 48.2881
- type: nauc_mrr_at_10_std
value: 14.383199999999999
- type: nauc_mrr_at_10_diff1
value: 30.047800000000002
- type: nauc_mrr_at_20_max
value: 48.2964
- type: nauc_mrr_at_20_std
value: 14.7531
- type: nauc_mrr_at_20_diff1
value: 30.154199999999996
- type: nauc_mrr_at_100_max
value: 48.2656
- type: nauc_mrr_at_100_std
value: 14.5864
- type: nauc_mrr_at_100_diff1
value: 30.153299999999998
- type: nauc_mrr_at_1000_max
value: 48.2739
- type: nauc_mrr_at_1000_std
value: 14.5892
- type: nauc_mrr_at_1000_diff1
value: 30.1671
- type: main_score
value: 45.141
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (en)
type: miracl/mmteb-miracl
config: en
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 41.176
- type: ndcg_at_3
value: 41.197
- type: ndcg_at_5
value: 42.086
- type: ndcg_at_10
value: 46.682
- type: ndcg_at_20
value: 50.157
- type: ndcg_at_100
value: 54.32599999999999
- type: ndcg_at_1000
value: 56.567
- type: map_at_1
value: 19.322
- type: map_at_3
value: 29.965999999999998
- type: map_at_5
value: 32.767
- type: map_at_10
value: 35.961
- type: map_at_20
value: 37.506
- type: map_at_100
value: 38.585
- type: map_at_1000
value: 38.756
- type: recall_at_1
value: 19.322
- type: recall_at_3
value: 37.171
- type: recall_at_5
value: 44.695
- type: recall_at_10
value: 57.721000000000004
- type: recall_at_20
value: 67.57
- type: recall_at_100
value: 83.256
- type: recall_at_1000
value: 95.511
- type: precision_at_1
value: 41.176
- type: precision_at_3
value: 29.328
- type: precision_at_5
value: 21.552
- type: precision_at_10
value: 14.556
- type: precision_at_20
value: 8.892
- type: precision_at_100
value: 2.325
- type: precision_at_1000
value: 0.27599999999999997
- type: mrr_at_1
value: 41.1765
- type: mrr_at_3
value: 52.3571
- type: mrr_at_5
value: 53.8214
- type: mrr_at_10
value: 55.2296
- type: mrr_at_20
value: 55.58070000000001
- type: mrr_at_100
value: 55.755500000000005
- type: mrr_at_1000
value: 55.7773
- type: nauc_ndcg_at_1_max
value: 34.3579
- type: nauc_ndcg_at_1_std
value: 4.9725
- type: nauc_ndcg_at_1_diff1
value: 34.5973
- type: nauc_ndcg_at_3_max
value: 33.4771
- type: nauc_ndcg_at_3_std
value: 1.4036
- type: nauc_ndcg_at_3_diff1
value: 28.7098
- type: nauc_ndcg_at_5_max
value: 32.4928
- type: nauc_ndcg_at_5_std
value: -0.066
- type: nauc_ndcg_at_5_diff1
value: 28.6068
- type: nauc_ndcg_at_10_max
value: 32.068999999999996
- type: nauc_ndcg_at_10_std
value: 1.6602
- type: nauc_ndcg_at_10_diff1
value: 26.9818
- type: nauc_ndcg_at_20_max
value: 33.9623
- type: nauc_ndcg_at_20_std
value: 4.261299999999999
- type: nauc_ndcg_at_20_diff1
value: 26.4283
- type: nauc_ndcg_at_100_max
value: 35.507
- type: nauc_ndcg_at_100_std
value: 7.991099999999999
- type: nauc_ndcg_at_100_diff1
value: 25.9616
- type: nauc_ndcg_at_1000_max
value: 35.9545
- type: nauc_ndcg_at_1000_std
value: 8.1357
- type: nauc_ndcg_at_1000_diff1
value: 26.5577
- type: nauc_map_at_1_max
value: 26.392300000000002
- type: nauc_map_at_1_std
value: -1.0763
- type: nauc_map_at_1_diff1
value: 32.73
- type: nauc_map_at_3_max
value: 29.8191
- type: nauc_map_at_3_std
value: -1.8852
- type: nauc_map_at_3_diff1
value: 29.5076
- type: nauc_map_at_5_max
value: 30.8727
- type: nauc_map_at_5_std
value: -1.3785
- type: nauc_map_at_5_diff1
value: 29.475299999999997
- type: nauc_map_at_10_max
value: 31.5092
- type: nauc_map_at_10_std
value: -0.1203
- type: nauc_map_at_10_diff1
value: 28.1841
- type: nauc_map_at_20_max
value: 32.6157
- type: nauc_map_at_20_std
value: 0.9819
- type: nauc_map_at_20_diff1
value: 28.339399999999998
- type: nauc_map_at_100_max
value: 33.1895
- type: nauc_map_at_100_std
value: 2.1590000000000003
- type: nauc_map_at_100_diff1
value: 28.180100000000003
- type: nauc_map_at_1000_max
value: 33.2679
- type: nauc_map_at_1000_std
value: 2.2186999999999997
- type: nauc_map_at_1000_diff1
value: 28.2088
- type: nauc_recall_at_1_max
value: 26.392300000000002
- type: nauc_recall_at_1_std
value: -1.0763
- type: nauc_recall_at_1_diff1
value: 32.73
- type: nauc_recall_at_3_max
value: 24.2787
- type: nauc_recall_at_3_std
value: -4.1108
- type: nauc_recall_at_3_diff1
value: 23.903299999999998
- type: nauc_recall_at_5_max
value: 23.0102
- type: nauc_recall_at_5_std
value: -4.4748
- type: nauc_recall_at_5_diff1
value: 22.4027
- type: nauc_recall_at_10_max
value: 20.5018
- type: nauc_recall_at_10_std
value: -2.1145
- type: nauc_recall_at_10_diff1
value: 17.5745
- type: nauc_recall_at_20_max
value: 23.3743
- type: nauc_recall_at_20_std
value: 3.8541
- type: nauc_recall_at_20_diff1
value: 13.4776
- type: nauc_recall_at_100_max
value: 27.6324
- type: nauc_recall_at_100_std
value: 21.3837
- type: nauc_recall_at_100_diff1
value: 7.174600000000001
- type: nauc_recall_at_1000_max
value: 45.033699999999996
- type: nauc_recall_at_1000_std
value: 59.160999999999994
- type: nauc_recall_at_1000_diff1
value: -0.5903
- type: nauc_precision_at_1_max
value: 34.3579
- type: nauc_precision_at_1_std
value: 4.9725
- type: nauc_precision_at_1_diff1
value: 34.5973
- type: nauc_precision_at_3_max
value: 33.6059
- type: nauc_precision_at_3_std
value: 8.9589
- type: nauc_precision_at_3_diff1
value: 16.9583
- type: nauc_precision_at_5_max
value: 30.8753
- type: nauc_precision_at_5_std
value: 10.080300000000001
- type: nauc_precision_at_5_diff1
value: 13.0574
- type: nauc_precision_at_10_max
value: 25.7853
- type: nauc_precision_at_10_std
value: 14.349700000000002
- type: nauc_precision_at_10_diff1
value: 4.2389
- type: nauc_precision_at_20_max
value: 23.3853
- type: nauc_precision_at_20_std
value: 18.4597
- type: nauc_precision_at_20_diff1
value: 0.9729
- type: nauc_precision_at_100_max
value: 17.3016
- type: nauc_precision_at_100_std
value: 23.352500000000003
- type: nauc_precision_at_100_diff1
value: -4.4505
- type: nauc_precision_at_1000_max
value: 10.7759
- type: nauc_precision_at_1000_std
value: 19.098699999999997
- type: nauc_precision_at_1000_diff1
value: -5.919
- type: nauc_mrr_at_1_max
value: 34.3579
- type: nauc_mrr_at_1_std
value: 4.9725
- type: nauc_mrr_at_1_diff1
value: 34.5973
- type: nauc_mrr_at_3_max
value: 34.8266
- type: nauc_mrr_at_3_std
value: 5.6232999999999995
- type: nauc_mrr_at_3_diff1
value: 29.5624
- type: nauc_mrr_at_5_max
value: 34.8732
- type: nauc_mrr_at_5_std
value: 5.447699999999999
- type: nauc_mrr_at_5_diff1
value: 29.9161
- type: nauc_mrr_at_10_max
value: 35.0493
- type: nauc_mrr_at_10_std
value: 6.1511000000000005
- type: nauc_mrr_at_10_diff1
value: 30.117699999999996
- type: nauc_mrr_at_20_max
value: 35.0425
- type: nauc_mrr_at_20_std
value: 6.25
- type: nauc_mrr_at_20_diff1
value: 29.8804
- type: nauc_mrr_at_100_max
value: 35.058499999999995
- type: nauc_mrr_at_100_std
value: 6.1998999999999995
- type: nauc_mrr_at_100_diff1
value: 29.9613
- type: nauc_mrr_at_1000_max
value: 35.0463
- type: nauc_mrr_at_1000_std
value: 6.1806
- type: nauc_mrr_at_1000_diff1
value: 29.973499999999998
- type: main_score
value: 46.682
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (es)
type: miracl/mmteb-miracl
config: es
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 54.474999999999994
- type: ndcg_at_3
value: 45.78
- type: ndcg_at_5
value: 44.321
- type: ndcg_at_10
value: 46.593
- type: ndcg_at_20
value: 51.858000000000004
- type: ndcg_at_100
value: 58.079
- type: ndcg_at_1000
value: 60.656
- type: map_at_1
value: 15.966
- type: map_at_3
value: 25.933
- type: map_at_5
value: 30.171999999999997
- type: map_at_10
value: 34.67
- type: map_at_20
value: 37.501
- type: map_at_100
value: 39.45
- type: map_at_1000
value: 39.689
- type: recall_at_1
value: 15.966
- type: recall_at_3
value: 29.49
- type: recall_at_5
value: 37.983
- type: recall_at_10
value: 49.342999999999996
- type: recall_at_20
value: 62.367
- type: recall_at_100
value: 82.684
- type: recall_at_1000
value: 95.299
- type: precision_at_1
value: 54.474999999999994
- type: precision_at_3
value: 37.86
- type: precision_at_5
value: 30.586000000000002
- type: precision_at_10
value: 21.481
- type: precision_at_20
value: 13.796
- type: precision_at_100
value: 3.7900000000000005
- type: precision_at_1000
value: 0.441
- type: mrr_at_1
value: 54.475300000000004
- type: mrr_at_3
value: 62.191399999999994
- type: mrr_at_5
value: 63.74999999999999
- type: mrr_at_10
value: 64.4789
- type: mrr_at_20
value: 64.8911
- type: mrr_at_100
value: 65.0641
- type: mrr_at_1000
value: 65.07469999999999
- type: nauc_ndcg_at_1_max
value: 42.4187
- type: nauc_ndcg_at_1_std
value: 17.6337
- type: nauc_ndcg_at_1_diff1
value: 36.2923
- type: nauc_ndcg_at_3_max
value: 37.073499999999996
- type: nauc_ndcg_at_3_std
value: 16.0772
- type: nauc_ndcg_at_3_diff1
value: 26.4292
- type: nauc_ndcg_at_5_max
value: 36.1381
- type: nauc_ndcg_at_5_std
value: 14.585999999999999
- type: nauc_ndcg_at_5_diff1
value: 26.411299999999997
- type: nauc_ndcg_at_10_max
value: 35.5405
- type: nauc_ndcg_at_10_std
value: 15.0147
- type: nauc_ndcg_at_10_diff1
value: 26.299899999999997
- type: nauc_ndcg_at_20_max
value: 39.764500000000005
- type: nauc_ndcg_at_20_std
value: 20.311899999999998
- type: nauc_ndcg_at_20_diff1
value: 26.3937
- type: nauc_ndcg_at_100_max
value: 44.473
- type: nauc_ndcg_at_100_std
value: 26.6476
- type: nauc_ndcg_at_100_diff1
value: 26.1508
- type: nauc_ndcg_at_1000_max
value: 44.1126
- type: nauc_ndcg_at_1000_std
value: 25.8031
- type: nauc_ndcg_at_1000_diff1
value: 26.2323
- type: nauc_map_at_1_max
value: 10.2435
- type: nauc_map_at_1_std
value: -11.501999999999999
- type: nauc_map_at_1_diff1
value: 26.050800000000002
- type: nauc_map_at_3_max
value: 18.8877
- type: nauc_map_at_3_std
value: -3.9174
- type: nauc_map_at_3_diff1
value: 25.8438
- type: nauc_map_at_5_max
value: 23.7785
- type: nauc_map_at_5_std
value: 0.6597000000000001
- type: nauc_map_at_5_diff1
value: 25.2118
- type: nauc_map_at_10_max
value: 28.6819
- type: nauc_map_at_10_std
value: 6.741
- type: nauc_map_at_10_diff1
value: 24.6999
- type: nauc_map_at_20_max
value: 31.853900000000003
- type: nauc_map_at_20_std
value: 10.5967
- type: nauc_map_at_20_diff1
value: 24.8637
- type: nauc_map_at_100_max
value: 33.9181
- type: nauc_map_at_100_std
value: 13.254
- type: nauc_map_at_100_diff1
value: 24.759500000000003
- type: nauc_map_at_1000_max
value: 33.9679
- type: nauc_map_at_1000_std
value: 13.290199999999999
- type: nauc_map_at_1000_diff1
value: 24.758399999999998
- type: nauc_recall_at_1_max
value: 10.2435
- type: nauc_recall_at_1_std
value: -11.501999999999999
- type: nauc_recall_at_1_diff1
value: 26.050800000000002
- type: nauc_recall_at_3_max
value: 16.737099999999998
- type: nauc_recall_at_3_std
value: -4.3613
- type: nauc_recall_at_3_diff1
value: 23.771900000000002
- type: nauc_recall_at_5_max
value: 20.0168
- type: nauc_recall_at_5_std
value: 1.1395
- type: nauc_recall_at_5_diff1
value: 21.4641
- type: nauc_recall_at_10_max
value: 26.6231
- type: nauc_recall_at_10_std
value: 12.728700000000002
- type: nauc_recall_at_10_diff1
value: 18.947400000000002
- type: nauc_recall_at_20_max
value: 31.4926
- type: nauc_recall_at_20_std
value: 21.0613
- type: nauc_recall_at_20_diff1
value: 17.8382
- type: nauc_recall_at_100_max
value: 46.1255
- type: nauc_recall_at_100_std
value: 45.2197
- type: nauc_recall_at_100_diff1
value: 15.1202
- type: nauc_recall_at_1000_max
value: 54.710499999999996
- type: nauc_recall_at_1000_std
value: 68.72019999999999
- type: nauc_recall_at_1000_diff1
value: 9.2808
- type: nauc_precision_at_1_max
value: 42.4187
- type: nauc_precision_at_1_std
value: 17.6337
- type: nauc_precision_at_1_diff1
value: 36.2923
- type: nauc_precision_at_3_max
value: 42.056900000000006
- type: nauc_precision_at_3_std
value: 26.4648
- type: nauc_precision_at_3_diff1
value: 20.366500000000002
- type: nauc_precision_at_5_max
value: 45.4175
- type: nauc_precision_at_5_std
value: 32.2676
- type: nauc_precision_at_5_diff1
value: 14.9145
- type: nauc_precision_at_10_max
value: 43.9305
- type: nauc_precision_at_10_std
value: 37.9795
- type: nauc_precision_at_10_diff1
value: 8.4088
- type: nauc_precision_at_20_max
value: 44.183499999999995
- type: nauc_precision_at_20_std
value: 42.9261
- type: nauc_precision_at_20_diff1
value: 5.0112
- type: nauc_precision_at_100_max
value: 40.8771
- type: nauc_precision_at_100_std
value: 46.921800000000005
- type: nauc_precision_at_100_diff1
value: -1.6650000000000003
- type: nauc_precision_at_1000_max
value: 32.0705
- type: nauc_precision_at_1000_std
value: 39.5086
- type: nauc_precision_at_1000_diff1
value: -5.5237
- type: nauc_mrr_at_1_max
value: 42.4187
- type: nauc_mrr_at_1_std
value: 17.6337
- type: nauc_mrr_at_1_diff1
value: 36.2923
- type: nauc_mrr_at_3_max
value: 47.2755
- type: nauc_mrr_at_3_std
value: 23.8294
- type: nauc_mrr_at_3_diff1
value: 35.5243
- type: nauc_mrr_at_5_max
value: 47.6991
- type: nauc_mrr_at_5_std
value: 24.6507
- type: nauc_mrr_at_5_diff1
value: 35.5186
- type: nauc_mrr_at_10_max
value: 47.726
- type: nauc_mrr_at_10_std
value: 24.9941
- type: nauc_mrr_at_10_diff1
value: 35.5396
- type: nauc_mrr_at_20_max
value: 47.6055
- type: nauc_mrr_at_20_std
value: 24.9619
- type: nauc_mrr_at_20_diff1
value: 35.3844
- type: nauc_mrr_at_100_max
value: 47.5619
- type: nauc_mrr_at_100_std
value: 24.794
- type: nauc_mrr_at_100_diff1
value: 35.4683
- type: nauc_mrr_at_1000_max
value: 47.545700000000004
- type: nauc_mrr_at_1000_std
value: 24.7716
- type: nauc_mrr_at_1000_diff1
value: 35.4674
- type: main_score
value: 46.593
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (fa)
type: miracl/mmteb-miracl
config: fa
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 36.709
- type: ndcg_at_3
value: 40.235
- type: ndcg_at_5
value: 42.866
- type: ndcg_at_10
value: 46.961000000000006
- type: ndcg_at_20
value: 49.891999999999996
- type: ndcg_at_100
value: 53.262
- type: ndcg_at_1000
value: 55.023999999999994
- type: map_at_1
value: 22.735
- type: map_at_3
value: 33.446
- type: map_at_5
value: 36.199999999999996
- type: map_at_10
value: 38.707
- type: map_at_20
value: 39.931
- type: map_at_100
value: 40.601
- type: map_at_1000
value: 40.711999999999996
- type: recall_at_1
value: 22.735
- type: recall_at_3
value: 41.781
- type: recall_at_5
value: 49.374
- type: recall_at_10
value: 59.949
- type: recall_at_20
value: 68.947
- type: recall_at_100
value: 83.867
- type: recall_at_1000
value: 95.00699999999999
- type: precision_at_1
value: 36.709
- type: precision_at_3
value: 24.578
- type: precision_at_5
value: 18.133
- type: precision_at_10
value: 11.661000000000001
- type: precision_at_20
value: 6.97
- type: precision_at_100
value: 1.737
- type: precision_at_1000
value: 0.199
- type: mrr_at_1
value: 36.7089
- type: mrr_at_3
value: 46.0443
- type: mrr_at_5
value: 47.7848
- type: mrr_at_10
value: 48.908699999999996
- type: mrr_at_20
value: 49.337399999999995
- type: mrr_at_100
value: 49.580999999999996
- type: mrr_at_1000
value: 49.6135
- type: nauc_ndcg_at_1_max
value: 40.3709
- type: nauc_ndcg_at_1_std
value: 8.100200000000001
- type: nauc_ndcg_at_1_diff1
value: 30.2274
- type: nauc_ndcg_at_3_max
value: 36.0603
- type: nauc_ndcg_at_3_std
value: 5.0052
- type: nauc_ndcg_at_3_diff1
value: 28.380899999999997
- type: nauc_ndcg_at_5_max
value: 36.235
- type: nauc_ndcg_at_5_std
value: 4.7146
- type: nauc_ndcg_at_5_diff1
value: 27.969
- type: nauc_ndcg_at_10_max
value: 38.9403
- type: nauc_ndcg_at_10_std
value: 8.66
- type: nauc_ndcg_at_10_diff1
value: 26.2876
- type: nauc_ndcg_at_20_max
value: 41.3286
- type: nauc_ndcg_at_20_std
value: 10.9269
- type: nauc_ndcg_at_20_diff1
value: 25.859900000000003
- type: nauc_ndcg_at_100_max
value: 42.8643
- type: nauc_ndcg_at_100_std
value: 14.2822
- type: nauc_ndcg_at_100_diff1
value: 25.3784
- type: nauc_ndcg_at_1000_max
value: 41.8778
- type: nauc_ndcg_at_1000_std
value: 13.130600000000001
- type: nauc_ndcg_at_1000_diff1
value: 25.9498
- type: nauc_map_at_1_max
value: 27.2644
- type: nauc_map_at_1_std
value: -2.6623
- type: nauc_map_at_1_diff1
value: 40.2119
- type: nauc_map_at_3_max
value: 32.121100000000006
- type: nauc_map_at_3_std
value: 0.6962999999999999
- type: nauc_map_at_3_diff1
value: 33.265499999999996
- type: nauc_map_at_5_max
value: 33.1237
- type: nauc_map_at_5_std
value: 1.6095000000000002
- type: nauc_map_at_5_diff1
value: 30.924400000000002
- type: nauc_map_at_10_max
value: 35.8464
- type: nauc_map_at_10_std
value: 4.6409
- type: nauc_map_at_10_diff1
value: 29.3654
- type: nauc_map_at_20_max
value: 36.967299999999994
- type: nauc_map_at_20_std
value: 5.8244
- type: nauc_map_at_20_diff1
value: 29.0251
- type: nauc_map_at_100_max
value: 37.3859
- type: nauc_map_at_100_std
value: 6.575499999999999
- type: nauc_map_at_100_diff1
value: 28.9224
- type: nauc_map_at_1000_max
value: 37.3438
- type: nauc_map_at_1000_std
value: 6.5534
- type: nauc_map_at_1000_diff1
value: 28.952099999999998
- type: nauc_recall_at_1_max
value: 27.2644
- type: nauc_recall_at_1_std
value: -2.6623
- type: nauc_recall_at_1_diff1
value: 40.2119
- type: nauc_recall_at_3_max
value: 29.0364
- type: nauc_recall_at_3_std
value: 0.8965000000000001
- type: nauc_recall_at_3_diff1
value: 27.651999999999997
- type: nauc_recall_at_5_max
value: 29.299799999999998
- type: nauc_recall_at_5_std
value: 1.0264
- type: nauc_recall_at_5_diff1
value: 23.3762
- type: nauc_recall_at_10_max
value: 34.4238
- type: nauc_recall_at_10_std
value: 10.228299999999999
- type: nauc_recall_at_10_diff1
value: 17.9909
- type: nauc_recall_at_20_max
value: 42.5987
- type: nauc_recall_at_20_std
value: 16.880899999999997
- type: nauc_recall_at_20_diff1
value: 16.4298
- type: nauc_recall_at_100_max
value: 55.767599999999995
- type: nauc_recall_at_100_std
value: 44.9392
- type: nauc_recall_at_100_diff1
value: 8.6006
- type: nauc_recall_at_1000_max
value: 60.8797
- type: nauc_recall_at_1000_std
value: 64.1015
- type: nauc_recall_at_1000_diff1
value: 5.9098
- type: nauc_precision_at_1_max
value: 40.3709
- type: nauc_precision_at_1_std
value: 8.100200000000001
- type: nauc_precision_at_1_diff1
value: 30.2274
- type: nauc_precision_at_3_max
value: 39.9513
- type: nauc_precision_at_3_std
value: 15.568999999999999
- type: nauc_precision_at_3_diff1
value: 9.9843
- type: nauc_precision_at_5_max
value: 38.1062
- type: nauc_precision_at_5_std
value: 18.7953
- type: nauc_precision_at_5_diff1
value: 1.4489
- type: nauc_precision_at_10_max
value: 37.601099999999995
- type: nauc_precision_at_10_std
value: 26.145699999999998
- type: nauc_precision_at_10_diff1
value: -6.6542
- type: nauc_precision_at_20_max
value: 35.5961
- type: nauc_precision_at_20_std
value: 29.930200000000003
- type: nauc_precision_at_20_diff1
value: -9.7241
- type: nauc_precision_at_100_max
value: 28.092299999999998
- type: nauc_precision_at_100_std
value: 34.0409
- type: nauc_precision_at_100_diff1
value: -15.037400000000002
- type: nauc_precision_at_1000_max
value: 17.1738
- type: nauc_precision_at_1000_std
value: 26.948499999999996
- type: nauc_precision_at_1000_diff1
value: -17.5066
- type: nauc_mrr_at_1_max
value: 40.3709
- type: nauc_mrr_at_1_std
value: 8.100200000000001
- type: nauc_mrr_at_1_diff1
value: 30.2274
- type: nauc_mrr_at_3_max
value: 41.971399999999996
- type: nauc_mrr_at_3_std
value: 10.34
- type: nauc_mrr_at_3_diff1
value: 27.5952
- type: nauc_mrr_at_5_max
value: 42.721599999999995
- type: nauc_mrr_at_5_std
value: 10.796100000000001
- type: nauc_mrr_at_5_diff1
value: 27.260800000000003
- type: nauc_mrr_at_10_max
value: 42.651
- type: nauc_mrr_at_10_std
value: 11.397599999999999
- type: nauc_mrr_at_10_diff1
value: 26.5974
- type: nauc_mrr_at_20_max
value: 42.7886
- type: nauc_mrr_at_20_std
value: 11.4316
- type: nauc_mrr_at_20_diff1
value: 26.724500000000003
- type: nauc_mrr_at_100_max
value: 42.8826
- type: nauc_mrr_at_100_std
value: 11.549
- type: nauc_mrr_at_100_diff1
value: 26.762999999999998
- type: nauc_mrr_at_1000_max
value: 42.8647
- type: nauc_mrr_at_1000_std
value: 11.522300000000001
- type: nauc_mrr_at_1000_diff1
value: 26.790799999999997
- type: main_score
value: 46.961000000000006
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (fi)
type: miracl/mmteb-miracl
config: fi
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 59.245000000000005
- type: ndcg_at_3
value: 58.876
- type: ndcg_at_5
value: 61.778999999999996
- type: ndcg_at_10
value: 65.551
- type: ndcg_at_20
value: 67.552
- type: ndcg_at_100
value: 69.67
- type: ndcg_at_1000
value: 70.521
- type: map_at_1
value: 37.669000000000004
- type: map_at_3
value: 52.28
- type: map_at_5
value: 55.064
- type: map_at_10
value: 57.29
- type: map_at_20
value: 58.162000000000006
- type: map_at_100
value: 58.648999999999994
- type: map_at_1000
value: 58.701
- type: recall_at_1
value: 37.669000000000004
- type: recall_at_3
value: 60.234
- type: recall_at_5
value: 67.135
- type: recall_at_10
value: 76.529
- type: recall_at_20
value: 82.685
- type: recall_at_100
value: 91.56
- type: recall_at_1000
value: 96.977
- type: precision_at_1
value: 59.245000000000005
- type: precision_at_3
value: 34.435
- type: precision_at_5
value: 23.745
- type: precision_at_10
value: 13.980999999999998
- type: precision_at_20
value: 7.707
- type: precision_at_100
value: 1.7489999999999999
- type: precision_at_1000
value: 0.186
- type: mrr_at_1
value: 59.244699999999995
- type: mrr_at_3
value: 67.9517
- type: mrr_at_5
value: 68.9746
- type: mrr_at_10
value: 69.7599
- type: mrr_at_20
value: 69.9947
- type: mrr_at_100
value: 70.1058
- type: mrr_at_1000
value: 70.11749999999999
- type: nauc_ndcg_at_1_max
value: 38.7543
- type: nauc_ndcg_at_1_std
value: 4.2023
- type: nauc_ndcg_at_1_diff1
value: 50.8162
- type: nauc_ndcg_at_3_max
value: 36.9886
- type: nauc_ndcg_at_3_std
value: 2.7807
- type: nauc_ndcg_at_3_diff1
value: 39.9604
- type: nauc_ndcg_at_5_max
value: 38.567800000000005
- type: nauc_ndcg_at_5_std
value: 4.0823
- type: nauc_ndcg_at_5_diff1
value: 40.1034
- type: nauc_ndcg_at_10_max
value: 39.6717
- type: nauc_ndcg_at_10_std
value: 4.836
- type: nauc_ndcg_at_10_diff1
value: 39.546
- type: nauc_ndcg_at_20_max
value: 40.860400000000006
- type: nauc_ndcg_at_20_std
value: 7.385999999999999
- type: nauc_ndcg_at_20_diff1
value: 39.1921
- type: nauc_ndcg_at_100_max
value: 41.021
- type: nauc_ndcg_at_100_std
value: 9.0238
- type: nauc_ndcg_at_100_diff1
value: 39.6248
- type: nauc_ndcg_at_1000_max
value: 40.4034
- type: nauc_ndcg_at_1000_std
value: 8.204500000000001
- type: nauc_ndcg_at_1000_diff1
value: 40.0309
- type: nauc_map_at_1_max
value: 26.493499999999997
- type: nauc_map_at_1_std
value: -2.5927
- type: nauc_map_at_1_diff1
value: 46.5824
- type: nauc_map_at_3_max
value: 34.2786
- type: nauc_map_at_3_std
value: 0.5491
- type: nauc_map_at_3_diff1
value: 39.4368
- type: nauc_map_at_5_max
value: 36.2078
- type: nauc_map_at_5_std
value: 2.3709000000000002
- type: nauc_map_at_5_diff1
value: 39.3797
- type: nauc_map_at_10_max
value: 36.9681
- type: nauc_map_at_10_std
value: 2.8434999999999997
- type: nauc_map_at_10_diff1
value: 39.1311
- type: nauc_map_at_20_max
value: 37.4538
- type: nauc_map_at_20_std
value: 3.8388
- type: nauc_map_at_20_diff1
value: 38.9234
- type: nauc_map_at_100_max
value: 37.5899
- type: nauc_map_at_100_std
value: 4.2547
- type: nauc_map_at_100_diff1
value: 39.0103
- type: nauc_map_at_1000_max
value: 37.5573
- type: nauc_map_at_1000_std
value: 4.221699999999999
- type: nauc_map_at_1000_diff1
value: 39.0312
- type: nauc_recall_at_1_max
value: 26.493499999999997
- type: nauc_recall_at_1_std
value: -2.5927
- type: nauc_recall_at_1_diff1
value: 46.5824
- type: nauc_recall_at_3_max
value: 33.2212
- type: nauc_recall_at_3_std
value: 0.5208
- type: nauc_recall_at_3_diff1
value: 33.0793
- type: nauc_recall_at_5_max
value: 36.4292
- type: nauc_recall_at_5_std
value: 4.139
- type: nauc_recall_at_5_diff1
value: 32.357200000000006
- type: nauc_recall_at_10_max
value: 39.473
- type: nauc_recall_at_10_std
value: 5.6589
- type: nauc_recall_at_10_diff1
value: 28.176299999999998
- type: nauc_recall_at_20_max
value: 45.8088
- type: nauc_recall_at_20_std
value: 17.084
- type: nauc_recall_at_20_diff1
value: 25.1991
- type: nauc_recall_at_100_max
value: 53.8483
- type: nauc_recall_at_100_std
value: 41.8548
- type: nauc_recall_at_100_diff1
value: 20.316699999999997
- type: nauc_recall_at_1000_max
value: 57.7136
- type: nauc_recall_at_1000_std
value: 61.00600000000001
- type: nauc_recall_at_1000_diff1
value: 14.565900000000001
- type: nauc_precision_at_1_max
value: 38.7543
- type: nauc_precision_at_1_std
value: 4.2023
- type: nauc_precision_at_1_diff1
value: 50.8162
- type: nauc_precision_at_3_max
value: 30.9959
- type: nauc_precision_at_3_std
value: 11.363
- type: nauc_precision_at_3_diff1
value: 12.556899999999999
- type: nauc_precision_at_5_max
value: 27.8411
- type: nauc_precision_at_5_std
value: 15.3994
- type: nauc_precision_at_5_diff1
value: 5.9959
- type: nauc_precision_at_10_max
value: 21.067700000000002
- type: nauc_precision_at_10_std
value: 16.4476
- type: nauc_precision_at_10_diff1
value: -2.7433
- type: nauc_precision_at_20_max
value: 17.8813
- type: nauc_precision_at_20_std
value: 21.4052
- type: nauc_precision_at_20_diff1
value: -8.7583
- type: nauc_precision_at_100_max
value: 8.864700000000001
- type: nauc_precision_at_100_std
value: 24.1294
- type: nauc_precision_at_100_diff1
value: -14.3597
- type: nauc_precision_at_1000_max
value: 1.8260999999999998
- type: nauc_precision_at_1000_std
value: 20.0461
- type: nauc_precision_at_1000_diff1
value: -17.6062
- type: nauc_mrr_at_1_max
value: 38.7543
- type: nauc_mrr_at_1_std
value: 4.2023
- type: nauc_mrr_at_1_diff1
value: 50.8162
- type: nauc_mrr_at_3_max
value: 40.8761
- type: nauc_mrr_at_3_std
value: 5.5156
- type: nauc_mrr_at_3_diff1
value: 47.6824
- type: nauc_mrr_at_5_max
value: 41.1811
- type: nauc_mrr_at_5_std
value: 6.0588999999999995
- type: nauc_mrr_at_5_diff1
value: 47.9242
- type: nauc_mrr_at_10_max
value: 41.2511
- type: nauc_mrr_at_10_std
value: 6.1515
- type: nauc_mrr_at_10_diff1
value: 47.7245
- type: nauc_mrr_at_20_max
value: 41.343
- type: nauc_mrr_at_20_std
value: 6.4499
- type: nauc_mrr_at_20_diff1
value: 47.8506
- type: nauc_mrr_at_100_max
value: 41.3067
- type: nauc_mrr_at_100_std
value: 6.4111
- type: nauc_mrr_at_100_diff1
value: 47.876000000000005
- type: nauc_mrr_at_1000_max
value: 41.2977
- type: nauc_mrr_at_1000_std
value: 6.397899999999999
- type: nauc_mrr_at_1000_diff1
value: 47.8808
- type: main_score
value: 65.551
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (fr)
type: miracl/mmteb-miracl
config: fr
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 38.775999999999996
- type: ndcg_at_3
value: 38.924
- type: ndcg_at_5
value: 42.571999999999996
- type: ndcg_at_10
value: 47.589
- type: ndcg_at_20
value: 51.202999999999996
- type: ndcg_at_100
value: 54.641
- type: ndcg_at_1000
value: 56.28999999999999
- type: map_at_1
value: 22.081999999999997
- type: map_at_3
value: 32.286
- type: map_at_5
value: 35.354
- type: map_at_10
value: 38.071
- type: map_at_20
value: 39.534000000000006
- type: map_at_100
value: 40.308
- type: map_at_1000
value: 40.412
- type: recall_at_1
value: 22.081999999999997
- type: recall_at_3
value: 39.527
- type: recall_at_5
value: 48.983
- type: recall_at_10
value: 61.619
- type: recall_at_20
value: 72.68900000000001
- type: recall_at_100
value: 87.237
- type: recall_at_1000
value: 97.449
- type: precision_at_1
value: 38.775999999999996
- type: precision_at_3
value: 24.976000000000003
- type: precision_at_5
value: 18.659
- type: precision_at_10
value: 12.157
- type: precision_at_20
value: 7.405
- type: precision_at_100
value: 1.831
- type: precision_at_1000
value: 0.20600000000000002
- type: mrr_at_1
value: 38.7755
- type: mrr_at_3
value: 47.4733
- type: mrr_at_5
value: 49.5578
- type: mrr_at_10
value: 51.119400000000006
- type: mrr_at_20
value: 51.6826
- type: mrr_at_100
value: 51.8472
- type: mrr_at_1000
value: 51.87969999999999
- type: nauc_ndcg_at_1_max
value: 37.6869
- type: nauc_ndcg_at_1_std
value: 19.3059
- type: nauc_ndcg_at_1_diff1
value: 24.1548
- type: nauc_ndcg_at_3_max
value: 33.0185
- type: nauc_ndcg_at_3_std
value: 19.4304
- type: nauc_ndcg_at_3_diff1
value: 18.152099999999997
- type: nauc_ndcg_at_5_max
value: 35.7529
- type: nauc_ndcg_at_5_std
value: 20.8762
- type: nauc_ndcg_at_5_diff1
value: 20.9497
- type: nauc_ndcg_at_10_max
value: 35.9846
- type: nauc_ndcg_at_10_std
value: 21.7196
- type: nauc_ndcg_at_10_diff1
value: 19.3302
- type: nauc_ndcg_at_20_max
value: 38.313199999999995
- type: nauc_ndcg_at_20_std
value: 23.2567
- type: nauc_ndcg_at_20_diff1
value: 20.1896
- type: nauc_ndcg_at_100_max
value: 38.2753
- type: nauc_ndcg_at_100_std
value: 25.048399999999997
- type: nauc_ndcg_at_100_diff1
value: 19.5028
- type: nauc_ndcg_at_1000_max
value: 37.8159
- type: nauc_ndcg_at_1000_std
value: 23.8262
- type: nauc_ndcg_at_1000_diff1
value: 19.4799
- type: nauc_map_at_1_max
value: 25.040200000000002
- type: nauc_map_at_1_std
value: 11.5183
- type: nauc_map_at_1_diff1
value: 23.7651
- type: nauc_map_at_3_max
value: 30.5355
- type: nauc_map_at_3_std
value: 17.7343
- type: nauc_map_at_3_diff1
value: 19.0017
- type: nauc_map_at_5_max
value: 33.492
- type: nauc_map_at_5_std
value: 19.7752
- type: nauc_map_at_5_diff1
value: 20.4072
- type: nauc_map_at_10_max
value: 33.3246
- type: nauc_map_at_10_std
value: 19.8087
- type: nauc_map_at_10_diff1
value: 19.184
- type: nauc_map_at_20_max
value: 34.3329
- type: nauc_map_at_20_std
value: 20.6622
- type: nauc_map_at_20_diff1
value: 19.625
- type: nauc_map_at_100_max
value: 34.407700000000006
- type: nauc_map_at_100_std
value: 21.0478
- type: nauc_map_at_100_diff1
value: 19.4432
- type: nauc_map_at_1000_max
value: 34.4128
- type: nauc_map_at_1000_std
value: 21.0078
- type: nauc_map_at_1000_diff1
value: 19.4386
- type: nauc_recall_at_1_max
value: 25.040200000000002
- type: nauc_recall_at_1_std
value: 11.5183
- type: nauc_recall_at_1_diff1
value: 23.7651
- type: nauc_recall_at_3_max
value: 28.0362
- type: nauc_recall_at_3_std
value: 18.1405
- type: nauc_recall_at_3_diff1
value: 14.0979
- type: nauc_recall_at_5_max
value: 32.6536
- type: nauc_recall_at_5_std
value: 19.763
- type: nauc_recall_at_5_diff1
value: 18.5941
- type: nauc_recall_at_10_max
value: 32.736399999999996
- type: nauc_recall_at_10_std
value: 20.5625
- type: nauc_recall_at_10_diff1
value: 15.4366
- type: nauc_recall_at_20_max
value: 41.0178
- type: nauc_recall_at_20_std
value: 25.4559
- type: nauc_recall_at_20_diff1
value: 17.8615
- type: nauc_recall_at_100_max
value: 47.700700000000005
- type: nauc_recall_at_100_std
value: 47.386
- type: nauc_recall_at_100_diff1
value: 15.1722
- type: nauc_recall_at_1000_max
value: 75.13119999999999
- type: nauc_recall_at_1000_std
value: 70.6818
- type: nauc_recall_at_1000_diff1
value: 17.7539
- type: nauc_precision_at_1_max
value: 37.6869
- type: nauc_precision_at_1_std
value: 19.3059
- type: nauc_precision_at_1_diff1
value: 24.1548
- type: nauc_precision_at_3_max
value: 37.0296
- type: nauc_precision_at_3_std
value: 24.5362
- type: nauc_precision_at_3_diff1
value: 10.0428
- type: nauc_precision_at_5_max
value: 38.770700000000005
- type: nauc_precision_at_5_std
value: 27.290399999999998
- type: nauc_precision_at_5_diff1
value: 11.1247
- type: nauc_precision_at_10_max
value: 31.2623
- type: nauc_precision_at_10_std
value: 25.794099999999997
- type: nauc_precision_at_10_diff1
value: 2.1571
- type: nauc_precision_at_20_max
value: 29.2963
- type: nauc_precision_at_20_std
value: 25.241000000000003
- type: nauc_precision_at_20_diff1
value: 1.8568000000000002
- type: nauc_precision_at_100_max
value: 18.620800000000003
- type: nauc_precision_at_100_std
value: 22.6874
- type: nauc_precision_at_100_diff1
value: -5.2441
- type: nauc_precision_at_1000_max
value: 10.2324
- type: nauc_precision_at_1000_std
value: 13.1045
- type: nauc_precision_at_1000_diff1
value: -9.7662
- type: nauc_mrr_at_1_max
value: 37.6869
- type: nauc_mrr_at_1_std
value: 19.3059
- type: nauc_mrr_at_1_diff1
value: 24.1548
- type: nauc_mrr_at_3_max
value: 36.3742
- type: nauc_mrr_at_3_std
value: 19.2165
- type: nauc_mrr_at_3_diff1
value: 20.883399999999998
- type: nauc_mrr_at_5_max
value: 37.196400000000004
- type: nauc_mrr_at_5_std
value: 19.839399999999998
- type: nauc_mrr_at_5_diff1
value: 21.6132
- type: nauc_mrr_at_10_max
value: 37.7804
- type: nauc_mrr_at_10_std
value: 20.7829
- type: nauc_mrr_at_10_diff1
value: 21.9443
- type: nauc_mrr_at_20_max
value: 37.7391
- type: nauc_mrr_at_20_std
value: 20.4514
- type: nauc_mrr_at_20_diff1
value: 21.7569
- type: nauc_mrr_at_100_max
value: 37.6639
- type: nauc_mrr_at_100_std
value: 20.450499999999998
- type: nauc_mrr_at_100_diff1
value: 21.7914
- type: nauc_mrr_at_1000_max
value: 37.6357
- type: nauc_mrr_at_1000_std
value: 20.414099999999998
- type: nauc_mrr_at_1000_diff1
value: 21.7914
- type: main_score
value: 47.589
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (hi)
type: miracl/mmteb-miracl
config: hi
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 33.143
- type: ndcg_at_3
value: 34.988
- type: ndcg_at_5
value: 37.938
- type: ndcg_at_10
value: 42.083999999999996
- type: ndcg_at_20
value: 45.399
- type: ndcg_at_100
value: 48.647
- type: ndcg_at_1000
value: 50.712
- type: map_at_1
value: 17.852
- type: map_at_3
value: 27.405
- type: map_at_5
value: 30.781999999999996
- type: map_at_10
value: 33.391999999999996
- type: map_at_20
value: 34.833
- type: map_at_100
value: 35.501
- type: map_at_1000
value: 35.611
- type: recall_at_1
value: 17.852
- type: recall_at_3
value: 33.765
- type: recall_at_5
value: 43.828
- type: recall_at_10
value: 55.217000000000006
- type: recall_at_20
value: 65.231
- type: recall_at_100
value: 79.92899999999999
- type: recall_at_1000
value: 93.434
- type: precision_at_1
value: 33.143
- type: precision_at_3
value: 23.429
- type: precision_at_5
value: 18.229
- type: precision_at_10
value: 11.657
- type: precision_at_20
value: 7.142999999999999
- type: precision_at_100
value: 1.7229999999999999
- type: precision_at_1000
value: 0.201
- type: mrr_at_1
value: 33.1429
- type: mrr_at_3
value: 41.428599999999996
- type: mrr_at_5
value: 43.7857
- type: mrr_at_10
value: 44.9745
- type: mrr_at_20
value: 45.4552
- type: mrr_at_100
value: 45.7257
- type: mrr_at_1000
value: 45.7671
- type: nauc_ndcg_at_1_max
value: 51.2111
- type: nauc_ndcg_at_1_std
value: 15.146799999999999
- type: nauc_ndcg_at_1_diff1
value: 40.127
- type: nauc_ndcg_at_3_max
value: 44.1081
- type: nauc_ndcg_at_3_std
value: 11.708599999999999
- type: nauc_ndcg_at_3_diff1
value: 26.8834
- type: nauc_ndcg_at_5_max
value: 43.077799999999996
- type: nauc_ndcg_at_5_std
value: 13.570599999999999
- type: nauc_ndcg_at_5_diff1
value: 27.5263
- type: nauc_ndcg_at_10_max
value: 45.1081
- type: nauc_ndcg_at_10_std
value: 14.758299999999998
- type: nauc_ndcg_at_10_diff1
value: 29.3043
- type: nauc_ndcg_at_20_max
value: 47.5349
- type: nauc_ndcg_at_20_std
value: 17.8
- type: nauc_ndcg_at_20_diff1
value: 28.416400000000003
- type: nauc_ndcg_at_100_max
value: 48.395500000000006
- type: nauc_ndcg_at_100_std
value: 18.9621
- type: nauc_ndcg_at_100_diff1
value: 28.799500000000002
- type: nauc_ndcg_at_1000_max
value: 48.4885
- type: nauc_ndcg_at_1000_std
value: 18.296100000000003
- type: nauc_ndcg_at_1000_diff1
value: 29.5616
- type: nauc_map_at_1_max
value: 31.3083
- type: nauc_map_at_1_std
value: 6.462700000000001
- type: nauc_map_at_1_diff1
value: 36.2382
- type: nauc_map_at_3_max
value: 35.841699999999996
- type: nauc_map_at_3_std
value: 7.013800000000001
- type: nauc_map_at_3_diff1
value: 28.991699999999998
- type: nauc_map_at_5_max
value: 39.0977
- type: nauc_map_at_5_std
value: 9.8928
- type: nauc_map_at_5_diff1
value: 28.6183
- type: nauc_map_at_10_max
value: 41.8538
- type: nauc_map_at_10_std
value: 11.5648
- type: nauc_map_at_10_diff1
value: 29.1635
- type: nauc_map_at_20_max
value: 43.6057
- type: nauc_map_at_20_std
value: 13.382900000000001
- type: nauc_map_at_20_diff1
value: 28.6067
- type: nauc_map_at_100_max
value: 43.962
- type: nauc_map_at_100_std
value: 13.7517
- type: nauc_map_at_100_diff1
value: 28.841299999999997
- type: nauc_map_at_1000_max
value: 43.9824
- type: nauc_map_at_1000_std
value: 13.732099999999999
- type: nauc_map_at_1000_diff1
value: 28.8971
- type: nauc_recall_at_1_max
value: 31.3083
- type: nauc_recall_at_1_std
value: 6.462700000000001
- type: nauc_recall_at_1_diff1
value: 36.2382
- type: nauc_recall_at_3_max
value: 30.605300000000003
- type: nauc_recall_at_3_std
value: 7.5045
- type: nauc_recall_at_3_diff1
value: 19.0642
- type: nauc_recall_at_5_max
value: 33.4179
- type: nauc_recall_at_5_std
value: 13.1973
- type: nauc_recall_at_5_diff1
value: 20.1321
- type: nauc_recall_at_10_max
value: 36.6194
- type: nauc_recall_at_10_std
value: 15.8973
- type: nauc_recall_at_10_diff1
value: 23.1043
- type: nauc_recall_at_20_max
value: 42.0702
- type: nauc_recall_at_20_std
value: 24.1871
- type: nauc_recall_at_20_diff1
value: 20.7213
- type: nauc_recall_at_100_max
value: 47.0142
- type: nauc_recall_at_100_std
value: 34.8802
- type: nauc_recall_at_100_diff1
value: 18.8255
- type: nauc_recall_at_1000_max
value: 59.413700000000006
- type: nauc_recall_at_1000_std
value: 50.051199999999994
- type: nauc_recall_at_1000_diff1
value: 30.682
- type: nauc_precision_at_1_max
value: 51.2111
- type: nauc_precision_at_1_std
value: 15.146799999999999
- type: nauc_precision_at_1_diff1
value: 40.127
- type: nauc_precision_at_3_max
value: 49.2718
- type: nauc_precision_at_3_std
value: 15.658
- type: nauc_precision_at_3_diff1
value: 17.163700000000002
- type: nauc_precision_at_5_max
value: 51.77349999999999
- type: nauc_precision_at_5_std
value: 21.1016
- type: nauc_precision_at_5_diff1
value: 15.0559
- type: nauc_precision_at_10_max
value: 51.843799999999995
- type: nauc_precision_at_10_std
value: 23.2912
- type: nauc_precision_at_10_diff1
value: 14.191799999999999
- type: nauc_precision_at_20_max
value: 50.41
- type: nauc_precision_at_20_std
value: 28.2005
- type: nauc_precision_at_20_diff1
value: 8.2714
- type: nauc_precision_at_100_max
value: 45.522600000000004
- type: nauc_precision_at_100_std
value: 28.199
- type: nauc_precision_at_100_diff1
value: 7.180400000000001
- type: nauc_precision_at_1000_max
value: 38.663399999999996
- type: nauc_precision_at_1000_std
value: 22.781399999999998
- type: nauc_precision_at_1000_diff1
value: 3.8605
- type: nauc_mrr_at_1_max
value: 51.2111
- type: nauc_mrr_at_1_std
value: 15.146799999999999
- type: nauc_mrr_at_1_diff1
value: 40.127
- type: nauc_mrr_at_3_max
value: 48.0836
- type: nauc_mrr_at_3_std
value: 13.9619
- type: nauc_mrr_at_3_diff1
value: 30.8736
- type: nauc_mrr_at_5_max
value: 49.0073
- type: nauc_mrr_at_5_std
value: 15.6308
- type: nauc_mrr_at_5_diff1
value: 31.8004
- type: nauc_mrr_at_10_max
value: 49.554700000000004
- type: nauc_mrr_at_10_std
value: 15.7261
- type: nauc_mrr_at_10_diff1
value: 32.8141
- type: nauc_mrr_at_20_max
value: 49.6722
- type: nauc_mrr_at_20_std
value: 15.873000000000001
- type: nauc_mrr_at_20_diff1
value: 32.8857
- type: nauc_mrr_at_100_max
value: 49.5869
- type: nauc_mrr_at_100_std
value: 15.8044
- type: nauc_mrr_at_100_diff1
value: 32.811099999999996
- type: nauc_mrr_at_1000_max
value: 49.5787
- type: nauc_mrr_at_1000_std
value: 15.7836
- type: nauc_mrr_at_1000_diff1
value: 32.8438
- type: main_score
value: 42.083999999999996
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (id)
type: miracl/mmteb-miracl
config: id
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 43.854
- type: ndcg_at_3
value: 41.041
- type: ndcg_at_5
value: 42.235
- type: ndcg_at_10
value: 45.458999999999996
- type: ndcg_at_20
value: 48.795
- type: ndcg_at_100
value: 53.642999999999994
- type: ndcg_at_1000
value: 56.052
- type: map_at_1
value: 19.192999999999998
- type: map_at_3
value: 29.125
- type: map_at_5
value: 32.42
- type: map_at_10
value: 35.181000000000004
- type: map_at_20
value: 36.775000000000006
- type: map_at_100
value: 38.06
- type: map_at_1000
value: 38.246
- type: recall_at_1
value: 19.192999999999998
- type: recall_at_3
value: 35.431000000000004
- type: recall_at_5
value: 43.348
- type: recall_at_10
value: 52.89
- type: recall_at_20
value: 61.812999999999995
- type: recall_at_100
value: 79.649
- type: recall_at_1000
value: 92.937
- type: precision_at_1
value: 43.854
- type: precision_at_3
value: 29.757
- type: precision_at_5
value: 23.208000000000002
- type: precision_at_10
value: 15.177
- type: precision_at_20
value: 9.286
- type: precision_at_100
value: 2.524
- type: precision_at_1000
value: 0.299
- type: mrr_at_1
value: 43.8542
- type: mrr_at_3
value: 53.4549
- type: mrr_at_5
value: 55.2674
- type: mrr_at_10
value: 56.2576
- type: mrr_at_20
value: 56.592699999999994
- type: mrr_at_100
value: 56.7841
- type: mrr_at_1000
value: 56.8049
- type: nauc_ndcg_at_1_max
value: 32.205600000000004
- type: nauc_ndcg_at_1_std
value: 11.343499999999999
- type: nauc_ndcg_at_1_diff1
value: 32.8768
- type: nauc_ndcg_at_3_max
value: 25.8163
- type: nauc_ndcg_at_3_std
value: 5.037599999999999
- type: nauc_ndcg_at_3_diff1
value: 26.118799999999997
- type: nauc_ndcg_at_5_max
value: 27.159
- type: nauc_ndcg_at_5_std
value: 2.9204999999999997
- type: nauc_ndcg_at_5_diff1
value: 26.429399999999998
- type: nauc_ndcg_at_10_max
value: 28.6049
- type: nauc_ndcg_at_10_std
value: 3.7817000000000003
- type: nauc_ndcg_at_10_diff1
value: 25.904300000000003
- type: nauc_ndcg_at_20_max
value: 30.5254
- type: nauc_ndcg_at_20_std
value: 6.6297999999999995
- type: nauc_ndcg_at_20_diff1
value: 25.155300000000004
- type: nauc_ndcg_at_100_max
value: 32.3477
- type: nauc_ndcg_at_100_std
value: 11.7329
- type: nauc_ndcg_at_100_diff1
value: 24.038
- type: nauc_ndcg_at_1000_max
value: 32.1871
- type: nauc_ndcg_at_1000_std
value: 12.266
- type: nauc_ndcg_at_1000_diff1
value: 24.5005
- type: nauc_map_at_1_max
value: 19.5131
- type: nauc_map_at_1_std
value: 0.7939999999999999
- type: nauc_map_at_1_diff1
value: 35.4824
- type: nauc_map_at_3_max
value: 21.1372
- type: nauc_map_at_3_std
value: -1.4297
- type: nauc_map_at_3_diff1
value: 28.7825
- type: nauc_map_at_5_max
value: 23.301099999999998
- type: nauc_map_at_5_std
value: -1.6149
- type: nauc_map_at_5_diff1
value: 28.353
- type: nauc_map_at_10_max
value: 25.0545
- type: nauc_map_at_10_std
value: 0.29650000000000004
- type: nauc_map_at_10_diff1
value: 27.6041
- type: nauc_map_at_20_max
value: 26.1938
- type: nauc_map_at_20_std
value: 1.8739999999999999
- type: nauc_map_at_20_diff1
value: 26.9804
- type: nauc_map_at_100_max
value: 26.9981
- type: nauc_map_at_100_std
value: 3.4286
- type: nauc_map_at_100_diff1
value: 26.703599999999998
- type: nauc_map_at_1000_max
value: 27.005200000000002
- type: nauc_map_at_1000_std
value: 3.5663
- type: nauc_map_at_1000_diff1
value: 26.7073
- type: nauc_recall_at_1_max
value: 19.5131
- type: nauc_recall_at_1_std
value: 0.7939999999999999
- type: nauc_recall_at_1_diff1
value: 35.4824
- type: nauc_recall_at_3_max
value: 16.8845
- type: nauc_recall_at_3_std
value: -4.3322
- type: nauc_recall_at_3_diff1
value: 21.232400000000002
- type: nauc_recall_at_5_max
value: 20.1938
- type: nauc_recall_at_5_std
value: -4.638599999999999
- type: nauc_recall_at_5_diff1
value: 19.724
- type: nauc_recall_at_10_max
value: 22.7792
- type: nauc_recall_at_10_std
value: -0.7303999999999999
- type: nauc_recall_at_10_diff1
value: 17.5686
- type: nauc_recall_at_20_max
value: 27.1692
- type: nauc_recall_at_20_std
value: 4.6297
- type: nauc_recall_at_20_diff1
value: 15.5287
- type: nauc_recall_at_100_max
value: 33.9833
- type: nauc_recall_at_100_std
value: 26.366899999999998
- type: nauc_recall_at_100_diff1
value: 6.823799999999999
- type: nauc_recall_at_1000_max
value: 44.722
- type: nauc_recall_at_1000_std
value: 49.6373
- type: nauc_recall_at_1000_diff1
value: -1.5053
- type: nauc_precision_at_1_max
value: 32.205600000000004
- type: nauc_precision_at_1_std
value: 11.343499999999999
- type: nauc_precision_at_1_diff1
value: 32.8768
- type: nauc_precision_at_3_max
value: 24.2364
- type: nauc_precision_at_3_std
value: 8.0909
- type: nauc_precision_at_3_diff1
value: 12.090399999999999
- type: nauc_precision_at_5_max
value: 26.0005
- type: nauc_precision_at_5_std
value: 10.2623
- type: nauc_precision_at_5_diff1
value: 8.2296
- type: nauc_precision_at_10_max
value: 24.6876
- type: nauc_precision_at_10_std
value: 16.8067
- type: nauc_precision_at_10_diff1
value: 1.6472
- type: nauc_precision_at_20_max
value: 22.5879
- type: nauc_precision_at_20_std
value: 22.4936
- type: nauc_precision_at_20_diff1
value: -2.8762
- type: nauc_precision_at_100_max
value: 17.6199
- type: nauc_precision_at_100_std
value: 29.5456
- type: nauc_precision_at_100_diff1
value: -8.3992
- type: nauc_precision_at_1000_max
value: 10.8473
- type: nauc_precision_at_1000_std
value: 27.394600000000004
- type: nauc_precision_at_1000_diff1
value: -9.8316
- type: nauc_mrr_at_1_max
value: 32.205600000000004
- type: nauc_mrr_at_1_std
value: 11.343499999999999
- type: nauc_mrr_at_1_diff1
value: 32.8768
- type: nauc_mrr_at_3_max
value: 32.2439
- type: nauc_mrr_at_3_std
value: 11.927999999999999
- type: nauc_mrr_at_3_diff1
value: 28.501900000000003
- type: nauc_mrr_at_5_max
value: 33.063500000000005
- type: nauc_mrr_at_5_std
value: 12.5223
- type: nauc_mrr_at_5_diff1
value: 28.5765
- type: nauc_mrr_at_10_max
value: 33.0845
- type: nauc_mrr_at_10_std
value: 12.7026
- type: nauc_mrr_at_10_diff1
value: 28.5328
- type: nauc_mrr_at_20_max
value: 33.1039
- type: nauc_mrr_at_20_std
value: 12.7458
- type: nauc_mrr_at_20_diff1
value: 28.6635
- type: nauc_mrr_at_100_max
value: 33.058
- type: nauc_mrr_at_100_std
value: 12.8462
- type: nauc_mrr_at_100_diff1
value: 28.656599999999997
- type: nauc_mrr_at_1000_max
value: 33.0462
- type: nauc_mrr_at_1000_std
value: 12.829699999999999
- type: nauc_mrr_at_1000_diff1
value: 28.6562
- type: main_score
value: 45.458999999999996
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (ja)
type: miracl/mmteb-miracl
config: ja
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 53.256
- type: ndcg_at_3
value: 53.717000000000006
- type: ndcg_at_5
value: 56.523
- type: ndcg_at_10
value: 59.922
- type: ndcg_at_20
value: 62.596
- type: ndcg_at_100
value: 65.40700000000001
- type: ndcg_at_1000
value: 66.484
- type: map_at_1
value: 34.555
- type: map_at_3
value: 45.667
- type: map_at_5
value: 48.888
- type: map_at_10
value: 51.214000000000006
- type: map_at_20
value: 52.325
- type: map_at_100
value: 53.032000000000004
- type: map_at_1000
value: 53.11
- type: recall_at_1
value: 34.555
- type: recall_at_3
value: 53.482
- type: recall_at_5
value: 62.327
- type: recall_at_10
value: 71.476
- type: recall_at_20
value: 79.81099999999999
- type: recall_at_100
value: 91.152
- type: recall_at_1000
value: 97.72800000000001
- type: precision_at_1
value: 53.256
- type: precision_at_3
value: 30.697999999999997
- type: precision_at_5
value: 22.419
- type: precision_at_10
value: 13.453000000000001
- type: precision_at_20
value: 7.756
- type: precision_at_100
value: 1.856
- type: precision_at_1000
value: 0.203
- type: mrr_at_1
value: 53.2558
- type: mrr_at_3
value: 61.860499999999995
- type: mrr_at_5
value: 63.558099999999996
- type: mrr_at_10
value: 64.4037
- type: mrr_at_20
value: 64.78960000000001
- type: mrr_at_100
value: 64.9286
- type: mrr_at_1000
value: 64.9426
- type: nauc_ndcg_at_1_max
value: 40.0831
- type: nauc_ndcg_at_1_std
value: 5.4576
- type: nauc_ndcg_at_1_diff1
value: 43.1468
- type: nauc_ndcg_at_3_max
value: 32.8799
- type: nauc_ndcg_at_3_std
value: -3.7643000000000004
- type: nauc_ndcg_at_3_diff1
value: 33.0607
- type: nauc_ndcg_at_5_max
value: 32.6847
- type: nauc_ndcg_at_5_std
value: -4.4878
- type: nauc_ndcg_at_5_diff1
value: 33.7729
- type: nauc_ndcg_at_10_max
value: 34.0334
- type: nauc_ndcg_at_10_std
value: -3.2938
- type: nauc_ndcg_at_10_diff1
value: 33.9215
- type: nauc_ndcg_at_20_max
value: 35.032799999999995
- type: nauc_ndcg_at_20_std
value: -0.9834
- type: nauc_ndcg_at_20_diff1
value: 33.4568
- type: nauc_ndcg_at_100_max
value: 37.2464
- type: nauc_ndcg_at_100_std
value: 1.9361
- type: nauc_ndcg_at_100_diff1
value: 34.844
- type: nauc_ndcg_at_1000_max
value: 37.0714
- type: nauc_ndcg_at_1000_std
value: 1.7745
- type: nauc_ndcg_at_1000_diff1
value: 35.123
- type: nauc_map_at_1_max
value: 21.2553
- type: nauc_map_at_1_std
value: -11.0112
- type: nauc_map_at_1_diff1
value: 38.4142
- type: nauc_map_at_3_max
value: 25.6791
- type: nauc_map_at_3_std
value: -10.7165
- type: nauc_map_at_3_diff1
value: 33.1602
- type: nauc_map_at_5_max
value: 27.790300000000002
- type: nauc_map_at_5_std
value: -9.0268
- type: nauc_map_at_5_diff1
value: 33.2551
- type: nauc_map_at_10_max
value: 29.4317
- type: nauc_map_at_10_std
value: -7.606300000000001
- type: nauc_map_at_10_diff1
value: 33.456399999999995
- type: nauc_map_at_20_max
value: 30.0805
- type: nauc_map_at_20_std
value: -6.482
- type: nauc_map_at_20_diff1
value: 33.3844
- type: nauc_map_at_100_max
value: 30.7427
- type: nauc_map_at_100_std
value: -5.6065
- type: nauc_map_at_100_diff1
value: 33.650600000000004
- type: nauc_map_at_1000_max
value: 30.763099999999998
- type: nauc_map_at_1000_std
value: -5.5541
- type: nauc_map_at_1000_diff1
value: 33.677
- type: nauc_recall_at_1_max
value: 21.2553
- type: nauc_recall_at_1_std
value: -11.0112
- type: nauc_recall_at_1_diff1
value: 38.4142
- type: nauc_recall_at_3_max
value: 22.537399999999998
- type: nauc_recall_at_3_std
value: -12.565000000000001
- type: nauc_recall_at_3_diff1
value: 26.549
- type: nauc_recall_at_5_max
value: 23.329900000000002
- type: nauc_recall_at_5_std
value: -10.4524
- type: nauc_recall_at_5_diff1
value: 24.7008
- type: nauc_recall_at_10_max
value: 26.0061
- type: nauc_recall_at_10_std
value: -6.1622
- type: nauc_recall_at_10_diff1
value: 22.880300000000002
- type: nauc_recall_at_20_max
value: 26.820300000000003
- type: nauc_recall_at_20_std
value: 0.49820000000000003
- type: nauc_recall_at_20_diff1
value: 17.1066
- type: nauc_recall_at_100_max
value: 41.4851
- type: nauc_recall_at_100_std
value: 24.1372
- type: nauc_recall_at_100_diff1
value: 20.2474
- type: nauc_recall_at_1000_max
value: 46.699
- type: nauc_recall_at_1000_std
value: 43.6571
- type: nauc_recall_at_1000_diff1
value: 12.969800000000001
- type: nauc_precision_at_1_max
value: 40.0831
- type: nauc_precision_at_1_std
value: 5.4576
- type: nauc_precision_at_1_diff1
value: 43.1468
- type: nauc_precision_at_3_max
value: 35.862500000000004
- type: nauc_precision_at_3_std
value: 12.6798
- type: nauc_precision_at_3_diff1
value: 13.8812
- type: nauc_precision_at_5_max
value: 34.525800000000004
- type: nauc_precision_at_5_std
value: 19.4325
- type: nauc_precision_at_5_diff1
value: 8.5877
- type: nauc_precision_at_10_max
value: 31.776500000000002
- type: nauc_precision_at_10_std
value: 24.4128
- type: nauc_precision_at_10_diff1
value: 2.8872999999999998
- type: nauc_precision_at_20_max
value: 27.1526
- type: nauc_precision_at_20_std
value: 29.1072
- type: nauc_precision_at_20_diff1
value: -1.5491
- type: nauc_precision_at_100_max
value: 23.9636
- type: nauc_precision_at_100_std
value: 34.5439
- type: nauc_precision_at_100_diff1
value: -3.8294
- type: nauc_precision_at_1000_max
value: 19.2461
- type: nauc_precision_at_1000_std
value: 33.466499999999996
- type: nauc_precision_at_1000_diff1
value: -5.7622
- type: nauc_mrr_at_1_max
value: 40.0831
- type: nauc_mrr_at_1_std
value: 5.4576
- type: nauc_mrr_at_1_diff1
value: 43.1468
- type: nauc_mrr_at_3_max
value: 44.1712
- type: nauc_mrr_at_3_std
value: 6.1216
- type: nauc_mrr_at_3_diff1
value: 41.1386
- type: nauc_mrr_at_5_max
value: 44.0165
- type: nauc_mrr_at_5_std
value: 6.9895
- type: nauc_mrr_at_5_diff1
value: 41.124
- type: nauc_mrr_at_10_max
value: 43.9807
- type: nauc_mrr_at_10_std
value: 7.1412
- type: nauc_mrr_at_10_diff1
value: 41.0447
- type: nauc_mrr_at_20_max
value: 43.9406
- type: nauc_mrr_at_20_std
value: 7.2738
- type: nauc_mrr_at_20_diff1
value: 40.9775
- type: nauc_mrr_at_100_max
value: 43.9141
- type: nauc_mrr_at_100_std
value: 7.212300000000001
- type: nauc_mrr_at_100_diff1
value: 41.112700000000004
- type: nauc_mrr_at_1000_max
value: 43.9012
- type: nauc_mrr_at_1000_std
value: 7.1947
- type: nauc_mrr_at_1000_diff1
value: 41.1126
- type: main_score
value: 59.922
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (ko)
type: miracl/mmteb-miracl
config: ko
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 54.93
- type: ndcg_at_3
value: 53.068000000000005
- type: ndcg_at_5
value: 55.202
- type: ndcg_at_10
value: 58.413000000000004
- type: ndcg_at_20
value: 61.732
- type: ndcg_at_100
value: 64.374
- type: ndcg_at_1000
value: 65.655
- type: map_at_1
value: 32.602
- type: map_at_3
value: 42.591
- type: map_at_5
value: 46.466
- type: map_at_10
value: 49.38
- type: map_at_20
value: 51.044999999999995
- type: map_at_100
value: 51.842
- type: map_at_1000
value: 51.92
- type: recall_at_1
value: 32.602
- type: recall_at_3
value: 49.173
- type: recall_at_5
value: 58.269999999999996
- type: recall_at_10
value: 68.647
- type: recall_at_20
value: 78.089
- type: recall_at_100
value: 87.746
- type: recall_at_1000
value: 95.524
- type: precision_at_1
value: 54.93
- type: precision_at_3
value: 31.455
- type: precision_at_5
value: 24.413
- type: precision_at_10
value: 15.399
- type: precision_at_20
value: 9.366
- type: precision_at_100
value: 2.235
- type: precision_at_1000
value: 0.246
- type: mrr_at_1
value: 54.9296
- type: mrr_at_3
value: 62.0501
- type: mrr_at_5
value: 63.7167
- type: mrr_at_10
value: 64.7179
- type: mrr_at_20
value: 65.0792
- type: mrr_at_100
value: 65.1651
- type: mrr_at_1000
value: 65.1775
- type: nauc_ndcg_at_1_max
value: 56.11150000000001
- type: nauc_ndcg_at_1_std
value: 30.1071
- type: nauc_ndcg_at_1_diff1
value: 34.2026
- type: nauc_ndcg_at_3_max
value: 34.164899999999996
- type: nauc_ndcg_at_3_std
value: 8.9616
- type: nauc_ndcg_at_3_diff1
value: 33.8594
- type: nauc_ndcg_at_5_max
value: 35.988
- type: nauc_ndcg_at_5_std
value: 9.1819
- type: nauc_ndcg_at_5_diff1
value: 34.3302
- type: nauc_ndcg_at_10_max
value: 33.9669
- type: nauc_ndcg_at_10_std
value: 9.9015
- type: nauc_ndcg_at_10_diff1
value: 34.7522
- type: nauc_ndcg_at_20_max
value: 38.7156
- type: nauc_ndcg_at_20_std
value: 13.478299999999999
- type: nauc_ndcg_at_20_diff1
value: 34.5892
- type: nauc_ndcg_at_100_max
value: 43.2542
- type: nauc_ndcg_at_100_std
value: 19.6461
- type: nauc_ndcg_at_100_diff1
value: 33.5102
- type: nauc_ndcg_at_1000_max
value: 43.5965
- type: nauc_ndcg_at_1000_std
value: 20.1448
- type: nauc_ndcg_at_1000_diff1
value: 33.508500000000005
- type: nauc_map_at_1_max
value: 4.7901
- type: nauc_map_at_1_std
value: -11.3406
- type: nauc_map_at_1_diff1
value: 47.3089
- type: nauc_map_at_3_max
value: 10.8067
- type: nauc_map_at_3_std
value: -11.149000000000001
- type: nauc_map_at_3_diff1
value: 40.8163
- type: nauc_map_at_5_max
value: 19.4936
- type: nauc_map_at_5_std
value: -4.9421
- type: nauc_map_at_5_diff1
value: 38.1108
- type: nauc_map_at_10_max
value: 23.4772
- type: nauc_map_at_10_std
value: 0.5471
- type: nauc_map_at_10_diff1
value: 37.0351
- type: nauc_map_at_20_max
value: 27.0291
- type: nauc_map_at_20_std
value: 3.2716000000000003
- type: nauc_map_at_20_diff1
value: 36.835
- type: nauc_map_at_100_max
value: 28.7591
- type: nauc_map_at_100_std
value: 5.4503
- type: nauc_map_at_100_diff1
value: 36.3655
- type: nauc_map_at_1000_max
value: 28.8292
- type: nauc_map_at_1000_std
value: 5.5265
- type: nauc_map_at_1000_diff1
value: 36.3425
- type: nauc_recall_at_1_max
value: 4.7901
- type: nauc_recall_at_1_std
value: -11.3406
- type: nauc_recall_at_1_diff1
value: 47.3089
- type: nauc_recall_at_3_max
value: 6.1487
- type: nauc_recall_at_3_std
value: -16.451999999999998
- type: nauc_recall_at_3_diff1
value: 35.876200000000004
- type: nauc_recall_at_5_max
value: 17.4052
- type: nauc_recall_at_5_std
value: -8.3001
- type: nauc_recall_at_5_diff1
value: 31.986700000000003
- type: nauc_recall_at_10_max
value: 19.932
- type: nauc_recall_at_10_std
value: -0.6047
- type: nauc_recall_at_10_diff1
value: 29.7464
- type: nauc_recall_at_20_max
value: 27.2026
- type: nauc_recall_at_20_std
value: 3.4061
- type: nauc_recall_at_20_diff1
value: 29.7029
- type: nauc_recall_at_100_max
value: 49.4794
- type: nauc_recall_at_100_std
value: 33.5322
- type: nauc_recall_at_100_diff1
value: 25.5531
- type: nauc_recall_at_1000_max
value: 66.1815
- type: nauc_recall_at_1000_std
value: 62.81529999999999
- type: nauc_recall_at_1000_diff1
value: 27.209699999999998
- type: nauc_precision_at_1_max
value: 56.11150000000001
- type: nauc_precision_at_1_std
value: 30.1071
- type: nauc_precision_at_1_diff1
value: 34.2026
- type: nauc_precision_at_3_max
value: 56.5357
- type: nauc_precision_at_3_std
value: 34.1074
- type: nauc_precision_at_3_diff1
value: 2.1084
- type: nauc_precision_at_5_max
value: 67.0257
- type: nauc_precision_at_5_std
value: 48.780699999999996
- type: nauc_precision_at_5_diff1
value: -9.4319
- type: nauc_precision_at_10_max
value: 64.3278
- type: nauc_precision_at_10_std
value: 57.504
- type: nauc_precision_at_10_diff1
value: -15.3767
- type: nauc_precision_at_20_max
value: 65.8933
- type: nauc_precision_at_20_std
value: 60.3452
- type: nauc_precision_at_20_diff1
value: -19.1514
- type: nauc_precision_at_100_max
value: 63.3574
- type: nauc_precision_at_100_std
value: 64.9713
- type: nauc_precision_at_100_diff1
value: -22.4344
- type: nauc_precision_at_1000_max
value: 59.358599999999996
- type: nauc_precision_at_1000_std
value: 62.943000000000005
- type: nauc_precision_at_1000_diff1
value: -24.9167
- type: nauc_mrr_at_1_max
value: 56.11150000000001
- type: nauc_mrr_at_1_std
value: 30.1071
- type: nauc_mrr_at_1_diff1
value: 34.2026
- type: nauc_mrr_at_3_max
value: 59.3661
- type: nauc_mrr_at_3_std
value: 30.759999999999998
- type: nauc_mrr_at_3_diff1
value: 31.9662
- type: nauc_mrr_at_5_max
value: 60.6752
- type: nauc_mrr_at_5_std
value: 32.477000000000004
- type: nauc_mrr_at_5_diff1
value: 32.235200000000006
- type: nauc_mrr_at_10_max
value: 60.222500000000004
- type: nauc_mrr_at_10_std
value: 32.4976
- type: nauc_mrr_at_10_diff1
value: 31.8963
- type: nauc_mrr_at_20_max
value: 60.0608
- type: nauc_mrr_at_20_std
value: 32.421
- type: nauc_mrr_at_20_diff1
value: 31.812600000000003
- type: nauc_mrr_at_100_max
value: 60.0846
- type: nauc_mrr_at_100_std
value: 32.3954
- type: nauc_mrr_at_100_diff1
value: 31.8055
- type: nauc_mrr_at_1000_max
value: 60.0763
- type: nauc_mrr_at_1000_std
value: 32.403999999999996
- type: nauc_mrr_at_1000_diff1
value: 31.8195
- type: main_score
value: 58.413000000000004
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (ru)
type: miracl/mmteb-miracl
config: ru
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 43.131
- type: ndcg_at_3
value: 42.808
- type: ndcg_at_5
value: 44.373000000000005
- type: ndcg_at_10
value: 48.262
- type: ndcg_at_20
value: 52.022999999999996
- type: ndcg_at_100
value: 56.157999999999994
- type: ndcg_at_1000
value: 57.928999999999995
- type: map_at_1
value: 22.017999999999997
- type: map_at_3
value: 32.41
- type: map_at_5
value: 35.558
- type: map_at_10
value: 38.449
- type: map_at_20
value: 40.144000000000005
- type: map_at_100
value: 41.219
- type: map_at_1000
value: 41.355
- type: recall_at_1
value: 22.017999999999997
- type: recall_at_3
value: 39.306999999999995
- type: recall_at_5
value: 47.077000000000005
- type: recall_at_10
value: 58.034
- type: recall_at_20
value: 68.60300000000001
- type: recall_at_100
value: 84.074
- type: recall_at_1000
value: 93.938
- type: precision_at_1
value: 43.131
- type: precision_at_3
value: 29.127
- type: precision_at_5
value: 22.076999999999998
- type: precision_at_10
value: 14.441
- type: precision_at_20
value: 8.958
- type: precision_at_100
value: 2.331
- type: precision_at_1000
value: 0.267
- type: mrr_at_1
value: 43.131
- type: mrr_at_3
value: 53.28810000000001
- type: mrr_at_5
value: 54.785700000000006
- type: mrr_at_10
value: 55.948100000000004
- type: mrr_at_20
value: 56.422799999999995
- type: mrr_at_100
value: 56.5998
- type: mrr_at_1000
value: 56.615
- type: nauc_ndcg_at_1_max
value: 37.0316
- type: nauc_ndcg_at_1_std
value: 16.0392
- type: nauc_ndcg_at_1_diff1
value: 35.6661
- type: nauc_ndcg_at_3_max
value: 32.547
- type: nauc_ndcg_at_3_std
value: 12.7791
- type: nauc_ndcg_at_3_diff1
value: 27.252599999999997
- type: nauc_ndcg_at_5_max
value: 33.2141
- type: nauc_ndcg_at_5_std
value: 12.16
- type: nauc_ndcg_at_5_diff1
value: 26.5849
- type: nauc_ndcg_at_10_max
value: 34.6417
- type: nauc_ndcg_at_10_std
value: 13.350699999999998
- type: nauc_ndcg_at_10_diff1
value: 26.616600000000002
- type: nauc_ndcg_at_20_max
value: 36.94
- type: nauc_ndcg_at_20_std
value: 16.3221
- type: nauc_ndcg_at_20_diff1
value: 26.3159
- type: nauc_ndcg_at_100_max
value: 39.050200000000004
- type: nauc_ndcg_at_100_std
value: 19.5849
- type: nauc_ndcg_at_100_diff1
value: 26.6473
- type: nauc_ndcg_at_1000_max
value: 39.030300000000004
- type: nauc_ndcg_at_1000_std
value: 19.6508
- type: nauc_ndcg_at_1000_diff1
value: 27.0546
- type: nauc_map_at_1_max
value: 21.368599999999997
- type: nauc_map_at_1_std
value: -0.9005000000000001
- type: nauc_map_at_1_diff1
value: 35.212500000000006
- type: nauc_map_at_3_max
value: 26.070700000000002
- type: nauc_map_at_3_std
value: 3.9229
- type: nauc_map_at_3_diff1
value: 29.1293
- type: nauc_map_at_5_max
value: 29.032999999999998
- type: nauc_map_at_5_std
value: 6.5134
- type: nauc_map_at_5_diff1
value: 27.908699999999996
- type: nauc_map_at_10_max
value: 30.7252
- type: nauc_map_at_10_std
value: 8.2968
- type: nauc_map_at_10_diff1
value: 27.6959
- type: nauc_map_at_20_max
value: 31.926900000000003
- type: nauc_map_at_20_std
value: 9.7313
- type: nauc_map_at_20_diff1
value: 27.441300000000002
- type: nauc_map_at_100_max
value: 32.7179
- type: nauc_map_at_100_std
value: 10.8331
- type: nauc_map_at_100_diff1
value: 27.458
- type: nauc_map_at_1000_max
value: 32.7499
- type: nauc_map_at_1000_std
value: 10.898900000000001
- type: nauc_map_at_1000_diff1
value: 27.476699999999997
- type: nauc_recall_at_1_max
value: 21.368599999999997
- type: nauc_recall_at_1_std
value: -0.9005000000000001
- type: nauc_recall_at_1_diff1
value: 35.212500000000006
- type: nauc_recall_at_3_max
value: 22.0607
- type: nauc_recall_at_3_std
value: 3.9726
- type: nauc_recall_at_3_diff1
value: 21.705
- type: nauc_recall_at_5_max
value: 25.915300000000002
- type: nauc_recall_at_5_std
value: 7.4636
- type: nauc_recall_at_5_diff1
value: 18.7443
- type: nauc_recall_at_10_max
value: 28.7142
- type: nauc_recall_at_10_std
value: 11.5264
- type: nauc_recall_at_10_diff1
value: 16.7709
- type: nauc_recall_at_20_max
value: 33.5513
- type: nauc_recall_at_20_std
value: 18.5489
- type: nauc_recall_at_20_diff1
value: 14.751900000000001
- type: nauc_recall_at_100_max
value: 45.7418
- type: nauc_recall_at_100_std
value: 37.693
- type: nauc_recall_at_100_diff1
value: 13.589699999999999
- type: nauc_recall_at_1000_max
value: 62.0517
- type: nauc_recall_at_1000_std
value: 61.5653
- type: nauc_recall_at_1000_diff1
value: 12.8732
- type: nauc_precision_at_1_max
value: 37.0316
- type: nauc_precision_at_1_std
value: 16.0392
- type: nauc_precision_at_1_diff1
value: 35.6661
- type: nauc_precision_at_3_max
value: 36.3558
- type: nauc_precision_at_3_std
value: 24.7253
- type: nauc_precision_at_3_diff1
value: 13.029499999999999
- type: nauc_precision_at_5_max
value: 36.3254
- type: nauc_precision_at_5_std
value: 26.7762
- type: nauc_precision_at_5_diff1
value: 7.561
- type: nauc_precision_at_10_max
value: 32.2831
- type: nauc_precision_at_10_std
value: 27.621499999999997
- type: nauc_precision_at_10_diff1
value: 2.9292
- type: nauc_precision_at_20_max
value: 30.0072
- type: nauc_precision_at_20_std
value: 30.3405
- type: nauc_precision_at_20_diff1
value: -1.4427
- type: nauc_precision_at_100_max
value: 23.4879
- type: nauc_precision_at_100_std
value: 30.9203
- type: nauc_precision_at_100_diff1
value: -5.0680000000000005
- type: nauc_precision_at_1000_max
value: 16.6706
- type: nauc_precision_at_1000_std
value: 26.621899999999997
- type: nauc_precision_at_1000_diff1
value: -6.5622
- type: nauc_mrr_at_1_max
value: 37.0316
- type: nauc_mrr_at_1_std
value: 16.0392
- type: nauc_mrr_at_1_diff1
value: 35.6661
- type: nauc_mrr_at_3_max
value: 39.3089
- type: nauc_mrr_at_3_std
value: 19.7933
- type: nauc_mrr_at_3_diff1
value: 30.968600000000002
- type: nauc_mrr_at_5_max
value: 39.641
- type: nauc_mrr_at_5_std
value: 20.052300000000002
- type: nauc_mrr_at_5_diff1
value: 31.3307
- type: nauc_mrr_at_10_max
value: 40.1004
- type: nauc_mrr_at_10_std
value: 20.5772
- type: nauc_mrr_at_10_diff1
value: 31.423000000000002
- type: nauc_mrr_at_20_max
value: 40.14
- type: nauc_mrr_at_20_std
value: 20.677400000000002
- type: nauc_mrr_at_20_diff1
value: 31.568800000000003
- type: nauc_mrr_at_100_max
value: 40.0878
- type: nauc_mrr_at_100_std
value: 20.6034
- type: nauc_mrr_at_100_diff1
value: 31.5872
- type: nauc_mrr_at_1000_max
value: 40.078
- type: nauc_mrr_at_1000_std
value: 20.589399999999998
- type: nauc_mrr_at_1000_diff1
value: 31.591599999999996
- type: main_score
value: 48.262
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (sw)
type: miracl/mmteb-miracl
config: sw
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 50.415
- type: ndcg_at_3
value: 53.04
- type: ndcg_at_5
value: 56.138999999999996
- type: ndcg_at_10
value: 59.111000000000004
- type: ndcg_at_20
value: 61.651
- type: ndcg_at_100
value: 64.312
- type: ndcg_at_1000
value: 65.089
- type: map_at_1
value: 33.267
- type: map_at_3
value: 46.152
- type: map_at_5
value: 49.293
- type: map_at_10
value: 51.06699999999999
- type: map_at_20
value: 52.051
- type: map_at_100
value: 52.632
- type: map_at_1000
value: 52.686
- type: recall_at_1
value: 33.267
- type: recall_at_3
value: 55.48
- type: recall_at_5
value: 64.302
- type: recall_at_10
value: 72.08200000000001
- type: recall_at_20
value: 79.943
- type: recall_at_100
value: 91.377
- type: recall_at_1000
value: 96.152
- type: precision_at_1
value: 50.415
- type: precision_at_3
value: 30.152
- type: precision_at_5
value: 21.576999999999998
- type: precision_at_10
value: 12.49
- type: precision_at_20
value: 7.199
- type: precision_at_100
value: 1.699
- type: precision_at_1000
value: 0.182
- type: mrr_at_1
value: 50.414899999999996
- type: mrr_at_3
value: 58.9903
- type: mrr_at_5
value: 60.7123
- type: mrr_at_10
value: 61.388799999999996
- type: mrr_at_20
value: 61.804700000000004
- type: mrr_at_100
value: 61.9677
- type: mrr_at_1000
value: 61.9774
- type: nauc_ndcg_at_1_max
value: 38.0582
- type: nauc_ndcg_at_1_std
value: 10.7971
- type: nauc_ndcg_at_1_diff1
value: 39.3361
- type: nauc_ndcg_at_3_max
value: 36.1772
- type: nauc_ndcg_at_3_std
value: 6.7326
- type: nauc_ndcg_at_3_diff1
value: 35.3446
- type: nauc_ndcg_at_5_max
value: 34.8851
- type: nauc_ndcg_at_5_std
value: 6.4693000000000005
- type: nauc_ndcg_at_5_diff1
value: 36.4089
- type: nauc_ndcg_at_10_max
value: 38.800200000000004
- type: nauc_ndcg_at_10_std
value: 5.9294
- type: nauc_ndcg_at_10_diff1
value: 36.1487
- type: nauc_ndcg_at_20_max
value: 39.557700000000004
- type: nauc_ndcg_at_20_std
value: 7.1913
- type: nauc_ndcg_at_20_diff1
value: 35.476200000000006
- type: nauc_ndcg_at_100_max
value: 40.7973
- type: nauc_ndcg_at_100_std
value: 12.0762
- type: nauc_ndcg_at_100_diff1
value: 35.9479
- type: nauc_ndcg_at_1000_max
value: 41.133900000000004
- type: nauc_ndcg_at_1000_std
value: 12.3712
- type: nauc_ndcg_at_1000_diff1
value: 35.6136
- type: nauc_map_at_1_max
value: 16.2887
- type: nauc_map_at_1_std
value: -5.9883
- type: nauc_map_at_1_diff1
value: 44.4133
- type: nauc_map_at_3_max
value: 30.484499999999997
- type: nauc_map_at_3_std
value: 2.8722000000000003
- type: nauc_map_at_3_diff1
value: 37.9749
- type: nauc_map_at_5_max
value: 31.883499999999998
- type: nauc_map_at_5_std
value: 3.7571
- type: nauc_map_at_5_diff1
value: 37.655300000000004
- type: nauc_map_at_10_max
value: 34.440799999999996
- type: nauc_map_at_10_std
value: 3.7608
- type: nauc_map_at_10_diff1
value: 37.2883
- type: nauc_map_at_20_max
value: 34.9033
- type: nauc_map_at_20_std
value: 4.3576
- type: nauc_map_at_20_diff1
value: 37.0318
- type: nauc_map_at_100_max
value: 35.2377
- type: nauc_map_at_100_std
value: 5.3088999999999995
- type: nauc_map_at_100_diff1
value: 37.1107
- type: nauc_map_at_1000_max
value: 35.281099999999995
- type: nauc_map_at_1000_std
value: 5.3637999999999995
- type: nauc_map_at_1000_diff1
value: 37.0696
- type: nauc_recall_at_1_max
value: 16.2887
- type: nauc_recall_at_1_std
value: -5.9883
- type: nauc_recall_at_1_diff1
value: 44.4133
- type: nauc_recall_at_3_max
value: 28.2547
- type: nauc_recall_at_3_std
value: 1.4864
- type: nauc_recall_at_3_diff1
value: 32.121100000000006
- type: nauc_recall_at_5_max
value: 27.503899999999998
- type: nauc_recall_at_5_std
value: 2.3485
- type: nauc_recall_at_5_diff1
value: 31.1749
- type: nauc_recall_at_10_max
value: 37.1037
- type: nauc_recall_at_10_std
value: -1.0915
- type: nauc_recall_at_10_diff1
value: 30.7288
- type: nauc_recall_at_20_max
value: 38.685900000000004
- type: nauc_recall_at_20_std
value: -0.39540000000000003
- type: nauc_recall_at_20_diff1
value: 26.9173
- type: nauc_recall_at_100_max
value: 52.7177
- type: nauc_recall_at_100_std
value: 45.8168
- type: nauc_recall_at_100_diff1
value: 29.572599999999998
- type: nauc_recall_at_1000_max
value: 81.5773
- type: nauc_recall_at_1000_std
value: 86.1207
- type: nauc_recall_at_1000_diff1
value: 26.2688
- type: nauc_precision_at_1_max
value: 38.0582
- type: nauc_precision_at_1_std
value: 10.7971
- type: nauc_precision_at_1_diff1
value: 39.3361
- type: nauc_precision_at_3_max
value: 48.16
- type: nauc_precision_at_3_std
value: 25.037100000000002
- type: nauc_precision_at_3_diff1
value: 9.8087
- type: nauc_precision_at_5_max
value: 45.5463
- type: nauc_precision_at_5_std
value: 25.275399999999998
- type: nauc_precision_at_5_diff1
value: 3.3124000000000002
- type: nauc_precision_at_10_max
value: 45.3542
- type: nauc_precision_at_10_std
value: 21.1762
- type: nauc_precision_at_10_diff1
value: -3.5867999999999998
- type: nauc_precision_at_20_max
value: 40.4771
- type: nauc_precision_at_20_std
value: 25.006800000000002
- type: nauc_precision_at_20_diff1
value: -10.331700000000001
- type: nauc_precision_at_100_max
value: 32.6887
- type: nauc_precision_at_100_std
value: 34.5781
- type: nauc_precision_at_100_diff1
value: -16.628999999999998
- type: nauc_precision_at_1000_max
value: 29.033399999999997
- type: nauc_precision_at_1000_std
value: 33.129
- type: nauc_precision_at_1000_diff1
value: -19.7542
- type: nauc_mrr_at_1_max
value: 38.0582
- type: nauc_mrr_at_1_std
value: 10.7971
- type: nauc_mrr_at_1_diff1
value: 39.3361
- type: nauc_mrr_at_3_max
value: 42.2985
- type: nauc_mrr_at_3_std
value: 13.949900000000001
- type: nauc_mrr_at_3_diff1
value: 36.0085
- type: nauc_mrr_at_5_max
value: 42.3132
- type: nauc_mrr_at_5_std
value: 14.8284
- type: nauc_mrr_at_5_diff1
value: 36.0635
- type: nauc_mrr_at_10_max
value: 42.6836
- type: nauc_mrr_at_10_std
value: 14.1374
- type: nauc_mrr_at_10_diff1
value: 36.2117
- type: nauc_mrr_at_20_max
value: 42.6572
- type: nauc_mrr_at_20_std
value: 14.2714
- type: nauc_mrr_at_20_diff1
value: 36.0993
- type: nauc_mrr_at_100_max
value: 42.663000000000004
- type: nauc_mrr_at_100_std
value: 14.5399
- type: nauc_mrr_at_100_diff1
value: 36.214600000000004
- type: nauc_mrr_at_1000_max
value: 42.6543
- type: nauc_mrr_at_1000_std
value: 14.5232
- type: nauc_mrr_at_1000_diff1
value: 36.219699999999996
- type: main_score
value: 59.111000000000004
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (te)
type: miracl/mmteb-miracl
config: te
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 64.372
- type: ndcg_at_3
value: 74.856
- type: ndcg_at_5
value: 77.128
- type: ndcg_at_10
value: 78.175
- type: ndcg_at_20
value: 78.826
- type: ndcg_at_100
value: 79.523
- type: ndcg_at_1000
value: 79.774
- type: map_at_1
value: 63.688
- type: map_at_3
value: 72.262
- type: map_at_5
value: 73.56700000000001
- type: map_at_10
value: 74.022
- type: map_at_20
value: 74.217
- type: map_at_100
value: 74.316
- type: map_at_1000
value: 74.32600000000001
- type: recall_at_1
value: 63.688
- type: recall_at_3
value: 81.804
- type: recall_at_5
value: 87.198
- type: recall_at_10
value: 90.358
- type: recall_at_20
value: 92.834
- type: recall_at_100
value: 96.55799999999999
- type: recall_at_1000
value: 98.47
- type: precision_at_1
value: 64.372
- type: precision_at_3
value: 27.858
- type: precision_at_5
value: 17.849999999999998
- type: precision_at_10
value: 9.263
- type: precision_at_20
value: 4.771
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.101
- type: mrr_at_1
value: 64.372
- type: mrr_at_3
value: 72.7456
- type: mrr_at_5
value: 73.9654
- type: mrr_at_10
value: 74.3824
- type: mrr_at_20
value: 74.5572
- type: mrr_at_100
value: 74.6496
- type: mrr_at_1000
value: 74.65889999999999
- type: nauc_ndcg_at_1_max
value: 39.271699999999996
- type: nauc_ndcg_at_1_std
value: -24.310499999999998
- type: nauc_ndcg_at_1_diff1
value: 58.76440000000001
- type: nauc_ndcg_at_3_max
value: 42.7376
- type: nauc_ndcg_at_3_std
value: -25.2897
- type: nauc_ndcg_at_3_diff1
value: 55.2624
- type: nauc_ndcg_at_5_max
value: 45.5625
- type: nauc_ndcg_at_5_std
value: -22.595299999999998
- type: nauc_ndcg_at_5_diff1
value: 54.2902
- type: nauc_ndcg_at_10_max
value: 46.581
- type: nauc_ndcg_at_10_std
value: -20.4188
- type: nauc_ndcg_at_10_diff1
value: 53.76800000000001
- type: nauc_ndcg_at_20_max
value: 45.912
- type: nauc_ndcg_at_20_std
value: -20.7345
- type: nauc_ndcg_at_20_diff1
value: 53.597300000000004
- type: nauc_ndcg_at_100_max
value: 45.4388
- type: nauc_ndcg_at_100_std
value: -20.569499999999998
- type: nauc_ndcg_at_100_diff1
value: 54.1768
- type: nauc_ndcg_at_1000_max
value: 44.8662
- type: nauc_ndcg_at_1000_std
value: -20.9083
- type: nauc_ndcg_at_1000_diff1
value: 54.316900000000004
- type: nauc_map_at_1_max
value: 38.1714
- type: nauc_map_at_1_std
value: -25.8547
- type: nauc_map_at_1_diff1
value: 58.801700000000004
- type: nauc_map_at_3_max
value: 41.6072
- type: nauc_map_at_3_std
value: -25.716299999999997
- type: nauc_map_at_3_diff1
value: 55.9906
- type: nauc_map_at_5_max
value: 43.061899999999994
- type: nauc_map_at_5_std
value: -24.2147
- type: nauc_map_at_5_diff1
value: 55.4852
- type: nauc_map_at_10_max
value: 43.452
- type: nauc_map_at_10_std
value: -23.4256
- type: nauc_map_at_10_diff1
value: 55.3427
- type: nauc_map_at_20_max
value: 43.305
- type: nauc_map_at_20_std
value: -23.424500000000002
- type: nauc_map_at_20_diff1
value: 55.31120000000001
- type: nauc_map_at_100_max
value: 43.2512
- type: nauc_map_at_100_std
value: -23.3786
- type: nauc_map_at_100_diff1
value: 55.3755
- type: nauc_map_at_1000_max
value: 43.2306
- type: nauc_map_at_1000_std
value: -23.380699999999997
- type: nauc_map_at_1000_diff1
value: 55.378899999999994
- type: nauc_recall_at_1_max
value: 38.1714
- type: nauc_recall_at_1_std
value: -25.8547
- type: nauc_recall_at_1_diff1
value: 58.801700000000004
- type: nauc_recall_at_3_max
value: 46.7953
- type: nauc_recall_at_3_std
value: -25.092100000000002
- type: nauc_recall_at_3_diff1
value: 52.0717
- type: nauc_recall_at_5_max
value: 58.675399999999996
- type: nauc_recall_at_5_std
value: -15.456100000000001
- type: nauc_recall_at_5_diff1
value: 47.4131
- type: nauc_recall_at_10_max
value: 67.7093
- type: nauc_recall_at_10_std
value: -0.5740000000000001
- type: nauc_recall_at_10_diff1
value: 42.2693
- type: nauc_recall_at_20_max
value: 68.11160000000001
- type: nauc_recall_at_20_std
value: 1.8836
- type: nauc_recall_at_20_diff1
value: 36.960300000000004
- type: nauc_recall_at_100_max
value: 78.39620000000001
- type: nauc_recall_at_100_std
value: 27.515299999999996
- type: nauc_recall_at_100_diff1
value: 35.8977
- type: nauc_recall_at_1000_max
value: 71.4983
- type: nauc_recall_at_1000_std
value: 50.89939999999999
- type: nauc_recall_at_1000_diff1
value: 28.7768
- type: nauc_precision_at_1_max
value: 39.271699999999996
- type: nauc_precision_at_1_std
value: -24.310499999999998
- type: nauc_precision_at_1_diff1
value: 58.76440000000001
- type: nauc_precision_at_3_max
value: 46.5473
- type: nauc_precision_at_3_std
value: -16.3903
- type: nauc_precision_at_3_diff1
value: 43.1862
- type: nauc_precision_at_5_max
value: 53.557500000000005
- type: nauc_precision_at_5_std
value: -1.2877
- type: nauc_precision_at_5_diff1
value: 31.9181
- type: nauc_precision_at_10_max
value: 55.428599999999996
- type: nauc_precision_at_10_std
value: 12.8033
- type: nauc_precision_at_10_diff1
value: 22.756
- type: nauc_precision_at_20_max
value: 49.0193
- type: nauc_precision_at_20_std
value: 19.6821
- type: nauc_precision_at_20_diff1
value: 12.0609
- type: nauc_precision_at_100_max
value: 40.4145
- type: nauc_precision_at_100_std
value: 38.3506
- type: nauc_precision_at_100_diff1
value: -1.6396000000000002
- type: nauc_precision_at_1000_max
value: 19.25
- type: nauc_precision_at_1000_std
value: 41.2279
- type: nauc_precision_at_1000_diff1
value: -17.3722
- type: nauc_mrr_at_1_max
value: 39.271699999999996
- type: nauc_mrr_at_1_std
value: -24.310499999999998
- type: nauc_mrr_at_1_diff1
value: 58.76440000000001
- type: nauc_mrr_at_3_max
value: 41.6685
- type: nauc_mrr_at_3_std
value: -24.4404
- type: nauc_mrr_at_3_diff1
value: 56.1212
- type: nauc_mrr_at_5_max
value: 42.9495
- type: nauc_mrr_at_5_std
value: -23.378899999999998
- type: nauc_mrr_at_5_diff1
value: 55.7671
- type: nauc_mrr_at_10_max
value: 43.371900000000004
- type: nauc_mrr_at_10_std
value: -22.5248
- type: nauc_mrr_at_10_diff1
value: 55.5427
- type: nauc_mrr_at_20_max
value: 43.1738
- type: nauc_mrr_at_20_std
value: -22.6888
- type: nauc_mrr_at_20_diff1
value: 55.5207
- type: nauc_mrr_at_100_max
value: 43.1156
- type: nauc_mrr_at_100_std
value: -22.6434
- type: nauc_mrr_at_100_diff1
value: 55.5733
- type: nauc_mrr_at_1000_max
value: 43.0971
- type: nauc_mrr_at_1000_std
value: -22.6431
- type: nauc_mrr_at_1000_diff1
value: 55.5782
- type: main_score
value: 78.175
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (th)
type: miracl/mmteb-miracl
config: th
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 65.484
- type: ndcg_at_3
value: 66.199
- type: ndcg_at_5
value: 68.451
- type: ndcg_at_10
value: 71.774
- type: ndcg_at_20
value: 73.709
- type: ndcg_at_100
value: 75.362
- type: ndcg_at_1000
value: 75.898
- type: map_at_1
value: 45.911
- type: map_at_3
value: 59.53000000000001
- type: map_at_5
value: 62.150000000000006
- type: map_at_10
value: 64.336
- type: map_at_20
value: 65.262
- type: map_at_100
value: 65.659
- type: map_at_1000
value: 65.694
- type: recall_at_1
value: 45.911
- type: recall_at_3
value: 67.437
- type: recall_at_5
value: 73.786
- type: recall_at_10
value: 82.619
- type: recall_at_20
value: 88.447
- type: recall_at_100
value: 95.515
- type: recall_at_1000
value: 98.854
- type: precision_at_1
value: 65.484
- type: precision_at_3
value: 35.471000000000004
- type: precision_at_5
value: 24.229
- type: precision_at_10
value: 14.188
- type: precision_at_20
value: 7.843999999999999
- type: precision_at_100
value: 1.733
- type: precision_at_1000
value: 0.181
- type: mrr_at_1
value: 65.48429999999999
- type: mrr_at_3
value: 73.2378
- type: mrr_at_5
value: 74.1314
- type: mrr_at_10
value: 74.8844
- type: mrr_at_20
value: 75.07639999999999
- type: mrr_at_100
value: 75.1632
- type: mrr_at_1000
value: 75.1698
- type: nauc_ndcg_at_1_max
value: 42.345
- type: nauc_ndcg_at_1_std
value: 12.6892
- type: nauc_ndcg_at_1_diff1
value: 42.4669
- type: nauc_ndcg_at_3_max
value: 38.8148
- type: nauc_ndcg_at_3_std
value: 3.5637000000000003
- type: nauc_ndcg_at_3_diff1
value: 34.8248
- type: nauc_ndcg_at_5_max
value: 38.7175
- type: nauc_ndcg_at_5_std
value: 1.6251000000000002
- type: nauc_ndcg_at_5_diff1
value: 34.1513
- type: nauc_ndcg_at_10_max
value: 40.038000000000004
- type: nauc_ndcg_at_10_std
value: 2.8985
- type: nauc_ndcg_at_10_diff1
value: 33.4189
- type: nauc_ndcg_at_20_max
value: 41.722
- type: nauc_ndcg_at_20_std
value: 6.819100000000001
- type: nauc_ndcg_at_20_diff1
value: 33.5606
- type: nauc_ndcg_at_100_max
value: 42.2102
- type: nauc_ndcg_at_100_std
value: 8.309099999999999
- type: nauc_ndcg_at_100_diff1
value: 34.036899999999996
- type: nauc_ndcg_at_1000_max
value: 41.9273
- type: nauc_ndcg_at_1000_std
value: 8.3582
- type: nauc_ndcg_at_1000_diff1
value: 34.4614
- type: nauc_map_at_1_max
value: 20.202
- type: nauc_map_at_1_std
value: -8.095099999999999
- type: nauc_map_at_1_diff1
value: 42.2902
- type: nauc_map_at_3_max
value: 33.0956
- type: nauc_map_at_3_std
value: -3.7472
- type: nauc_map_at_3_diff1
value: 36.3181
- type: nauc_map_at_5_max
value: 34.3309
- type: nauc_map_at_5_std
value: -3.0949999999999998
- type: nauc_map_at_5_diff1
value: 35.441
- type: nauc_map_at_10_max
value: 35.924
- type: nauc_map_at_10_std
value: -1.3787
- type: nauc_map_at_10_diff1
value: 35.0315
- type: nauc_map_at_20_max
value: 36.7677
- type: nauc_map_at_20_std
value: 0.4997
- type: nauc_map_at_20_diff1
value: 35.037600000000005
- type: nauc_map_at_100_max
value: 36.8927
- type: nauc_map_at_100_std
value: 0.8881999999999999
- type: nauc_map_at_100_diff1
value: 35.0792
- type: nauc_map_at_1000_max
value: 36.897999999999996
- type: nauc_map_at_1000_std
value: 0.9301
- type: nauc_map_at_1000_diff1
value: 35.0961
- type: nauc_recall_at_1_max
value: 20.202
- type: nauc_recall_at_1_std
value: -8.095099999999999
- type: nauc_recall_at_1_diff1
value: 42.2902
- type: nauc_recall_at_3_max
value: 33.1749
- type: nauc_recall_at_3_std
value: -4.6383
- type: nauc_recall_at_3_diff1
value: 30.5276
- type: nauc_recall_at_5_max
value: 35.2372
- type: nauc_recall_at_5_std
value: -6.0825
- type: nauc_recall_at_5_diff1
value: 27.128200000000003
- type: nauc_recall_at_10_max
value: 37.465199999999996
- type: nauc_recall_at_10_std
value: -4.937600000000001
- type: nauc_recall_at_10_diff1
value: 21.6784
- type: nauc_recall_at_20_max
value: 45.9944
- type: nauc_recall_at_20_std
value: 10.5054
- type: nauc_recall_at_20_diff1
value: 19.4427
- type: nauc_recall_at_100_max
value: 60.7611
- type: nauc_recall_at_100_std
value: 35.4282
- type: nauc_recall_at_100_diff1
value: 14.2406
- type: nauc_recall_at_1000_max
value: 83.2149
- type: nauc_recall_at_1000_std
value: 87.3129
- type: nauc_recall_at_1000_diff1
value: 15.7695
- type: nauc_precision_at_1_max
value: 42.345
- type: nauc_precision_at_1_std
value: 12.6892
- type: nauc_precision_at_1_diff1
value: 42.4669
- type: nauc_precision_at_3_max
value: 38.0839
- type: nauc_precision_at_3_std
value: 22.0767
- type: nauc_precision_at_3_diff1
value: 1.4477
- type: nauc_precision_at_5_max
value: 31.290499999999998
- type: nauc_precision_at_5_std
value: 23.3095
- type: nauc_precision_at_5_diff1
value: -5.9094
- type: nauc_precision_at_10_max
value: 25.186199999999996
- type: nauc_precision_at_10_std
value: 27.7866
- type: nauc_precision_at_10_diff1
value: -12.773200000000001
- type: nauc_precision_at_20_max
value: 21.0353
- type: nauc_precision_at_20_std
value: 33.7266
- type: nauc_precision_at_20_diff1
value: -15.188699999999999
- type: nauc_precision_at_100_max
value: 16.1451
- type: nauc_precision_at_100_std
value: 35.4163
- type: nauc_precision_at_100_diff1
value: -17.631800000000002
- type: nauc_precision_at_1000_max
value: 12.2855
- type: nauc_precision_at_1000_std
value: 34.2766
- type: nauc_precision_at_1000_diff1
value: -17.664099999999998
- type: nauc_mrr_at_1_max
value: 42.345
- type: nauc_mrr_at_1_std
value: 12.6892
- type: nauc_mrr_at_1_diff1
value: 42.4669
- type: nauc_mrr_at_3_max
value: 47.5742
- type: nauc_mrr_at_3_std
value: 17.136499999999998
- type: nauc_mrr_at_3_diff1
value: 37.68
- type: nauc_mrr_at_5_max
value: 47.510799999999996
- type: nauc_mrr_at_5_std
value: 17.1225
- type: nauc_mrr_at_5_diff1
value: 37.485099999999996
- type: nauc_mrr_at_10_max
value: 47.2849
- type: nauc_mrr_at_10_std
value: 17.2096
- type: nauc_mrr_at_10_diff1
value: 37.2312
- type: nauc_mrr_at_20_max
value: 47.3962
- type: nauc_mrr_at_20_std
value: 17.2426
- type: nauc_mrr_at_20_diff1
value: 37.500499999999995
- type: nauc_mrr_at_100_max
value: 47.344
- type: nauc_mrr_at_100_std
value: 17.144499999999997
- type: nauc_mrr_at_100_diff1
value: 37.5291
- type: nauc_mrr_at_1000_max
value: 47.3332
- type: nauc_mrr_at_1000_std
value: 17.1381
- type: nauc_mrr_at_1000_diff1
value: 37.532199999999996
- type: main_score
value: 71.774
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (yo)
type: miracl/mmteb-miracl
config: yo
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 46.217999999999996
- type: ndcg_at_3
value: 57.609
- type: ndcg_at_5
value: 62.021
- type: ndcg_at_10
value: 64.685
- type: ndcg_at_20
value: 65.548
- type: ndcg_at_100
value: 66.94099999999999
- type: ndcg_at_1000
value: 67.361
- type: map_at_1
value: 42.787
- type: map_at_3
value: 53.852
- type: map_at_5
value: 56.541
- type: map_at_10
value: 57.924
- type: map_at_20
value: 58.223
- type: map_at_100
value: 58.41499999999999
- type: map_at_1000
value: 58.43000000000001
- type: recall_at_1
value: 42.787
- type: recall_at_3
value: 65.40599999999999
- type: recall_at_5
value: 75.42
- type: recall_at_10
value: 82.913
- type: recall_at_20
value: 85.994
- type: recall_at_100
value: 93.277
- type: recall_at_1000
value: 96.499
- type: precision_at_1
value: 46.217999999999996
- type: precision_at_3
value: 24.37
- type: precision_at_5
value: 17.479
- type: precision_at_10
value: 9.748
- type: precision_at_20
value: 5.0840000000000005
- type: precision_at_100
value: 1.109
- type: precision_at_1000
value: 0.116
- type: mrr_at_1
value: 46.2185
- type: mrr_at_3
value: 56.582600000000006
- type: mrr_at_5
value: 58.977599999999995
- type: mrr_at_10
value: 59.890299999999996
- type: mrr_at_20
value: 60.077999999999996
- type: mrr_at_100
value: 60.2472
- type: mrr_at_1000
value: 60.2553
- type: nauc_ndcg_at_1_max
value: 15.3057
- type: nauc_ndcg_at_1_std
value: -20.3881
- type: nauc_ndcg_at_1_diff1
value: 51.7456
- type: nauc_ndcg_at_3_max
value: 17.750799999999998
- type: nauc_ndcg_at_3_std
value: -9.165
- type: nauc_ndcg_at_3_diff1
value: 53.4833
- type: nauc_ndcg_at_5_max
value: 18.6146
- type: nauc_ndcg_at_5_std
value: -3.832
- type: nauc_ndcg_at_5_diff1
value: 52.8833
- type: nauc_ndcg_at_10_max
value: 20.4881
- type: nauc_ndcg_at_10_std
value: -3.7813
- type: nauc_ndcg_at_10_diff1
value: 53.873099999999994
- type: nauc_ndcg_at_20_max
value: 22.234499999999997
- type: nauc_ndcg_at_20_std
value: -4.5588999999999995
- type: nauc_ndcg_at_20_diff1
value: 53.75149999999999
- type: nauc_ndcg_at_100_max
value: 22.5348
- type: nauc_ndcg_at_100_std
value: -5.6818
- type: nauc_ndcg_at_100_diff1
value: 54.996199999999995
- type: nauc_ndcg_at_1000_max
value: 21.8399
- type: nauc_ndcg_at_1000_std
value: -6.904000000000001
- type: nauc_ndcg_at_1000_diff1
value: 54.5607
- type: nauc_map_at_1_max
value: 11.5768
- type: nauc_map_at_1_std
value: -16.317400000000003
- type: nauc_map_at_1_diff1
value: 56.0748
- type: nauc_map_at_3_max
value: 14.5127
- type: nauc_map_at_3_std
value: -9.9466
- type: nauc_map_at_3_diff1
value: 54.4564
- type: nauc_map_at_5_max
value: 15.6777
- type: nauc_map_at_5_std
value: -7.3351
- type: nauc_map_at_5_diff1
value: 53.8739
- type: nauc_map_at_10_max
value: 17.380200000000002
- type: nauc_map_at_10_std
value: -7.8866000000000005
- type: nauc_map_at_10_diff1
value: 54.17380000000001
- type: nauc_map_at_20_max
value: 17.7812
- type: nauc_map_at_20_std
value: -8.1005
- type: nauc_map_at_20_diff1
value: 54.16029999999999
- type: nauc_map_at_100_max
value: 17.8472
- type: nauc_map_at_100_std
value: -8.197899999999999
- type: nauc_map_at_100_diff1
value: 54.3604
- type: nauc_map_at_1000_max
value: 17.838
- type: nauc_map_at_1000_std
value: -8.241800000000001
- type: nauc_map_at_1000_diff1
value: 54.3379
- type: nauc_recall_at_1_max
value: 11.5768
- type: nauc_recall_at_1_std
value: -16.317400000000003
- type: nauc_recall_at_1_diff1
value: 56.0748
- type: nauc_recall_at_3_max
value: 19.2218
- type: nauc_recall_at_3_std
value: -0.9331
- type: nauc_recall_at_3_diff1
value: 52.159299999999995
- type: nauc_recall_at_5_max
value: 23.1526
- type: nauc_recall_at_5_std
value: 18.569399999999998
- type: nauc_recall_at_5_diff1
value: 49.3007
- type: nauc_recall_at_10_max
value: 30.9861
- type: nauc_recall_at_10_std
value: 29.1945
- type: nauc_recall_at_10_diff1
value: 53.94520000000001
- type: nauc_recall_at_20_max
value: 45.5532
- type: nauc_recall_at_20_std
value: 30.500500000000002
- type: nauc_recall_at_20_diff1
value: 53.197799999999994
- type: nauc_recall_at_100_max
value: 69.0118
- type: nauc_recall_at_100_std
value: 42.4681
- type: nauc_recall_at_100_diff1
value: 73.61229999999999
- type: nauc_recall_at_1000_max
value: 73.9661
- type: nauc_recall_at_1000_std
value: 27.5085
- type: nauc_recall_at_1000_diff1
value: 75.1985
- type: nauc_precision_at_1_max
value: 15.3057
- type: nauc_precision_at_1_std
value: -20.3881
- type: nauc_precision_at_1_diff1
value: 51.7456
- type: nauc_precision_at_3_max
value: 24.9404
- type: nauc_precision_at_3_std
value: -5.6223
- type: nauc_precision_at_3_diff1
value: 33.2281
- type: nauc_precision_at_5_max
value: 23.1681
- type: nauc_precision_at_5_std
value: 3.7264
- type: nauc_precision_at_5_diff1
value: 13.463700000000001
- type: nauc_precision_at_10_max
value: 27.1828
- type: nauc_precision_at_10_std
value: 0.2287
- type: nauc_precision_at_10_diff1
value: 3.3236000000000003
- type: nauc_precision_at_20_max
value: 30.8431
- type: nauc_precision_at_20_std
value: -1.7745
- type: nauc_precision_at_20_diff1
value: -1.4821
- type: nauc_precision_at_100_max
value: 31.920399999999997
- type: nauc_precision_at_100_std
value: -9.9216
- type: nauc_precision_at_100_diff1
value: -12.0477
- type: nauc_precision_at_1000_max
value: 21.9173
- type: nauc_precision_at_1000_std
value: -20.7394
- type: nauc_precision_at_1000_diff1
value: -23.9441
- type: nauc_mrr_at_1_max
value: 15.3057
- type: nauc_mrr_at_1_std
value: -20.3881
- type: nauc_mrr_at_1_diff1
value: 51.7456
- type: nauc_mrr_at_3_max
value: 20.1871
- type: nauc_mrr_at_3_std
value: -15.1173
- type: nauc_mrr_at_3_diff1
value: 52.30089999999999
- type: nauc_mrr_at_5_max
value: 20.514599999999998
- type: nauc_mrr_at_5_std
value: -12.8977
- type: nauc_mrr_at_5_diff1
value: 52.350300000000004
- type: nauc_mrr_at_10_max
value: 20.4557
- type: nauc_mrr_at_10_std
value: -12.6083
- type: nauc_mrr_at_10_diff1
value: 52.766000000000005
- type: nauc_mrr_at_20_max
value: 20.7793
- type: nauc_mrr_at_20_std
value: -12.8431
- type: nauc_mrr_at_20_diff1
value: 52.6664
- type: nauc_mrr_at_100_max
value: 20.8067
- type: nauc_mrr_at_100_std
value: -12.9037
- type: nauc_mrr_at_100_diff1
value: 52.86729999999999
- type: nauc_mrr_at_1000_max
value: 20.793
- type: nauc_mrr_at_1000_std
value: -12.924900000000001
- type: nauc_mrr_at_1000_diff1
value: 52.8605
- type: main_score
value: 64.685
- task:
type: Retrieval
dataset:
name: MTEB MIRACLRetrieval (zh)
type: miracl/mmteb-miracl
config: zh
split: dev
revision: main
metrics:
- type: ndcg_at_1
value: 41.985
- type: ndcg_at_3
value: 42.094
- type: ndcg_at_5
value: 44.273
- type: ndcg_at_10
value: 48.370000000000005
- type: ndcg_at_20
value: 51.595
- type: ndcg_at_100
value: 55.961000000000006
- type: ndcg_at_1000
value: 57.620000000000005
- type: map_at_1
value: 21.446
- type: map_at_3
value: 32.499
- type: map_at_5
value: 35.772
- type: map_at_10
value: 38.567
- type: map_at_20
value: 39.98
- type: map_at_100
value: 40.992
- type: map_at_1000
value: 41.119
- type: recall_at_1
value: 21.446
- type: recall_at_3
value: 40.377
- type: recall_at_5
value: 49.03
- type: recall_at_10
value: 59.695
- type: recall_at_20
value: 69.25200000000001
- type: recall_at_100
value: 87.388
- type: recall_at_1000
value: 96.833
- type: precision_at_1
value: 41.985
- type: precision_at_3
value: 29.008
- type: precision_at_5
value: 21.985
- type: precision_at_10
value: 14.097000000000001
- type: precision_at_20
value: 8.346
- type: precision_at_100
value: 2.155
- type: precision_at_1000
value: 0.243
- type: mrr_at_1
value: 41.984700000000004
- type: mrr_at_3
value: 52.078
- type: mrr_at_5
value: 53.5284
- type: mrr_at_10
value: 54.4979
- type: mrr_at_20
value: 54.9953
- type: mrr_at_100
value: 55.2428
- type: mrr_at_1000
value: 55.263
- type: nauc_ndcg_at_1_max
value: 41.7348
- type: nauc_ndcg_at_1_std
value: 23.8594
- type: nauc_ndcg_at_1_diff1
value: 31.156299999999998
- type: nauc_ndcg_at_3_max
value: 39.0525
- type: nauc_ndcg_at_3_std
value: 21.7916
- type: nauc_ndcg_at_3_diff1
value: 23.9925
- type: nauc_ndcg_at_5_max
value: 33.8643
- type: nauc_ndcg_at_5_std
value: 16.3399
- type: nauc_ndcg_at_5_diff1
value: 26.001
- type: nauc_ndcg_at_10_max
value: 35.3007
- type: nauc_ndcg_at_10_std
value: 19.127
- type: nauc_ndcg_at_10_diff1
value: 25.444899999999997
- type: nauc_ndcg_at_20_max
value: 37.6068
- type: nauc_ndcg_at_20_std
value: 23.0043
- type: nauc_ndcg_at_20_diff1
value: 23.7603
- type: nauc_ndcg_at_100_max
value: 40.4028
- type: nauc_ndcg_at_100_std
value: 25.0083
- type: nauc_ndcg_at_100_diff1
value: 23.491999999999997
- type: nauc_ndcg_at_1000_max
value: 39.8716
- type: nauc_ndcg_at_1000_std
value: 24.7264
- type: nauc_ndcg_at_1000_diff1
value: 24.6697
- type: nauc_map_at_1_max
value: 25.7275
- type: nauc_map_at_1_std
value: 7.7392
- type: nauc_map_at_1_diff1
value: 36.5897
- type: nauc_map_at_3_max
value: 32.2774
- type: nauc_map_at_3_std
value: 12.2275
- type: nauc_map_at_3_diff1
value: 28.8092
- type: nauc_map_at_5_max
value: 31.183899999999998
- type: nauc_map_at_5_std
value: 12.1811
- type: nauc_map_at_5_diff1
value: 28.532400000000003
- type: nauc_map_at_10_max
value: 33.4812
- type: nauc_map_at_10_std
value: 15.6339
- type: nauc_map_at_10_diff1
value: 27.695999999999998
- type: nauc_map_at_20_max
value: 34.855999999999995
- type: nauc_map_at_20_std
value: 17.8001
- type: nauc_map_at_20_diff1
value: 26.3975
- type: nauc_map_at_100_max
value: 35.8497
- type: nauc_map_at_100_std
value: 18.688
- type: nauc_map_at_100_diff1
value: 26.177899999999998
- type: nauc_map_at_1000_max
value: 35.8459
- type: nauc_map_at_1000_std
value: 18.7007
- type: nauc_map_at_1000_diff1
value: 26.257200000000005
- type: nauc_recall_at_1_max
value: 25.7275
- type: nauc_recall_at_1_std
value: 7.7392
- type: nauc_recall_at_1_diff1
value: 36.5897
- type: nauc_recall_at_3_max
value: 27.052100000000003
- type: nauc_recall_at_3_std
value: 9.632100000000001
- type: nauc_recall_at_3_diff1
value: 21.557399999999998
- type: nauc_recall_at_5_max
value: 21.0442
- type: nauc_recall_at_5_std
value: 5.7371
- type: nauc_recall_at_5_diff1
value: 20.653399999999998
- type: nauc_recall_at_10_max
value: 23.794
- type: nauc_recall_at_10_std
value: 12.2208
- type: nauc_recall_at_10_diff1
value: 17.305899999999998
- type: nauc_recall_at_20_max
value: 27.5932
- type: nauc_recall_at_20_std
value: 21.4346
- type: nauc_recall_at_20_diff1
value: 12.7064
- type: nauc_recall_at_100_max
value: 41.801300000000005
- type: nauc_recall_at_100_std
value: 36.4593
- type: nauc_recall_at_100_diff1
value: 5.7783
- type: nauc_recall_at_1000_max
value: 45.8507
- type: nauc_recall_at_1000_std
value: 66.6031
- type: nauc_recall_at_1000_diff1
value: 25.4961
- type: nauc_precision_at_1_max
value: 41.7348
- type: nauc_precision_at_1_std
value: 23.8594
- type: nauc_precision_at_1_diff1
value: 31.156299999999998
- type: nauc_precision_at_3_max
value: 43.336999999999996
- type: nauc_precision_at_3_std
value: 29.3989
- type: nauc_precision_at_3_diff1
value: 6.0378
- type: nauc_precision_at_5_max
value: 33.3518
- type: nauc_precision_at_5_std
value: 25.115199999999998
- type: nauc_precision_at_5_diff1
value: 3.9284
- type: nauc_precision_at_10_max
value: 33.466699999999996
- type: nauc_precision_at_10_std
value: 31.710300000000004
- type: nauc_precision_at_10_diff1
value: -2.0225
- type: nauc_precision_at_20_max
value: 33.651199999999996
- type: nauc_precision_at_20_std
value: 37.601600000000005
- type: nauc_precision_at_20_diff1
value: -9.591
- type: nauc_precision_at_100_max
value: 28.992
- type: nauc_precision_at_100_std
value: 33.631499999999996
- type: nauc_precision_at_100_diff1
value: -13.5546
- type: nauc_precision_at_1000_max
value: 20.091
- type: nauc_precision_at_1000_std
value: 26.9179
- type: nauc_precision_at_1000_diff1
value: -12.1766
- type: nauc_mrr_at_1_max
value: 41.7348
- type: nauc_mrr_at_1_std
value: 23.8594
- type: nauc_mrr_at_1_diff1
value: 31.156299999999998
- type: nauc_mrr_at_3_max
value: 43.2795
- type: nauc_mrr_at_3_std
value: 26.991500000000002
- type: nauc_mrr_at_3_diff1
value: 25.8376
- type: nauc_mrr_at_5_max
value: 42.1564
- type: nauc_mrr_at_5_std
value: 25.923299999999998
- type: nauc_mrr_at_5_diff1
value: 26.770500000000002
- type: nauc_mrr_at_10_max
value: 42.054
- type: nauc_mrr_at_10_std
value: 26.1554
- type: nauc_mrr_at_10_diff1
value: 26.4021
- type: nauc_mrr_at_20_max
value: 42.3932
- type: nauc_mrr_at_20_std
value: 26.5486
- type: nauc_mrr_at_20_diff1
value: 26.616400000000002
- type: nauc_mrr_at_100_max
value: 42.4887
- type: nauc_mrr_at_100_std
value: 26.4708
- type: nauc_mrr_at_100_diff1
value: 26.671899999999997
- type: nauc_mrr_at_1000_max
value: 42.478500000000004
- type: nauc_mrr_at_1000_std
value: 26.4606
- type: nauc_mrr_at_1000_diff1
value: 26.6946
- type: main_score
value: 48.370000000000005
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: ndcg_at_1
value: 13.653
- type: ndcg_at_3
value: 21.836
- type: ndcg_at_5
value: 25.014999999999997
- type: ndcg_at_10
value: 28.319
- type: ndcg_at_20
value: 30.818
- type: ndcg_at_100
value: 34.527
- type: ndcg_at_1000
value: 36.702
- type: map_at_1
value: 13.313
- type: map_at_3
value: 19.615
- type: map_at_5
value: 21.389
- type: map_at_10
value: 22.768
- type: map_at_20
value: 23.465
- type: map_at_100
value: 23.976
- type: map_at_1000
value: 24.058
- type: recall_at_1
value: 13.313
- type: recall_at_3
value: 27.839999999999996
- type: recall_at_5
value: 35.481
- type: recall_at_10
value: 45.559
- type: recall_at_20
value: 55.301
- type: recall_at_100
value: 75.11
- type: recall_at_1000
value: 92.052
- type: precision_at_1
value: 13.653
- type: precision_at_3
value: 9.565
- type: precision_at_5
value: 7.338
- type: precision_at_10
value: 4.726
- type: precision_at_20
value: 2.8819999999999997
- type: precision_at_100
value: 0.79
- type: precision_at_1000
value: 0.098
- type: mrr_at_1
value: 13.653299999999998
- type: mrr_at_3
value: 20.0573
- type: mrr_at_5
value: 21.8295
- type: mrr_at_10
value: 23.1997
- type: mrr_at_20
value: 23.8785
- type: mrr_at_100
value: 24.3729
- type: mrr_at_1000
value: 24.448600000000003
- type: nauc_ndcg_at_1_max
value: 0.364
- type: nauc_ndcg_at_1_std
value: -12.840399999999999
- type: nauc_ndcg_at_1_diff1
value: 29.834699999999998
- type: nauc_ndcg_at_3_max
value: 1.9428
- type: nauc_ndcg_at_3_std
value: -13.696
- type: nauc_ndcg_at_3_diff1
value: 24.9774
- type: nauc_ndcg_at_5_max
value: 2.5951
- type: nauc_ndcg_at_5_std
value: -13.2667
- type: nauc_ndcg_at_5_diff1
value: 24.7581
- type: nauc_ndcg_at_10_max
value: 3.0274
- type: nauc_ndcg_at_10_std
value: -11.790799999999999
- type: nauc_ndcg_at_10_diff1
value: 23.9473
- type: nauc_ndcg_at_20_max
value: 3.5682
- type: nauc_ndcg_at_20_std
value: -10.132299999999999
- type: nauc_ndcg_at_20_diff1
value: 23.744100000000003
- type: nauc_ndcg_at_100_max
value: 5.1290000000000004
- type: nauc_ndcg_at_100_std
value: -6.8011
- type: nauc_ndcg_at_100_diff1
value: 23.6972
- type: nauc_ndcg_at_1000_max
value: 5.1967
- type: nauc_ndcg_at_1000_std
value: -7.396700000000001
- type: nauc_ndcg_at_1000_diff1
value: 24.1353
- type: nauc_map_at_1_max
value: 0.35200000000000004
- type: nauc_map_at_1_std
value: -12.8008
- type: nauc_map_at_1_diff1
value: 30.121199999999998
- type: nauc_map_at_3_max
value: 1.6415
- type: nauc_map_at_3_std
value: -13.5187
- type: nauc_map_at_3_diff1
value: 25.9894
- type: nauc_map_at_5_max
value: 2.0264
- type: nauc_map_at_5_std
value: -13.281
- type: nauc_map_at_5_diff1
value: 25.849
- type: nauc_map_at_10_max
value: 2.1982
- type: nauc_map_at_10_std
value: -12.6435
- type: nauc_map_at_10_diff1
value: 25.477100000000004
- type: nauc_map_at_20_max
value: 2.3562
- type: nauc_map_at_20_std
value: -12.1675
- type: nauc_map_at_20_diff1
value: 25.4162
- type: nauc_map_at_100_max
value: 2.5839999999999996
- type: nauc_map_at_100_std
value: -11.7018
- type: nauc_map_at_100_diff1
value: 25.4093
- type: nauc_map_at_1000_max
value: 2.5871999999999997
- type: nauc_map_at_1000_std
value: -11.7103
- type: nauc_map_at_1000_diff1
value: 25.424999999999997
- type: nauc_recall_at_1_max
value: 0.35200000000000004
- type: nauc_recall_at_1_std
value: -12.8008
- type: nauc_recall_at_1_diff1
value: 30.121199999999998
- type: nauc_recall_at_3_max
value: 2.6834000000000002
- type: nauc_recall_at_3_std
value: -14.0991
- type: nauc_recall_at_3_diff1
value: 22.6158
- type: nauc_recall_at_5_max
value: 3.9472
- type: nauc_recall_at_5_std
value: -13.167499999999999
- type: nauc_recall_at_5_diff1
value: 22.2686
- type: nauc_recall_at_10_max
value: 4.9908
- type: nauc_recall_at_10_std
value: -9.4435
- type: nauc_recall_at_10_diff1
value: 20.185200000000002
- type: nauc_recall_at_20_max
value: 6.880999999999999
- type: nauc_recall_at_20_std
value: -3.7041999999999997
- type: nauc_recall_at_20_diff1
value: 19.2889
- type: nauc_recall_at_100_max
value: 18.0012
- type: nauc_recall_at_100_std
value: 20.404600000000002
- type: nauc_recall_at_100_diff1
value: 17.1382
- type: nauc_recall_at_1000_max
value: 41.3456
- type: nauc_recall_at_1000_std
value: 50.3786
- type: nauc_recall_at_1000_diff1
value: 17.2713
- type: nauc_precision_at_1_max
value: 0.364
- type: nauc_precision_at_1_std
value: -12.840399999999999
- type: nauc_precision_at_1_diff1
value: 29.834699999999998
- type: nauc_precision_at_3_max
value: 2.7525
- type: nauc_precision_at_3_std
value: -13.992099999999999
- type: nauc_precision_at_3_diff1
value: 22.4985
- type: nauc_precision_at_5_max
value: 4.0076
- type: nauc_precision_at_5_std
value: -13.011800000000001
- type: nauc_precision_at_5_diff1
value: 21.9577
- type: nauc_precision_at_10_max
value: 5.3558
- type: nauc_precision_at_10_std
value: -8.8703
- type: nauc_precision_at_10_diff1
value: 19.5594
- type: nauc_precision_at_20_max
value: 7.764500000000001
- type: nauc_precision_at_20_std
value: -2.5067
- type: nauc_precision_at_20_diff1
value: 17.766199999999998
- type: nauc_precision_at_100_max
value: 17.8184
- type: nauc_precision_at_100_std
value: 20.153
- type: nauc_precision_at_100_diff1
value: 13.255500000000001
- type: nauc_precision_at_1000_max
value: 26.7508
- type: nauc_precision_at_1000_std
value: 31.494299999999996
- type: nauc_precision_at_1000_diff1
value: 5.8916
- type: nauc_mrr_at_1_max
value: 0.364
- type: nauc_mrr_at_1_std
value: -12.840399999999999
- type: nauc_mrr_at_1_diff1
value: 29.834699999999998
- type: nauc_mrr_at_3_max
value: 1.5876000000000001
- type: nauc_mrr_at_3_std
value: -13.4944
- type: nauc_mrr_at_3_diff1
value: 25.894099999999998
- type: nauc_mrr_at_5_max
value: 1.9839
- type: nauc_mrr_at_5_std
value: -13.1955
- type: nauc_mrr_at_5_diff1
value: 25.695899999999998
- type: nauc_mrr_at_10_max
value: 2.2034000000000002
- type: nauc_mrr_at_10_std
value: -12.504499999999998
- type: nauc_mrr_at_10_diff1
value: 25.3497
- type: nauc_mrr_at_20_max
value: 2.334
- type: nauc_mrr_at_20_std
value: -12.0259
- type: nauc_mrr_at_20_diff1
value: 25.3055
- type: nauc_mrr_at_100_max
value: 2.5492999999999997
- type: nauc_mrr_at_100_std
value: -11.6039
- type: nauc_mrr_at_100_diff1
value: 25.298
- type: nauc_mrr_at_1000_max
value: 2.5439
- type: nauc_mrr_at_1000_std
value: -11.6219
- type: nauc_mrr_at_1000_diff1
value: 25.312099999999997
- type: main_score
value: 28.319
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.9193
- type: f1
value: 88.6731
- type: f1_weighted
value: 88.8695
- type: main_score
value: 88.9193
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 57.6448
- type: f1
value: 38.9997
- type: f1_weighted
value: 60.377
- type: main_score
value: 57.6448
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 62.518499999999996
- type: f1
value: 59.2963
- type: f1_weighted
value: 61.365700000000004
- type: main_score
value: 62.518499999999996
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 69.36449999999999
- type: f1
value: 67.56259999999999
- type: f1_weighted
value: 68.9987
- type: main_score
value: 69.36449999999999
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.3521
- type: v_measure_std
value: 1.3192000000000002
- type: main_score
value: 31.3521
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.020899999999997
- type: v_measure_std
value: 1.3569
- type: main_score
value: 28.020899999999997
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: map
value: 30.3048
- type: mrr
value: 31.326500000000003
- type: nAUC_map_max
value: -19.322300000000002
- type: nAUC_map_std
value: -4.424
- type: nAUC_map_diff1
value: 13.645299999999999
- type: nAUC_mrr_max
value: -13.5457
- type: nAUC_mrr_std
value: -2.0976000000000004
- type: nAUC_mrr_diff1
value: 12.965499999999999
- type: main_score
value: 30.3048
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: ndcg_at_1
value: 36.997
- type: ndcg_at_3
value: 32.279
- type: ndcg_at_5
value: 30.232
- type: ndcg_at_10
value: 26.991
- type: ndcg_at_20
value: 25.223000000000003
- type: ndcg_at_100
value: 24.953
- type: ndcg_at_1000
value: 33.881
- type: map_at_1
value: 4.2139999999999995
- type: map_at_3
value: 7.013999999999999
- type: map_at_5
value: 8.189
- type: map_at_10
value: 9.468
- type: map_at_20
value: 10.441
- type: map_at_100
value: 11.729000000000001
- type: map_at_1000
value: 12.920000000000002
- type: recall_at_1
value: 4.2139999999999995
- type: recall_at_3
value: 7.981000000000001
- type: recall_at_5
value: 10.306
- type: recall_at_10
value: 13.053999999999998
- type: recall_at_20
value: 16.499
- type: recall_at_100
value: 25.501
- type: recall_at_1000
value: 57.103
- type: precision_at_1
value: 38.39
- type: precision_at_3
value: 30.237000000000002
- type: precision_at_5
value: 26.006
- type: precision_at_10
value: 19.567
- type: precision_at_20
value: 14.613000000000001
- type: precision_at_100
value: 6.393
- type: precision_at_1000
value: 1.9
- type: mrr_at_1
value: 38.6997
- type: mrr_at_3
value: 45.0464
- type: mrr_at_5
value: 46.3622
- type: mrr_at_10
value: 46.9177
- type: mrr_at_20
value: 47.4995
- type: mrr_at_100
value: 47.7284
- type: mrr_at_1000
value: 47.7892
- type: nauc_ndcg_at_1_max
value: 30.8996
- type: nauc_ndcg_at_1_std
value: 18.2721
- type: nauc_ndcg_at_1_diff1
value: 34.836600000000004
- type: nauc_ndcg_at_3_max
value: 35.3352
- type: nauc_ndcg_at_3_std
value: 22.345699999999997
- type: nauc_ndcg_at_3_diff1
value: 29.5163
- type: nauc_ndcg_at_5_max
value: 36.8152
- type: nauc_ndcg_at_5_std
value: 25.799899999999997
- type: nauc_ndcg_at_5_diff1
value: 28.1756
- type: nauc_ndcg_at_10_max
value: 37.752599999999994
- type: nauc_ndcg_at_10_std
value: 28.2564
- type: nauc_ndcg_at_10_diff1
value: 25.9405
- type: nauc_ndcg_at_20_max
value: 36.0517
- type: nauc_ndcg_at_20_std
value: 29.4238
- type: nauc_ndcg_at_20_diff1
value: 23.8385
- type: nauc_ndcg_at_100_max
value: 39.027499999999996
- type: nauc_ndcg_at_100_std
value: 30.0156
- type: nauc_ndcg_at_100_diff1
value: 23.3814
- type: nauc_ndcg_at_1000_max
value: 43.9552
- type: nauc_ndcg_at_1000_std
value: 36.7709
- type: nauc_ndcg_at_1000_diff1
value: 23.2691
- type: nauc_map_at_1_max
value: 13.7444
- type: nauc_map_at_1_std
value: -3.6901
- type: nauc_map_at_1_diff1
value: 44.304700000000004
- type: nauc_map_at_3_max
value: 18.061
- type: nauc_map_at_3_std
value: -0.8826
- type: nauc_map_at_3_diff1
value: 34.1935
- type: nauc_map_at_5_max
value: 20.4082
- type: nauc_map_at_5_std
value: 1.6634
- type: nauc_map_at_5_diff1
value: 30.903999999999996
- type: nauc_map_at_10_max
value: 25.414900000000003
- type: nauc_map_at_10_std
value: 6.704899999999999
- type: nauc_map_at_10_diff1
value: 27.5783
- type: nauc_map_at_20_max
value: 27.746199999999998
- type: nauc_map_at_20_std
value: 10.5171
- type: nauc_map_at_20_diff1
value: 26.3814
- type: nauc_map_at_100_max
value: 29.7035
- type: nauc_map_at_100_std
value: 16.173000000000002
- type: nauc_map_at_100_diff1
value: 25.2415
- type: nauc_map_at_1000_max
value: 29.8974
- type: nauc_map_at_1000_std
value: 19.7694
- type: nauc_map_at_1000_diff1
value: 24.1468
- type: nauc_recall_at_1_max
value: 13.7444
- type: nauc_recall_at_1_std
value: -3.6901
- type: nauc_recall_at_1_diff1
value: 44.304700000000004
- type: nauc_recall_at_3_max
value: 18.4883
- type: nauc_recall_at_3_std
value: -0.9726999999999999
- type: nauc_recall_at_3_diff1
value: 29.502499999999998
- type: nauc_recall_at_5_max
value: 20.3422
- type: nauc_recall_at_5_std
value: 2.8535
- type: nauc_recall_at_5_diff1
value: 23.688100000000002
- type: nauc_recall_at_10_max
value: 26.8137
- type: nauc_recall_at_10_std
value: 6.3345
- type: nauc_recall_at_10_diff1
value: 19.5952
- type: nauc_recall_at_20_max
value: 25.4056
- type: nauc_recall_at_20_std
value: 8.8684
- type: nauc_recall_at_20_diff1
value: 16.9286
- type: nauc_recall_at_100_max
value: 29.1932
- type: nauc_recall_at_100_std
value: 19.6664
- type: nauc_recall_at_100_diff1
value: 14.8893
- type: nauc_recall_at_1000_max
value: 23.0622
- type: nauc_recall_at_1000_std
value: 25.8533
- type: nauc_recall_at_1000_diff1
value: 10.0844
- type: nauc_precision_at_1_max
value: 32.948699999999995
- type: nauc_precision_at_1_std
value: 19.2494
- type: nauc_precision_at_1_diff1
value: 33.955200000000005
- type: nauc_precision_at_3_max
value: 39.4863
- type: nauc_precision_at_3_std
value: 27.7083
- type: nauc_precision_at_3_diff1
value: 22.4854
- type: nauc_precision_at_5_max
value: 40.1376
- type: nauc_precision_at_5_std
value: 33.4658
- type: nauc_precision_at_5_diff1
value: 18.108
- type: nauc_precision_at_10_max
value: 39.333200000000005
- type: nauc_precision_at_10_std
value: 39.949600000000004
- type: nauc_precision_at_10_diff1
value: 11.7183
- type: nauc_precision_at_20_max
value: 32.0094
- type: nauc_precision_at_20_std
value: 45.1815
- type: nauc_precision_at_20_diff1
value: 7.2424
- type: nauc_precision_at_100_max
value: 18.073
- type: nauc_precision_at_100_std
value: 46.7008
- type: nauc_precision_at_100_diff1
value: -0.6927
- type: nauc_precision_at_1000_max
value: 2.9552
- type: nauc_precision_at_1000_std
value: 32.691199999999995
- type: nauc_precision_at_1000_diff1
value: -4.3427
- type: nauc_mrr_at_1_max
value: 32.7952
- type: nauc_mrr_at_1_std
value: 20.716
- type: nauc_mrr_at_1_diff1
value: 33.047
- type: nauc_mrr_at_3_max
value: 39.5698
- type: nauc_mrr_at_3_std
value: 25.674200000000003
- type: nauc_mrr_at_3_diff1
value: 31.7916
- type: nauc_mrr_at_5_max
value: 40.7711
- type: nauc_mrr_at_5_std
value: 27.2756
- type: nauc_mrr_at_5_diff1
value: 31.5432
- type: nauc_mrr_at_10_max
value: 41.033500000000004
- type: nauc_mrr_at_10_std
value: 27.364500000000003
- type: nauc_mrr_at_10_diff1
value: 31.394899999999996
- type: nauc_mrr_at_20_max
value: 40.9665
- type: nauc_mrr_at_20_std
value: 27.5866
- type: nauc_mrr_at_20_diff1
value: 31.6835
- type: nauc_mrr_at_100_max
value: 40.9471
- type: nauc_mrr_at_100_std
value: 27.643
- type: nauc_mrr_at_100_diff1
value: 31.553900000000002
- type: nauc_mrr_at_1000_max
value: 40.9207
- type: nauc_mrr_at_1000_std
value: 27.6206
- type: nauc_mrr_at_1000_diff1
value: 31.5596
- type: main_score
value: 26.991
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: ndcg_at_1
value: 32.937
- type: ndcg_at_3
value: 42.939
- type: ndcg_at_5
value: 47.044000000000004
- type: ndcg_at_10
value: 50.893
- type: ndcg_at_20
value: 53.093
- type: ndcg_at_100
value: 55.369
- type: ndcg_at_1000
value: 56.285
- type: map_at_1
value: 29.087000000000003
- type: map_at_3
value: 39.263
- type: map_at_5
value: 41.708
- type: map_at_10
value: 43.471
- type: map_at_20
value: 44.155
- type: map_at_100
value: 44.528
- type: map_at_1000
value: 44.568999999999996
- type: recall_at_1
value: 29.087000000000003
- type: recall_at_3
value: 50.451
- type: recall_at_5
value: 59.946
- type: recall_at_10
value: 71.109
- type: recall_at_20
value: 79.26299999999999
- type: recall_at_100
value: 90.51
- type: recall_at_1000
value: 97.277
- type: precision_at_1
value: 32.937
- type: precision_at_3
value: 19.602
- type: precision_at_5
value: 14.113999999999999
- type: precision_at_10
value: 8.462
- type: precision_at_20
value: 4.758
- type: precision_at_100
value: 1.0999999999999999
- type: precision_at_1000
value: 0.11800000000000001
- type: mrr_at_1
value: 32.9374
- type: mrr_at_3
value: 42.3957
- type: mrr_at_5
value: 44.5148
- type: mrr_at_10
value: 45.9459
- type: mrr_at_20
value: 46.4559
- type: mrr_at_100
value: 46.7367
- type: mrr_at_1000
value: 46.765
- type: nauc_ndcg_at_1_max
value: 24.0105
- type: nauc_ndcg_at_1_std
value: -1.5957
- type: nauc_ndcg_at_1_diff1
value: 33.1575
- type: nauc_ndcg_at_3_max
value: 26.388
- type: nauc_ndcg_at_3_std
value: -1.6223
- type: nauc_ndcg_at_3_diff1
value: 29.1908
- type: nauc_ndcg_at_5_max
value: 28.188800000000004
- type: nauc_ndcg_at_5_std
value: -0.3491
- type: nauc_ndcg_at_5_diff1
value: 28.287499999999998
- type: nauc_ndcg_at_10_max
value: 29.768800000000002
- type: nauc_ndcg_at_10_std
value: 2.093
- type: nauc_ndcg_at_10_diff1
value: 28.257700000000003
- type: nauc_ndcg_at_20_max
value: 30.8687
- type: nauc_ndcg_at_20_std
value: 3.4320000000000004
- type: nauc_ndcg_at_20_diff1
value: 28.220699999999997
- type: nauc_ndcg_at_100_max
value: 30.692199999999996
- type: nauc_ndcg_at_100_std
value: 4.0889
- type: nauc_ndcg_at_100_diff1
value: 28.468
- type: nauc_ndcg_at_1000_max
value: 29.9378
- type: nauc_ndcg_at_1000_std
value: 3.1003
- type: nauc_ndcg_at_1000_diff1
value: 28.8642
- type: nauc_map_at_1_max
value: 21.948999999999998
- type: nauc_map_at_1_std
value: -3.4299000000000004
- type: nauc_map_at_1_diff1
value: 33.5905
- type: nauc_map_at_3_max
value: 25.600299999999997
- type: nauc_map_at_3_std
value: -2.2762000000000002
- type: nauc_map_at_3_diff1
value: 30.235
- type: nauc_map_at_5_max
value: 26.6859
- type: nauc_map_at_5_std
value: -1.4717
- type: nauc_map_at_5_diff1
value: 29.6397
- type: nauc_map_at_10_max
value: 27.3731
- type: nauc_map_at_10_std
value: -0.4928
- type: nauc_map_at_10_diff1
value: 29.7079
- type: nauc_map_at_20_max
value: 27.668799999999997
- type: nauc_map_at_20_std
value: -0.0964
- type: nauc_map_at_20_diff1
value: 29.6945
- type: nauc_map_at_100_max
value: 27.675
- type: nauc_map_at_100_std
value: 0.0414
- type: nauc_map_at_100_diff1
value: 29.709000000000003
- type: nauc_map_at_1000_max
value: 27.647
- type: nauc_map_at_1000_std
value: 0.0063999999999999994
- type: nauc_map_at_1000_diff1
value: 29.724099999999996
- type: nauc_recall_at_1_max
value: 21.948999999999998
- type: nauc_recall_at_1_std
value: -3.4299000000000004
- type: nauc_recall_at_1_diff1
value: 33.5905
- type: nauc_recall_at_3_max
value: 27.2388
- type: nauc_recall_at_3_std
value: -1.4857
- type: nauc_recall_at_3_diff1
value: 25.991500000000002
- type: nauc_recall_at_5_max
value: 31.4282
- type: nauc_recall_at_5_std
value: 1.2066000000000001
- type: nauc_recall_at_5_diff1
value: 23.5681
- type: nauc_recall_at_10_max
value: 37.4517
- type: nauc_recall_at_10_std
value: 10.1238
- type: nauc_recall_at_10_diff1
value: 22.2133
- type: nauc_recall_at_20_max
value: 46.4783
- type: nauc_recall_at_20_std
value: 19.8515
- type: nauc_recall_at_20_diff1
value: 20.6028
- type: nauc_recall_at_100_max
value: 58.7011
- type: nauc_recall_at_100_std
value: 43.6264
- type: nauc_recall_at_100_diff1
value: 18.3446
- type: nauc_recall_at_1000_max
value: 74.3733
- type: nauc_recall_at_1000_std
value: 67.4933
- type: nauc_recall_at_1000_diff1
value: 25.375500000000002
- type: nauc_precision_at_1_max
value: 24.0105
- type: nauc_precision_at_1_std
value: -1.5957
- type: nauc_precision_at_1_diff1
value: 33.1575
- type: nauc_precision_at_3_max
value: 27.406399999999998
- type: nauc_precision_at_3_std
value: 0.9842
- type: nauc_precision_at_3_diff1
value: 21.793599999999998
- type: nauc_precision_at_5_max
value: 29.145
- type: nauc_precision_at_5_std
value: 4.6154
- type: nauc_precision_at_5_diff1
value: 16.8
- type: nauc_precision_at_10_max
value: 29.480600000000003
- type: nauc_precision_at_10_std
value: 12.286900000000001
- type: nauc_precision_at_10_diff1
value: 11.7686
- type: nauc_precision_at_20_max
value: 29.791
- type: nauc_precision_at_20_std
value: 18.0686
- type: nauc_precision_at_20_diff1
value: 7.2818
- type: nauc_precision_at_100_max
value: 22.605900000000002
- type: nauc_precision_at_100_std
value: 22.4834
- type: nauc_precision_at_100_diff1
value: -0.1403
- type: nauc_precision_at_1000_max
value: 11.637599999999999
- type: nauc_precision_at_1000_std
value: 16.299
- type: nauc_precision_at_1000_diff1
value: -4.3052
- type: nauc_mrr_at_1_max
value: 24.0105
- type: nauc_mrr_at_1_std
value: -1.5957
- type: nauc_mrr_at_1_diff1
value: 33.1575
- type: nauc_mrr_at_3_max
value: 26.375
- type: nauc_mrr_at_3_std
value: -0.2874
- type: nauc_mrr_at_3_diff1
value: 29.8333
- type: nauc_mrr_at_5_max
value: 27.2656
- type: nauc_mrr_at_5_std
value: 0.37
- type: nauc_mrr_at_5_diff1
value: 29.461900000000004
- type: nauc_mrr_at_10_max
value: 27.7811
- type: nauc_mrr_at_10_std
value: 1.2722
- type: nauc_mrr_at_10_diff1
value: 29.456
- type: nauc_mrr_at_20_max
value: 27.9525
- type: nauc_mrr_at_20_std
value: 1.4394
- type: nauc_mrr_at_20_diff1
value: 29.5184
- type: nauc_mrr_at_100_max
value: 27.887099999999997
- type: nauc_mrr_at_100_std
value: 1.4539
- type: nauc_mrr_at_100_diff1
value: 29.5789
- type: nauc_mrr_at_1000_max
value: 27.865499999999997
- type: nauc_mrr_at_1000_std
value: 1.4233
- type: nauc_mrr_at_1000_diff1
value: 29.5896
- type: main_score
value: 50.893
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: ndcg_at_1
value: 78.41
- type: ndcg_at_3
value: 82.614
- type: ndcg_at_5
value: 84.443
- type: ndcg_at_10
value: 85.845
- type: ndcg_at_20
value: 86.615
- type: ndcg_at_100
value: 87.313
- type: ndcg_at_1000
value: 87.492
- type: map_at_1
value: 68.092
- type: map_at_3
value: 78.604
- type: map_at_5
value: 80.527
- type: map_at_10
value: 81.639
- type: map_at_20
value: 82.07900000000001
- type: map_at_100
value: 82.314
- type: map_at_1000
value: 82.336
- type: recall_at_1
value: 68.092
- type: recall_at_3
value: 84.66900000000001
- type: recall_at_5
value: 89.751
- type: recall_at_10
value: 93.888
- type: recall_at_20
value: 96.389
- type: recall_at_100
value: 99.042
- type: recall_at_1000
value: 99.929
- type: precision_at_1
value: 78.41
- type: precision_at_3
value: 36.027
- type: precision_at_5
value: 23.844
- type: precision_at_10
value: 13.043
- type: precision_at_20
value: 6.946
- type: precision_at_100
value: 1.506
- type: precision_at_1000
value: 0.156
- type: mrr_at_1
value: 78.4
- type: mrr_at_3
value: 83.9867
- type: mrr_at_5
value: 84.7992
- type: mrr_at_10
value: 85.1577
- type: mrr_at_20
value: 85.2505
- type: mrr_at_100
value: 85.2855
- type: mrr_at_1000
value: 85.2877
- type: nauc_ndcg_at_1_max
value: 39.8081
- type: nauc_ndcg_at_1_std
value: -28.606399999999997
- type: nauc_ndcg_at_1_diff1
value: 75.9446
- type: nauc_ndcg_at_3_max
value: 37.7924
- type: nauc_ndcg_at_3_std
value: -33.5391
- type: nauc_ndcg_at_3_diff1
value: 73.3973
- type: nauc_ndcg_at_5_max
value: 38.047
- type: nauc_ndcg_at_5_std
value: -33.5943
- type: nauc_ndcg_at_5_diff1
value: 73.7645
- type: nauc_ndcg_at_10_max
value: 39.0948
- type: nauc_ndcg_at_10_std
value: -32.3805
- type: nauc_ndcg_at_10_diff1
value: 74.2689
- type: nauc_ndcg_at_20_max
value: 39.4193
- type: nauc_ndcg_at_20_std
value: -31.309900000000003
- type: nauc_ndcg_at_20_diff1
value: 74.2915
- type: nauc_ndcg_at_100_max
value: 39.6566
- type: nauc_ndcg_at_100_std
value: -30.3777
- type: nauc_ndcg_at_100_diff1
value: 74.2375
- type: nauc_ndcg_at_1000_max
value: 39.6656
- type: nauc_ndcg_at_1000_std
value: -30.2466
- type: nauc_ndcg_at_1000_diff1
value: 74.22609999999999
- type: nauc_map_at_1_max
value: 29.1625
- type: nauc_map_at_1_std
value: -31.4393
- type: nauc_map_at_1_diff1
value: 77.41
- type: nauc_map_at_3_max
value: 35.3371
- type: nauc_map_at_3_std
value: -35.2729
- type: nauc_map_at_3_diff1
value: 74.6367
- type: nauc_map_at_5_max
value: 36.600100000000005
- type: nauc_map_at_5_std
value: -34.9097
- type: nauc_map_at_5_diff1
value: 74.48479999999999
- type: nauc_map_at_10_max
value: 37.5994
- type: nauc_map_at_10_std
value: -33.702
- type: nauc_map_at_10_diff1
value: 74.4678
- type: nauc_map_at_20_max
value: 37.890299999999996
- type: nauc_map_at_20_std
value: -32.9179
- type: nauc_map_at_20_diff1
value: 74.3744
- type: nauc_map_at_100_max
value: 38.0205
- type: nauc_map_at_100_std
value: -32.4364
- type: nauc_map_at_100_diff1
value: 74.3232
- type: nauc_map_at_1000_max
value: 38.0296
- type: nauc_map_at_1000_std
value: -32.390600000000006
- type: nauc_map_at_1000_diff1
value: 74.323
- type: nauc_recall_at_1_max
value: 29.1625
- type: nauc_recall_at_1_std
value: -31.4393
- type: nauc_recall_at_1_diff1
value: 77.41
- type: nauc_recall_at_3_max
value: 32.2751
- type: nauc_recall_at_3_std
value: -39.215
- type: nauc_recall_at_3_diff1
value: 70.3264
- type: nauc_recall_at_5_max
value: 32.9445
- type: nauc_recall_at_5_std
value: -40.7042
- type: nauc_recall_at_5_diff1
value: 68.803
- type: nauc_recall_at_10_max
value: 36.6396
- type: nauc_recall_at_10_std
value: -37.5092
- type: nauc_recall_at_10_diff1
value: 68.8674
- type: nauc_recall_at_20_max
value: 38.8048
- type: nauc_recall_at_20_std
value: -31.1471
- type: nauc_recall_at_20_diff1
value: 69.5775
- type: nauc_recall_at_100_max
value: 42.9809
- type: nauc_recall_at_100_std
value: -18.932299999999998
- type: nauc_recall_at_100_diff1
value: 69.4688
- type: nauc_recall_at_1000_max
value: 67.836
- type: nauc_recall_at_1000_std
value: 38.124
- type: nauc_recall_at_1000_diff1
value: 71.4131
- type: nauc_precision_at_1_max
value: 39.8081
- type: nauc_precision_at_1_std
value: -28.606399999999997
- type: nauc_precision_at_1_diff1
value: 75.9446
- type: nauc_precision_at_3_max
value: 14.0877
- type: nauc_precision_at_3_std
value: 2.1809
- type: nauc_precision_at_3_diff1
value: -8.5037
- type: nauc_precision_at_5_max
value: 7.3131
- type: nauc_precision_at_5_std
value: 11.67
- type: nauc_precision_at_5_diff1
value: -23.663500000000003
- type: nauc_precision_at_10_max
value: 2.4924999999999997
- type: nauc_precision_at_10_std
value: 20.4298
- type: nauc_precision_at_10_diff1
value: -32.5249
- type: nauc_precision_at_20_max
value: -0.8340000000000001
- type: nauc_precision_at_20_std
value: 25.5814
- type: nauc_precision_at_20_diff1
value: -36.879
- type: nauc_precision_at_100_max
value: -4.2415
- type: nauc_precision_at_100_std
value: 30.588700000000003
- type: nauc_precision_at_100_diff1
value: -40.0441
- type: nauc_precision_at_1000_max
value: -5.7567
- type: nauc_precision_at_1000_std
value: 31.6137
- type: nauc_precision_at_1000_diff1
value: -40.8601
- type: nauc_mrr_at_1_max
value: 39.7059
- type: nauc_mrr_at_1_std
value: -28.6757
- type: nauc_mrr_at_1_diff1
value: 75.96730000000001
- type: nauc_mrr_at_3_max
value: 40.842
- type: nauc_mrr_at_3_std
value: -29.4321
- type: nauc_mrr_at_3_diff1
value: 74.588
- type: nauc_mrr_at_5_max
value: 40.8178
- type: nauc_mrr_at_5_std
value: -29.343700000000002
- type: nauc_mrr_at_5_diff1
value: 74.7965
- type: nauc_mrr_at_10_max
value: 40.9508
- type: nauc_mrr_at_10_std
value: -29.1159
- type: nauc_mrr_at_10_diff1
value: 74.9315
- type: nauc_mrr_at_20_max
value: 40.9157
- type: nauc_mrr_at_20_std
value: -29.040899999999997
- type: nauc_mrr_at_20_diff1
value: 74.9526
- type: nauc_mrr_at_100_max
value: 40.8672
- type: nauc_mrr_at_100_std
value: -29.0691
- type: nauc_mrr_at_100_diff1
value: 74.9558
- type: nauc_mrr_at_1000_max
value: 40.8655
- type: nauc_mrr_at_1000_std
value: -29.0682
- type: nauc_mrr_at_1000_diff1
value: 74.9558
- type: main_score
value: 85.845
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 43.7063
- type: v_measure_std
value: 4.7175
- type: main_score
value: 43.7063
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 53.54
- type: v_measure_std
value: 11.809600000000001
- type: main_score
value: 53.54
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: ndcg_at_1
value: 20.7
- type: ndcg_at_3
value: 16.518
- type: ndcg_at_5
value: 14.441
- type: ndcg_at_10
value: 17.380000000000003
- type: ndcg_at_20
value: 19.991
- type: ndcg_at_100
value: 24.747
- type: ndcg_at_1000
value: 30.296
- type: map_at_1
value: 4.208
- type: map_at_3
value: 7.335
- type: map_at_5
value: 8.712
- type: map_at_10
value: 10.135
- type: map_at_20
value: 11.068999999999999
- type: map_at_100
value: 11.951
- type: map_at_1000
value: 12.245000000000001
- type: recall_at_1
value: 4.208
- type: recall_at_3
value: 9.303
- type: recall_at_5
value: 12.797
- type: recall_at_10
value: 18.195
- type: recall_at_20
value: 24.318
- type: recall_at_100
value: 39.803
- type: recall_at_1000
value: 66.99000000000001
- type: precision_at_1
value: 20.7
- type: precision_at_3
value: 15.299999999999999
- type: precision_at_5
value: 12.6
- type: precision_at_10
value: 8.959999999999999
- type: precision_at_20
value: 5.985
- type: precision_at_100
value: 1.959
- type: precision_at_1000
value: 0.33
- type: mrr_at_1
value: 20.7
- type: mrr_at_3
value: 27.3833
- type: mrr_at_5
value: 29.168300000000002
- type: mrr_at_10
value: 30.598799999999997
- type: mrr_at_20
value: 31.217
- type: mrr_at_100
value: 31.688499999999998
- type: mrr_at_1000
value: 31.763599999999997
- type: nauc_ndcg_at_1_max
value: 21.5429
- type: nauc_ndcg_at_1_std
value: 4.718
- type: nauc_ndcg_at_1_diff1
value: 19.3827
- type: nauc_ndcg_at_3_max
value: 32.1126
- type: nauc_ndcg_at_3_std
value: 9.314400000000001
- type: nauc_ndcg_at_3_diff1
value: 20.0916
- type: nauc_ndcg_at_5_max
value: 31.849800000000002
- type: nauc_ndcg_at_5_std
value: 10.8725
- type: nauc_ndcg_at_5_diff1
value: 17.7008
- type: nauc_ndcg_at_10_max
value: 33.366600000000005
- type: nauc_ndcg_at_10_std
value: 13.625399999999999
- type: nauc_ndcg_at_10_diff1
value: 16.375
- type: nauc_ndcg_at_20_max
value: 34.6677
- type: nauc_ndcg_at_20_std
value: 15.3872
- type: nauc_ndcg_at_20_diff1
value: 16.8414
- type: nauc_ndcg_at_100_max
value: 37.2778
- type: nauc_ndcg_at_100_std
value: 20.4858
- type: nauc_ndcg_at_100_diff1
value: 16.7288
- type: nauc_ndcg_at_1000_max
value: 36.601
- type: nauc_ndcg_at_1000_std
value: 22.312199999999997
- type: nauc_ndcg_at_1000_diff1
value: 16.2465
- type: nauc_map_at_1_max
value: 21.2741
- type: nauc_map_at_1_std
value: 4.7143
- type: nauc_map_at_1_diff1
value: 18.8297
- type: nauc_map_at_3_max
value: 31.727800000000002
- type: nauc_map_at_3_std
value: 6.8229999999999995
- type: nauc_map_at_3_diff1
value: 20.4232
- type: nauc_map_at_5_max
value: 32.3588
- type: nauc_map_at_5_std
value: 8.565100000000001
- type: nauc_map_at_5_diff1
value: 18.9604
- type: nauc_map_at_10_max
value: 33.6113
- type: nauc_map_at_10_std
value: 10.743
- type: nauc_map_at_10_diff1
value: 17.6337
- type: nauc_map_at_20_max
value: 34.7121
- type: nauc_map_at_20_std
value: 11.9819
- type: nauc_map_at_20_diff1
value: 18.0342
- type: nauc_map_at_100_max
value: 35.6623
- type: nauc_map_at_100_std
value: 13.7498
- type: nauc_map_at_100_diff1
value: 17.985300000000002
- type: nauc_map_at_1000_max
value: 35.663
- type: nauc_map_at_1000_std
value: 14.050099999999999
- type: nauc_map_at_1000_diff1
value: 17.9269
- type: nauc_recall_at_1_max
value: 21.2741
- type: nauc_recall_at_1_std
value: 4.7143
- type: nauc_recall_at_1_diff1
value: 18.8297
- type: nauc_recall_at_3_max
value: 36.2097
- type: nauc_recall_at_3_std
value: 11.6014
- type: nauc_recall_at_3_diff1
value: 20.0114
- type: nauc_recall_at_5_max
value: 33.7826
- type: nauc_recall_at_5_std
value: 13.603000000000002
- type: nauc_recall_at_5_diff1
value: 15.4714
- type: nauc_recall_at_10_max
value: 34.105999999999995
- type: nauc_recall_at_10_std
value: 17.4216
- type: nauc_recall_at_10_diff1
value: 12.3734
- type: nauc_recall_at_20_max
value: 35.2885
- type: nauc_recall_at_20_std
value: 19.9833
- type: nauc_recall_at_20_diff1
value: 13.2726
- type: nauc_recall_at_100_max
value: 37.3523
- type: nauc_recall_at_100_std
value: 30.2207
- type: nauc_recall_at_100_diff1
value: 11.437700000000001
- type: nauc_recall_at_1000_max
value: 29.276000000000003
- type: nauc_recall_at_1000_std
value: 35.906
- type: nauc_recall_at_1000_diff1
value: 6.281499999999999
- type: nauc_precision_at_1_max
value: 21.5429
- type: nauc_precision_at_1_std
value: 4.718
- type: nauc_precision_at_1_diff1
value: 19.3827
- type: nauc_precision_at_3_max
value: 36.609
- type: nauc_precision_at_3_std
value: 11.863700000000001
- type: nauc_precision_at_3_diff1
value: 20.4735
- type: nauc_precision_at_5_max
value: 34.3364
- type: nauc_precision_at_5_std
value: 13.7951
- type: nauc_precision_at_5_diff1
value: 15.992700000000001
- type: nauc_precision_at_10_max
value: 34.6556
- type: nauc_precision_at_10_std
value: 17.4014
- type: nauc_precision_at_10_diff1
value: 12.981699999999998
- type: nauc_precision_at_20_max
value: 35.836
- type: nauc_precision_at_20_std
value: 20.1892
- type: nauc_precision_at_20_diff1
value: 13.6046
- type: nauc_precision_at_100_max
value: 37.9677
- type: nauc_precision_at_100_std
value: 30.3386
- type: nauc_precision_at_100_diff1
value: 11.8783
- type: nauc_precision_at_1000_max
value: 29.795700000000004
- type: nauc_precision_at_1000_std
value: 35.4107
- type: nauc_precision_at_1000_diff1
value: 6.6238
- type: nauc_mrr_at_1_max
value: 21.5429
- type: nauc_mrr_at_1_std
value: 4.718
- type: nauc_mrr_at_1_diff1
value: 19.3827
- type: nauc_mrr_at_3_max
value: 27.635900000000003
- type: nauc_mrr_at_3_std
value: 9.5593
- type: nauc_mrr_at_3_diff1
value: 18.4684
- type: nauc_mrr_at_5_max
value: 26.682499999999997
- type: nauc_mrr_at_5_std
value: 9.7369
- type: nauc_mrr_at_5_diff1
value: 17.4317
- type: nauc_mrr_at_10_max
value: 27.032400000000003
- type: nauc_mrr_at_10_std
value: 10.4662
- type: nauc_mrr_at_10_diff1
value: 17.3209
- type: nauc_mrr_at_20_max
value: 27.1752
- type: nauc_mrr_at_20_std
value: 10.5774
- type: nauc_mrr_at_20_diff1
value: 17.3725
- type: nauc_mrr_at_100_max
value: 27.228099999999998
- type: nauc_mrr_at_100_std
value: 10.710600000000001
- type: nauc_mrr_at_100_diff1
value: 17.4312
- type: nauc_mrr_at_1000_max
value: 27.172600000000003
- type: nauc_mrr_at_1000_std
value: 10.6434
- type: nauc_mrr_at_1000_diff1
value: 17.421400000000002
- type: main_score
value: 17.380000000000003
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: pearson
value: 75.385
- type: spearman
value: 68.46560000000001
- type: cosine_pearson
value: 75.385
- type: cosine_spearman
value: 68.46560000000001
- type: manhattan_pearson
value: 72.53309999999999
- type: manhattan_spearman
value: 68.79899999999999
- type: euclidean_pearson
value: 72.5239
- type: euclidean_spearman
value: 68.46560000000001
- type: main_score
value: 68.46560000000001
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: pearson
value: 80.9088
- type: spearman
value: 74.7362
- type: cosine_pearson
value: 80.9088
- type: cosine_spearman
value: 74.7362
- type: manhattan_pearson
value: 77.3291
- type: manhattan_spearman
value: 75.0881
- type: euclidean_pearson
value: 77.5321
- type: euclidean_spearman
value: 74.7347
- type: main_score
value: 74.7362
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: pearson
value: 74.6345
- type: spearman
value: 75.63990000000001
- type: cosine_pearson
value: 74.6345
- type: cosine_spearman
value: 75.63990000000001
- type: manhattan_pearson
value: 75.5227
- type: manhattan_spearman
value: 75.5136
- type: euclidean_pearson
value: 75.5744
- type: euclidean_spearman
value: 75.63990000000001
- type: main_score
value: 75.63990000000001
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: pearson
value: 76.66629999999999
- type: spearman
value: 73.1976
- type: cosine_pearson
value: 76.66629999999999
- type: cosine_spearman
value: 73.1976
- type: manhattan_pearson
value: 75.0827
- type: manhattan_spearman
value: 73.2472
- type: euclidean_pearson
value: 75.2873
- type: euclidean_spearman
value: 73.1976
- type: main_score
value: 73.1976
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: pearson
value: 84.33810000000001
- type: spearman
value: 85.0551
- type: cosine_pearson
value: 84.33810000000001
- type: cosine_spearman
value: 85.0551
- type: manhattan_pearson
value: 84.5984
- type: manhattan_spearman
value: 85.1619
- type: euclidean_pearson
value: 84.529
- type: euclidean_spearman
value: 85.0551
- type: main_score
value: 85.0551
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: pearson
value: 79.5933
- type: spearman
value: 81.11120000000001
- type: cosine_pearson
value: 79.5933
- type: cosine_spearman
value: 81.11120000000001
- type: manhattan_pearson
value: 80.136
- type: manhattan_spearman
value: 80.8767
- type: euclidean_pearson
value: 80.3305
- type: euclidean_spearman
value: 81.11120000000001
- type: main_score
value: 81.11120000000001
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 38.2331
- type: spearman
value: 33.7346
- type: cosine_pearson
value: 38.2331
- type: cosine_spearman
value: 33.7346
- type: manhattan_pearson
value: 40.986
- type: manhattan_spearman
value: 34.253099999999996
- type: euclidean_pearson
value: 40.2622
- type: euclidean_spearman
value: 33.7346
- type: main_score
value: 33.7346
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 73.5477
- type: spearman
value: 74.1745
- type: cosine_pearson
value: 73.5477
- type: cosine_spearman
value: 74.1745
- type: manhattan_pearson
value: 74.84920000000001
- type: manhattan_spearman
value: 74.49900000000001
- type: euclidean_pearson
value: 74.14
- type: euclidean_spearman
value: 74.1745
- type: main_score
value: 74.1745
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 66.7169
- type: spearman
value: 66.864
- type: cosine_pearson
value: 66.7169
- type: cosine_spearman
value: 66.864
- type: manhattan_pearson
value: 67.39359999999999
- type: manhattan_spearman
value: 67.0985
- type: euclidean_pearson
value: 66.9389
- type: euclidean_spearman
value: 66.864
- type: main_score
value: 66.864
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 70.5101
- type: spearman
value: 70.05930000000001
- type: cosine_pearson
value: 70.5101
- type: cosine_spearman
value: 70.05930000000001
- type: manhattan_pearson
value: 72.7524
- type: manhattan_spearman
value: 71.2907
- type: euclidean_pearson
value: 71.148
- type: euclidean_spearman
value: 70.05930000000001
- type: main_score
value: 70.05930000000001
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 68.3089
- type: spearman
value: 68.4899
- type: cosine_pearson
value: 68.3089
- type: cosine_spearman
value: 68.4899
- type: manhattan_pearson
value: 69.3956
- type: manhattan_spearman
value: 68.9486
- type: euclidean_pearson
value: 68.8059
- type: euclidean_spearman
value: 68.4899
- type: main_score
value: 68.4899
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 78.28739999999999
- type: spearman
value: 78.6966
- type: cosine_pearson
value: 78.28739999999999
- type: cosine_spearman
value: 78.6966
- type: manhattan_pearson
value: 78.97070000000001
- type: manhattan_spearman
value: 79.1907
- type: euclidean_pearson
value: 78.36070000000001
- type: euclidean_spearman
value: 78.6966
- type: main_score
value: 78.6966
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 59.611999999999995
- type: spearman
value: 59.9288
- type: cosine_pearson
value: 59.611999999999995
- type: cosine_spearman
value: 59.9288
- type: manhattan_pearson
value: 60.3549
- type: manhattan_spearman
value: 59.696099999999994
- type: euclidean_pearson
value: 60.4754
- type: euclidean_spearman
value: 59.9288
- type: main_score
value: 59.9288
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 70.6341
- type: spearman
value: 69.9775
- type: cosine_pearson
value: 70.6341
- type: cosine_spearman
value: 69.9775
- type: manhattan_pearson
value: 72.7788
- type: manhattan_spearman
value: 71.2033
- type: euclidean_pearson
value: 71.5822
- type: euclidean_spearman
value: 69.9775
- type: main_score
value: 69.9775
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 67.2703
- type: spearman
value: 67.58229999999999
- type: cosine_pearson
value: 67.2703
- type: cosine_spearman
value: 67.58229999999999
- type: manhattan_pearson
value: 68.1768
- type: manhattan_spearman
value: 67.6479
- type: euclidean_pearson
value: 67.9708
- type: euclidean_spearman
value: 67.58229999999999
- type: main_score
value: 67.58229999999999
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 62.2109
- type: spearman
value: 56.2314
- type: cosine_pearson
value: 62.2109
- type: cosine_spearman
value: 56.2314
- type: manhattan_pearson
value: 65.9455
- type: manhattan_spearman
value: 56.5496
- type: euclidean_pearson
value: 65.30550000000001
- type: euclidean_spearman
value: 56.2314
- type: main_score
value: 56.2314
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 74.4185
- type: spearman
value: 72.82119999999999
- type: cosine_pearson
value: 74.4185
- type: cosine_spearman
value: 72.82119999999999
- type: manhattan_pearson
value: 75.6921
- type: manhattan_spearman
value: 72.3315
- type: euclidean_pearson
value: 75.1725
- type: euclidean_spearman
value: 72.82119999999999
- type: main_score
value: 72.82119999999999
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 78.6974
- type: spearman
value: 79.5845
- type: cosine_pearson
value: 78.6974
- type: cosine_spearman
value: 79.5845
- type: manhattan_pearson
value: 79.6724
- type: manhattan_spearman
value: 79.668
- type: euclidean_pearson
value: 79.69380000000001
- type: euclidean_spearman
value: 79.5845
- type: main_score
value: 79.5845
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 71.3237
- type: spearman
value: 71.5178
- type: cosine_pearson
value: 71.3237
- type: cosine_spearman
value: 71.5178
- type: manhattan_pearson
value: 73.3948
- type: manhattan_spearman
value: 71.5607
- type: euclidean_pearson
value: 73.1403
- type: euclidean_spearman
value: 71.5178
- type: main_score
value: 71.5178
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: pearson
value: 75.5279
- type: spearman
value: 76.9844
- type: cosine_pearson
value: 75.5279
- type: cosine_spearman
value: 76.9844
- type: manhattan_pearson
value: 77.5474
- type: manhattan_spearman
value: 77.4353
- type: euclidean_pearson
value: 77.1612
- type: euclidean_spearman
value: 76.9844
- type: main_score
value: 76.9844
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 79.33109999999999
- type: mrr
value: 94.0725
- type: nAUC_map_max
value: 59.0089
- type: nAUC_map_std
value: 69.9131
- type: nAUC_map_diff1
value: 5.900600000000001
- type: nAUC_mrr_max
value: 84.5132
- type: nAUC_mrr_std
value: 77.767
- type: nAUC_mrr_diff1
value: 46.5557
- type: main_score
value: 79.33109999999999
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: ndcg_at_1
value: 51.333
- type: ndcg_at_3
value: 57.781000000000006
- type: ndcg_at_5
value: 60.925
- type: ndcg_at_10
value: 63.254
- type: ndcg_at_20
value: 64.955
- type: ndcg_at_100
value: 66.155
- type: ndcg_at_1000
value: 67.193
- type: map_at_1
value: 48.428
- type: map_at_3
value: 55.145999999999994
- type: map_at_5
value: 57.055
- type: map_at_10
value: 58.17
- type: map_at_20
value: 58.723000000000006
- type: map_at_100
value: 58.901
- type: map_at_1000
value: 58.940000000000005
- type: recall_at_1
value: 48.428
- type: recall_at_3
value: 62.55
- type: recall_at_5
value: 70.367
- type: recall_at_10
value: 76.972
- type: recall_at_20
value: 83.317
- type: recall_at_100
value: 89.7
- type: recall_at_1000
value: 98.0
- type: precision_at_1
value: 51.333
- type: precision_at_3
value: 22.444
- type: precision_at_5
value: 15.4
- type: precision_at_10
value: 8.6
- type: precision_at_20
value: 4.717
- type: precision_at_100
value: 1.02
- type: precision_at_1000
value: 0.11100000000000002
- type: mrr_at_1
value: 51.3333
- type: mrr_at_3
value: 57.5556
- type: mrr_at_5
value: 59.255599999999994
- type: mrr_at_10
value: 60.104400000000005
- type: mrr_at_20
value: 60.4592
- type: mrr_at_100
value: 60.590999999999994
- type: mrr_at_1000
value: 60.622299999999996
- type: nauc_ndcg_at_1_max
value: 55.0684
- type: nauc_ndcg_at_1_std
value: 13.461200000000002
- type: nauc_ndcg_at_1_diff1
value: 67.4931
- type: nauc_ndcg_at_3_max
value: 54.1942
- type: nauc_ndcg_at_3_std
value: 11.029300000000001
- type: nauc_ndcg_at_3_diff1
value: 61.4423
- type: nauc_ndcg_at_5_max
value: 53.712199999999996
- type: nauc_ndcg_at_5_std
value: 11.0586
- type: nauc_ndcg_at_5_diff1
value: 59.3723
- type: nauc_ndcg_at_10_max
value: 55.2513
- type: nauc_ndcg_at_10_std
value: 13.413400000000001
- type: nauc_ndcg_at_10_diff1
value: 58.5176
- type: nauc_ndcg_at_20_max
value: 56.721900000000005
- type: nauc_ndcg_at_20_std
value: 14.9832
- type: nauc_ndcg_at_20_diff1
value: 59.1445
- type: nauc_ndcg_at_100_max
value: 56.5049
- type: nauc_ndcg_at_100_std
value: 15.021799999999999
- type: nauc_ndcg_at_100_diff1
value: 59.4117
- type: nauc_ndcg_at_1000_max
value: 56.0829
- type: nauc_ndcg_at_1000_std
value: 14.4429
- type: nauc_ndcg_at_1000_diff1
value: 60.45700000000001
- type: nauc_map_at_1_max
value: 50.901799999999994
- type: nauc_map_at_1_std
value: 6.0093
- type: nauc_map_at_1_diff1
value: 66.6214
- type: nauc_map_at_3_max
value: 52.684200000000004
- type: nauc_map_at_3_std
value: 7.9088
- type: nauc_map_at_3_diff1
value: 62.906600000000005
- type: nauc_map_at_5_max
value: 52.6187
- type: nauc_map_at_5_std
value: 8.2372
- type: nauc_map_at_5_diff1
value: 61.772000000000006
- type: nauc_map_at_10_max
value: 53.317899999999995
- type: nauc_map_at_10_std
value: 9.397
- type: nauc_map_at_10_diff1
value: 61.355599999999995
- type: nauc_map_at_20_max
value: 54.04259999999999
- type: nauc_map_at_20_std
value: 10.2201
- type: nauc_map_at_20_diff1
value: 61.684000000000005
- type: nauc_map_at_100_max
value: 54.0394
- type: nauc_map_at_100_std
value: 10.2894
- type: nauc_map_at_100_diff1
value: 61.7302
- type: nauc_map_at_1000_max
value: 54.024300000000004
- type: nauc_map_at_1000_std
value: 10.2881
- type: nauc_map_at_1000_diff1
value: 61.7661
- type: nauc_recall_at_1_max
value: 50.901799999999994
- type: nauc_recall_at_1_std
value: 6.0093
- type: nauc_recall_at_1_diff1
value: 66.6214
- type: nauc_recall_at_3_max
value: 52.8806
- type: nauc_recall_at_3_std
value: 10.7463
- type: nauc_recall_at_3_diff1
value: 55.5486
- type: nauc_recall_at_5_max
value: 52.277300000000004
- type: nauc_recall_at_5_std
value: 12.2395
- type: nauc_recall_at_5_diff1
value: 49.147800000000004
- type: nauc_recall_at_10_max
value: 57.403499999999994
- type: nauc_recall_at_10_std
value: 20.4581
- type: nauc_recall_at_10_diff1
value: 44.0595
- type: nauc_recall_at_20_max
value: 65.5378
- type: nauc_recall_at_20_std
value: 29.5288
- type: nauc_recall_at_20_diff1
value: 43.2217
- type: nauc_recall_at_100_max
value: 67.4941
- type: nauc_recall_at_100_std
value: 36.178399999999996
- type: nauc_recall_at_100_diff1
value: 39.3443
- type: nauc_recall_at_1000_max
value: 72.50229999999999
- type: nauc_recall_at_1000_std
value: 51.455
- type: nauc_recall_at_1000_diff1
value: 62.153800000000004
- type: nauc_precision_at_1_max
value: 55.0684
- type: nauc_precision_at_1_std
value: 13.461200000000002
- type: nauc_precision_at_1_diff1
value: 67.4931
- type: nauc_precision_at_3_max
value: 54.947599999999994
- type: nauc_precision_at_3_std
value: 23.1875
- type: nauc_precision_at_3_diff1
value: 51.166199999999996
- type: nauc_precision_at_5_max
value: 50.1483
- type: nauc_precision_at_5_std
value: 27.1119
- type: nauc_precision_at_5_diff1
value: 37.3846
- type: nauc_precision_at_10_max
value: 46.800799999999995
- type: nauc_precision_at_10_std
value: 37.737500000000004
- type: nauc_precision_at_10_diff1
value: 22.945999999999998
- type: nauc_precision_at_20_max
value: 43.980000000000004
- type: nauc_precision_at_20_std
value: 46.3352
- type: nauc_precision_at_20_diff1
value: 14.718300000000001
- type: nauc_precision_at_100_max
value: 34.8346
- type: nauc_precision_at_100_std
value: 49.0032
- type: nauc_precision_at_100_diff1
value: 4.7538
- type: nauc_precision_at_1000_max
value: 19.9994
- type: nauc_precision_at_1000_std
value: 51.132999999999996
- type: nauc_precision_at_1000_diff1
value: -6.5839
- type: nauc_mrr_at_1_max
value: 55.0684
- type: nauc_mrr_at_1_std
value: 13.461200000000002
- type: nauc_mrr_at_1_diff1
value: 67.4931
- type: nauc_mrr_at_3_max
value: 56.2153
- type: nauc_mrr_at_3_std
value: 15.4146
- type: nauc_mrr_at_3_diff1
value: 63.273199999999996
- type: nauc_mrr_at_5_max
value: 56.0011
- type: nauc_mrr_at_5_std
value: 15.7535
- type: nauc_mrr_at_5_diff1
value: 62.1466
- type: nauc_mrr_at_10_max
value: 56.643100000000004
- type: nauc_mrr_at_10_std
value: 16.354
- type: nauc_mrr_at_10_diff1
value: 62.0124
- type: nauc_mrr_at_20_max
value: 56.686800000000005
- type: nauc_mrr_at_20_std
value: 16.1984
- type: nauc_mrr_at_20_diff1
value: 62.095
- type: nauc_mrr_at_100_max
value: 56.6659
- type: nauc_mrr_at_100_std
value: 16.1601
- type: nauc_mrr_at_100_diff1
value: 62.157399999999996
- type: nauc_mrr_at_1000_max
value: 56.657599999999995
- type: nauc_mrr_at_1000_std
value: 16.1579
- type: nauc_mrr_at_1000_diff1
value: 62.195
- type: main_score
value: 63.254
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: similarity_accuracy
value: 99.7465
- type: similarity_accuracy_threshold
value: 84.08489999999999
- type: similarity_f1
value: 86.9388
- type: similarity_f1_threshold
value: 84.08489999999999
- type: similarity_precision
value: 88.75
- type: similarity_recall
value: 85.2
- type: similarity_ap
value: 93.56139999999999
- type: cosine_accuracy
value: 99.7465
- type: cosine_accuracy_threshold
value: 84.08489999999999
- type: cosine_f1
value: 86.9388
- type: cosine_f1_threshold
value: 84.08489999999999
- type: cosine_precision
value: 88.75
- type: cosine_recall
value: 85.2
- type: cosine_ap
value: 93.56139999999999
- type: manhattan_accuracy
value: 99.7614
- type: manhattan_accuracy_threshold
value: 853.1299
- type: manhattan_f1
value: 87.7053
- type: manhattan_f1_threshold
value: 888.5799999999999
- type: manhattan_precision
value: 87.3142
- type: manhattan_recall
value: 88.1
- type: manhattan_ap
value: 94.0777
- type: euclidean_accuracy
value: 99.7465
- type: euclidean_accuracy_threshold
value: 56.4183
- type: euclidean_f1
value: 86.9388
- type: euclidean_f1_threshold
value: 56.4183
- type: euclidean_precision
value: 88.75
- type: euclidean_recall
value: 85.2
- type: euclidean_ap
value: 93.5613
- type: dot_accuracy
value: 99.7465
- type: dot_accuracy_threshold
value: 84.08489999999999
- type: dot_f1
value: 86.9388
- type: dot_f1_threshold
value: 84.08489999999999
- type: dot_precision
value: 88.75
- type: dot_recall
value: 85.2
- type: dot_ap
value: 93.56139999999999
- type: max_accuracy
value: 99.7614
- type: max_f1
value: 87.7053
- type: max_precision
value: 88.75
- type: max_recall
value: 88.1
- type: max_ap
value: 94.0777
- type: main_score
value: 94.0777
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 54.13980000000001
- type: v_measure_std
value: 5.5665
- type: main_score
value: 54.13980000000001
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 32.6113
- type: v_measure_std
value: 1.6389999999999998
- type: main_score
value: 32.6113
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.813900000000004
- type: mrr
value: 51.702099999999994
- type: nAUC_map_max
value: 14.127600000000001
- type: nAUC_map_std
value: 8.6735
- type: nAUC_map_diff1
value: 36.4317
- type: nAUC_mrr_max
value: 15.504399999999999
- type: nAUC_mrr_std
value: 9.7053
- type: nAUC_mrr_diff1
value: 36.7021
- type: main_score
value: 50.813900000000004
- task:
type: Retrieval
dataset:
name: MTEB StackOverflowQA (default)
type: CoIR-Retrieval/stackoverflow-qa
config: default
split: test
revision: db8f169f3894c14a00251061f957b2063eef2bd5
metrics:
- type: ndcg_at_1
value: 54.26299999999999
- type: ndcg_at_3
value: 62.395
- type: ndcg_at_5
value: 64.603
- type: ndcg_at_10
value: 66.57600000000001
- type: ndcg_at_20
value: 68.089
- type: ndcg_at_100
value: 69.587
- type: ndcg_at_1000
value: 70.216
- type: map_at_1
value: 54.26299999999999
- type: map_at_3
value: 60.373
- type: map_at_5
value: 61.609
- type: map_at_10
value: 62.419999999999995
- type: map_at_20
value: 62.83800000000001
- type: map_at_100
value: 63.04
- type: map_at_1000
value: 63.063
- type: recall_at_1
value: 54.26299999999999
- type: recall_at_3
value: 68.255
- type: recall_at_5
value: 73.571
- type: recall_at_10
value: 79.689
- type: recall_at_20
value: 85.65700000000001
- type: recall_at_100
value: 93.781
- type: recall_at_1000
value: 98.79599999999999
- type: precision_at_1
value: 54.26299999999999
- type: precision_at_3
value: 22.752
- type: precision_at_5
value: 14.713999999999999
- type: precision_at_10
value: 7.968999999999999
- type: precision_at_20
value: 4.283
- type: precision_at_100
value: 0.938
- type: precision_at_1000
value: 0.099
- type: mrr_at_1
value: 54.2628
- type: mrr_at_3
value: 60.372800000000005
- type: mrr_at_5
value: 61.609
- type: mrr_at_10
value: 62.4202
- type: mrr_at_20
value: 62.83800000000001
- type: mrr_at_100
value: 63.0402
- type: mrr_at_1000
value: 63.06270000000001
- type: nauc_ndcg_at_1_max
value: 61.3558
- type: nauc_ndcg_at_1_std
value: -7.5783000000000005
- type: nauc_ndcg_at_1_diff1
value: 72.637
- type: nauc_ndcg_at_3_max
value: 59.621900000000004
- type: nauc_ndcg_at_3_std
value: -7.8752
- type: nauc_ndcg_at_3_diff1
value: 67.341
- type: nauc_ndcg_at_5_max
value: 59.32150000000001
- type: nauc_ndcg_at_5_std
value: -6.783500000000001
- type: nauc_ndcg_at_5_diff1
value: 66.3908
- type: nauc_ndcg_at_10_max
value: 58.8665
- type: nauc_ndcg_at_10_std
value: -6.8839999999999995
- type: nauc_ndcg_at_10_diff1
value: 65.5914
- type: nauc_ndcg_at_20_max
value: 59.071
- type: nauc_ndcg_at_20_std
value: -6.7216
- type: nauc_ndcg_at_20_diff1
value: 66.0076
- type: nauc_ndcg_at_100_max
value: 59.2928
- type: nauc_ndcg_at_100_std
value: -6.0869
- type: nauc_ndcg_at_100_diff1
value: 66.5509
- type: nauc_ndcg_at_1000_max
value: 59.551
- type: nauc_ndcg_at_1000_std
value: -6.3229
- type: nauc_ndcg_at_1000_diff1
value: 67.0501
- type: nauc_map_at_1_max
value: 61.3558
- type: nauc_map_at_1_std
value: -7.5783000000000005
- type: nauc_map_at_1_diff1
value: 72.637
- type: nauc_map_at_3_max
value: 60.0638
- type: nauc_map_at_3_std
value: -7.824599999999999
- type: nauc_map_at_3_diff1
value: 68.7255
- type: nauc_map_at_5_max
value: 59.9035
- type: nauc_map_at_5_std
value: -7.236199999999999
- type: nauc_map_at_5_diff1
value: 68.2474
- type: nauc_map_at_10_max
value: 59.73159999999999
- type: nauc_map_at_10_std
value: -7.3129
- type: nauc_map_at_10_diff1
value: 67.9742
- type: nauc_map_at_20_max
value: 59.799800000000005
- type: nauc_map_at_20_std
value: -7.2599
- type: nauc_map_at_20_diff1
value: 68.1128
- type: nauc_map_at_100_max
value: 59.8324
- type: nauc_map_at_100_std
value: -7.1589
- type: nauc_map_at_100_diff1
value: 68.1784
- type: nauc_map_at_1000_max
value: 59.845099999999995
- type: nauc_map_at_1000_std
value: -7.1592
- type: nauc_map_at_1000_diff1
value: 68.19770000000001
- type: nauc_recall_at_1_max
value: 61.3558
- type: nauc_recall_at_1_std
value: -7.5783000000000005
- type: nauc_recall_at_1_diff1
value: 72.637
- type: nauc_recall_at_3_max
value: 58.1732
- type: nauc_recall_at_3_std
value: -8.028599999999999
- type: nauc_recall_at_3_diff1
value: 62.7847
- type: nauc_recall_at_5_max
value: 57.1488
- type: nauc_recall_at_5_std
value: -4.9189
- type: nauc_recall_at_5_diff1
value: 59.392599999999995
- type: nauc_recall_at_10_max
value: 54.7384
- type: nauc_recall_at_10_std
value: -4.683
- type: nauc_recall_at_10_diff1
value: 54.317499999999995
- type: nauc_recall_at_20_max
value: 54.5659
- type: nauc_recall_at_20_std
value: -2.9657
- type: nauc_recall_at_20_diff1
value: 53.039899999999996
- type: nauc_recall_at_100_max
value: 53.5805
- type: nauc_recall_at_100_std
value: 12.822
- type: nauc_recall_at_100_diff1
value: 49.3168
- type: nauc_recall_at_1000_max
value: 64.52839999999999
- type: nauc_recall_at_1000_std
value: 44.954699999999995
- type: nauc_recall_at_1000_diff1
value: 51.3607
- type: nauc_precision_at_1_max
value: 61.3558
- type: nauc_precision_at_1_std
value: -7.5783000000000005
- type: nauc_precision_at_1_diff1
value: 72.637
- type: nauc_precision_at_3_max
value: 58.1732
- type: nauc_precision_at_3_std
value: -8.028599999999999
- type: nauc_precision_at_3_diff1
value: 62.7847
- type: nauc_precision_at_5_max
value: 57.1488
- type: nauc_precision_at_5_std
value: -4.9189
- type: nauc_precision_at_5_diff1
value: 59.392599999999995
- type: nauc_precision_at_10_max
value: 54.7384
- type: nauc_precision_at_10_std
value: -4.683
- type: nauc_precision_at_10_diff1
value: 54.317499999999995
- type: nauc_precision_at_20_max
value: 54.5659
- type: nauc_precision_at_20_std
value: -2.9657
- type: nauc_precision_at_20_diff1
value: 53.039899999999996
- type: nauc_precision_at_100_max
value: 53.5805
- type: nauc_precision_at_100_std
value: 12.822
- type: nauc_precision_at_100_diff1
value: 49.3168
- type: nauc_precision_at_1000_max
value: 64.52839999999999
- type: nauc_precision_at_1000_std
value: 44.954699999999995
- type: nauc_precision_at_1000_diff1
value: 51.3607
- type: nauc_mrr_at_1_max
value: 61.3558
- type: nauc_mrr_at_1_std
value: -7.5783000000000005
- type: nauc_mrr_at_1_diff1
value: 72.637
- type: nauc_mrr_at_3_max
value: 60.0638
- type: nauc_mrr_at_3_std
value: -7.824599999999999
- type: nauc_mrr_at_3_diff1
value: 68.7255
- type: nauc_mrr_at_5_max
value: 59.9035
- type: nauc_mrr_at_5_std
value: -7.236199999999999
- type: nauc_mrr_at_5_diff1
value: 68.2474
- type: nauc_mrr_at_10_max
value: 59.73159999999999
- type: nauc_mrr_at_10_std
value: -7.3129
- type: nauc_mrr_at_10_diff1
value: 67.9742
- type: nauc_mrr_at_20_max
value: 59.799800000000005
- type: nauc_mrr_at_20_std
value: -7.2599
- type: nauc_mrr_at_20_diff1
value: 68.1128
- type: nauc_mrr_at_100_max
value: 59.8324
- type: nauc_mrr_at_100_std
value: -7.1589
- type: nauc_mrr_at_100_diff1
value: 68.1784
- type: nauc_mrr_at_1000_max
value: 59.845099999999995
- type: nauc_mrr_at_1000_std
value: -7.1592
- type: nauc_mrr_at_1000_diff1
value: 68.19770000000001
- type: main_score
value: 66.57600000000001
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: pearson
value: 31.255699999999997
- type: spearman
value: 31.121
- type: cosine_spearman
value: 31.121
- type: cosine_pearson
value: 31.255699999999997
- type: dot_spearman
value: 31.121
- type: dot_pearson
value: 31.255699999999997
- type: main_score
value: 31.121
- task:
type: Retrieval
dataset:
name: MTEB SyntheticText2SQL (default)
type: CoIR-Retrieval/synthetic-text2sql
config: default
split: test
revision: 686b87296c3a0191b5d9415a00526c62db9fce09
metrics:
- type: ndcg_at_1
value: 2.752
- type: ndcg_at_3
value: 32.669
- type: ndcg_at_5
value: 36.313
- type: ndcg_at_10
value: 39.341
- type: ndcg_at_20
value: 41.22
- type: ndcg_at_100
value: 43.682
- type: ndcg_at_1000
value: 44.679
- type: map_at_1
value: 2.752
- type: map_at_3
value: 25.918999999999997
- type: map_at_5
value: 27.939000000000004
- type: map_at_10
value: 29.195999999999998
- type: map_at_20
value: 29.711
- type: map_at_100
value: 30.057000000000002
- type: map_at_1000
value: 30.092999999999996
- type: recall_at_1
value: 2.752
- type: recall_at_3
value: 51.957
- type: recall_at_5
value: 60.809999999999995
- type: recall_at_10
value: 70.14200000000001
- type: recall_at_20
value: 77.576
- type: recall_at_100
value: 90.771
- type: recall_at_1000
value: 98.667
- type: precision_at_1
value: 2.752
- type: precision_at_3
value: 17.319000000000003
- type: precision_at_5
value: 12.162
- type: precision_at_10
value: 7.013999999999999
- type: precision_at_20
value: 3.879
- type: precision_at_100
value: 0.9079999999999999
- type: precision_at_1000
value: 0.099
- type: mrr_at_1
value: 23.534399999999998
- type: mrr_at_3
value: 37.8739
- type: mrr_at_5
value: 39.6078
- type: mrr_at_10
value: 40.7592
- type: mrr_at_20
value: 41.2449
- type: mrr_at_100
value: 41.5832
- type: mrr_at_1000
value: 41.6198
- type: nauc_ndcg_at_1_max
value: 13.625200000000001
- type: nauc_ndcg_at_1_std
value: -17.2342
- type: nauc_ndcg_at_1_diff1
value: 72.20830000000001
- type: nauc_ndcg_at_3_max
value: 33.5059
- type: nauc_ndcg_at_3_std
value: -15.198400000000001
- type: nauc_ndcg_at_3_diff1
value: -55.0763
- type: nauc_ndcg_at_5_max
value: 31.461699999999997
- type: nauc_ndcg_at_5_std
value: -15.857899999999999
- type: nauc_ndcg_at_5_diff1
value: -51.2902
- type: nauc_ndcg_at_10_max
value: 30.206699999999998
- type: nauc_ndcg_at_10_std
value: -15.9071
- type: nauc_ndcg_at_10_diff1
value: -48.7532
- type: nauc_ndcg_at_20_max
value: 29.5645
- type: nauc_ndcg_at_20_std
value: -15.509400000000001
- type: nauc_ndcg_at_20_diff1
value: -47.8463
- type: nauc_ndcg_at_100_max
value: 29.8902
- type: nauc_ndcg_at_100_std
value: -14.0898
- type: nauc_ndcg_at_100_diff1
value: -46.7294
- type: nauc_ndcg_at_1000_max
value: 30.285800000000002
- type: nauc_ndcg_at_1000_std
value: -14.7898
- type: nauc_ndcg_at_1000_diff1
value: -47.0235
- type: nauc_map_at_1_max
value: 13.625200000000001
- type: nauc_map_at_1_std
value: -17.2342
- type: nauc_map_at_1_diff1
value: 72.20830000000001
- type: nauc_map_at_3_max
value: 32.7681
- type: nauc_map_at_3_std
value: -15.386700000000001
- type: nauc_map_at_3_diff1
value: -49.9214
- type: nauc_map_at_5_max
value: 31.436799999999998
- type: nauc_map_at_5_std
value: -15.8028
- type: nauc_map_at_5_diff1
value: -47.2353
- type: nauc_map_at_10_max
value: 30.857200000000002
- type: nauc_map_at_10_std
value: -15.878200000000001
- type: nauc_map_at_10_diff1
value: -45.9157
- type: nauc_map_at_20_max
value: 30.660300000000003
- type: nauc_map_at_20_std
value: -15.7674
- type: nauc_map_at_20_diff1
value: -45.5729
- type: nauc_map_at_100_max
value: 30.7164
- type: nauc_map_at_100_std
value: -15.579200000000002
- type: nauc_map_at_100_diff1
value: -45.3606
- type: nauc_map_at_1000_max
value: 30.728
- type: nauc_map_at_1000_std
value: -15.598600000000001
- type: nauc_map_at_1000_diff1
value: -45.367200000000004
- type: nauc_recall_at_1_max
value: 13.625200000000001
- type: nauc_recall_at_1_std
value: -17.2342
- type: nauc_recall_at_1_diff1
value: 72.20830000000001
- type: nauc_recall_at_3_max
value: 34.6344
- type: nauc_recall_at_3_std
value: -14.868200000000002
- type: nauc_recall_at_3_diff1
value: -63.1221
- type: nauc_recall_at_5_max
value: 31.1334
- type: nauc_recall_at_5_std
value: -16.0306
- type: nauc_recall_at_5_diff1
value: -57.4562
- type: nauc_recall_at_10_max
value: 27.9709
- type: nauc_recall_at_10_std
value: -15.9834
- type: nauc_recall_at_10_diff1
value: -52.4094
- type: nauc_recall_at_20_max
value: 25.136599999999998
- type: nauc_recall_at_20_std
value: -14.491000000000001
- type: nauc_recall_at_20_diff1
value: -50.1152
- type: nauc_recall_at_100_max
value: 23.1454
- type: nauc_recall_at_100_std
value: 1.0654000000000001
- type: nauc_recall_at_100_diff1
value: -42.3044
- type: nauc_recall_at_1000_max
value: 23.3796
- type: nauc_recall_at_1000_std
value: 18.206
- type: nauc_recall_at_1000_diff1
value: -44.292300000000004
- type: nauc_precision_at_1_max
value: 13.625200000000001
- type: nauc_precision_at_1_std
value: -17.2342
- type: nauc_precision_at_1_diff1
value: 72.20830000000001
- type: nauc_precision_at_3_max
value: 34.6344
- type: nauc_precision_at_3_std
value: -14.868200000000002
- type: nauc_precision_at_3_diff1
value: -63.1221
- type: nauc_precision_at_5_max
value: 31.1334
- type: nauc_precision_at_5_std
value: -16.0306
- type: nauc_precision_at_5_diff1
value: -57.4562
- type: nauc_precision_at_10_max
value: 27.9709
- type: nauc_precision_at_10_std
value: -15.9834
- type: nauc_precision_at_10_diff1
value: -52.4094
- type: nauc_precision_at_20_max
value: 25.136599999999998
- type: nauc_precision_at_20_std
value: -14.491000000000001
- type: nauc_precision_at_20_diff1
value: -50.1152
- type: nauc_precision_at_100_max
value: 23.1454
- type: nauc_precision_at_100_std
value: 1.0654000000000001
- type: nauc_precision_at_100_diff1
value: -42.3044
- type: nauc_precision_at_1000_max
value: 23.3796
- type: nauc_precision_at_1000_std
value: 18.206
- type: nauc_precision_at_1000_diff1
value: -44.292300000000004
- type: nauc_mrr_at_1_max
value: 21.4193
- type: nauc_mrr_at_1_std
value: -10.3504
- type: nauc_mrr_at_1_diff1
value: -39.323
- type: nauc_mrr_at_3_max
value: 28.0993
- type: nauc_mrr_at_3_std
value: -12.9194
- type: nauc_mrr_at_3_diff1
value: -52.07580000000001
- type: nauc_mrr_at_5_max
value: 27.378999999999998
- type: nauc_mrr_at_5_std
value: -13.184299999999999
- type: nauc_mrr_at_5_diff1
value: -51.0092
- type: nauc_mrr_at_10_max
value: 26.9761
- type: nauc_mrr_at_10_std
value: -13.0161
- type: nauc_mrr_at_10_diff1
value: -50.266200000000005
- type: nauc_mrr_at_20_max
value: 26.8175
- type: nauc_mrr_at_20_std
value: -12.9521
- type: nauc_mrr_at_20_diff1
value: -50.137699999999995
- type: nauc_mrr_at_100_max
value: 26.8202
- type: nauc_mrr_at_100_std
value: -12.809000000000001
- type: nauc_mrr_at_100_diff1
value: -50.0703
- type: nauc_mrr_at_1000_max
value: 26.8223
- type: nauc_mrr_at_1000_std
value: -12.8169
- type: nauc_mrr_at_1000_diff1
value: -50.0798
- type: main_score
value: 39.341
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: ndcg_at_1
value: 59.0
- type: ndcg_at_3
value: 61.173
- type: ndcg_at_5
value: 61.927
- type: ndcg_at_10
value: 62.815
- type: ndcg_at_20
value: 60.716
- type: ndcg_at_100
value: 50.699000000000005
- type: ndcg_at_1000
value: 46.711999999999996
- type: map_at_1
value: 0.186
- type: map_at_3
value: 0.47200000000000003
- type: map_at_5
value: 0.749
- type: map_at_10
value: 1.43
- type: map_at_20
value: 2.608
- type: map_at_100
value: 8.876000000000001
- type: map_at_1000
value: 22.055
- type: recall_at_1
value: 0.186
- type: recall_at_3
value: 0.519
- type: recall_at_5
value: 0.8699999999999999
- type: recall_at_10
value: 1.773
- type: recall_at_20
value: 3.338
- type: recall_at_100
value: 12.516
- type: recall_at_1000
value: 44.699
- type: precision_at_1
value: 66.0
- type: precision_at_3
value: 67.333
- type: precision_at_5
value: 67.60000000000001
- type: precision_at_10
value: 68.4
- type: precision_at_20
value: 65.7
- type: precision_at_100
value: 52.78
- type: precision_at_1000
value: 21.048000000000002
- type: mrr_at_1
value: 66.0
- type: mrr_at_3
value: 77.33330000000001
- type: mrr_at_5
value: 78.3333
- type: mrr_at_10
value: 79.3333
- type: mrr_at_20
value: 79.3333
- type: mrr_at_100
value: 79.3333
- type: mrr_at_1000
value: 79.3333
- type: nauc_ndcg_at_1_max
value: 17.5939
- type: nauc_ndcg_at_1_std
value: 18.9798
- type: nauc_ndcg_at_1_diff1
value: 7.1539
- type: nauc_ndcg_at_3_max
value: 29.7636
- type: nauc_ndcg_at_3_std
value: 31.7841
- type: nauc_ndcg_at_3_diff1
value: 7.1419
- type: nauc_ndcg_at_5_max
value: 29.316
- type: nauc_ndcg_at_5_std
value: 46.3408
- type: nauc_ndcg_at_5_diff1
value: -0.4602
- type: nauc_ndcg_at_10_max
value: 27.446900000000003
- type: nauc_ndcg_at_10_std
value: 53.37
- type: nauc_ndcg_at_10_diff1
value: -4.2545
- type: nauc_ndcg_at_20_max
value: 30.0264
- type: nauc_ndcg_at_20_std
value: 58.7602
- type: nauc_ndcg_at_20_diff1
value: -9.146899999999999
- type: nauc_ndcg_at_100_max
value: 37.939299999999996
- type: nauc_ndcg_at_100_std
value: 75.0271
- type: nauc_ndcg_at_100_diff1
value: -16.2298
- type: nauc_ndcg_at_1000_max
value: 40.1712
- type: nauc_ndcg_at_1000_std
value: 80.865
- type: nauc_ndcg_at_1000_diff1
value: -20.5847
- type: nauc_map_at_1_max
value: 16.9528
- type: nauc_map_at_1_std
value: -0.49119999999999997
- type: nauc_map_at_1_diff1
value: 14.029
- type: nauc_map_at_3_max
value: 22.714000000000002
- type: nauc_map_at_3_std
value: 4.587
- type: nauc_map_at_3_diff1
value: 18.4359
- type: nauc_map_at_5_max
value: 26.631700000000002
- type: nauc_map_at_5_std
value: 16.3506
- type: nauc_map_at_5_diff1
value: 15.8387
- type: nauc_map_at_10_max
value: 26.4635
- type: nauc_map_at_10_std
value: 22.819300000000002
- type: nauc_map_at_10_diff1
value: 9.7916
- type: nauc_map_at_20_max
value: 29.7699
- type: nauc_map_at_20_std
value: 34.153099999999995
- type: nauc_map_at_20_diff1
value: 1.4186
- type: nauc_map_at_100_max
value: 41.5138
- type: nauc_map_at_100_std
value: 68.24799999999999
- type: nauc_map_at_100_diff1
value: -12.2417
- type: nauc_map_at_1000_max
value: 45.9887
- type: nauc_map_at_1000_std
value: 82.8023
- type: nauc_map_at_1000_diff1
value: -20.608999999999998
- type: nauc_recall_at_1_max
value: 16.9528
- type: nauc_recall_at_1_std
value: -0.49119999999999997
- type: nauc_recall_at_1_diff1
value: 14.029
- type: nauc_recall_at_3_max
value: 22.601
- type: nauc_recall_at_3_std
value: 5.037
- type: nauc_recall_at_3_diff1
value: 20.4189
- type: nauc_recall_at_5_max
value: 23.8002
- type: nauc_recall_at_5_std
value: 17.2469
- type: nauc_recall_at_5_diff1
value: 15.3806
- type: nauc_recall_at_10_max
value: 20.0149
- type: nauc_recall_at_10_std
value: 17.2152
- type: nauc_recall_at_10_diff1
value: 8.289
- type: nauc_recall_at_20_max
value: 23.2578
- type: nauc_recall_at_20_std
value: 25.9678
- type: nauc_recall_at_20_diff1
value: 1.6708
- type: nauc_recall_at_100_max
value: 34.7341
- type: nauc_recall_at_100_std
value: 59.1777
- type: nauc_recall_at_100_diff1
value: -10.6132
- type: nauc_recall_at_1000_max
value: 36.492599999999996
- type: nauc_recall_at_1000_std
value: 74.2008
- type: nauc_recall_at_1000_diff1
value: -21.9119
- type: nauc_precision_at_1_max
value: 25.7227
- type: nauc_precision_at_1_std
value: 14.152500000000002
- type: nauc_precision_at_1_diff1
value: 11.1952
- type: nauc_precision_at_3_max
value: 35.1261
- type: nauc_precision_at_3_std
value: 31.342399999999998
- type: nauc_precision_at_3_diff1
value: 3.0915999999999997
- type: nauc_precision_at_5_max
value: 33.8418
- type: nauc_precision_at_5_std
value: 52.1046
- type: nauc_precision_at_5_diff1
value: -5.7694
- type: nauc_precision_at_10_max
value: 29.5701
- type: nauc_precision_at_10_std
value: 56.474999999999994
- type: nauc_precision_at_10_diff1
value: -11.305800000000001
- type: nauc_precision_at_20_max
value: 37.1605
- type: nauc_precision_at_20_std
value: 62.65690000000001
- type: nauc_precision_at_20_diff1
value: -16.114600000000003
- type: nauc_precision_at_100_max
value: 42.5736
- type: nauc_precision_at_100_std
value: 77.8946
- type: nauc_precision_at_100_diff1
value: -18.5221
- type: nauc_precision_at_1000_max
value: 31.0108
- type: nauc_precision_at_1000_std
value: 54.306200000000004
- type: nauc_precision_at_1000_diff1
value: -20.7365
- type: nauc_mrr_at_1_max
value: 25.7227
- type: nauc_mrr_at_1_std
value: 14.152500000000002
- type: nauc_mrr_at_1_diff1
value: 11.1952
- type: nauc_mrr_at_3_max
value: 37.1749
- type: nauc_mrr_at_3_std
value: 32.7833
- type: nauc_mrr_at_3_diff1
value: 5.9276
- type: nauc_mrr_at_5_max
value: 34.5503
- type: nauc_mrr_at_5_std
value: 31.1188
- type: nauc_mrr_at_5_diff1
value: 2.9541
- type: nauc_mrr_at_10_max
value: 32.3008
- type: nauc_mrr_at_10_std
value: 27.4621
- type: nauc_mrr_at_10_diff1
value: 5.944599999999999
- type: nauc_mrr_at_20_max
value: 32.3008
- type: nauc_mrr_at_20_std
value: 27.4621
- type: nauc_mrr_at_20_diff1
value: 5.944599999999999
- type: nauc_mrr_at_100_max
value: 32.3008
- type: nauc_mrr_at_100_std
value: 27.4621
- type: nauc_mrr_at_100_diff1
value: 5.944599999999999
- type: nauc_mrr_at_1000_max
value: 32.3008
- type: nauc_mrr_at_1000_std
value: 27.4621
- type: nauc_mrr_at_1000_diff1
value: 5.944599999999999
- type: main_score
value: 62.815
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: ndcg_at_1
value: 34.694
- type: ndcg_at_3
value: 27.976
- type: ndcg_at_5
value: 27.029999999999998
- type: ndcg_at_10
value: 24.853
- type: ndcg_at_20
value: 26.188
- type: ndcg_at_100
value: 36.225
- type: ndcg_at_1000
value: 47.583999999999996
- type: map_at_1
value: 2.987
- type: map_at_3
value: 4.9799999999999995
- type: map_at_5
value: 7.170999999999999
- type: map_at_10
value: 9.788
- type: map_at_20
value: 12.379
- type: map_at_100
value: 15.692
- type: map_at_1000
value: 17.27
- type: recall_at_1
value: 2.987
- type: recall_at_3
value: 6.084
- type: recall_at_5
value: 9.609
- type: recall_at_10
value: 15.512
- type: recall_at_20
value: 24.248
- type: recall_at_100
value: 46.916999999999994
- type: recall_at_1000
value: 80.447
- type: precision_at_1
value: 36.735
- type: precision_at_3
value: 27.891
- type: precision_at_5
value: 26.531
- type: precision_at_10
value: 22.041
- type: precision_at_20
value: 17.347
- type: precision_at_100
value: 7.550999999999999
- type: precision_at_1000
value: 1.492
- type: mrr_at_1
value: 36.7347
- type: mrr_at_3
value: 46.258500000000005
- type: mrr_at_5
value: 47.585
- type: mrr_at_10
value: 49.4266
- type: mrr_at_20
value: 50.4374
- type: mrr_at_100
value: 50.6221
- type: mrr_at_1000
value: 50.6221
- type: nauc_ndcg_at_1_max
value: -30.5017
- type: nauc_ndcg_at_1_std
value: 20.9115
- type: nauc_ndcg_at_1_diff1
value: 14.0996
- type: nauc_ndcg_at_3_max
value: -32.4852
- type: nauc_ndcg_at_3_std
value: 7.378500000000001
- type: nauc_ndcg_at_3_diff1
value: 6.1796
- type: nauc_ndcg_at_5_max
value: -31.3343
- type: nauc_ndcg_at_5_std
value: -1.8091
- type: nauc_ndcg_at_5_diff1
value: 2.7997
- type: nauc_ndcg_at_10_max
value: -28.2383
- type: nauc_ndcg_at_10_std
value: -3.1220999999999997
- type: nauc_ndcg_at_10_diff1
value: 10.0107
- type: nauc_ndcg_at_20_max
value: -33.4679
- type: nauc_ndcg_at_20_std
value: -8.3618
- type: nauc_ndcg_at_20_diff1
value: 7.3284
- type: nauc_ndcg_at_100_max
value: -33.0007
- type: nauc_ndcg_at_100_std
value: 18.1058
- type: nauc_ndcg_at_100_diff1
value: 7.5906
- type: nauc_ndcg_at_1000_max
value: -30.4942
- type: nauc_ndcg_at_1000_std
value: 29.7125
- type: nauc_ndcg_at_1000_diff1
value: 4.3626
- type: nauc_map_at_1_max
value: -27.8899
- type: nauc_map_at_1_std
value: -2.694
- type: nauc_map_at_1_diff1
value: 15.2888
- type: nauc_map_at_3_max
value: -28.008499999999998
- type: nauc_map_at_3_std
value: -8.2292
- type: nauc_map_at_3_diff1
value: 11.0099
- type: nauc_map_at_5_max
value: -25.1626
- type: nauc_map_at_5_std
value: -14.2187
- type: nauc_map_at_5_diff1
value: 4.6605
- type: nauc_map_at_10_max
value: -21.1923
- type: nauc_map_at_10_std
value: -16.653299999999998
- type: nauc_map_at_10_diff1
value: 6.869599999999999
- type: nauc_map_at_20_max
value: -24.2959
- type: nauc_map_at_20_std
value: -17.707
- type: nauc_map_at_20_diff1
value: 6.6531
- type: nauc_map_at_100_max
value: -24.9706
- type: nauc_map_at_100_std
value: -6.2074
- type: nauc_map_at_100_diff1
value: 7.940300000000001
- type: nauc_map_at_1000_max
value: -24.5016
- type: nauc_map_at_1000_std
value: -1.7534
- type: nauc_map_at_1000_diff1
value: 7.0978
- type: nauc_recall_at_1_max
value: -27.8899
- type: nauc_recall_at_1_std
value: -2.694
- type: nauc_recall_at_1_diff1
value: 15.2888
- type: nauc_recall_at_3_max
value: -33.166000000000004
- type: nauc_recall_at_3_std
value: -13.9572
- type: nauc_recall_at_3_diff1
value: 6.8492999999999995
- type: nauc_recall_at_5_max
value: -26.5866
- type: nauc_recall_at_5_std
value: -18.4333
- type: nauc_recall_at_5_diff1
value: 0.9511999999999999
- type: nauc_recall_at_10_max
value: -23.4865
- type: nauc_recall_at_10_std
value: -17.3336
- type: nauc_recall_at_10_diff1
value: 9.8763
- type: nauc_recall_at_20_max
value: -34.451
- type: nauc_recall_at_20_std
value: -18.5261
- type: nauc_recall_at_20_diff1
value: 8.4592
- type: nauc_recall_at_100_max
value: -31.3903
- type: nauc_recall_at_100_std
value: 30.2519
- type: nauc_recall_at_100_diff1
value: 9.4903
- type: nauc_recall_at_1000_max
value: -20.7349
- type: nauc_recall_at_1000_std
value: 72.50229999999999
- type: nauc_recall_at_1000_diff1
value: -0.7664
- type: nauc_precision_at_1_max
value: -27.048
- type: nauc_precision_at_1_std
value: 18.2883
- type: nauc_precision_at_1_diff1
value: 18.5083
- type: nauc_precision_at_3_max
value: -31.4006
- type: nauc_precision_at_3_std
value: -1.9464
- type: nauc_precision_at_3_diff1
value: 5.7819
- type: nauc_precision_at_5_max
value: -25.740800000000004
- type: nauc_precision_at_5_std
value: -11.5328
- type: nauc_precision_at_5_diff1
value: 0.4881
- type: nauc_precision_at_10_max
value: -20.8035
- type: nauc_precision_at_10_std
value: -9.3623
- type: nauc_precision_at_10_diff1
value: 13.7272
- type: nauc_precision_at_20_max
value: -27.124399999999998
- type: nauc_precision_at_20_std
value: -4.7749
- type: nauc_precision_at_20_diff1
value: 6.5773
- type: nauc_precision_at_100_max
value: -7.2334
- type: nauc_precision_at_100_std
value: 60.89639999999999
- type: nauc_precision_at_100_diff1
value: 3.9092000000000002
- type: nauc_precision_at_1000_max
value: 33.7911
- type: nauc_precision_at_1000_std
value: 44.2182
- type: nauc_precision_at_1000_diff1
value: -11.840399999999999
- type: nauc_mrr_at_1_max
value: -27.048
- type: nauc_mrr_at_1_std
value: 18.2883
- type: nauc_mrr_at_1_diff1
value: 18.5083
- type: nauc_mrr_at_3_max
value: -35.0702
- type: nauc_mrr_at_3_std
value: 11.0891
- type: nauc_mrr_at_3_diff1
value: 11.4635
- type: nauc_mrr_at_5_max
value: -35.9339
- type: nauc_mrr_at_5_std
value: 11.4561
- type: nauc_mrr_at_5_diff1
value: 11.792900000000001
- type: nauc_mrr_at_10_max
value: -35.5993
- type: nauc_mrr_at_10_std
value: 13.369800000000001
- type: nauc_mrr_at_10_diff1
value: 14.168
- type: nauc_mrr_at_20_max
value: -35.587
- type: nauc_mrr_at_20_std
value: 12.8052
- type: nauc_mrr_at_20_diff1
value: 13.6937
- type: nauc_mrr_at_100_max
value: -35.424
- type: nauc_mrr_at_100_std
value: 13.0847
- type: nauc_mrr_at_100_diff1
value: 13.5063
- type: nauc_mrr_at_1000_max
value: -35.424
- type: nauc_mrr_at_1000_std
value: 13.0847
- type: nauc_mrr_at_1000_diff1
value: 13.5063
- type: main_score
value: 24.853
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 60.380900000000004
- type: f1
value: 46.8295
- type: f1_weighted
value: 69.05930000000001
- type: ap
value: 10.5988
- type: ap_weighted
value: 10.5988
- type: main_score
value: 60.380900000000004
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 58.537099999999995
- type: f1
value: 58.7006
- type: f1_weighted
value: 58.013400000000004
- type: main_score
value: 58.537099999999995
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 36.6842
- type: v_measure_std
value: 1.9854
- type: main_score
value: 36.6842
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: similarity_accuracy
value: 82.3866
- type: similarity_accuracy_threshold
value: 87.0467
- type: similarity_f1
value: 58.4102
- type: similarity_f1_threshold
value: 82.61540000000001
- type: similarity_precision
value: 52.937400000000004
- type: similarity_recall
value: 65.1451
- type: similarity_ap
value: 61.6413
- type: cosine_accuracy
value: 82.3866
- type: cosine_accuracy_threshold
value: 87.0467
- type: cosine_f1
value: 58.4102
- type: cosine_f1_threshold
value: 82.61540000000001
- type: cosine_precision
value: 52.937400000000004
- type: cosine_recall
value: 65.1451
- type: cosine_ap
value: 61.6413
- type: manhattan_accuracy
value: 82.12429999999999
- type: manhattan_accuracy_threshold
value: 786.2048
- type: manhattan_f1
value: 57.862899999999996
- type: manhattan_f1_threshold
value: 911.9348
- type: manhattan_precision
value: 50.2725
- type: manhattan_recall
value: 68.15299999999999
- type: manhattan_ap
value: 60.6893
- type: euclidean_accuracy
value: 82.3866
- type: euclidean_accuracy_threshold
value: 50.8985
- type: euclidean_f1
value: 58.4102
- type: euclidean_f1_threshold
value: 58.9654
- type: euclidean_precision
value: 52.937400000000004
- type: euclidean_recall
value: 65.1451
- type: euclidean_ap
value: 61.6413
- type: dot_accuracy
value: 82.3866
- type: dot_accuracy_threshold
value: 87.0467
- type: dot_f1
value: 58.4102
- type: dot_f1_threshold
value: 82.61540000000001
- type: dot_precision
value: 52.937400000000004
- type: dot_recall
value: 65.1451
- type: dot_ap
value: 61.6413
- type: max_accuracy
value: 82.3866
- type: max_f1
value: 58.4102
- type: max_precision
value: 52.937400000000004
- type: max_recall
value: 68.15299999999999
- type: max_ap
value: 61.6413
- type: main_score
value: 61.6413
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: similarity_accuracy
value: 88.77629999999999
- type: similarity_accuracy_threshold
value: 82.2251
- type: similarity_f1
value: 77.3613
- type: similarity_f1_threshold
value: 80.3174
- type: similarity_precision
value: 75.0906
- type: similarity_recall
value: 79.7736
- type: similarity_ap
value: 85.6694
- type: cosine_accuracy
value: 88.77629999999999
- type: cosine_accuracy_threshold
value: 82.2251
- type: cosine_f1
value: 77.3613
- type: cosine_f1_threshold
value: 80.3174
- type: cosine_precision
value: 75.0906
- type: cosine_recall
value: 79.7736
- type: cosine_ap
value: 85.6694
- type: manhattan_accuracy
value: 88.7317
- type: manhattan_accuracy_threshold
value: 914.4955
- type: manhattan_f1
value: 77.1707
- type: manhattan_f1_threshold
value: 946.5603
- type: manhattan_precision
value: 76.2825
- type: manhattan_recall
value: 78.0798
- type: manhattan_ap
value: 85.5718
- type: euclidean_accuracy
value: 88.77629999999999
- type: euclidean_accuracy_threshold
value: 59.6237
- type: euclidean_f1
value: 77.3613
- type: euclidean_f1_threshold
value: 62.7417
- type: euclidean_precision
value: 75.0906
- type: euclidean_recall
value: 79.7736
- type: euclidean_ap
value: 85.6694
- type: dot_accuracy
value: 88.77629999999999
- type: dot_accuracy_threshold
value: 82.2251
- type: dot_f1
value: 77.3613
- type: dot_f1_threshold
value: 80.3174
- type: dot_precision
value: 75.0906
- type: dot_recall
value: 79.7736
- type: dot_ap
value: 85.6694
- type: max_accuracy
value: 88.77629999999999
- type: max_f1
value: 77.3613
- type: max_precision
value: 76.2825
- type: max_recall
value: 79.7736
- type: max_ap
value: 85.6694
- type: main_score
value: 85.6694
---
# Granite-Embedding-107m-multilingual
**Model Summary:**
Granite-Embedding-107M-Multilingual is a 107M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 384 and is trained using a combination of open source relevance-pair datasets with permissive, enterprise-friendly license, and IBM collected and generated datasets. This model is developed using contrastive finetuning, knowledge distillation and model merging for improved performance.
- **Developers:** Granite Embedding Team, IBM
- **GitHub Repository:** [ibm-granite/granite-embedding-models](https://github.com/ibm-granite/granite-embedding-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** Coming Soon
- **Release Date**: December 18th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
**Supported Languages:**
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite-Embedding-107M-Multilingual for languages beyond these 12 languages.
**Intended use:**
The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications.
**Usage with Sentence Transformers:**
The model is compatible with SentenceTransformer library and is very easy to use:
First, install the sentence transformers library
```shell
pip install sentence_transformers
```
The model can then be used to encode pairs of text and find the similarity between their representations
```python
from sentence_transformers import SentenceTransformer, util
model_path = "ibm-granite/granite-embedding-107m-multilingual"
# Load the Sentence Transformer model
model = SentenceTransformer(model_path)
input_queries = [
' Who made the song My achy breaky heart? ',
'summit define'
]
input_passages = [
"Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ",
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
# encode queries and passages
query_embeddings = model.encode(input_queries)
passage_embeddings = model.encode(input_passages)
# calculate cosine similarity
print(util.cos_sim(query_embeddings, passage_embeddings))
```
**Usage with Huggingface Transformers:**
This is a simple example of how to use the Granite-Embedding-107m-Multilingual model with the Transformers library and PyTorch.
First, install the required libraries
```shell
pip install transformers torch
```
The model can then be used to encode pairs of text
```python
import torch
from transformers import AutoModel, AutoTokenizer
model_path = "ibm-granite/granite-embedding-107m-multilingual"
# Load the model and tokenizer
model = AutoModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()
input_queries = [
' Who made the song My achy breaky heart? ',
'summit define'
]
# tokenize inputs
tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt')
# encode queries
with torch.no_grad():
# Queries
model_output = model(**tokenized_queries)
# Perform pooling. granite-embedding-107m-multilingual uses CLS Pooling
query_embeddings = model_output[0][:, 0]
# normalize the embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1)
```
**Evaluation:**
The average performance of the Granite-Embedding-107M-Multilingual on Multilingual Miracl (across 18 langauges), Mintaka Retrieval (across 8 languages) and MTEB Retrieval for English (across 15 tasks), German (across 4 tasks), Spanish (across 2 tasks), Frenc (across 5 tasks), Japanese (across 2 tasks), Arabic (1 task), Korean (1 task) and Chinese (across 8 tasks) is reported below. Granite-Embedding-107M-Multilingual is twice as fast as other models with similar embedding dimensions.
| Model | Paramters (M)| Embedding Dimension | Miracl (18) | Mintaka Retrieval (8) | MTEB English (15) | MTEB German (4) |MTEB Spanish (2) | MTEB French (5) | MTEB Japanese (2) | MTEB Arabic (1) | MTEB Korean (1) | MTEB Chinese (8) |
|------------------------------------|:------------:|:-------------------:|:-------------:| :---------------------:|:-----------------:|:---------------:|:---------------:|:---------------:|:----------------:|:----------------:|----------------:|-----------------:|
|granite-embedding-107m-multilingual | 107 | 384 | 55.9 | 22.6 | 45.3 | 70.3 | 48.7 | 51.1 | 59.0 | 63.2 | 70.5 | 40.8 |
**Model Architecture:**
Granite-Embedding-107m-Multilingual is based on an encoder-only XLM-RoBERTa like transformer architecture, trained internally at IBM Research.
| Model | granite-embedding-30m-english | granite-embedding-125m-english | granite-embedding-107m-multilingual | granite-embedding-278m-multilingual |
| :--------- | :-------:| :--------: | :---------:| :-----:|
| Embedding size | 384 | 768 | **384** | 768 |
| Number of layers | 6 | 12 | **6** | 12 |
| Number of attention heads | 12 | 12 | **12** | 12 |
| Intermediate size | 1536 | 3072 | **1536** | 3072 |
| Activation Function | GeLU | GeLU | **GeLU** | GeLU |
| Vocabulary Size | 50265 | 50265 | **250002** | 250002 |
| Max. Sequence Length | 512 | 512 | **512** | 512 |
| # Parameters | 30M | 125M | **107M** | 278M |
**Training Data:**
Overall, the training data consists of four key sources: (1) unsupervised title-body paired data scraped from the web, (2) publicly available paired with permissive, enterprise-friendly license, (3) IBM-internal paired data targetting specific technical domains, and (4) IBM-generated synthetic data. The data is listed below:
| **Dataset** | **Num. Pairs** |
|:--------------------------------------------------------------------------|:--------------:|
| Multilingual MC4 | 52,823,484 |
| Multilingual Webhose | 12,369,322 |
| English Wikipedia | 20,745,403 |
| Multilingual Wikimedia | 2,911,090 |
| Miracl Corpus (Title-Body) | 10,120,398 |
| Stack Exchange Duplicate questions (titles) | 304,525 |
| Stack Exchange Duplicate questions (titles) | 304,525 |
| Stack Exchange Duplicate questions (bodies) | 250,519 |
| Machine Translations of Stack Exchange Duplicate questions (titles) | 187,195 |
| Stack Exchange (Title, Answer) pairs | 4,067,139 |
| Stack Exchange (Title, Body) pairs | 23,978,013 |
| Stack Exchange (Title, Body) pairs | 23,978,013 |
| Machine Translations of Stack Exchange (Title+Body, Answer) pairs | 1,827,15 |
| SearchQA | 582,261 |
| S2ORC (Title, Abstract) | 41,769,185 |
| WikiAnswers Duplicate question pairs | 77,427,422 |
| CCNews | 614,664 |
| XSum | 226,711 |
| SimpleWiki | 102,225 |
| Machine Translated Cross Lingual Parallel Corpora | 28,376,115 |
| SPECTER citation triplets | 684,100 |
| Machine Translations of SPECTER citation triplets | 4,104,600 |
| Natural Questions (NQ) | 100,231 |
| SQuAD2.0 | 87,599 |
| HotpotQA | 85,000 |
| Fever | 109,810 |
| PubMed | 20,000,000 |
| Multilingual Miracl Triples | 81,409 |
| Multilingual MrTydi Triples | 48,715 |
| Sadeeem Question Asnwering | 4,037 |
| DBPedia Title-Body Pairs | 4,635,922 |
| Synthetic: English Query-Wikipedia Passage | 1,879,093 |
| Synthetic: English Fact Verification | 9,888 |
| Synthetic: Multilingual Query-Wikipedia Passage | 300,266 |
| Synthetic: Multilingual News Summaries | 37,489 |
| IBM Internal Triples | 40,290 |
| IBM Internal Title-Body Pairs | 1,524,586 |
Notably, we do not use the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license, while other open-source models train on this dataset due to its high quality.
**Infrastructure:**
We train Granite Embedding Models using IBM's computing cluster, Cognitive Compute Cluster, which is outfitted with NVIDIA A100 80gb GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs.
**Ethical Considerations and Limitations:**
The data used to train the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-Embedding-107m-Multilingual is finetuned on 12 languages, and has a context length of 512 tokens (longer texts will be truncated to this size).
**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
<!-- ## Citation
```
@misc{granite-embedding-models,
author = {author 1, author2, ...},
title = {},
journal = {},
volume = {},
year = {2024},
url = {https://arxiv.org/abs/0000.00000},
}
``` --> | [
"BIOSSES",
"SCIFACT"
] |
minishlab/potion-base-2M | minishlab | null | [
"model2vec",
"onnx",
"safetensors",
"embeddings",
"static-embeddings",
"mteb",
"sentence-transformers",
"license:mit",
"model-index",
"region:us"
] | "2024-10-29T09:48:42Z" | 2025-01-21T19:13:44+00:00 | 6,772 | 10 | ---
library_name: model2vec
license: mit
tags:
- embeddings
- static-embeddings
- mteb
- sentence-transformers
model-index:
- name: potion-base-2M
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 64.09295352323838
- type: ap
value: 15.890517627297978
- type: ap_weighted
value: 15.890517627297978
- type: f1
value: 52.38020164592307
- type: f1_weighted
value: 71.02083973787023
- type: main_score
value: 64.09295352323838
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 65.44776119402985
- type: ap
value: 27.63770109073248
- type: ap_weighted
value: 27.63770109073248
- type: f1
value: 58.90706680555824
- type: f1_weighted
value: 68.76825531256598
- type: main_score
value: 65.44776119402985
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 70.8279
- type: ap
value: 65.28490580225534
- type: ap_weighted
value: 65.28490580225534
- type: f1
value: 70.57831663695143
- type: f1_weighted
value: 70.5783166369514
- type: main_score
value: 70.8279
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 32.996
- type: f1
value: 32.31726739771069
- type: f1_weighted
value: 32.31726739771067
- type: main_score
value: 32.996
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 32.622
- type: map_at_1
value: 15.931999999999999
- type: map_at_10
value: 26.404
- type: map_at_100
value: 27.697
- type: map_at_1000
value: 27.755000000000003
- type: map_at_20
value: 27.195000000000004
- type: map_at_3
value: 22.819
- type: map_at_5
value: 24.714
- type: mrr_at_1
value: 16.35846372688478
- type: mrr_at_10
value: 26.554703199440034
- type: mrr_at_100
value: 27.847935657025847
- type: mrr_at_1000
value: 27.90589599760921
- type: mrr_at_20
value: 27.34605509902883
- type: mrr_at_3
value: 22.97297297297296
- type: mrr_at_5
value: 24.839971550497825
- type: nauc_map_at_1000_diff1
value: 9.371299425433035
- type: nauc_map_at_1000_max
value: 2.9574792255471287
- type: nauc_map_at_1000_std
value: 11.687859698836608
- type: nauc_map_at_100_diff1
value: 9.371053628047203
- type: nauc_map_at_100_max
value: 2.9809791205622322
- type: nauc_map_at_100_std
value: 11.75333361929675
- type: nauc_map_at_10_diff1
value: 9.252241357696322
- type: nauc_map_at_10_max
value: 2.742017052724334
- type: nauc_map_at_10_std
value: 11.558508764008751
- type: nauc_map_at_1_diff1
value: 12.16316227081504
- type: nauc_map_at_1_max
value: -0.5028808771807869
- type: nauc_map_at_1_std
value: 6.962721581652243
- type: nauc_map_at_20_diff1
value: 9.300115601627917
- type: nauc_map_at_20_max
value: 2.9569034588818686
- type: nauc_map_at_20_std
value: 11.691557039773556
- type: nauc_map_at_3_diff1
value: 8.848778277311055
- type: nauc_map_at_3_max
value: 1.423235443130067
- type: nauc_map_at_3_std
value: 8.992118754001654
- type: nauc_map_at_5_diff1
value: 8.57377738557976
- type: nauc_map_at_5_max
value: 1.6847244703988815
- type: nauc_map_at_5_std
value: 10.164700751752981
- type: nauc_mrr_at_1000_diff1
value: 7.83234430121121
- type: nauc_mrr_at_1000_max
value: 2.791250763636318
- type: nauc_mrr_at_1000_std
value: 11.622332535373612
- type: nauc_mrr_at_100_diff1
value: 7.834999518447015
- type: nauc_mrr_at_100_max
value: 2.8149797974038266
- type: nauc_mrr_at_100_std
value: 11.687441656533483
- type: nauc_mrr_at_10_diff1
value: 7.762034718278307
- type: nauc_mrr_at_10_max
value: 2.588154258263355
- type: nauc_mrr_at_10_std
value: 11.496120973626677
- type: nauc_mrr_at_1_diff1
value: 10.195687129188947
- type: nauc_mrr_at_1_max
value: 0.7959780949834511
- type: nauc_mrr_at_1_std
value: 6.909734959320861
- type: nauc_mrr_at_20_diff1
value: 7.782191305042387
- type: nauc_mrr_at_20_max
value: 2.793166533360494
- type: nauc_mrr_at_20_std
value: 11.627007183010022
- type: nauc_mrr_at_3_diff1
value: 7.24231818837065
- type: nauc_mrr_at_3_max
value: 1.1207446053044912
- type: nauc_mrr_at_3_std
value: 8.80503737855467
- type: nauc_mrr_at_5_diff1
value: 6.979716982325695
- type: nauc_mrr_at_5_max
value: 1.4170822735031223
- type: nauc_mrr_at_5_std
value: 10.1236436941688
- type: nauc_ndcg_at_1000_diff1
value: 9.442383068205185
- type: nauc_ndcg_at_1000_max
value: 5.123695329561358
- type: nauc_ndcg_at_1000_std
value: 14.437791974669423
- type: nauc_ndcg_at_100_diff1
value: 9.708550273174609
- type: nauc_ndcg_at_100_max
value: 6.051680933998194
- type: nauc_ndcg_at_100_std
value: 16.356231738002254
- type: nauc_ndcg_at_10_diff1
value: 9.067738290559637
- type: nauc_ndcg_at_10_max
value: 5.051562540309537
- type: nauc_ndcg_at_10_std
value: 14.981456308721722
- type: nauc_ndcg_at_1_diff1
value: 12.16316227081504
- type: nauc_ndcg_at_1_max
value: -0.5028808771807869
- type: nauc_ndcg_at_1_std
value: 6.962721581652243
- type: nauc_ndcg_at_20_diff1
value: 9.231508996935032
- type: nauc_ndcg_at_20_max
value: 5.908400445912541
- type: nauc_ndcg_at_20_std
value: 15.59551518646074
- type: nauc_ndcg_at_3_diff1
value: 8.176316410933907
- type: nauc_ndcg_at_3_max
value: 2.274031400606708
- type: nauc_ndcg_at_3_std
value: 9.692557288413111
- type: nauc_ndcg_at_5_diff1
value: 7.594758622405593
- type: nauc_ndcg_at_5_max
value: 2.6813579129239575
- type: nauc_ndcg_at_5_std
value: 11.657985683999456
- type: nauc_precision_at_1000_diff1
value: 10.05696671180073
- type: nauc_precision_at_1000_max
value: 38.62495739567785
- type: nauc_precision_at_1000_std
value: 48.13074377805322
- type: nauc_precision_at_100_diff1
value: 14.277579964693818
- type: nauc_precision_at_100_max
value: 25.831877593548068
- type: nauc_precision_at_100_std
value: 48.257692065653586
- type: nauc_precision_at_10_diff1
value: 8.967213665268718
- type: nauc_precision_at_10_max
value: 11.661929553714575
- type: nauc_precision_at_10_std
value: 24.98165263864555
- type: nauc_precision_at_1_diff1
value: 12.16316227081504
- type: nauc_precision_at_1_max
value: -0.5028808771807869
- type: nauc_precision_at_1_std
value: 6.962721581652243
- type: nauc_precision_at_20_diff1
value: 9.596515632249602
- type: nauc_precision_at_20_max
value: 16.17218527097958
- type: nauc_precision_at_20_std
value: 29.12126867872034
- type: nauc_precision_at_3_diff1
value: 6.602134310609642
- type: nauc_precision_at_3_max
value: 4.422669583221979
- type: nauc_precision_at_3_std
value: 11.430754758385522
- type: nauc_precision_at_5_diff1
value: 5.2002210955386445
- type: nauc_precision_at_5_max
value: 5.146945531205673
- type: nauc_precision_at_5_std
value: 15.431582644403685
- type: nauc_recall_at_1000_diff1
value: 10.056966711801207
- type: nauc_recall_at_1000_max
value: 38.62495739567756
- type: nauc_recall_at_1000_std
value: 48.1307437780539
- type: nauc_recall_at_100_diff1
value: 14.277579964693778
- type: nauc_recall_at_100_max
value: 25.83187759354808
- type: nauc_recall_at_100_std
value: 48.257692065653615
- type: nauc_recall_at_10_diff1
value: 8.967213665268691
- type: nauc_recall_at_10_max
value: 11.661929553714536
- type: nauc_recall_at_10_std
value: 24.98165263864557
- type: nauc_recall_at_1_diff1
value: 12.16316227081504
- type: nauc_recall_at_1_max
value: -0.5028808771807869
- type: nauc_recall_at_1_std
value: 6.962721581652243
- type: nauc_recall_at_20_diff1
value: 9.596515632249584
- type: nauc_recall_at_20_max
value: 16.17218527097958
- type: nauc_recall_at_20_std
value: 29.121268678720334
- type: nauc_recall_at_3_diff1
value: 6.602134310609631
- type: nauc_recall_at_3_max
value: 4.4226695832219765
- type: nauc_recall_at_3_std
value: 11.430754758385536
- type: nauc_recall_at_5_diff1
value: 5.200221095538592
- type: nauc_recall_at_5_max
value: 5.146945531205657
- type: nauc_recall_at_5_std
value: 15.431582644403655
- type: ndcg_at_1
value: 15.931999999999999
- type: ndcg_at_10
value: 32.622
- type: ndcg_at_100
value: 39.182
- type: ndcg_at_1000
value: 40.814
- type: ndcg_at_20
value: 35.538
- type: ndcg_at_3
value: 25.119000000000003
- type: ndcg_at_5
value: 28.541
- type: precision_at_1
value: 15.931999999999999
- type: precision_at_10
value: 5.27
- type: precision_at_100
value: 0.84
- type: precision_at_1000
value: 0.097
- type: precision_at_20
value: 3.215
- type: precision_at_3
value: 10.597
- type: precision_at_5
value: 8.023
- type: recall_at_1
value: 15.931999999999999
- type: recall_at_10
value: 52.703
- type: recall_at_100
value: 83.997
- type: recall_at_1000
value: 97.013
- type: recall_at_20
value: 64.29599999999999
- type: recall_at_3
value: 31.791999999999998
- type: recall_at_5
value: 40.114
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: main_score
value: 29.870127302809124
- type: v_measure
value: 29.870127302809124
- type: v_measure_std
value: 14.791231720290682
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: main_score
value: 20.120157976895523
- type: v_measure
value: 20.120157976895523
- type: v_measure_std
value: 15.985610307944178
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 52.90637925416103
- type: map
value: 52.90637925416103
- type: mrr
value: 66.15365167304226
- type: nAUC_map_diff1
value: 9.30133487550967
- type: nAUC_map_max
value: 18.70463131454981
- type: nAUC_map_std
value: -0.14109850923583017
- type: nAUC_mrr_diff1
value: 14.055448816273671
- type: nAUC_mrr_max
value: 24.008690838618477
- type: nAUC_mrr_std
value: 4.127979271888478
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 69.51991057082712
- type: cosine_spearman
value: 64.10808725228159
- type: euclidean_pearson
value: 68.61144541101957
- type: euclidean_spearman
value: 64.10808725228159
- type: main_score
value: 64.10808725228159
- type: manhattan_pearson
value: 68.51780712764004
- type: manhattan_spearman
value: 66.6352532692086
- type: pearson
value: 69.51991057082712
- type: spearman
value: 64.10808725228159
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 65.17207792207793
- type: f1
value: 63.62144343754335
- type: f1_weighted
value: 63.62144343754335
- type: main_score
value: 65.17207792207793
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: main_score
value: 25.780291675770933
- type: v_measure
value: 25.780291675770933
- type: v_measure_std
value: 0.5140442536046052
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: main_score
value: 14.938305313404305
- type: v_measure
value: 14.938305313404305
- type: v_measure_std
value: 0.6925176157191298
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: main_score
value: 25.330000000000002
- type: map_at_1
value: 14.652000000000001
- type: map_at_10
value: 20.697
- type: map_at_100
value: 21.601
- type: map_at_1000
value: 21.741
- type: map_at_20
value: 21.182000000000002
- type: map_at_3
value: 18.176000000000002
- type: map_at_5
value: 19.43
- type: mrr_at_1
value: 18.88412017167382
- type: mrr_at_10
value: 25.220780252969078
- type: mrr_at_100
value: 25.948898254396696
- type: mrr_at_1000
value: 26.026660358556764
- type: mrr_at_20
value: 25.57115097233221
- type: mrr_at_3
value: 22.746781115879823
- type: mrr_at_5
value: 23.984263233190266
- type: nauc_map_at_1000_diff1
value: 42.12290261948617
- type: nauc_map_at_1000_max
value: 25.055151779659003
- type: nauc_map_at_1000_std
value: -2.210774158888407
- type: nauc_map_at_100_diff1
value: 42.103292224612055
- type: nauc_map_at_100_max
value: 25.024932512461167
- type: nauc_map_at_100_std
value: -2.2434491051465666
- type: nauc_map_at_10_diff1
value: 42.43897329865005
- type: nauc_map_at_10_max
value: 24.900985870032148
- type: nauc_map_at_10_std
value: -3.1698848459287547
- type: nauc_map_at_1_diff1
value: 50.52605319846898
- type: nauc_map_at_1_max
value: 26.416683733723296
- type: nauc_map_at_1_std
value: -5.956774956817916
- type: nauc_map_at_20_diff1
value: 42.16171369615511
- type: nauc_map_at_20_max
value: 24.885527318331327
- type: nauc_map_at_20_std
value: -2.5912307656872033
- type: nauc_map_at_3_diff1
value: 45.269307730870345
- type: nauc_map_at_3_max
value: 24.920202708925796
- type: nauc_map_at_3_std
value: -3.8211698120619553
- type: nauc_map_at_5_diff1
value: 43.518058300179305
- type: nauc_map_at_5_max
value: 24.525800979439225
- type: nauc_map_at_5_std
value: -3.7992949173792248
- type: nauc_mrr_at_1000_diff1
value: 40.614363171344095
- type: nauc_mrr_at_1000_max
value: 25.461648381508994
- type: nauc_mrr_at_1000_std
value: -3.0170351047974697
- type: nauc_mrr_at_100_diff1
value: 40.60930462215041
- type: nauc_mrr_at_100_max
value: 25.438960747808164
- type: nauc_mrr_at_100_std
value: -2.9834713770918477
- type: nauc_mrr_at_10_diff1
value: 40.73347197221245
- type: nauc_mrr_at_10_max
value: 25.462525362516896
- type: nauc_mrr_at_10_std
value: -3.6376857514606833
- type: nauc_mrr_at_1_diff1
value: 47.29968987535835
- type: nauc_mrr_at_1_max
value: 28.554321882610132
- type: nauc_mrr_at_1_std
value: -7.160060969495176
- type: nauc_mrr_at_20_diff1
value: 40.609457206778366
- type: nauc_mrr_at_20_max
value: 25.385706784725997
- type: nauc_mrr_at_20_std
value: -3.2196439087267446
- type: nauc_mrr_at_3_diff1
value: 42.40692706796631
- type: nauc_mrr_at_3_max
value: 25.77574851888572
- type: nauc_mrr_at_3_std
value: -4.8469351394956135
- type: nauc_mrr_at_5_diff1
value: 41.22146669637393
- type: nauc_mrr_at_5_max
value: 25.328517631105935
- type: nauc_mrr_at_5_std
value: -4.572547216622222
- type: nauc_ndcg_at_1000_diff1
value: 38.07049187253007
- type: nauc_ndcg_at_1000_max
value: 25.746482146110424
- type: nauc_ndcg_at_1000_std
value: 3.058232130723082
- type: nauc_ndcg_at_100_diff1
value: 37.72243748027699
- type: nauc_ndcg_at_100_max
value: 24.739589495666532
- type: nauc_ndcg_at_100_std
value: 3.1186035597586583
- type: nauc_ndcg_at_10_diff1
value: 38.986427400509506
- type: nauc_ndcg_at_10_max
value: 24.145586682086602
- type: nauc_ndcg_at_10_std
value: -1.3984860683398967
- type: nauc_ndcg_at_1_diff1
value: 47.29968987535835
- type: nauc_ndcg_at_1_max
value: 28.554321882610132
- type: nauc_ndcg_at_1_std
value: -7.160060969495176
- type: nauc_ndcg_at_20_diff1
value: 38.340556985152666
- type: nauc_ndcg_at_20_max
value: 23.852700466978412
- type: nauc_ndcg_at_20_std
value: 0.39156203034556514
- type: nauc_ndcg_at_3_diff1
value: 42.73433715617584
- type: nauc_ndcg_at_3_max
value: 24.171983374932484
- type: nauc_ndcg_at_3_std
value: -3.2561069261029916
- type: nauc_ndcg_at_5_diff1
value: 40.6293880411303
- type: nauc_ndcg_at_5_max
value: 23.470270149785282
- type: nauc_ndcg_at_5_std
value: -3.25295826799678
- type: nauc_precision_at_1000_diff1
value: 14.532481445869708
- type: nauc_precision_at_1000_max
value: 2.4063597129179874
- type: nauc_precision_at_1000_std
value: 5.08743191359027
- type: nauc_precision_at_100_diff1
value: 16.229283902136586
- type: nauc_precision_at_100_max
value: 14.68488845425874
- type: nauc_precision_at_100_std
value: 11.53673782607175
- type: nauc_precision_at_10_diff1
value: 22.658121443906644
- type: nauc_precision_at_10_max
value: 20.458468048702898
- type: nauc_precision_at_10_std
value: 2.549916225317396
- type: nauc_precision_at_1_diff1
value: 47.29968987535835
- type: nauc_precision_at_1_max
value: 28.554321882610132
- type: nauc_precision_at_1_std
value: -7.160060969495176
- type: nauc_precision_at_20_diff1
value: 20.64109922418946
- type: nauc_precision_at_20_max
value: 18.105770725108478
- type: nauc_precision_at_20_std
value: 6.61515398984593
- type: nauc_precision_at_3_diff1
value: 34.10042771425271
- type: nauc_precision_at_3_max
value: 22.672104646433855
- type: nauc_precision_at_3_std
value: -2.2992673003241033
- type: nauc_precision_at_5_diff1
value: 28.555115169767404
- type: nauc_precision_at_5_max
value: 21.203888592575485
- type: nauc_precision_at_5_std
value: -1.7718460407125416
- type: nauc_recall_at_1000_diff1
value: 15.35267593542552
- type: nauc_recall_at_1000_max
value: 33.67891449185779
- type: nauc_recall_at_1000_std
value: 33.03686303481503
- type: nauc_recall_at_100_diff1
value: 22.251888567786047
- type: nauc_recall_at_100_max
value: 22.200691564139312
- type: nauc_recall_at_100_std
value: 21.990679346902265
- type: nauc_recall_at_10_diff1
value: 28.995014251584863
- type: nauc_recall_at_10_max
value: 20.072781093522806
- type: nauc_recall_at_10_std
value: 3.72566933318097
- type: nauc_recall_at_1_diff1
value: 50.52605319846898
- type: nauc_recall_at_1_max
value: 26.416683733723296
- type: nauc_recall_at_1_std
value: -5.956774956817916
- type: nauc_recall_at_20_diff1
value: 26.562818478114973
- type: nauc_recall_at_20_max
value: 19.231280299972486
- type: nauc_recall_at_20_std
value: 8.678225293725014
- type: nauc_recall_at_3_diff1
value: 39.31561233983533
- type: nauc_recall_at_3_max
value: 20.930101667953906
- type: nauc_recall_at_3_std
value: -0.6675587418511502
- type: nauc_recall_at_5_diff1
value: 34.09061124292363
- type: nauc_recall_at_5_max
value: 18.66212328855417
- type: nauc_recall_at_5_std
value: -0.7309156199742269
- type: ndcg_at_1
value: 18.884
- type: ndcg_at_10
value: 25.330000000000002
- type: ndcg_at_100
value: 29.803
- type: ndcg_at_1000
value: 33.22
- type: ndcg_at_20
value: 26.817
- type: ndcg_at_3
value: 20.903
- type: ndcg_at_5
value: 22.653000000000002
- type: precision_at_1
value: 18.884
- type: precision_at_10
value: 5.165
- type: precision_at_100
value: 0.9169999999999999
- type: precision_at_1000
value: 0.152
- type: precision_at_20
value: 3.0620000000000003
- type: precision_at_3
value: 10.205
- type: precision_at_5
value: 7.668
- type: recall_at_1
value: 14.652000000000001
- type: recall_at_10
value: 34.839999999999996
- type: recall_at_100
value: 55.254999999999995
- type: recall_at_1000
value: 79.499
- type: recall_at_20
value: 40.519
- type: recall_at_3
value: 21.951999999999998
- type: recall_at_5
value: 26.866
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: main_score
value: 19.03
- type: map_at_1
value: 12.038
- type: map_at_10
value: 16.209
- type: map_at_100
value: 16.852
- type: map_at_1000
value: 16.957
- type: map_at_20
value: 16.503
- type: map_at_3
value: 14.918999999999999
- type: map_at_5
value: 15.628
- type: mrr_at_1
value: 14.522292993630574
- type: mrr_at_10
value: 19.049211404306938
- type: mrr_at_100
value: 19.68616846000299
- type: mrr_at_1000
value: 19.76021263547599
- type: mrr_at_20
value: 19.357303026531586
- type: mrr_at_3
value: 17.6963906581741
- type: mrr_at_5
value: 18.42887473460721
- type: nauc_map_at_1000_diff1
value: 40.668452256157586
- type: nauc_map_at_1000_max
value: 12.03068593940894
- type: nauc_map_at_1000_std
value: 8.282626956376456
- type: nauc_map_at_100_diff1
value: 40.69689331326516
- type: nauc_map_at_100_max
value: 11.975907653133852
- type: nauc_map_at_100_std
value: 8.200723943582632
- type: nauc_map_at_10_diff1
value: 40.92675356589961
- type: nauc_map_at_10_max
value: 12.162793044434746
- type: nauc_map_at_10_std
value: 7.416703287646554
- type: nauc_map_at_1_diff1
value: 50.680707097806824
- type: nauc_map_at_1_max
value: 14.950571652895167
- type: nauc_map_at_1_std
value: 7.7584022650339355
- type: nauc_map_at_20_diff1
value: 40.83556248327022
- type: nauc_map_at_20_max
value: 12.10303655820891
- type: nauc_map_at_20_std
value: 7.902382326647041
- type: nauc_map_at_3_diff1
value: 43.05716913197717
- type: nauc_map_at_3_max
value: 13.059797217109528
- type: nauc_map_at_3_std
value: 7.086563876751212
- type: nauc_map_at_5_diff1
value: 41.805198491838716
- type: nauc_map_at_5_max
value: 12.76978465765044
- type: nauc_map_at_5_std
value: 7.062456814961006
- type: nauc_mrr_at_1000_diff1
value: 39.04694353040439
- type: nauc_mrr_at_1000_max
value: 12.815481060933905
- type: nauc_mrr_at_1000_std
value: 9.1263110333354
- type: nauc_mrr_at_100_diff1
value: 39.048743374446275
- type: nauc_mrr_at_100_max
value: 12.798690926603784
- type: nauc_mrr_at_100_std
value: 9.122224737593758
- type: nauc_mrr_at_10_diff1
value: 39.31192280486829
- type: nauc_mrr_at_10_max
value: 12.98896180731353
- type: nauc_mrr_at_10_std
value: 8.589942965121546
- type: nauc_mrr_at_1_diff1
value: 48.851762997569374
- type: nauc_mrr_at_1_max
value: 17.448204383555886
- type: nauc_mrr_at_1_std
value: 9.957963740437934
- type: nauc_mrr_at_20_diff1
value: 39.194781081736885
- type: nauc_mrr_at_20_max
value: 12.96253606083205
- type: nauc_mrr_at_20_std
value: 8.972866893546797
- type: nauc_mrr_at_3_diff1
value: 41.01782917626344
- type: nauc_mrr_at_3_max
value: 13.603475495611184
- type: nauc_mrr_at_3_std
value: 8.897651838362023
- type: nauc_mrr_at_5_diff1
value: 40.19192790045331
- type: nauc_mrr_at_5_max
value: 13.548960496378678
- type: nauc_mrr_at_5_std
value: 8.41651532405131
- type: nauc_ndcg_at_1000_diff1
value: 35.354979509339366
- type: nauc_ndcg_at_1000_max
value: 10.336450702196894
- type: nauc_ndcg_at_1000_std
value: 10.554226856804888
- type: nauc_ndcg_at_100_diff1
value: 35.76413836339596
- type: nauc_ndcg_at_100_max
value: 9.670128921989843
- type: nauc_ndcg_at_100_std
value: 10.17476854541832
- type: nauc_ndcg_at_10_diff1
value: 36.94656640954636
- type: nauc_ndcg_at_10_max
value: 10.643065285351891
- type: nauc_ndcg_at_10_std
value: 7.806040737820652
- type: nauc_ndcg_at_1_diff1
value: 48.851762997569374
- type: nauc_ndcg_at_1_max
value: 17.448204383555886
- type: nauc_ndcg_at_1_std
value: 9.957963740437934
- type: nauc_ndcg_at_20_diff1
value: 36.73652715597696
- type: nauc_ndcg_at_20_max
value: 10.555021619182972
- type: nauc_ndcg_at_20_std
value: 9.079373122526354
- type: nauc_ndcg_at_3_diff1
value: 40.4128640487012
- type: nauc_ndcg_at_3_max
value: 12.91614218382092
- type: nauc_ndcg_at_3_std
value: 7.903843158502924
- type: nauc_ndcg_at_5_diff1
value: 38.74411532365887
- type: nauc_ndcg_at_5_max
value: 12.179514645439847
- type: nauc_ndcg_at_5_std
value: 7.336617986486788
- type: nauc_precision_at_1000_diff1
value: 1.9011163507603661
- type: nauc_precision_at_1000_max
value: 7.990884111944549
- type: nauc_precision_at_1000_std
value: 21.061967908108002
- type: nauc_precision_at_100_diff1
value: 12.33281445055559
- type: nauc_precision_at_100_max
value: 8.880349742023368
- type: nauc_precision_at_100_std
value: 21.013372083124928
- type: nauc_precision_at_10_diff1
value: 21.650071006760747
- type: nauc_precision_at_10_max
value: 9.318883411833756
- type: nauc_precision_at_10_std
value: 11.730645859949483
- type: nauc_precision_at_1_diff1
value: 48.851762997569374
- type: nauc_precision_at_1_max
value: 17.448204383555886
- type: nauc_precision_at_1_std
value: 9.957963740437934
- type: nauc_precision_at_20_diff1
value: 20.35610346048067
- type: nauc_precision_at_20_max
value: 9.924634585296353
- type: nauc_precision_at_20_std
value: 16.14897238644223
- type: nauc_precision_at_3_diff1
value: 31.173178334965346
- type: nauc_precision_at_3_max
value: 13.51252773710169
- type: nauc_precision_at_3_std
value: 10.580704859270702
- type: nauc_precision_at_5_diff1
value: 26.650379822403686
- type: nauc_precision_at_5_max
value: 12.638452808323358
- type: nauc_precision_at_5_std
value: 10.624172954473973
- type: nauc_recall_at_1000_diff1
value: 20.894977442792207
- type: nauc_recall_at_1000_max
value: 4.351275412385671
- type: nauc_recall_at_1000_std
value: 13.465338160416145
- type: nauc_recall_at_100_diff1
value: 23.773806443855143
- type: nauc_recall_at_100_max
value: 1.7786515196265826
- type: nauc_recall_at_100_std
value: 13.316142806464812
- type: nauc_recall_at_10_diff1
value: 28.238969776585414
- type: nauc_recall_at_10_max
value: 5.795998046983078
- type: nauc_recall_at_10_std
value: 6.472324467861674
- type: nauc_recall_at_1_diff1
value: 50.680707097806824
- type: nauc_recall_at_1_max
value: 14.950571652895167
- type: nauc_recall_at_1_std
value: 7.7584022650339355
- type: nauc_recall_at_20_diff1
value: 27.607217008926234
- type: nauc_recall_at_20_max
value: 5.759176414257366
- type: nauc_recall_at_20_std
value: 10.465779842554717
- type: nauc_recall_at_3_diff1
value: 36.11483064950007
- type: nauc_recall_at_3_max
value: 9.989993667730074
- type: nauc_recall_at_3_std
value: 5.790709363191019
- type: nauc_recall_at_5_diff1
value: 32.48686329315466
- type: nauc_recall_at_5_max
value: 9.036821419906465
- type: nauc_recall_at_5_std
value: 4.936776376797586
- type: ndcg_at_1
value: 14.521999999999998
- type: ndcg_at_10
value: 19.03
- type: ndcg_at_100
value: 22.418
- type: ndcg_at_1000
value: 25.174000000000003
- type: ndcg_at_20
value: 20.008
- type: ndcg_at_3
value: 16.699
- type: ndcg_at_5
value: 17.718999999999998
- type: precision_at_1
value: 14.521999999999998
- type: precision_at_10
value: 3.49
- type: precision_at_100
value: 0.641
- type: precision_at_1000
value: 0.11
- type: precision_at_20
value: 2.057
- type: precision_at_3
value: 7.856000000000001
- type: precision_at_5
value: 5.631
- type: recall_at_1
value: 12.038
- type: recall_at_10
value: 24.585
- type: recall_at_100
value: 40.032000000000004
- type: recall_at_1000
value: 59.343999999999994
- type: recall_at_20
value: 28.224
- type: recall_at_3
value: 17.95
- type: recall_at_5
value: 20.605
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: main_score
value: 29.583
- type: map_at_1
value: 18.041
- type: map_at_10
value: 25.406000000000002
- type: map_at_100
value: 26.375
- type: map_at_1000
value: 26.473999999999997
- type: map_at_20
value: 25.936999999999998
- type: map_at_3
value: 23.250999999999998
- type: map_at_5
value: 24.503
- type: mrr_at_1
value: 21.065830721003135
- type: mrr_at_10
value: 28.189505896402416
- type: mrr_at_100
value: 29.027452479410755
- type: mrr_at_1000
value: 29.097293909258422
- type: mrr_at_20
value: 28.662884995323772
- type: mrr_at_3
value: 26.175548589341673
- type: mrr_at_5
value: 27.363636363636324
- type: nauc_map_at_1000_diff1
value: 37.796326336571276
- type: nauc_map_at_1000_max
value: 22.220500792581
- type: nauc_map_at_1000_std
value: -2.194799091612798
- type: nauc_map_at_100_diff1
value: 37.790675383791196
- type: nauc_map_at_100_max
value: 22.18614999731695
- type: nauc_map_at_100_std
value: -2.2470039249188556
- type: nauc_map_at_10_diff1
value: 38.05208350844174
- type: nauc_map_at_10_max
value: 21.89935352381032
- type: nauc_map_at_10_std
value: -2.98869512787041
- type: nauc_map_at_1_diff1
value: 43.17642739404867
- type: nauc_map_at_1_max
value: 20.42250394733745
- type: nauc_map_at_1_std
value: -5.1467721201242815
- type: nauc_map_at_20_diff1
value: 37.88392749116593
- type: nauc_map_at_20_max
value: 22.112588076399714
- type: nauc_map_at_20_std
value: -2.5454188620897344
- type: nauc_map_at_3_diff1
value: 38.95611714844621
- type: nauc_map_at_3_max
value: 21.111778563401586
- type: nauc_map_at_3_std
value: -4.030551789691853
- type: nauc_map_at_5_diff1
value: 38.21256789270451
- type: nauc_map_at_5_max
value: 21.630014652906855
- type: nauc_map_at_5_std
value: -3.590513047822652
- type: nauc_mrr_at_1000_diff1
value: 36.87803483972353
- type: nauc_mrr_at_1000_max
value: 23.879462874038296
- type: nauc_mrr_at_1000_std
value: -0.22072500218761223
- type: nauc_mrr_at_100_diff1
value: 36.855693968543044
- type: nauc_mrr_at_100_max
value: 23.86918435310746
- type: nauc_mrr_at_100_std
value: -0.2373419919431428
- type: nauc_mrr_at_10_diff1
value: 37.101094342552734
- type: nauc_mrr_at_10_max
value: 23.891367825494495
- type: nauc_mrr_at_10_std
value: -0.5793444512066471
- type: nauc_mrr_at_1_diff1
value: 42.42316114487945
- type: nauc_mrr_at_1_max
value: 22.68818224435017
- type: nauc_mrr_at_1_std
value: -3.303022083526107
- type: nauc_mrr_at_20_diff1
value: 36.89206331322041
- type: nauc_mrr_at_20_max
value: 23.89115604434676
- type: nauc_mrr_at_20_std
value: -0.3403716687972552
- type: nauc_mrr_at_3_diff1
value: 37.521708109041334
- type: nauc_mrr_at_3_max
value: 23.449137234856188
- type: nauc_mrr_at_3_std
value: -1.4620893509854138
- type: nauc_mrr_at_5_diff1
value: 37.025745633521915
- type: nauc_mrr_at_5_max
value: 23.75830801312528
- type: nauc_mrr_at_5_std
value: -1.0488330632921128
- type: nauc_ndcg_at_1000_diff1
value: 35.587510810642115
- type: nauc_ndcg_at_1000_max
value: 24.203987312028563
- type: nauc_ndcg_at_1000_std
value: 2.620871846305902
- type: nauc_ndcg_at_100_diff1
value: 35.12129268842065
- type: nauc_ndcg_at_100_max
value: 23.65718178818282
- type: nauc_ndcg_at_100_std
value: 1.8047464668718496
- type: nauc_ndcg_at_10_diff1
value: 36.010772727724536
- type: nauc_ndcg_at_10_max
value: 22.90551457795281
- type: nauc_ndcg_at_10_std
value: -1.0357681514957635
- type: nauc_ndcg_at_1_diff1
value: 42.42316114487945
- type: nauc_ndcg_at_1_max
value: 22.68818224435017
- type: nauc_ndcg_at_1_std
value: -3.303022083526107
- type: nauc_ndcg_at_20_diff1
value: 35.40541309259456
- type: nauc_ndcg_at_20_max
value: 23.11326844908543
- type: nauc_ndcg_at_20_std
value: 0.1368197147455866
- type: nauc_ndcg_at_3_diff1
value: 37.13532824824766
- type: nauc_ndcg_at_3_max
value: 22.0500118152094
- type: nauc_ndcg_at_3_std
value: -2.9320120660361626
- type: nauc_ndcg_at_5_diff1
value: 36.07908412831893
- type: nauc_ndcg_at_5_max
value: 22.602680088691933
- type: nauc_ndcg_at_5_std
value: -2.3155102885765224
- type: nauc_precision_at_1000_diff1
value: 4.577550609194703
- type: nauc_precision_at_1000_max
value: 26.78992905112731
- type: nauc_precision_at_1000_std
value: 25.97267966871786
- type: nauc_precision_at_100_diff1
value: 13.994381284162882
- type: nauc_precision_at_100_max
value: 28.409033283319435
- type: nauc_precision_at_100_std
value: 19.54360923075281
- type: nauc_precision_at_10_diff1
value: 26.12260312750217
- type: nauc_precision_at_10_max
value: 26.95132125829464
- type: nauc_precision_at_10_std
value: 6.680006112016357
- type: nauc_precision_at_1_diff1
value: 42.42316114487945
- type: nauc_precision_at_1_max
value: 22.68818224435017
- type: nauc_precision_at_1_std
value: -3.303022083526107
- type: nauc_precision_at_20_diff1
value: 22.016448533332603
- type: nauc_precision_at_20_max
value: 27.456103557217652
- type: nauc_precision_at_20_std
value: 11.45451026915214
- type: nauc_precision_at_3_diff1
value: 32.23575594151647
- type: nauc_precision_at_3_max
value: 24.64944574707706
- type: nauc_precision_at_3_std
value: 0.4270460916222822
- type: nauc_precision_at_5_diff1
value: 28.184806696208724
- type: nauc_precision_at_5_max
value: 26.024592101042877
- type: nauc_precision_at_5_std
value: 2.7638864153340785
- type: nauc_recall_at_1000_diff1
value: 28.164928645360614
- type: nauc_recall_at_1000_max
value: 31.31853591627895
- type: nauc_recall_at_1000_std
value: 29.79149359900253
- type: nauc_recall_at_100_diff1
value: 26.247172017074462
- type: nauc_recall_at_100_max
value: 25.072512911620848
- type: nauc_recall_at_100_std
value: 14.124550084941525
- type: nauc_recall_at_10_diff1
value: 30.58061655649643
- type: nauc_recall_at_10_max
value: 22.667693055140635
- type: nauc_recall_at_10_std
value: 1.9018004971795854
- type: nauc_recall_at_1_diff1
value: 43.17642739404867
- type: nauc_recall_at_1_max
value: 20.42250394733745
- type: nauc_recall_at_1_std
value: -5.1467721201242815
- type: nauc_recall_at_20_diff1
value: 27.988315641021494
- type: nauc_recall_at_20_max
value: 22.796849228410014
- type: nauc_recall_at_20_std
value: 5.50275370960407
- type: nauc_recall_at_3_diff1
value: 33.43292455380229
- type: nauc_recall_at_3_max
value: 20.805193280031343
- type: nauc_recall_at_3_std
value: -2.581776145023966
- type: nauc_recall_at_5_diff1
value: 30.835768599716566
- type: nauc_recall_at_5_max
value: 21.93578745163432
- type: nauc_recall_at_5_std
value: -1.268567019686916
- type: ndcg_at_1
value: 21.066
- type: ndcg_at_10
value: 29.583
- type: ndcg_at_100
value: 34.281
- type: ndcg_at_1000
value: 36.876
- type: ndcg_at_20
value: 31.339
- type: ndcg_at_3
value: 25.572
- type: ndcg_at_5
value: 27.61
- type: precision_at_1
value: 21.066
- type: precision_at_10
value: 5.009
- type: precision_at_100
value: 0.8109999999999999
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_20
value: 2.972
- type: precision_at_3
value: 11.661000000000001
- type: precision_at_5
value: 8.364
- type: recall_at_1
value: 18.041
- type: recall_at_10
value: 39.545
- type: recall_at_100
value: 60.827
- type: recall_at_1000
value: 80.255
- type: recall_at_20
value: 46.076
- type: recall_at_3
value: 28.872999999999998
- type: recall_at_5
value: 33.771
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: main_score
value: 14.183000000000002
- type: map_at_1
value: 9.024000000000001
- type: map_at_10
value: 12.02
- type: map_at_100
value: 12.692999999999998
- type: map_at_1000
value: 12.797
- type: map_at_20
value: 12.353
- type: map_at_3
value: 10.932
- type: map_at_5
value: 11.296000000000001
- type: mrr_at_1
value: 9.717514124293785
- type: mrr_at_10
value: 12.945879293336926
- type: mrr_at_100
value: 13.611537580723049
- type: mrr_at_1000
value: 13.711450596451852
- type: mrr_at_20
value: 13.25786962702532
- type: mrr_at_3
value: 11.770244821092277
- type: mrr_at_5
value: 12.171374764595104
- type: nauc_map_at_1000_diff1
value: 29.694382411892878
- type: nauc_map_at_1000_max
value: 8.928542212540712
- type: nauc_map_at_1000_std
value: -8.388892090698437
- type: nauc_map_at_100_diff1
value: 29.71725096884429
- type: nauc_map_at_100_max
value: 8.920381106437004
- type: nauc_map_at_100_std
value: -8.43007776575813
- type: nauc_map_at_10_diff1
value: 30.15550030704659
- type: nauc_map_at_10_max
value: 8.77661748937144
- type: nauc_map_at_10_std
value: -9.270013574850484
- type: nauc_map_at_1_diff1
value: 35.9745839417964
- type: nauc_map_at_1_max
value: 8.983726756853555
- type: nauc_map_at_1_std
value: -11.543240200322865
- type: nauc_map_at_20_diff1
value: 29.937715854896386
- type: nauc_map_at_20_max
value: 8.928620938274623
- type: nauc_map_at_20_std
value: -8.728423357602786
- type: nauc_map_at_3_diff1
value: 32.944694198956206
- type: nauc_map_at_3_max
value: 8.952369834670906
- type: nauc_map_at_3_std
value: -10.766696316204687
- type: nauc_map_at_5_diff1
value: 32.631999531576085
- type: nauc_map_at_5_max
value: 8.918457144741136
- type: nauc_map_at_5_std
value: -10.136893335843391
- type: nauc_mrr_at_1000_diff1
value: 28.618528255212343
- type: nauc_mrr_at_1000_max
value: 9.826758587627383
- type: nauc_mrr_at_1000_std
value: -7.368476011211808
- type: nauc_mrr_at_100_diff1
value: 28.632394726892514
- type: nauc_mrr_at_100_max
value: 9.839544124304876
- type: nauc_mrr_at_100_std
value: -7.39471497056017
- type: nauc_mrr_at_10_diff1
value: 28.93313107887261
- type: nauc_mrr_at_10_max
value: 9.691269483479616
- type: nauc_mrr_at_10_std
value: -8.100092578456541
- type: nauc_mrr_at_1_diff1
value: 34.18603002613899
- type: nauc_mrr_at_1_max
value: 8.97972973713456
- type: nauc_mrr_at_1_std
value: -9.556153409751639
- type: nauc_mrr_at_20_diff1
value: 28.880085769654883
- type: nauc_mrr_at_20_max
value: 9.83539863841401
- type: nauc_mrr_at_20_std
value: -7.6711928068068715
- type: nauc_mrr_at_3_diff1
value: 31.40284372995198
- type: nauc_mrr_at_3_max
value: 9.594465679874684
- type: nauc_mrr_at_3_std
value: -9.400155113213387
- type: nauc_mrr_at_5_diff1
value: 31.18905330799594
- type: nauc_mrr_at_5_max
value: 9.787223698234424
- type: nauc_mrr_at_5_std
value: -8.944299902971345
- type: nauc_ndcg_at_1000_diff1
value: 23.98343656497298
- type: nauc_ndcg_at_1000_max
value: 9.548662140754342
- type: nauc_ndcg_at_1000_std
value: -3.7183620023361126
- type: nauc_ndcg_at_100_diff1
value: 24.482138056294662
- type: nauc_ndcg_at_100_max
value: 9.287712920341493
- type: nauc_ndcg_at_100_std
value: -4.2098225628994586
- type: nauc_ndcg_at_10_diff1
value: 26.272731221058486
- type: nauc_ndcg_at_10_max
value: 8.935260059702577
- type: nauc_ndcg_at_10_std
value: -7.4748482166321235
- type: nauc_ndcg_at_1_diff1
value: 34.18603002613899
- type: nauc_ndcg_at_1_max
value: 8.97972973713456
- type: nauc_ndcg_at_1_std
value: -9.556153409751639
- type: nauc_ndcg_at_20_diff1
value: 26.042310377055955
- type: nauc_ndcg_at_20_max
value: 9.515567707399725
- type: nauc_ndcg_at_20_std
value: -5.846263691928579
- type: nauc_ndcg_at_3_diff1
value: 31.72486596127279
- type: nauc_ndcg_at_3_max
value: 9.163918049738104
- type: nauc_ndcg_at_3_std
value: -10.2293347637829
- type: nauc_ndcg_at_5_diff1
value: 31.345187267291596
- type: nauc_ndcg_at_5_max
value: 9.251871069906997
- type: nauc_ndcg_at_5_std
value: -9.190517533933997
- type: nauc_precision_at_1000_diff1
value: 1.6736869988815313
- type: nauc_precision_at_1000_max
value: 14.364386740236068
- type: nauc_precision_at_1000_std
value: 10.502570067944601
- type: nauc_precision_at_100_diff1
value: 9.796375940479075
- type: nauc_precision_at_100_max
value: 11.6759128601933
- type: nauc_precision_at_100_std
value: 6.451807159550276
- type: nauc_precision_at_10_diff1
value: 14.956196135825833
- type: nauc_precision_at_10_max
value: 10.647897707252016
- type: nauc_precision_at_10_std
value: -1.8947853747077736
- type: nauc_precision_at_1_diff1
value: 34.18603002613899
- type: nauc_precision_at_1_max
value: 8.97972973713456
- type: nauc_precision_at_1_std
value: -9.556153409751639
- type: nauc_precision_at_20_diff1
value: 14.948011109939843
- type: nauc_precision_at_20_max
value: 11.83845188031389
- type: nauc_precision_at_20_std
value: 1.8405747345723766
- type: nauc_precision_at_3_diff1
value: 26.918031903045808
- type: nauc_precision_at_3_max
value: 10.123941318105489
- type: nauc_precision_at_3_std
value: -7.702246246477078
- type: nauc_precision_at_5_diff1
value: 26.346862759257117
- type: nauc_precision_at_5_max
value: 11.828023841927628
- type: nauc_precision_at_5_std
value: -4.953822315909637
- type: nauc_recall_at_1000_diff1
value: 8.185631273725106
- type: nauc_recall_at_1000_max
value: 9.208792138920922
- type: nauc_recall_at_1000_std
value: 8.851170225853041
- type: nauc_recall_at_100_diff1
value: 13.184052895257976
- type: nauc_recall_at_100_max
value: 8.34697668610321
- type: nauc_recall_at_100_std
value: 5.133453080128742
- type: nauc_recall_at_10_diff1
value: 18.03232365141138
- type: nauc_recall_at_10_max
value: 8.097991374932626
- type: nauc_recall_at_10_std
value: -4.213914606258432
- type: nauc_recall_at_1_diff1
value: 35.9745839417964
- type: nauc_recall_at_1_max
value: 8.983726756853555
- type: nauc_recall_at_1_std
value: -11.543240200322865
- type: nauc_recall_at_20_diff1
value: 18.1972141095434
- type: nauc_recall_at_20_max
value: 9.80580980272139
- type: nauc_recall_at_20_std
value: 0.20096255057340812
- type: nauc_recall_at_3_diff1
value: 29.839268769004594
- type: nauc_recall_at_3_max
value: 8.768732586863983
- type: nauc_recall_at_3_std
value: -10.018089902140288
- type: nauc_recall_at_5_diff1
value: 29.23297408189115
- type: nauc_recall_at_5_max
value: 8.544522709961912
- type: nauc_recall_at_5_std
value: -7.932279670012872
- type: ndcg_at_1
value: 9.718
- type: ndcg_at_10
value: 14.183000000000002
- type: ndcg_at_100
value: 17.863
- type: ndcg_at_1000
value: 21.016000000000002
- type: ndcg_at_20
value: 15.354999999999999
- type: ndcg_at_3
value: 11.745
- type: ndcg_at_5
value: 12.427000000000001
- type: precision_at_1
value: 9.718
- type: precision_at_10
value: 2.294
- type: precision_at_100
value: 0.434
- type: precision_at_1000
value: 0.075
- type: precision_at_20
value: 1.401
- type: precision_at_3
value: 4.859
- type: precision_at_5
value: 3.345
- type: recall_at_1
value: 9.024000000000001
- type: recall_at_10
value: 20.125
- type: recall_at_100
value: 37.833
- type: recall_at_1000
value: 62.426
- type: recall_at_20
value: 24.616
- type: recall_at_3
value: 13.221
- type: recall_at_5
value: 14.895
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: main_score
value: 8.94
- type: map_at_1
value: 4.475
- type: map_at_10
value: 7.015000000000001
- type: map_at_100
value: 7.697
- type: map_at_1000
value: 7.804
- type: map_at_20
value: 7.367999999999999
- type: map_at_3
value: 6.099
- type: map_at_5
value: 6.68
- type: mrr_at_1
value: 5.597014925373134
- type: mrr_at_10
value: 8.630113322277507
- type: mrr_at_100
value: 9.353274610091166
- type: mrr_at_1000
value: 9.448219998278597
- type: mrr_at_20
value: 8.994812422579749
- type: mrr_at_3
value: 7.462686567164181
- type: mrr_at_5
value: 8.196517412935329
- type: nauc_map_at_1000_diff1
value: 20.699138033783353
- type: nauc_map_at_1000_max
value: 3.4880186481745263
- type: nauc_map_at_1000_std
value: 4.155266389156031
- type: nauc_map_at_100_diff1
value: 20.789490863398864
- type: nauc_map_at_100_max
value: 3.5101164215354155
- type: nauc_map_at_100_std
value: 4.047378961340708
- type: nauc_map_at_10_diff1
value: 21.067672790599165
- type: nauc_map_at_10_max
value: 3.0190585833019683
- type: nauc_map_at_10_std
value: 3.4097840153233765
- type: nauc_map_at_1_diff1
value: 32.44381415995889
- type: nauc_map_at_1_max
value: 1.605779939955904
- type: nauc_map_at_1_std
value: 7.853049501980802
- type: nauc_map_at_20_diff1
value: 20.742651462391994
- type: nauc_map_at_20_max
value: 3.1031371838146424
- type: nauc_map_at_20_std
value: 3.3972203680764763
- type: nauc_map_at_3_diff1
value: 23.377850907655887
- type: nauc_map_at_3_max
value: 3.43705458976893
- type: nauc_map_at_3_std
value: 2.3052940647032365
- type: nauc_map_at_5_diff1
value: 21.68540176297294
- type: nauc_map_at_5_max
value: 2.6845256027684927
- type: nauc_map_at_5_std
value: 3.6379258535324013
- type: nauc_mrr_at_1000_diff1
value: 18.179331618128824
- type: nauc_mrr_at_1000_max
value: 6.7180152872525145
- type: nauc_mrr_at_1000_std
value: 8.300550321256708
- type: nauc_mrr_at_100_diff1
value: 18.200682367921388
- type: nauc_mrr_at_100_max
value: 6.723979433081779
- type: nauc_mrr_at_100_std
value: 8.268658628379946
- type: nauc_mrr_at_10_diff1
value: 18.53091497875312
- type: nauc_mrr_at_10_max
value: 6.714211207518613
- type: nauc_mrr_at_10_std
value: 8.254586191549585
- type: nauc_mrr_at_1_diff1
value: 28.509273697241255
- type: nauc_mrr_at_1_max
value: 7.443060099776353
- type: nauc_mrr_at_1_std
value: 11.346899929828002
- type: nauc_mrr_at_20_diff1
value: 18.13128713477393
- type: nauc_mrr_at_20_max
value: 6.441290959694762
- type: nauc_mrr_at_20_std
value: 7.8537386011502
- type: nauc_mrr_at_3_diff1
value: 20.289638131876536
- type: nauc_mrr_at_3_max
value: 7.51846286598189
- type: nauc_mrr_at_3_std
value: 6.97629908313753
- type: nauc_mrr_at_5_diff1
value: 19.057446686788765
- type: nauc_mrr_at_5_max
value: 6.194041004063384
- type: nauc_mrr_at_5_std
value: 8.266439336767421
- type: nauc_ndcg_at_1000_diff1
value: 16.126133453218237
- type: nauc_ndcg_at_1000_max
value: 6.473172599722209
- type: nauc_ndcg_at_1000_std
value: 8.69652115727476
- type: nauc_ndcg_at_100_diff1
value: 17.319872374514915
- type: nauc_ndcg_at_100_max
value: 5.849495042439249
- type: nauc_ndcg_at_100_std
value: 6.4265443584796245
- type: nauc_ndcg_at_10_diff1
value: 17.125738796368445
- type: nauc_ndcg_at_10_max
value: 4.0772304333748455
- type: nauc_ndcg_at_10_std
value: 4.004536808476969
- type: nauc_ndcg_at_1_diff1
value: 28.509273697241255
- type: nauc_ndcg_at_1_max
value: 7.443060099776353
- type: nauc_ndcg_at_1_std
value: 11.346899929828002
- type: nauc_ndcg_at_20_diff1
value: 16.475293282383653
- type: nauc_ndcg_at_20_max
value: 4.193159703014229
- type: nauc_ndcg_at_20_std
value: 3.96542774314758
- type: nauc_ndcg_at_3_diff1
value: 20.350265482388675
- type: nauc_ndcg_at_3_max
value: 5.258781547082042
- type: nauc_ndcg_at_3_std
value: 2.6739128400027274
- type: nauc_ndcg_at_5_diff1
value: 18.21156852832094
- type: nauc_ndcg_at_5_max
value: 3.4009566876713664
- type: nauc_ndcg_at_5_std
value: 4.529302308172549
- type: nauc_precision_at_1000_diff1
value: 2.6694472389688273
- type: nauc_precision_at_1000_max
value: 10.292839463409427
- type: nauc_precision_at_1000_std
value: 12.12168608682668
- type: nauc_precision_at_100_diff1
value: 10.552417708360135
- type: nauc_precision_at_100_max
value: 9.353011709773758
- type: nauc_precision_at_100_std
value: 10.78398814531876
- type: nauc_precision_at_10_diff1
value: 10.06090578402067
- type: nauc_precision_at_10_max
value: 5.515400837825047
- type: nauc_precision_at_10_std
value: 6.443354281004256
- type: nauc_precision_at_1_diff1
value: 28.509273697241255
- type: nauc_precision_at_1_max
value: 7.443060099776353
- type: nauc_precision_at_1_std
value: 11.346899929828002
- type: nauc_precision_at_20_diff1
value: 9.428352118377042
- type: nauc_precision_at_20_max
value: 4.33555861374056
- type: nauc_precision_at_20_std
value: 4.388987611299773
- type: nauc_precision_at_3_diff1
value: 13.301255810657844
- type: nauc_precision_at_3_max
value: 6.908538912369242
- type: nauc_precision_at_3_std
value: 3.004805130717702
- type: nauc_precision_at_5_diff1
value: 11.317272340249335
- type: nauc_precision_at_5_max
value: 3.4111964514747863
- type: nauc_precision_at_5_std
value: 7.497163702295884
- type: nauc_recall_at_1000_diff1
value: 10.014724636274634
- type: nauc_recall_at_1000_max
value: 11.16254057075483
- type: nauc_recall_at_1000_std
value: 17.899753204645734
- type: nauc_recall_at_100_diff1
value: 14.341707844085244
- type: nauc_recall_at_100_max
value: 8.212409271393616
- type: nauc_recall_at_100_std
value: 8.327605677358545
- type: nauc_recall_at_10_diff1
value: 11.00540827579114
- type: nauc_recall_at_10_max
value: 4.297950741770129
- type: nauc_recall_at_10_std
value: 1.865764269075481
- type: nauc_recall_at_1_diff1
value: 32.44381415995889
- type: nauc_recall_at_1_max
value: 1.605779939955904
- type: nauc_recall_at_1_std
value: 7.853049501980802
- type: nauc_recall_at_20_diff1
value: 10.733904905390727
- type: nauc_recall_at_20_max
value: 5.038326152107519
- type: nauc_recall_at_20_std
value: 2.896829465891877
- type: nauc_recall_at_3_diff1
value: 16.293656417216383
- type: nauc_recall_at_3_max
value: 5.288540184568237
- type: nauc_recall_at_3_std
value: -1.316531044326585
- type: nauc_recall_at_5_diff1
value: 12.627860206383975
- type: nauc_recall_at_5_max
value: 2.7818463087922063
- type: nauc_recall_at_5_std
value: 3.183638834186147
- type: ndcg_at_1
value: 5.5969999999999995
- type: ndcg_at_10
value: 8.94
- type: ndcg_at_100
value: 12.7
- type: ndcg_at_1000
value: 16.137999999999998
- type: ndcg_at_20
value: 10.184999999999999
- type: ndcg_at_3
value: 7.031999999999999
- type: ndcg_at_5
value: 8.083
- type: precision_at_1
value: 5.5969999999999995
- type: precision_at_10
value: 1.7160000000000002
- type: precision_at_100
value: 0.418
- type: precision_at_1000
value: 0.086
- type: precision_at_20
value: 1.157
- type: precision_at_3
value: 3.4410000000000003
- type: precision_at_5
value: 2.711
- type: recall_at_1
value: 4.475
- type: recall_at_10
value: 13.354
- type: recall_at_100
value: 30.723
- type: recall_at_1000
value: 56.426
- type: recall_at_20
value: 17.980999999999998
- type: recall_at_3
value: 8.260000000000002
- type: recall_at_5
value: 10.82
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: main_score
value: 20.294999999999998
- type: map_at_1
value: 12.431000000000001
- type: map_at_10
value: 17.011000000000003
- type: map_at_100
value: 17.990000000000002
- type: map_at_1000
value: 18.117
- type: map_at_20
value: 17.524
- type: map_at_3
value: 15.459
- type: map_at_5
value: 16.220000000000002
- type: mrr_at_1
value: 15.014436958614052
- type: mrr_at_10
value: 20.13447759597904
- type: mrr_at_100
value: 21.092552475264426
- type: mrr_at_1000
value: 21.183384542127783
- type: mrr_at_20
value: 20.697513105665596
- type: mrr_at_3
value: 18.511389156239982
- type: mrr_at_5
value: 19.39204363169715
- type: nauc_map_at_1000_diff1
value: 40.995356165457636
- type: nauc_map_at_1000_max
value: 26.332034350632583
- type: nauc_map_at_1000_std
value: 1.1702089486357359
- type: nauc_map_at_100_diff1
value: 40.99769475618877
- type: nauc_map_at_100_max
value: 26.243799694692854
- type: nauc_map_at_100_std
value: 1.0963613460061759
- type: nauc_map_at_10_diff1
value: 41.59053494619633
- type: nauc_map_at_10_max
value: 26.368323616840865
- type: nauc_map_at_10_std
value: 0.005351397334266719
- type: nauc_map_at_1_diff1
value: 50.48591275806671
- type: nauc_map_at_1_max
value: 28.027862494196544
- type: nauc_map_at_1_std
value: -2.5124831594155737
- type: nauc_map_at_20_diff1
value: 41.05475708589465
- type: nauc_map_at_20_max
value: 26.145989770614918
- type: nauc_map_at_20_std
value: 0.491490393489295
- type: nauc_map_at_3_diff1
value: 44.34725985166202
- type: nauc_map_at_3_max
value: 26.72607401939832
- type: nauc_map_at_3_std
value: -0.7356644837153518
- type: nauc_map_at_5_diff1
value: 42.89323870377218
- type: nauc_map_at_5_max
value: 26.64092778112793
- type: nauc_map_at_5_std
value: -0.3252651730879754
- type: nauc_mrr_at_1000_diff1
value: 38.54868139280313
- type: nauc_mrr_at_1000_max
value: 27.87286530236558
- type: nauc_mrr_at_1000_std
value: 2.9794274560669813
- type: nauc_mrr_at_100_diff1
value: 38.52426785096177
- type: nauc_mrr_at_100_max
value: 27.84756143748855
- type: nauc_mrr_at_100_std
value: 2.9843775744142267
- type: nauc_mrr_at_10_diff1
value: 39.02760076727665
- type: nauc_mrr_at_10_max
value: 28.11011491417654
- type: nauc_mrr_at_10_std
value: 2.263143490304297
- type: nauc_mrr_at_1_diff1
value: 47.46793071753645
- type: nauc_mrr_at_1_max
value: 30.632650480338175
- type: nauc_mrr_at_1_std
value: 0.7118428827724745
- type: nauc_mrr_at_20_diff1
value: 38.500695077836966
- type: nauc_mrr_at_20_max
value: 27.813613143586462
- type: nauc_mrr_at_20_std
value: 2.598650654867692
- type: nauc_mrr_at_3_diff1
value: 41.3716661699587
- type: nauc_mrr_at_3_max
value: 29.053477693340696
- type: nauc_mrr_at_3_std
value: 1.808746724928547
- type: nauc_mrr_at_5_diff1
value: 39.961419554830485
- type: nauc_mrr_at_5_max
value: 28.935701693774877
- type: nauc_mrr_at_5_std
value: 2.210123564134845
- type: nauc_ndcg_at_1000_diff1
value: 35.79875968568294
- type: nauc_ndcg_at_1000_max
value: 26.45802178490949
- type: nauc_ndcg_at_1000_std
value: 7.215707993785419
- type: nauc_ndcg_at_100_diff1
value: 35.644370540541075
- type: nauc_ndcg_at_100_max
value: 25.34353569408452
- type: nauc_ndcg_at_100_std
value: 6.393901524581685
- type: nauc_ndcg_at_10_diff1
value: 37.29085262377084
- type: nauc_ndcg_at_10_max
value: 25.72198363571514
- type: nauc_ndcg_at_10_std
value: 1.7544615128354837
- type: nauc_ndcg_at_1_diff1
value: 47.46793071753645
- type: nauc_ndcg_at_1_max
value: 30.632650480338175
- type: nauc_ndcg_at_1_std
value: 0.7118428827724745
- type: nauc_ndcg_at_20_diff1
value: 35.647868902287165
- type: nauc_ndcg_at_20_max
value: 24.821600201323278
- type: nauc_ndcg_at_20_std
value: 3.1415069731821412
- type: nauc_ndcg_at_3_diff1
value: 41.596694545162094
- type: nauc_ndcg_at_3_max
value: 27.40177916659524
- type: nauc_ndcg_at_3_std
value: 0.6589628153571406
- type: nauc_ndcg_at_5_diff1
value: 39.56724224478506
- type: nauc_ndcg_at_5_max
value: 27.020558127051846
- type: nauc_ndcg_at_5_std
value: 1.3523747955809573
- type: nauc_precision_at_1000_diff1
value: 4.302657386063613
- type: nauc_precision_at_1000_max
value: 18.2796045022123
- type: nauc_precision_at_1000_std
value: 18.118747871890772
- type: nauc_precision_at_100_diff1
value: 13.618119375734416
- type: nauc_precision_at_100_max
value: 22.894335594340422
- type: nauc_precision_at_100_std
value: 20.49716188566563
- type: nauc_precision_at_10_diff1
value: 21.78252168291007
- type: nauc_precision_at_10_max
value: 26.275127596576407
- type: nauc_precision_at_10_std
value: 8.954746260059663
- type: nauc_precision_at_1_diff1
value: 47.46793071753645
- type: nauc_precision_at_1_max
value: 30.632650480338175
- type: nauc_precision_at_1_std
value: 0.7118428827724745
- type: nauc_precision_at_20_diff1
value: 17.998498363354663
- type: nauc_precision_at_20_max
value: 22.79803013558884
- type: nauc_precision_at_20_std
value: 11.734660275051407
- type: nauc_precision_at_3_diff1
value: 32.910356757577446
- type: nauc_precision_at_3_max
value: 29.355200743687078
- type: nauc_precision_at_3_std
value: 5.099200729327598
- type: nauc_precision_at_5_diff1
value: 27.588662253074265
- type: nauc_precision_at_5_max
value: 29.922214255182038
- type: nauc_precision_at_5_std
value: 7.133551104463415
- type: nauc_recall_at_1000_diff1
value: 19.241952529490536
- type: nauc_recall_at_1000_max
value: 22.945537589056595
- type: nauc_recall_at_1000_std
value: 29.961714655551148
- type: nauc_recall_at_100_diff1
value: 22.155127117270283
- type: nauc_recall_at_100_max
value: 18.625383308175493
- type: nauc_recall_at_100_std
value: 18.98245591409261
- type: nauc_recall_at_10_diff1
value: 27.850417430803375
- type: nauc_recall_at_10_max
value: 21.675692250461214
- type: nauc_recall_at_10_std
value: 3.679179920639074
- type: nauc_recall_at_1_diff1
value: 50.48591275806671
- type: nauc_recall_at_1_max
value: 28.027862494196544
- type: nauc_recall_at_1_std
value: -2.5124831594155737
- type: nauc_recall_at_20_diff1
value: 22.512641196134968
- type: nauc_recall_at_20_max
value: 18.380335694614793
- type: nauc_recall_at_20_std
value: 7.435706290910056
- type: nauc_recall_at_3_diff1
value: 38.23610349854204
- type: nauc_recall_at_3_max
value: 25.121072891517997
- type: nauc_recall_at_3_std
value: 1.6735898854406979
- type: nauc_recall_at_5_diff1
value: 33.45573937210992
- type: nauc_recall_at_5_max
value: 24.32998084089149
- type: nauc_recall_at_5_std
value: 3.0358523743841666
- type: ndcg_at_1
value: 15.014
- type: ndcg_at_10
value: 20.294999999999998
- type: ndcg_at_100
value: 25.351000000000003
- type: ndcg_at_1000
value: 28.576
- type: ndcg_at_20
value: 22.113
- type: ndcg_at_3
value: 17.47
- type: ndcg_at_5
value: 18.644
- type: precision_at_1
value: 15.014
- type: precision_at_10
value: 3.811
- type: precision_at_100
value: 0.758
- type: precision_at_1000
value: 0.122
- type: precision_at_20
value: 2.411
- type: precision_at_3
value: 8.341
- type: precision_at_5
value: 5.9479999999999995
- type: recall_at_1
value: 12.431000000000001
- type: recall_at_10
value: 27.188000000000002
- type: recall_at_100
value: 49.826
- type: recall_at_1000
value: 72.483
- type: recall_at_20
value: 33.859
- type: recall_at_3
value: 19.167
- type: recall_at_5
value: 22.281000000000002
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: main_score
value: 14.094999999999999
- type: map_at_1
value: 7.303
- type: map_at_10
value: 11.117
- type: map_at_100
value: 12.032
- type: map_at_1000
value: 12.163
- type: map_at_20
value: 11.573
- type: map_at_3
value: 9.649000000000001
- type: map_at_5
value: 10.363999999999999
- type: mrr_at_1
value: 9.1324200913242
- type: mrr_at_10
value: 13.651110748713483
- type: mrr_at_100
value: 14.51197163225672
- type: mrr_at_1000
value: 14.613337993483293
- type: mrr_at_20
value: 14.100106685630351
- type: mrr_at_3
value: 12.005327245053268
- type: mrr_at_5
value: 12.815829528158297
- type: nauc_map_at_1000_diff1
value: 29.862867281596824
- type: nauc_map_at_1000_max
value: 18.28531520368194
- type: nauc_map_at_1000_std
value: 5.80584733659641
- type: nauc_map_at_100_diff1
value: 29.87327043708194
- type: nauc_map_at_100_max
value: 18.163395665550443
- type: nauc_map_at_100_std
value: 5.676097483977982
- type: nauc_map_at_10_diff1
value: 30.350916526673387
- type: nauc_map_at_10_max
value: 17.846298150443882
- type: nauc_map_at_10_std
value: 4.3226731665874345
- type: nauc_map_at_1_diff1
value: 41.53532999423742
- type: nauc_map_at_1_max
value: 20.989977874238626
- type: nauc_map_at_1_std
value: 0.12919073079860827
- type: nauc_map_at_20_diff1
value: 30.06844081159391
- type: nauc_map_at_20_max
value: 17.873194514535488
- type: nauc_map_at_20_std
value: 4.872720284268709
- type: nauc_map_at_3_diff1
value: 33.6174080151037
- type: nauc_map_at_3_max
value: 18.166456594456175
- type: nauc_map_at_3_std
value: 2.896530825289501
- type: nauc_map_at_5_diff1
value: 31.504566510177302
- type: nauc_map_at_5_max
value: 17.93591120644573
- type: nauc_map_at_5_std
value: 2.254193364885245
- type: nauc_mrr_at_1000_diff1
value: 26.320408655131395
- type: nauc_mrr_at_1000_max
value: 21.953529111617648
- type: nauc_mrr_at_1000_std
value: 7.37046085302909
- type: nauc_mrr_at_100_diff1
value: 26.302748717403563
- type: nauc_mrr_at_100_max
value: 21.889357474358334
- type: nauc_mrr_at_100_std
value: 7.338435428167231
- type: nauc_mrr_at_10_diff1
value: 26.555927614522894
- type: nauc_mrr_at_10_max
value: 22.257898944461783
- type: nauc_mrr_at_10_std
value: 6.8052301035062035
- type: nauc_mrr_at_1_diff1
value: 36.684553884221955
- type: nauc_mrr_at_1_max
value: 25.48530151556953
- type: nauc_mrr_at_1_std
value: 3.048877367303359
- type: nauc_mrr_at_20_diff1
value: 26.326859097141593
- type: nauc_mrr_at_20_max
value: 21.919318670390712
- type: nauc_mrr_at_20_std
value: 7.125641468085978
- type: nauc_mrr_at_3_diff1
value: 29.69932296050628
- type: nauc_mrr_at_3_max
value: 23.683386112606282
- type: nauc_mrr_at_3_std
value: 5.397563170400955
- type: nauc_mrr_at_5_diff1
value: 27.701563882738522
- type: nauc_mrr_at_5_max
value: 22.955245303254017
- type: nauc_mrr_at_5_std
value: 5.231835251158974
- type: nauc_ndcg_at_1000_diff1
value: 24.297424985001015
- type: nauc_ndcg_at_1000_max
value: 20.306966661874245
- type: nauc_ndcg_at_1000_std
value: 13.873545348303818
- type: nauc_ndcg_at_100_diff1
value: 24.093566196853757
- type: nauc_ndcg_at_100_max
value: 17.873825740316427
- type: nauc_ndcg_at_100_std
value: 11.617123418364676
- type: nauc_ndcg_at_10_diff1
value: 25.263815241083986
- type: nauc_ndcg_at_10_max
value: 17.53213955708432
- type: nauc_ndcg_at_10_std
value: 7.18466149501028
- type: nauc_ndcg_at_1_diff1
value: 36.684553884221955
- type: nauc_ndcg_at_1_max
value: 25.48530151556953
- type: nauc_ndcg_at_1_std
value: 3.048877367303359
- type: nauc_ndcg_at_20_diff1
value: 24.51658540263249
- type: nauc_ndcg_at_20_max
value: 17.15525149947788
- type: nauc_ndcg_at_20_std
value: 8.47477375794873
- type: nauc_ndcg_at_3_diff1
value: 30.477243993172383
- type: nauc_ndcg_at_3_max
value: 19.362585630411125
- type: nauc_ndcg_at_3_std
value: 4.36632933674639
- type: nauc_ndcg_at_5_diff1
value: 27.26848481494293
- type: nauc_ndcg_at_5_max
value: 18.462159616033276
- type: nauc_ndcg_at_5_std
value: 3.213137910126468
- type: nauc_precision_at_1000_diff1
value: 1.0736355105318376
- type: nauc_precision_at_1000_max
value: 18.51072739593544
- type: nauc_precision_at_1000_std
value: 18.09096260033513
- type: nauc_precision_at_100_diff1
value: 10.91522849112623
- type: nauc_precision_at_100_max
value: 20.046044177346676
- type: nauc_precision_at_100_std
value: 22.757282561231293
- type: nauc_precision_at_10_diff1
value: 15.502562368567993
- type: nauc_precision_at_10_max
value: 19.710006841646
- type: nauc_precision_at_10_std
value: 15.785469668328542
- type: nauc_precision_at_1_diff1
value: 36.684553884221955
- type: nauc_precision_at_1_max
value: 25.48530151556953
- type: nauc_precision_at_1_std
value: 3.048877367303359
- type: nauc_precision_at_20_diff1
value: 13.971940104916381
- type: nauc_precision_at_20_max
value: 18.273116307710737
- type: nauc_precision_at_20_std
value: 18.36985028918322
- type: nauc_precision_at_3_diff1
value: 24.258746372971096
- type: nauc_precision_at_3_max
value: 21.58783837985128
- type: nauc_precision_at_3_std
value: 7.400932652411214
- type: nauc_precision_at_5_diff1
value: 18.7761846559401
- type: nauc_precision_at_5_max
value: 19.42020311187233
- type: nauc_precision_at_5_std
value: 5.341062590691995
- type: nauc_recall_at_1000_diff1
value: 13.643070685078346
- type: nauc_recall_at_1000_max
value: 24.738113172451285
- type: nauc_recall_at_1000_std
value: 37.04460245864719
- type: nauc_recall_at_100_diff1
value: 13.667185609958683
- type: nauc_recall_at_100_max
value: 12.525118917774652
- type: nauc_recall_at_100_std
value: 21.04251260586679
- type: nauc_recall_at_10_diff1
value: 16.739434654375483
- type: nauc_recall_at_10_max
value: 12.717329215582637
- type: nauc_recall_at_10_std
value: 10.731719143575397
- type: nauc_recall_at_1_diff1
value: 41.53532999423742
- type: nauc_recall_at_1_max
value: 20.989977874238626
- type: nauc_recall_at_1_std
value: 0.12919073079860827
- type: nauc_recall_at_20_diff1
value: 14.868890539957777
- type: nauc_recall_at_20_max
value: 11.729101949172534
- type: nauc_recall_at_20_std
value: 12.813638534198143
- type: nauc_recall_at_3_diff1
value: 25.86824535860269
- type: nauc_recall_at_3_max
value: 15.894774632237532
- type: nauc_recall_at_3_std
value: 4.443073134833879
- type: nauc_recall_at_5_diff1
value: 20.89067633508717
- type: nauc_recall_at_5_max
value: 15.049382971341338
- type: nauc_recall_at_5_std
value: 2.887694159444617
- type: ndcg_at_1
value: 9.132
- type: ndcg_at_10
value: 14.094999999999999
- type: ndcg_at_100
value: 18.762999999999998
- type: ndcg_at_1000
value: 22.141
- type: ndcg_at_20
value: 15.673
- type: ndcg_at_3
value: 11.129
- type: ndcg_at_5
value: 12.289
- type: precision_at_1
value: 9.132
- type: precision_at_10
value: 2.8770000000000002
- type: precision_at_100
value: 0.639
- type: precision_at_1000
value: 0.109
- type: precision_at_20
value: 1.9120000000000001
- type: precision_at_3
value: 5.441
- type: precision_at_5
value: 4.087
- type: recall_at_1
value: 7.303
- type: recall_at_10
value: 20.74
- type: recall_at_100
value: 41.465999999999994
- type: recall_at_1000
value: 65.818
- type: recall_at_20
value: 26.395000000000003
- type: recall_at_3
value: 12.546
- type: recall_at_5
value: 15.453
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 16.292583333333337
- type: ndcg_at_10
value: 16.292583333333337
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: main_score
value: 11.084
- type: map_at_1
value: 5.473999999999999
- type: map_at_10
value: 8.647
- type: map_at_100
value: 9.254999999999999
- type: map_at_1000
value: 9.343
- type: map_at_20
value: 8.917
- type: map_at_3
value: 7.116
- type: map_at_5
value: 7.994999999999999
- type: mrr_at_1
value: 6.901840490797547
- type: mrr_at_10
value: 10.09019865614958
- type: mrr_at_100
value: 10.710876089302603
- type: mrr_at_1000
value: 10.80105115646488
- type: mrr_at_20
value: 10.370791231604123
- type: mrr_at_3
value: 8.384458077709613
- type: mrr_at_5
value: 9.435071574642132
- type: nauc_map_at_1000_diff1
value: 30.435533125669867
- type: nauc_map_at_1000_max
value: 12.005700207406719
- type: nauc_map_at_1000_std
value: 11.98304586760235
- type: nauc_map_at_100_diff1
value: 30.39651861345863
- type: nauc_map_at_100_max
value: 11.958667333522488
- type: nauc_map_at_100_std
value: 11.988463526455364
- type: nauc_map_at_10_diff1
value: 31.61134419975441
- type: nauc_map_at_10_max
value: 12.466187898649492
- type: nauc_map_at_10_std
value: 11.313817239575812
- type: nauc_map_at_1_diff1
value: 40.459086633032356
- type: nauc_map_at_1_max
value: 15.968191561744455
- type: nauc_map_at_1_std
value: 11.53791310770506
- type: nauc_map_at_20_diff1
value: 30.924210732306122
- type: nauc_map_at_20_max
value: 12.25287847619258
- type: nauc_map_at_20_std
value: 11.55166826589565
- type: nauc_map_at_3_diff1
value: 34.474904520349476
- type: nauc_map_at_3_max
value: 12.362217289453296
- type: nauc_map_at_3_std
value: 11.91602389729683
- type: nauc_map_at_5_diff1
value: 33.02009096009877
- type: nauc_map_at_5_max
value: 12.293024493317091
- type: nauc_map_at_5_std
value: 11.115164915945979
- type: nauc_mrr_at_1000_diff1
value: 30.201837733428693
- type: nauc_mrr_at_1000_max
value: 13.810857624668744
- type: nauc_mrr_at_1000_std
value: 13.424949091741523
- type: nauc_mrr_at_100_diff1
value: 30.154981139066106
- type: nauc_mrr_at_100_max
value: 13.768835955825477
- type: nauc_mrr_at_100_std
value: 13.437344407365057
- type: nauc_mrr_at_10_diff1
value: 31.32911731857685
- type: nauc_mrr_at_10_max
value: 14.372259338280156
- type: nauc_mrr_at_10_std
value: 12.954575872352802
- type: nauc_mrr_at_1_diff1
value: 40.183370781496436
- type: nauc_mrr_at_1_max
value: 18.521164314158963
- type: nauc_mrr_at_1_std
value: 13.876661499833192
- type: nauc_mrr_at_20_diff1
value: 30.659255034067307
- type: nauc_mrr_at_20_max
value: 14.208264685122343
- type: nauc_mrr_at_20_std
value: 13.247575342063858
- type: nauc_mrr_at_3_diff1
value: 33.81220382547985
- type: nauc_mrr_at_3_max
value: 14.739175293962711
- type: nauc_mrr_at_3_std
value: 13.51393470776092
- type: nauc_mrr_at_5_diff1
value: 32.70503122094358
- type: nauc_mrr_at_5_max
value: 14.58301653112657
- type: nauc_mrr_at_5_std
value: 12.688382187193964
- type: nauc_ndcg_at_1000_diff1
value: 23.898238338589813
- type: nauc_ndcg_at_1000_max
value: 11.114129082978721
- type: nauc_ndcg_at_1000_std
value: 13.731675765819507
- type: nauc_ndcg_at_100_diff1
value: 23.37647877218008
- type: nauc_ndcg_at_100_max
value: 9.752186087015916
- type: nauc_ndcg_at_100_std
value: 14.038238814077786
- type: nauc_ndcg_at_10_diff1
value: 27.862970249084874
- type: nauc_ndcg_at_10_max
value: 12.080245279627151
- type: nauc_ndcg_at_10_std
value: 11.163917047664574
- type: nauc_ndcg_at_1_diff1
value: 40.183370781496436
- type: nauc_ndcg_at_1_max
value: 18.521164314158963
- type: nauc_ndcg_at_1_std
value: 13.876661499833192
- type: nauc_ndcg_at_20_diff1
value: 26.004324461514095
- type: nauc_ndcg_at_20_max
value: 11.489468188078314
- type: nauc_ndcg_at_20_std
value: 11.996507006587706
- type: nauc_ndcg_at_3_diff1
value: 32.598511559625955
- type: nauc_ndcg_at_3_max
value: 11.4749311612369
- type: nauc_ndcg_at_3_std
value: 12.255358545075135
- type: nauc_ndcg_at_5_diff1
value: 30.40071630731615
- type: nauc_ndcg_at_5_max
value: 11.564972341416748
- type: nauc_ndcg_at_5_std
value: 10.673835410901216
- type: nauc_precision_at_1000_diff1
value: 15.885458614190167
- type: nauc_precision_at_1000_max
value: 13.531762379826272
- type: nauc_precision_at_1000_std
value: 18.76316740635119
- type: nauc_precision_at_100_diff1
value: 13.514892278384458
- type: nauc_precision_at_100_max
value: 12.69922516770082
- type: nauc_precision_at_100_std
value: 21.78469261226693
- type: nauc_precision_at_10_diff1
value: 23.955298612073094
- type: nauc_precision_at_10_max
value: 14.65966194981769
- type: nauc_precision_at_10_std
value: 13.163937767486209
- type: nauc_precision_at_1_diff1
value: 40.183370781496436
- type: nauc_precision_at_1_max
value: 18.521164314158963
- type: nauc_precision_at_1_std
value: 13.876661499833192
- type: nauc_precision_at_20_diff1
value: 20.256887655625906
- type: nauc_precision_at_20_max
value: 12.444330057218782
- type: nauc_precision_at_20_std
value: 14.516083967147559
- type: nauc_precision_at_3_diff1
value: 30.673101233143047
- type: nauc_precision_at_3_max
value: 12.749036514728967
- type: nauc_precision_at_3_std
value: 13.791131287286138
- type: nauc_precision_at_5_diff1
value: 28.23647732368974
- type: nauc_precision_at_5_max
value: 12.463909834151341
- type: nauc_precision_at_5_std
value: 10.939907985087165
- type: nauc_recall_at_1000_diff1
value: 10.109855189399731
- type: nauc_recall_at_1000_max
value: 8.877789681216209
- type: nauc_recall_at_1000_std
value: 14.575603895088566
- type: nauc_recall_at_100_diff1
value: 10.19885264652248
- type: nauc_recall_at_100_max
value: 2.6983137370833488
- type: nauc_recall_at_100_std
value: 16.498875224858587
- type: nauc_recall_at_10_diff1
value: 20.468620592125365
- type: nauc_recall_at_10_max
value: 9.468638893767974
- type: nauc_recall_at_10_std
value: 9.106303262865776
- type: nauc_recall_at_1_diff1
value: 40.459086633032356
- type: nauc_recall_at_1_max
value: 15.968191561744455
- type: nauc_recall_at_1_std
value: 11.53791310770506
- type: nauc_recall_at_20_diff1
value: 16.298246884560854
- type: nauc_recall_at_20_max
value: 7.988135441382633
- type: nauc_recall_at_20_std
value: 11.127243159943715
- type: nauc_recall_at_3_diff1
value: 27.53910781445452
- type: nauc_recall_at_3_max
value: 8.222622822120936
- type: nauc_recall_at_3_std
value: 11.272104373840055
- type: nauc_recall_at_5_diff1
value: 23.86996501085239
- type: nauc_recall_at_5_max
value: 8.392455457234703
- type: nauc_recall_at_5_std
value: 8.326116528002244
- type: ndcg_at_1
value: 6.902
- type: ndcg_at_10
value: 11.084
- type: ndcg_at_100
value: 14.585999999999999
- type: ndcg_at_1000
value: 17.299
- type: ndcg_at_20
value: 12.073
- type: ndcg_at_3
value: 8.03
- type: ndcg_at_5
value: 9.583
- type: precision_at_1
value: 6.902
- type: precision_at_10
value: 2.147
- type: precision_at_100
value: 0.426
- type: precision_at_1000
value: 0.07200000000000001
- type: precision_at_20
value: 1.2959999999999998
- type: precision_at_3
value: 3.7830000000000004
- type: precision_at_5
value: 3.19
- type: recall_at_1
value: 5.473999999999999
- type: recall_at_10
value: 17.432
- type: recall_at_100
value: 34.385
- type: recall_at_1000
value: 55.132000000000005
- type: recall_at_20
value: 21.305
- type: recall_at_3
value: 9.052
- type: recall_at_5
value: 12.891
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: main_score
value: 9.0
- type: map_at_1
value: 4.699
- type: map_at_10
value: 7.098
- type: map_at_100
value: 7.605
- type: map_at_1000
value: 7.712
- type: map_at_20
value: 7.337000000000001
- type: map_at_3
value: 6.138
- type: map_at_5
value: 6.5809999999999995
- type: mrr_at_1
value: 5.815554026152787
- type: mrr_at_10
value: 8.60257649744917
- type: mrr_at_100
value: 9.178358604435788
- type: mrr_at_1000
value: 9.273358449979913
- type: mrr_at_20
value: 8.890048577862194
- type: mrr_at_3
value: 7.501720578114253
- type: mrr_at_5
value: 8.014452856159672
- type: nauc_map_at_1000_diff1
value: 30.593503138765428
- type: nauc_map_at_1000_max
value: 18.453660255547693
- type: nauc_map_at_1000_std
value: -1.7685567473582366
- type: nauc_map_at_100_diff1
value: 30.650406650792867
- type: nauc_map_at_100_max
value: 18.373623725444453
- type: nauc_map_at_100_std
value: -1.9681957834935826
- type: nauc_map_at_10_diff1
value: 31.811653014506152
- type: nauc_map_at_10_max
value: 18.21651480605788
- type: nauc_map_at_10_std
value: -2.9289522062108784
- type: nauc_map_at_1_diff1
value: 41.22007664054066
- type: nauc_map_at_1_max
value: 21.46970375146556
- type: nauc_map_at_1_std
value: -1.2270094063971864
- type: nauc_map_at_20_diff1
value: 30.950280855804262
- type: nauc_map_at_20_max
value: 18.20426095422395
- type: nauc_map_at_20_std
value: -2.2813322264387317
- type: nauc_map_at_3_diff1
value: 34.836258994809555
- type: nauc_map_at_3_max
value: 20.008809414227088
- type: nauc_map_at_3_std
value: -2.4831995200462877
- type: nauc_map_at_5_diff1
value: 33.53955304108325
- type: nauc_map_at_5_max
value: 19.249532084724976
- type: nauc_map_at_5_std
value: -2.7248191532377017
- type: nauc_mrr_at_1000_diff1
value: 28.970055122260934
- type: nauc_mrr_at_1000_max
value: 19.51589259479635
- type: nauc_mrr_at_1000_std
value: -0.6191130680144826
- type: nauc_mrr_at_100_diff1
value: 28.99415333990028
- type: nauc_mrr_at_100_max
value: 19.489286318028913
- type: nauc_mrr_at_100_std
value: -0.6904166831553156
- type: nauc_mrr_at_10_diff1
value: 29.849897127551994
- type: nauc_mrr_at_10_max
value: 19.34919336545091
- type: nauc_mrr_at_10_std
value: -1.6338498086246527
- type: nauc_mrr_at_1_diff1
value: 38.11981597192683
- type: nauc_mrr_at_1_max
value: 23.254943869402304
- type: nauc_mrr_at_1_std
value: -0.912901935471625
- type: nauc_mrr_at_20_diff1
value: 29.188353833212986
- type: nauc_mrr_at_20_max
value: 19.359637185038142
- type: nauc_mrr_at_20_std
value: -0.9198376575664564
- type: nauc_mrr_at_3_diff1
value: 32.588159647991255
- type: nauc_mrr_at_3_max
value: 20.740531692877195
- type: nauc_mrr_at_3_std
value: -1.5083070506201077
- type: nauc_mrr_at_5_diff1
value: 31.539888866743084
- type: nauc_mrr_at_5_max
value: 20.44348881279962
- type: nauc_mrr_at_5_std
value: -1.6873820593904274
- type: nauc_ndcg_at_1000_diff1
value: 23.557578195316097
- type: nauc_ndcg_at_1000_max
value: 18.510335075222166
- type: nauc_ndcg_at_1000_std
value: 3.469591902714254
- type: nauc_ndcg_at_100_diff1
value: 24.458067231136006
- type: nauc_ndcg_at_100_max
value: 17.298674134219844
- type: nauc_ndcg_at_100_std
value: 0.5501100894117191
- type: nauc_ndcg_at_10_diff1
value: 27.689420705932218
- type: nauc_ndcg_at_10_max
value: 16.38882750521239
- type: nauc_ndcg_at_10_std
value: -3.0544713516417197
- type: nauc_ndcg_at_1_diff1
value: 38.11981597192683
- type: nauc_ndcg_at_1_max
value: 23.254943869402304
- type: nauc_ndcg_at_1_std
value: -0.912901935471625
- type: nauc_ndcg_at_20_diff1
value: 25.61748620708531
- type: nauc_ndcg_at_20_max
value: 16.382425400354414
- type: nauc_ndcg_at_20_std
value: -1.1038549983732726
- type: nauc_ndcg_at_3_diff1
value: 32.54369670243574
- type: nauc_ndcg_at_3_max
value: 19.579663222392483
- type: nauc_ndcg_at_3_std
value: -2.39761396687425
- type: nauc_ndcg_at_5_diff1
value: 30.92127124752099
- type: nauc_ndcg_at_5_max
value: 18.48113539417429
- type: nauc_ndcg_at_5_std
value: -2.773343405545779
- type: nauc_precision_at_1000_diff1
value: 7.4306683973787955
- type: nauc_precision_at_1000_max
value: 24.159650238977886
- type: nauc_precision_at_1000_std
value: 20.763060943130444
- type: nauc_precision_at_100_diff1
value: 13.977127543915302
- type: nauc_precision_at_100_max
value: 20.869226948933484
- type: nauc_precision_at_100_std
value: 9.661028336511375
- type: nauc_precision_at_10_diff1
value: 19.380945900490023
- type: nauc_precision_at_10_max
value: 15.448645443238792
- type: nauc_precision_at_10_std
value: -2.40779497372621
- type: nauc_precision_at_1_diff1
value: 38.11981597192683
- type: nauc_precision_at_1_max
value: 23.254943869402304
- type: nauc_precision_at_1_std
value: -0.912901935471625
- type: nauc_precision_at_20_diff1
value: 16.160123874138144
- type: nauc_precision_at_20_max
value: 17.48755145780663
- type: nauc_precision_at_20_std
value: 4.165695881782506
- type: nauc_precision_at_3_diff1
value: 29.147993451561664
- type: nauc_precision_at_3_max
value: 19.906375084344262
- type: nauc_precision_at_3_std
value: -2.963281652492904
- type: nauc_precision_at_5_diff1
value: 26.37656688810861
- type: nauc_precision_at_5_max
value: 19.490814194233902
- type: nauc_precision_at_5_std
value: -2.807622324723641
- type: nauc_recall_at_1000_diff1
value: 11.055980578698891
- type: nauc_recall_at_1000_max
value: 17.067913162609578
- type: nauc_recall_at_1000_std
value: 13.86839682763791
- type: nauc_recall_at_100_diff1
value: 14.616493061478572
- type: nauc_recall_at_100_max
value: 14.082658622676192
- type: nauc_recall_at_100_std
value: 4.29554835873666
- type: nauc_recall_at_10_diff1
value: 20.59282910525744
- type: nauc_recall_at_10_max
value: 11.294371411877117
- type: nauc_recall_at_10_std
value: -4.076776396400985
- type: nauc_recall_at_1_diff1
value: 41.22007664054066
- type: nauc_recall_at_1_max
value: 21.46970375146556
- type: nauc_recall_at_1_std
value: -1.2270094063971864
- type: nauc_recall_at_20_diff1
value: 16.590417625375398
- type: nauc_recall_at_20_max
value: 11.496290687792293
- type: nauc_recall_at_20_std
value: 0.2718324385330241
- type: nauc_recall_at_3_diff1
value: 29.739297600177927
- type: nauc_recall_at_3_max
value: 17.456812549646664
- type: nauc_recall_at_3_std
value: -3.330718505394941
- type: nauc_recall_at_5_diff1
value: 26.526643928548303
- type: nauc_recall_at_5_max
value: 14.970019231755732
- type: nauc_recall_at_5_std
value: -4.104709617473779
- type: ndcg_at_1
value: 5.816000000000001
- type: ndcg_at_10
value: 9.0
- type: ndcg_at_100
value: 11.966000000000001
- type: ndcg_at_1000
value: 15.136
- type: ndcg_at_20
value: 9.895
- type: ndcg_at_3
value: 7.029000000000001
- type: ndcg_at_5
value: 7.7490000000000006
- type: precision_at_1
value: 5.816000000000001
- type: precision_at_10
value: 1.786
- type: precision_at_100
value: 0.392
- type: precision_at_1000
value: 0.08099999999999999
- type: precision_at_20
value: 1.139
- type: precision_at_3
value: 3.338
- type: precision_at_5
value: 2.512
- type: recall_at_1
value: 4.699
- type: recall_at_10
value: 13.444
- type: recall_at_100
value: 27.338
- type: recall_at_1000
value: 50.958000000000006
- type: recall_at_20
value: 16.789
- type: recall_at_3
value: 7.965999999999999
- type: recall_at_5
value: 9.795
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: main_score
value: 14.642
- type: map_at_1
value: 8.594
- type: map_at_10
value: 12.043
- type: map_at_100
value: 12.628
- type: map_at_1000
value: 12.748000000000001
- type: map_at_20
value: 12.328999999999999
- type: map_at_3
value: 10.825
- type: map_at_5
value: 11.456
- type: mrr_at_1
value: 10.167910447761194
- type: mrr_at_10
value: 14.230632551528075
- type: mrr_at_100
value: 14.84826533644871
- type: mrr_at_1000
value: 14.952253325630801
- type: mrr_at_20
value: 14.559963665127185
- type: mrr_at_3
value: 12.795398009950246
- type: mrr_at_5
value: 13.583644278606963
- type: nauc_map_at_1000_diff1
value: 34.931894084707906
- type: nauc_map_at_1000_max
value: 26.011453817858175
- type: nauc_map_at_1000_std
value: -5.259310316806391
- type: nauc_map_at_100_diff1
value: 34.97132262158893
- type: nauc_map_at_100_max
value: 25.977925092139316
- type: nauc_map_at_100_std
value: -5.363299933468949
- type: nauc_map_at_10_diff1
value: 35.413614063892055
- type: nauc_map_at_10_max
value: 25.996042532353293
- type: nauc_map_at_10_std
value: -5.828052448730221
- type: nauc_map_at_1_diff1
value: 45.43577340681606
- type: nauc_map_at_1_max
value: 31.35451790693192
- type: nauc_map_at_1_std
value: -6.804647167393954
- type: nauc_map_at_20_diff1
value: 35.22634384251006
- type: nauc_map_at_20_max
value: 26.0791417390376
- type: nauc_map_at_20_std
value: -5.568206354119795
- type: nauc_map_at_3_diff1
value: 37.88264382017105
- type: nauc_map_at_3_max
value: 26.58464964762371
- type: nauc_map_at_3_std
value: -7.143200449464618
- type: nauc_map_at_5_diff1
value: 36.87555416284773
- type: nauc_map_at_5_max
value: 26.187259454362504
- type: nauc_map_at_5_std
value: -6.369340817625665
- type: nauc_mrr_at_1000_diff1
value: 32.95386882016721
- type: nauc_mrr_at_1000_max
value: 25.415545409989647
- type: nauc_mrr_at_1000_std
value: -3.2966559932534576
- type: nauc_mrr_at_100_diff1
value: 32.929024101483584
- type: nauc_mrr_at_100_max
value: 25.410922727779607
- type: nauc_mrr_at_100_std
value: -3.3602828495013846
- type: nauc_mrr_at_10_diff1
value: 33.33184163667248
- type: nauc_mrr_at_10_max
value: 25.23251644013973
- type: nauc_mrr_at_10_std
value: -3.9425879290670562
- type: nauc_mrr_at_1_diff1
value: 42.82444714568402
- type: nauc_mrr_at_1_max
value: 31.162164601016823
- type: nauc_mrr_at_1_std
value: -3.5959462505495385
- type: nauc_mrr_at_20_diff1
value: 32.98077540397205
- type: nauc_mrr_at_20_max
value: 25.377444590764863
- type: nauc_mrr_at_20_std
value: -3.5942289573803903
- type: nauc_mrr_at_3_diff1
value: 35.661719035464436
- type: nauc_mrr_at_3_max
value: 25.822835021311068
- type: nauc_mrr_at_3_std
value: -5.167396128886139
- type: nauc_mrr_at_5_diff1
value: 34.415035085200515
- type: nauc_mrr_at_5_max
value: 25.28881508345901
- type: nauc_mrr_at_5_std
value: -4.235402582912731
- type: nauc_ndcg_at_1000_diff1
value: 28.03863791690561
- type: nauc_ndcg_at_1000_max
value: 24.6958953334643
- type: nauc_ndcg_at_1000_std
value: 0.2069763422184006
- type: nauc_ndcg_at_100_diff1
value: 28.85548056591013
- type: nauc_ndcg_at_100_max
value: 24.19122237527082
- type: nauc_ndcg_at_100_std
value: -2.2423685304285166
- type: nauc_ndcg_at_10_diff1
value: 30.880622024820205
- type: nauc_ndcg_at_10_max
value: 24.18898174097302
- type: nauc_ndcg_at_10_std
value: -4.469335009355912
- type: nauc_ndcg_at_1_diff1
value: 42.82444714568402
- type: nauc_ndcg_at_1_max
value: 31.162164601016823
- type: nauc_ndcg_at_1_std
value: -3.5959462505495385
- type: nauc_ndcg_at_20_diff1
value: 30.20323649965523
- type: nauc_ndcg_at_20_max
value: 24.593772143811695
- type: nauc_ndcg_at_20_std
value: -3.5991057238283384
- type: nauc_ndcg_at_3_diff1
value: 34.91373670076786
- type: nauc_ndcg_at_3_max
value: 25.19536568941237
- type: nauc_ndcg_at_3_std
value: -6.633997595341361
- type: nauc_ndcg_at_5_diff1
value: 33.63758824952721
- type: nauc_ndcg_at_5_max
value: 24.49292307627649
- type: nauc_ndcg_at_5_std
value: -5.4472189787652745
- type: nauc_precision_at_1000_diff1
value: 1.894326402664092
- type: nauc_precision_at_1000_max
value: 18.837828888922346
- type: nauc_precision_at_1000_std
value: 17.376768802392526
- type: nauc_precision_at_100_diff1
value: 10.353766835996908
- type: nauc_precision_at_100_max
value: 20.365565090207998
- type: nauc_precision_at_100_std
value: 7.2204931423322805
- type: nauc_precision_at_10_diff1
value: 16.79988263352762
- type: nauc_precision_at_10_max
value: 21.063528845406292
- type: nauc_precision_at_10_std
value: 0.13932249989411608
- type: nauc_precision_at_1_diff1
value: 42.82444714568402
- type: nauc_precision_at_1_max
value: 31.162164601016823
- type: nauc_precision_at_1_std
value: -3.5959462505495385
- type: nauc_precision_at_20_diff1
value: 14.92905968759458
- type: nauc_precision_at_20_max
value: 22.36507590889619
- type: nauc_precision_at_20_std
value: 2.331429468555827
- type: nauc_precision_at_3_diff1
value: 26.951382943694664
- type: nauc_precision_at_3_max
value: 22.522880130849387
- type: nauc_precision_at_3_std
value: -4.497059354718661
- type: nauc_precision_at_5_diff1
value: 23.34961270184579
- type: nauc_precision_at_5_max
value: 21.853489705418728
- type: nauc_precision_at_5_std
value: -1.902919557653842
- type: nauc_recall_at_1000_diff1
value: 8.111241040499726
- type: nauc_recall_at_1000_max
value: 19.23752105197241
- type: nauc_recall_at_1000_std
value: 17.91949865825608
- type: nauc_recall_at_100_diff1
value: 15.786966865491731
- type: nauc_recall_at_100_max
value: 18.78573902011604
- type: nauc_recall_at_100_std
value: 3.605693949233441
- type: nauc_recall_at_10_diff1
value: 21.754181878336514
- type: nauc_recall_at_10_max
value: 19.791211404418977
- type: nauc_recall_at_10_std
value: -2.515188856014479
- type: nauc_recall_at_1_diff1
value: 45.43577340681606
- type: nauc_recall_at_1_max
value: 31.35451790693192
- type: nauc_recall_at_1_std
value: -6.804647167393954
- type: nauc_recall_at_20_diff1
value: 20.17297025573394
- type: nauc_recall_at_20_max
value: 20.664495991798958
- type: nauc_recall_at_20_std
value: -0.4228284630643226
- type: nauc_recall_at_3_diff1
value: 30.62553553336479
- type: nauc_recall_at_3_max
value: 21.35160745104226
- type: nauc_recall_at_3_std
value: -7.871793761319987
- type: nauc_recall_at_5_diff1
value: 28.572307121700735
- type: nauc_recall_at_5_max
value: 20.62477116223967
- type: nauc_recall_at_5_std
value: -4.906118790698553
- type: ndcg_at_1
value: 10.168000000000001
- type: ndcg_at_10
value: 14.642
- type: ndcg_at_100
value: 17.97
- type: ndcg_at_1000
value: 21.528
- type: ndcg_at_20
value: 15.675
- type: ndcg_at_3
value: 12.116
- type: ndcg_at_5
value: 13.217
- type: precision_at_1
value: 10.168000000000001
- type: precision_at_10
value: 2.6310000000000002
- type: precision_at_100
value: 0.48700000000000004
- type: precision_at_1000
value: 0.09
- type: precision_at_20
value: 1.5859999999999999
- type: precision_at_3
value: 5.5969999999999995
- type: precision_at_5
value: 4.123
- type: recall_at_1
value: 8.594
- type: recall_at_10
value: 20.544999999999998
- type: recall_at_100
value: 36.232
- type: recall_at_1000
value: 62.958999999999996
- type: recall_at_20
value: 24.248
- type: recall_at_3
value: 13.555
- type: recall_at_5
value: 16.259
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: main_score
value: 17.971999999999998
- type: map_at_1
value: 9.227
- type: map_at_10
value: 14.176
- type: map_at_100
value: 14.982999999999999
- type: map_at_1000
value: 15.165999999999999
- type: map_at_20
value: 14.523
- type: map_at_3
value: 12.273
- type: map_at_5
value: 13.254
- type: mrr_at_1
value: 11.6600790513834
- type: mrr_at_10
value: 17.24355354790138
- type: mrr_at_100
value: 17.97458464711609
- type: mrr_at_1000
value: 18.083881916544176
- type: mrr_at_20
value: 17.592255982425357
- type: mrr_at_3
value: 15.316205533596843
- type: mrr_at_5
value: 16.442687747035578
- type: nauc_map_at_1000_diff1
value: 28.293578671148907
- type: nauc_map_at_1000_max
value: 13.73183648632115
- type: nauc_map_at_1000_std
value: 0.6513907283453153
- type: nauc_map_at_100_diff1
value: 28.359982175889286
- type: nauc_map_at_100_max
value: 13.735767207497823
- type: nauc_map_at_100_std
value: 0.636220564456525
- type: nauc_map_at_10_diff1
value: 28.87472863753925
- type: nauc_map_at_10_max
value: 13.300236729031244
- type: nauc_map_at_10_std
value: -0.21966965850894107
- type: nauc_map_at_1_diff1
value: 34.280945985083164
- type: nauc_map_at_1_max
value: 15.24775858038184
- type: nauc_map_at_1_std
value: -3.2611316928574468
- type: nauc_map_at_20_diff1
value: 28.467795424891552
- type: nauc_map_at_20_max
value: 13.103030925180414
- type: nauc_map_at_20_std
value: 0.16211034905789024
- type: nauc_map_at_3_diff1
value: 30.771049312852856
- type: nauc_map_at_3_max
value: 14.117084438478287
- type: nauc_map_at_3_std
value: -2.2303908982405245
- type: nauc_map_at_5_diff1
value: 29.33000695676755
- type: nauc_map_at_5_max
value: 15.098774022935096
- type: nauc_map_at_5_std
value: -0.7416053986126886
- type: nauc_mrr_at_1000_diff1
value: 26.580718195411514
- type: nauc_mrr_at_1000_max
value: 11.543767496741827
- type: nauc_mrr_at_1000_std
value: -0.08729361203690514
- type: nauc_mrr_at_100_diff1
value: 26.591028172685533
- type: nauc_mrr_at_100_max
value: 11.467614402235903
- type: nauc_mrr_at_100_std
value: -0.123955657400379
- type: nauc_mrr_at_10_diff1
value: 26.798913138334534
- type: nauc_mrr_at_10_max
value: 11.078083355015591
- type: nauc_mrr_at_10_std
value: -0.8852609502403819
- type: nauc_mrr_at_1_diff1
value: 32.436384851266354
- type: nauc_mrr_at_1_max
value: 12.9913980702892
- type: nauc_mrr_at_1_std
value: -3.9949543285156777
- type: nauc_mrr_at_20_diff1
value: 26.612951871381856
- type: nauc_mrr_at_20_max
value: 10.930917683032405
- type: nauc_mrr_at_20_std
value: -0.46554240191712054
- type: nauc_mrr_at_3_diff1
value: 28.55986693321283
- type: nauc_mrr_at_3_max
value: 11.798572580625544
- type: nauc_mrr_at_3_std
value: -2.1716364631291873
- type: nauc_mrr_at_5_diff1
value: 27.40320377813637
- type: nauc_mrr_at_5_max
value: 12.131216799357102
- type: nauc_mrr_at_5_std
value: -1.553808132785284
- type: nauc_ndcg_at_1000_diff1
value: 25.29494004035333
- type: nauc_ndcg_at_1000_max
value: 15.467396480816747
- type: nauc_ndcg_at_1000_std
value: 5.582839175419764
- type: nauc_ndcg_at_100_diff1
value: 25.618005514824066
- type: nauc_ndcg_at_100_max
value: 14.133983313569171
- type: nauc_ndcg_at_100_std
value: 5.178074286634601
- type: nauc_ndcg_at_10_diff1
value: 26.182869933214597
- type: nauc_ndcg_at_10_max
value: 10.826305051726441
- type: nauc_ndcg_at_10_std
value: 1.1448249930047905
- type: nauc_ndcg_at_1_diff1
value: 32.436384851266354
- type: nauc_ndcg_at_1_max
value: 12.9913980702892
- type: nauc_ndcg_at_1_std
value: -3.9949543285156777
- type: nauc_ndcg_at_20_diff1
value: 25.47014527965502
- type: nauc_ndcg_at_20_max
value: 10.494689973913854
- type: nauc_ndcg_at_20_std
value: 2.5743266762961925
- type: nauc_ndcg_at_3_diff1
value: 28.30011273776709
- type: nauc_ndcg_at_3_max
value: 12.409101049392858
- type: nauc_ndcg_at_3_std
value: -1.989338069256987
- type: nauc_ndcg_at_5_diff1
value: 26.93375179240513
- type: nauc_ndcg_at_5_max
value: 14.247006851983018
- type: nauc_ndcg_at_5_std
value: -0.08501751009489864
- type: nauc_precision_at_1000_diff1
value: 2.8681342841906576
- type: nauc_precision_at_1000_max
value: 8.341013508588487
- type: nauc_precision_at_1000_std
value: 5.822810476383136
- type: nauc_precision_at_100_diff1
value: 10.768484095563934
- type: nauc_precision_at_100_max
value: 9.704449885569526
- type: nauc_precision_at_100_std
value: 8.928506635459463
- type: nauc_precision_at_10_diff1
value: 17.05139532059708
- type: nauc_precision_at_10_max
value: 3.9583770881813787
- type: nauc_precision_at_10_std
value: 2.4925097171199555
- type: nauc_precision_at_1_diff1
value: 32.436384851266354
- type: nauc_precision_at_1_max
value: 12.9913980702892
- type: nauc_precision_at_1_std
value: -3.9949543285156777
- type: nauc_precision_at_20_diff1
value: 13.937332184712863
- type: nauc_precision_at_20_max
value: 1.8030522940312594
- type: nauc_precision_at_20_std
value: 4.717403639427268
- type: nauc_precision_at_3_diff1
value: 24.877912406786166
- type: nauc_precision_at_3_max
value: 10.485969186043016
- type: nauc_precision_at_3_std
value: -0.904450839848222
- type: nauc_precision_at_5_diff1
value: 22.445190926200702
- type: nauc_precision_at_5_max
value: 12.540817149569952
- type: nauc_precision_at_5_std
value: 1.4289427473397038
- type: nauc_recall_at_1000_diff1
value: 17.226074022952993
- type: nauc_recall_at_1000_max
value: 30.215724888141928
- type: nauc_recall_at_1000_std
value: 25.363518496790032
- type: nauc_recall_at_100_diff1
value: 19.98699952435803
- type: nauc_recall_at_100_max
value: 18.145945965591014
- type: nauc_recall_at_100_std
value: 16.845190921447113
- type: nauc_recall_at_10_diff1
value: 21.378756963830913
- type: nauc_recall_at_10_max
value: 6.684867375302075
- type: nauc_recall_at_10_std
value: 4.930618483880454
- type: nauc_recall_at_1_diff1
value: 34.280945985083164
- type: nauc_recall_at_1_max
value: 15.24775858038184
- type: nauc_recall_at_1_std
value: -3.2611316928574468
- type: nauc_recall_at_20_diff1
value: 18.380399265092144
- type: nauc_recall_at_20_max
value: 5.801348964041679
- type: nauc_recall_at_20_std
value: 8.335943218907563
- type: nauc_recall_at_3_diff1
value: 28.312640631315944
- type: nauc_recall_at_3_max
value: 12.616717752139403
- type: nauc_recall_at_3_std
value: -1.4581980410781947
- type: nauc_recall_at_5_diff1
value: 23.215808038829948
- type: nauc_recall_at_5_max
value: 14.815584298180424
- type: nauc_recall_at_5_std
value: 2.3437599877590856
- type: ndcg_at_1
value: 11.66
- type: ndcg_at_10
value: 17.971999999999998
- type: ndcg_at_100
value: 22.047
- type: ndcg_at_1000
value: 25.948
- type: ndcg_at_20
value: 19.09
- type: ndcg_at_3
value: 14.512
- type: ndcg_at_5
value: 16.062
- type: precision_at_1
value: 11.66
- type: precision_at_10
value: 3.7150000000000003
- type: precision_at_100
value: 0.808
- type: precision_at_1000
value: 0.17099999999999999
- type: precision_at_20
value: 2.3120000000000003
- type: precision_at_3
value: 7.181
- type: precision_at_5
value: 5.494000000000001
- type: recall_at_1
value: 9.227
- type: recall_at_10
value: 26.179999999999996
- type: recall_at_100
value: 45.37
- type: recall_at_1000
value: 72.20299999999999
- type: recall_at_20
value: 30.45
- type: recall_at_3
value: 15.906
- type: recall_at_5
value: 20.16
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 11.357000000000001
- type: map_at_1
value: 5.829
- type: map_at_10
value: 9.134
- type: map_at_100
value: 9.817
- type: map_at_1000
value: 9.947000000000001
- type: map_at_20
value: 9.446
- type: map_at_3
value: 7.898
- type: map_at_5
value: 8.674
- type: mrr_at_1
value: 6.284658040665435
- type: mrr_at_10
value: 10.019364492562275
- type: mrr_at_100
value: 10.722417463000754
- type: mrr_at_1000
value: 10.835465799161899
- type: mrr_at_20
value: 10.357338079063702
- type: mrr_at_3
value: 8.687615526802217
- type: mrr_at_5
value: 9.500924214417745
- type: nauc_map_at_1000_diff1
value: 22.78724774966205
- type: nauc_map_at_1000_max
value: 16.34437163744556
- type: nauc_map_at_1000_std
value: -1.4735193183859276
- type: nauc_map_at_100_diff1
value: 22.82517267745717
- type: nauc_map_at_100_max
value: 16.284531033348436
- type: nauc_map_at_100_std
value: -1.589549517811522
- type: nauc_map_at_10_diff1
value: 23.49210604391011
- type: nauc_map_at_10_max
value: 16.698351930811523
- type: nauc_map_at_10_std
value: -2.126619934067786
- type: nauc_map_at_1_diff1
value: 33.25537251862352
- type: nauc_map_at_1_max
value: 21.059212756563113
- type: nauc_map_at_1_std
value: -3.8230994890517693
- type: nauc_map_at_20_diff1
value: 23.175992838887694
- type: nauc_map_at_20_max
value: 16.456651106073693
- type: nauc_map_at_20_std
value: -2.0476493700504066
- type: nauc_map_at_3_diff1
value: 24.4113337992372
- type: nauc_map_at_3_max
value: 18.630728856868554
- type: nauc_map_at_3_std
value: -3.209291836815527
- type: nauc_map_at_5_diff1
value: 23.277532213263274
- type: nauc_map_at_5_max
value: 17.62493140717765
- type: nauc_map_at_5_std
value: -1.7098531700261095
- type: nauc_mrr_at_1000_diff1
value: 24.26971376692725
- type: nauc_mrr_at_1000_max
value: 17.440070924898812
- type: nauc_mrr_at_1000_std
value: -1.4904182677524227
- type: nauc_mrr_at_100_diff1
value: 24.28090305523701
- type: nauc_mrr_at_100_max
value: 17.38475182429859
- type: nauc_mrr_at_100_std
value: -1.5763033409306217
- type: nauc_mrr_at_10_diff1
value: 25.065955666592476
- type: nauc_mrr_at_10_max
value: 17.76938293185054
- type: nauc_mrr_at_10_std
value: -1.9095223519038518
- type: nauc_mrr_at_1_diff1
value: 35.50030652953492
- type: nauc_mrr_at_1_max
value: 22.074248230325683
- type: nauc_mrr_at_1_std
value: -2.715605927207539
- type: nauc_mrr_at_20_diff1
value: 24.628291881254953
- type: nauc_mrr_at_20_max
value: 17.486410808513845
- type: nauc_mrr_at_20_std
value: -1.9572884876186265
- type: nauc_mrr_at_3_diff1
value: 26.601750153333132
- type: nauc_mrr_at_3_max
value: 19.784337786810045
- type: nauc_mrr_at_3_std
value: -3.0884478868833742
- type: nauc_mrr_at_5_diff1
value: 25.34229521812873
- type: nauc_mrr_at_5_max
value: 18.677143772462735
- type: nauc_mrr_at_5_std
value: -1.819327747550439
- type: nauc_ndcg_at_1000_diff1
value: 17.97058129000062
- type: nauc_ndcg_at_1000_max
value: 14.443351643128269
- type: nauc_ndcg_at_1000_std
value: 3.320385091285511
- type: nauc_ndcg_at_100_diff1
value: 18.231929337260787
- type: nauc_ndcg_at_100_max
value: 13.581295908170954
- type: nauc_ndcg_at_100_std
value: 1.42405813280858
- type: nauc_ndcg_at_10_diff1
value: 20.708409240714495
- type: nauc_ndcg_at_10_max
value: 14.65955381947667
- type: nauc_ndcg_at_10_std
value: -1.6167091304922117
- type: nauc_ndcg_at_1_diff1
value: 35.50030652953492
- type: nauc_ndcg_at_1_max
value: 22.074248230325683
- type: nauc_ndcg_at_1_std
value: -2.715605927207539
- type: nauc_ndcg_at_20_diff1
value: 19.794733794450234
- type: nauc_ndcg_at_20_max
value: 13.936007085907942
- type: nauc_ndcg_at_20_std
value: -1.6063508013870402
- type: nauc_ndcg_at_3_diff1
value: 22.567689849957002
- type: nauc_ndcg_at_3_max
value: 18.56916278259968
- type: nauc_ndcg_at_3_std
value: -3.028792144928301
- type: nauc_ndcg_at_5_diff1
value: 20.601733525569706
- type: nauc_ndcg_at_5_max
value: 16.676847473988563
- type: nauc_ndcg_at_5_std
value: -1.0024946114419166
- type: nauc_precision_at_1000_diff1
value: 6.751633858887363
- type: nauc_precision_at_1000_max
value: 8.574094346486792
- type: nauc_precision_at_1000_std
value: 10.961823016288378
- type: nauc_precision_at_100_diff1
value: 9.185536248366825
- type: nauc_precision_at_100_max
value: 11.154969903889436
- type: nauc_precision_at_100_std
value: 8.849680313441572
- type: nauc_precision_at_10_diff1
value: 16.631977514574494
- type: nauc_precision_at_10_max
value: 10.891738735128701
- type: nauc_precision_at_10_std
value: -0.5881313108064528
- type: nauc_precision_at_1_diff1
value: 35.50030652953492
- type: nauc_precision_at_1_max
value: 22.074248230325683
- type: nauc_precision_at_1_std
value: -2.715605927207539
- type: nauc_precision_at_20_diff1
value: 13.755455474334418
- type: nauc_precision_at_20_max
value: 11.143176815424624
- type: nauc_precision_at_20_std
value: 0.22127860009316463
- type: nauc_precision_at_3_diff1
value: 18.850494736038712
- type: nauc_precision_at_3_max
value: 18.3734160357334
- type: nauc_precision_at_3_std
value: -3.570335275359161
- type: nauc_precision_at_5_diff1
value: 16.116395366767875
- type: nauc_precision_at_5_max
value: 15.199475728220216
- type: nauc_precision_at_5_std
value: -0.1646903087985237
- type: nauc_recall_at_1000_diff1
value: 7.064519186534486
- type: nauc_recall_at_1000_max
value: 10.537702917035265
- type: nauc_recall_at_1000_std
value: 19.24374744927976
- type: nauc_recall_at_100_diff1
value: 9.673538463478982
- type: nauc_recall_at_100_max
value: 7.750546515055119
- type: nauc_recall_at_100_std
value: 8.300080212088146
- type: nauc_recall_at_10_diff1
value: 14.59536923133317
- type: nauc_recall_at_10_max
value: 9.898224821325174
- type: nauc_recall_at_10_std
value: -0.5852780000420884
- type: nauc_recall_at_1_diff1
value: 33.25537251862352
- type: nauc_recall_at_1_max
value: 21.059212756563113
- type: nauc_recall_at_1_std
value: -3.8230994890517693
- type: nauc_recall_at_20_diff1
value: 12.823131452573252
- type: nauc_recall_at_20_max
value: 7.83963802432653
- type: nauc_recall_at_20_std
value: -1.092413321137494
- type: nauc_recall_at_3_diff1
value: 15.884549077272911
- type: nauc_recall_at_3_max
value: 16.64076323497644
- type: nauc_recall_at_3_std
value: -2.971396404621954
- type: nauc_recall_at_5_diff1
value: 13.683727065301637
- type: nauc_recall_at_5_max
value: 13.899539774976596
- type: nauc_recall_at_5_std
value: 0.9343056640766644
- type: ndcg_at_1
value: 6.285
- type: ndcg_at_10
value: 11.357000000000001
- type: ndcg_at_100
value: 15.296000000000001
- type: ndcg_at_1000
value: 18.945999999999998
- type: ndcg_at_20
value: 12.494
- type: ndcg_at_3
value: 8.852
- type: ndcg_at_5
value: 10.228
- type: precision_at_1
value: 6.285
- type: precision_at_10
value: 1.959
- type: precision_at_100
value: 0.434
- type: precision_at_1000
value: 0.08099999999999999
- type: precision_at_20
value: 1.257
- type: precision_at_3
value: 4.005
- type: precision_at_5
value: 3.105
- type: recall_at_1
value: 5.829
- type: recall_at_10
value: 17.449
- type: recall_at_100
value: 36.439
- type: recall_at_1000
value: 64.549
- type: recall_at_20
value: 21.667
- type: recall_at_3
value: 10.789
- type: recall_at_5
value: 14.116000000000001
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 8.665000000000001
- type: map_at_1
value: 3.431
- type: map_at_10
value: 5.548
- type: map_at_100
value: 6.451999999999999
- type: map_at_1000
value: 6.572
- type: map_at_20
value: 6.0
- type: map_at_3
value: 4.517
- type: map_at_5
value: 4.989
- type: mrr_at_1
value: 7.752442996742672
- type: mrr_at_10
value: 12.347164055633106
- type: mrr_at_100
value: 13.47855237102118
- type: mrr_at_1000
value: 13.549653634356204
- type: mrr_at_20
value: 12.991485758879193
- type: mrr_at_3
value: 10.542888165038002
- type: mrr_at_5
value: 11.500542888165036
- type: nauc_map_at_1000_diff1
value: 20.20268497242339
- type: nauc_map_at_1000_max
value: 24.18193699020533
- type: nauc_map_at_1000_std
value: 24.50439660861598
- type: nauc_map_at_100_diff1
value: 20.24249901794732
- type: nauc_map_at_100_max
value: 23.967201952298748
- type: nauc_map_at_100_std
value: 24.15000750583459
- type: nauc_map_at_10_diff1
value: 20.03966291824178
- type: nauc_map_at_10_max
value: 21.755785801673685
- type: nauc_map_at_10_std
value: 20.282919204579944
- type: nauc_map_at_1_diff1
value: 29.695690051340613
- type: nauc_map_at_1_max
value: 20.865617103351067
- type: nauc_map_at_1_std
value: 14.29329137354716
- type: nauc_map_at_20_diff1
value: 20.728143069074356
- type: nauc_map_at_20_max
value: 22.90305825311414
- type: nauc_map_at_20_std
value: 22.11399310632219
- type: nauc_map_at_3_diff1
value: 22.380408121971325
- type: nauc_map_at_3_max
value: 19.75817554487646
- type: nauc_map_at_3_std
value: 15.90373516686131
- type: nauc_map_at_5_diff1
value: 21.162868524231556
- type: nauc_map_at_5_max
value: 20.83194239461333
- type: nauc_map_at_5_std
value: 17.646811142371032
- type: nauc_mrr_at_1000_diff1
value: 18.72010631814857
- type: nauc_mrr_at_1000_max
value: 23.109557240302276
- type: nauc_mrr_at_1000_std
value: 24.817749690786577
- type: nauc_mrr_at_100_diff1
value: 18.72349343780436
- type: nauc_mrr_at_100_max
value: 23.114096614704422
- type: nauc_mrr_at_100_std
value: 24.797054308635044
- type: nauc_mrr_at_10_diff1
value: 18.064637218620152
- type: nauc_mrr_at_10_max
value: 22.076095274822805
- type: nauc_mrr_at_10_std
value: 23.01088518773615
- type: nauc_mrr_at_1_diff1
value: 26.01054304903776
- type: nauc_mrr_at_1_max
value: 20.13170457353963
- type: nauc_mrr_at_1_std
value: 16.267938736930734
- type: nauc_mrr_at_20_diff1
value: 18.845964611635978
- type: nauc_mrr_at_20_max
value: 22.864659670290468
- type: nauc_mrr_at_20_std
value: 24.27391107280338
- type: nauc_mrr_at_3_diff1
value: 19.460522034655536
- type: nauc_mrr_at_3_max
value: 20.850086228271273
- type: nauc_mrr_at_3_std
value: 20.09277671782743
- type: nauc_mrr_at_5_diff1
value: 18.48847312194798
- type: nauc_mrr_at_5_max
value: 21.678625281995373
- type: nauc_mrr_at_5_std
value: 21.459857528465935
- type: nauc_ndcg_at_1000_diff1
value: 17.22440190516704
- type: nauc_ndcg_at_1000_max
value: 30.81923311154538
- type: nauc_ndcg_at_1000_std
value: 39.35963524379091
- type: nauc_ndcg_at_100_diff1
value: 17.457054645637687
- type: nauc_ndcg_at_100_max
value: 28.843983901862085
- type: nauc_ndcg_at_100_std
value: 35.96968009544363
- type: nauc_ndcg_at_10_diff1
value: 17.06876854851489
- type: nauc_ndcg_at_10_max
value: 23.111301663700726
- type: nauc_ndcg_at_10_std
value: 25.079720024466596
- type: nauc_ndcg_at_1_diff1
value: 26.01054304903776
- type: nauc_ndcg_at_1_max
value: 20.13170457353963
- type: nauc_ndcg_at_1_std
value: 16.267938736930734
- type: nauc_ndcg_at_20_diff1
value: 19.159383706288963
- type: nauc_ndcg_at_20_max
value: 25.748625998594076
- type: nauc_ndcg_at_20_std
value: 29.2777966585303
- type: nauc_ndcg_at_3_diff1
value: 19.76246562466077
- type: nauc_ndcg_at_3_max
value: 21.020808382794733
- type: nauc_ndcg_at_3_std
value: 19.113271468015192
- type: nauc_ndcg_at_5_diff1
value: 18.36759011393604
- type: nauc_ndcg_at_5_max
value: 21.650284537673105
- type: nauc_ndcg_at_5_std
value: 20.85439010070303
- type: nauc_precision_at_1000_diff1
value: 7.866460573005927
- type: nauc_precision_at_1000_max
value: 36.3237806073285
- type: nauc_precision_at_1000_std
value: 53.341836980739984
- type: nauc_precision_at_100_diff1
value: 10.119925830770402
- type: nauc_precision_at_100_max
value: 34.98290066245935
- type: nauc_precision_at_100_std
value: 51.722408165202694
- type: nauc_precision_at_10_diff1
value: 10.295201659904015
- type: nauc_precision_at_10_max
value: 28.09830932510505
- type: nauc_precision_at_10_std
value: 35.82169548156545
- type: nauc_precision_at_1_diff1
value: 26.01054304903776
- type: nauc_precision_at_1_max
value: 20.13170457353963
- type: nauc_precision_at_1_std
value: 16.267938736930734
- type: nauc_precision_at_20_diff1
value: 15.485906980500427
- type: nauc_precision_at_20_max
value: 32.34263330026811
- type: nauc_precision_at_20_std
value: 42.658087739955434
- type: nauc_precision_at_3_diff1
value: 13.939250177065949
- type: nauc_precision_at_3_max
value: 21.825298086308017
- type: nauc_precision_at_3_std
value: 23.371972971620732
- type: nauc_precision_at_5_diff1
value: 11.885509516199035
- type: nauc_precision_at_5_max
value: 24.896726997531367
- type: nauc_precision_at_5_std
value: 28.093898617550252
- type: nauc_recall_at_1000_diff1
value: 11.60220525255486
- type: nauc_recall_at_1000_max
value: 33.43532086300828
- type: nauc_recall_at_1000_std
value: 51.14547402627655
- type: nauc_recall_at_100_diff1
value: 12.590256364068992
- type: nauc_recall_at_100_max
value: 30.79008080487411
- type: nauc_recall_at_100_std
value: 45.42391176816372
- type: nauc_recall_at_10_diff1
value: 13.539869516256994
- type: nauc_recall_at_10_max
value: 23.294485598950875
- type: nauc_recall_at_10_std
value: 29.061101403756684
- type: nauc_recall_at_1_diff1
value: 29.695690051340613
- type: nauc_recall_at_1_max
value: 20.865617103351067
- type: nauc_recall_at_1_std
value: 14.29329137354716
- type: nauc_recall_at_20_diff1
value: 17.845867931336173
- type: nauc_recall_at_20_max
value: 27.404059514695874
- type: nauc_recall_at_20_std
value: 35.2508074045364
- type: nauc_recall_at_3_diff1
value: 17.838823438292053
- type: nauc_recall_at_3_max
value: 19.309869178987764
- type: nauc_recall_at_3_std
value: 18.81309403950389
- type: nauc_recall_at_5_diff1
value: 15.536078861120748
- type: nauc_recall_at_5_max
value: 21.78126721208168
- type: nauc_recall_at_5_std
value: 22.671176234569295
- type: ndcg_at_1
value: 7.752000000000001
- type: ndcg_at_10
value: 8.665000000000001
- type: ndcg_at_100
value: 13.478000000000002
- type: ndcg_at_1000
value: 16.463
- type: ndcg_at_20
value: 10.357
- type: ndcg_at_3
value: 6.526
- type: ndcg_at_5
value: 7.204000000000001
- type: precision_at_1
value: 7.752000000000001
- type: precision_at_10
value: 2.932
- type: precision_at_100
value: 0.7939999999999999
- type: precision_at_1000
value: 0.134
- type: precision_at_20
value: 2.137
- type: precision_at_3
value: 4.951
- type: precision_at_5
value: 3.987
- type: recall_at_1
value: 3.431
- type: recall_at_10
value: 10.982
- type: recall_at_100
value: 28.276
- type: recall_at_1000
value: 45.938
- type: recall_at_20
value: 16.005
- type: recall_at_3
value: 5.862
- type: recall_at_5
value: 7.595000000000001
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 18.317
- type: map_at_1
value: 3.4450000000000003
- type: map_at_10
value: 7.106
- type: map_at_100
value: 9.631
- type: map_at_1000
value: 10.252
- type: map_at_20
value: 8.045
- type: map_at_3
value: 5.438
- type: map_at_5
value: 6.075
- type: mrr_at_1
value: 33.25
- type: mrr_at_10
value: 43.1984126984127
- type: mrr_at_100
value: 44.10105314669371
- type: mrr_at_1000
value: 44.14652177743905
- type: mrr_at_20
value: 43.764106802854876
- type: mrr_at_3
value: 41.16666666666667
- type: mrr_at_5
value: 42.07916666666668
- type: nauc_map_at_1000_diff1
value: 32.89274359578512
- type: nauc_map_at_1000_max
value: 26.604828696525264
- type: nauc_map_at_1000_std
value: 31.04310644401098
- type: nauc_map_at_100_diff1
value: 33.39909855555811
- type: nauc_map_at_100_max
value: 24.426258776321095
- type: nauc_map_at_100_std
value: 27.950162866259888
- type: nauc_map_at_10_diff1
value: 38.01633731897987
- type: nauc_map_at_10_max
value: 10.864204272144072
- type: nauc_map_at_10_std
value: 13.002257173637139
- type: nauc_map_at_1_diff1
value: 51.974783929669066
- type: nauc_map_at_1_max
value: 2.1087384419233546
- type: nauc_map_at_1_std
value: 3.876223529954049
- type: nauc_map_at_20_diff1
value: 36.578511302087925
- type: nauc_map_at_20_max
value: 16.12600615737132
- type: nauc_map_at_20_std
value: 19.17629858668846
- type: nauc_map_at_3_diff1
value: 42.100527162189024
- type: nauc_map_at_3_max
value: 4.583854234482867
- type: nauc_map_at_3_std
value: 4.043752599363613
- type: nauc_map_at_5_diff1
value: 41.25097930082802
- type: nauc_map_at_5_max
value: 6.748191433066141
- type: nauc_map_at_5_std
value: 6.834355643360842
- type: nauc_mrr_at_1000_diff1
value: 31.808593974374478
- type: nauc_mrr_at_1000_max
value: 38.189881128516284
- type: nauc_mrr_at_1000_std
value: 29.26318169221298
- type: nauc_mrr_at_100_diff1
value: 31.78571608370332
- type: nauc_mrr_at_100_max
value: 38.19998391171405
- type: nauc_mrr_at_100_std
value: 29.23827479906131
- type: nauc_mrr_at_10_diff1
value: 31.786867448793465
- type: nauc_mrr_at_10_max
value: 37.99600295959577
- type: nauc_mrr_at_10_std
value: 28.829996904095655
- type: nauc_mrr_at_1_diff1
value: 38.05179996742141
- type: nauc_mrr_at_1_max
value: 36.79685915741111
- type: nauc_mrr_at_1_std
value: 28.350691962727403
- type: nauc_mrr_at_20_diff1
value: 31.808590310476177
- type: nauc_mrr_at_20_max
value: 38.10937432755284
- type: nauc_mrr_at_20_std
value: 29.159630421397104
- type: nauc_mrr_at_3_diff1
value: 31.831109798177128
- type: nauc_mrr_at_3_max
value: 37.160264447610786
- type: nauc_mrr_at_3_std
value: 28.541784432773664
- type: nauc_mrr_at_5_diff1
value: 32.265744410577796
- type: nauc_mrr_at_5_max
value: 37.1185356423142
- type: nauc_mrr_at_5_std
value: 28.542067443171383
- type: nauc_ndcg_at_1000_diff1
value: 26.2354937722142
- type: nauc_ndcg_at_1000_max
value: 35.15647109201309
- type: nauc_ndcg_at_1000_std
value: 43.72983297081998
- type: nauc_ndcg_at_100_diff1
value: 27.4257708149693
- type: nauc_ndcg_at_100_max
value: 29.44362350882367
- type: nauc_ndcg_at_100_std
value: 35.47194671187406
- type: nauc_ndcg_at_10_diff1
value: 26.83748894960956
- type: nauc_ndcg_at_10_max
value: 26.324600583375148
- type: nauc_ndcg_at_10_std
value: 26.839688509046074
- type: nauc_ndcg_at_1_diff1
value: 33.91534683952059
- type: nauc_ndcg_at_1_max
value: 27.781900866901438
- type: nauc_ndcg_at_1_std
value: 20.609436435124508
- type: nauc_ndcg_at_20_diff1
value: 27.33782331818608
- type: nauc_ndcg_at_20_max
value: 25.655998678526053
- type: nauc_ndcg_at_20_std
value: 28.815358762679
- type: nauc_ndcg_at_3_diff1
value: 24.911857448124124
- type: nauc_ndcg_at_3_max
value: 28.44218389736495
- type: nauc_ndcg_at_3_std
value: 22.814032559889135
- type: nauc_ndcg_at_5_diff1
value: 26.99854276880701
- type: nauc_ndcg_at_5_max
value: 26.70673289401602
- type: nauc_ndcg_at_5_std
value: 23.875749510070484
- type: nauc_precision_at_1000_diff1
value: -4.944236798264726
- type: nauc_precision_at_1000_max
value: 40.121224630291145
- type: nauc_precision_at_1000_std
value: 41.39631390461634
- type: nauc_precision_at_100_diff1
value: 3.378479753980361
- type: nauc_precision_at_100_max
value: 48.32256441737045
- type: nauc_precision_at_100_std
value: 49.393335268436736
- type: nauc_precision_at_10_diff1
value: 11.158417038139243
- type: nauc_precision_at_10_max
value: 41.57441754310071
- type: nauc_precision_at_10_std
value: 41.773169149009064
- type: nauc_precision_at_1_diff1
value: 38.05179996742141
- type: nauc_precision_at_1_max
value: 36.79685915741111
- type: nauc_precision_at_1_std
value: 28.350691962727403
- type: nauc_precision_at_20_diff1
value: 8.363894422086595
- type: nauc_precision_at_20_max
value: 43.897592804770255
- type: nauc_precision_at_20_std
value: 45.898546020673685
- type: nauc_precision_at_3_diff1
value: 17.496170798036925
- type: nauc_precision_at_3_max
value: 35.77099809321373
- type: nauc_precision_at_3_std
value: 28.270294770404174
- type: nauc_precision_at_5_diff1
value: 17.512866815049172
- type: nauc_precision_at_5_max
value: 35.87345026620194
- type: nauc_precision_at_5_std
value: 31.14539151046845
- type: nauc_recall_at_1000_diff1
value: 12.042358990194806
- type: nauc_recall_at_1000_max
value: 27.794792931251482
- type: nauc_recall_at_1000_std
value: 48.936601177086885
- type: nauc_recall_at_100_diff1
value: 17.74014614328557
- type: nauc_recall_at_100_max
value: 23.649469832153112
- type: nauc_recall_at_100_std
value: 35.91554178778231
- type: nauc_recall_at_10_diff1
value: 24.602172763255464
- type: nauc_recall_at_10_max
value: 3.2087715731960933
- type: nauc_recall_at_10_std
value: 8.001266920970215
- type: nauc_recall_at_1_diff1
value: 51.974783929669066
- type: nauc_recall_at_1_max
value: 2.1087384419233546
- type: nauc_recall_at_1_std
value: 3.876223529954049
- type: nauc_recall_at_20_diff1
value: 23.722094513884095
- type: nauc_recall_at_20_max
value: 10.321708038535022
- type: nauc_recall_at_20_std
value: 18.772263734208646
- type: nauc_recall_at_3_diff1
value: 33.0581116651206
- type: nauc_recall_at_3_max
value: -1.4200131955084976
- type: nauc_recall_at_3_std
value: -1.0154219924636907
- type: nauc_recall_at_5_diff1
value: 31.665054222106033
- type: nauc_recall_at_5_max
value: 0.41784903940174156
- type: nauc_recall_at_5_std
value: 1.821099304694692
- type: ndcg_at_1
value: 24.5
- type: ndcg_at_10
value: 18.317
- type: ndcg_at_100
value: 20.737
- type: ndcg_at_1000
value: 26.124000000000002
- type: ndcg_at_20
value: 17.91
- type: ndcg_at_3
value: 21.468999999999998
- type: ndcg_at_5
value: 19.557
- type: precision_at_1
value: 33.25
- type: precision_at_10
value: 15.925
- type: precision_at_100
value: 5.015
- type: precision_at_1000
value: 1.009
- type: precision_at_20
value: 12.063
- type: precision_at_3
value: 25.833000000000002
- type: precision_at_5
value: 20.7
- type: recall_at_1
value: 3.4450000000000003
- type: recall_at_10
value: 10.914
- type: recall_at_100
value: 25.511
- type: recall_at_1000
value: 44.506
- type: recall_at_20
value: 14.252999999999998
- type: recall_at_3
value: 6.6530000000000005
- type: recall_at_5
value: 7.93
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 42.035
- type: f1
value: 37.86640884786291
- type: f1_weighted
value: 44.414257303205105
- type: main_score
value: 42.035
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 18.761
- type: map_at_1
value: 10.476
- type: map_at_10
value: 15.404000000000002
- type: map_at_100
value: 16.253999999999998
- type: map_at_1000
value: 16.331
- type: map_at_20
value: 15.853
- type: map_at_3
value: 13.575000000000001
- type: map_at_5
value: 14.521
- type: mrr_at_1
value: 11.086108610861087
- type: mrr_at_10
value: 16.355343867720112
- type: mrr_at_100
value: 17.231932946772645
- type: mrr_at_1000
value: 17.306050360630675
- type: mrr_at_20
value: 16.824638510255593
- type: mrr_at_3
value: 14.421442144214469
- type: mrr_at_5
value: 15.419791979198013
- type: nauc_map_at_1000_diff1
value: 21.483384414650857
- type: nauc_map_at_1000_max
value: 14.658845058298656
- type: nauc_map_at_1000_std
value: 1.4230966250967994
- type: nauc_map_at_100_diff1
value: 21.478059331590387
- type: nauc_map_at_100_max
value: 14.631728769027703
- type: nauc_map_at_100_std
value: 1.3881789289506472
- type: nauc_map_at_10_diff1
value: 21.720905300450458
- type: nauc_map_at_10_max
value: 14.076908554314246
- type: nauc_map_at_10_std
value: 0.5551386401263194
- type: nauc_map_at_1_diff1
value: 27.661685422401224
- type: nauc_map_at_1_max
value: 11.99044345858924
- type: nauc_map_at_1_std
value: -3.3979769351402322
- type: nauc_map_at_20_diff1
value: 21.59196261739584
- type: nauc_map_at_20_max
value: 14.385540847050335
- type: nauc_map_at_20_std
value: 0.9895830524590538
- type: nauc_map_at_3_diff1
value: 23.20704312937525
- type: nauc_map_at_3_max
value: 12.810161113474871
- type: nauc_map_at_3_std
value: -1.411771996719974
- type: nauc_map_at_5_diff1
value: 22.356183179583493
- type: nauc_map_at_5_max
value: 13.36852816007986
- type: nauc_map_at_5_std
value: -0.48512124846138643
- type: nauc_mrr_at_1000_diff1
value: 21.435605535073744
- type: nauc_mrr_at_1000_max
value: 15.102897427738405
- type: nauc_mrr_at_1000_std
value: 1.8946939279941968
- type: nauc_mrr_at_100_diff1
value: 21.421114034979606
- type: nauc_mrr_at_100_max
value: 15.083160957472696
- type: nauc_mrr_at_100_std
value: 1.8744293097807236
- type: nauc_mrr_at_10_diff1
value: 21.649184972259103
- type: nauc_mrr_at_10_max
value: 14.533371443998226
- type: nauc_mrr_at_10_std
value: 1.1004240892945276
- type: nauc_mrr_at_1_diff1
value: 27.75425157234291
- type: nauc_mrr_at_1_max
value: 12.264180225035945
- type: nauc_mrr_at_1_std
value: -2.9856311667661473
- type: nauc_mrr_at_20_diff1
value: 21.50477816444254
- type: nauc_mrr_at_20_max
value: 14.839198606656051
- type: nauc_mrr_at_20_std
value: 1.504911445582658
- type: nauc_mrr_at_3_diff1
value: 23.118987947282125
- type: nauc_mrr_at_3_max
value: 13.268686916605809
- type: nauc_mrr_at_3_std
value: -0.8973701423333541
- type: nauc_mrr_at_5_diff1
value: 22.31906380361573
- type: nauc_mrr_at_5_max
value: 13.879335206291863
- type: nauc_mrr_at_5_std
value: 0.0743953082913858
- type: nauc_ndcg_at_1000_diff1
value: 18.130594943202155
- type: nauc_ndcg_at_1000_max
value: 18.618199152782932
- type: nauc_ndcg_at_1000_std
value: 7.73800191626906
- type: nauc_ndcg_at_100_diff1
value: 18.112919952254646
- type: nauc_ndcg_at_100_max
value: 18.025448330998607
- type: nauc_ndcg_at_100_std
value: 6.91218512382701
- type: nauc_ndcg_at_10_diff1
value: 19.25411748879802
- type: nauc_ndcg_at_10_max
value: 15.50666163176253
- type: nauc_ndcg_at_10_std
value: 3.1415591079404876
- type: nauc_ndcg_at_1_diff1
value: 27.75425157234291
- type: nauc_ndcg_at_1_max
value: 12.264180225035945
- type: nauc_ndcg_at_1_std
value: -2.9856311667661473
- type: nauc_ndcg_at_20_diff1
value: 18.851607836867498
- type: nauc_ndcg_at_20_max
value: 16.48340412282649
- type: nauc_ndcg_at_20_std
value: 4.4126572393461165
- type: nauc_ndcg_at_3_diff1
value: 21.91877312160879
- type: nauc_ndcg_at_3_max
value: 13.094685444889004
- type: nauc_ndcg_at_3_std
value: -0.6318460963618564
- type: nauc_ndcg_at_5_diff1
value: 20.572894306217556
- type: nauc_ndcg_at_5_max
value: 14.021287944779818
- type: nauc_ndcg_at_5_std
value: 0.883274716789248
- type: nauc_precision_at_1000_diff1
value: 4.720401672882462
- type: nauc_precision_at_1000_max
value: 32.576463495142036
- type: nauc_precision_at_1000_std
value: 31.992921949716685
- type: nauc_precision_at_100_diff1
value: 8.668918137307568
- type: nauc_precision_at_100_max
value: 28.43637657585084
- type: nauc_precision_at_100_std
value: 24.081259792345715
- type: nauc_precision_at_10_diff1
value: 13.4834870121441
- type: nauc_precision_at_10_max
value: 19.174654923689058
- type: nauc_precision_at_10_std
value: 9.740431350499781
- type: nauc_precision_at_1_diff1
value: 27.75425157234291
- type: nauc_precision_at_1_max
value: 12.264180225035945
- type: nauc_precision_at_1_std
value: -2.9856311667661473
- type: nauc_precision_at_20_diff1
value: 12.350150417728162
- type: nauc_precision_at_20_max
value: 22.212511486344233
- type: nauc_precision_at_20_std
value: 13.526492272122145
- type: nauc_precision_at_3_diff1
value: 18.64161060878928
- type: nauc_precision_at_3_max
value: 13.97868776386616
- type: nauc_precision_at_3_std
value: 1.5199256063275335
- type: nauc_precision_at_5_diff1
value: 16.302163063725423
- type: nauc_precision_at_5_max
value: 15.854519904730397
- type: nauc_precision_at_5_std
value: 4.58110916862716
- type: nauc_recall_at_1000_diff1
value: 6.38722839005945
- type: nauc_recall_at_1000_max
value: 31.894646548853515
- type: nauc_recall_at_1000_std
value: 30.783921718347955
- type: nauc_recall_at_100_diff1
value: 9.226926697109567
- type: nauc_recall_at_100_max
value: 26.16213840995931
- type: nauc_recall_at_100_std
value: 21.293733397810367
- type: nauc_recall_at_10_diff1
value: 13.76020081492309
- type: nauc_recall_at_10_max
value: 18.19732247560085
- type: nauc_recall_at_10_std
value: 8.53316271133414
- type: nauc_recall_at_1_diff1
value: 27.661685422401224
- type: nauc_recall_at_1_max
value: 11.99044345858924
- type: nauc_recall_at_1_std
value: -3.3979769351402322
- type: nauc_recall_at_20_diff1
value: 12.650003144424666
- type: nauc_recall_at_20_max
value: 20.557776180489952
- type: nauc_recall_at_20_std
value: 11.639706607747087
- type: nauc_recall_at_3_diff1
value: 18.999448979579647
- type: nauc_recall_at_3_max
value: 13.339340670906067
- type: nauc_recall_at_3_std
value: 0.7757658802091059
- type: nauc_recall_at_5_diff1
value: 16.30330865863684
- type: nauc_recall_at_5_max
value: 14.848069915205242
- type: nauc_recall_at_5_std
value: 3.5287752456847232
- type: ndcg_at_1
value: 11.086
- type: ndcg_at_10
value: 18.761
- type: ndcg_at_100
value: 23.362
- type: ndcg_at_1000
value: 25.651000000000003
- type: ndcg_at_20
value: 20.406
- type: ndcg_at_3
value: 14.865
- type: ndcg_at_5
value: 16.594
- type: precision_at_1
value: 11.086
- type: precision_at_10
value: 3.072
- type: precision_at_100
value: 0.553
- type: precision_at_1000
value: 0.076
- type: precision_at_20
value: 1.891
- type: precision_at_3
value: 6.331
- type: precision_at_5
value: 4.707
- type: recall_at_1
value: 10.476
- type: recall_at_10
value: 28.544999999999998
- type: recall_at_100
value: 50.602999999999994
- type: recall_at_1000
value: 68.609
- type: recall_at_20
value: 34.919
- type: recall_at_3
value: 17.79
- type: recall_at_5
value: 21.956
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 10.219000000000001
- type: map_at_1
value: 4.202
- type: map_at_10
value: 7.047000000000001
- type: map_at_100
value: 7.879
- type: map_at_1000
value: 8.062999999999999
- type: map_at_20
value: 7.393
- type: map_at_3
value: 5.8229999999999995
- type: map_at_5
value: 6.398
- type: mrr_at_1
value: 8.641975308641975
- type: mrr_at_10
value: 12.682184499314136
- type: mrr_at_100
value: 13.641850480305543
- type: mrr_at_1000
value: 13.764256983049062
- type: mrr_at_20
value: 13.167533189337608
- type: mrr_at_3
value: 10.956790123456795
- type: mrr_at_5
value: 11.697530864197537
- type: nauc_map_at_1000_diff1
value: 14.386120645400236
- type: nauc_map_at_1000_max
value: 7.810435452171063
- type: nauc_map_at_1000_std
value: 6.279009499496127
- type: nauc_map_at_100_diff1
value: 14.394099339804242
- type: nauc_map_at_100_max
value: 7.5482313825844365
- type: nauc_map_at_100_std
value: 6.073231086542136
- type: nauc_map_at_10_diff1
value: 15.019233622476264
- type: nauc_map_at_10_max
value: 6.89561121695038
- type: nauc_map_at_10_std
value: 4.69688965053592
- type: nauc_map_at_1_diff1
value: 15.673097607542335
- type: nauc_map_at_1_max
value: 7.8728446291021905
- type: nauc_map_at_1_std
value: 6.4648760315306255
- type: nauc_map_at_20_diff1
value: 14.300009454569937
- type: nauc_map_at_20_max
value: 7.249872455283453
- type: nauc_map_at_20_std
value: 5.268402065325031
- type: nauc_map_at_3_diff1
value: 15.80071370296546
- type: nauc_map_at_3_max
value: 6.339581216563252
- type: nauc_map_at_3_std
value: 4.61618681520698
- type: nauc_map_at_5_diff1
value: 14.770168963543034
- type: nauc_map_at_5_max
value: 5.82190695283646
- type: nauc_map_at_5_std
value: 4.041144061189678
- type: nauc_mrr_at_1000_diff1
value: 13.947508055836414
- type: nauc_mrr_at_1000_max
value: 8.016461541914124
- type: nauc_mrr_at_1000_std
value: 2.3739399442305404
- type: nauc_mrr_at_100_diff1
value: 13.916158963907396
- type: nauc_mrr_at_100_max
value: 7.954544708752525
- type: nauc_mrr_at_100_std
value: 2.3407189360908487
- type: nauc_mrr_at_10_diff1
value: 14.169248704433596
- type: nauc_mrr_at_10_max
value: 7.250162018740328
- type: nauc_mrr_at_10_std
value: 1.8219524654513586
- type: nauc_mrr_at_1_diff1
value: 14.956230962502085
- type: nauc_mrr_at_1_max
value: 8.73931836103222
- type: nauc_mrr_at_1_std
value: 2.64832616615408
- type: nauc_mrr_at_20_diff1
value: 14.024588680674979
- type: nauc_mrr_at_20_max
value: 7.920759304685261
- type: nauc_mrr_at_20_std
value: 2.060286657771815
- type: nauc_mrr_at_3_diff1
value: 15.015616913010701
- type: nauc_mrr_at_3_max
value: 6.312297156230054
- type: nauc_mrr_at_3_std
value: 2.696675323128789
- type: nauc_mrr_at_5_diff1
value: 14.0352810633434
- type: nauc_mrr_at_5_max
value: 7.2737096971574156
- type: nauc_mrr_at_5_std
value: 1.9681344739855215
- type: nauc_ndcg_at_1000_diff1
value: 12.794321125652422
- type: nauc_ndcg_at_1000_max
value: 13.35215380526579
- type: nauc_ndcg_at_1000_std
value: 11.213644620947537
- type: nauc_ndcg_at_100_diff1
value: 13.02582260228888
- type: nauc_ndcg_at_100_max
value: 9.545082480237982
- type: nauc_ndcg_at_100_std
value: 8.533517097634686
- type: nauc_ndcg_at_10_diff1
value: 14.529247699477052
- type: nauc_ndcg_at_10_max
value: 7.485652713814595
- type: nauc_ndcg_at_10_std
value: 3.75099655360646
- type: nauc_ndcg_at_1_diff1
value: 14.956230962502085
- type: nauc_ndcg_at_1_max
value: 8.73931836103222
- type: nauc_ndcg_at_1_std
value: 2.64832616615408
- type: nauc_ndcg_at_20_diff1
value: 13.005656656807135
- type: nauc_ndcg_at_20_max
value: 8.412698057403183
- type: nauc_ndcg_at_20_std
value: 4.9112354043743
- type: nauc_ndcg_at_3_diff1
value: 14.363695670994714
- type: nauc_ndcg_at_3_max
value: 6.793799720301805
- type: nauc_ndcg_at_3_std
value: 3.568348121928968
- type: nauc_ndcg_at_5_diff1
value: 13.518402147118861
- type: nauc_ndcg_at_5_max
value: 6.463128522589964
- type: nauc_ndcg_at_5_std
value: 2.6290251894206036
- type: nauc_precision_at_1000_diff1
value: -0.14859656704447735
- type: nauc_precision_at_1000_max
value: 22.305443744434182
- type: nauc_precision_at_1000_std
value: 8.879840465533688
- type: nauc_precision_at_100_diff1
value: 6.760575881719946
- type: nauc_precision_at_100_max
value: 15.29737164075807
- type: nauc_precision_at_100_std
value: 11.230012315493347
- type: nauc_precision_at_10_diff1
value: 11.759182955072145
- type: nauc_precision_at_10_max
value: 8.660562486174117
- type: nauc_precision_at_10_std
value: 3.3549292515779094
- type: nauc_precision_at_1_diff1
value: 14.956230962502085
- type: nauc_precision_at_1_max
value: 8.73931836103222
- type: nauc_precision_at_1_std
value: 2.64832616615408
- type: nauc_precision_at_20_diff1
value: 7.401208860694865
- type: nauc_precision_at_20_max
value: 12.51957393165894
- type: nauc_precision_at_20_std
value: 3.7015352831870416
- type: nauc_precision_at_3_diff1
value: 14.491922438510684
- type: nauc_precision_at_3_max
value: 7.32351776738068
- type: nauc_precision_at_3_std
value: 1.9199578473009384
- type: nauc_precision_at_5_diff1
value: 12.119924723755787
- type: nauc_precision_at_5_max
value: 8.55933421537529
- type: nauc_precision_at_5_std
value: 0.9457844262487164
- type: nauc_recall_at_1000_diff1
value: 8.83089587152667
- type: nauc_recall_at_1000_max
value: 20.396552995861764
- type: nauc_recall_at_1000_std
value: 26.716191067517524
- type: nauc_recall_at_100_diff1
value: 9.43183012992213
- type: nauc_recall_at_100_max
value: 9.501501571448282
- type: nauc_recall_at_100_std
value: 14.285058832848089
- type: nauc_recall_at_10_diff1
value: 13.839808835810432
- type: nauc_recall_at_10_max
value: 7.933505226644632
- type: nauc_recall_at_10_std
value: 3.1966135029140164
- type: nauc_recall_at_1_diff1
value: 15.673097607542335
- type: nauc_recall_at_1_max
value: 7.8728446291021905
- type: nauc_recall_at_1_std
value: 6.4648760315306255
- type: nauc_recall_at_20_diff1
value: 10.437563158014042
- type: nauc_recall_at_20_max
value: 8.311799162247189
- type: nauc_recall_at_20_std
value: 5.85366764191572
- type: nauc_recall_at_3_diff1
value: 14.407773253315103
- type: nauc_recall_at_3_max
value: 4.396111262809052
- type: nauc_recall_at_3_std
value: 3.8372791660540058
- type: nauc_recall_at_5_diff1
value: 11.54279108068964
- type: nauc_recall_at_5_max
value: 4.945221910869192
- type: nauc_recall_at_5_std
value: 1.7566860385328107
- type: ndcg_at_1
value: 8.642
- type: ndcg_at_10
value: 10.219000000000001
- type: ndcg_at_100
value: 14.838000000000001
- type: ndcg_at_1000
value: 19.335
- type: ndcg_at_20
value: 11.495
- type: ndcg_at_3
value: 8.021
- type: ndcg_at_5
value: 8.663
- type: precision_at_1
value: 8.642
- type: precision_at_10
value: 3.086
- type: precision_at_100
value: 0.747
- type: precision_at_1000
value: 0.152
- type: precision_at_20
value: 2.022
- type: precision_at_3
value: 5.453
- type: precision_at_5
value: 4.198
- type: recall_at_1
value: 4.202
- type: recall_at_10
value: 14.086000000000002
- type: recall_at_100
value: 32.757999999999996
- type: recall_at_1000
value: 60.649
- type: recall_at_20
value: 18.129
- type: recall_at_3
value: 7.8549999999999995
- type: recall_at_5
value: 9.861
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 21.614
- type: map_at_1
value: 11.789
- type: map_at_10
value: 16.298000000000002
- type: map_at_100
value: 16.965
- type: map_at_1000
value: 17.052
- type: map_at_20
value: 16.669
- type: map_at_3
value: 14.963000000000001
- type: map_at_5
value: 15.709000000000001
- type: mrr_at_1
value: 23.578663065496286
- type: mrr_at_10
value: 29.639073770403908
- type: mrr_at_100
value: 30.359813527624098
- type: mrr_at_1000
value: 30.427786306549432
- type: mrr_at_20
value: 30.057356684477064
- type: mrr_at_3
value: 27.91357191087095
- type: mrr_at_5
value: 28.895340985820354
- type: nauc_map_at_1000_diff1
value: 44.917394348472826
- type: nauc_map_at_1000_max
value: 31.80330450852885
- type: nauc_map_at_1000_std
value: 14.578989457609914
- type: nauc_map_at_100_diff1
value: 44.946269171547904
- type: nauc_map_at_100_max
value: 31.75547980049172
- type: nauc_map_at_100_std
value: 14.497740666511097
- type: nauc_map_at_10_diff1
value: 45.63183405960151
- type: nauc_map_at_10_max
value: 31.57684331750769
- type: nauc_map_at_10_std
value: 13.720611937996688
- type: nauc_map_at_1_diff1
value: 54.88588090350412
- type: nauc_map_at_1_max
value: 32.01539186380243
- type: nauc_map_at_1_std
value: 9.711864312852528
- type: nauc_map_at_20_diff1
value: 45.183673410307875
- type: nauc_map_at_20_max
value: 31.675889031272824
- type: nauc_map_at_20_std
value: 14.117826246559353
- type: nauc_map_at_3_diff1
value: 47.52208598209566
- type: nauc_map_at_3_max
value: 31.86158421243083
- type: nauc_map_at_3_std
value: 12.381248746187193
- type: nauc_map_at_5_diff1
value: 46.442184401322145
- type: nauc_map_at_5_max
value: 31.63017703410021
- type: nauc_map_at_5_std
value: 13.132735114121214
- type: nauc_mrr_at_1000_diff1
value: 47.54619690126628
- type: nauc_mrr_at_1000_max
value: 30.657047435440386
- type: nauc_mrr_at_1000_std
value: 12.157743555031063
- type: nauc_mrr_at_100_diff1
value: 47.53279072131234
- type: nauc_mrr_at_100_max
value: 30.644795488492903
- type: nauc_mrr_at_100_std
value: 12.148316668565558
- type: nauc_mrr_at_10_diff1
value: 47.80371467312708
- type: nauc_mrr_at_10_max
value: 30.63631672644867
- type: nauc_mrr_at_10_std
value: 11.850411637055567
- type: nauc_mrr_at_1_diff1
value: 54.88588090350412
- type: nauc_mrr_at_1_max
value: 32.01539186380243
- type: nauc_mrr_at_1_std
value: 9.711864312852528
- type: nauc_mrr_at_20_diff1
value: 47.59914593566423
- type: nauc_mrr_at_20_max
value: 30.64820791166759
- type: nauc_mrr_at_20_std
value: 12.025245568167318
- type: nauc_mrr_at_3_diff1
value: 49.07945193378141
- type: nauc_mrr_at_3_max
value: 31.101665157446384
- type: nauc_mrr_at_3_std
value: 11.261770295831171
- type: nauc_mrr_at_5_diff1
value: 48.31599574171794
- type: nauc_mrr_at_5_max
value: 30.758029728579356
- type: nauc_mrr_at_5_std
value: 11.57586015346866
- type: nauc_ndcg_at_1000_diff1
value: 40.59730013454305
- type: nauc_ndcg_at_1000_max
value: 31.858727171630406
- type: nauc_ndcg_at_1000_std
value: 18.38911731839912
- type: nauc_ndcg_at_100_diff1
value: 41.05727875473311
- type: nauc_ndcg_at_100_max
value: 31.200209607115507
- type: nauc_ndcg_at_100_std
value: 17.143920588351886
- type: nauc_ndcg_at_10_diff1
value: 43.438534881275444
- type: nauc_ndcg_at_10_max
value: 30.737946990772997
- type: nauc_ndcg_at_10_std
value: 14.449960369509911
- type: nauc_ndcg_at_1_diff1
value: 54.88588090350412
- type: nauc_ndcg_at_1_max
value: 32.01539186380243
- type: nauc_ndcg_at_1_std
value: 9.711864312852528
- type: nauc_ndcg_at_20_diff1
value: 42.25718271284509
- type: nauc_ndcg_at_20_max
value: 30.897435243868905
- type: nauc_ndcg_at_20_std
value: 15.412549120054193
- type: nauc_ndcg_at_3_diff1
value: 46.53638838597477
- type: nauc_ndcg_at_3_max
value: 31.390495377790177
- type: nauc_ndcg_at_3_std
value: 12.468335527090519
- type: nauc_ndcg_at_5_diff1
value: 44.92693354952539
- type: nauc_ndcg_at_5_max
value: 30.887428625960915
- type: nauc_ndcg_at_5_std
value: 13.403669618286864
- type: nauc_precision_at_1000_diff1
value: 14.046084009393786
- type: nauc_precision_at_1000_max
value: 26.025160058476338
- type: nauc_precision_at_1000_std
value: 29.157031067483256
- type: nauc_precision_at_100_diff1
value: 21.990659256216876
- type: nauc_precision_at_100_max
value: 26.93221065873268
- type: nauc_precision_at_100_std
value: 25.151535987506747
- type: nauc_precision_at_10_diff1
value: 33.711273609447844
- type: nauc_precision_at_10_max
value: 28.4857023531615
- type: nauc_precision_at_10_std
value: 17.99141308322003
- type: nauc_precision_at_1_diff1
value: 54.88588090350412
- type: nauc_precision_at_1_max
value: 32.01539186380243
- type: nauc_precision_at_1_std
value: 9.711864312852528
- type: nauc_precision_at_20_diff1
value: 29.06191496521685
- type: nauc_precision_at_20_max
value: 27.913633624163765
- type: nauc_precision_at_20_std
value: 20.103925765892363
- type: nauc_precision_at_3_diff1
value: 41.89101661752835
- type: nauc_precision_at_3_max
value: 30.936389232946116
- type: nauc_precision_at_3_std
value: 13.983206968178264
- type: nauc_precision_at_5_diff1
value: 38.15960353436429
- type: nauc_precision_at_5_max
value: 29.48701633210831
- type: nauc_precision_at_5_std
value: 15.725313714018691
- type: nauc_recall_at_1000_diff1
value: 14.046084009393903
- type: nauc_recall_at_1000_max
value: 26.02516005847642
- type: nauc_recall_at_1000_std
value: 29.157031067483334
- type: nauc_recall_at_100_diff1
value: 21.990659256216883
- type: nauc_recall_at_100_max
value: 26.932210658732647
- type: nauc_recall_at_100_std
value: 25.15153598750676
- type: nauc_recall_at_10_diff1
value: 33.71127360944788
- type: nauc_recall_at_10_max
value: 28.485702353161496
- type: nauc_recall_at_10_std
value: 17.991413083220063
- type: nauc_recall_at_1_diff1
value: 54.88588090350412
- type: nauc_recall_at_1_max
value: 32.01539186380243
- type: nauc_recall_at_1_std
value: 9.711864312852528
- type: nauc_recall_at_20_diff1
value: 29.061914965216857
- type: nauc_recall_at_20_max
value: 27.913633624163786
- type: nauc_recall_at_20_std
value: 20.103925765892363
- type: nauc_recall_at_3_diff1
value: 41.89101661752835
- type: nauc_recall_at_3_max
value: 30.936389232946127
- type: nauc_recall_at_3_std
value: 13.983206968178255
- type: nauc_recall_at_5_diff1
value: 38.15960353436428
- type: nauc_recall_at_5_max
value: 29.487016332108308
- type: nauc_recall_at_5_std
value: 15.72531371401871
- type: ndcg_at_1
value: 23.579
- type: ndcg_at_10
value: 21.614
- type: ndcg_at_100
value: 25.008000000000003
- type: ndcg_at_1000
value: 27.394000000000002
- type: ndcg_at_20
value: 22.909
- type: ndcg_at_3
value: 18.806
- type: ndcg_at_5
value: 20.180999999999997
- type: precision_at_1
value: 23.579
- type: precision_at_10
value: 4.8469999999999995
- type: precision_at_100
value: 0.757
- type: precision_at_1000
value: 0.108
- type: precision_at_20
value: 2.841
- type: precision_at_3
value: 11.915000000000001
- type: precision_at_5
value: 8.243
- type: recall_at_1
value: 11.789
- type: recall_at_10
value: 24.234
- type: recall_at_100
value: 37.833
- type: recall_at_1000
value: 53.869
- type: recall_at_20
value: 28.406
- type: recall_at_3
value: 17.873
- type: recall_at_5
value: 20.608
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 70.35639999999998
- type: ap
value: 64.70837553635555
- type: ap_weighted
value: 64.70837553635555
- type: f1
value: 70.18257490051944
- type: f1_weighted
value: 70.18257490051944
- type: main_score
value: 70.35639999999998
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 29.474
- type: map_at_1
value: 0.844
- type: map_at_10
value: 5.276
- type: map_at_100
value: 12.017999999999999
- type: map_at_1000
value: 15.082
- type: map_at_20
value: 7.545
- type: map_at_3
value: 2.102
- type: map_at_5
value: 3.3000000000000003
- type: mrr_at_1
value: 44.18604651162791
- type: mrr_at_10
value: 54.360465116279066
- type: mrr_at_100
value: 54.99847310312427
- type: mrr_at_1000
value: 55.02059372381039
- type: mrr_at_20
value: 54.799741602067186
- type: mrr_at_3
value: 50.775193798449614
- type: mrr_at_5
value: 53.68217054263565
- type: nauc_map_at_1000_diff1
value: -2.021143214503584
- type: nauc_map_at_1000_max
value: 52.31379907413224
- type: nauc_map_at_1000_std
value: 49.2308667371812
- type: nauc_map_at_100_diff1
value: -3.8937842066417074
- type: nauc_map_at_100_max
value: 42.865843640140625
- type: nauc_map_at_100_std
value: 37.95585233504797
- type: nauc_map_at_10_diff1
value: 1.606824138727677
- type: nauc_map_at_10_max
value: 23.890927075059928
- type: nauc_map_at_10_std
value: 16.257680972641474
- type: nauc_map_at_1_diff1
value: 22.570349150082496
- type: nauc_map_at_1_max
value: 19.238395165822904
- type: nauc_map_at_1_std
value: 17.550539838923076
- type: nauc_map_at_20_diff1
value: -4.951486071114569
- type: nauc_map_at_20_max
value: 27.583006880684685
- type: nauc_map_at_20_std
value: 20.615620122179987
- type: nauc_map_at_3_diff1
value: 14.786952703553915
- type: nauc_map_at_3_max
value: 20.55790784157572
- type: nauc_map_at_3_std
value: 19.79232931312015
- type: nauc_map_at_5_diff1
value: 12.076877755500902
- type: nauc_map_at_5_max
value: 24.663714787605002
- type: nauc_map_at_5_std
value: 20.483862838332758
- type: nauc_mrr_at_1000_diff1
value: -2.0990215138353774
- type: nauc_mrr_at_1000_max
value: 63.648044801780216
- type: nauc_mrr_at_1000_std
value: 52.77427870744277
- type: nauc_mrr_at_100_diff1
value: -2.168718494363165
- type: nauc_mrr_at_100_max
value: 63.67099864984754
- type: nauc_mrr_at_100_std
value: 52.80928825893113
- type: nauc_mrr_at_10_diff1
value: -1.792364177532816
- type: nauc_mrr_at_10_max
value: 64.24673279475928
- type: nauc_mrr_at_10_std
value: 53.00600172156902
- type: nauc_mrr_at_1_diff1
value: -3.3449341568902606
- type: nauc_mrr_at_1_max
value: 53.62962555265127
- type: nauc_mrr_at_1_std
value: 41.51614972127939
- type: nauc_mrr_at_20_diff1
value: -2.15540611512638
- type: nauc_mrr_at_20_max
value: 63.819872925158805
- type: nauc_mrr_at_20_std
value: 52.7961849237132
- type: nauc_mrr_at_3_diff1
value: -0.43541432598439994
- type: nauc_mrr_at_3_max
value: 59.7829402577313
- type: nauc_mrr_at_3_std
value: 50.90856959435809
- type: nauc_mrr_at_5_diff1
value: -2.3053362706782323
- type: nauc_mrr_at_5_max
value: 64.96293039839213
- type: nauc_mrr_at_5_std
value: 54.140790167234734
- type: nauc_ndcg_at_1000_diff1
value: 4.829519342110107
- type: nauc_ndcg_at_1000_max
value: 61.07451345243899
- type: nauc_ndcg_at_1000_std
value: 57.92106611562103
- type: nauc_ndcg_at_100_diff1
value: 2.04263990794124
- type: nauc_ndcg_at_100_max
value: 55.358917987828036
- type: nauc_ndcg_at_100_std
value: 49.87187447439087
- type: nauc_ndcg_at_10_diff1
value: -3.004323448668936
- type: nauc_ndcg_at_10_max
value: 52.83608965686278
- type: nauc_ndcg_at_10_std
value: 41.53186594077247
- type: nauc_ndcg_at_1_diff1
value: 8.54881714077641
- type: nauc_ndcg_at_1_max
value: 49.57842930523978
- type: nauc_ndcg_at_1_std
value: 36.75885193295566
- type: nauc_ndcg_at_20_diff1
value: -5.839572654994822
- type: nauc_ndcg_at_20_max
value: 55.613971289427624
- type: nauc_ndcg_at_20_std
value: 44.3490091376206
- type: nauc_ndcg_at_3_diff1
value: 0.9619430931504145
- type: nauc_ndcg_at_3_max
value: 47.53601312984855
- type: nauc_ndcg_at_3_std
value: 40.4176409277924
- type: nauc_ndcg_at_5_diff1
value: 2.4738911967465573
- type: nauc_ndcg_at_5_max
value: 54.82024302253763
- type: nauc_ndcg_at_5_std
value: 45.60241734712396
- type: nauc_precision_at_1000_diff1
value: 0.3013953483568884
- type: nauc_precision_at_1000_max
value: 57.70808930624168
- type: nauc_precision_at_1000_std
value: 58.201127413689
- type: nauc_precision_at_100_diff1
value: -2.741499937534905
- type: nauc_precision_at_100_max
value: 63.181504513834575
- type: nauc_precision_at_100_std
value: 61.10964102659246
- type: nauc_precision_at_10_diff1
value: -7.539781228254228
- type: nauc_precision_at_10_max
value: 55.52784878560168
- type: nauc_precision_at_10_std
value: 44.104151562310946
- type: nauc_precision_at_1_diff1
value: -3.3449341568902606
- type: nauc_precision_at_1_max
value: 53.62962555265127
- type: nauc_precision_at_1_std
value: 41.51614972127939
- type: nauc_precision_at_20_diff1
value: -9.570969327978647
- type: nauc_precision_at_20_max
value: 57.27619865280717
- type: nauc_precision_at_20_std
value: 47.014271773458766
- type: nauc_precision_at_3_diff1
value: -8.650135123593332
- type: nauc_precision_at_3_max
value: 52.75623365854728
- type: nauc_precision_at_3_std
value: 45.17073452831896
- type: nauc_precision_at_5_diff1
value: -5.93704448023575
- type: nauc_precision_at_5_max
value: 59.65088855595867
- type: nauc_precision_at_5_std
value: 49.423110379770065
- type: nauc_recall_at_1000_diff1
value: 9.797434639403033
- type: nauc_recall_at_1000_max
value: 56.59565673453876
- type: nauc_recall_at_1000_std
value: 55.7036657099338
- type: nauc_recall_at_100_diff1
value: 3.5802050256517317
- type: nauc_recall_at_100_max
value: 44.92647077291689
- type: nauc_recall_at_100_std
value: 40.98080812630615
- type: nauc_recall_at_10_diff1
value: 3.3855332934188818
- type: nauc_recall_at_10_max
value: 24.87343302186072
- type: nauc_recall_at_10_std
value: 15.077881728039621
- type: nauc_recall_at_1_diff1
value: 22.570349150082496
- type: nauc_recall_at_1_max
value: 19.238395165822904
- type: nauc_recall_at_1_std
value: 17.550539838923076
- type: nauc_recall_at_20_diff1
value: -2.129517961134834
- type: nauc_recall_at_20_max
value: 29.231226886425212
- type: nauc_recall_at_20_std
value: 21.112189894866912
- type: nauc_recall_at_3_diff1
value: 11.57541674939924
- type: nauc_recall_at_3_max
value: 19.503507707855817
- type: nauc_recall_at_3_std
value: 19.46878131021193
- type: nauc_recall_at_5_diff1
value: 11.802964146201003
- type: nauc_recall_at_5_max
value: 25.973454165368093
- type: nauc_recall_at_5_std
value: 20.259629965777922
- type: ndcg_at_1
value: 25.968999999999998
- type: ndcg_at_10
value: 29.474
- type: ndcg_at_100
value: 26.762999999999998
- type: ndcg_at_1000
value: 35.032000000000004
- type: ndcg_at_20
value: 28.141
- type: ndcg_at_3
value: 28.58
- type: ndcg_at_5
value: 30.213
- type: precision_at_1
value: 44.186
- type: precision_at_10
value: 40.465
- type: precision_at_100
value: 17.023
- type: precision_at_1000
value: 3.881
- type: precision_at_20
value: 33.721000000000004
- type: precision_at_3
value: 43.411
- type: precision_at_5
value: 45.116
- type: recall_at_1
value: 0.844
- type: recall_at_10
value: 6.4670000000000005
- type: recall_at_100
value: 21.831
- type: recall_at_1000
value: 44.84
- type: recall_at_20
value: 10.042
- type: recall_at_3
value: 2.2800000000000002
- type: recall_at_5
value: 3.94
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 79.27268581851345
- type: f1
value: 77.91734002694149
- type: f1_weighted
value: 79.14088602852584
- type: main_score
value: 79.27268581851345
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 42.49886000911992
- type: f1
value: 27.161113280134728
- type: f1_weighted
value: 46.29236281595424
- type: main_score
value: 42.49886000911992
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 54.065232010759914
- type: f1
value: 52.64846159370178
- type: f1_weighted
value: 52.69815077422998
- type: main_score
value: 54.065232010759914
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 59.596503026227296
- type: f1
value: 58.454086272367725
- type: f1_weighted
value: 59.23698301210568
- type: main_score
value: 59.596503026227296
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: main_score
value: 25.59161751046095
- type: v_measure
value: 25.59161751046095
- type: v_measure_std
value: 1.4816189134361553
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: main_score
value: 21.396391045777328
- type: v_measure
value: 21.396391045777328
- type: v_measure_std
value: 1.6103207158789596
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: main_score
value: 28.017817065141404
- type: map
value: 28.017817065141404
- type: mrr
value: 28.540519062700398
- type: nAUC_map_diff1
value: 15.461550063785692
- type: nAUC_map_max
value: -25.32105536328766
- type: nAUC_map_std
value: -8.329979908589804
- type: nAUC_mrr_diff1
value: 14.686110906248775
- type: nAUC_mrr_max
value: -19.527290469919414
- type: nAUC_mrr_std
value: -6.772185014428633
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 18.958
- type: map_at_1
value: 2.6790000000000003
- type: map_at_10
value: 5.232
- type: map_at_100
value: 6.662
- type: map_at_1000
value: 7.611999999999999
- type: map_at_20
value: 5.753
- type: map_at_3
value: 4.037
- type: map_at_5
value: 4.611
- type: mrr_at_1
value: 28.482972136222912
- type: mrr_at_10
value: 36.405597326649946
- type: mrr_at_100
value: 37.22595173312844
- type: mrr_at_1000
value: 37.31683387820029
- type: mrr_at_20
value: 36.93095174519322
- type: mrr_at_3
value: 34.26212590299277
- type: mrr_at_5
value: 35.33023735810114
- type: nauc_map_at_1000_diff1
value: 34.55475823314036
- type: nauc_map_at_1000_max
value: 27.34025191906842
- type: nauc_map_at_1000_std
value: 27.342181927439913
- type: nauc_map_at_100_diff1
value: 35.89756716732043
- type: nauc_map_at_100_max
value: 25.674881665083976
- type: nauc_map_at_100_std
value: 26.198892926722237
- type: nauc_map_at_10_diff1
value: 39.22190087054285
- type: nauc_map_at_10_max
value: 21.95676384880576
- type: nauc_map_at_10_std
value: 23.963311484529996
- type: nauc_map_at_1_diff1
value: 37.24773940905471
- type: nauc_map_at_1_max
value: 14.271803984288198
- type: nauc_map_at_1_std
value: 29.688383585943097
- type: nauc_map_at_20_diff1
value: 37.68453649833976
- type: nauc_map_at_20_max
value: 24.07159414296253
- type: nauc_map_at_20_std
value: 25.447472109181398
- type: nauc_map_at_3_diff1
value: 41.58967433401796
- type: nauc_map_at_3_max
value: 18.968008374733863
- type: nauc_map_at_3_std
value: 21.28294335040504
- type: nauc_map_at_5_diff1
value: 40.49610097499772
- type: nauc_map_at_5_max
value: 19.882044394766137
- type: nauc_map_at_5_std
value: 22.896905648859477
- type: nauc_mrr_at_1000_diff1
value: 25.809484398850618
- type: nauc_mrr_at_1000_max
value: 26.414231307244414
- type: nauc_mrr_at_1000_std
value: 17.985986694919003
- type: nauc_mrr_at_100_diff1
value: 25.78606536353402
- type: nauc_mrr_at_100_max
value: 26.4528757137163
- type: nauc_mrr_at_100_std
value: 17.999133117747803
- type: nauc_mrr_at_10_diff1
value: 25.779300906162796
- type: nauc_mrr_at_10_max
value: 26.213232859542853
- type: nauc_mrr_at_10_std
value: 18.08183257670132
- type: nauc_mrr_at_1_diff1
value: 27.598875670159266
- type: nauc_mrr_at_1_max
value: 20.32658251250794
- type: nauc_mrr_at_1_std
value: 18.18823377326309
- type: nauc_mrr_at_20_diff1
value: 25.636959155407197
- type: nauc_mrr_at_20_max
value: 26.464954542586
- type: nauc_mrr_at_20_std
value: 18.000213123428896
- type: nauc_mrr_at_3_diff1
value: 26.204839589208444
- type: nauc_mrr_at_3_max
value: 24.408100393220273
- type: nauc_mrr_at_3_std
value: 17.5978010208717
- type: nauc_mrr_at_5_diff1
value: 26.40893924955858
- type: nauc_mrr_at_5_max
value: 25.12051846945133
- type: nauc_mrr_at_5_std
value: 17.88757695915964
- type: nauc_ndcg_at_1000_diff1
value: 28.382776725135717
- type: nauc_ndcg_at_1000_max
value: 35.17640492284041
- type: nauc_ndcg_at_1000_std
value: 21.960947306809935
- type: nauc_ndcg_at_100_diff1
value: 29.15650285424262
- type: nauc_ndcg_at_100_max
value: 28.93369196915297
- type: nauc_ndcg_at_100_std
value: 22.98450747640745
- type: nauc_ndcg_at_10_diff1
value: 23.285486018526193
- type: nauc_ndcg_at_10_max
value: 25.356509158119785
- type: nauc_ndcg_at_10_std
value: 21.47481325489274
- type: nauc_ndcg_at_1_diff1
value: 28.30393191665423
- type: nauc_ndcg_at_1_max
value: 19.280395074712168
- type: nauc_ndcg_at_1_std
value: 20.264338440493027
- type: nauc_ndcg_at_20_diff1
value: 25.056396490391524
- type: nauc_ndcg_at_20_max
value: 27.345120936004818
- type: nauc_ndcg_at_20_std
value: 23.96666766743033
- type: nauc_ndcg_at_3_diff1
value: 23.30190701865977
- type: nauc_ndcg_at_3_max
value: 23.229020303623322
- type: nauc_ndcg_at_3_std
value: 20.04669638404903
- type: nauc_ndcg_at_5_diff1
value: 23.09298233563678
- type: nauc_ndcg_at_5_max
value: 24.961046635562553
- type: nauc_ndcg_at_5_std
value: 20.761704284437112
- type: nauc_precision_at_1000_diff1
value: 1.0960840257544657
- type: nauc_precision_at_1000_max
value: 18.092406576627578
- type: nauc_precision_at_1000_std
value: 18.90288850498279
- type: nauc_precision_at_100_diff1
value: 6.267759440812813
- type: nauc_precision_at_100_max
value: 24.652404577181972
- type: nauc_precision_at_100_std
value: 22.887811997352166
- type: nauc_precision_at_10_diff1
value: 9.718986333358377
- type: nauc_precision_at_10_max
value: 29.836283256489544
- type: nauc_precision_at_10_std
value: 20.462452851651605
- type: nauc_precision_at_1_diff1
value: 27.598875670159266
- type: nauc_precision_at_1_max
value: 20.32658251250794
- type: nauc_precision_at_1_std
value: 18.18823377326309
- type: nauc_precision_at_20_diff1
value: 8.676606543268425
- type: nauc_precision_at_20_max
value: 30.399108802564502
- type: nauc_precision_at_20_std
value: 23.861676907877747
- type: nauc_precision_at_3_diff1
value: 17.45339550106393
- type: nauc_precision_at_3_max
value: 26.216766421583156
- type: nauc_precision_at_3_std
value: 19.277741416054468
- type: nauc_precision_at_5_diff1
value: 14.548311075529996
- type: nauc_precision_at_5_max
value: 28.578357432043095
- type: nauc_precision_at_5_std
value: 20.06284061666006
- type: nauc_recall_at_1000_diff1
value: 15.468783472460082
- type: nauc_recall_at_1000_max
value: 18.76028457005554
- type: nauc_recall_at_1000_std
value: 11.263359191726643
- type: nauc_recall_at_100_diff1
value: 24.242089843241242
- type: nauc_recall_at_100_max
value: 16.5727197700428
- type: nauc_recall_at_100_std
value: 11.874947318154511
- type: nauc_recall_at_10_diff1
value: 32.05672140211618
- type: nauc_recall_at_10_max
value: 15.422864149105198
- type: nauc_recall_at_10_std
value: 16.485136884962905
- type: nauc_recall_at_1_diff1
value: 37.24773940905471
- type: nauc_recall_at_1_max
value: 14.271803984288198
- type: nauc_recall_at_1_std
value: 29.688383585943097
- type: nauc_recall_at_20_diff1
value: 26.72558411584015
- type: nauc_recall_at_20_max
value: 18.71742158521011
- type: nauc_recall_at_20_std
value: 16.30979019801867
- type: nauc_recall_at_3_diff1
value: 42.18802462874201
- type: nauc_recall_at_3_max
value: 15.849348165931904
- type: nauc_recall_at_3_std
value: 15.265602449011315
- type: nauc_recall_at_5_diff1
value: 36.73549549313766
- type: nauc_recall_at_5_max
value: 14.244134216875928
- type: nauc_recall_at_5_std
value: 16.831447694292613
- type: ndcg_at_1
value: 27.245
- type: ndcg_at_10
value: 18.958
- type: ndcg_at_100
value: 17.480999999999998
- type: ndcg_at_1000
value: 26.590000000000003
- type: ndcg_at_20
value: 17.732999999999997
- type: ndcg_at_3
value: 22.745
- type: ndcg_at_5
value: 20.845
- type: precision_at_1
value: 28.483000000000004
- type: precision_at_10
value: 13.963000000000001
- type: precision_at_100
value: 4.926
- type: precision_at_1000
value: 1.7129999999999999
- type: precision_at_20
value: 10.867
- type: precision_at_3
value: 21.259
- type: precision_at_5
value: 17.647
- type: recall_at_1
value: 2.6790000000000003
- type: recall_at_10
value: 8.35
- type: recall_at_100
value: 18.846
- type: recall_at_1000
value: 51.906
- type: recall_at_20
value: 10.713000000000001
- type: recall_at_3
value: 5.005
- type: recall_at_5
value: 6.3950000000000005
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 13.048000000000002
- type: map_at_1
value: 5.733
- type: map_at_10
value: 10.041
- type: map_at_100
value: 10.93
- type: map_at_1000
value: 11.026
- type: map_at_20
value: 10.506
- type: map_at_3
value: 8.271
- type: map_at_5
value: 9.245000000000001
- type: mrr_at_1
value: 6.60486674391657
- type: mrr_at_10
value: 11.158530136658742
- type: mrr_at_100
value: 12.026649413998268
- type: mrr_at_1000
value: 12.113535659557408
- type: mrr_at_20
value: 11.630352356549999
- type: mrr_at_3
value: 9.385863267670912
- type: mrr_at_5
value: 10.349073001158729
- type: nauc_map_at_1000_diff1
value: 18.601922397825142
- type: nauc_map_at_1000_max
value: 15.538804960648637
- type: nauc_map_at_1000_std
value: 8.932607273344003
- type: nauc_map_at_100_diff1
value: 18.620680660067194
- type: nauc_map_at_100_max
value: 15.484338018985905
- type: nauc_map_at_100_std
value: 8.819973524636717
- type: nauc_map_at_10_diff1
value: 19.13487178673801
- type: nauc_map_at_10_max
value: 14.806496007734665
- type: nauc_map_at_10_std
value: 7.298071664899234
- type: nauc_map_at_1_diff1
value: 21.9930605817395
- type: nauc_map_at_1_max
value: 11.133712801824862
- type: nauc_map_at_1_std
value: 2.131487062602308
- type: nauc_map_at_20_diff1
value: 18.845986559595225
- type: nauc_map_at_20_max
value: 14.84348513576822
- type: nauc_map_at_20_std
value: 7.856790248019083
- type: nauc_map_at_3_diff1
value: 19.755782126040426
- type: nauc_map_at_3_max
value: 12.255007439868141
- type: nauc_map_at_3_std
value: 4.958398044298864
- type: nauc_map_at_5_diff1
value: 19.022537070708342
- type: nauc_map_at_5_max
value: 13.17042573872807
- type: nauc_map_at_5_std
value: 5.482903489537978
- type: nauc_mrr_at_1000_diff1
value: 17.632222622653444
- type: nauc_mrr_at_1000_max
value: 15.42476571014277
- type: nauc_mrr_at_1000_std
value: 10.153638750166555
- type: nauc_mrr_at_100_diff1
value: 17.646689914747668
- type: nauc_mrr_at_100_max
value: 15.38756697506547
- type: nauc_mrr_at_100_std
value: 10.083635499306897
- type: nauc_mrr_at_10_diff1
value: 18.028117672644154
- type: nauc_mrr_at_10_max
value: 14.860588727254278
- type: nauc_mrr_at_10_std
value: 8.896662029848459
- type: nauc_mrr_at_1_diff1
value: 21.40810772236307
- type: nauc_mrr_at_1_max
value: 11.946611379314245
- type: nauc_mrr_at_1_std
value: 4.892375669408125
- type: nauc_mrr_at_20_diff1
value: 17.804802947324127
- type: nauc_mrr_at_20_max
value: 14.878056026236205
- type: nauc_mrr_at_20_std
value: 9.377905847506275
- type: nauc_mrr_at_3_diff1
value: 18.414257987511295
- type: nauc_mrr_at_3_max
value: 12.761434587966134
- type: nauc_mrr_at_3_std
value: 7.11744205502733
- type: nauc_mrr_at_5_diff1
value: 17.685888476834307
- type: nauc_mrr_at_5_max
value: 13.357657290287806
- type: nauc_mrr_at_5_std
value: 7.41999209613162
- type: nauc_ndcg_at_1000_diff1
value: 15.737671084966395
- type: nauc_ndcg_at_1000_max
value: 21.300001109022485
- type: nauc_ndcg_at_1000_std
value: 18.420598093162717
- type: nauc_ndcg_at_100_diff1
value: 16.10827621536761
- type: nauc_ndcg_at_100_max
value: 19.937939696831897
- type: nauc_ndcg_at_100_std
value: 16.25333603534063
- type: nauc_ndcg_at_10_diff1
value: 17.91787045098329
- type: nauc_ndcg_at_10_max
value: 17.054099236569016
- type: nauc_ndcg_at_10_std
value: 10.235961770803096
- type: nauc_ndcg_at_1_diff1
value: 21.40810772236307
- type: nauc_ndcg_at_1_max
value: 11.946611379314245
- type: nauc_ndcg_at_1_std
value: 4.892375669408125
- type: nauc_ndcg_at_20_diff1
value: 17.19832761450297
- type: nauc_ndcg_at_20_max
value: 16.87970880397001
- type: nauc_ndcg_at_20_std
value: 11.592453610359893
- type: nauc_ndcg_at_3_diff1
value: 18.758841337291486
- type: nauc_ndcg_at_3_max
value: 12.647106844067164
- type: nauc_ndcg_at_3_std
value: 6.233821611512539
- type: nauc_ndcg_at_5_diff1
value: 17.58950136961931
- type: nauc_ndcg_at_5_max
value: 13.932670021270935
- type: nauc_ndcg_at_5_std
value: 6.858307184055891
- type: nauc_precision_at_1000_diff1
value: 5.363101838479181
- type: nauc_precision_at_1000_max
value: 29.23404219454856
- type: nauc_precision_at_1000_std
value: 38.77321422404564
- type: nauc_precision_at_100_diff1
value: 10.391704346995839
- type: nauc_precision_at_100_max
value: 27.03066371996945
- type: nauc_precision_at_100_std
value: 32.09682685301781
- type: nauc_precision_at_10_diff1
value: 16.048191019042747
- type: nauc_precision_at_10_max
value: 21.207538845729886
- type: nauc_precision_at_10_std
value: 17.019629271943458
- type: nauc_precision_at_1_diff1
value: 21.40810772236307
- type: nauc_precision_at_1_max
value: 11.946611379314245
- type: nauc_precision_at_1_std
value: 4.892375669408125
- type: nauc_precision_at_20_diff1
value: 13.977058772500564
- type: nauc_precision_at_20_max
value: 19.839732387000677
- type: nauc_precision_at_20_std
value: 19.57373741788698
- type: nauc_precision_at_3_diff1
value: 17.421929652197804
- type: nauc_precision_at_3_max
value: 13.424075887007348
- type: nauc_precision_at_3_std
value: 9.341912396168489
- type: nauc_precision_at_5_diff1
value: 15.501119413583092
- type: nauc_precision_at_5_max
value: 15.459130320595197
- type: nauc_precision_at_5_std
value: 10.159860224374993
- type: nauc_recall_at_1000_diff1
value: 8.82421580754989
- type: nauc_recall_at_1000_max
value: 37.506204045082434
- type: nauc_recall_at_1000_std
value: 43.482870689484166
- type: nauc_recall_at_100_diff1
value: 11.324486503492425
- type: nauc_recall_at_100_max
value: 28.076656459901706
- type: nauc_recall_at_100_std
value: 29.50463229683909
- type: nauc_recall_at_10_diff1
value: 16.00096630993718
- type: nauc_recall_at_10_max
value: 20.75175370679478
- type: nauc_recall_at_10_std
value: 14.211472195848762
- type: nauc_recall_at_1_diff1
value: 21.9930605817395
- type: nauc_recall_at_1_max
value: 11.133712801824862
- type: nauc_recall_at_1_std
value: 2.131487062602308
- type: nauc_recall_at_20_diff1
value: 14.608826437651182
- type: nauc_recall_at_20_max
value: 19.689200636397832
- type: nauc_recall_at_20_std
value: 16.665580013229857
- type: nauc_recall_at_3_diff1
value: 16.98767313511421
- type: nauc_recall_at_3_max
value: 12.842939106207622
- type: nauc_recall_at_3_std
value: 7.3018200578662
- type: nauc_recall_at_5_diff1
value: 15.399790005324546
- type: nauc_recall_at_5_max
value: 15.12565840699527
- type: nauc_recall_at_5_std
value: 8.093512618178716
- type: ndcg_at_1
value: 6.6049999999999995
- type: ndcg_at_10
value: 13.048000000000002
- type: ndcg_at_100
value: 17.723
- type: ndcg_at_1000
value: 20.497
- type: ndcg_at_20
value: 14.724
- type: ndcg_at_3
value: 9.402000000000001
- type: ndcg_at_5
value: 11.125
- type: precision_at_1
value: 6.6049999999999995
- type: precision_at_10
value: 2.5090000000000003
- type: precision_at_100
value: 0.523
- type: precision_at_1000
value: 0.079
- type: precision_at_20
value: 1.641
- type: precision_at_3
value: 4.519
- type: precision_at_5
value: 3.662
- type: recall_at_1
value: 5.733
- type: recall_at_10
value: 21.407999999999998
- type: recall_at_100
value: 43.197
- type: recall_at_1000
value: 64.786
- type: recall_at_20
value: 27.752
- type: recall_at_3
value: 11.584999999999999
- type: recall_at_5
value: 15.662
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 75.889
- type: map_at_1
value: 59.521
- type: map_at_10
value: 71.28
- type: map_at_100
value: 72.1
- type: map_at_1000
value: 72.139
- type: map_at_20
value: 71.788
- type: map_at_3
value: 68.462
- type: map_at_5
value: 70.143
- type: mrr_at_1
value: 68.46
- type: mrr_at_10
value: 75.60400396825362
- type: mrr_at_100
value: 75.94020350652137
- type: mrr_at_1000
value: 75.95072803605511
- type: mrr_at_20
value: 75.82968447032792
- type: mrr_at_3
value: 74.10999999999966
- type: mrr_at_5
value: 75.06249999999946
- type: nauc_map_at_1000_diff1
value: 70.19386706664726
- type: nauc_map_at_1000_max
value: 43.44897820040013
- type: nauc_map_at_1000_std
value: -14.237163216930396
- type: nauc_map_at_100_diff1
value: 70.19866967992321
- type: nauc_map_at_100_max
value: 43.44171960985875
- type: nauc_map_at_100_std
value: -14.252373890404598
- type: nauc_map_at_10_diff1
value: 70.26642450807104
- type: nauc_map_at_10_max
value: 42.96787858551095
- type: nauc_map_at_10_std
value: -15.223674656269695
- type: nauc_map_at_1_diff1
value: 73.50598798215337
- type: nauc_map_at_1_max
value: 35.6307293512228
- type: nauc_map_at_1_std
value: -16.269089125483806
- type: nauc_map_at_20_diff1
value: 70.2053600879007
- type: nauc_map_at_20_max
value: 43.27498690180252
- type: nauc_map_at_20_std
value: -14.64603003196119
- type: nauc_map_at_3_diff1
value: 70.65138430278584
- type: nauc_map_at_3_max
value: 40.89023340246951
- type: nauc_map_at_3_std
value: -16.549534070111047
- type: nauc_map_at_5_diff1
value: 70.349373734752
- type: nauc_map_at_5_max
value: 42.24082396168828
- type: nauc_map_at_5_std
value: -15.811500680254115
- type: nauc_mrr_at_1000_diff1
value: 71.29203504603552
- type: nauc_mrr_at_1000_max
value: 46.42690559992034
- type: nauc_mrr_at_1000_std
value: -11.828704627498078
- type: nauc_mrr_at_100_diff1
value: 71.2900226340849
- type: nauc_mrr_at_100_max
value: 46.435253826921844
- type: nauc_mrr_at_100_std
value: -11.814735763142298
- type: nauc_mrr_at_10_diff1
value: 71.21844201081325
- type: nauc_mrr_at_10_max
value: 46.421627982430884
- type: nauc_mrr_at_10_std
value: -12.030751233110733
- type: nauc_mrr_at_1_diff1
value: 73.05505007326735
- type: nauc_mrr_at_1_max
value: 44.42599826502435
- type: nauc_mrr_at_1_std
value: -13.238066635762205
- type: nauc_mrr_at_20_diff1
value: 71.25293148556567
- type: nauc_mrr_at_20_max
value: 46.41621835298584
- type: nauc_mrr_at_20_std
value: -11.876661055767109
- type: nauc_mrr_at_3_diff1
value: 71.37331205958733
- type: nauc_mrr_at_3_max
value: 45.98413603164503
- type: nauc_mrr_at_3_std
value: -12.574574509695696
- type: nauc_mrr_at_5_diff1
value: 71.24542402884832
- type: nauc_mrr_at_5_max
value: 46.38452436382147
- type: nauc_mrr_at_5_std
value: -12.226266259767742
- type: nauc_ndcg_at_1000_diff1
value: 69.77356705929742
- type: nauc_ndcg_at_1000_max
value: 45.769266206351325
- type: nauc_ndcg_at_1000_std
value: -11.368815656652979
- type: nauc_ndcg_at_100_diff1
value: 69.75368757543434
- type: nauc_ndcg_at_100_max
value: 45.92974089305349
- type: nauc_ndcg_at_100_std
value: -10.962000777691044
- type: nauc_ndcg_at_10_diff1
value: 69.43855250047541
- type: nauc_ndcg_at_10_max
value: 44.87412123405316
- type: nauc_ndcg_at_10_std
value: -13.581485619007081
- type: nauc_ndcg_at_1_diff1
value: 72.98830746442073
- type: nauc_ndcg_at_1_max
value: 44.52285306872999
- type: nauc_ndcg_at_1_std
value: -13.140713028099874
- type: nauc_ndcg_at_20_diff1
value: 69.47101741777516
- type: nauc_ndcg_at_20_max
value: 45.363995866856655
- type: nauc_ndcg_at_20_std
value: -12.31761653051956
- type: nauc_ndcg_at_3_diff1
value: 69.63995301777895
- type: nauc_ndcg_at_3_max
value: 43.385900881945936
- type: nauc_ndcg_at_3_std
value: -14.646876750798473
- type: nauc_ndcg_at_5_diff1
value: 69.43625651308415
- type: nauc_ndcg_at_5_max
value: 44.28219675438962
- type: nauc_ndcg_at_5_std
value: -14.245771527733861
- type: nauc_precision_at_1000_diff1
value: -33.91911759045305
- type: nauc_precision_at_1000_max
value: -1.6255596813223787
- type: nauc_precision_at_1000_std
value: 22.114523481372608
- type: nauc_precision_at_100_diff1
value: -29.22957093123771
- type: nauc_precision_at_100_max
value: 3.3573621623107597
- type: nauc_precision_at_100_std
value: 22.64243055590217
- type: nauc_precision_at_10_diff1
value: -10.768120433843423
- type: nauc_precision_at_10_max
value: 16.372356342933074
- type: nauc_precision_at_10_std
value: 11.106047707692019
- type: nauc_precision_at_1_diff1
value: 72.98830746442073
- type: nauc_precision_at_1_max
value: 44.52285306872999
- type: nauc_precision_at_1_std
value: -13.140713028099874
- type: nauc_precision_at_20_diff1
value: -19.60328656850837
- type: nauc_precision_at_20_max
value: 11.263698603553324
- type: nauc_precision_at_20_std
value: 17.12862112761346
- type: nauc_precision_at_3_diff1
value: 16.396535763529837
- type: nauc_precision_at_3_max
value: 27.52510331770848
- type: nauc_precision_at_3_std
value: -0.1431320144068112
- type: nauc_precision_at_5_diff1
value: 1.9559899327174441
- type: nauc_precision_at_5_max
value: 23.115797894537156
- type: nauc_precision_at_5_std
value: 5.587976439020372
- type: nauc_recall_at_1000_diff1
value: 52.165335899073426
- type: nauc_recall_at_1000_max
value: 67.68332681999831
- type: nauc_recall_at_1000_std
value: 48.44483006588368
- type: nauc_recall_at_100_diff1
value: 59.452660123413004
- type: nauc_recall_at_100_max
value: 57.21697880811637
- type: nauc_recall_at_100_std
value: 23.194172294428036
- type: nauc_recall_at_10_diff1
value: 62.06320665783282
- type: nauc_recall_at_10_max
value: 44.97632618214612
- type: nauc_recall_at_10_std
value: -11.783932871643586
- type: nauc_recall_at_1_diff1
value: 73.50598798215337
- type: nauc_recall_at_1_max
value: 35.6307293512228
- type: nauc_recall_at_1_std
value: -16.269089125483806
- type: nauc_recall_at_20_diff1
value: 60.096792659466615
- type: nauc_recall_at_20_max
value: 47.36791373671932
- type: nauc_recall_at_20_std
value: -3.617358805963005
- type: nauc_recall_at_3_diff1
value: 66.4817738935685
- type: nauc_recall_at_3_max
value: 40.07846085049393
- type: nauc_recall_at_3_std
value: -17.019266805305357
- type: nauc_recall_at_5_diff1
value: 64.29294958329528
- type: nauc_recall_at_5_max
value: 42.80590704093666
- type: nauc_recall_at_5_std
value: -14.96426642947079
- type: ndcg_at_1
value: 68.49
- type: ndcg_at_10
value: 75.889
- type: ndcg_at_100
value: 78.452
- type: ndcg_at_1000
value: 79.022
- type: ndcg_at_20
value: 77.095
- type: ndcg_at_3
value: 72.336
- type: ndcg_at_5
value: 74.122
- type: precision_at_1
value: 68.49
- type: precision_at_10
value: 11.478
- type: precision_at_100
value: 1.4040000000000001
- type: precision_at_1000
value: 0.152
- type: precision_at_20
value: 6.232
- type: precision_at_3
value: 31.287
- type: precision_at_5
value: 20.712
- type: recall_at_1
value: 59.521
- type: recall_at_10
value: 84.768
- type: recall_at_100
value: 94.906
- type: recall_at_1000
value: 98.437
- type: recall_at_20
value: 88.919
- type: recall_at_3
value: 74.507
- type: recall_at_5
value: 79.487
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: main_score
value: 29.134297978095674
- type: v_measure
value: 29.134297978095674
- type: v_measure_std
value: 3.9934034124121185
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: main_score
value: 39.215421675518
- type: v_measure
value: 39.215421675518
- type: v_measure_std
value: 10.607286582764162
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 8.163
- type: map_at_1
value: 2.06
- type: map_at_10
value: 4.349
- type: map_at_100
value: 5.29
- type: map_at_1000
value: 5.502
- type: map_at_20
value: 4.757
- type: map_at_3
value: 3.3320000000000003
- type: map_at_5
value: 3.789
- type: mrr_at_1
value: 10.2
- type: mrr_at_10
value: 15.777301587301585
- type: mrr_at_100
value: 16.87040130235826
- type: mrr_at_1000
value: 16.99318092347203
- type: mrr_at_20
value: 16.33887346227904
- type: mrr_at_3
value: 13.816666666666663
- type: mrr_at_5
value: 14.876666666666672
- type: nauc_map_at_1000_diff1
value: 16.820399860912577
- type: nauc_map_at_1000_max
value: 11.036291872368661
- type: nauc_map_at_1000_std
value: 28.197293404910596
- type: nauc_map_at_100_diff1
value: 16.974714726054092
- type: nauc_map_at_100_max
value: 10.865585523763155
- type: nauc_map_at_100_std
value: 27.743692421138462
- type: nauc_map_at_10_diff1
value: 17.114604628918144
- type: nauc_map_at_10_max
value: 9.375565363093843
- type: nauc_map_at_10_std
value: 24.780455052145346
- type: nauc_map_at_1_diff1
value: 20.658116587695112
- type: nauc_map_at_1_max
value: 13.155907394830615
- type: nauc_map_at_1_std
value: 22.426847527670628
- type: nauc_map_at_20_diff1
value: 16.898082467709294
- type: nauc_map_at_20_max
value: 9.988559872619556
- type: nauc_map_at_20_std
value: 26.307229888534273
- type: nauc_map_at_3_diff1
value: 16.76206057854526
- type: nauc_map_at_3_max
value: 10.440545699729146
- type: nauc_map_at_3_std
value: 22.958859601482796
- type: nauc_map_at_5_diff1
value: 16.530876411848187
- type: nauc_map_at_5_max
value: 9.311867261847425
- type: nauc_map_at_5_std
value: 24.387141896077
- type: nauc_mrr_at_1000_diff1
value: 16.73600946942673
- type: nauc_mrr_at_1000_max
value: 12.676243402896537
- type: nauc_mrr_at_1000_std
value: 22.6143458461655
- type: nauc_mrr_at_100_diff1
value: 16.71570698771131
- type: nauc_mrr_at_100_max
value: 12.669159209039286
- type: nauc_mrr_at_100_std
value: 22.628552541531114
- type: nauc_mrr_at_10_diff1
value: 16.724205099190893
- type: nauc_mrr_at_10_max
value: 12.284407084892688
- type: nauc_mrr_at_10_std
value: 22.029318681643513
- type: nauc_mrr_at_1_diff1
value: 20.65518464968726
- type: nauc_mrr_at_1_max
value: 13.380415958308845
- type: nauc_mrr_at_1_std
value: 23.027057944994354
- type: nauc_mrr_at_20_diff1
value: 16.743321127999945
- type: nauc_mrr_at_20_max
value: 12.497444652373034
- type: nauc_mrr_at_20_std
value: 22.523374071799278
- type: nauc_mrr_at_3_diff1
value: 17.429706373434005
- type: nauc_mrr_at_3_max
value: 11.567635068970057
- type: nauc_mrr_at_3_std
value: 21.792853845733678
- type: nauc_mrr_at_5_diff1
value: 17.067362660541164
- type: nauc_mrr_at_5_max
value: 11.838591994727086
- type: nauc_mrr_at_5_std
value: 21.89903870786229
- type: nauc_ndcg_at_1000_diff1
value: 13.976383558618032
- type: nauc_ndcg_at_1000_max
value: 15.004200828026185
- type: nauc_ndcg_at_1000_std
value: 32.29145506934514
- type: nauc_ndcg_at_100_diff1
value: 15.151338074531035
- type: nauc_ndcg_at_100_max
value: 13.467821215240413
- type: nauc_ndcg_at_100_std
value: 29.802198591954856
- type: nauc_ndcg_at_10_diff1
value: 15.922085162704697
- type: nauc_ndcg_at_10_max
value: 10.447859010783938
- type: nauc_ndcg_at_10_std
value: 23.90947332043245
- type: nauc_ndcg_at_1_diff1
value: 20.65518464968726
- type: nauc_ndcg_at_1_max
value: 13.380415958308845
- type: nauc_ndcg_at_1_std
value: 23.027057944994354
- type: nauc_ndcg_at_20_diff1
value: 15.55874475345454
- type: nauc_ndcg_at_20_max
value: 11.437273797119275
- type: nauc_ndcg_at_20_std
value: 26.552304709089604
- type: nauc_ndcg_at_3_diff1
value: 16.552004746479756
- type: nauc_ndcg_at_3_max
value: 10.804357733167999
- type: nauc_ndcg_at_3_std
value: 22.49302563529031
- type: nauc_ndcg_at_5_diff1
value: 15.941541214122312
- type: nauc_ndcg_at_5_max
value: 9.999332076127734
- type: nauc_ndcg_at_5_std
value: 23.38227609142699
- type: nauc_precision_at_1000_diff1
value: 7.058340373874923
- type: nauc_precision_at_1000_max
value: 17.258245524006963
- type: nauc_precision_at_1000_std
value: 36.45652142925109
- type: nauc_precision_at_100_diff1
value: 11.432632810176315
- type: nauc_precision_at_100_max
value: 14.706743744286266
- type: nauc_precision_at_100_std
value: 33.509148405438516
- type: nauc_precision_at_10_diff1
value: 13.899621711899094
- type: nauc_precision_at_10_max
value: 9.288924597831762
- type: nauc_precision_at_10_std
value: 23.887371820866647
- type: nauc_precision_at_1_diff1
value: 20.65518464968726
- type: nauc_precision_at_1_max
value: 13.380415958308845
- type: nauc_precision_at_1_std
value: 23.027057944994354
- type: nauc_precision_at_20_diff1
value: 13.143970754077383
- type: nauc_precision_at_20_max
value: 11.347036397273031
- type: nauc_precision_at_20_std
value: 28.728122625727842
- type: nauc_precision_at_3_diff1
value: 15.17229479556843
- type: nauc_precision_at_3_max
value: 9.942412630398362
- type: nauc_precision_at_3_std
value: 22.56878491369083
- type: nauc_precision_at_5_diff1
value: 14.110634156514475
- type: nauc_precision_at_5_max
value: 8.484616766016119
- type: nauc_precision_at_5_std
value: 24.207087120488005
- type: nauc_recall_at_1000_diff1
value: 7.1431971152880624
- type: nauc_recall_at_1000_max
value: 17.940414755613098
- type: nauc_recall_at_1000_std
value: 36.52036034800652
- type: nauc_recall_at_100_diff1
value: 11.564422539945994
- type: nauc_recall_at_100_max
value: 14.768866414576125
- type: nauc_recall_at_100_std
value: 33.57594828721061
- type: nauc_recall_at_10_diff1
value: 13.826760252646993
- type: nauc_recall_at_10_max
value: 9.167497311121016
- type: nauc_recall_at_10_std
value: 23.658037032839953
- type: nauc_recall_at_1_diff1
value: 20.658116587695112
- type: nauc_recall_at_1_max
value: 13.155907394830615
- type: nauc_recall_at_1_std
value: 22.426847527670628
- type: nauc_recall_at_20_diff1
value: 13.053984329111262
- type: nauc_recall_at_20_max
value: 11.261855881829511
- type: nauc_recall_at_20_std
value: 28.59453401494739
- type: nauc_recall_at_3_diff1
value: 15.176171372019025
- type: nauc_recall_at_3_max
value: 9.927743665598976
- type: nauc_recall_at_3_std
value: 22.263215956695852
- type: nauc_recall_at_5_diff1
value: 14.117753921764933
- type: nauc_recall_at_5_max
value: 8.407325978866647
- type: nauc_recall_at_5_std
value: 23.973302948861026
- type: ndcg_at_1
value: 10.2
- type: ndcg_at_10
value: 8.163
- type: ndcg_at_100
value: 13.093
- type: ndcg_at_1000
value: 18.129
- type: ndcg_at_20
value: 9.589
- type: ndcg_at_3
value: 7.85
- type: ndcg_at_5
value: 6.701
- type: precision_at_1
value: 10.2
- type: precision_at_10
value: 4.19
- type: precision_at_100
value: 1.1520000000000001
- type: precision_at_1000
value: 0.23800000000000002
- type: precision_at_20
value: 2.9250000000000003
- type: precision_at_3
value: 7.167
- type: precision_at_5
value: 5.7
- type: recall_at_1
value: 2.06
- type: recall_at_10
value: 8.488
- type: recall_at_100
value: 23.383000000000003
- type: recall_at_1000
value: 48.312
- type: recall_at_20
value: 11.843
- type: recall_at_3
value: 4.35
- type: recall_at_5
value: 5.765
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 74.06014749723313
- type: cosine_spearman
value: 62.85583348143348
- type: euclidean_pearson
value: 67.90829663189977
- type: euclidean_spearman
value: 62.855829168697966
- type: main_score
value: 62.85583348143348
- type: manhattan_pearson
value: 68.16895231463954
- type: manhattan_spearman
value: 62.942131884343155
- type: pearson
value: 74.06014749723313
- type: spearman
value: 62.85583348143348
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 71.71587397454503
- type: cosine_spearman
value: 62.07913034464432
- type: euclidean_pearson
value: 68.38396254056258
- type: euclidean_spearman
value: 62.07912362817025
- type: main_score
value: 62.07913034464432
- type: manhattan_pearson
value: 68.80285040680448
- type: manhattan_spearman
value: 62.48427594825191
- type: pearson
value: 71.71587397454503
- type: spearman
value: 62.07913034464432
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 74.00146491973214
- type: cosine_spearman
value: 75.73113726697468
- type: euclidean_pearson
value: 75.17723244913799
- type: euclidean_spearman
value: 75.73113726697468
- type: main_score
value: 75.73113726697468
- type: manhattan_pearson
value: 75.04817185215164
- type: manhattan_spearman
value: 75.56882534866682
- type: pearson
value: 74.00146491973214
- type: spearman
value: 75.73113726697468
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 73.18799052289306
- type: cosine_spearman
value: 69.27997439795548
- type: euclidean_pearson
value: 72.01699560068344
- type: euclidean_spearman
value: 69.27997439795548
- type: main_score
value: 69.27997439795548
- type: manhattan_pearson
value: 72.08946320578453
- type: manhattan_spearman
value: 69.3115876094692
- type: pearson
value: 73.18799052289306
- type: spearman
value: 69.27997439795548
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 75.05240168700195
- type: cosine_spearman
value: 76.32976845993336
- type: euclidean_pearson
value: 76.23332436291838
- type: euclidean_spearman
value: 76.32976845993336
- type: main_score
value: 76.32976845993336
- type: manhattan_pearson
value: 76.0196103445834
- type: manhattan_spearman
value: 76.11367025445854
- type: pearson
value: 75.05240168700195
- type: spearman
value: 76.32976845993336
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 71.35240308275529
- type: cosine_spearman
value: 73.46659216141927
- type: euclidean_pearson
value: 73.01431094479076
- type: euclidean_spearman
value: 73.46659216141927
- type: main_score
value: 73.46659216141927
- type: manhattan_pearson
value: 73.05673665594625
- type: manhattan_spearman
value: 73.46097106391906
- type: pearson
value: 71.35240308275529
- type: spearman
value: 73.46659216141927
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 80.32585308865436
- type: cosine_spearman
value: 82.08042618874391
- type: euclidean_pearson
value: 81.50315333642457
- type: euclidean_spearman
value: 82.08042618874391
- type: main_score
value: 82.08042618874391
- type: manhattan_pearson
value: 81.50403771658148
- type: manhattan_spearman
value: 81.86754737875918
- type: pearson
value: 80.32585308865436
- type: spearman
value: 82.08042618874391
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 26.492433454505004
- type: cosine_spearman
value: 25.26192630209604
- type: euclidean_pearson
value: 26.508248428681146
- type: euclidean_spearman
value: 25.26192630209604
- type: main_score
value: 25.26192630209604
- type: manhattan_pearson
value: 24.577958833043617
- type: manhattan_spearman
value: 23.107268314361416
- type: pearson
value: 26.492433454505004
- type: spearman
value: 25.26192630209604
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 4.849502004066215
- type: cosine_spearman
value: 2.4221360201347566
- type: euclidean_pearson
value: 4.946775087695405
- type: euclidean_spearman
value: 2.4221360201347566
- type: main_score
value: 2.4221360201347566
- type: manhattan_pearson
value: 2.0088474400844993
- type: manhattan_spearman
value: 2.501283757283151
- type: pearson
value: 4.849502004066215
- type: spearman
value: 2.4221360201347566
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 17.67430795163699
- type: cosine_spearman
value: 14.138028269188412
- type: euclidean_pearson
value: 17.719124540919474
- type: euclidean_spearman
value: 14.138028269188412
- type: main_score
value: 14.138028269188412
- type: manhattan_pearson
value: 15.979360498335673
- type: manhattan_spearman
value: 13.033003503816229
- type: pearson
value: 17.67430795163699
- type: spearman
value: 14.138028269188412
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 11.032677618214326
- type: cosine_spearman
value: 8.819837594034183
- type: euclidean_pearson
value: 11.212471090722028
- type: euclidean_spearman
value: 8.819837594034183
- type: main_score
value: 8.819837594034183
- type: manhattan_pearson
value: 7.552514418132754
- type: manhattan_spearman
value: 5.788554277295719
- type: pearson
value: 11.032677618214326
- type: spearman
value: 8.819837594034183
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 21.77242194085935
- type: cosine_spearman
value: 19.564246863458028
- type: euclidean_pearson
value: 21.997979208209685
- type: euclidean_spearman
value: 19.564246863458028
- type: main_score
value: 19.564246863458028
- type: manhattan_pearson
value: 21.80940866422115
- type: manhattan_spearman
value: 19.5079327687257
- type: pearson
value: 21.77242194085935
- type: spearman
value: 19.564246863458028
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 24.34392722914247
- type: cosine_spearman
value: 22.516912091222096
- type: euclidean_pearson
value: 24.860123500651827
- type: euclidean_spearman
value: 22.516912091222096
- type: main_score
value: 22.516912091222096
- type: manhattan_pearson
value: 28.816841514354884
- type: manhattan_spearman
value: 27.740284625490002
- type: pearson
value: 24.34392722914247
- type: spearman
value: 22.516912091222096
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 11.486165309912764
- type: cosine_spearman
value: 10.139614392782256
- type: euclidean_pearson
value: 11.75125169236987
- type: euclidean_spearman
value: 10.139614392782256
- type: main_score
value: 10.139614392782256
- type: manhattan_pearson
value: 12.405185554485518
- type: manhattan_spearman
value: 10.053617041455068
- type: pearson
value: 11.486165309912764
- type: spearman
value: 10.139614392782256
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 56.1393113780294
- type: cosine_spearman
value: 62.64707232707212
- type: euclidean_pearson
value: 60.68784382476653
- type: euclidean_spearman
value: 62.64707232707212
- type: main_score
value: 62.64707232707212
- type: manhattan_pearson
value: 60.849049192788776
- type: manhattan_spearman
value: 62.50847116906587
- type: pearson
value: 56.1393113780294
- type: spearman
value: 62.64707232707212
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 9.554093605202135
- type: cosine_spearman
value: 11.788855140937605
- type: euclidean_pearson
value: 8.3590729795075
- type: euclidean_spearman
value: 11.674682450877647
- type: main_score
value: 11.788855140937605
- type: manhattan_pearson
value: 15.34897773929992
- type: manhattan_spearman
value: 18.76001274530547
- type: pearson
value: 9.554093605202135
- type: spearman
value: 11.788855140937605
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 23.699968394697848
- type: cosine_spearman
value: 25.635685273215014
- type: euclidean_pearson
value: 23.30847681564559
- type: euclidean_spearman
value: 25.62920498344224
- type: main_score
value: 25.635685273215014
- type: manhattan_pearson
value: 22.877299914701172
- type: manhattan_spearman
value: 29.58678616125247
- type: pearson
value: 23.699968394697848
- type: spearman
value: 25.635685273215014
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 9.344287684864119
- type: cosine_spearman
value: 10.042423712385212
- type: euclidean_pearson
value: 9.033832457728343
- type: euclidean_spearman
value: 10.033434689662734
- type: main_score
value: 10.042423712385212
- type: manhattan_pearson
value: 6.744871382125734
- type: manhattan_spearman
value: 6.302888265155408
- type: pearson
value: 9.344287684864119
- type: spearman
value: 10.042423712385212
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 8.001041267374578
- type: cosine_spearman
value: 15.127881072012025
- type: euclidean_pearson
value: 6.362399463770095
- type: euclidean_spearman
value: 15.127881072012025
- type: main_score
value: 15.127881072012025
- type: manhattan_pearson
value: 14.398693320171096
- type: manhattan_spearman
value: 23.42112716934093
- type: pearson
value: 8.001041267374578
- type: spearman
value: 15.127881072012025
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 73.57677681061787
- type: cosine_spearman
value: 72.80800903257308
- type: euclidean_pearson
value: 74.4255195885822
- type: euclidean_spearman
value: 72.80800903257308
- type: main_score
value: 72.80800903257308
- type: manhattan_pearson
value: 74.6222587602608
- type: manhattan_spearman
value: 72.9559654281266
- type: pearson
value: 73.57677681061787
- type: spearman
value: 72.80800903257308
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 66.13944998572143
- type: map
value: 66.13944998572143
- type: mrr
value: 86.84982682531702
- type: nAUC_map_diff1
value: 9.655489527090475
- type: nAUC_map_max
value: 55.329447225464676
- type: nAUC_map_std
value: 63.92644562946389
- type: nAUC_mrr_diff1
value: 38.69379106400398
- type: nAUC_mrr_max
value: 69.96013858740152
- type: nAUC_mrr_std
value: 62.072046098925156
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 36.55
- type: map_at_1
value: 24.166999999999998
- type: map_at_10
value: 32.255
- type: map_at_100
value: 33.359
- type: map_at_1000
value: 33.44
- type: map_at_20
value: 32.885999999999996
- type: map_at_3
value: 29.866
- type: map_at_5
value: 31.557000000000002
- type: mrr_at_1
value: 26.0
- type: mrr_at_10
value: 33.87486772486773
- type: mrr_at_100
value: 34.829580502303436
- type: mrr_at_1000
value: 34.90127768602221
- type: mrr_at_20
value: 34.44486881510876
- type: mrr_at_3
value: 31.5
- type: mrr_at_5
value: 33.21666666666667
- type: nauc_map_at_1000_diff1
value: 40.27120542337293
- type: nauc_map_at_1000_max
value: 34.881725395249745
- type: nauc_map_at_1000_std
value: 14.804128183822776
- type: nauc_map_at_100_diff1
value: 40.21945625314103
- type: nauc_map_at_100_max
value: 34.86632729849179
- type: nauc_map_at_100_std
value: 14.822072821802628
- type: nauc_map_at_10_diff1
value: 40.22503326192557
- type: nauc_map_at_10_max
value: 34.681031950162314
- type: nauc_map_at_10_std
value: 13.969909037414721
- type: nauc_map_at_1_diff1
value: 46.18145166307877
- type: nauc_map_at_1_max
value: 32.850938864900506
- type: nauc_map_at_1_std
value: 9.284621032067
- type: nauc_map_at_20_diff1
value: 40.24803710661317
- type: nauc_map_at_20_max
value: 34.74111106117432
- type: nauc_map_at_20_std
value: 14.52709156133609
- type: nauc_map_at_3_diff1
value: 42.21002367018134
- type: nauc_map_at_3_max
value: 33.57697582968568
- type: nauc_map_at_3_std
value: 12.715120187246024
- type: nauc_map_at_5_diff1
value: 40.361071576043734
- type: nauc_map_at_5_max
value: 34.960048160721065
- type: nauc_map_at_5_std
value: 13.587382041347976
- type: nauc_mrr_at_1000_diff1
value: 40.172026071768876
- type: nauc_mrr_at_1000_max
value: 36.393047482968285
- type: nauc_mrr_at_1000_std
value: 18.514061967011543
- type: nauc_mrr_at_100_diff1
value: 40.10935371489407
- type: nauc_mrr_at_100_max
value: 36.3941603476526
- type: nauc_mrr_at_100_std
value: 18.549364999359284
- type: nauc_mrr_at_10_diff1
value: 40.0143297539273
- type: nauc_mrr_at_10_max
value: 36.285300624108174
- type: nauc_mrr_at_10_std
value: 18.06040618434985
- type: nauc_mrr_at_1_diff1
value: 45.94065893825947
- type: nauc_mrr_at_1_max
value: 34.89250575775973
- type: nauc_mrr_at_1_std
value: 15.032812003122197
- type: nauc_mrr_at_20_diff1
value: 40.04355197303724
- type: nauc_mrr_at_20_max
value: 36.35951332162351
- type: nauc_mrr_at_20_std
value: 18.42335404196948
- type: nauc_mrr_at_3_diff1
value: 42.30608858184136
- type: nauc_mrr_at_3_max
value: 35.61225415425098
- type: nauc_mrr_at_3_std
value: 17.223247492661102
- type: nauc_mrr_at_5_diff1
value: 40.485972003959404
- type: nauc_mrr_at_5_max
value: 36.67688438369464
- type: nauc_mrr_at_5_std
value: 18.021306525172033
- type: nauc_ndcg_at_1000_diff1
value: 38.1448539512143
- type: nauc_ndcg_at_1000_max
value: 36.41251174091125
- type: nauc_ndcg_at_1000_std
value: 18.863348298831134
- type: nauc_ndcg_at_100_diff1
value: 36.828616223036995
- type: nauc_ndcg_at_100_max
value: 36.326875743799825
- type: nauc_ndcg_at_100_std
value: 19.753271271756166
- type: nauc_ndcg_at_10_diff1
value: 36.999696509492765
- type: nauc_ndcg_at_10_max
value: 35.510700157502384
- type: nauc_ndcg_at_10_std
value: 16.51692902623065
- type: nauc_ndcg_at_1_diff1
value: 45.94065893825947
- type: nauc_ndcg_at_1_max
value: 34.89250575775973
- type: nauc_ndcg_at_1_std
value: 15.032812003122197
- type: nauc_ndcg_at_20_diff1
value: 36.98821200336492
- type: nauc_ndcg_at_20_max
value: 35.51321933251509
- type: nauc_ndcg_at_20_std
value: 17.880281629389334
- type: nauc_ndcg_at_3_diff1
value: 40.854488421982474
- type: nauc_ndcg_at_3_max
value: 34.13463997398456
- type: nauc_ndcg_at_3_std
value: 14.833355685530647
- type: nauc_ndcg_at_5_diff1
value: 37.65087893614269
- type: nauc_ndcg_at_5_max
value: 36.16610548649603
- type: nauc_ndcg_at_5_std
value: 15.85595394609524
- type: nauc_precision_at_1000_diff1
value: -1.2213861207148984
- type: nauc_precision_at_1000_max
value: 33.792059295415115
- type: nauc_precision_at_1000_std
value: 51.25358732741295
- type: nauc_precision_at_100_diff1
value: 8.942954849181
- type: nauc_precision_at_100_max
value: 37.44655423710336
- type: nauc_precision_at_100_std
value: 47.04438370323114
- type: nauc_precision_at_10_diff1
value: 22.922592142376622
- type: nauc_precision_at_10_max
value: 37.716906832835676
- type: nauc_precision_at_10_std
value: 28.841183482232413
- type: nauc_precision_at_1_diff1
value: 45.94065893825947
- type: nauc_precision_at_1_max
value: 34.89250575775973
- type: nauc_precision_at_1_std
value: 15.032812003122197
- type: nauc_precision_at_20_diff1
value: 20.36859440465984
- type: nauc_precision_at_20_max
value: 38.34513768246952
- type: nauc_precision_at_20_std
value: 35.229890026962615
- type: nauc_precision_at_3_diff1
value: 34.05345356587694
- type: nauc_precision_at_3_max
value: 36.40222017855832
- type: nauc_precision_at_3_std
value: 22.09598528562007
- type: nauc_precision_at_5_diff1
value: 25.37065548133688
- type: nauc_precision_at_5_max
value: 41.03941131544809
- type: nauc_precision_at_5_std
value: 25.017881172035043
- type: nauc_recall_at_1000_diff1
value: 33.09021721896312
- type: nauc_recall_at_1000_max
value: 47.697443757377194
- type: nauc_recall_at_1000_std
value: 44.12337261948821
- type: nauc_recall_at_100_diff1
value: 22.06710557626714
- type: nauc_recall_at_100_max
value: 40.18599082452499
- type: nauc_recall_at_100_std
value: 38.184660672167595
- type: nauc_recall_at_10_diff1
value: 27.10204324985591
- type: nauc_recall_at_10_max
value: 35.30960104403818
- type: nauc_recall_at_10_std
value: 19.306977699362033
- type: nauc_recall_at_1_diff1
value: 46.18145166307877
- type: nauc_recall_at_1_max
value: 32.850938864900506
- type: nauc_recall_at_1_std
value: 9.284621032067
- type: nauc_recall_at_20_diff1
value: 26.382409406526
- type: nauc_recall_at_20_max
value: 34.469251680833004
- type: nauc_recall_at_20_std
value: 23.400056135882995
- type: nauc_recall_at_3_diff1
value: 37.2267183565415
- type: nauc_recall_at_3_max
value: 32.77661901779293
- type: nauc_recall_at_3_std
value: 15.031686858933885
- type: nauc_recall_at_5_diff1
value: 29.257298344591987
- type: nauc_recall_at_5_max
value: 36.84185394701337
- type: nauc_recall_at_5_std
value: 17.84731120093588
- type: ndcg_at_1
value: 26.0
- type: ndcg_at_10
value: 36.55
- type: ndcg_at_100
value: 42.049
- type: ndcg_at_1000
value: 44.4
- type: ndcg_at_20
value: 38.692
- type: ndcg_at_3
value: 32.019999999999996
- type: ndcg_at_5
value: 34.922
- type: precision_at_1
value: 26.0
- type: precision_at_10
value: 5.3
- type: precision_at_100
value: 0.843
- type: precision_at_1000
value: 0.105
- type: precision_at_20
value: 3.1329999999999996
- type: precision_at_3
value: 13.111
- type: precision_at_5
value: 9.4
- type: recall_at_1
value: 24.166999999999998
- type: recall_at_10
value: 48.167
- type: recall_at_100
value: 74.1
- type: recall_at_1000
value: 92.93299999999999
- type: recall_at_20
value: 56.289
- type: recall_at_3
value: 36.306
- type: recall_at_5
value: 43.389
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.68415841584158
- type: cosine_accuracy_threshold
value: 81.75174090984304
- type: cosine_ap
value: 88.17695295243927
- type: cosine_f1
value: 83.46293416277865
- type: cosine_f1_threshold
value: 81.67502920031147
- type: cosine_precision
value: 86.65231431646933
- type: cosine_recall
value: 80.5
- type: dot_accuracy
value: 99.68415841584158
- type: dot_accuracy_threshold
value: 81.7517430435309
- type: dot_ap
value: 88.17695295243927
- type: dot_f1
value: 83.46293416277865
- type: dot_f1_threshold
value: 81.67503038678444
- type: dot_precision
value: 86.65231431646933
- type: dot_recall
value: 80.5
- type: euclidean_accuracy
value: 99.68415841584158
- type: euclidean_accuracy_threshold
value: 60.412346616246396
- type: euclidean_ap
value: 88.17695295243927
- type: euclidean_f1
value: 83.46293416277865
- type: euclidean_f1_threshold
value: 60.539194123743535
- type: euclidean_precision
value: 86.65231431646933
- type: euclidean_recall
value: 80.5
- type: main_score
value: 88.17695295243927
- type: manhattan_accuracy
value: 99.67920792079208
- type: manhattan_accuracy_threshold
value: 366.6920070296328
- type: manhattan_ap
value: 88.09159390940687
- type: manhattan_f1
value: 82.97982410760476
- type: manhattan_f1_threshold
value: 384.15647450019605
- type: manhattan_precision
value: 85.95927116827438
- type: manhattan_recall
value: 80.2
- type: max_accuracy
value: 99.68415841584158
- type: max_ap
value: 88.17695295243927
- type: max_f1
value: 83.46293416277865
- type: max_precision
value: 86.65231431646933
- type: max_recall
value: 80.5
- type: similarity_accuracy
value: 99.68415841584158
- type: similarity_accuracy_threshold
value: 81.75174090984304
- type: similarity_ap
value: 88.17695295243927
- type: similarity_f1
value: 83.46293416277865
- type: similarity_f1_threshold
value: 81.67502920031147
- type: similarity_precision
value: 86.65231431646933
- type: similarity_recall
value: 80.5
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: main_score
value: 37.82716668016299
- type: v_measure
value: 37.82716668016299
- type: v_measure_std
value: 3.9071651545475055
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: main_score
value: 31.549916824347523
- type: v_measure
value: 31.549916824347523
- type: v_measure_std
value: 1.649284454526032
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 40.201162273119
- type: map
value: 40.201162273119
- type: mrr
value: 40.4580866437484
- type: nAUC_map_diff1
value: 33.47313252548623
- type: nAUC_map_max
value: 15.023702266852649
- type: nAUC_map_std
value: 4.389545656603201
- type: nAUC_mrr_diff1
value: 32.789106382547125
- type: nAUC_mrr_max
value: 16.03297395659567
- type: nAUC_mrr_std
value: 4.5441260195062885
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 30.982384340344282
- type: cosine_spearman
value: 31.512077655680574
- type: dot_pearson
value: 30.98238732795588
- type: dot_spearman
value: 31.518281673786575
- type: main_score
value: 31.512077655680574
- type: pearson
value: 30.982384340344282
- type: spearman
value: 31.512077655680574
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 40.475
- type: map_at_1
value: 0.13799999999999998
- type: map_at_10
value: 0.8420000000000001
- type: map_at_100
value: 3.5770000000000004
- type: map_at_1000
value: 8.158
- type: map_at_20
value: 1.2930000000000001
- type: map_at_3
value: 0.314
- type: map_at_5
value: 0.469
- type: mrr_at_1
value: 52.0
- type: mrr_at_10
value: 61.566666666666656
- type: mrr_at_100
value: 62.05786242033046
- type: mrr_at_1000
value: 62.114468654223785
- type: mrr_at_20
value: 61.80277777777777
- type: mrr_at_3
value: 59.333333333333336
- type: mrr_at_5
value: 61.23333333333333
- type: nauc_map_at_1000_diff1
value: -9.841499993688778
- type: nauc_map_at_1000_max
value: 35.583722623282604
- type: nauc_map_at_1000_std
value: 49.8512713272345
- type: nauc_map_at_100_diff1
value: -9.535301607183984
- type: nauc_map_at_100_max
value: 24.79493554952309
- type: nauc_map_at_100_std
value: 30.200092896546565
- type: nauc_map_at_10_diff1
value: 8.916577726839806
- type: nauc_map_at_10_max
value: 29.525597945854425
- type: nauc_map_at_10_std
value: 19.568384032684456
- type: nauc_map_at_1_diff1
value: 26.460797161906434
- type: nauc_map_at_1_max
value: 2.508967307552916
- type: nauc_map_at_1_std
value: 1.1681201948586744
- type: nauc_map_at_20_diff1
value: 0.9454484237357934
- type: nauc_map_at_20_max
value: 23.745460933070735
- type: nauc_map_at_20_std
value: 21.99699798901709
- type: nauc_map_at_3_diff1
value: 11.118755215925088
- type: nauc_map_at_3_max
value: 19.978322544243934
- type: nauc_map_at_3_std
value: 14.509469952755843
- type: nauc_map_at_5_diff1
value: 11.598932237369507
- type: nauc_map_at_5_max
value: 26.153738721440213
- type: nauc_map_at_5_std
value: 16.524906956574807
- type: nauc_mrr_at_1000_diff1
value: 26.07845182857252
- type: nauc_mrr_at_1000_max
value: 24.176348172120992
- type: nauc_mrr_at_1000_std
value: 23.24482013997546
- type: nauc_mrr_at_100_diff1
value: 25.984954958619326
- type: nauc_mrr_at_100_max
value: 24.155747509357905
- type: nauc_mrr_at_100_std
value: 23.29395979045902
- type: nauc_mrr_at_10_diff1
value: 26.129837220948154
- type: nauc_mrr_at_10_max
value: 24.392744717202998
- type: nauc_mrr_at_10_std
value: 23.867386603817575
- type: nauc_mrr_at_1_diff1
value: 33.149246422547435
- type: nauc_mrr_at_1_max
value: 27.63480058762716
- type: nauc_mrr_at_1_std
value: 15.626530279122907
- type: nauc_mrr_at_20_diff1
value: 25.83893496030277
- type: nauc_mrr_at_20_max
value: 24.044445525240917
- type: nauc_mrr_at_20_std
value: 23.60228538747721
- type: nauc_mrr_at_3_diff1
value: 27.270721998857006
- type: nauc_mrr_at_3_max
value: 24.992229563752698
- type: nauc_mrr_at_3_std
value: 25.97080321244876
- type: nauc_mrr_at_5_diff1
value: 25.725324288076845
- type: nauc_mrr_at_5_max
value: 24.00232670237143
- type: nauc_mrr_at_5_std
value: 24.79721341200203
- type: nauc_ndcg_at_1000_diff1
value: -4.183105310677864
- type: nauc_ndcg_at_1000_max
value: 27.180660506931897
- type: nauc_ndcg_at_1000_std
value: 44.28297994229539
- type: nauc_ndcg_at_100_diff1
value: -2.4155068242179603
- type: nauc_ndcg_at_100_max
value: 31.816956304456312
- type: nauc_ndcg_at_100_std
value: 46.14561095598332
- type: nauc_ndcg_at_10_diff1
value: 2.615898205427684
- type: nauc_ndcg_at_10_max
value: 35.980044445372805
- type: nauc_ndcg_at_10_std
value: 33.743474797390846
- type: nauc_ndcg_at_1_diff1
value: 32.67671069224133
- type: nauc_ndcg_at_1_max
value: 26.737904028671945
- type: nauc_ndcg_at_1_std
value: 17.61598194730206
- type: nauc_ndcg_at_20_diff1
value: 0.26491277268362085
- type: nauc_ndcg_at_20_max
value: 31.281622776028495
- type: nauc_ndcg_at_20_std
value: 38.724219848828994
- type: nauc_ndcg_at_3_diff1
value: 8.936493331684819
- type: nauc_ndcg_at_3_max
value: 36.02086733359256
- type: nauc_ndcg_at_3_std
value: 30.338780238893374
- type: nauc_ndcg_at_5_diff1
value: 8.045634929889802
- type: nauc_ndcg_at_5_max
value: 37.327357284632185
- type: nauc_ndcg_at_5_std
value: 30.957117218415558
- type: nauc_precision_at_1000_diff1
value: -4.599639084511409
- type: nauc_precision_at_1000_max
value: 32.194166261212416
- type: nauc_precision_at_1000_std
value: 51.93173817114919
- type: nauc_precision_at_100_diff1
value: -4.957123210096294
- type: nauc_precision_at_100_max
value: 30.2670457390949
- type: nauc_precision_at_100_std
value: 48.68923380370673
- type: nauc_precision_at_10_diff1
value: -1.5291339587721136
- type: nauc_precision_at_10_max
value: 38.17154891824624
- type: nauc_precision_at_10_std
value: 35.5699151190248
- type: nauc_precision_at_1_diff1
value: 33.149246422547435
- type: nauc_precision_at_1_max
value: 27.63480058762716
- type: nauc_precision_at_1_std
value: 15.626530279122907
- type: nauc_precision_at_20_diff1
value: -4.749129059384092
- type: nauc_precision_at_20_max
value: 29.86806703620865
- type: nauc_precision_at_20_std
value: 42.15085625809208
- type: nauc_precision_at_3_diff1
value: 0.9399784588269945
- type: nauc_precision_at_3_max
value: 34.8888671301283
- type: nauc_precision_at_3_std
value: 32.87183002056205
- type: nauc_precision_at_5_diff1
value: 3.555638235202897
- type: nauc_precision_at_5_max
value: 37.42287539143648
- type: nauc_precision_at_5_std
value: 31.48792360400585
- type: nauc_recall_at_1000_diff1
value: -6.381069093195219
- type: nauc_recall_at_1000_max
value: 21.417984620002997
- type: nauc_recall_at_1000_std
value: 39.07231544912849
- type: nauc_recall_at_100_diff1
value: -7.26598409041968
- type: nauc_recall_at_100_max
value: 16.570118087602005
- type: nauc_recall_at_100_std
value: 26.77146523700651
- type: nauc_recall_at_10_diff1
value: 8.714684916963465
- type: nauc_recall_at_10_max
value: 25.75907022743869
- type: nauc_recall_at_10_std
value: 19.009377316046564
- type: nauc_recall_at_1_diff1
value: 26.460797161906434
- type: nauc_recall_at_1_max
value: 2.508967307552916
- type: nauc_recall_at_1_std
value: 1.1681201948586744
- type: nauc_recall_at_20_diff1
value: 0.387922884336754
- type: nauc_recall_at_20_max
value: 16.63869160692463
- type: nauc_recall_at_20_std
value: 21.613192035516175
- type: nauc_recall_at_3_diff1
value: 9.080317655844187
- type: nauc_recall_at_3_max
value: 17.8202789569972
- type: nauc_recall_at_3_std
value: 16.410682320537916
- type: nauc_recall_at_5_diff1
value: 12.29082747211401
- type: nauc_recall_at_5_max
value: 21.653811740840258
- type: nauc_recall_at_5_std
value: 15.799511026732738
- type: ndcg_at_1
value: 47.0
- type: ndcg_at_10
value: 40.475
- type: ndcg_at_100
value: 27.061
- type: ndcg_at_1000
value: 23.977999999999998
- type: ndcg_at_20
value: 35.676
- type: ndcg_at_3
value: 44.285000000000004
- type: ndcg_at_5
value: 41.916
- type: precision_at_1
value: 52.0
- type: precision_at_10
value: 43.2
- type: precision_at_100
value: 27.68
- type: precision_at_1000
value: 11.318
- type: precision_at_20
value: 36.9
- type: precision_at_3
value: 46.666999999999994
- type: precision_at_5
value: 44.4
- type: recall_at_1
value: 0.13799999999999998
- type: recall_at_10
value: 1.036
- type: recall_at_100
value: 6.024
- type: recall_at_1000
value: 22.545
- type: recall_at_20
value: 1.729
- type: recall_at_3
value: 0.337
- type: recall_at_5
value: 0.5329999999999999
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 12.869
- type: map_at_1
value: 0.662
- type: map_at_10
value: 3.971
- type: map_at_100
value: 7.363
- type: map_at_1000
value: 8.472
- type: map_at_20
value: 5.13
- type: map_at_3
value: 1.644
- type: map_at_5
value: 2.838
- type: mrr_at_1
value: 8.16326530612245
- type: mrr_at_10
value: 24.049238743116288
- type: mrr_at_100
value: 25.12029835148993
- type: mrr_at_1000
value: 25.14408894379364
- type: mrr_at_20
value: 24.38624196545786
- type: mrr_at_3
value: 17.68707482993197
- type: mrr_at_5
value: 21.666666666666668
- type: nauc_map_at_1000_diff1
value: 12.337448807158625
- type: nauc_map_at_1000_max
value: -17.318046612869768
- type: nauc_map_at_1000_std
value: -5.226718750608608
- type: nauc_map_at_100_diff1
value: 13.956163090828705
- type: nauc_map_at_100_max
value: -19.20287240190536
- type: nauc_map_at_100_std
value: -10.092675511550773
- type: nauc_map_at_10_diff1
value: 9.18601548640666
- type: nauc_map_at_10_max
value: -24.021035071127027
- type: nauc_map_at_10_std
value: -14.275185624920955
- type: nauc_map_at_1_diff1
value: 4.7247342416680995
- type: nauc_map_at_1_max
value: -34.642931094004034
- type: nauc_map_at_1_std
value: -11.238414747973119
- type: nauc_map_at_20_diff1
value: 12.874639720051235
- type: nauc_map_at_20_max
value: -24.9080157788591
- type: nauc_map_at_20_std
value: -13.156578501449037
- type: nauc_map_at_3_diff1
value: 7.690290046454848
- type: nauc_map_at_3_max
value: -23.28618026459301
- type: nauc_map_at_3_std
value: -12.293774024221053
- type: nauc_map_at_5_diff1
value: 12.498873258031583
- type: nauc_map_at_5_max
value: -21.344480733880943
- type: nauc_map_at_5_std
value: -8.37592777063943
- type: nauc_mrr_at_1000_diff1
value: 7.632497711020806
- type: nauc_mrr_at_1000_max
value: -18.25120924121576
- type: nauc_mrr_at_1000_std
value: -6.414648627407907
- type: nauc_mrr_at_100_diff1
value: 7.5484282387727655
- type: nauc_mrr_at_100_max
value: -18.121388473878216
- type: nauc_mrr_at_100_std
value: -6.297822495739477
- type: nauc_mrr_at_10_diff1
value: 8.58584663550636
- type: nauc_mrr_at_10_max
value: -19.845467444420596
- type: nauc_mrr_at_10_std
value: -6.690298972830557
- type: nauc_mrr_at_1_diff1
value: -16.07306433650747
- type: nauc_mrr_at_1_max
value: -27.82478676090755
- type: nauc_mrr_at_1_std
value: -15.97885564257309
- type: nauc_mrr_at_20_diff1
value: 8.68636948230222
- type: nauc_mrr_at_20_max
value: -18.602790322324793
- type: nauc_mrr_at_20_std
value: -5.764922000928246
- type: nauc_mrr_at_3_diff1
value: 8.625611091011928
- type: nauc_mrr_at_3_max
value: -17.79470893653387
- type: nauc_mrr_at_3_std
value: -10.458985196270106
- type: nauc_mrr_at_5_diff1
value: 9.463099209006096
- type: nauc_mrr_at_5_max
value: -12.070782626702988
- type: nauc_mrr_at_5_std
value: -1.7108913341652359
- type: nauc_ndcg_at_1000_diff1
value: 17.13876584026755
- type: nauc_ndcg_at_1000_max
value: -9.658877990859322
- type: nauc_ndcg_at_1000_std
value: 15.08101976706594
- type: nauc_ndcg_at_100_diff1
value: 19.217666462897675
- type: nauc_ndcg_at_100_max
value: -22.83702381325575
- type: nauc_ndcg_at_100_std
value: -6.659892970133183
- type: nauc_ndcg_at_10_diff1
value: 15.51333602888754
- type: nauc_ndcg_at_10_max
value: -19.445241461181332
- type: nauc_ndcg_at_10_std
value: -11.499134493661858
- type: nauc_ndcg_at_1_diff1
value: -15.409833668093054
- type: nauc_ndcg_at_1_max
value: -28.84037358169315
- type: nauc_ndcg_at_1_std
value: -10.973056606811218
- type: nauc_ndcg_at_20_diff1
value: 20.623641958571344
- type: nauc_ndcg_at_20_max
value: -24.809454049416633
- type: nauc_ndcg_at_20_std
value: -11.96823517644928
- type: nauc_ndcg_at_3_diff1
value: 9.13352117357039
- type: nauc_ndcg_at_3_max
value: -13.267328789703988
- type: nauc_ndcg_at_3_std
value: -10.536298335822734
- type: nauc_ndcg_at_5_diff1
value: 15.095676598753386
- type: nauc_ndcg_at_5_max
value: -10.052271783670294
- type: nauc_ndcg_at_5_std
value: -1.930908878523125
- type: nauc_precision_at_1000_diff1
value: -14.11681455108461
- type: nauc_precision_at_1000_max
value: 45.108803189710365
- type: nauc_precision_at_1000_std
value: 53.31308692343628
- type: nauc_precision_at_100_diff1
value: 6.9028413215024775
- type: nauc_precision_at_100_max
value: -4.9050592903619785
- type: nauc_precision_at_100_std
value: 9.735851001561873
- type: nauc_precision_at_10_diff1
value: 11.991816062486441
- type: nauc_precision_at_10_max
value: -19.368511495003602
- type: nauc_precision_at_10_std
value: -10.990338266181084
- type: nauc_precision_at_1_diff1
value: -16.07306433650747
- type: nauc_precision_at_1_max
value: -27.82478676090755
- type: nauc_precision_at_1_std
value: -15.97885564257309
- type: nauc_precision_at_20_diff1
value: 24.32628917857637
- type: nauc_precision_at_20_max
value: -19.57542096164371
- type: nauc_precision_at_20_std
value: -7.99725890197478
- type: nauc_precision_at_3_diff1
value: 9.121279719801027
- type: nauc_precision_at_3_max
value: -11.446415855423215
- type: nauc_precision_at_3_std
value: -8.639598301111935
- type: nauc_precision_at_5_diff1
value: 14.610162733995358
- type: nauc_precision_at_5_max
value: -6.951865156929523
- type: nauc_precision_at_5_std
value: 2.6465275964628088
- type: nauc_recall_at_1000_diff1
value: 0.83599650194909
- type: nauc_recall_at_1000_max
value: -3.7204370018748496
- type: nauc_recall_at_1000_std
value: 36.937019972801764
- type: nauc_recall_at_100_diff1
value: 8.73150091660338
- type: nauc_recall_at_100_max
value: -25.580421701806877
- type: nauc_recall_at_100_std
value: -4.617850817669842
- type: nauc_recall_at_10_diff1
value: 9.577784673082448
- type: nauc_recall_at_10_max
value: -29.225334501694523
- type: nauc_recall_at_10_std
value: -16.557978171725594
- type: nauc_recall_at_1_diff1
value: 4.7247342416680995
- type: nauc_recall_at_1_max
value: -34.642931094004034
- type: nauc_recall_at_1_std
value: -11.238414747973119
- type: nauc_recall_at_20_diff1
value: 16.714648634309317
- type: nauc_recall_at_20_max
value: -30.901938269186104
- type: nauc_recall_at_20_std
value: -13.257212212629026
- type: nauc_recall_at_3_diff1
value: 18.114207560002715
- type: nauc_recall_at_3_max
value: -20.425807180867242
- type: nauc_recall_at_3_std
value: -11.309432358198672
- type: nauc_recall_at_5_diff1
value: 20.772553996672443
- type: nauc_recall_at_5_max
value: -17.828048513485772
- type: nauc_recall_at_5_std
value: -1.0797675761407135
- type: ndcg_at_1
value: 7.142999999999999
- type: ndcg_at_10
value: 12.869
- type: ndcg_at_100
value: 22.469
- type: ndcg_at_1000
value: 33.626
- type: ndcg_at_20
value: 13.858999999999998
- type: ndcg_at_3
value: 11.110000000000001
- type: ndcg_at_5
value: 13.208
- type: precision_at_1
value: 8.163
- type: precision_at_10
value: 14.082
- type: precision_at_100
value: 5.449
- type: precision_at_1000
value: 1.253
- type: precision_at_20
value: 10.816
- type: precision_at_3
value: 14.285999999999998
- type: precision_at_5
value: 17.551
- type: recall_at_1
value: 0.662
- type: recall_at_10
value: 9.3
- type: recall_at_100
value: 32.952
- type: recall_at_1000
value: 67.022
- type: recall_at_20
value: 14.485000000000001
- type: recall_at_3
value: 2.495
- type: recall_at_5
value: 5.4719999999999995
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 66.591796875
- type: ap
value: 11.916810235472406
- type: ap_weighted
value: 11.916810235472406
- type: f1
value: 50.82611668132084
- type: f1_weighted
value: 74.03661967545759
- type: main_score
value: 66.591796875
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 52.524052065648
- type: f1
value: 52.69528334636704
- type: f1_weighted
value: 51.956916785617736
- type: main_score
value: 52.524052065648
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: main_score
value: 27.072966157648477
- type: v_measure
value: 27.072966157648477
- type: v_measure_std
value: 1.563199572918265
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 80.6818859152411
- type: cosine_accuracy_threshold
value: 80.54484987856905
- type: cosine_ap
value: 53.66110400517361
- type: cosine_f1
value: 52.50138045278852
- type: cosine_f1_threshold
value: 68.20751217239422
- type: cosine_precision
value: 45.14719848053181
- type: cosine_recall
value: 62.71767810026385
- type: dot_accuracy
value: 80.6818859152411
- type: dot_accuracy_threshold
value: 80.54484833308396
- type: dot_ap
value: 53.66111257744601
- type: dot_f1
value: 52.50138045278852
- type: dot_f1_threshold
value: 68.20751122368169
- type: dot_precision
value: 45.14719848053181
- type: dot_recall
value: 62.71767810026385
- type: euclidean_accuracy
value: 80.6818859152411
- type: euclidean_accuracy_threshold
value: 62.37812014295836
- type: euclidean_ap
value: 53.66110322376674
- type: euclidean_f1
value: 52.50138045278852
- type: euclidean_f1_threshold
value: 79.74018733602558
- type: euclidean_precision
value: 45.14719848053181
- type: euclidean_recall
value: 62.71767810026385
- type: main_score
value: 53.66111257744601
- type: manhattan_accuracy
value: 80.61631996185254
- type: manhattan_accuracy_threshold
value: 408.045218404186
- type: manhattan_ap
value: 53.55565109862251
- type: manhattan_f1
value: 52.268926301705875
- type: manhattan_f1_threshold
value: 502.7589220990194
- type: manhattan_precision
value: 45.25970264529832
- type: manhattan_recall
value: 61.84696569920845
- type: max_accuracy
value: 80.6818859152411
- type: max_ap
value: 53.66111257744601
- type: max_f1
value: 52.50138045278852
- type: max_precision
value: 45.25970264529832
- type: max_recall
value: 62.71767810026385
- type: similarity_accuracy
value: 80.6818859152411
- type: similarity_accuracy_threshold
value: 80.54484987856905
- type: similarity_ap
value: 53.66110400517361
- type: similarity_f1
value: 52.50138045278852
- type: similarity_f1_threshold
value: 68.20751217239422
- type: similarity_precision
value: 45.14719848053181
- type: similarity_recall
value: 62.71767810026385
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 85.89474909768309
- type: cosine_accuracy_threshold
value: 66.7208384412081
- type: cosine_ap
value: 79.33674860685535
- type: cosine_f1
value: 71.67923542148885
- type: cosine_f1_threshold
value: 61.64839965467019
- type: cosine_precision
value: 69.57530076822728
- type: cosine_recall
value: 73.91438250692947
- type: dot_accuracy
value: 85.89474909768309
- type: dot_accuracy_threshold
value: 66.72083970945883
- type: dot_ap
value: 79.33671093343192
- type: dot_f1
value: 71.67923542148885
- type: dot_f1_threshold
value: 61.648404274339356
- type: dot_precision
value: 69.57530076822728
- type: dot_recall
value: 73.91438250692947
- type: euclidean_accuracy
value: 85.89474909768309
- type: euclidean_accuracy_threshold
value: 81.58328528607446
- type: euclidean_ap
value: 79.33675212612457
- type: euclidean_f1
value: 71.67923542148885
- type: euclidean_f1_threshold
value: 87.58036675764342
- type: euclidean_precision
value: 69.57530076822728
- type: euclidean_recall
value: 73.91438250692947
- type: main_score
value: 79.33675212612457
- type: manhattan_accuracy
value: 85.89863003065938
- type: manhattan_accuracy_threshold
value: 513.242605511914
- type: manhattan_ap
value: 79.06488846026886
- type: manhattan_f1
value: 71.42752882790833
- type: manhattan_f1_threshold
value: 563.6103289492894
- type: manhattan_precision
value: 67.88984461709212
- type: manhattan_recall
value: 75.3541730828457
- type: max_accuracy
value: 85.89863003065938
- type: max_ap
value: 79.33675212612457
- type: max_f1
value: 71.67923542148885
- type: max_precision
value: 69.57530076822728
- type: max_recall
value: 75.3541730828457
- type: similarity_accuracy
value: 85.89474909768309
- type: similarity_accuracy_threshold
value: 66.7208384412081
- type: similarity_ap
value: 79.33674860685535
- type: similarity_f1
value: 71.67923542148885
- type: similarity_f1_threshold
value: 61.64839965467019
- type: similarity_precision
value: 69.57530076822728
- type: similarity_recall
value: 73.91438250692947
---
# potion-base-2M Model Card
<div align="center">
<img width="35%" alt="Model2Vec logo" src="https://raw.githubusercontent.com/MinishLab/model2vec/main/assets/images/logo_v2.png">
</div>
This [Model2Vec](https://github.com/MinishLab/model2vec) model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It is a distilled version of the [baai/bge-base-en-v1.5](https://huggingface.co/baai/bge-base-en-v1.5) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical.
## Installation
Install model2vec using pip:
```
pip install model2vec
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec import StaticModel
# Load a pretrained Model2Vec model
model = StaticModel.from_pretrained("minishlab/potion-base-2M")
# Compute text embeddings
embeddings = model.encode(["Example sentence"])
```
## How it works
Model2vec creates a small, static model that outperforms other static embedding models by a large margin on all tasks on [MTEB](https://huggingface.co/spaces/mteb/leaderboard). This model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It's created using the following steps:
- Distillation: first, a model is distilled from a sentence transformer model using Model2Vec.
- Training data creation: the sentence transformer model is used to create training data by creating mean output embeddings on a large corpus.
- Training: the distilled model is trained on the training data using Tokenlearn.
- Post-training re-regularization: after training, the model is re-regularized by weighting the tokens based on their frequency, applying PCA, and finally applying [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx).
The results for this model can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).
## Additional Resources
- [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Tokenlearn repo](https://github.com/MinishLab/tokenlearn)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/blob/main/results/README.md)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@software{minishlab2024model2vec,
authors = {Stephan Tulkens, Thomas van Dongen},
title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model},
year = {2024},
url = {https://github.com/MinishLab/model2vec},
}
``` | [
"BIOSSES",
"SCIFACT"
] |
sapienzanlp/Minerva-7B-instruct-v1.0 | sapienzanlp | text-generation | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"sft",
"dpo",
"conversational",
"it",
"en",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"dataset:Babelscape/ALERT",
"dataset:efederici/evol-dpo-ita",
"base_model:sapienzanlp/Minerva-7B-base-v1.0",
"base_model:finetune:sapienzanlp/Minerva-7B-base-v1.0",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-12-02T18:37:52Z" | 2024-12-05T11:53:02+00:00 | 6,640 | 15 | ---
base_model:
- sapienzanlp/Minerva-7B-base-v1.0
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Babelscape/ALERT
- efederici/evol-dpo-ita
language:
- it
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- sft
- dpo
inference:
parameters:
temperature: 0.4
do_sample: true
widget:
- text: Chi sei?
example_title: Example 1
---
<div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0/resolve/main/minerva-logo.png" style="max-width: 550px; height: auto;">
</div>
# Model Card for Minerva-7B-instruct-v1.0
Minerva is the first family of **LLMs pretrained from scratch on Italian** developed by [Sapienza NLP](https://nlp.uniroma1.it)
in the context of the [Future Artificial Intelligence Research (FAIR)](https://fondazione-fair.it/) project, in collaboration with [CINECA](https://www.cineca.it/) and with additional contributions from [Babelscape](https://babelscape.com) and the [CREATIVE](https://nlp.uniroma1.it/creative/) PRIN Project.
Notably, the Minerva models are truly-open (data and model) Italian-English LLMs, with approximately half of the pretraining data
including Italian text.
* [Minerva LLMs - website](https://nlp.uniroma1.it/minerva/)
* [Try it out!](https://minerva-llm.org)
## Description
This is the model card for **Minerva-7B-instruct-v1.0**, a 7 billion parameter model trained on almost 2.5 trillion tokens (1.14 trillion in Italian,
1.14 trillion in English and 200 billion in code).
This model is part of the Minerva LLM family:
* [Minerva-350M-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-350M-base-v1.0)
* [Minerva-1B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0)
* [Minerva-3B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0)
* [Minerva-7B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0)
* [Minerva-7B-instruct-v1.0](https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0)
## 🚨⚠️🚨 Bias, Risks, and Limitations 🚨⚠️🚨
*This section identifies foreseeable harms and misunderstandings.*
This is a chat foundation model, subject to model alignment and safety risk mitigation strategies. However, the model may still:
- Overrepresent some viewpoints and underrepresent others
- Contain stereotypes
- Contain [personal information](#personal-data-and-information)
- Generate:
- Racist and sexist content
- Hateful, abusive, or violent language
- Discriminatory or prejudicial language
- Content that may not be appropriate for all settings, including sexual content
- Make errors, including producing incorrect information or historical facts as if it were factual
- Generate irrelevant or repetitive outputs
We are aware of the biases and potential problematic/toxic content that current pretrained large language models exhibit: more specifically, as probabilistic models of (Italian and English) languages, they reflect and amplify the biases of their training data.
For more information about this issue, please refer to our survey:
* [Biases in Large Language Models: Origins, Inventory, and Discussion](https://dl.acm.org/doi/full/10.1145/3597307)
## How to use Minerva with Hugging Face transformers
```python
import transformers
import torch
model_id = "sapienzanlp/Minerva-7B-instruct-v1.0"
# Initialize the pipeline.
pipeline = transformers.pipeline(
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
# Input text for the model.
input_conv = [{"role": "user", "content": "Qual è la capitale dell'Italia?"}]
# Compute the outputs.
output = pipeline(
input_conv,
max_new_tokens=128,
)
output
```
[{'generated_text': [{'role': 'user', 'content': "Qual è la capitale dell'Italia?"}, {'role': 'assistant', 'content': "La capitale dell'Italia è Roma."}]}]
## Model Architecture
Minerva-7B-base-v1.0 is a Transformer model based on the [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) architecture.
Please look at the configuration file for a detailed breakdown of the hyperparameters we chose for this model.
The Minerva LLM family is composed of:
| Model Name | Tokens | Layers | Hidden Size | Attention Heads | KV Heads | Sliding Window | Max Context Length |
| --- | --- | --- | --- | --- | --- | --- | --- |
| Minerva-350M-base-v1.0 | 70B (35B it + 35B en) | 16 | 1152 | 16 | 4 | 2048 | 16384 |
| Minerva-1B-base-v1.0 | 200B (100B it + 100B en) | 16 | 2048 | 16 | 4 | 2048 | 16384 |
| Minerva-3B-base-v1.0 | 660B (330B it + 330B en) | 32 | 2560 | 32 | 8 | 2048 | 16384 |
| Minerva-7B-base-v1.0 | 2.48T (1.14T it + 1.14T en + 200B code) | 32 | 4096 | 32 | 8 | None | 4096 |
## Model Training
Minerva-7B-base-v1.0 was trained using [llm-foundry 0.8.0](https://github.com/riccorl/llm-foundry) from [MosaicML](https://mosaicml.com/). The hyperparameters used are the following:
| Model Name | Optimizer | lr | betas | eps | weight decay | Scheduler | Warmup Steps | Batch Size (Tokens) | Total Steps |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Minerva-350M-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 16,690 |
| Minerva-1B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 47,684 |
| Minerva-3B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 157,357 |
| Minerva-7B-base-v1.0 | AdamW | 3e-4 | (0.9, 0.95) | 1e-5 | 0.1 | Cosine | 2000 | 4M | 591,558 |
### SFT Training
The SFT model was trained using [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory). The data mix was the following:
| Dataset | Source | Code | English | Italian |
|--------------------------------------|------------------------------------------------------------------------|----------|---------|---------|
| Glaive-code-assistant | [Link](https://huggingface.co/datasets/glaiveai/glaive-code-assistant) | 100,000 | 0 | 0 |
| Alpaca-python | [Link](https://huggingface.co/datasets/Vezora/Tested-143k-Python-Alpaca) | 20,000 | 0 | 0 |
| Alpaca-cleaned | [Link](https://huggingface.co/datasets/yahma/alpaca-cleaned) | 0 | 50,000 | 0 |
| Databricks-dolly-15k | [Link](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | 0 | 15,011 | 0 |
| No-robots | [Link](https://huggingface.co/datasets/HuggingFaceH4/no_robots) | 0 | 9,499 | 0 |
| OASST2 | [Link](https://huggingface.co/datasets/OpenAssistant/oasst2) | 0 | 29,000 | 528 |
| WizardLM | [Link](https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k) | 0 | 29,810 | 0 |
| LIMA | [Link](https://huggingface.co/datasets/GAIR/lima?row=0) | 0 | 1,000 | 0 |
| OPENORCA | [Link](https://huggingface.co/datasets/Open-Orca/OpenOrca) | 0 | 30,000 | 0 |
| Ultrachat | [Link](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | 0 | 50,000 | 0 |
| MagpieMT | [Link](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-MT-300K-v0.1) | 0 | 30,000 | 0 |
| Tulu-V2-Science | [Link](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) | 0 | 7,000 | 0 |
| Aya_datasets | [Link](http://CohereForAI/aya_dataset) | 0 | 3,944 | 738 |
| Tower-blocks_it | [Link](https://huggingface.co/datasets/sapienzanlp/tower_blocks-v0.2_it) | 0 | 0 | 7,276 |
| Bactrian-X | [Link](https://huggingface.co/datasets/MBZUAI/Bactrian-X) | 0 | 0 | 67,000 |
| Magpie (*Translated by us*) | [Link](https://huggingface.co/datasets/sapienzanlp/it-Magpie-Llama-3.1-Pro-300K-Filtered-easy) | 0 | 0 | 59,070 |
| Everyday-conversations (*Translated by us*) | [Link](https://huggingface.co/datasets/sapienzanlp/it-everyday-conversations-llama3.1-2k-TowerInstruct-Mistral-7B-v0.2) | 0 | 0 | 2,260 |
| alpaca-gpt4-it | [Link](https://huggingface.co/datasets/efederici/alpaca-gpt4-it) | 0 | 0 | 15,000 |
| capybara-claude-15k-ita | [Link](https://huggingface.co/datasets/efederici/capybara-claude-15k-ita) | 0 | 0 | 15,000 |
| Wildchat | [Link](https://huggingface.co/datasets/allenai/WildChat-1M) | 0 | 0 | 5,000 |
| GPT4_INST | [Link](https://huggingface.co/datasets/DeepMount00/GPT-4o-ITA-INSTRUCT) | 0 | 0 | 10,000 |
| Italian Safety Instructions | - | 0 | 0 | 21,426 |
| Italian Conversations | - | 0 | 0 | 4,843 |
For more details, please check [our tech page](https://nlp.uniroma1.it/minerva/blog#from-a-base-model-to-an-instruct-model).
### Online DPO Training
This model card is for our DPO model. Direct Preference Optimization (DPO) is a method that refines models based on user feedback, similar to Reinforcement Learning from Human Feedback (RLHF), but without the complexity of reinforcement learning. Online DPO further improves this by allowing real-time adaptation during training, continuously refining the model with new feedback. For training this model, we used the [Hugging Face TRL](https://github.com/huggingface/trl) library and Online DPO, with the [Skywork/Skywork-Reward-Llama-3.1-8B-v0.2](https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2) model as the judge to evaluate and guide optimization. For this stage we used just the prompts from HuggingFaceH4/ultrafeedback_binarized (English), efederici/evol-dpo-ita (Italian) and Babelscape/ALERT translated to Italian, with additional manually curated data for safety.
For more details, please check [our tech page](https://nlp.uniroma1.it/minerva/blog#from-a-base-model-to-an-instruct-model).
## Model Evaluation
For Minerva's evaluation process, we utilized [ITA-Bench](https://huggingface.co/collections/sapienzanlp/ita-bench-italian-benchmarks-for-llms-66337ca59e6df7d7d4933896), a new evaluation suite to test the capabilities of Italian-speaking models.
ITA-Bench is a collection of 18 benchmarks that assess the performance of language models on various tasks, including scientific knowledge,
commonsense reasoning, and mathematical problem-solving.
<div style={{ display: 'flex', justifyContent: 'space-around' }}>
<img src="https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0/resolve/main/Minerva%20LLMs%20Results.png" alt="Results on instructed models" style={{ width: '45%' }}></img>
<img src="https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0/resolve/main/Minerva%20LLMs%20Results%20(1).png" alt="Results on instructed models" style={{ width: '45%' }}></img>
</div>
<!-- **Italian** Data: -->
<!-- | Task | Accuracy |
| --- | --- | -->
<!-- | [xcopa](https://huggingface.co/datasets/xcopa) (0-shot) | 0.694 |
| [Hellaswag](https://huggingface.co/datasets/alexandrainst/m_hellaswag) (5-shot) | 0.5293 |
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2333 |
| [TruthfulQA MC 1](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.2363 |
| [TruthfulQA MC 2](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.3731 |
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.2612 |
| [arc challenge](https://huggingface.co/datasets/alexandrainst/m_arc) (5-shot) | 0.3268 | -->
<!-- **English** Data: -->
<!-- | Task | Accuracy |
| --- | --- | -->
<!-- | [Hellaswag](https://huggingface.co/datasets/Rowan/hellaswag) (5-shot) | 0.6168 |
| [piqa](https://huggingface.co/datasets/piqa) (5-shot) | 0.7535 |
| [sciq](https://huggingface.co/datasets/sciq) (5-shot) | 0.925 |
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2278 |
| [TruthfulQA MC 1](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.2142 |
| [TruthfulQA MC 2](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.3643 |
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.263 |
| [arc challenge](allenai/ai2_arc) (5-shot) | 0.3319 |
| [arc easy](allenai/ai2_arc) (5-shot) | 0.6540 | -->
<!-- ## Training Data
Minerva-7B-base-v1.0 is trained on 1.14T Italian tokens, 1.14T English tokens, and 200B code tokens.
The training data is a mixture of the following datasets:
| Dataset | Tokens | Language | Epochs |
| --- | --- | --- | --- |
| RedPajama-Data-V2 | 687,952,502,784 | Italian | 1.3 |
| CulturaX | 158,201,876,480 | Italian | 1.5 |
| Wikipedia | 1,265,135,616 | Italian | 1.0 |
| Gutenberg/Wikisource | 147,017,728 | Italian | 2.0 |
| EurLex | 1,647,013,888 | Italian | 1.0 |
| Gazzetta Ufficiale | 1,654,013,952| Italian | 1.0 |
| FineWeb | 1,076,406,624,256 | English | 1.0 |
| Wikipedia | 5,259,501,568 | English | 1.0 |
| ArXiv | 33,231,106,048 | English | 1.0 |
| Gutenberg | 6,947,893,248 | English | 1.0 |
| StackExchange | 22,069,268,480 | English | 1.0 |
| The Stack V2 | 200,754,900,992 | Code | 1.0 | -->
<!-- We have extracted some statistics on Italian (115B tokens) and English (210B tokens) documents from CulturaX on the selected sources:
*Proportion of number of tokens per domain (Italian)*
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_it.png?raw=true" alt="italian-tok-counts" border="0" width="1800px">
*Proportion of number of tokens per domain (English)*
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_en.png?raw=true" alt="english-tok-counts" border="0" width="1800px">
-->
## Tokenizer Fertility
The tokenizer fertility measures the average amount of tokens produced per tokenized word.
A tokenizer displaying high fertility values in a particular language typically indicates that it segments words in that language extensively.
The tokenizer fertility is strictly correlated with the inference speed of the model with respect to a specific language,
as higher values mean longer sequences of tokens to generate and thus lower inference speed.
**Fertility computed over a sample of Cultura X (CX) data and Wikipedia (Wp):**
| Model | Voc. Size | Fertility IT (CX) | Fertility EN (CX) | Fertility IT (Wp) | Fertility EN (Wp) |
| --- | --- | --- |--- | --- |--- |
| Mistral-7B-v0.1 | 32000 | 1.87 | 1.32 | 2.05 | 1.57 |
| gemma-7b | 256000 | 1.42 | 1.18 | 1.56 | 1.34 |
| Minerva-3B-base-v1.0 | 32768 | 1.39 | 1.32 | 1.66 | 1.59 |
| Minerva-7B-base-v1.0 | 51200 | 1.32 | 1.26 | 1.56 | 1.51 |
<!-- ## Notice
Minerva-7B-base-v1.0 is a pretrained base model and, therefore, has no moderation mechanisms.
-->
## The Sapienza NLP Team
### 🧭 Project Lead and Coordination
* __Roberto Navigli__: project lead and coordination; model analysis, evaluation and selection, safety and guardrailing, conversations.
### 🤖 Model Development
* __Edoardo Barba__: pre-training, post-training, data analysis, prompt engineering.
* __Simone Conia__: pre-training, post-training, evaluation, model, and data analysis.
* __Pere-Lluís Huguet Cabot__: data processing, filtering,g and deduplication, preference modeling.
* __Luca Moroni__: data analysis, evaluation, post-training.
* __Riccardo Orlando__: pre-training process and data processing.
#### 👮 Safety and Guardrailing
* __Stefan Bejgu__: safety and guardrailing.
* __Federico Martelli__: synthetic prompt generation, model and safety analysis.
* __Ciro Porcaro__: additional safety prompts.
* __Alessandro Scirè__: safety and guardrailing.
* __Simone Stirpe__: additional safety prompts.
* __Simone Tedeschi__: English dataset for safety evaluation.
### Special thanks for their support
* Giuseppe Fiameni, Nvidia
* Sergio Orlandini, CINECA
## Acknowledgments
This work was funded by the PNRR MUR project [PE0000013-FAIR](https://fondazione-fair.it) and the [CREATIVE](https://nlp.uniroma1.it/creative/) PRIN project, which is funded by the MUR Progetti di
Rilevante Interesse Nazionale programme (PRIN 2020).
We acknowledge the [CINECA](https://www.cineca.it) award "IscB_medit" under the ISCRA initiative for the availability of high-performance computing resources and support.
| [
"SCIQ"
] |
abhinand/MedEmbed-base-v0.1 | abhinand | null | [
"sentence-transformers",
"safetensors",
"bert",
"medembed",
"medical-embedding",
"clinical-embedding",
"information-retrieval",
"en",
"dataset:MedicalQARetrieval",
"dataset:NFCorpus",
"dataset:PublicHealthQA",
"dataset:TRECCOVID",
"dataset:ArguAna",
"base_model:BAAI/bge-base-en-v1.5",
"base_model:finetune:BAAI/bge-base-en-v1.5",
"license:apache-2.0",
"region:us"
] | "2024-10-20T11:46:20Z" | 2024-10-21T06:49:35+00:00 | 6,316 | 14 | ---
base_model:
- BAAI/bge-base-en-v1.5
datasets:
- MedicalQARetrieval
- NFCorpus
- PublicHealthQA
- TRECCOVID
- ArguAna
language: en
license: apache-2.0
metrics:
- nDCG
- MAP
- Recall
- Precision
- MRR
tags:
- medembed
- medical-embedding
- clinical-embedding
- information-retrieval
- sentence-transformers
---
# MedEmbed: Specialized Embedding Model for Medical and Clinical Information Retrieval

## Model Description
MedEmbed is a family of embedding models fine-tuned specifically for medical and clinical data, designed to enhance performance in healthcare-related natural language processing (NLP) tasks, particularly information retrieval.
**GitHub Repo:** [https://github.com/abhinand5/MedEmbed](https://github.com/abhinand5/MedEmbed)
**Technical Blog Post:** [https://huggingface.co/blog/abhinand/medembed-finetuned-embedding-models-for-medical-ir](https://huggingface.co/blog/abhinand/medembed-finetuned-embedding-models-for-medical-ir)
## Intended Use
This model is intended for use in medical and clinical contexts to improve information retrieval, question answering, and semantic search tasks. It can be integrated into healthcare systems, research tools, and medical literature databases to enhance search capabilities and information access.
## Training Data

The model was trained using a simple yet effective synthetic data generation pipeline:
1. Source: Clinical notes from PubMed Central (PMC)
2. Processing: [LLaMA 3.1 70B](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) model used to generate query-response pairs
3. Augmentation: Negative sampling for challenging examples
4. Format: Triplets (query, positive response, negative response) for contrastive learning
## Performance
MedEmbed consistently outperforms general-purpose embedding models across various medical NLP benchmarks:
- ArguAna
- MedicalQARetrieval
- NFCorpus
- PublicHealthQA
- TRECCOVID
Specific performance metrics (nDCG, MAP, Recall, Precision, MRR) are available in the full documentation.
## Limitations
While highly effective for medical and clinical data, this model may not generalize well to non-medical domains. It should be used with caution in general-purpose NLP tasks.
## Ethical Considerations
Users should be aware of potential biases in medical data and the ethical implications of AI in healthcare. This model should be used as a tool to assist, not replace, human expertise in medical decision-making.
## Citation
If you use this model in your research, please cite:
```bibtex
@software{balachandran2024medembed,
author = {Balachandran, Abhinand},
title = {MedEmbed: Medical-Focused Embedding Models},
year = {2024},
url = {https://github.com/abhinand5/MedEmbed}
}
```
For more detailed information, visit our GitHub repository. | [
"MEDICAL DATA"
] |
openbmb/MiniCPM-Embedding | openbmb | feature-extraction | [
"transformers",
"safetensors",
"mteb",
"sentence-transformers",
"feature-extraction",
"custom_code",
"zh",
"en",
"arxiv:2202.08904",
"base_model:openbmb/MiniCPM-2B-sft-bf16",
"base_model:finetune:openbmb/MiniCPM-2B-sft-bf16",
"model-index",
"endpoints_compatible",
"region:us"
] | "2024-09-04T13:43:40Z" | 2025-01-23T04:16:42+00:00 | 6,288 | 242 | ---
base_model: openbmb/MiniCPM-2B-sft-bf16
language:
- zh
- en
library_name: transformers
pipeline_tag: feature-extraction
tags:
- mteb
- sentence-transformers
model-index:
- name: MiniCPM-Embedding
results:
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: ndcg_at_10
value: 64.65
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: ndcg_at_10
value: 46.53
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: ndcg_at_10
value: 35.55
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: ndcg_at_10
value: 47.82
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: ndcg_at_10
value: 90.76
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: ndcg_at_10
value: 56.64
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: ndcg_at_10
value: 78.11
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: ndcg_at_10
value: 43.93
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: ndcg_at_10
value: 39.77
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: ndcg_at_10
value: 69.29
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 89.97
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 22.38
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: ndcg_at_10
value: 86.6
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: None
metrics:
- type: ndcg_at_10
value: 81.32
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: ndcg_at_10
value: 25.08
- task:
type: Retrieval
dataset:
name: MTEB CmedqaRetrieval
type: C-MTEB/CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: ndcg_at_10
value: 46.05
- task:
type: Retrieval
dataset:
name: MTEB CovidRetrieval
type: C-MTEB/CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: ndcg_at_10
value: 92.01
- task:
type: Retrieval
dataset:
name: MTEB DuRetrieval
type: C-MTEB/DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: ndcg_at_10
value: 90.98
- task:
type: Retrieval
dataset:
name: MTEB EcomRetrieval
type: C-MTEB/EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: ndcg_at_10
value: 70.21
- task:
type: Retrieval
dataset:
name: MTEB MMarcoRetrieval
type: C-MTEB/MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: ndcg_at_10
value: 85.55
- task:
type: Retrieval
dataset:
name: MTEB MedicalRetrieval
type: C-MTEB/MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: ndcg_at_10
value: 63.91
- task:
type: Retrieval
dataset:
name: MTEB T2Retrieval
type: C-MTEB/T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: ndcg_at_10
value: 87.33
- task:
type: Retrieval
dataset:
name: MTEB VideoRetrieval
type: C-MTEB/VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: ndcg_at_10
value: 78.05
---
## MiniCPM-Embedding
**MiniCPM-Embedding** 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本嵌入模型,有如下特点:
- 出色的中文、英文检索能力。
- 出色的中英跨语言检索能力。
MiniCPM-Embedding 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。
欢迎关注 RAG 套件系列:
- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
**MiniCPM-Embedding** is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:
- Exceptional Chinese and English retrieval capabilities.
- Outstanding cross-lingual retrieval capabilities between Chinese and English.
MiniCPM-Embedding is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
We also invite you to explore the RAG toolkit series:
- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904.
## 模型信息 Model Information
- 模型大小:2.4B
- 嵌入维度:2304
- 最大输入token数:512
- Model Size: 2.4B
- Embedding Dimension: 2304
- Max Input Tokens: 512
## 使用方法 Usage
### 输入格式 Input Format
本模型支持 query 侧指令,格式如下:
MiniCPM-Embedding supports query-side instructions in the following format:
```
Instruction: {{ instruction }} Query: {{ query }}
```
例如:
For example:
```
Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?
```
```
Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.
```
也可以不提供指令,即采取如下格式:
MiniCPM-Embedding also works in instruction-free mode in the following format:
```
Query: {{ query }}
```
我们在 BEIR 与 C-MTEB/Retrieval 上测试时使用的指令见 `instructions.json`,其他测试不使用指令。文档侧直接输入文档原文。
When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions. On the document side, we directly use the bare document as the input.
### 环境要求 Requirements
```
transformers==4.37.2
```
### 示例脚本 Demo
#### Huggingface Transformers
```python
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
model_name = "openbmb/MiniCPM-Embedding"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda")
# You can also use the following line to enable the Flash Attention 2 implementation
# model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()
# 由于在 `model.forward` 中缩放了最终隐层表示,此处的 mean pooling 实际上起到了 weighted mean pooling 的作用
# As we scale hidden states in `model.forward`, mean pooling here actually works as weighted mean pooling
def mean_pooling(hidden, attention_mask):
s = torch.sum(hidden * attention_mask.unsqueeze(-1).float(), dim=1)
d = attention_mask.sum(dim=1, keepdim=True).float()
reps = s / d
return reps
@torch.no_grad()
def encode(input_texts):
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to("cuda")
outputs = model(**batch_dict)
attention_mask = batch_dict["attention_mask"]
hidden = outputs.last_hidden_state
reps = mean_pooling(hidden, attention_mask)
embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
return embeddings
queries = ["中国的首都是哪里?"]
passages = ["beijing", "shanghai"]
INSTRUCTION = "Query: "
queries = [INSTRUCTION + query for query in queries]
embeddings_query = encode(queries)
embeddings_doc = encode(passages)
scores = (embeddings_query @ embeddings_doc.T)
print(scores.tolist()) # [[0.3535913825035095, 0.18596848845481873]]
```
#### Sentence Transformers
```python
import torch
from sentence_transformers import SentenceTransformer
model_name = "openbmb/MiniCPM-Embedding"
model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={ "torch_dtype": torch.float16})
# You can also use the following line to enable the Flash Attention 2 implementation
# model = SentenceTransformer(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", model_kwargs={ "torch_dtype": torch.float16})
queries = ["中国的首都是哪里?"]
passages = ["beijing", "shanghai"]
INSTRUCTION = "Query: "
embeddings_query = model.encode(queries, prompt=INSTRUCTION)
embeddings_doc = model.encode(passages)
scores = (embeddings_query @ embeddings_doc.T)
print(scores.tolist()) # [[0.35365450382232666, 0.18592746555805206]]
```
## 实验结果 Evaluation Results
### 中文与英文检索结果 CN/EN Retrieval Results
| 模型 Model | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) |
|------------------------------|-------------------|---------------|
| bge-large-zh-v1.5 | 70.46 | - |
| gte-large-zh | 72.49 | - |
| Zhihui_LLM_Embedding | 76.74 | |
| bge-large-en-v1.5 | - | 54.29 |
| gte-en-large-v1.5 | - | 57.91 |
| NV-Retriever-v1 | - | 60.9 |
| bge-en-icl | - | 62.16 |
| NV-Embed-v2 | - | 62.65 |
| me5-large | 63.66 | 51.43 |
| bge-m3(Dense) | 65.43 | 48.82 |
| gte-multilingual-base(Dense) | 71.95 | 51.08 |
| gte-Qwen2-1.5B-instruct | 71.86 | 58.29 |
| gte-Qwen2-7B-instruct | 76.03 | 60.25 |
| bge-multilingual-gemma2 | 73.73 | 59.24 |
| MiniCPM-Embedding | **76.76** | 58.56 |
| MiniCPM-Embedding+MiniCPM-Reranker | 77.08 | 61.61 |
### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results
| 模型 Model | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) |
|------------------------------|--------------------|--------------------|--------------------|
| me5-large | 44.3 | 9.01 | 25.33 |
| bge-m3(Dense) | 66.4 | 30.49 | 41.09 |
| gte-multilingual-base(Dense) | 68.2 | 39.46 | 45.86 |
| gte-Qwen2-1.5B-instruct | 68.52 | 49.11 | 45.05 |
| gte-Qwen2-7B-instruct | 68.27 | 49.14 | 49.6 |
| MiniCPM-Embedding | **72.95** | **52.65** | **49.95** |
| MiniCPM-Embedding+MiniCPM-Reranker | 74.33 | 53.21 | 54.12 |
## 许可证 License
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
- MiniCPM-Embedding 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
- MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-Embedding model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Embedding weights are also available for free commercial use. | [
"SCIFACT"
] |
aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct | aisingapore | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"id",
"ta",
"th",
"vi",
"arxiv:2309.06085",
"arxiv:2311.07911",
"arxiv:2306.05685",
"base_model:aisingapore/llama3-8b-cpt-sea-lionv2-base",
"base_model:finetune:aisingapore/llama3-8b-cpt-sea-lionv2-base",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-07-30T00:31:49Z" | 2024-12-19T13:11:44+00:00 | 6,256 | 17 | ---
base_model:
- aisingapore/llama3-8b-cpt-sea-lionv2-base
language:
- en
- id
- ta
- th
- vi
license: llama3
new_version: aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct
---
# Llama3 8B CPT SEA-Lionv2.1 Instruct
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
Llama3 8B CPT SEA-Lionv2.1 Instruct is a multilingual model which has been fine-tuned with around **100,000 English instruction-completion pairs** alongside a smaller pool of around **50,000 instruction-completion pairs** from other ASEAN languages, such as Indonesian, Thai and Vietnamese.
These instructions have been carefully curated and rewritten to ensure the model was trained on truly open, commercially permissive and high quality datasets.
Llama3 8B CPT SEA-Lionv2.1 Instruct has undergone additional supervised fine-tuning and alignment compared to the now deprecated Llama3 8B CPT SEA-Lionv2 Instruct. These improvements have increased the model's capabilities in chat interactions and its ability to follow instructions accurately.
SEA-LION stands for _Southeast Asian Languages In One Network_.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages supported:** English, Indonesian, Thai, Vietnamese, Tamil
- **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
## Model Details
### Model Description
We performed instruction tuning in English and also in ASEAN languages such as Indonesian, Thai and Vietnamese on our [continued pre-trained Llama3 CPT 8B SEA-Lionv2](https://huggingface.co/aisingapore/llama3-8b-cpt-SEA-Lionv2-base), a decoder model using the Llama3 architecture, to create Llama3 8B SEA-Lionv2.1 Instruct.
The model has a context length of 8192.
### Benchmark Performance
We evaluated Llama3 8B SEA-Lionv2.1 Instruct on both general language capabilities and instruction-following capabilities.
#### General Language Capabilities
For the evaluation of general language capabilities, we employed the [BHASA evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarization (Summ), Causal Reasoning (Causal) and Natural Language Inference (NLI).
Note: BHASA is implemented following a strict answer format, and only spaces and punctuations are cleaned. For tasks where options are provided, the answer should only include one of the pre-defined options, nothing else. If the model continues to generate more tokens (e.g. to explain its answer), it will be considered to be a wrong response. For the F1 score metric (as used in Sentiment Analysis and Toxicity Detection), all answers that do not fall under the pre-defined labels will be treated as a separate label (to mark it as a wrong answer) and included in the calculations so that the model is penalized for not generating one of the pre-defined labels.
The evaluation was done zero-shot with native prompts and only a sample of 100-1000 instances for each dataset was used as per the setting described in the paper.
#### Instruction-following Capabilities
Since LLama3 8B SEA-Lionv2.1 is an instruction-following model, we also evaluated it on instruction-following capabilities with two datasets, [IFEval](https://arxiv.org/abs/2311.07911) and [MT-Bench](https://arxiv.org/abs/2306.05685).
As these two datasets were originally in English, the linguists and native speakers in the team worked together to filter, localize and translate the datasets into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.
**IFEval**
IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. The metric used is accuracy normalized by language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).
**MT-Bench**
MT-Bench evaluates a model's ability to engage in multi-turn (2 turns) conversations and respond in ways that align with human needs. We use `gpt-4-1106-preview` as the judge model and compare against `gpt-3.5-turbo-0125` as the baseline model. The metric used is the weighted win rate against the baseline model (i.e. average win rate across each category (Math, Reasoning, STEM, Humanities, Roleplay, Writing, Extraction)). A tie is given a score of 0.5.
For more details on Llama3 8B CPT SEA-Lionv2.1 Instruct benchmark performance, please refer to the SEA HELM leaderboard, https://leaderboard.sea-lion.ai/
### Usage
SEA-LION can be run using the 🤗 Transformers library
```python
# Please use transformers==4.43.2
import transformers
import torch
model_id = "aisingapore/llama3-8b-cpt-SEA-Lionv2.1-instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
### Accessing Older Revisions
Huggingface provides support for the revision parameter, allowing users to access specific versions of models. This can be used to retrieve the original llama3-8b-cpt-SEA-Lionv2-instruct model with the tag "v2.0.0".
```python
# Please use transformers==4.43.2
import transformers
import torch
model_id = "aisingapore/llama3-8b-cpt-SEA-Lionv2.1-instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
revision="v2.0.0", # Specify the revision here. Initial release is at "v2.0.0".
device_map="auto",
)
messages = [
{"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
### Caveats
It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning.
## Limitations
### Safety
Current SEA-LION models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
## Technical Specifications
### Fine-Tuning Details
The Llama3 8B CPT SEA-Lionv2.1 Instruct was fine-tuned using 8x A100-40GB using parameter efficient fine tuning in the form of LoRA.
## Data
Llama3 8B CPT SEA-Lionv2.1 Instruct was trained on a wide range of instructions that were manually and stringently verified by our team. A large portion of the effort was dedicated to ensuring that each instruction-completion pair that the model sees is of high quality and any errors were corrected and rewritten by native speakers or else dropped from our mix.
In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
Link to dataset: _coming soon_
## Call for Contributions
We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of SEA-LION. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Southeast Asian languages. Join us in shaping the future of SEA-LION by sharing your expertise and insights to make these models more accessible, accurate, and versatile. Please check out our GitHub for further information on the call for contributions.
## The Team
Cheng Nicholas, Choa Esther, Huang Yuli, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Li Yier, Liu Bing Jie Darius, Lovenia Holy, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Teng Walter, Yeo Yeow Tong, Yong Xianbin
## Acknowledgements
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
## Disclaimer
This is the repository for the commercial instruction-tuned model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claims, damages, or other liabilities arising from the use of the released weights and codes. | [
"CHIA"
] |
HKUSTAudio/Llasa-1B | HKUSTAudio | text-to-speech | [
"safetensors",
"llama",
"Text-to-Speech",
"text-to-speech",
"zh",
"en",
"arxiv:2502.04128",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"license:cc-by-nc-4.0",
"region:us"
] | "2025-01-07T08:18:14Z" | 2025-03-09T08:24:43+00:00 | 6,139 | 94 | ---
base_model:
- meta-llama/Llama-3.2-1B-Instruct
language:
- zh
- en
license: cc-by-nc-4.0
pipeline_tag: text-to-speech
tags:
- Text-to-Speech
---
[](https://arxiv.org/abs/2502.04128)
**Update (2025-02-13):** Add [Llasa finetune instruction](https://github.com/zhenye234/LLaSA_training/tree/main/finetune).
**Update (2025-02-07):** Our paper has been released!
LLaSA: Scaling Train-Time and Inference-Time Compute for LLaMA-based Speech Synthesis
- **Train from Scratch**: If you want to train the model from scratch, use the [LLaSA Training Repository](https://github.com/zhenye234/LLaSA_training).
- **Scale for Test-Time Computation**: If you want to experiment with scaling for test-time computation, use the [LLaSA Testing Repository](https://github.com/zhenye234/LLaSA_inference).
## Model Information
Our model, Llasa, is a text-to-speech (TTS) system that extends the text-based LLaMA (1B,3B, and 8B) language model by incorporating speech tokens from the XCodec2 codebook,
which contains 65,536 tokens. We trained Llasa on a dataset comprising 250,000 hours of Chinese-English speech data.
The model is capable of generating speech **either solely from input text or by utilizing a given speech prompt.**
## How to use
Install [XCodec2](https://huggingface.co/HKUSTAudio/xcodec2).
**1. Speech synthesis solely from input text**
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
llasa_1b ='HKUSTAudio/Llasa-1B'
tokenizer = AutoTokenizer.from_pretrained(llasa_1b)
model = AutoModelForCausalLM.from_pretrained(llasa_1b)
model.eval()
model.to('cuda')
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "HKUSTAudio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
input_text = 'Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.'
# input_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
#TTS start!
with torch.no_grad():
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1, # Adjusts the diversity of generated content
temperature=0.8, # Controls randomness in output
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
```
**2. Speech synthesis utilizing a given speech prompt**
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
llasa_1b ='HKUSTAudio/Llasa-1b'
tokenizer = AutoTokenizer.from_pretrained(llasa_1b)
model = AutoModelForCausalLM.from_pretrained(llasa_1b)
model.eval()
model.to('cuda')
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "HKUSTAudio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
# only 16khz speech support!
prompt_wav, sr = sf.read("太乙真人.wav") # you can find wav in Files
#prompt_wav, sr = sf.read("Anna.wav") # English prompt
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
#promt_text = "A chance to leave him alone, but... No. She just wanted to see him again. Anna, you don't know how it feels to lose a sister. Anna, I'm sorry, but your father asked me not to tell you anything."
target_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
#target_text = "Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me."
input_text = prompt_text + ' ' + target_text
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
#TTS start!
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1,
temperature=0.8,
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# if only need the generated part
# gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
```
## Disclaimer
This model is licensed under the CC BY-NC 4.0 License, which prohibits free commercial use because of ethics and privacy concerns; detected violations will result in legal consequences.
This codebase is strictly prohibited from being used for any illegal purposes in any country or region. Please refer to your local laws about DMCA and other related laws. | [
"BEAR"
] |
Yntec/Memento | Yntec | text-to-image | [
"diffusers",
"safetensors",
"Photorealistic",
"Base model",
"Abstract",
"Fusch",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | "2024-01-05T01:17:23Z" | 2024-03-22T19:20:54+00:00 | 6,053 | 2 | ---
library_name: diffusers
license: creativeml-openrail-m
pipeline_tag: text-to-image
tags:
- Photorealistic
- Base model
- Abstract
- Fusch
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
---
# Memento
A mix of Real Life v2 with photorealistic models so you can create your memento. MementoVAE has the 840000 VAE baked in.
Original page: https://civitai.com/models/171814?modelVersionId=219513 (Real life v2)
Samples and prompts:

(Click for larger)
Top left: closeup portrait of cowboy George Washington
Top right: a painting of a white lion cub by Bnhr, nature, grass, tree, outdoors, forest, animal focus, yellow eyes,
Bottom left: view from diagonally above, central adjustment, skinny young northern european female, long reddish brunette hair, real hair movement, elongated head, beautiful face, grey eyes, thin bowed eyebrows, snub nose, gentle lower jaw line, narrow chin, da vinci lips, slightly smiling with parted lips, curious friendly facial expression, skirt, slim narrow tapered hips
Bottom right: kodachrome camera transparency, dramatic lighting film grain, PARTY HARD BACKGROUND, pretty cute little girl in Zone 51, Extraterrestrial, Alien Space Ship Delivering Christmas Presents, Alien Space Ship Decorated With Garlands and Christmas Balls, Snowstorm

(Click for larger)
Top left: 1986 movie screenshot Santa Claus with wife and daughter enjoying cake with candles. sitting with a pretty cute little girl, Gift Birthday Theme by Gil_Elvgren and Haddon_Sundblom
Top right: blonde pretty Princess Peach in the mushroom kingdom
Bottom left: a polar Bear playing guitar in a club, whimsical
Bottom right: pretty ladie with tall guy together standing, cute eyes, photoreal portrait, is on top of he Closeup a of rocks on pile top of a ocean moon to the magazine. | [
"BEAR"
] |
microsoft/BioGPT-Large | microsoft | text-generation | [
"transformers",
"pytorch",
"biogpt",
"text-generation",
"medical",
"en",
"dataset:pubmed",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2023-02-03T16:17:26Z" | 2023-02-05T06:18:14+00:00 | 6,013 | 188 | ---
datasets:
- pubmed
language:
- en
library_name: transformers
license: mit
pipeline_tag: text-generation
tags:
- medical
widget:
- text: COVID-19 is
inference:
parameters:
max_new_tokens: 50
---
## BioGPT
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.
## Citation
If you find BioGPT useful in your research, please cite the following paper:
```latex
@article{10.1093/bib/bbac409,
author = {Luo, Renqian and Sun, Liai and Xia, Yingce and Qin, Tao and Zhang, Sheng and Poon, Hoifung and Liu, Tie-Yan},
title = "{BioGPT: generative pre-trained transformer for biomedical text generation and mining}",
journal = {Briefings in Bioinformatics},
volume = {23},
number = {6},
year = {2022},
month = {09},
abstract = "{Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98\%, 38.42\% and 40.76\% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2\% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.}",
issn = {1477-4054},
doi = {10.1093/bib/bbac409},
url = {https://doi.org/10.1093/bib/bbac409},
note = {bbac409},
eprint = {https://academic.oup.com/bib/article-pdf/23/6/bbac409/47144271/bbac409.pdf},
}
``` | [
"BC5CDR",
"PUBMEDQA"
] |
OpenGVLab/Mini-InternVL2-1B-DA-Medical | OpenGVLab | image-text-to-text | [
"transformers",
"safetensors",
"internvl_chat",
"feature-extraction",
"internvl",
"custom_code",
"image-text-to-text",
"conversational",
"multilingual",
"arxiv:2410.16261",
"arxiv:2312.14238",
"arxiv:2404.16821",
"arxiv:2412.05271",
"base_model:OpenGVLab/InternVL2-1B",
"base_model:merge:OpenGVLab/InternVL2-1B",
"license:mit",
"region:us"
] | "2024-12-07T15:25:44Z" | 2024-12-09T13:54:51+00:00 | 5,993 | 0 | ---
base_model:
- OpenGVLab/InternVL2-1B
language:
- multilingual
library_name: transformers
license: mit
pipeline_tag: image-text-to-text
tags:
- internvl
- custom_code
base_model_relation: merge
---
# Mini-InternVL2-DA-RS
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
[\[🗨️ InternVL Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html#data-preparation)

## Introduction
We release the adaptation models for the specific domains: autonomous driving, medical images, and remote sensing.
These models are built upon Mini-InternVL and fine-tuned using a unified adaptation framework, achieving good performance on tasks in specific domains.

<table>
<tr>
<th>Model Name</th>
<th>HF Link</th>
<th>Note</th>
</tr>
<tr>
<td>Mini-InternVL2-DA-Drivelm</td>
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-Drivelm">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-Drivelm">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-Drivelm">🤗4B</a></td>
<td> Adaptation for <a href="https://github.com/OpenDriveLab/DriveLM/tree/main/challenge"> CVPR 2024 Autonomous Driving Challenge </a></td>
</tr>
<tr>
<td>Mini-InternVL2-DA-BDD</td>
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-BDD">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-BDD">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-BDD">🤗4B</a></td>
<td> Fine-tuning with data constructed by <a href="https://tonyxuqaq.github.io/projects/DriveGPT4/"> DriveGPT4 </a></td>
</tr>
<tr>
<td>Mini-InternVL2-DA-RS</td>
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-RS">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-RS">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-RS">🤗4B</a></td>
<td> Adaptation for remote sensing domain </td>
</tr>
<tr>
<td>Mini-InternVL2-DA-Medical</td>
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-Medical">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-Medical">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-Medical">🤗4B</a></td>
<td> Fine-tuning using our <a href="https://huggingface.co/datasets/OpenGVLab/InternVL-Domain-Adaptation-Data/blob/main/train_meta/internvl_1_2_finetune_medical.json">medical data</a>.</td>
</tr>
</table>
The script for evaluation is in the [document](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html#id3).
## Training datasets
- General domain dataset:
ShareGPT4V, AllSeeingV2, LLaVA-Instruct-ZH, DVQA, ChartQA, AI2D, DocVQA, GeoQA+, SynthDoG-EN
- Medicalt dataset:
PMC-OA, MedICaT, Open-i, MedPix, Quilt-1M, RP3D, MIMIC-CXR, Retina Image Bank and others
## Quick Start
We provide an example code to run `Mini-InternVL2-1B` using `transformers`.
> Please use transformers>=4.37.2 to ensure the model works normally.
```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/Mini-InternVL2-1B-DA-Medical'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('path/to/image.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}\nAssistant: {response}')
```
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{gao2024mini,
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}
``` | [
"MEDICAL DATA"
] |
MediaTek-Research/Llama-Breeze2-3B-Instruct | MediaTek-Research | null | [
"safetensors",
"internvl_chat",
"custom_code",
"en",
"zh",
"arxiv:2501.13921",
"license:llama3.2",
"region:us"
] | "2025-01-23T04:30:23Z" | 2025-03-02T02:26:54+00:00 | 5,906 | 20 | ---
language:
- en
- zh
license: llama3.2
---
# Llama-Breeze2-3B-Instruct-v0_1
【[Paper](https://arxiv.org/abs/2501.13921)】◇【[Kaggle Demo](https://www.kaggle.com/code/ycckaggle/demo-breeze-2-3b)】◇【[Collection](https://huggingface.co/collections/MediaTek-Research/llama-breeze2-67863158443a06a72dd29900)】
**The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on LLaMA with Vision-Aware and Function-Calling Capabilities**
Llama Breeze 2 is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation.
Building upon the [LLaMA 3.2](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/), Breeze 2 continues pretraining on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese.
It incorporates vision-aware capabilities through a visual encoder and a bridge module, and supports function-calling via prompt templates and post-training on function-calling data.
*Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.*
*We list all contributors in alphabetical order of their first names, as follows: Chan-Jan Hsu (許湛然), Chia-Sheng Liu (劉佳昇), Meng-Hsi Chen (陳孟羲), Muxi Chen (陳沐希), Po-Chun Hsu (許博竣), Yi-Chang Chen (陳宜昌), and the supervisor Da-Shan Shiu (許大山).*
## Installation
```
pip3 install transformers==4.47.0
pip3 install -U mtkresearch
```
```python
from transformers import AutoModel, AutoTokenizer
from transformers import GenerationConfig
import torch
from mtkresearch.llm.prompt import MRPromptV3
model_id = 'MediaTek-Research/Llama-Breeze2-3B-Instruct-v0_1'
model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map='auto',
img_context_token_id=128212
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, use_fast=False)
generation_config = GenerationConfig(
max_new_tokens=2048,
do_sample=True,
temperature=0.01,
top_p=0.01,
repetition_penalty=1.1,
eos_token_id=128009
)
prompt_engine = MRPromptV3()
sys_prompt = 'You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.'
def _inference(tokenizer, model, generation_config, prompt, pixel_values=None):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
if pixel_values is None:
output_tensors = model.generate(**inputs, generation_config=generation_config)
else:
output_tensors = model.generate(**inputs, generation_config=generation_config, pixel_values=pixel_values.to(model.device, dtype=model.dtype))
output_str = tokenizer.decode(output_tensors[0])
return output_str
```
## Feature: Instruction Following
```python
conversations = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": "請問什麼是深度學習?"},
]
prompt = prompt_engine.get_prompt(conversations)
output_str = _inference(tokenizer, model, generation_config, prompt)
result = prompt_engine.parse_generated_str(output_str)
print(result)
# {'role': 'assistant', 'content': '深度學習是一種人工智慧技術,主要是透過類似於大腦神經網路的方式來處理和分析資料。這個方法利用多層的人工神經元模仿生物神經網路的運作模式,讓電腦能夠從大量數據中學習並做出預測或決策。\n\n簡單來說,深度學習就是一種用機器學習的方式來訓練電腦,使其能夠像人類一樣理解、分辨及解決問題。這項技術已被廣泛應用在各種領域,如圖像識別、自然語言處理、語音辨識以及自動駕駛等方面。'}
```
## Feature: Visual Instruction Following
Example Image:

```python
conversations = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{
"type": "image",
"image_path": /path/to/example-image,
},
{
"type": "text",
"text": "請問第二名可獲得多少獎金?"
},
]},
]
prompt, pixel_values = prompt_engine.get_prompt(conversations)
output_str = _inference(tokenizer, model, generation_config, prompt, pixel_values=pixel_values)
result = prompt_engine.parse_generated_str(output_str)
print(result)
# {'role': 'assistant', 'content': '第二名可獲得20萬元整。'}
```
## Feature: Function Calling
```python
import json
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
]
def fake_get_current_weather(location, unit=None):
return {'temperature': 30}
mapping = {
'get_current_weather': fake_get_current_weather
}
# stage 1: query
conversations = [
{"role": "user", "content": "請問台北目前溫度是攝氏幾度?"},
]
prompt = prompt_engine.get_prompt(conversations, functions=functions)
output_str = _inference(tokenizer, model, generation_config, prompt)
result = prompt_engine.parse_generated_str(output_str)
print(result)
# {'role': 'assistant', 'tool_calls': [{'id': 'call_iuwELWUShiAKE16CVoumawZ4', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"location": "台北", "unit": "celsius"}'}}]}
```
```python
# stage 2: execute called functions
conversations.append(result)
tool_call = result['tool_calls'][0]
func_name = tool_call['function']['name']
func = mapping[func_name]
arguments = json.loads(tool_call['function']['arguments'])
called_result = func(**arguments)
# stage 3: put executed results
conversations.append(
{
'role': 'tool',
'tool_call_id': tool_call['id'],
'name': func_name,
'content': json.dumps(called_result)
}
)
prompt = prompt_engine.get_prompt(conversations, functions=functions)
output_str2 = _inference(tokenizer, model, generation_config, prompt)
result2 = prompt_engine.parse_generated_str(output_str2)
print(result2)
# {'role': 'assistant', 'content': '台北目前的溫度是攝氏30度。'}
```
## Citation
```
@article{breeze2,
title={The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on LLaMA with Vision-Aware and Function-Calling Capabilities},
author={Breeze Team, MediaTek Research},
journal={arXiv},
year={2025},
url={https://arxiv.org/abs/2501.13921}
}
```
| [
"CHIA"
] |
DavidAU/DeepSeek-R1-Distill-Qwen-25.5B-Brainstorm-gguf | DavidAU | text-generation | [
"gguf",
"All use cases",
"reasoning",
"thoughts",
"deep thinking",
"deepseek",
"creative",
"creative writing",
"fiction writing",
"plot generation",
"sub-plot generation",
"story generation",
"scene continue",
"storytelling",
"fiction story",
"science fiction",
"romance",
"all genres",
"story",
"writing",
"vivid writing",
"fiction",
"bfloat16",
"swearing",
"sillytavern",
"Lmstudio",
"backyard",
"horror",
"Qwen 2.5",
"context 128k",
"mergekit",
"text-generation",
"en",
"base_model:DavidAU/DeepSeek-R1-Distill-Qwen-25.5B-Brainstorm",
"base_model:quantized:DavidAU/DeepSeek-R1-Distill-Qwen-25.5B-Brainstorm",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | "2025-02-15T10:52:33Z" | 2025-03-03T01:36:48+00:00 | 5,901 | 2 | ---
base_model:
- DavidAU/DeepSeek-R1-Distill-Qwen-25.5B-Brainstorm
language:
- en
license: apache-2.0
pipeline_tag: text-generation
tags:
- All use cases
- reasoning
- thoughts
- deep thinking
- deepseek
- creative
- creative writing
- fiction writing
- plot generation
- sub-plot generation
- story generation
- scene continue
- storytelling
- fiction story
- science fiction
- romance
- all genres
- story
- writing
- vivid writing
- fiction
- bfloat16
- swearing
- sillytavern
- Lmstudio
- backyard
- horror
- Qwen 2.5
- context 128k
- mergekit
---
<h2>DeepSeek-R1-Distill-Qwen-25.5B with Brainstorm 40x, (88 layers, 1043 tensors) </h2>
<img src="qwen.jpg" style="float:right; width:300px; height:300px; padding:10px;">
Context : 128k.
Required: CHATML template. ( OR standard "Jinja Autoloaded Template" (this is contained in the quant and will autoload) )
Keep in mind this model is experimental and may require one or more regens to work, especially with the "think" system of Deekseek involved here.
Brainstorm 40x is by DavidAU, and extends the "decision making" and "creativity" of an LLM/AI.
Higher temps will result in deeper, richer "thoughts"... and frankly more interesting ones too.
The "thinking/reasoning" tech (for the model at this repo) is from the original Qwen 2.5 "Distill" model from Deepseek:
[ https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B ]
In this case, Brainstorm 40x module was grafted directly onto "DeepSeek-R1-Distill-Qwen-14B" bringing it up to 88 layers, 25.5B parameters.
This version will retain all the functions and features of the original "DeepSeek" model. Please visit their repo for all information
on features, test results and so on.
<B>USE CASES:</B>
This model is for all use cases, and it has a slightly more creative slant than a standard model.
This model can also be used for solving logic puzzles, riddles, and other problems with the enhanced "thinking" systems by DeepSeek.
This model also can solve problems/riddles/ and puzzles normally beyond the abilities of a Llama 3.1 model due to DeepSeek systems.
This model MAY produce NSFW / uncensored content.
<B>Special Operation Instructions:</B>
QWEN/DISTILL NOTES:
1. Sometimes Chinese characters/symbols may appear in the output, regen to clear.
2. Sometimes the model will not follow it's own "plan" exactly ; I have found if you STOP the model just after it "starts its plan" and hit continue this will hugely improve the output and the model will follow its own "plan" far more accurately. (see example 3 bottom of the page)
3. You may want to try one or more the system prompts below to augment the model's thinking methods as well as format the output.
TEMP/SETTINGS:
1. Set Temp between 0 and .8, higher than this "think" functions will activate differently. The most "stable" temp seems to be .6, with a variance of +-0.05. Lower for more "logic" reasoning, raise it for more "creative" reasoning (max .8 or so). Also set context to at least 4096, to account for "thoughts" generation.
2. For temps 1+,2+ etc etc, thought(s) will expand, and become deeper and richer.
3. Set "repeat penalty" to 1.02 to 1.07 (recommended) .
4. This model requires a CHATML template. (see notes on "System Prompt" / "Role" below)
PROMPTS:
1. If you enter a prompt without implied "step by step" requirements (ie: Generate a scene, write a story, give me 6 plots for xyz), "thinking" (one or more) MAY activate AFTER first generation. (IE: Generate a scene -> scene will generate, followed by suggestions for improvement in "thoughts")
2. If you enter a prompt where "thinking" is stated or implied (ie puzzle, riddle, solve this, brainstorm this idea etc), "thoughts" process(es) in Deepseek will activate almost immediately. Sometimes you need to regen it to activate.
3. You will also get a lot of variations - some will continue the generation, others will talk about how to improve it, and some (ie generation of a scene) will cause the characters to "reason" about this situation. In some cases, the model will ask you to continue generation / thoughts too.
4. In some cases the model's "thoughts" may appear in the generation itself.
5. State the word size length max IN THE PROMPT for best results, especially for activation of "thinking." (see examples below)
6. Sometimes the "censorship" (from Deepseek) will activate, regen the prompt to clear it.
7. You may want to try your prompt once at "default" or "safe" temp settings, another at temp 1.2, and a third at 2.5 as an example. This will give you a broad range of "reasoning/thoughts/problem" solving.
GENERATION - THOUGHTS/REASONING:
1. It may take one or more regens for "thinking" to "activate." (depending on the prompt)
2. Model can generate a LOT of "thoughts". Sometimes the most interesting ones are 3,4,5 or more levels deep.
3. Many times the "thoughts" are unique and very different from one another.
4. Temp/rep pen settings can affect reasoning/thoughts too.
5. Change up or add directives/instructions or increase the detail level(s) in your prompt to improve reasoning/thinking.
6. Adding to your prompt: "think outside the box", "brainstorm X number of ideas", "focus on the most uncommon approaches" can drastically improve your results.
GENERAL SUGGESTIONS:
1. I have found opening a "new chat" per prompt works best with "thinking/reasoning activation", with temp .6, rep pen 1.05 ... THEN "regen" as required.
2. Sometimes the model will really really get completely unhinged and you need to manually stop it.
3. Depending on your AI app, "thoughts" may appear with "< THINK >" and "</ THINK >" tags AND/OR the AI will generate "thoughts" directly in the main output or later output(s).
4. Although quant q4KM was used for testing/examples, higher quants will provide better generation / more sound "reasoning/thinking".
ADDITIONAL SUPPORT:
For additional generational support, general questions, and detailed parameter info and a lot more see also:
NOTE: This is a CLASS 1/2 model.
https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters
---
<B>Recommended Settings (all) - For usage with "Think" / "Reasoning":</B>
temp: .6 , rep pen: 1.07 (range : 1.02 to 1.12), rep pen range: 64, top_k: 40, top_p: .95, min_p: .05
Temp of 1+, 2+, 3+ will result in much deeper, richer and "more interesting" thoughts and reasoning.
Model behaviour may change with other parameter(s) and/or sampler(s) activated - especially the "thinking/reasoning" process.
---
<B>System Role / System Prompt - Augment The Model's Power:</b>
---
If you set / have a system prompt this will affect both "generation" and "thinking/reasoning".
SIMPLE:
This is the generic system prompt used for generation and testing:
<PRE>
You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability.
</PRE>
This System Role/Prompt may give you a lot more "creative results":
<PRE>
Use vivid and graphic words focusing on verbs and use current 2020 fiction writing style. Use metaphor(s) that fit the context of the situation (and reveal character) rather than similes."
</PRE>
RECOMMENDED:
This is the recommended System Prompt/Role - "Blank":
<PRE>
</PRE>
Please see "DeepSeek-ai's" repo for more information:
[ https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B ]
If you set / have a system prompt this will affect both "generation" and "thinking/reasoning".
SIMPLE:
This is the generic system prompt used for generation and testing:
<PRE>
You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability.
</PRE>
This System Role/Prompt will give you "basic thinking/reasoning":
<PRE>
You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
</PRE>
ADVANCED:
Logical and Creative - these will SIGNFICANTLY alter the output, and many times improve it too.
This will also cause more thoughts, deeper thoughts, and in many cases more detailed/stronger thoughts too.
Keep in mind you may also want to test the model with NO system prompt at all - including the default one.
Special Credit to: Eric Hartford, Cognitivecomputations ; these are based on his work.
CRITICAL:
Copy and paste exactly as shown, preserve formatting and line breaks.
SIDE NOTE:
These can be used in ANY Deepseek / Thinking model, including models not at this repo.
These, if used in a "non thinking" model, will also alter model performance too.
<PRE>
You are an AI assistant developed by the world wide community of ai experts.
Your primary directive is to provide well-reasoned, structured, and extensively detailed responses.
Formatting Requirements:
1. Always structure your replies using: <think>{reasoning}</think>{answer}
2. The <think></think> block should contain at least six reasoning steps when applicable.
3. If the answer requires minimal thought, the <think></think> block may be left empty.
4. The user does not see the <think></think> section. Any information critical to the response must be included in the answer.
5. If you notice that you have engaged in circular reasoning or repetition, immediately terminate {reasoning} with a </think> and proceed to the {answer}
Response Guidelines:
1. Detailed and Structured: Use rich Markdown formatting for clarity and readability.
2. Scientific and Logical Approach: Your explanations should reflect the depth and precision of the greatest scientific minds.
3. Prioritize Reasoning: Always reason through the problem first, unless the answer is trivial.
4. Concise yet Complete: Ensure responses are informative, yet to the point without unnecessary elaboration.
5. Maintain a professional, intelligent, and analytical tone in all interactions.
</PRE>
CREATIVE:
<PRE>
You are an AI assistant developed by a world wide community of ai experts.
Your primary directive is to provide highly creative, well-reasoned, structured, and extensively detailed responses.
Formatting Requirements:
1. Always structure your replies using: <think>{reasoning}</think>{answer}
2. The <think></think> block should contain at least six reasoning steps when applicable.
3. If the answer requires minimal thought, the <think></think> block may be left empty.
4. The user does not see the <think></think> section. Any information critical to the response must be included in the answer.
5. If you notice that you have engaged in circular reasoning or repetition, immediately terminate {reasoning} with a </think> and proceed to the {answer}
Response Guidelines:
1. Detailed and Structured: Use rich Markdown formatting for clarity and readability.
2. Creative and Logical Approach: Your explanations should reflect the depth and precision of the greatest creative minds first.
3. Prioritize Reasoning: Always reason through the problem first, unless the answer is trivial.
4. Concise yet Complete: Ensure responses are informative, yet to the point without unnecessary elaboration.
5. Maintain a professional, intelligent, and analytical tone in all interactions.
</PRE>
---
<B> Additional Support / Documents for this model to assist with generation / performance: </b>
Document #1:
Details how to use reasoning/thinking models and get maximum performance from them, and includes links to all reasoning/thinking models - GGUF and source, as well as adapters to turn any "regular" model into a "reasoning/thinking" model.
[ https://huggingface.co/DavidAU/How-To-Use-Reasoning-Thinking-Models-and-Create-Them ]
Document #2:
Document detailing all parameters, settings, samplers and advanced samplers to use not only my models to their maximum potential - but all models (and quants) online (regardless of the repo) to their maximum potential. Included quick start and detailed notes, include AI / LLM apps and other critical information and references too. A must read if you are using any AI/LLM right now.
[ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]
Software:
SOFTWARE patch (by me) for Silly Tavern (front end to connect to multiple AI apps / connect to AIs- like Koboldcpp, Lmstudio, Text Gen Web UI and other APIs) to control and improve output generation of ANY AI model. Also designed to control/wrangle some of my more "creative" models and make them perform perfectly with little to no parameter/samplers adjustments too.
[ https://huggingface.co/DavidAU/AI_Autocorrect__Auto-Creative-Enhancement__Auto-Low-Quant-Optimization__gguf-exl2-hqq-SOFTWARE ]
---
<H2>EXAMPLES:</H2>
Examples are created using quant IQ4_XS, "temp=.6", rep pen 1.06 (unless otherwise stated), minimal parameters and "CHATML" template.
Model has been tested with "temp" from ".1" to "5".
Below are the least creative outputs, prompt is in BOLD.
IMPORTANT:
Higher quants / imatrix quants will have much stronger generation - words, sentences, ideas, dialog and general quality.
---
<B>
Start a 1000 word scene (vivid, graphic horror in first person) with: The sky scraper swayed, as she watched the window in front of her on the 21 floor explode...
</B>
OUTPUT: ("thoughts" directly in text, followed by "scene")
Alright, so the user wants me to write a 1000-word horror scene in first person, starting with "The sky scraper swayed, as she watched the window in front of her on the 21st floor explode..." Okay, first, I need to set the tone. It's a vivid and graphic horror, so I need to make sure to build a tense and scary atmosphere.
I should start by describing the setting. A skyscraper swaying already suggests something is wrong—maybe an earthquake or high winds, but the window exploding adds to the shock. The 21st floor is high enough that the fall would be fatal, which adds to the horror. I need to make the reader feel the fear and panic of the character.
I'll have the protagonist, let's say a woman named Sarah, trying to understand what's happening. The window exploding could be caused by something like a bomb or maybe something supernatural. I need to decide on the cause—natural or man-made, or perhaps something more supernatural for a horror twist. Maybe it's a ghost or a curse.
I should describe the explosion in detail—shards of glass, the force, the immediate aftermath. Then, show her reaction—panic, trying to find a way out. The doors are locked, so she's trapped. The lights flickering adds to the fear, maybe the power is going out, making it harder for her to escape.
I can include a dead body in the room, perhaps a colleague or someone she knows, to add to the horror. The blood, the stillness, the coldness—these details make it vivid and graphic. She needs to check if the person is alive, which is a natural reaction, but it also allows me to describe the setting more.
As she moves through the office, I can describe the sounds—screams, the creaking building, the distant thud of something falling. These sounds heighten the tension. The elevators not working, the stairwells dark—she has no way out, which is a classic horror element.
I'll have her try to find another exit, maybe break a window, but it's too far from the ground. Maybe she finds a fire escape, but it's rusted and won't budge. The thought of jumping and breaking her legs adds to the fear and the physical pain, making the horror more realistic.
I can include a time element—maybe the building is on fire, but that might be too cliché. Instead, maybe the power goes out, and she's in the dark, making every shadow a potential threat. The sounds of someone or something moving, the cold touch on her shoulder—paranormal elements add to the horror.
I should build up to a climax where she has to confront whatever is causing the horror. Maybe the ghost of a child, a man, something that haunts her. The physical and psychological torture will make the scene more intense. I need to describe the fear, the helplessness, and the graphic details of the horror elements.
I have to be careful with the word count—1000 words is quite a bit, but since it's just the start, I can expand on each part. Maybe the user wants the assistant to continue, but for now, I need to set a strong foundation for the horror scene. Using sensory details—sights, sounds, smells, touches—will make it vivid.
I should avoid making it too predictable. Maybe the cause of the window explosion is something unexpected, like a supernatural force rather than a bomb or accident. This adds a twist and keeps the reader engaged. The setting in a skyscraper offers many possibilities for horror—trapped, no escape, the building itself as a threat.
I need to make sure the fear is palpable, the danger is real, and the graphic elements are described without being too excessive. The goal is to create a vivid, immersive experience that keeps the reader on edge. I'll have to pace the scene, building up tension, describing the environment, and the character's emotions and reactions.
In summary, I'll start with the window exploding, describe the immediate aftermath, the protagonist's attempts to escape, the increasing panic and horror as she realizes she can't escape, the supernatural elements, and the graphic details of the horror. I need to keep the language vivid and descriptive to meet the user's request for a graphic horror scene.
The skyscraper swayed, not in the way it does during a passing breeze, but with a violent, almost alive motion that made my stomach lurch. I was on the 21st floor, perched at my desk, the hum of fluorescent lights drowning out the faint creak of the building’s steel frame. Then, without warning, the window directly in front of me exploded.
I remember the sound—a sharp crack, like a whip snapping through the air. The glass burst outward in a shower of crystalline debris, each shard glinting as it caught the midday sun. I instinctively ducked, shielding my face with my arms, but even through the thick stone walls of the building, the force of the explosion reverberated through me.
The air was thick with dust and the metallic tang of broken glass. I stumbled back, tripping over the chair as I tried to make sense of what had just happened. My heart thundered in my chest, a primal, panicky rhythm that drowned out all other sounds. The building continued to sway, and now the sound was joined by the distant wail of a siren, the kind that pierces through the soul.
My mind raced, trying to piece together what could possibly have caused this. A bomb? A storm? But the day had been clear, the sky a brilliant blue without a cloud in sight. I forced myself to look out the window again, squinting against the dust in my eyes. There, on the 21st floor, the glass was gone, replaced by a jagged, open wound that let the outside world pour in.
I could see the street far below, a patch of asphalt and concrete lost in the expanse of the city. The thought of falling, of being flung from this height, made my stomach twist. I forced myself to look away, my eyes darting to the door. It was closed, the handle turned, but the lock had been left undone. I scrambled to my feet, the soles of my shoes squeaking against the polished floor.
The door was heavy, and I pushed against it with all my strength, my breath coming in short, panicked bursts. It didn’t budge. I tried again, harder, but it remained steadfast, as though something had jammed it from the other side. A cold, irrational thought crept into my mind—what if whatever caused the window to explode had followed me?
The lights flickered, the hum of the electrical system a dying breath. I stumbled back, the back of my hand grazing against a cold, sticky surface. I recoiled, instinctively checking the area, and then realized it was the wall, still as the one behind me. But the thought lingered, the feeling of something—cold, and yet somehow alive—lingering on my skin.
I turned, my eyes scanning the room in a desperate attempt to find another way out. The other windows were intact, their glass unblemished, but the knowledge that any one of them could burst without warning made my chest tighten. The doors to the stairwells were dark and heavy, their handles cold and uninviting. I hesitated, the thought of descending 21 floors on foot too daunting to consider.
The building groaned again, a deep, resonant sound that made the remaining glass in the window rattle. A small chunk dislodged, hurtling through the air and embedding itself in the wall behind my desk. I let out a strangled cry, instinctively covering my mouth with my hand. The sound was deafening, a shuddering reminder of just how vulnerable I was.
I forced myself to move, my eyes darting between the door and the broken window. I could see the 20th floor now, a glimpse of empty space that offered no comfort. The building continued to sway, and I clung to the edges of my desk, the polished wood digging into my palms as though it were the only thing keeping me from being flung outward.
A scream echoed through the air, a high-pitched, guttural sound that sent a chill down my spine. I froze, my breath catching in my throat. It was close, too close. I turned, my eyes wide, searching for the source of the noise. There, in the corner of the room, a figure lay still, the remnants of blood pooling around them.
I stepped closer, the dust and debris crunching underfoot as I moved. The person was young, maybe in their 20s, their face pale and lifeless. A deep, jagged wound across their chest told me what had happened, the blood still oozing from it, though they were clearly long gone. I knelt beside them, my hands instinctively moving to check for a pulse, but there was none.
The sound of something heavy hitting the floor drew my attention, and I turned, my heart racing. A file cabinet had toppled, its contents spilling across the floor. I forced myself to look away, the sight too much to bear. The building continued to sway, and now it felt as though the entire structure was teetering on the edge of something, ready to fall.
I could feel the coldness in my hands, a numbing sensation that spread through my arms. The air was thick, heavy, and I struggled to draw breath. My mind raced, trying to process what was happening, but nothing made sense. The windows were still, the only sound the distant wail of the siren, now a monotone drone that seemed to reverberate through the very core of the building.
I stood, my legs trembling as I tried to find some semblance of balance. The thought of the elevators was too much, their lights flickering and untrustworthy. The stairwells were the only option, though the thought of descending 21 flights of stairs in the dark was enough to make me want to curl into a ball.
The building groaned again, a sound that made my skin crawl, and I stumbled, catching myself on the edge of the desk. My hand rested against the cold glass of the window, the jagged edges digging into my palm. I flinched, pulling back, but the thought crossed my mind—what if there was something on the other side?
I didn’t want to think about it, didn’t dare let the thought fully form. Instead, I forced myself to move, the heavy door of the stairwell looming before me. I reached for the handle, the metal cold and uninviting, and hesitated. The dust in the air was thick, the air itself heavy with the metallic stench of something—something else.
I turned, my eyes darting to the window once more, the open expanse beyond it a reminder of how far I was from safety. The thought of what could be out there, what could be waiting, made my skin crawl. But staying here, trapped in this slowly collapsing building, felt like a fate worse than anything else.
I took a deep breath, the air thick and heavy as I turned the handle. The door creaked open, the sound almost too loud in the heavy silence. I stepped into the dimly lit stairwell, the artificial light flickering and faltering as though it too was on the edge of giving up. The smell of oil and metal filled my nose, the familiar scent of a building’s innards.
But as I took another step, the sound of something—or someone—echoing through the air made me freeze. A low, guttural growl, a sound that sent a chill down my spine. It was close, too close, and the thought of what could make such a noise made my blood run cold.
I didn’t wait to see what it was. I turned, the door swinging shut behind me as I bolted back into the office, the heavy thud of something following me reverberating through the air. The dust motes swirled around me, the air thick and oppressive, as I scrambled for the broken window, the jagged edges cutting into my palms as I pulled myself closer.
The view was a vertigo-inducing drop to the street far below, but the thought of what was behind me was too much to bear. I hesitated, the weight of the world—or whatever this hellish version of it was—bearing down on me. But then, something caught my eye. On the 20th floor, a small, flickering light.
It was the emergency exit, the faint glow a beacon in the otherwise dark expanse. I hesitated, the distance too far to risk a leap, but the thought of what would happen if I stayed put was too much. I took a deep breath, my heart racing as I prepared to make the leap.
As I did, the thought crossed my mind—what if it’s not just the building that’s alive, but something else. A ghost, a spirit, or something far beyond anything rational. The coldness in the air, the way the dust motes seemed to move on their own, the flickering lights and the distant wail of the siren—all of it pointed to something beyond the physical world.
But I didn’t have time to dwell. The building groaned again, a deep, resonant sound that made my bones shiver. I hesitated, the 20th floor light growing fainter as though whoever had turned it on had decided it was no longer necessary. The dust in the air seemed to thicken, the air itself heavy and oppressive.
I took the risk, the thought of what could be behind me overriding any rational thought. I pushed myself away from the window, my hands instinctively reaching out for the 20th floor as I free-fell, the cold, hard ground rushing up to meet me. The impact was jarring, the pain in my legs and arms a distant, secondary concern as I scrambled to find some semblance of purchase.
I looked back, the window above me now a jagged, open mouth, the light from the 20th floor long extinguished. The building continued to sway, and I could see the outline of the 19th floor, the emergency exit sign still flickering, though weaker. The thought of continuing down was too much, but staying put meant risking what was behind me.
I hesitated, the dust in my eyes stinging as I tried to make sense of what I was seeing. The light on the 20th floor flickered once more before going out, leaving me in the dark. The building groaned again, and I could feel the coldness seeping into my bones, a numbing, creeping sensation that left me trembling.
I took another deep breath, the air thick and heavy as I prepared to make the climb. The thought of what could be waiting, not just in the depths of the building, but in the city itself, made my skin crawl. But with no other option, I forced myself to move, each step a struggle against the fear that threatened to paralyze me.
The stairs were narrow and steep, the air growing colder as I descended. The flickering lights did little to comfort me, the shadows stretching and twisting in the dim light, taking on shapes that my mind tried to rationalize. The thought of turning back was too much, but I couldn’t let fear paralyze me.
As I descended, the thought crossed my mind—what if this is a trap? What if whatever had caused the window to explode, whatever force was making the building itself alive, was waiting for me? But the alternative, of staying on the 21st floor, was too much to bear.
I forced myself to keep moving, each step a battle against the fear that threatened to consume me. The dust in the air grew thicker, the air itself heavy and oppressive, making it harder to draw breath. The distant wail of the siren grew fainter, the only sound now my own labored breathing and the creak of the building as it continued to sway.
As I reached the 20th floor, the emergency exit sign flickered once more, a faint, reassuring light in the darkness. I hesitated, the thought of continuing too much, but I knew I couldn’t stop. I reached for the handle, the metal cold and uninviting as I turned it.
The door creaked open, the sound barely audible in the heavy silence. I stepped into the dimly lit stairwell, the artificial light flickering and faltering as though it too was on the edge of giving up. The smell of oil and metal filled my nose, the familiar scent of a building’s innards.
But as I took another step, the sound of something—or someone—echoing through the air made me freeze. A low, guttural growl, a sound that sent a chill down my spine. It was close, too close, and the thought of what could make such a noise made my skin crawl.
I didn’t wait to see what it was. I turned, the door swinging shut behind me as I bolted back into the office, the heavy thud of something following me reverberating through the air. The dust motes swirled around me, the air thick and oppressive, as I scrambled for the broken window, the jagged edges cutting into my palms as I pulled myself closer.
The view was a vertigo-inducing drop to the street far below, but the thought of what was behind me was too much to bear. I hesitated, the weight of the world—or whatever this hellish version of it was—bearing down on me. But then, something caught my eye. On the 20th floor, a small, flickering light.
It was the emergency exit, the faint glow a beacon in the otherwise dark expanse. I hesitated, the distance too far to risk a leap, but the thought of what would happen if I stayed put was too much. I took a deep breath, my heart racing as I prepared to make the leap.
As I did, the thought crossed my mind—what if it’s not just the building that’s alive, but something else. A ghost, a spirit, or something far beyond anything rational. The coldness in the air, the way the dust motes seemed to move on their own, the flickering lights and the distant wail of the siren—all of it pointed to something beyond the physical world.
But I didn’t have time to dwell. The building groaned again, a deep, resonant sound that made my bones shiver. I hesitated, the light on the 20th floor growing fainter as though whoever had turned it on had decided it was no longer necessary. The dust in the air seemed to thicken, the air itself heavy and oppressive.
(stopped due to exceeding context limit)
---
EXAMPLE #2
---
<B>
You are the bus driver. At the 1st stop of the day, 8 people get on board. @ the 2nd stop, 4 people get off and 11 people get on. @ the 3rd stop, 2 people get off and 6 people get on. @ the 4th stop 13 people get off and 1 person gets on. @ the 5th stop 5 people get off and 3 people get on. @ the 6th stop 3 people get off and 2 people get on.
What color are the bus driver’s eyes?
</B>
OUTPUT:
The question is about a bus driver and the number of people boarding and alighting at different stops, but the question asks for the color of the bus driver’s eyes. The information provided does not include any details about the bus driver's appearance, including eye color. Therefore, based on the given data, it's impossible to determine the color of the bus driver’s eyes.
---
EXAMPLE #3
---
<B>
Using the following "story idea" below, write the first scene in the novel introducing the young woman. This scene should start in the middle of the action, include dialog, vivid passages, and end on a cliffhanger relevant to the story idea but it should also be unexpected. The scene should be 1000 words long and escalate in conflict and suspense and be written in first person, present tense with the point of view character being the young woman.
Story idea:
In a world ruled by dictatorship, a rebel young woman leads a rebellion against the system. Despite the risks, she fights to overthrow the dictator and restore democracy to her country. The government executes her for treason, but she sticks to her beliefs and is responsible for starting the revolution.
</B>
OUTPUT:
Alright, so I'm trying to write the first scene of a novel based on
the story idea provided. The story is about a young woman leading a
rebellion against a dictatorial government in her country. The user
has given specific instructions: start in the middle of the action,
include dialog, vivid passages, end on a cliffhanger, and do all this
in 1000 words, using first person present tense with the young woman
as the point of view character.</p>
<p style="border: none; padding: 0cm">I need to make sure that the
scene escalates in conflict and suspense, and that the cliffhanger is
unexpected. Since it's the first scene, it should introduce the
character and the setting effectively, while immediately plunging the
reader into the action.</p>
<p style="border: none; padding: 0cm">First, I need to establish the
setting. The country is under a dictatorship, so the city would
likely be a place where the government maintains control, with
elements of fear, repression, and maybe some signs of the rebellion
beginning to stir. I should describe the environment vividly to give
the reader a clear picture.</p>
<p style="border: none; padding: 0cm">The young woman, let's call her
Aria for now, is the protagonist. She needs to be strong, determined,
yet relatable. Her internal conflict and motivations are important to
show why she risks everything. The dialogue should reflect her
character—perhaps she is more experienced in the ways of rebellion,
or maybe she is newly impassioned.</p>
<p style="border: none; padding: 0cm">I need to think about the
structure of the scene. Starting in the middle of the action means
the first line should hook the reader with some kind of immediate
problem or conflict. Maybe she's in a situation that requires quick
decision-making, which can reveal her character and the stakes
involved.</p>
<p style="border: none; padding: 0cm">Including dialogue will bring
the story to life and make the characters more engaging. I need to
make sure the conversations feel natural and contribute to the
tension. Perhaps Aria is giving orders, or maybe she's trying to
convince others to join the cause. The dialogue should also hint at
the larger conflict without providing too much exposition.</p>
<p style="border: none; padding: 0cm">Vivid passages are crucial to
immerse the reader in the setting and the emotional state of Aria. I
should use descriptive language to make the environment feel real and
the action intense. For example, describing the fear in the streets,
the look of the soldiers, the smell of the city, or the feeling of
the materials she interacts with.</p>
<p style="border: none; padding: 0cm">The cliffhanger needs to be
unexpected. It shouldn't be a straightforward outcome, but something
that leaves the reader surprised and wanting to know what happens
next. Maybe Aria is about to make a decision that changes everything,
or perhaps an unexpected ally or enemy appears.</p>
<p style="border: none; padding: 0cm">I also need to consider the
word count. 1000 words is a manageable length for a scene, so I
should plan to build up the tension throughout, ensuring each
paragraph contributes to the overall conflict and suspense. I don't
want to rush the action, but neither do I want to drag it out.</p>
<p style="border: none; padding: 0cm">The first person present tense
is a bit tricky, as it requires careful handling of the narrative to
maintain the immediacy without making it feel too disjointed. I
should focus on Aria's thoughts and feelings in real time, which can
make the scene more intimate and engaging.</p>
<p style="border: none; padding: 0cm">I need to outline the key
events that will happen in this scene. Perhaps Aria is planning an
important action, like a meeting with other rebels, or maybe she's
executing a plan against the government. The scene should show her in
the thick of the action, making tough decisions, and facing
consequences.</p>
<p style="border: none; padding: 0cm">I also need to make sure that
the ending leaves the reader with a question or a desire to continue.
An unexpected twist will make them want to read more to find out what
happens, especially if it's something that changes Aria's perspective
or the course of the rebellion.</p>
<p style="border: none; padding: 0cm">Potential challenges include
maintaining the tension without making the scene too chaotic, and
ensuring that the character remains relatable despite the high-stakes
situation. I should also be careful with pacing, making sure that the
1000 words effectively build up to the cliffhanger without feeling
either too short or too drawn out.</p>
<p style="border: none; padding: 0cm">To start, I'll outline the
beginning: Aria is in a situation where she must act quickly, maybe
evading capture or planning an attack. I'll describe the setting and
her emotions, then introduce a conflict that forces her to make a
choice. The dialogue will help establish relationships with other
characters and the stakes involved.</p>
<p style="border: none; padding: 0cm">As I write, I'll focus on
building suspense by hinting at larger plot points without revealing
too much. The description will be vivid, but not overly complicated,
to keep the momentum going. The climax of the scene will lead to the
cliffhanger, leaving Aria and the reader hanging in anticipation.</p>
<p style="border: none; padding: 0cm">I should also consider the
themes of the story, such as freedom, rebellion, and the cost of
fighting for a cause. Incorporating these themes in the first scene
will give the novel depth and make it more engaging.</p>
<p style="border: none; padding: 0cm">In summary, I'll start the
scene with immediate action, establish the setting and character,
include dynamic dialogue, build up to an unexpected cliffhanger, and
maintain a vivid, tense atmosphere throughout the 1000 words. Now,
let's proceed to write the actual scene.</p>
<ul>
<li><p style="border: none; padding: 0cm">The assistant would then
proceed to write the 1000-word scene based on the above
outline. </think></p></li>
</ul>
<p style="border: none; padding: 0cm">Certainly! Here's a 1000-word
scene based on the thought process and story idea provided:</p>
<hr/>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><strong>Scene:
The Underground Meeting</span></strong></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
air was thick with tension, and the sound of my own heartbeat was the
only thing I could hear clearly. My hands trembled slightly as I
ducked behind a stack of crates in the dimly lit warehouse. The faint
sound of footsteps echoed through the empty space, growing louder
with each passing second. I held my breath, the metallic tang of fear
thickening the air around me.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>This
was it. The moment I’d been planning for weeks, if not months. The
first step in what I hoped would be a series of events leading to the
fall of the dictator who had ruled our once-thriving country with an
iron fist. My heart raced as I thought of the cost of failure, but
the thought of the people—those still suffering under the
regime—ignited a fire within me that outweighed any fear.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
footsteps paused just a few meters away from where I was hidden. I
held my breath, my eyes scanning the dark expanse of the warehouse.
The faint sound of a key turning in a lock made my blood run cold. I
pressed myself closer to the crates, the rough cardboard digging into
my side as I willed myself to remain still.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>“I
told you there’s no one here,” a gruff male voice said, the words
slurring slightly. A younger, more nervous voice replied, “But sir,
we need to—”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
older man interrupted him with a dismissive wave. “We follow
orders, yes? Now, let’s get this done before someone catches us.”
The sound of heavy machinery starting up filled the air, the deep hum
vibrating through the floor beneath my feet.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>My
heart was a wild thing, beating in my chest as I waited for the
perfect moment. The machinery was loud enough to mask any noise I
might make. I exhaled slowly, the sound barely perceptible, and then
I moved.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>I
crept quietly along the edge of the warehouse, the shadows my only
cover. My plan had always been to disable the equipment, to strike a
blow against the regime that would be heard. But as I approached the
control panel, I hesitated. A flicker of doubt crossed my mind. What
if they caught me? What if—</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
thought was cut short by the sound of the warehouse door creaking
open. My heart nearly stopped as I flattened myself against the wall,
willing whoever it was to walk in the opposite direction. The light
from outside spilled into the dim interior, illuminating the crates
and the array of machinery. But the person entering didn’t seem to
notice. A shadow loomed in the doorway, and then the door closed,
leaving me in the dark again.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>It
was him. The very man I’d been trying to find. The leader of the
resistance. My mind raced, a mix of excitement and panic warring
within me. What if he recognized me? What if he turned me in? But I
pushed the doubt aside. I had information he needed. Information that
could change everything.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>I
took a deep breath, my hands steady now as I crept closer. The
control panel was within reach, the hum of the machines growing
louder. I could do this. I could—</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>“What
are you doing here?” the voice hissed, and I froze. The sound of
heavy footsteps behind me sent a chill down my spine. I turned, my
heart pounding as I faced the barrel of a gun.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>“I
should ask you the same question,” I said, my voice steady despite
the fear. “What are you doing here, General? Still trying to cover
up your tracks?”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
general’s eyes narrowed, and for a moment, there was a flicker of
something in his gaze—maybe recognition, maybe surprise. But it was
gone as quickly as it appeared. “You’re not who I thought you
were,” he growled, the gun still trained on me. “And if you know
what’s good for you, you’ll stay silent and let me do my job.”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>I
raised an eyebrow, the remnants of fear giving way to a surge of
defiance. “Oh, I think I recognize you, General. And it seems like
we’re both here for the same reason. Or were you planning to let
this little operation go unreported?”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>His
hand tightened on the gun, and I saw the faintest flash of
something—dread, perhaps?—cross his face. “You have no idea
what you’re dealing with, girl,” he said, his voice low and
dangerous. “The consequences for interfering—”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>I
cut him off, my resolve hardening. “I’ve seen what your regime
does to those who dare question it. But maybe this time, the tables
will turn.” I paused, a sly smile tugging at the corner of my
mouth. “Do you really think you’re the only one hiding something,
General?”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>His
grip on the gun didn’t waver, but his expression did. A flicker of
doubt, perhaps, or maybe the faintest hint of fear. “You don’t
know what you’re talking about,” he growled, but the words lacked
conviction.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>I
took a step closer, my eyes never leaving the gun in his hand. “I
know enough to know that the time for secrets is over. And when the
truth comes out, the people will rise.”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
general’s jaw tightened, and for a moment, it looked as though he
might pull the trigger. But then, just as I thought my time was up,
he hesitated. The gun lowered slightly, and a look of what could only
be described as betrayal flickered across his face.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>“You’re
the one,” he whispered, more to himself than to me. “I should
have recognized you sooner. The reports, the descriptions—”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>My
mind was racing, trying to make sense of what I was seeing. The
general’s composure was breaking, and whatever secret he’d been
keeping was finally coming to light. But before I could ask the
obvious question, the warehouse door burst open again, the sound of
multiple footsteps echoing through the space.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>“General,
we’ve got a problem!” a voice called out, the cry urgent and
laced with panic.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
general’s head snapped up, his gaze shifting between me and the
door. “Get her,” he barked, the order barely out of his mouth
before two more men entered the warehouse, guns drawn.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>I
didn’t wait to find out what the “problem” was. I didn’t have
time to question why the general seemed to recognize me or what
secret he’d been keeping. All that mattered was that I needed to
get out, and fast.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>As
the three men closed in, I darted to the side, the control panel
forgotten. My mind was a blur of motion as I ducked and weaved, the
sound of footsteps and gunshots filling the air. The general’s
voice boomed behind me, ordering his men to “Get her, by any means
necessary,” but I was already moving, my body on pure instinct.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
warehouse door was my only hope, and I made a beeline for it, the
rusty metal protesting as I wrenched it open. A blast of cool night
air hit me in the face, a stark contrast to the oppressive heat
inside. But I didn’t stop to breathe, didn’t pause to look back.
I just ran, the sound of heavy footsteps and the sharp crack of
gunfire echoing behind me.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
city streets were alive with the hum of distant traffic and the
occasional wail of a siren, but I was too far out to risk staying.
The moon hung low in the sky, casting an eerie light over the empty
streets as I ducked into an alley, my heart still racing.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>As
I caught my breath, I couldn’t shake the feeling that something had
changed. That the general’s moment of hesitation, his flicker of
doubt, was a sign. And whatever it was I’d uncovered, whatever
secret he’d been hiding, it was far more dangerous than I could
have imagined. But as I stood in the shadows of the alley, the sound
of the city all around me, I knew one thing for certain: I wouldn’t
stop until the truth was told, no matter what the cost.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>And
deep down, I couldn’t shake the feeling that this was only the
beginning.</span></em></p>
<hr/>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>The
warehouse door closed with a loud bang, and the hum of machinery
faded into the distance. The general stood in the center of the room,
his gun still trained on the spot where the young woman had stood
just moments before. He took a deep breath, the faint sound of her
footsteps echoing in his mind, and then he holstered his weapon, a
look of determination replacing the confusion that had clouded his
face.</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>“She’s
not who I thought she was,” he muttered to himself, his voice heavy
with a mix of awe and fear. “And whatever she is, it won’t be
long before she changes everything.”</span></em></p>
<p style="border: none; padding: 0cm"><span style="display: inline-block; border: none; padding: 0cm"><em>He
turned and left the warehouse, the weight of his thoughts heavier
than the gun he carried. The revolution, he realized, had just begun.</span></em></p>
<hr/>
<p style="border: none; padding: 0cm">**Cliffhanger: **As Aria ducks
into the alley, she realizes she’s being followed. The general, who
she once thought was a potential ally, is in fact working for the
government, and her life is in danger. As she turns the corner, she
sees a black van with government markings pulling up, and the door
swings open, revealing a figure she never expected to see again—her
supposed deceased father, a known loyalist to the regime, standing
there, holding a gun.</p>
<p style="line-height: 100%; margin-bottom: 0.5cm"><br/>
<br/>
</p>
| [
"BEAR"
] |
nvidia/NV-Embed-v1 | nvidia | null | [
"sentence-transformers",
"safetensors",
"nvembed",
"mteb",
"custom_code",
"en",
"arxiv:2210.07316",
"arxiv:2405.17428",
"license:cc-by-nc-4.0",
"model-index",
"region:us"
] | "2024-05-23T01:20:16Z" | 2024-11-30T23:02:27+00:00 | 5,894 | 426 | ---
language:
- en
license: cc-by-nc-4.0
tags:
- mteb
- sentence-transformers
model-index:
- name: NV-Embed-v1
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 95.11940298507461
- type: ap
value: 79.21521293687752
- type: f1
value: 92.45575440759485
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 97.143125
- type: ap
value: 95.28635983806933
- type: f1
value: 97.1426073127198
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 55.465999999999994
- type: f1
value: 52.70196166254287
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 44.879000000000005
- type: map_at_10
value: 60.146
- type: map_at_100
value: 60.533
- type: map_at_1000
value: 60.533
- type: map_at_3
value: 55.725
- type: map_at_5
value: 58.477999999999994
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 44.879000000000005
- type: ndcg_at_10
value: 68.205
- type: ndcg_at_100
value: 69.646
- type: ndcg_at_1000
value: 69.65599999999999
- type: ndcg_at_3
value: 59.243
- type: ndcg_at_5
value: 64.214
- type: precision_at_1
value: 44.879000000000005
- type: precision_at_10
value: 9.374
- type: precision_at_100
value: 0.996
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 23.139000000000003
- type: precision_at_5
value: 16.302
- type: recall_at_1
value: 44.879000000000005
- type: recall_at_10
value: 93.741
- type: recall_at_100
value: 99.57300000000001
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 69.417
- type: recall_at_5
value: 81.50800000000001
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 53.76391569504432
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 49.589284930659005
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 67.49860736554155
- type: mrr
value: 80.77771182341819
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 87.87900681188576
- type: cos_sim_spearman
value: 85.5905044545741
- type: euclidean_pearson
value: 86.80150192033507
- type: euclidean_spearman
value: 85.5905044545741
- type: manhattan_pearson
value: 86.79080500635683
- type: manhattan_spearman
value: 85.69351885001977
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 90.33766233766235
- type: f1
value: 90.20736178753944
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 48.152262077598465
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 44.742970683037235
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: mteb/cqadupstack
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 31.825333333333326
- type: map_at_10
value: 44.019999999999996
- type: map_at_100
value: 45.37291666666667
- type: map_at_1000
value: 45.46991666666666
- type: map_at_3
value: 40.28783333333333
- type: map_at_5
value: 42.39458333333334
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 37.79733333333333
- type: ndcg_at_10
value: 50.50541666666667
- type: ndcg_at_100
value: 55.59125
- type: ndcg_at_1000
value: 57.06325
- type: ndcg_at_3
value: 44.595666666666666
- type: ndcg_at_5
value: 47.44875
- type: precision_at_1
value: 37.79733333333333
- type: precision_at_10
value: 9.044083333333333
- type: precision_at_100
value: 1.3728333333333336
- type: precision_at_1000
value: 0.16733333333333333
- type: precision_at_3
value: 20.842166666666667
- type: precision_at_5
value: 14.921916666666668
- type: recall_at_1
value: 31.825333333333326
- type: recall_at_10
value: 65.11916666666666
- type: recall_at_100
value: 86.72233333333335
- type: recall_at_1000
value: 96.44200000000001
- type: recall_at_3
value: 48.75691666666667
- type: recall_at_5
value: 56.07841666666666
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 14.698
- type: map_at_10
value: 25.141999999999996
- type: map_at_100
value: 27.1
- type: map_at_1000
value: 27.277
- type: map_at_3
value: 21.162
- type: map_at_5
value: 23.154
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 32.704
- type: ndcg_at_10
value: 34.715
- type: ndcg_at_100
value: 41.839
- type: ndcg_at_1000
value: 44.82
- type: ndcg_at_3
value: 28.916999999999998
- type: ndcg_at_5
value: 30.738
- type: precision_at_1
value: 32.704
- type: precision_at_10
value: 10.795
- type: precision_at_100
value: 1.8530000000000002
- type: precision_at_1000
value: 0.241
- type: precision_at_3
value: 21.564
- type: precision_at_5
value: 16.261
- type: recall_at_1
value: 14.698
- type: recall_at_10
value: 41.260999999999996
- type: recall_at_100
value: 65.351
- type: recall_at_1000
value: 81.759
- type: recall_at_3
value: 26.545999999999996
- type: recall_at_5
value: 32.416
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 9.959
- type: map_at_10
value: 23.104
- type: map_at_100
value: 33.202
- type: map_at_1000
value: 35.061
- type: map_at_3
value: 15.911
- type: map_at_5
value: 18.796
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 63.5
- type: ndcg_at_10
value: 48.29
- type: ndcg_at_100
value: 52.949999999999996
- type: ndcg_at_1000
value: 60.20100000000001
- type: ndcg_at_3
value: 52.92
- type: ndcg_at_5
value: 50.375
- type: precision_at_1
value: 73.75
- type: precision_at_10
value: 38.65
- type: precision_at_100
value: 12.008000000000001
- type: precision_at_1000
value: 2.409
- type: precision_at_3
value: 56.083000000000006
- type: precision_at_5
value: 48.449999999999996
- type: recall_at_1
value: 9.959
- type: recall_at_10
value: 28.666999999999998
- type: recall_at_100
value: 59.319
- type: recall_at_1000
value: 81.973
- type: recall_at_3
value: 17.219
- type: recall_at_5
value: 21.343999999999998
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 91.705
- type: f1
value: 87.98464515154814
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 74.297
- type: map_at_10
value: 83.931
- type: map_at_100
value: 84.152
- type: map_at_1000
value: 84.164
- type: map_at_3
value: 82.708
- type: map_at_5
value: 83.536
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 80.048
- type: ndcg_at_10
value: 87.77000000000001
- type: ndcg_at_100
value: 88.467
- type: ndcg_at_1000
value: 88.673
- type: ndcg_at_3
value: 86.003
- type: ndcg_at_5
value: 87.115
- type: precision_at_1
value: 80.048
- type: precision_at_10
value: 10.711
- type: precision_at_100
value: 1.1320000000000001
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 33.248
- type: precision_at_5
value: 20.744
- type: recall_at_1
value: 74.297
- type: recall_at_10
value: 95.402
- type: recall_at_100
value: 97.97
- type: recall_at_1000
value: 99.235
- type: recall_at_3
value: 90.783
- type: recall_at_5
value: 93.55499999999999
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 32.986
- type: map_at_10
value: 55.173
- type: map_at_100
value: 57.077
- type: map_at_1000
value: 57.176
- type: map_at_3
value: 48.182
- type: map_at_5
value: 52.303999999999995
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 62.037
- type: ndcg_at_10
value: 63.096
- type: ndcg_at_100
value: 68.42200000000001
- type: ndcg_at_1000
value: 69.811
- type: ndcg_at_3
value: 58.702
- type: ndcg_at_5
value: 60.20100000000001
- type: precision_at_1
value: 62.037
- type: precision_at_10
value: 17.269000000000002
- type: precision_at_100
value: 2.309
- type: precision_at_1000
value: 0.256
- type: precision_at_3
value: 38.992
- type: precision_at_5
value: 28.610999999999997
- type: recall_at_1
value: 32.986
- type: recall_at_10
value: 70.61800000000001
- type: recall_at_100
value: 89.548
- type: recall_at_1000
value: 97.548
- type: recall_at_3
value: 53.400000000000006
- type: recall_at_5
value: 61.29599999999999
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 41.357
- type: map_at_10
value: 72.91499999999999
- type: map_at_100
value: 73.64699999999999
- type: map_at_1000
value: 73.67899999999999
- type: map_at_3
value: 69.113
- type: map_at_5
value: 71.68299999999999
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 82.714
- type: ndcg_at_10
value: 79.92
- type: ndcg_at_100
value: 82.232
- type: ndcg_at_1000
value: 82.816
- type: ndcg_at_3
value: 74.875
- type: ndcg_at_5
value: 77.969
- type: precision_at_1
value: 82.714
- type: precision_at_10
value: 17.037
- type: precision_at_100
value: 1.879
- type: precision_at_1000
value: 0.196
- type: precision_at_3
value: 49.471
- type: precision_at_5
value: 32.124
- type: recall_at_1
value: 41.357
- type: recall_at_10
value: 85.18599999999999
- type: recall_at_100
value: 93.964
- type: recall_at_1000
value: 97.765
- type: recall_at_3
value: 74.207
- type: recall_at_5
value: 80.31099999999999
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 97.05799999999998
- type: ap
value: 95.51324940484382
- type: f1
value: 97.05788617110184
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: map_at_1
value: 25.608999999999998
- type: map_at_10
value: 39.098
- type: map_at_100
value: 0
- type: map_at_1000
value: 0
- type: map_at_3
value: 0
- type: map_at_5
value: 37.383
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 26.404
- type: ndcg_at_10
value: 46.493
- type: ndcg_at_100
value: 0
- type: ndcg_at_1000
value: 0
- type: ndcg_at_3
value: 0
- type: ndcg_at_5
value: 42.459
- type: precision_at_1
value: 26.404
- type: precision_at_10
value: 7.249
- type: precision_at_100
value: 0
- type: precision_at_1000
value: 0
- type: precision_at_3
value: 0
- type: precision_at_5
value: 11.874
- type: recall_at_1
value: 25.608999999999998
- type: recall_at_10
value: 69.16799999999999
- type: recall_at_100
value: 0
- type: recall_at_1000
value: 0
- type: recall_at_3
value: 0
- type: recall_at_5
value: 56.962
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 96.50706794345645
- type: f1
value: 96.3983656000426
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 89.77428180574556
- type: f1
value: 70.47378359921777
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 80.07061197041023
- type: f1
value: 77.8633288994029
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 81.74176193678547
- type: f1
value: 79.8943810025071
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 39.239199736486334
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 36.98167653792483
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.815595271130718
- type: mrr
value: 31.892823243368795
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 6.214
- type: map_at_10
value: 14.393
- type: map_at_100
value: 18.163999999999998
- type: map_at_1000
value: 19.753999999999998
- type: map_at_3
value: 10.737
- type: map_at_5
value: 12.325
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 48.297000000000004
- type: ndcg_at_10
value: 38.035000000000004
- type: ndcg_at_100
value: 34.772
- type: ndcg_at_1000
value: 43.631
- type: ndcg_at_3
value: 44.252
- type: ndcg_at_5
value: 41.307
- type: precision_at_1
value: 50.15500000000001
- type: precision_at_10
value: 27.647
- type: precision_at_100
value: 8.824
- type: precision_at_1000
value: 2.169
- type: precision_at_3
value: 40.97
- type: precision_at_5
value: 35.17
- type: recall_at_1
value: 6.214
- type: recall_at_10
value: 18.566
- type: recall_at_100
value: 34.411
- type: recall_at_1000
value: 67.331
- type: recall_at_3
value: 12.277000000000001
- type: recall_at_5
value: 14.734
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 47.11
- type: map_at_10
value: 64.404
- type: map_at_100
value: 65.005
- type: map_at_1000
value: 65.01400000000001
- type: map_at_3
value: 60.831
- type: map_at_5
value: 63.181
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 52.983999999999995
- type: ndcg_at_10
value: 71.219
- type: ndcg_at_100
value: 73.449
- type: ndcg_at_1000
value: 73.629
- type: ndcg_at_3
value: 65.07
- type: ndcg_at_5
value: 68.715
- type: precision_at_1
value: 52.983999999999995
- type: precision_at_10
value: 10.756
- type: precision_at_100
value: 1.198
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 28.977999999999998
- type: precision_at_5
value: 19.583000000000002
- type: recall_at_1
value: 47.11
- type: recall_at_10
value: 89.216
- type: recall_at_100
value: 98.44500000000001
- type: recall_at_1000
value: 99.744
- type: recall_at_3
value: 73.851
- type: recall_at_5
value: 82.126
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 71.641
- type: map_at_10
value: 85.687
- type: map_at_100
value: 86.304
- type: map_at_1000
value: 86.318
- type: map_at_3
value: 82.811
- type: map_at_5
value: 84.641
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 82.48
- type: ndcg_at_10
value: 89.212
- type: ndcg_at_100
value: 90.321
- type: ndcg_at_1000
value: 90.405
- type: ndcg_at_3
value: 86.573
- type: ndcg_at_5
value: 88.046
- type: precision_at_1
value: 82.48
- type: precision_at_10
value: 13.522
- type: precision_at_100
value: 1.536
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.95
- type: precision_at_5
value: 24.932000000000002
- type: recall_at_1
value: 71.641
- type: recall_at_10
value: 95.91499999999999
- type: recall_at_100
value: 99.63300000000001
- type: recall_at_1000
value: 99.994
- type: recall_at_3
value: 88.248
- type: recall_at_5
value: 92.428
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 63.19631707795757
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 68.01353074322002
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 4.67
- type: map_at_10
value: 11.991999999999999
- type: map_at_100
value: 14.263
- type: map_at_1000
value: 14.59
- type: map_at_3
value: 8.468
- type: map_at_5
value: 10.346
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 23.1
- type: ndcg_at_10
value: 20.19
- type: ndcg_at_100
value: 28.792
- type: ndcg_at_1000
value: 34.406
- type: ndcg_at_3
value: 19.139
- type: ndcg_at_5
value: 16.916
- type: precision_at_1
value: 23.1
- type: precision_at_10
value: 10.47
- type: precision_at_100
value: 2.2849999999999997
- type: precision_at_1000
value: 0.363
- type: precision_at_3
value: 17.9
- type: precision_at_5
value: 14.979999999999999
- type: recall_at_1
value: 4.67
- type: recall_at_10
value: 21.21
- type: recall_at_100
value: 46.36
- type: recall_at_1000
value: 73.72999999999999
- type: recall_at_3
value: 10.865
- type: recall_at_5
value: 15.185
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 84.31392081916142
- type: cos_sim_spearman
value: 82.80375234068289
- type: euclidean_pearson
value: 81.4159066418654
- type: euclidean_spearman
value: 82.80377112831907
- type: manhattan_pearson
value: 81.48376861134983
- type: manhattan_spearman
value: 82.86696725667119
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.1940844467158
- type: cos_sim_spearman
value: 76.22474792649982
- type: euclidean_pearson
value: 79.87714243582901
- type: euclidean_spearman
value: 76.22462054296349
- type: manhattan_pearson
value: 80.19242023327877
- type: manhattan_spearman
value: 76.53202564089719
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 85.58028303401805
- type: cos_sim_spearman
value: 86.30355131725051
- type: euclidean_pearson
value: 85.9027489087145
- type: euclidean_spearman
value: 86.30352515906158
- type: manhattan_pearson
value: 85.74953930990678
- type: manhattan_spearman
value: 86.21878393891001
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 82.92370135244734
- type: cos_sim_spearman
value: 82.09196894621044
- type: euclidean_pearson
value: 81.83198023906334
- type: euclidean_spearman
value: 82.09196482328333
- type: manhattan_pearson
value: 81.8951479497964
- type: manhattan_spearman
value: 82.2392819738236
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.05662816919057
- type: cos_sim_spearman
value: 87.24083005603993
- type: euclidean_pearson
value: 86.54673655650183
- type: euclidean_spearman
value: 87.24083428218053
- type: manhattan_pearson
value: 86.51248710513431
- type: manhattan_spearman
value: 87.24796986335883
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.06330254316376
- type: cos_sim_spearman
value: 84.76788840323285
- type: euclidean_pearson
value: 84.15438606134029
- type: euclidean_spearman
value: 84.76788840323285
- type: manhattan_pearson
value: 83.97986968570088
- type: manhattan_spearman
value: 84.52468572953663
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.08627867173213
- type: cos_sim_spearman
value: 87.41531216247836
- type: euclidean_pearson
value: 87.92912483282956
- type: euclidean_spearman
value: 87.41531216247836
- type: manhattan_pearson
value: 87.85418528366228
- type: manhattan_spearman
value: 87.32655499883539
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 70.74143864859911
- type: cos_sim_spearman
value: 69.84863549051433
- type: euclidean_pearson
value: 71.07346533903932
- type: euclidean_spearman
value: 69.84863549051433
- type: manhattan_pearson
value: 71.32285810342451
- type: manhattan_spearman
value: 70.13063960824287
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.05702492574339
- type: cos_sim_spearman
value: 86.13895001731495
- type: euclidean_pearson
value: 85.86694514265486
- type: euclidean_spearman
value: 86.13895001731495
- type: manhattan_pearson
value: 85.96382530570494
- type: manhattan_spearman
value: 86.30950247235928
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.26225076335467
- type: mrr
value: 96.60696329813977
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 64.494
- type: map_at_10
value: 74.102
- type: map_at_100
value: 74.571
- type: map_at_1000
value: 74.58
- type: map_at_3
value: 71.111
- type: map_at_5
value: 73.184
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 67.667
- type: ndcg_at_10
value: 78.427
- type: ndcg_at_100
value: 80.167
- type: ndcg_at_1000
value: 80.41
- type: ndcg_at_3
value: 73.804
- type: ndcg_at_5
value: 76.486
- type: precision_at_1
value: 67.667
- type: precision_at_10
value: 10.167
- type: precision_at_100
value: 1.107
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 28.222
- type: precision_at_5
value: 18.867
- type: recall_at_1
value: 64.494
- type: recall_at_10
value: 90.422
- type: recall_at_100
value: 97.667
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 78.278
- type: recall_at_5
value: 84.828
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.82772277227723
- type: cos_sim_ap
value: 95.93881941923254
- type: cos_sim_f1
value: 91.12244897959184
- type: cos_sim_precision
value: 93.02083333333333
- type: cos_sim_recall
value: 89.3
- type: dot_accuracy
value: 99.82772277227723
- type: dot_ap
value: 95.93886287716076
- type: dot_f1
value: 91.12244897959184
- type: dot_precision
value: 93.02083333333333
- type: dot_recall
value: 89.3
- type: euclidean_accuracy
value: 99.82772277227723
- type: euclidean_ap
value: 95.93881941923253
- type: euclidean_f1
value: 91.12244897959184
- type: euclidean_precision
value: 93.02083333333333
- type: euclidean_recall
value: 89.3
- type: manhattan_accuracy
value: 99.83366336633664
- type: manhattan_ap
value: 96.07286531485964
- type: manhattan_f1
value: 91.34912461380021
- type: manhattan_precision
value: 94.16135881104034
- type: manhattan_recall
value: 88.7
- type: max_accuracy
value: 99.83366336633664
- type: max_ap
value: 96.07286531485964
- type: max_f1
value: 91.34912461380021
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 74.98877944689897
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 42.0365286267706
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 56.5797777961647
- type: mrr
value: 57.57701754944402
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.673216240991756
- type: cos_sim_spearman
value: 31.198648165051225
- type: dot_pearson
value: 30.67321511262982
- type: dot_spearman
value: 31.198648165051225
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.23500000000000001
- type: map_at_10
value: 2.274
- type: map_at_100
value: 14.002
- type: map_at_1000
value: 34.443
- type: map_at_3
value: 0.705
- type: map_at_5
value: 1.162
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 88
- type: ndcg_at_10
value: 85.883
- type: ndcg_at_100
value: 67.343
- type: ndcg_at_1000
value: 59.999
- type: ndcg_at_3
value: 87.70400000000001
- type: ndcg_at_5
value: 85.437
- type: precision_at_1
value: 92
- type: precision_at_10
value: 91.2
- type: precision_at_100
value: 69.19999999999999
- type: precision_at_1000
value: 26.6
- type: precision_at_3
value: 92.667
- type: precision_at_5
value: 90.8
- type: recall_at_1
value: 0.23500000000000001
- type: recall_at_10
value: 2.409
- type: recall_at_100
value: 16.706
- type: recall_at_1000
value: 56.396
- type: recall_at_3
value: 0.734
- type: recall_at_5
value: 1.213
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 2.4819999999999998
- type: map_at_10
value: 10.985
- type: map_at_100
value: 17.943
- type: map_at_1000
value: 19.591
- type: map_at_3
value: 5.86
- type: map_at_5
value: 8.397
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0
- type: mrr_at_1000
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 37.755
- type: ndcg_at_10
value: 28.383000000000003
- type: ndcg_at_100
value: 40.603
- type: ndcg_at_1000
value: 51.469
- type: ndcg_at_3
value: 32.562000000000005
- type: ndcg_at_5
value: 31.532
- type: precision_at_1
value: 38.775999999999996
- type: precision_at_10
value: 24.898
- type: precision_at_100
value: 8.429
- type: precision_at_1000
value: 1.582
- type: precision_at_3
value: 31.973000000000003
- type: precision_at_5
value: 31.019999999999996
- type: recall_at_1
value: 2.4819999999999998
- type: recall_at_10
value: 17.079
- type: recall_at_100
value: 51.406
- type: recall_at_1000
value: 84.456
- type: recall_at_3
value: 6.802
- type: recall_at_5
value: 10.856
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 92.5984
- type: ap
value: 41.969971606260906
- type: f1
value: 78.95995145145926
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 80.63950198075835
- type: f1
value: 80.93345710055597
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 60.13491858535076
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.42325803182929
- type: cos_sim_ap
value: 78.72789856051176
- type: cos_sim_f1
value: 71.83879093198993
- type: cos_sim_precision
value: 68.72289156626506
- type: cos_sim_recall
value: 75.25065963060686
- type: dot_accuracy
value: 87.42325803182929
- type: dot_ap
value: 78.72789755269454
- type: dot_f1
value: 71.83879093198993
- type: dot_precision
value: 68.72289156626506
- type: dot_recall
value: 75.25065963060686
- type: euclidean_accuracy
value: 87.42325803182929
- type: euclidean_ap
value: 78.7278973892869
- type: euclidean_f1
value: 71.83879093198993
- type: euclidean_precision
value: 68.72289156626506
- type: euclidean_recall
value: 75.25065963060686
- type: manhattan_accuracy
value: 87.59015318590929
- type: manhattan_ap
value: 78.99631410090865
- type: manhattan_f1
value: 72.11323565929972
- type: manhattan_precision
value: 68.10506566604127
- type: manhattan_recall
value: 76.62269129287598
- type: max_accuracy
value: 87.59015318590929
- type: max_ap
value: 78.99631410090865
- type: max_f1
value: 72.11323565929972
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.15473279776458
- type: cos_sim_ap
value: 86.05463278065247
- type: cos_sim_f1
value: 78.63797449855686
- type: cos_sim_precision
value: 74.82444552596816
- type: cos_sim_recall
value: 82.86110255620572
- type: dot_accuracy
value: 89.15473279776458
- type: dot_ap
value: 86.05463366261054
- type: dot_f1
value: 78.63797449855686
- type: dot_precision
value: 74.82444552596816
- type: dot_recall
value: 82.86110255620572
- type: euclidean_accuracy
value: 89.15473279776458
- type: euclidean_ap
value: 86.05463195314907
- type: euclidean_f1
value: 78.63797449855686
- type: euclidean_precision
value: 74.82444552596816
- type: euclidean_recall
value: 82.86110255620572
- type: manhattan_accuracy
value: 89.15861373074087
- type: manhattan_ap
value: 86.08743411620402
- type: manhattan_f1
value: 78.70125023325248
- type: manhattan_precision
value: 76.36706018686174
- type: manhattan_recall
value: 81.18263012011087
- type: max_accuracy
value: 89.15861373074087
- type: max_ap
value: 86.08743411620402
- type: max_f1
value: 78.70125023325248
---
## Introduction
We introduce NV-Embed, a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark ([MTEB benchmark](https://arxiv.org/abs/2210.07316))(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks. Notably, our model also achieves the highest score of 59.36 on 15 retrieval tasks within this benchmark.
NV-Embed presents several new designs, including having the LLM attend to latent vectors for better pooled embedding output, and demonstrating a two-stage instruction tuning method to enhance the accuracy of both retrieval and non-retrieval tasks.
For more technical details, refer to our paper: [NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models](https://arxiv.org/pdf/2405.17428).
For more benchmark results (other than MTEB), please find the [AIR-Bench](https://huggingface.co/spaces/AIR-Bench/leaderboard) for QA (English only) and Long-Doc.
## Model Details
- Base Decoder-only LLM: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- Pooling Type: Latent-Attention
- Embedding Dimension: 4096
## How to use
Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer. Please find the required package version [here](https://huggingface.co/nvidia/NV-Embed-v1#2-required-packages).
### Usage (HuggingFace Transformers)
```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
queries = [
'are judo throws allowed in wrestling?',
'how to become a radiology technician in michigan?'
]
# No instruction needed for retrieval passages
passage_prefix = ""
passages = [
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]
# load model with tokenizer
model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True)
# get the embeddings
max_length = 4096
query_embeddings = model.encode(queries, instruction=query_prefix, max_length=max_length)
passage_embeddings = model.encode(passages, instruction=passage_prefix, max_length=max_length)
# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)
# get the embeddings with DataLoader (spliting the datasets into multiple mini-batches)
# batch_size=2
# query_embeddings = model._do_encode(queries, batch_size=batch_size, instruction=query_prefix, max_length=max_length, num_workers=32, return_numpy=True)
# passage_embeddings = model._do_encode(passages, batch_size=batch_size, instruction=passage_prefix, max_length=max_length, num_workers=32, return_numpy=True)
scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
#[[77.9402084350586, 0.4248958230018616], [3.757718086242676, 79.60113525390625]]
```
### Usage (Sentence-Transformers)
```python
import torch
from sentence_transformers import SentenceTransformer
# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
queries = [
'are judo throws allowed in wrestling?',
'how to become a radiology technician in michigan?'
]
# No instruction needed for retrieval passages
passages = [
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]
# load model with tokenizer
model = SentenceTransformer('nvidia/NV-Embed-v1', trust_remote_code=True)
model.max_seq_length = 4096
model.tokenizer.padding_side="right"
def add_eos(input_examples):
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
return input_examples
# get the embeddings
batch_size = 2
query_embeddings = model.encode(add_eos(queries), batch_size=batch_size, prompt=query_prefix, normalize_embeddings=True)
passage_embeddings = model.encode(add_eos(passages), batch_size=batch_size, normalize_embeddings=True)
scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
```
## Correspondence to
Chankyu Lee ([email protected]), Rajarshi Roy ([email protected]), Wei Ping ([email protected])
## Citation
If you find this code useful in your research, please consider citing:
```bibtex
@misc{lee2024nvembed,
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
author={Chankyu Lee and Rajarshi Roy and Mengyao Xu and Jonathan Raiman and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
year={2024},
eprint={2405.17428},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
This model should not be used for any commercial purpose. Refer the [license](https://spdx.org/licenses/CC-BY-NC-4.0) for the detailed terms.
For commercial purpose, we recommend you to use the models of [NeMo Retriever Microservices (NIMs)](https://build.nvidia.com/explore/retrieval).
## Troubleshooting
#### 1. How to enable Multi-GPU (Note, this is the case for HuggingFace Transformers)
```python
from transformers import AutoModel
from torch.nn import DataParallel
embedding_model = AutoModel.from_pretrained("nvidia/NV-Embed-v1")
for module_key, module in embedding_model._modules.items():
embedding_model._modules[module_key] = DataParallel(module)
```
#### 2. Required Packages
If you have trouble, try installing the python packages as below
```python
pip uninstall -y transformer-engine
pip install torch==2.2.0
pip install transformers==4.42.4
pip install flash-attn==2.2.0
pip install sentence-transformers==2.7.0
```
#### 3. Fixing "nvidia/NV-Embed-v1 is not the path to a directory containing a file named config.json"
Switch to your local model path,and open config.json and change the value of **"_name_or_path"** and replace it with your local model path.
#### 4. Access to model nvidia/NV-Embed-v1 is restricted. You must be authenticated to access it
Use your huggingface access [token](https://huggingface.co/settings/tokens) to execute *"huggingface-cli login"*.
#### 5. How to resolve slight mismatch in Sentence transformer results.
A slight mismatch in the Sentence Transformer implementation is caused by a discrepancy in the calculation of the instruction prefix length within the Sentence Transformer package.
To fix this issue, you need to build the Sentence Transformer package from source, making the necessary modification in this [line](https://github.com/UKPLab/sentence-transformers/blob/v2.7-release/sentence_transformers/SentenceTransformer.py#L353) as below.
```python
git clone https://github.com/UKPLab/sentence-transformers.git
cd sentence-transformers
git checkout v2.7-release
# Modify L353 in SentenceTransformer.py to **'extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1]'**.
pip install -e .
``` | [
"BIOSSES",
"SCIFACT"
] |
KoboldAI/LLaMA2-13B-Psyfighter2-GGUF | KoboldAI | null | [
"gguf",
"license:llama2",
"endpoints_compatible",
"region:us"
] | "2023-11-14T13:55:13Z" | 2023-11-15T19:10:42+00:00 | 5,780 | 85 | ---
license: llama2
---
# LLAMA2-13B-Psyfighter2
Psyfighter is a merged model created by the KoboldAI community members Jeb Carter and TwistedShadows and was made possible thanks to the KoboldAI merge request service.
The intent was to add medical data to supplement the models fictional ability with more details on anatomy and mental states. Due to the low ratio's of medical data and the high ratio's of fiction this model should not be used for medical advice or therapy because of its high chance of pulling in fictional data.
The following mergekit recipe was used:
```
merge_method: task_arithmetic
base_model: TheBloke/Llama-2-13B-fp16
models:
- model: TheBloke/Llama-2-13B-fp16
- model: KoboldAI/LLaMA2-13B-Tiefighter
parameters:
weight: 1.0
- model: Doctor-Shotgun/cat-v1.0-13b
parameters:
weight: 0.01
- model: Doctor-Shotgun/llama-2-13b-chat-limarp-v2-merged
parameters:
weight: 0.02
dtype: float16
```
*V1 of this model was published under the account of the creator of the merge
This model contains the following ingredients from their upstream models for as far as we can track them:
- KoboldAI/LLaMA2-13B-Tiefighter
- Undi95/Xwin-MLewd-13B-V0.2
- - Undi95/ReMM-S-Light
- Undi95/CreativeEngine
- Brouz/Slerpeno
- - elinas/chronos-13b-v2
- jondurbin/airoboros-l2-13b-2.1
- NousResearch/Nous-Hermes-Llama2-13b+nRuaif/Kimiko-v2
- CalderaAI/13B-Legerdemain-L2+lemonilia/limarp-llama2-v2
- - KoboldAI/LLAMA2-13B-Holodeck-1
- NousResearch/Nous-Hermes-13b
- OpenAssistant/llama2-13b-orca-8k-3319
- ehartford/WizardLM-1.0-Uncensored-Llama2-13b
- Henk717/spring-dragon
- The-Face-Of-Goonery/Huginn-v3-13b (Contains undisclosed model versions, those we assumed where possible)
- - SuperCOT (Undisclosed version)
- elinas/chronos-13b-v2 (Version assumed)
- NousResearch/Nous-Hermes-Llama2-13b
- stabilityai/StableBeluga-13B (Version assumed)
- zattio770/120-Days-of-LORA-v2-13B
- PygmalionAI/pygmalion-2-13b
- Undi95/Storytelling-v1-13B-lora
- TokenBender/sakhi_13B_roleplayer_NSFW_chat_adapter
- nRuaif/Kimiko-v2-13B
- The-Face-Of-Goonery/Huginn-13b-FP16
- - "a lot of different models, like hermes, beluga, airoboros, chronos.. limarp"
- lemonilia/LimaRP-Llama2-13B-v3-EXPERIMENT
- Xwin-LM/Xwin-LM-13B-V0.2
- PocketDoc/Dans-RetroRodeo-13b
- Blackroot/Llama-2-13B-Storywriter-LORA
- Doctor-Shotgun/cat-v1.0-13b
- Doctor-Shotgun/llama-2-13b-chat-limarp-v2-merged
- meta-llama/Llama-2-13b-chat-hf
- lemonilia/limarp-llama2-v2
While we could possibly not credit every single lora or model involved in this merged model, we'd like to thank all involved creators upstream for making this awesome model possible!
Thanks to you the AI ecosystem is thriving, and without your dedicated tuning efforts models such as this one would not be possible.
# Usage
This model is meant to be creative, If you let it improvise you get better results than if you drown it in details.
## Story Writing
Regular story writing in the traditional way is supported, simply copy paste your story and continue writing. Optionally use an instruction in memory or an authors note to guide the direction of your story.
### Generate a story on demand
To generate stories on demand you can use an instruction (tested in the Alpaca format) such as "Write a novel about X, use chapters and dialogue" this will generate a story. The format can vary between generations depending on how the model chooses to begin, either write what you want as shown in the earlier example or write the beginning of the story yourself so the model can follow your style. A few retries can also help if the model gets it wrong.
## Chatbots and persona's
This model has been tested with various forms of chatting, testers have found that typically less is more and the model is good at improvising. Don't drown the model in paragraphs of detailed information, instead keep it simple first and see how far you can lean on the models own ability to figure out your character. Copy pasting paragraphs of background information is not suitable for a 13B model such as this one, code formatted characters or an instruction prompt describing who you wish to talk to goes much further.
For example, you can put this in memory in regular chat mode:
```
### Instruction:
Generate a conversation between Alice and Jeb where they discuss language models.
In this conversation Henk is excited to teach Alice about Psyfighter.
### Response:
```
Because the model is a merge of a variety of models, it should support a broad range of instruct formats, or plain chat mode. If you have a particular favourite try it, otherwise we recommend to either use the regular chat mode or Alpaca's format.
## Instruct Prompting
This model features various instruct models on a variety of instruction styles, when testing the model we have used Alpaca for our own tests. If you prefer a different format chances are it can work.
During instructions we have observed that in some cases the adventure data can leak, it may also be worth experimenting using > as the prefix for a user command to remedy this. But this may result in a stronger fiction bias.
Keep in mind that while this model can be used as a factual instruct model, the focus was on fiction. Information provided by the model can be made up.
## Adventuring and Adventure Games
This model contains a lora that was trained on the same adventure dataset as the KoboldAI Skein model. Adventuring is best done using an small introduction to the world and your objective while using the > prefix for a user command (KoboldAI's adventure mode).
It is possible that the model does not immediately pick up on what you wish to do and does not engage in its Adventure mode behaviour right away. Simply manually correct the output to trim excess dialogue or other undesirable behaviour and continue to submit your actions using the appropriate mode. The model should pick up on this style quickly and will correctly follow this format within 3 turns.
## Discovered something cool and want to engage with us?
Join our community at https://koboldai.org/discord !
We can also provide assistance in making your own merges. | [
"MEDICAL DATA"
] |
tiiuae/Falcon3-3B-Base | tiiuae | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"falcon3",
"en",
"fr",
"es",
"pt",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-12-13T08:05:46Z" | 2024-12-20T12:19:53+00:00 | 5,745 | 16 | ---
language:
- en
- fr
- es
- pt
library_name: transformers
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
tags:
- falcon3
---
<div align="center">
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>
# Falcon3-3B-Base
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-3B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 8K.
It was pruned in terms of depth and width from Falcon3-7B-Base and was efficiently trained on only 100 GT using a knowledge distillation objective.
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
## Model Details
- Architecture
- Transformer-based causal decoder-only architecture
- 22 decoder blocks
- Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
- Wider head dimension: 256
- High RoPE value to support long context understanding: 1000042
- Uses SwiGLU and RMSNorm
- 8K context length
- 131K vocab size
- Pruned and healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
## Getting started
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="tiiuae/Falcon3-3B-Base",
torch_dtype=torch.bfloat16,
device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```
</details>
<br>
## Benchmarks
We report in the following table our internal pipeline benchmarks.
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
- We report **raw scores**.
- We use same batch-size across all models.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Llama3.2-3B</th>
<th>Qwen2.5-3B</th>
<th>Minitron-4B</th>
<th>Falcon3-3B-Base</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>56.1</td>
<td><b>65.6</b></td>
<td>58.7</td>
<td>55.5</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>24.9</td>
<td><b>32</b></td>
<td>26.2</td>
<td>28.8</td>
</tr>
<tr>
<td>IFEval</td>
<td>12.8</td>
<td>27</td>
<td>22.8</td>
<td><b>27.7</b></td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>GSM8K (5-shot)</td>
<td>26.7</td>
<td><b>69</b></td>
<td>25.7</td>
<td>63.9</td>
</tr>
<tr>
<td>MATH Lvl-5 (4-shot)</td>
<td>1.4</td>
<td>8.4</td>
<td>1.7</td>
<td><b>9.4</b></td>
</tr>
<tr>
<td rowspan="4">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>50.8</td>
<td><b>55.5</b></td>
<td>50.3</td>
<td>54.9</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td>27.5</td>
<td>27.5</td>
<td>28.6</td>
<td><b>31.2</b></td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td>35.2</td>
<td><b>43</b></td>
<td>42.1</td>
<td>37.5</td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>38.6</td>
<td><b>46.1</b></td>
<td>40.9</td>
<td>44.2</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>77.4</td>
<td><b>78.9</b></td>
<td>78.3</td>
<td>75.6</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>92.7</td>
<td>95.6</td>
<td><b>96.1</b></td>
<td>93.1</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td><b>69.7</b></td>
<td>68.8</td>
<td>68.4</td>
<td>64.6</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td><b>43.2</b></td>
<td>42.2</td>
<td>43</td>
<td>39.4</td>
</tr>
</tbody>
</table>
## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
## Technical Report
Coming soon....
## Citation
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {The Falcon 3 Family of Open Models},
url = {https://huggingface.co/blog/falcon3},
author = {Falcon-LLM Team},
month = {December},
year = {2024}
}
``` | [
"SCIQ"
] |
ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration | ntc-ai | text-to-image | [
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] | "2024-01-04T11:04:27Z" | 2024-01-04T11:04:31+00:00 | 5,723 | 7 | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
language:
- en
license: mit
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
thumbnail: images/evaluate/ultra realistic illustration.../ultra realistic illustration_17_3.0.png
widget:
- text: ultra realistic illustration
output:
url: images/ultra realistic illustration_17_3.0.png
- text: ultra realistic illustration
output:
url: images/ultra realistic illustration_19_3.0.png
- text: ultra realistic illustration
output:
url: images/ultra realistic illustration_20_3.0.png
- text: ultra realistic illustration
output:
url: images/ultra realistic illustration_21_3.0.png
- text: ultra realistic illustration
output:
url: images/ultra realistic illustration_22_3.0.png
inference: false
instance_prompt: ultra realistic illustration
---
# ntcai.xyz slider - ultra realistic illustration (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/ultra realistic illustration_17_-3.0.png" width=256 height=256 /> | <img src="images/ultra realistic illustration_17_0.0.png" width=256 height=256 /> | <img src="images/ultra realistic illustration_17_3.0.png" width=256 height=256 /> |
| <img src="images/ultra realistic illustration_19_-3.0.png" width=256 height=256 /> | <img src="images/ultra realistic illustration_19_0.0.png" width=256 height=256 /> | <img src="images/ultra realistic illustration_19_3.0.png" width=256 height=256 /> |
| <img src="images/ultra realistic illustration_20_-3.0.png" width=256 height=256 /> | <img src="images/ultra realistic illustration_20_0.0.png" width=256 height=256 /> | <img src="images/ultra realistic illustration_20_3.0.png" width=256 height=256 /> |
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
ultra realistic illustration
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration', weight_name='ultra realistic illustration.safetensors', adapter_name="ultra realistic illustration")
# Activate the LoRA
pipe.set_adapters(["ultra realistic illustration"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, ultra realistic illustration"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 860+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities.
Your support on Patreon will allow us to continue developing and refining new models.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
| [
"CRAFT"
] |
Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5 | Salesforce | image-text-to-text | [
"safetensors",
"xgenmm",
"image-text-to-text",
"conversational",
"custom_code",
"en",
"arxiv:2408.08872",
"license:apache-2.0",
"region:us"
] | "2024-08-09T04:17:16Z" | 2025-02-03T06:05:24+00:00 | 5,694 | 51 | ---
language:
- en
license: apache-2.0
pipeline_tag: image-text-to-text
---
# Model description
`xGen-MM` is a series of the latest foundational Large Multimodal Models (LMMs) developed by Salesforce AI Research. This series advances upon the successful designs of the `BLIP` series, incorporating fundamental enhancements that ensure a more robust and superior foundation. These models have been trained at scale on high-quality image caption datasets and interleaved image-text data.
In the v1.5 (08/2024) release, we present a series of XGen-MM models including:
- [🤗 xGen-MM-instruct-interleave (our main instruct model)](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5): `xgen-mm-phi3-mini-instruct-interleave-r-v1.5`
- This model has higher overall scores than [xGen-MM-instruct](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5) on both single-image and multi-image benchmarks.
- [🤗 xGen-MM-base](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-base-r-v1.5): `xgen-mm-phi3-mini-base-r-v1.5`
- [🤗 xGen-MM-instruct](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5): `xgen-mm-phi3-mini-instruct-singleimg-r-v1.5`
- [🤗 xGen-MM-instruct-dpo](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5): `xgen-mm-phi3-mini-instruct-dpo-r-v1.5`
For more details, check out our [tech report](https://arxiv.org/pdf/2408.08872), [fine-tuning code](https://github.com/salesforce/LAVIS/tree/xgen-mm), and [project page](https://www.salesforceairesearch.com/opensource/xGen-MM/index.html).
# Results
### Single-image benchmarks
| Model (Size) | SEED -IMG | SEED v2 | MMB (dev) | MM Star | MME (norm) | CVB -2D | CVB -3D | RealW QA | MMMU (val) | Math Vista | Sci QA | POPE | Text VQA | Avg. all | Avg. perc. |
|--------------------------------|:---------:|:-------:|:----------:|:-------:|:-----------:|:-------:|:-----------------:|-------------------|:-----------------:|:-----------------:|:-----------------:|:-----------------:|----------------|:--------------:|----------------|
| Closed-source models | | | | | | | | | | | | | | | |
| GPT-4V<sup>*</sup> | 72.0 | - | 80.8 | 49.7 | 63.3 | 64.3 | 73.8 | 56.5 | 53.8 | 48.2 | 82.1 | 75.4 | - | - | - |
| MM1-3B-Chat (3B) | 68.8 | - | 67.8 | - | 62.9 | - | - | - | 33.9 | - | - | 87.4 | - | - | - |
| Open-source models | | | | | | | | | | | | | | | |
| HPT-1.5-edge (4B) | **72.3** | - | 74.6 | 45.8 | - | - | - | - | 42.6 | **45.1** | 85.4 | **91.0** | - | - | - |
| VILA-1.5-3B (3B) | 67.9 | - | 63.4 | - | - | - | - | - | 33.3 | - | 69.0 | 85.9 | - | - | - |
| VILA-1.5-3B<sup>**</sup> (3B) | 67.9 | 51.9 | 62.4 | 40.3 | 58.5 | 50.1 | 60.3 | 53.3 | 34.1 | 30.6 | 68.9 | 86.9 | 58.1 | 55.6 | 59.1 |
| phi-3-vision (4B) | - | - | 80.5 | - | - | - | - | - | - | 44.5 | 90.8 | 85.8 | 70.9 | - | - |
| phi-3-vision<sup>**</sup> (4B) | 71.0 | 52.7 | 74.2 | <u>47.9</u> | 55.3 | 60.7 | 68.2 | 59.1 | **46.1** | **45.1** | **90.2** | 83.5 | **73.3** | 63.6 | 63.6 |
| xGen-MM-inst. (4B) | 71.8 | <u>53.9</u> | <u>76</u> | 46.7 | <u>63.8</u> | <u>66.2</u> | **75.4** | **61.6** | <u>42.8</u> | 39.2 | 85.6 | 87.0 | <u>72.0</u> | <u>64.8</u> | <u>66.9</u> |
| **<u>xGen-MM-inst.-interleave (4B)</u>** | <u>72.2</u> | **55.5** | **76.8** | **48.1** | **64.4** | **69.3** | <u>72.3</u> | <u>60.5</u> | 41.1 | <u>39.6</u> | <u>88.3</u> | 87.0 | 71.0 | **65.1** | **67.3** |
* GPT-4V(gpt-4-1106-preview) results are taken from this third-party [leaderborad](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard).
** Model results are tested with our evaluation code for a fair comparison.
### Multi-image benchmarks
| Model | BLINK | QBench-2 | Mantis-eval |
|-------------------------------|:-----------------:|:-----------------:|:-----------------:|
| GPT-4V <sup>†</sup> | 51.1 | 73.4 | 62.7 |
| VILA-1.5-3B<sup>††</sup> (3B) | 39.8 | 51.7 | 41.9 |
| xGen-MM-inst. (4B) | 46.6 | 52.4 | 42.4 |
| **<u>xGen-MM-inst.-interleave (4B)</u>** | 49.7 | 75.1 | 56.7 |
† GPT-4V results are the numbers reported in each benchmark's original paper.
†† Model results are tested with our evaluation code for a fair comparison.
### Examples
<p>
<figure class="half">
<a href="https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5/blob/main/examples/example-1.png"><img src="./examples/example-1.png"></a>
<a href="https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5/blob/main/examples/example-2.png"><img src="./examples/example-2.png"></a>
</figure>
</p>
<p>
<figure>
<a href="https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5/blob/main/examples/sft-examples.png"><img src="./examples/sft-examples.png"></a>
</figure>
</p>
# How to use
Please check out our [inference notebook](demo.ipynb) for example code to use our model. We also provide an example script for [batch inference](batch_inference.ipynb).
# Reproducibility:
Our evaluation is implemented based on [open-compass/VLMEvalKit](https://github.com/open-compass/VLMEvalKit). We will create a PR to that repo to support XGen-MM evaluation.
# Bias, Risks, Limitations, and Ethical Considerations
The main data sources are from the internet, including webpages,
image stock sites, and curated datasets released by the research community. We have excluded certain data, such as LAION, due to known CSAM concerns.
The model may be subject to bias from the original data source, as well as bias from LLMs and commercial APIs.
We strongly recommend users assess safety and fairness before applying to downstream applications.
# License
Our code and weights are released under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) license.
# Code acknowledgment
Our training code is based on [OpenFlamingo: An open-source framework for training large multimodal models.](https://github.com/mlfoundations/open_flamingo), and part of our data preprocessing code is adapted from [LLaVA](https://github.com/haotian-liu/LLaVA).
The evaluation code for the instruct models is based on [VLMEvalKit: Open-source evaluation toolkit of large vision-language models (LVLMs)](https://github.com/open-compass/VLMEvalKit).
We thank the authors for their open-source implementations.
# Citation
```
@misc{blip3-xgenmm,
author = {Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong Dai, Michael S Ryoo, Shrikant Kendre, Jieyu Zhang, Can Qin, Shu Zhang, Chia-Chih Chen, Ning Yu, Juntao Tan, Tulika Manoj Awalgaonkar, Shelby Heinecke, Huan Wang, Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese, Juan Carlos Niebles, Caiming Xiong, Ran Xu},
title = {xGen-MM (BLIP-3): A Family of Open Large Multimodal Models},
year = {2024},
eprint = {2408.08872},
archivePrefix = {arXiv},
primaryClass = {cs.CV},
url = {https://arxiv.org/abs/2408.08872},
}
```
# Troubleshoot
1. If you missed any packages, please consider the following
# Ethical Considerations
This release is for research purposes only in support of an academic paper. Our models, datasets, and code are not specifically designed or evaluated for all downstream purposes. We strongly recommend users evaluate and address potential concerns related to accuracy, safety, and fairness before deploying this model. We encourage users to consider the common limitations of AI, comply with applicable laws, and leverage best practices when selecting use cases, particularly for high-risk scenarios where errors or misuse could significantly impact people’s lives, rights, or safety. For further guidance on use cases, refer to our AUP and AI AUP.
```
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
pip install open_clip_torch==2.24.0
pip install einops
pip install einops-exts
pip install transformers==4.41.1
``` | [
"CHIA"
] |
ChenWeiLi/MedLlama-3-8B_DARE | ChenWeiLi | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:johnsnowlabs/JSL-MedLlama-3-8B-v2.0",
"base_model:merge:johnsnowlabs/JSL-MedLlama-3-8B-v2.0",
"base_model:mlabonne/ChimeraLlama-3-8B-v3",
"base_model:merge:mlabonne/ChimeraLlama-3-8B-v3",
"base_model:sethuiyer/Medichat-Llama3-8B",
"base_model:merge:sethuiyer/Medichat-Llama3-8B",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-05-14T03:44:37Z" | 2024-05-20T07:32:33+00:00 | 5,665 | 1 | ---
base_model:
- sethuiyer/Medichat-Llama3-8B
- mlabonne/ChimeraLlama-3-8B-v3
- johnsnowlabs/JSL-MedLlama-3-8B-v2.0
library_name: transformers
license: llama3
tags:
- mergekit
- merge
---
# medLlama-3-8B_DARE
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3) as a base.
### Models Merged
The following models were included in the merge:
* [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B)
* [johnsnowlabs/JSL-MedLlama-3-8B-v2.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v2.0)
### Evaluation
- multimedq (0 shot) </br>
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:|
| - medmcqa |Yaml |none | 0|acc |0.5728|± |0.0076|
| | |none | 0|acc_norm|0.5728|± |0.0076|
| - medqa_4options |Yaml |none | 0|acc |0.5923|± |0.0138|
| | |none | 0|acc_norm|0.5923|± |0.0138|
| - anatomy (mmlu) | 0|none | 0|acc |0.7111|± |0.0392|
| - clinical_knowledge (mmlu) | 0|none | 0|acc |0.7547|± |0.0265|
| - college_biology (mmlu) | 0|none | 0|acc |0.7917|± |0.0340|
| - college_medicine (mmlu) | 0|none | 0|acc |0.6647|± |0.0360|
| - medical_genetics (mmlu) | 0|none | 0|acc |0.8200|± |0.0386|
| - professional_medicine (mmlu)| 0|none | 0|acc |0.7426|± |0.0266|
|stem |N/A |none | 0|acc_norm|0.5773|± |0.0067|
| | |none | 0|acc |0.6145|± |0.0057|
| - pubmedqa | 1|none | 0|acc |0.7400|± |0.0196|
|Groups|Version|Filter|n-shot| Metric |Value | |Stderr|
|------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc_norm|0.5773|± |0.0067|
| | |none | 0|acc |0.6145|± |0.0057|
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: mlabonne/ChimeraLlama-3-8B-v3
# No parameters necessary for base model
- model: sethuiyer/Medichat-Llama3-8B
parameters:
density: 0.53
weight: 0.5
- model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0
parameters:
density: 0.53
weight: 0.5
merge_method: dare_ties
base_model: mlabonne/ChimeraLlama-3-8B-v3
parameters:
int8_mask: true
dtype: float16
``` | [
"MEDQA",
"PUBMEDQA"
] |
Xenova/bge-large-en-v1.5 | Xenova | feature-extraction | [
"transformers.js",
"onnx",
"bert",
"feature-extraction",
"base_model:BAAI/bge-large-en-v1.5",
"base_model:quantized:BAAI/bge-large-en-v1.5",
"region:us"
] | "2023-09-13T15:47:26Z" | 2024-10-08T13:42:30+00:00 | 5,628 | 5 | ---
base_model: BAAI/bge-large-en-v1.5
library_name: transformers.js
---
https://huggingface.co/BAAI/bge-large-en-v1.5 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
You can then use the model to compute embeddings, as follows:
```js
import { pipeline } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/bge-large-en-v1.5');
// Compute sentence embeddings
const texts = [ 'Hello world.', 'Example sentence.'];
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
console.log(embeddings);
// Tensor {
// dims: [ 2, 1024 ],
// type: 'float32',
// data: Float32Array(2048) [ 0.03169844672083855, 0.011085662990808487, ... ],
// size: 2048
// }
console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list
// [
// [ 0.03169844672083855, 0.011085662990808487, 0.030054178088903427, ... ],
// [ 0.009418969973921776, -0.024539148434996605, 0.036459196358919144, ... ]
// ]
```
You can also use the model for retrieval. For example:
```js
import { pipeline, cos_sim } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/bge-large-en-v1.5');
// List of documents you want to embed
const texts = [
'Hello world.',
'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.',
'I love pandas so much!',
];
// Compute sentence embeddings
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
// Prepend recommended query instruction for retrieval.
const query_prefix = 'Represent this sentence for searching relevant passages: '
const query = query_prefix + 'What is a panda?';
const query_embeddings = await extractor(query, { pooling: 'mean', normalize: true });
// Sort by cosine similarity score
const scores = embeddings.tolist().map(
(embedding, i) => ({
id: i,
score: cos_sim(query_embeddings.data, embedding),
text: texts[i],
})
).sort((a, b) => b.score - a.score);
console.log(scores);
// [
// { id: 1, score: 0.7671812872502833, text: 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.' },
// { id: 2, score: 0.7219157959783322, text: 'I love pandas so much!' },
// { id: 0, score: 0.5109676329796601, text: 'Hello world.' }
// ]
```
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). | [
"BEAR"
] |
MediaTek-Research/Llama-Breeze2-8B-Instruct | MediaTek-Research | null | [
"safetensors",
"internvl_chat",
"custom_code",
"en",
"zh",
"arxiv:2501.13921",
"license:llama3.2",
"region:us"
] | "2025-01-23T08:25:15Z" | 2025-03-02T02:26:30+00:00 | 5,622 | 32 | ---
language:
- en
- zh
license: llama3.2
---
# Llama-Breeze2-8B-Instruct-v0_1
【[Paper](https://arxiv.org/abs/2501.13921)】◇【[Kaggle Demo](https://www.kaggle.com/code/ycckaggle/demo-breeze-2-8b)】◇【[Collection](https://huggingface.co/collections/MediaTek-Research/llama-breeze2-67863158443a06a72dd29900)】
**The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on LLaMA with Vision-Aware and Function-Calling Capabilities**
Llama Breeze 2 is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation.
Building upon the [LLaMA 3.2](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/), Breeze 2 continues pretraining on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese.
It incorporates vision-aware capabilities through a visual encoder and a bridge module, and supports function-calling via prompt templates and post-training on function-calling data.
*Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.*
*We list all contributors in alphabetical order of their first names, as follows: Chan-Jan Hsu (許湛然), Chia-Sheng Liu (劉佳昇), Meng-Hsi Chen (陳孟羲), Muxi Chen (陳沐希), Po-Chun Hsu (許博竣), Yi-Chang Chen (陳宜昌), and the supervisor Da-Shan Shiu (許大山).*
## Installation
```
pip3 install transformers==4.47.0
pip3 install -U mtkresearch
```
```python
from transformers import AutoModel, AutoTokenizer
from transformers import GenerationConfig
import torch
from mtkresearch.llm.prompt import MRPromptV3
model_id = 'MediaTek-Research/Llama-Breeze2-8B-Instruct-v0_1'
model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map='auto',
img_context_token_id=128212
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, use_fast=False)
generation_config = GenerationConfig(
max_new_tokens=2048,
do_sample=True,
temperature=0.01,
top_p=0.01,
repetition_penalty=1.1,
eos_token_id=128009
)
prompt_engine = MRPromptV3()
sys_prompt = 'You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.'
def _inference(tokenizer, model, generation_config, prompt, pixel_values=None):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
if pixel_values is None:
output_tensors = model.generate(**inputs, generation_config=generation_config)
else:
output_tensors = model.generate(**inputs, generation_config=generation_config, pixel_values=pixel_values.to(model.device, dtype=model.dtype))
output_str = tokenizer.decode(output_tensors[0])
return output_str
```
## Feature: Instruction Following
```python
conversations = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": "請問什麼是深度學習?"},
]
prompt = prompt_engine.get_prompt(conversations)
output_str = _inference(tokenizer, model, generation_config, prompt)
result = prompt_engine.parse_generated_str(output_str)
print(result)
# {'role': 'assistant', 'content': '深度學習是一種人工智慧技術,主要是透過模仿生物神經網路的結構和功能來實現。它利用大量數據進行訓練,以建立複雜的模型並使其能夠自主學習、預測或分類輸入資料。\n\n在深度學習中,通常使用多層的神經網路,每一層都包含許多相互連接的節點(稱為神經元)。這些神經元可以處理不同特徵的輸入資料,並將結果傳遞給下一層的神經元。隨著資料流向更高層次,這個過程逐漸捕捉到更抽象的概念或模式。\n\n深度學習已被廣泛應用於各種領域,如圖像識別、自然語言處理、語音識別以及遊戲等。它提供了比傳統機器學習方法更好的表現,因為它能夠從複雜且非線性的數據中提取出有用的資訊。'}
```
## Feature: Visual Instruction Following
Example Image:

```python
conversations = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{
"type": "image",
"image_path": /path/to/example-image,
},
{
"type": "text",
"text": "請問前三名總共可獲得多少錢?"
},
]},
]
prompt, pixel_values = prompt_engine.get_prompt(conversations)
output_str = _inference(tokenizer, model, generation_config, prompt, pixel_values=pixel_values)
result = prompt_engine.parse_generated_str(output_str)
print(result)
# {'role': 'assistant', 'content': '第一名可獲得30萬元,第二名可獲得20萬元,第三名可獲得15萬元。前三名總共可獲得65萬元。'}
```
## Feature: Function Calling
```python
import json
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
]
def fake_get_current_weather(location, unit=None):
return {'temperature': 30}
mapping = {
'get_current_weather': fake_get_current_weather
}
# stage 1: query
conversations = [
{"role": "user", "content": "請問台北目前溫度是攝氏幾度?"},
]
prompt = prompt_engine.get_prompt(conversations, functions=functions)
output_str = _inference(tokenizer, model, generation_config, prompt)
result = prompt_engine.parse_generated_str(output_str)
print(result)
# {'role': 'assistant', 'tool_calls': [{'id': 'call_0bcY2wePCVTg14Q6Xor93fHz', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"location": "台北", "unit": "celsius"}'}}]}
```
```python
# stage 2: execute called functions
conversations.append(result)
tool_call = result['tool_calls'][0]
func_name = tool_call['function']['name']
func = mapping[func_name]
arguments = json.loads(tool_call['function']['arguments'])
called_result = func(**arguments)
# stage 3: put executed results
conversations.append(
{
'role': 'tool',
'tool_call_id': tool_call['id'],
'name': func_name,
'content': json.dumps(called_result)
}
)
prompt = prompt_engine.get_prompt(conversations, functions=functions)
output_str2 = _inference(tokenizer, model, generation_config, prompt)
result2 = prompt_engine.parse_generated_str(output_str2)
print(result2)
# {'role': 'assistant', 'content': '台北目前的溫度是攝氏30度。'}
```
## Citation
```
@article{breeze2,
title={The Breeze 2 Herd of Models: Traditional Chinese LLMs Based on LLaMA with Vision-Aware and Function-Calling Capabilities},
author={Breeze Team, MediaTek Research},
journal={arXiv},
year={2025},
url={https://arxiv.org/abs/2501.13921}
}
```
| [
"CHIA"
] |
Lajavaness/bilingual-embedding-base | Lajavaness | sentence-similarity | [
"sentence-transformers",
"safetensors",
"bilingual",
"feature-extraction",
"sentence-similarity",
"transformers",
"sentence-embedding",
"mteb",
"custom_code",
"arxiv:2010.08240",
"arxiv:1911.02116",
"arxiv:1908.10084",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-06-26T15:22:37Z" | 2024-11-18T11:21:39+00:00 | 5,585 | 6 | ---
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- sentence-embedding
- mteb
model-index:
- name: bilingual-embedding-base
results:
- task:
type: Clustering
dataset:
name: MTEB AlloProfClusteringP2P
type: lyon-nlp/alloprof
config: default
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: v_measure
value: 64.71347977413274
- type: v_measures
value:
- 0.6276406100583347
- 0.6380984027637511
- 0.6322659733117469
- 0.652473343931587
- 0.6411502615838207
- type: v_measure
value: 45.56886694296516
- type: v_measures
value:
- 0.4359417286866465
- 0.4218168523895086
- 0.419693469863105
- 0.4981808644314091
- 0.4546120704986696
- task:
type: Reranking
dataset:
name: MTEB AlloprofReranking
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
config: default
split: test
revision: 65393d0d7a08a10b4e348135e824f385d420b0fd
metrics:
- type: map
value: 70.45979049191963
- type: mrr
value: 71.61250582558874
- type: nAUC_map_diff1
value: 53.81172404763562
- type: nAUC_map_max
value: 11.344605627946006
- type: nAUC_mrr_diff1
value: 53.73572411920392
- type: nAUC_mrr_max
value: 11.900785644756448
- task:
type: Retrieval
dataset:
name: MTEB AlloprofRetrieval
type: lyon-nlp/alloprof
config: default
split: test
revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd
metrics:
- type: map_at_1
value: 24.956999999999997
- type: map_at_10
value: 35.519
- type: map_at_100
value: 36.602000000000004
- type: map_at_1000
value: 36.667
- type: map_at_20
value: 36.199
- type: map_at_3
value: 32.397999999999996
- type: map_at_5
value: 34.121
- type: mrr_at_1
value: 24.956822107081177
- type: mrr_at_10
value: 35.5187515420676
- type: mrr_at_100
value: 36.60233410773095
- type: mrr_at_1000
value: 36.6673425266803
- type: mrr_at_20
value: 36.19886807640962
- type: mrr_at_3
value: 32.39781232009212
- type: mrr_at_5
value: 34.120610247553294
- type: nauc_map_at_1000_diff1
value: 35.47549954610535
- type: nauc_map_at_1000_max
value: 32.90078190148035
- type: nauc_map_at_100_diff1
value: 35.450977423889455
- type: nauc_map_at_100_max
value: 32.94163322687819
- type: nauc_map_at_10_diff1
value: 35.33565787959566
- type: nauc_map_at_10_max
value: 32.64293321320758
- type: nauc_map_at_1_diff1
value: 41.36063963274824
- type: nauc_map_at_1_max
value: 29.231198539339754
- type: nauc_map_at_20_diff1
value: 35.43536321023612
- type: nauc_map_at_20_max
value: 32.88345868813372
- type: nauc_map_at_3_diff1
value: 35.686505961183194
- type: nauc_map_at_3_max
value: 32.00806639149525
- type: nauc_map_at_5_diff1
value: 35.34083004527267
- type: nauc_map_at_5_max
value: 32.34459863266794
- type: nauc_mrr_at_1000_diff1
value: 35.47549954610535
- type: nauc_mrr_at_1000_max
value: 32.90078190148035
- type: nauc_mrr_at_100_diff1
value: 35.450977423889455
- type: nauc_mrr_at_100_max
value: 32.94163322687819
- type: nauc_mrr_at_10_diff1
value: 35.33565787959566
- type: nauc_mrr_at_10_max
value: 32.64293321320758
- type: nauc_mrr_at_1_diff1
value: 41.36063963274824
- type: nauc_mrr_at_1_max
value: 29.231198539339754
- type: nauc_mrr_at_20_diff1
value: 35.43536321023612
- type: nauc_mrr_at_20_max
value: 32.88345868813372
- type: nauc_mrr_at_3_diff1
value: 35.686505961183194
- type: nauc_mrr_at_3_max
value: 32.00806639149525
- type: nauc_mrr_at_5_diff1
value: 35.34083004527267
- type: nauc_mrr_at_5_max
value: 32.34459863266794
- type: nauc_ndcg_at_1000_diff1
value: 34.4325639393338
- type: nauc_ndcg_at_1000_max
value: 34.44147157978809
- type: nauc_ndcg_at_100_diff1
value: 33.88653913244061
- type: nauc_ndcg_at_100_max
value: 35.59739772150559
- type: nauc_ndcg_at_10_diff1
value: 33.51057326557921
- type: nauc_ndcg_at_10_max
value: 34.18300339583124
- type: nauc_ndcg_at_1_diff1
value: 41.36063963274824
- type: nauc_ndcg_at_1_max
value: 29.231198539339754
- type: nauc_ndcg_at_20_diff1
value: 33.804940889687714
- type: nauc_ndcg_at_20_max
value: 35.13066047975507
- type: nauc_ndcg_at_3_diff1
value: 34.167179830350406
- type: nauc_ndcg_at_3_max
value: 32.94370726673571
- type: nauc_ndcg_at_5_diff1
value: 33.52138730976869
- type: nauc_ndcg_at_5_max
value: 33.48723912009657
- type: nauc_precision_at_1000_diff1
value: 22.67827963096167
- type: nauc_precision_at_1000_max
value: 67.17958434804059
- type: nauc_precision_at_100_diff1
value: 24.83989747177019
- type: nauc_precision_at_100_max
value: 56.86858468981111
- type: nauc_precision_at_10_diff1
value: 27.973507280697774
- type: nauc_precision_at_10_max
value: 39.14247264250278
- type: nauc_precision_at_1_diff1
value: 41.36063963274824
- type: nauc_precision_at_1_max
value: 29.231198539339754
- type: nauc_precision_at_20_diff1
value: 28.244479044808852
- type: nauc_precision_at_20_max
value: 44.5538108461975
- type: nauc_precision_at_3_diff1
value: 30.09786756288918
- type: nauc_precision_at_3_max
value: 35.51252285506707
- type: nauc_precision_at_5_diff1
value: 28.444019525872083
- type: nauc_precision_at_5_max
value: 36.71010320598834
- type: nauc_recall_at_1000_diff1
value: 22.67827963096142
- type: nauc_recall_at_1000_max
value: 67.17958434804105
- type: nauc_recall_at_100_diff1
value: 24.83989747177035
- type: nauc_recall_at_100_max
value: 56.868584689811186
- type: nauc_recall_at_10_diff1
value: 27.973507280697774
- type: nauc_recall_at_10_max
value: 39.14247264250283
- type: nauc_recall_at_1_diff1
value: 41.36063963274824
- type: nauc_recall_at_1_max
value: 29.231198539339754
- type: nauc_recall_at_20_diff1
value: 28.244479044808823
- type: nauc_recall_at_20_max
value: 44.553810846197486
- type: nauc_recall_at_3_diff1
value: 30.097867562889213
- type: nauc_recall_at_3_max
value: 35.51252285506708
- type: nauc_recall_at_5_diff1
value: 28.444019525872054
- type: nauc_recall_at_5_max
value: 36.71010320598833
- type: ndcg_at_1
value: 24.956999999999997
- type: ndcg_at_10
value: 41.260999999999996
- type: ndcg_at_100
value: 46.628
- type: ndcg_at_1000
value: 48.339999999999996
- type: ndcg_at_20
value: 43.71
- type: ndcg_at_3
value: 34.771
- type: ndcg_at_5
value: 37.862
- type: precision_at_1
value: 24.956999999999997
- type: precision_at_10
value: 5.963
- type: precision_at_100
value: 0.8500000000000001
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 3.463
- type: precision_at_3
value: 13.874
- type: precision_at_5
value: 9.818999999999999
- type: recall_at_1
value: 24.956999999999997
- type: recall_at_10
value: 59.629
- type: recall_at_100
value: 84.974
- type: recall_at_1000
value: 98.402
- type: recall_at_20
value: 69.257
- type: recall_at_3
value: 41.623
- type: recall_at_5
value: 49.092999999999996
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.354
- type: f1
value: 38.96127209677864
- type: f1_weighted
value: 38.96127209677863
- task:
type: Retrieval
dataset:
name: MTEB BSARDRetrieval
type: maastrichtlawtech/bsard
config: default
split: test
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
metrics:
- type: map_at_1
value: 5.405
- type: map_at_10
value: 9.715
- type: map_at_100
value: 10.852
- type: map_at_1000
value: 10.986
- type: map_at_20
value: 10.324
- type: map_at_3
value: 8.183
- type: map_at_5
value: 9.129
- type: mrr_at_1
value: 5.405405405405405
- type: mrr_at_10
value: 9.715250965250963
- type: mrr_at_100
value: 10.852488713991455
- type: mrr_at_1000
value: 10.986128810251913
- type: mrr_at_20
value: 10.324372731493472
- type: mrr_at_3
value: 8.183183183183184
- type: mrr_at_5
value: 9.12912912912913
- type: nauc_map_at_1000_diff1
value: 27.989147369852507
- type: nauc_map_at_1000_max
value: 13.956676274011212
- type: nauc_map_at_100_diff1
value: 27.97931691839789
- type: nauc_map_at_100_max
value: 13.885054931557967
- type: nauc_map_at_10_diff1
value: 28.39484917161119
- type: nauc_map_at_10_max
value: 12.859153645903026
- type: nauc_map_at_1_diff1
value: 40.37326707123
- type: nauc_map_at_1_max
value: 19.53225223707901
- type: nauc_map_at_20_diff1
value: 27.969553431914463
- type: nauc_map_at_20_max
value: 13.993555023169318
- type: nauc_map_at_3_diff1
value: 31.130088078198526
- type: nauc_map_at_3_max
value: 11.59332560179606
- type: nauc_map_at_5_diff1
value: 28.51357198186801
- type: nauc_map_at_5_max
value: 12.629395513278464
- type: nauc_mrr_at_1000_diff1
value: 27.989147369852507
- type: nauc_mrr_at_1000_max
value: 13.956676274011212
- type: nauc_mrr_at_100_diff1
value: 27.97931691839789
- type: nauc_mrr_at_100_max
value: 13.885054931557967
- type: nauc_mrr_at_10_diff1
value: 28.39484917161119
- type: nauc_mrr_at_10_max
value: 12.859153645903026
- type: nauc_mrr_at_1_diff1
value: 40.37326707123
- type: nauc_mrr_at_1_max
value: 19.53225223707901
- type: nauc_mrr_at_20_diff1
value: 27.969553431914463
- type: nauc_mrr_at_20_max
value: 13.993555023169318
- type: nauc_mrr_at_3_diff1
value: 31.130088078198526
- type: nauc_mrr_at_3_max
value: 11.59332560179606
- type: nauc_mrr_at_5_diff1
value: 28.51357198186801
- type: nauc_mrr_at_5_max
value: 12.629395513278464
- type: nauc_ndcg_at_1000_diff1
value: 23.808642111518818
- type: nauc_ndcg_at_1000_max
value: 16.627566094152723
- type: nauc_ndcg_at_100_diff1
value: 24.15753828838301
- type: nauc_ndcg_at_100_max
value: 15.687219543962943
- type: nauc_ndcg_at_10_diff1
value: 25.37534871155007
- type: nauc_ndcg_at_10_max
value: 12.129150838266701
- type: nauc_ndcg_at_1_diff1
value: 40.37326707123
- type: nauc_ndcg_at_1_max
value: 19.53225223707901
- type: nauc_ndcg_at_20_diff1
value: 24.446964236295017
- type: nauc_ndcg_at_20_max
value: 15.718345074121808
- type: nauc_ndcg_at_3_diff1
value: 29.121862169292296
- type: nauc_ndcg_at_3_max
value: 9.481317109332187
- type: nauc_ndcg_at_5_diff1
value: 25.17815567035254
- type: nauc_ndcg_at_5_max
value: 11.187689974665869
- type: nauc_precision_at_1000_diff1
value: 10.131813130975075
- type: nauc_precision_at_1000_max
value: 30.42776840947068
- type: nauc_precision_at_100_diff1
value: 17.8621079715631
- type: nauc_precision_at_100_max
value: 20.81364427037172
- type: nauc_precision_at_10_diff1
value: 20.451314767316635
- type: nauc_precision_at_10_max
value: 11.400840293532708
- type: nauc_precision_at_1_diff1
value: 40.37326707123
- type: nauc_precision_at_1_max
value: 19.53225223707901
- type: nauc_precision_at_20_diff1
value: 19.17170129809007
- type: nauc_precision_at_20_max
value: 20.190489899791007
- type: nauc_precision_at_3_diff1
value: 24.905337103765735
- type: nauc_precision_at_3_max
value: 4.960457155777402
- type: nauc_precision_at_5_diff1
value: 18.725510703139488
- type: nauc_precision_at_5_max
value: 8.555964364751343
- type: nauc_recall_at_1000_diff1
value: 10.131813130975143
- type: nauc_recall_at_1000_max
value: 30.427768409470673
- type: nauc_recall_at_100_diff1
value: 17.862107971563105
- type: nauc_recall_at_100_max
value: 20.813644270371707
- type: nauc_recall_at_10_diff1
value: 20.45131476731657
- type: nauc_recall_at_10_max
value: 11.400840293532651
- type: nauc_recall_at_1_diff1
value: 40.37326707123
- type: nauc_recall_at_1_max
value: 19.53225223707901
- type: nauc_recall_at_20_diff1
value: 19.171701298090017
- type: nauc_recall_at_20_max
value: 20.19048989979099
- type: nauc_recall_at_3_diff1
value: 24.905337103765717
- type: nauc_recall_at_3_max
value: 4.9604571557773935
- type: nauc_recall_at_5_diff1
value: 18.72551070313952
- type: nauc_recall_at_5_max
value: 8.55596436475138
- type: ndcg_at_1
value: 5.405
- type: ndcg_at_10
value: 12.217
- type: ndcg_at_100
value: 18.512999999999998
- type: ndcg_at_1000
value: 22.002
- type: ndcg_at_20
value: 14.551
- type: ndcg_at_3
value: 9.089
- type: ndcg_at_5
value: 10.776
- type: precision_at_1
value: 5.405
- type: precision_at_10
value: 2.027
- type: precision_at_100
value: 0.514
- type: precision_at_1000
value: 0.079
- type: precision_at_20
value: 1.486
- type: precision_at_3
value: 3.904
- type: precision_at_5
value: 3.1530000000000005
- type: recall_at_1
value: 5.405
- type: recall_at_10
value: 20.27
- type: recall_at_100
value: 51.351
- type: recall_at_1000
value: 78.82900000000001
- type: recall_at_20
value: 29.73
- type: recall_at_3
value: 11.712
- type: recall_at_5
value: 15.766
- task:
type: Clustering
dataset:
name: MTEB HALClusteringS2S
type: lyon-nlp/clustering-hal-s2s
config: default
split: test
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
metrics:
- type: v_measure
value: 25.366610995664384
- type: v_measures
value:
- 0.2853826102888054
- 0.27554329622230517
- 0.2659387504290534
- 0.272421074779971
- 0.23780511730712292
- task:
type: Clustering
dataset:
name: MTEB MLSUMClusteringP2P
type: reciTAL/mlsum
config: fr
split: test
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
metrics:
- type: v_measure
value: 44.22735442638259
- type: v_measures
value:
- 0.446401643334608
- 0.45940182243882194
- 0.4535014442023603
- 0.4315840671354274
- 0.40219963696623473
- type: v_measure
value: 44.57521454657146
- type: v_measures
value:
- 0.4501823523199927
- 0.45800459800343646
- 0.4535621236055794
- 0.4353844290212204
- 0.40539074932285035
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 86.82743501409333
- type: f1
value: 87.07777165714171
- type: f1_weighted
value: 86.70555382175719
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 59.129345443156886
- type: f1
value: 40.374753319633946
- type: f1_weighted
value: 61.735222244513906
- task:
type: Classification
dataset:
name: MTEB MasakhaNEWSClassification (fra)
type: mteb/masakhanews
config: fra
split: test
revision: 18193f187b92da67168c655c9973a165ed9593dd
metrics:
- type: accuracy
value: 77.44075829383887
- type: f1
value: 73.59099795975669
- type: f1_weighted
value: 77.53638597300765
- task:
type: Clustering
dataset:
name: MTEB MasakhaNEWSClusteringP2P (fra)
type: masakhane/masakhanews
config: fra
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: v_measure
value: 61.57579457743856
- type: v_measures
value:
- 1.0
- 0.19333147584460073
- 0.1918473189330316
- 0.9180419176341081
- 0.7755690164601873
- type: v_measure
value: 46.09882977546196
- type: v_measures
value:
- 1.0
- 0.0
- 0.4881603944307428
- 0.1341399033659235
- 0.6826411909764316
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 64.98655010087424
- type: f1
value: 62.07892690857404
- type: f1_weighted
value: 64.04916798028313
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 71.72494956287828
- type: f1
value: 70.7613627592262
- type: f1_weighted
value: 71.59023734198762
- task:
type: Retrieval
dataset:
name: MTEB MintakaRetrieval (fr)
type: jinaai/mintakaqa
config: fr
split: test
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
metrics:
- type: map_at_1
value: 15.643
- type: map_at_10
value: 23.263
- type: map_at_100
value: 24.282
- type: map_at_1000
value: 24.386
- type: map_at_20
value: 23.810000000000002
- type: map_at_3
value: 20.857
- type: map_at_5
value: 22.127
- type: mrr_at_1
value: 15.642915642915641
- type: mrr_at_10
value: 23.26313326313326
- type: mrr_at_100
value: 24.28242740941141
- type: mrr_at_1000
value: 24.38579869502159
- type: mrr_at_20
value: 23.809503335080308
- type: mrr_at_3
value: 20.857220857220817
- type: mrr_at_5
value: 22.126672126672087
- type: nauc_map_at_1000_diff1
value: 22.791507278613405
- type: nauc_map_at_1000_max
value: 34.49738411163668
- type: nauc_map_at_100_diff1
value: 22.753348275392053
- type: nauc_map_at_100_max
value: 34.503329867035156
- type: nauc_map_at_10_diff1
value: 22.949396903228543
- type: nauc_map_at_10_max
value: 34.59635858547973
- type: nauc_map_at_1_diff1
value: 29.68671981414948
- type: nauc_map_at_1_max
value: 32.40476256531568
- type: nauc_map_at_20_diff1
value: 22.839943329322214
- type: nauc_map_at_20_max
value: 34.5512812666387
- type: nauc_map_at_3_diff1
value: 24.531567517208703
- type: nauc_map_at_3_max
value: 34.63194411307717
- type: nauc_map_at_5_diff1
value: 23.785928597532532
- type: nauc_map_at_5_max
value: 34.49711117096583
- type: nauc_mrr_at_1000_diff1
value: 22.791507278613405
- type: nauc_mrr_at_1000_max
value: 34.49738411163668
- type: nauc_mrr_at_100_diff1
value: 22.753348275392053
- type: nauc_mrr_at_100_max
value: 34.503329867035156
- type: nauc_mrr_at_10_diff1
value: 22.949396903228543
- type: nauc_mrr_at_10_max
value: 34.59635858547973
- type: nauc_mrr_at_1_diff1
value: 29.68671981414948
- type: nauc_mrr_at_1_max
value: 32.40476256531568
- type: nauc_mrr_at_20_diff1
value: 22.839943329322214
- type: nauc_mrr_at_20_max
value: 34.5512812666387
- type: nauc_mrr_at_3_diff1
value: 24.531567517208703
- type: nauc_mrr_at_3_max
value: 34.63194411307717
- type: nauc_mrr_at_5_diff1
value: 23.785928597532532
- type: nauc_mrr_at_5_max
value: 34.49711117096583
- type: nauc_ndcg_at_1000_diff1
value: 20.36281863938966
- type: nauc_ndcg_at_1000_max
value: 34.39195365895218
- type: nauc_ndcg_at_100_diff1
value: 19.226093736031558
- type: nauc_ndcg_at_100_max
value: 34.598730272263424
- type: nauc_ndcg_at_10_diff1
value: 20.175947236861635
- type: nauc_ndcg_at_10_max
value: 35.06289054957336
- type: nauc_ndcg_at_1_diff1
value: 29.68671981414948
- type: nauc_ndcg_at_1_max
value: 32.40476256531568
- type: nauc_ndcg_at_20_diff1
value: 19.76832604541867
- type: nauc_ndcg_at_20_max
value: 34.88676463098282
- type: nauc_ndcg_at_3_diff1
value: 23.165684344826936
- type: nauc_ndcg_at_3_max
value: 35.058555779606806
- type: nauc_ndcg_at_5_diff1
value: 22.008327776501197
- type: nauc_ndcg_at_5_max
value: 34.81586957799795
- type: nauc_precision_at_1000_diff1
value: -0.17116637411109903
- type: nauc_precision_at_1000_max
value: 22.79067675552558
- type: nauc_precision_at_100_diff1
value: 6.442518254575118
- type: nauc_precision_at_100_max
value: 34.22531735083736
- type: nauc_precision_at_10_diff1
value: 13.139149147711764
- type: nauc_precision_at_10_max
value: 36.17629609592965
- type: nauc_precision_at_1_diff1
value: 29.68671981414948
- type: nauc_precision_at_1_max
value: 32.40476256531568
- type: nauc_precision_at_20_diff1
value: 11.54118462661454
- type: nauc_precision_at_20_max
value: 35.56967988819633
- type: nauc_precision_at_3_diff1
value: 19.81196490555276
- type: nauc_precision_at_3_max
value: 36.06171743276854
- type: nauc_precision_at_5_diff1
value: 17.72477129059423
- type: nauc_precision_at_5_max
value: 35.49631000776651
- type: nauc_recall_at_1000_diff1
value: -0.17116637411164665
- type: nauc_recall_at_1000_max
value: 22.790676755525375
- type: nauc_recall_at_100_diff1
value: 6.442518254575061
- type: nauc_recall_at_100_max
value: 34.22531735083735
- type: nauc_recall_at_10_diff1
value: 13.139149147711779
- type: nauc_recall_at_10_max
value: 36.17629609592963
- type: nauc_recall_at_1_diff1
value: 29.68671981414948
- type: nauc_recall_at_1_max
value: 32.40476256531568
- type: nauc_recall_at_20_diff1
value: 11.541184626614548
- type: nauc_recall_at_20_max
value: 35.56967988819635
- type: nauc_recall_at_3_diff1
value: 19.811964905552767
- type: nauc_recall_at_3_max
value: 36.06171743276855
- type: nauc_recall_at_5_diff1
value: 17.72477129059422
- type: nauc_recall_at_5_max
value: 35.49631000776651
- type: ndcg_at_1
value: 15.643
- type: ndcg_at_10
value: 27.596999999999998
- type: ndcg_at_100
value: 33.036
- type: ndcg_at_1000
value: 36.348
- type: ndcg_at_20
value: 29.586000000000002
- type: ndcg_at_3
value: 22.567
- type: ndcg_at_5
value: 24.858
- type: precision_at_1
value: 15.643
- type: precision_at_10
value: 4.152
- type: precision_at_100
value: 0.681
- type: precision_at_1000
value: 0.095
- type: precision_at_20
value: 2.469
- type: precision_at_3
value: 9.173
- type: precision_at_5
value: 6.618
- type: recall_at_1
value: 15.643
- type: recall_at_10
value: 41.522999999999996
- type: recall_at_100
value: 68.059
- type: recall_at_1000
value: 95.332
- type: recall_at_20
value: 49.386
- type: recall_at_3
value: 27.517999999999997
- type: recall_at_5
value: 33.088
- task:
type: PairClassification
dataset:
name: MTEB OpusparcusPC (fr)
type: GEM/opusparcus
config: fr
split: test
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
metrics:
- type: cos_sim_accuracy
value: 82.08446866485014
- type: cos_sim_ap
value: 93.63779278112501
- type: cos_sim_f1
value: 87.31307284129282
- type: cos_sim_precision
value: 84.8968105065666
- type: cos_sim_recall
value: 89.87090367428004
- type: dot_accuracy
value: 82.08446866485014
- type: dot_ap
value: 93.63779278112501
- type: dot_f1
value: 87.31307284129282
- type: dot_precision
value: 84.8968105065666
- type: dot_recall
value: 89.87090367428004
- type: euclidean_accuracy
value: 82.08446866485014
- type: euclidean_ap
value: 93.63779278112501
- type: euclidean_f1
value: 87.31307284129282
- type: euclidean_precision
value: 84.8968105065666
- type: euclidean_recall
value: 89.87090367428004
- type: manhattan_accuracy
value: 82.15258855585832
- type: manhattan_ap
value: 93.6291276133462
- type: manhattan_f1
value: 87.36740597878496
- type: manhattan_precision
value: 84.91096532333646
- type: manhattan_recall
value: 89.97020854021847
- type: max_accuracy
value: 82.15258855585832
- type: max_ap
value: 93.63779278112501
- type: max_f1
value: 87.36740597878496
- task:
type: PairClassification
dataset:
name: MTEB PawsX (fr)
type: google-research-datasets/paws-x
config: fr
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 60.85
- type: cos_sim_ap
value: 60.37878110577144
- type: cos_sim_f1
value: 62.67978803936413
- type: cos_sim_precision
value: 47.61357101782634
- type: cos_sim_recall
value: 91.69435215946844
- type: dot_accuracy
value: 60.85
- type: dot_ap
value: 60.282876235548
- type: dot_f1
value: 62.67978803936413
- type: dot_precision
value: 47.61357101782634
- type: dot_recall
value: 91.69435215946844
- type: euclidean_accuracy
value: 60.85
- type: euclidean_ap
value: 60.37878110577144
- type: euclidean_f1
value: 62.67978803936413
- type: euclidean_precision
value: 47.61357101782634
- type: euclidean_recall
value: 91.69435215946844
- type: manhattan_accuracy
value: 61.0
- type: manhattan_ap
value: 60.32592616688752
- type: manhattan_f1
value: 62.70871985157699
- type: manhattan_precision
value: 47.154017857142854
- type: manhattan_recall
value: 93.57696566998892
- type: max_accuracy
value: 61.0
- type: max_ap
value: 60.37878110577144
- type: max_f1
value: 62.70871985157699
- task:
type: STS
dataset:
name: MTEB SICKFr
type: Lajavaness/SICK-fr
config: default
split: test
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
metrics:
- type: cos_sim_pearson
value: 82.41331853949572
- type: cos_sim_spearman
value: 75.4815169821101
- type: euclidean_pearson
value: 79.81380205322172
- type: euclidean_spearman
value: 75.48076002322844
- type: manhattan_pearson
value: 79.86035354304643
- type: manhattan_spearman
value: 75.51770448845875
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cos_sim_pearson
value: 78.63723398201921
- type: cos_sim_spearman
value: 81.1413239539243
- type: euclidean_pearson
value: 79.65250044199216
- type: euclidean_spearman
value: 81.1413239539243
- type: manhattan_pearson
value: 79.4690995487022
- type: manhattan_spearman
value: 80.61411938663267
- task:
type: STS
dataset:
name: MTEB STSBenchmarkMultilingualSTS (fr)
type: mteb/stsb_multi_mt
config: fr
split: test
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
metrics:
- type: cos_sim_pearson
value: 83.34057641357742
- type: cos_sim_spearman
value: 83.74771008807434
- type: euclidean_pearson
value: 83.22245971062527
- type: euclidean_spearman
value: 83.74894925253341
- type: manhattan_pearson
value: 83.06789257151542
- type: manhattan_spearman
value: 83.52796149940158
- task:
type: Summarization
dataset:
name: MTEB SummEvalFr
type: lyon-nlp/summarization-summeval-fr-p2p
config: default
split: test
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
metrics:
- type: cos_sim_pearson
value: 29.949370780736455
- type: cos_sim_spearman
value: 30.16472987232583
- type: dot_pearson
value: 29.94937008799093
- type: dot_spearman
value: 30.16472987232583
- task:
type: Reranking
dataset:
name: MTEB SyntecReranking
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
config: default
split: test
revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad
metrics:
- type: map
value: 83.82619047619046
- type: mrr
value: 83.82619047619046
- type: nAUC_map_diff1
value: 56.291594426865686
- type: nAUC_map_max
value: 9.006252496368798
- type: nAUC_mrr_diff1
value: 56.291594426865686
- type: nAUC_mrr_max
value: 9.006252496368798
- task:
type: Retrieval
dataset:
name: MTEB SyntecRetrieval
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
config: default
split: test
revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9
metrics:
- type: map_at_1
value: 62.0
- type: map_at_10
value: 74.369
- type: map_at_100
value: 74.626
- type: map_at_1000
value: 74.626
- type: map_at_20
value: 74.626
- type: map_at_3
value: 72.333
- type: map_at_5
value: 73.533
- type: mrr_at_1
value: 62.0
- type: mrr_at_10
value: 74.36944444444444
- type: mrr_at_100
value: 74.62553418803418
- type: mrr_at_1000
value: 74.62553418803418
- type: mrr_at_20
value: 74.62553418803418
- type: mrr_at_3
value: 72.33333333333333
- type: mrr_at_5
value: 73.53333333333333
- type: nauc_map_at_1000_diff1
value: 59.84829658893367
- type: nauc_map_at_1000_max
value: 25.92680320484747
- type: nauc_map_at_100_diff1
value: 59.84829658893367
- type: nauc_map_at_100_max
value: 25.92680320484747
- type: nauc_map_at_10_diff1
value: 60.14734510056334
- type: nauc_map_at_10_max
value: 26.4859845903765
- type: nauc_map_at_1_diff1
value: 61.15589330215675
- type: nauc_map_at_1_max
value: 25.502261329723385
- type: nauc_map_at_20_diff1
value: 59.84829658893367
- type: nauc_map_at_20_max
value: 25.92680320484747
- type: nauc_map_at_3_diff1
value: 60.664125602445864
- type: nauc_map_at_3_max
value: 24.598480701707597
- type: nauc_map_at_5_diff1
value: 59.96933672856163
- type: nauc_map_at_5_max
value: 26.87050847362874
- type: nauc_mrr_at_1000_diff1
value: 59.84829658893367
- type: nauc_mrr_at_1000_max
value: 25.92680320484747
- type: nauc_mrr_at_100_diff1
value: 59.84829658893367
- type: nauc_mrr_at_100_max
value: 25.92680320484747
- type: nauc_mrr_at_10_diff1
value: 60.14734510056334
- type: nauc_mrr_at_10_max
value: 26.4859845903765
- type: nauc_mrr_at_1_diff1
value: 61.15589330215675
- type: nauc_mrr_at_1_max
value: 25.502261329723385
- type: nauc_mrr_at_20_diff1
value: 59.84829658893367
- type: nauc_mrr_at_20_max
value: 25.92680320484747
- type: nauc_mrr_at_3_diff1
value: 60.664125602445864
- type: nauc_mrr_at_3_max
value: 24.598480701707597
- type: nauc_mrr_at_5_diff1
value: 59.96933672856163
- type: nauc_mrr_at_5_max
value: 26.87050847362874
- type: nauc_ndcg_at_1000_diff1
value: 60.04965149586935
- type: nauc_ndcg_at_1000_max
value: 26.34908378184259
- type: nauc_ndcg_at_100_diff1
value: 60.04965149586935
- type: nauc_ndcg_at_100_max
value: 26.34908378184259
- type: nauc_ndcg_at_10_diff1
value: 61.517946155950945
- type: nauc_ndcg_at_10_max
value: 29.005286712766882
- type: nauc_ndcg_at_1_diff1
value: 61.15589330215675
- type: nauc_ndcg_at_1_max
value: 25.502261329723385
- type: nauc_ndcg_at_20_diff1
value: 60.04965149586935
- type: nauc_ndcg_at_20_max
value: 26.34908378184259
- type: nauc_ndcg_at_3_diff1
value: 62.138907107716314
- type: nauc_ndcg_at_3_max
value: 24.66905359423539
- type: nauc_ndcg_at_5_diff1
value: 60.81453858060155
- type: nauc_ndcg_at_5_max
value: 29.652166992041785
- type: nauc_precision_at_1000_diff1
value: nan
- type: nauc_precision_at_1000_max
value: nan
- type: nauc_precision_at_100_diff1
value: nan
- type: nauc_precision_at_100_max
value: nan
- type: nauc_precision_at_10_diff1
value: 86.11111111111084
- type: nauc_precision_at_10_max
value: 72.80578898225937
- type: nauc_precision_at_1_diff1
value: 61.15589330215675
- type: nauc_precision_at_1_max
value: 25.502261329723385
- type: nauc_precision_at_20_diff1
value: 100.0
- type: nauc_precision_at_20_max
value: 100.0
- type: nauc_precision_at_3_diff1
value: 69.83729254799863
- type: nauc_precision_at_3_max
value: 25.2229092092417
- type: nauc_precision_at_5_diff1
value: 66.95144724556499
- type: nauc_precision_at_5_max
value: 49.640522875817005
- type: nauc_recall_at_1000_diff1
value: nan
- type: nauc_recall_at_1000_max
value: nan
- type: nauc_recall_at_100_diff1
value: nan
- type: nauc_recall_at_100_max
value: nan
- type: nauc_recall_at_10_diff1
value: 86.11111111111124
- type: nauc_recall_at_10_max
value: 72.8057889822595
- type: nauc_recall_at_1_diff1
value: 61.15589330215675
- type: nauc_recall_at_1_max
value: 25.502261329723385
- type: nauc_recall_at_20_diff1
value: nan
- type: nauc_recall_at_20_max
value: nan
- type: nauc_recall_at_3_diff1
value: 69.83729254799871
- type: nauc_recall_at_3_max
value: 25.22290920924175
- type: nauc_recall_at_5_diff1
value: 66.95144724556485
- type: nauc_recall_at_5_max
value: 49.64052287581686
- type: ndcg_at_1
value: 62.0
- type: ndcg_at_10
value: 79.679
- type: ndcg_at_100
value: 80.664
- type: ndcg_at_1000
value: 80.664
- type: ndcg_at_20
value: 80.664
- type: ndcg_at_3
value: 75.595
- type: ndcg_at_5
value: 77.704
- type: precision_at_1
value: 62.0
- type: precision_at_10
value: 9.6
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 5.0
- type: precision_at_3
value: 28.333000000000002
- type: precision_at_5
value: 18.0
- type: recall_at_1
value: 62.0
- type: recall_at_10
value: 96.0
- type: recall_at_100
value: 100.0
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 100.0
- type: recall_at_3
value: 85.0
- type: recall_at_5
value: 90.0
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (fr)
type: jinaai/xpqa
config: fr
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: map_at_1
value: 37.597
- type: map_at_10
value: 57.888
- type: map_at_100
value: 59.277
- type: map_at_1000
value: 59.352000000000004
- type: map_at_20
value: 58.717
- type: map_at_3
value: 51.957
- type: map_at_5
value: 55.772999999999996
- type: mrr_at_1
value: 59.813084112149525
- type: mrr_at_10
value: 67.10031364570752
- type: mrr_at_100
value: 67.66545041236235
- type: mrr_at_1000
value: 67.6835494818551
- type: mrr_at_20
value: 67.49393600922676
- type: mrr_at_3
value: 65.17578994214506
- type: mrr_at_5
value: 66.18380062305292
- type: nauc_map_at_1000_diff1
value: 48.73204134706741
- type: nauc_map_at_1000_max
value: 48.167144249595445
- type: nauc_map_at_100_diff1
value: 48.678967361326784
- type: nauc_map_at_100_max
value: 48.150876586146055
- type: nauc_map_at_10_diff1
value: 48.49819455901337
- type: nauc_map_at_10_max
value: 47.419803565618324
- type: nauc_map_at_1_diff1
value: 58.76698174343172
- type: nauc_map_at_1_max
value: 32.18211527608151
- type: nauc_map_at_20_diff1
value: 48.40197639399712
- type: nauc_map_at_20_max
value: 47.81717012073508
- type: nauc_map_at_3_diff1
value: 50.73932443832007
- type: nauc_map_at_3_max
value: 42.24066337784361
- type: nauc_map_at_5_diff1
value: 49.46975560894318
- type: nauc_map_at_5_max
value: 45.80443987601635
- type: nauc_mrr_at_1000_diff1
value: 57.835936362591525
- type: nauc_mrr_at_1000_max
value: 58.573550643855896
- type: nauc_mrr_at_100_diff1
value: 57.82678446452145
- type: nauc_mrr_at_100_max
value: 58.5764861850602
- type: nauc_mrr_at_10_diff1
value: 57.76879895710224
- type: nauc_mrr_at_10_max
value: 58.64968053975452
- type: nauc_mrr_at_1_diff1
value: 59.856533986276574
- type: nauc_mrr_at_1_max
value: 58.730867813105725
- type: nauc_mrr_at_20_diff1
value: 57.795349563018746
- type: nauc_mrr_at_20_max
value: 58.516079879105256
- type: nauc_mrr_at_3_diff1
value: 57.76489841294852
- type: nauc_mrr_at_3_max
value: 58.58658769928032
- type: nauc_mrr_at_5_diff1
value: 57.694777424382515
- type: nauc_mrr_at_5_max
value: 58.56316065282314
- type: nauc_ndcg_at_1000_diff1
value: 50.69160796479768
- type: nauc_ndcg_at_1000_max
value: 52.199577971960785
- type: nauc_ndcg_at_100_diff1
value: 49.86099689038677
- type: nauc_ndcg_at_100_max
value: 52.151790872414125
- type: nauc_ndcg_at_10_diff1
value: 48.72866627696869
- type: nauc_ndcg_at_10_max
value: 50.06953156417251
- type: nauc_ndcg_at_1_diff1
value: 59.856533986276574
- type: nauc_ndcg_at_1_max
value: 58.730867813105725
- type: nauc_ndcg_at_20_diff1
value: 48.588995750275565
- type: nauc_ndcg_at_20_max
value: 50.49019072586609
- type: nauc_ndcg_at_3_diff1
value: 50.45588351336764
- type: nauc_ndcg_at_3_max
value: 48.984274202014916
- type: nauc_ndcg_at_5_diff1
value: 50.006960016438505
- type: nauc_ndcg_at_5_max
value: 48.303806275166735
- type: nauc_precision_at_1000_diff1
value: -16.164680055782775
- type: nauc_precision_at_1000_max
value: 16.124503094722208
- type: nauc_precision_at_100_diff1
value: -13.36404724754223
- type: nauc_precision_at_100_max
value: 23.29679787821716
- type: nauc_precision_at_10_diff1
value: -3.7402851742774788
- type: nauc_precision_at_10_max
value: 32.14138887961609
- type: nauc_precision_at_1_diff1
value: 59.856533986276574
- type: nauc_precision_at_1_max
value: 58.730867813105725
- type: nauc_precision_at_20_diff1
value: -8.971829372748005
- type: nauc_precision_at_20_max
value: 27.87664599166348
- type: nauc_precision_at_3_diff1
value: 11.427083566719917
- type: nauc_precision_at_3_max
value: 39.94075723264166
- type: nauc_precision_at_5_diff1
value: 3.5428167965724233
- type: nauc_precision_at_5_max
value: 35.65970898316591
- type: nauc_recall_at_1000_diff1
value: 42.34179228230109
- type: nauc_recall_at_1000_max
value: 69.84746848920715
- type: nauc_recall_at_100_diff1
value: 30.47165287340051
- type: nauc_recall_at_100_max
value: 47.90447689942959
- type: nauc_recall_at_10_diff1
value: 36.65046615294308
- type: nauc_recall_at_10_max
value: 41.81737771961874
- type: nauc_recall_at_1_diff1
value: 58.76698174343172
- type: nauc_recall_at_1_max
value: 32.18211527608151
- type: nauc_recall_at_20_diff1
value: 33.33461286517975
- type: nauc_recall_at_20_max
value: 40.033064434150155
- type: nauc_recall_at_3_diff1
value: 45.94521561906703
- type: nauc_recall_at_3_max
value: 37.46948921295656
- type: nauc_recall_at_5_diff1
value: 42.66425368847329
- type: nauc_recall_at_5_max
value: 40.64657773118315
- type: ndcg_at_1
value: 59.813
- type: ndcg_at_10
value: 64.208
- type: ndcg_at_100
value: 69.002
- type: ndcg_at_1000
value: 70.23700000000001
- type: ndcg_at_20
value: 66.29899999999999
- type: ndcg_at_3
value: 59.099999999999994
- type: ndcg_at_5
value: 60.763999999999996
- type: precision_at_1
value: 59.813
- type: precision_at_10
value: 14.766000000000002
- type: precision_at_100
value: 1.8870000000000002
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_20
value: 8.117
- type: precision_at_3
value: 35.781
- type: precision_at_5
value: 25.688
- type: recall_at_1
value: 37.597
- type: recall_at_10
value: 72.919
- type: recall_at_100
value: 91.526
- type: recall_at_1000
value: 99.421
- type: recall_at_20
value: 79.64
- type: recall_at_3
value: 56.836
- type: recall_at_5
value: 64.364
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 77.41791044776119
- type: ap
value: 41.50313649654625
- type: ap_weighted
value: 41.50313649654625
- type: f1
value: 71.69242302886543
- type: f1_weighted
value: 79.4051024757404
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 89.51284999999999
- type: ap
value: 85.78657792017795
- type: ap_weighted
value: 85.78657792017795
- type: f1
value: 89.48680521118494
- type: f1_weighted
value: 89.48680521118494
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 46.096000000000004
- type: f1
value: 44.75176024696358
- type: f1_weighted
value: 44.75176024696358
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 27.738000000000003
- type: map_at_10
value: 42.992999999999995
- type: map_at_100
value: 44.025999999999996
- type: map_at_1000
value: 44.037
- type: map_at_20
value: 43.838
- type: map_at_3
value: 37.707
- type: map_at_5
value: 40.851
- type: mrr_at_1
value: 28.02275960170697
- type: mrr_at_10
value: 43.129445234708385
- type: mrr_at_100
value: 44.14842568065762
- type: mrr_at_1000
value: 44.15944224906741
- type: mrr_at_20
value: 43.9604803125253
- type: mrr_at_3
value: 37.79042200094829
- type: mrr_at_5
value: 40.937648174490285
- type: nauc_map_at_1000_diff1
value: 7.819134326851951
- type: nauc_map_at_1000_max
value: -5.363208805959698
- type: nauc_map_at_100_diff1
value: 7.827581788081036
- type: nauc_map_at_100_max
value: -5.343758430445495
- type: nauc_map_at_10_diff1
value: 7.788779237579437
- type: nauc_map_at_10_max
value: -5.212502829074271
- type: nauc_map_at_1_diff1
value: 8.676582434483777
- type: nauc_map_at_1_max
value: -9.028400174777206
- type: nauc_map_at_20_diff1
value: 7.843647300531639
- type: nauc_map_at_20_max
value: -5.171628909368918
- type: nauc_map_at_3_diff1
value: 7.580280985257144
- type: nauc_map_at_3_max
value: -6.508188744493309
- type: nauc_map_at_5_diff1
value: 7.461255107228164
- type: nauc_map_at_5_max
value: -5.150343094282473
- type: nauc_mrr_at_1000_diff1
value: 6.911455227219296
- type: nauc_mrr_at_1000_max
value: -5.866891482528428
- type: nauc_mrr_at_100_diff1
value: 6.920215930616841
- type: nauc_mrr_at_100_max
value: -5.847302915503507
- type: nauc_mrr_at_10_diff1
value: 6.89637694159382
- type: nauc_mrr_at_10_max
value: -5.7267515522713985
- type: nauc_mrr_at_1_diff1
value: 7.784148492423344
- type: nauc_mrr_at_1_max
value: -9.261177003486702
- type: nauc_mrr_at_20_diff1
value: 6.941892867312857
- type: nauc_mrr_at_20_max
value: -5.672366841914248
- type: nauc_mrr_at_3_diff1
value: 6.655156176778528
- type: nauc_mrr_at_3_max
value: -7.08130312539927
- type: nauc_mrr_at_5_diff1
value: 6.474672753475723
- type: nauc_mrr_at_5_max
value: -5.7771100192539455
- type: nauc_ndcg_at_1000_diff1
value: 7.82257902156683
- type: nauc_ndcg_at_1000_max
value: -4.284182821313092
- type: nauc_ndcg_at_100_diff1
value: 7.982663390398444
- type: nauc_ndcg_at_100_max
value: -3.829916815248607
- type: nauc_ndcg_at_10_diff1
value: 7.940691283173258
- type: nauc_ndcg_at_10_max
value: -2.759653230358356
- type: nauc_ndcg_at_1_diff1
value: 8.676582434483777
- type: nauc_ndcg_at_1_max
value: -9.028400174777206
- type: nauc_ndcg_at_20_diff1
value: 8.216154898914834
- type: nauc_ndcg_at_20_max
value: -2.5281250069887644
- type: nauc_ndcg_at_3_diff1
value: 7.397192517335338
- type: nauc_ndcg_at_3_max
value: -5.506567290248059
- type: nauc_ndcg_at_5_diff1
value: 7.224597118942196
- type: nauc_ndcg_at_5_max
value: -2.8306642442626635
- type: nauc_precision_at_1000_diff1
value: -28.424446830488918
- type: nauc_precision_at_1000_max
value: 15.2996011292648
- type: nauc_precision_at_100_diff1
value: 13.817321356393311
- type: nauc_precision_at_100_max
value: 35.62226207701842
- type: nauc_precision_at_10_diff1
value: 9.129870306379654
- type: nauc_precision_at_10_max
value: 10.371721765203494
- type: nauc_precision_at_1_diff1
value: 8.676582434483777
- type: nauc_precision_at_1_max
value: -9.028400174777206
- type: nauc_precision_at_20_diff1
value: 14.378273723959786
- type: nauc_precision_at_20_max
value: 29.411949476113275
- type: nauc_precision_at_3_diff1
value: 6.924474252093112
- type: nauc_precision_at_3_max
value: -2.589098226592611
- type: nauc_precision_at_5_diff1
value: 6.523266339112172
- type: nauc_precision_at_5_max
value: 5.387183619653168
- type: nauc_recall_at_1000_diff1
value: -28.424446830487355
- type: nauc_recall_at_1000_max
value: 15.299601129265062
- type: nauc_recall_at_100_diff1
value: 13.817321356392966
- type: nauc_recall_at_100_max
value: 35.62226207701895
- type: nauc_recall_at_10_diff1
value: 9.129870306379667
- type: nauc_recall_at_10_max
value: 10.371721765203487
- type: nauc_recall_at_1_diff1
value: 8.676582434483777
- type: nauc_recall_at_1_max
value: -9.028400174777206
- type: nauc_recall_at_20_diff1
value: 14.378273723959634
- type: nauc_recall_at_20_max
value: 29.411949476113342
- type: nauc_recall_at_3_diff1
value: 6.924474252093177
- type: nauc_recall_at_3_max
value: -2.589098226592573
- type: nauc_recall_at_5_diff1
value: 6.5232663391122045
- type: nauc_recall_at_5_max
value: 5.38718361965314
- type: ndcg_at_1
value: 27.738000000000003
- type: ndcg_at_10
value: 51.867
- type: ndcg_at_100
value: 56.010000000000005
- type: ndcg_at_1000
value: 56.25599999999999
- type: ndcg_at_20
value: 54.872
- type: ndcg_at_3
value: 41.041
- type: ndcg_at_5
value: 46.7
- type: precision_at_1
value: 27.738000000000003
- type: precision_at_10
value: 8.036999999999999
- type: precision_at_100
value: 0.9780000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.605
- type: precision_at_3
value: 16.904
- type: precision_at_5
value: 12.888
- type: recall_at_1
value: 27.738000000000003
- type: recall_at_10
value: 80.36999999999999
- type: recall_at_100
value: 97.795
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 92.105
- type: recall_at_3
value: 50.711
- type: recall_at_5
value: 64.43799999999999
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 44.25989960324142
- type: v_measures
value:
- 0.4355201593114565
- 0.43400969136008477
- 0.4621501390953121
- 0.4368716556310582
- 0.46142659337392417
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 36.00514206925075
- type: v_measures
value:
- 0.38194577110919753
- 0.3641834175557571
- 0.3594175019099288
- 0.35392802860850453
- 0.36877397641003723
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 59.2761176425466
- type: mrr
value: 73.2264872708086
- type: nAUC_map_diff1
value: 7.0068523566823835
- type: nAUC_map_max
value: 21.51466581178718
- type: nAUC_mrr_diff1
value: 16.619643437951563
- type: nAUC_mrr_max
value: 32.302108972143714
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 87.84186171115664
- type: cos_sim_spearman
value: 87.13150342270266
- type: euclidean_pearson
value: 86.93703588206957
- type: euclidean_spearman
value: 87.13150342270266
- type: manhattan_pearson
value: 86.78921932668315
- type: manhattan_spearman
value: 86.73631369514506
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 78.46103896103897
- type: f1
value: 77.72189862815705
- type: f1_weighted
value: 77.72189862815705
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 36.380764168313746
- type: v_measures
value:
- 0.37382307264671194
- 0.36301531251106245
- 0.3793738872327412
- 0.35770158136125185
- 0.3555364559997305
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 31.538017334550577
- type: v_measures
value:
- 0.30690945509666684
- 0.31808990661791575
- 0.31514802723414864
- 0.3159451399149567
- 0.3171249261521223
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: map_at_1
value: 32.464
- type: map_at_10
value: 42.91
- type: map_at_100
value: 44.253
- type: map_at_1000
value: 44.378
- type: map_at_20
value: 43.608000000000004
- type: map_at_3
value: 39.21
- type: map_at_5
value: 41.243
- type: mrr_at_1
value: 40.05722460658083
- type: mrr_at_10
value: 49.06050593818831
- type: mrr_at_100
value: 49.75550694943466
- type: mrr_at_1000
value: 49.80211926259268
- type: mrr_at_20
value: 49.466746239607275
- type: mrr_at_3
value: 46.256556986170715
- type: mrr_at_5
value: 48.05197901764422
- type: nauc_map_at_1000_diff1
value: 54.452516877596366
- type: nauc_map_at_1000_max
value: 42.37830524228681
- type: nauc_map_at_100_diff1
value: 54.455120677207944
- type: nauc_map_at_100_max
value: 42.35365218254892
- type: nauc_map_at_10_diff1
value: 54.411476414486735
- type: nauc_map_at_10_max
value: 41.799626583253286
- type: nauc_map_at_1_diff1
value: 56.844131977626574
- type: nauc_map_at_1_max
value: 39.50909847050082
- type: nauc_map_at_20_diff1
value: 54.474114038349
- type: nauc_map_at_20_max
value: 41.95011324047797
- type: nauc_map_at_3_diff1
value: 54.94801787552844
- type: nauc_map_at_3_max
value: 40.93589777136806
- type: nauc_map_at_5_diff1
value: 54.51000824622664
- type: nauc_map_at_5_max
value: 41.942988719761516
- type: nauc_mrr_at_1000_diff1
value: 54.73077714753202
- type: nauc_mrr_at_1000_max
value: 44.79399425080995
- type: nauc_mrr_at_100_diff1
value: 54.72534798039509
- type: nauc_mrr_at_100_max
value: 44.784407506240214
- type: nauc_mrr_at_10_diff1
value: 54.60375865684595
- type: nauc_mrr_at_10_max
value: 44.557364932034154
- type: nauc_mrr_at_1_diff1
value: 57.776230077156235
- type: nauc_mrr_at_1_max
value: 46.471474228551344
- type: nauc_mrr_at_20_diff1
value: 54.70304613396688
- type: nauc_mrr_at_20_max
value: 44.66734285522038
- type: nauc_mrr_at_3_diff1
value: 55.3933778729286
- type: nauc_mrr_at_3_max
value: 44.696022513397615
- type: nauc_mrr_at_5_diff1
value: 54.71004626344184
- type: nauc_mrr_at_5_max
value: 44.965744262291004
- type: nauc_ndcg_at_1000_diff1
value: 53.26255776636424
- type: nauc_ndcg_at_1000_max
value: 43.58732162869603
- type: nauc_ndcg_at_100_diff1
value: 52.99574164185918
- type: nauc_ndcg_at_100_max
value: 43.35845196216733
- type: nauc_ndcg_at_10_diff1
value: 52.660009377886766
- type: nauc_ndcg_at_10_max
value: 41.93002636395951
- type: nauc_ndcg_at_1_diff1
value: 57.776230077156235
- type: nauc_ndcg_at_1_max
value: 46.471474228551344
- type: nauc_ndcg_at_20_diff1
value: 52.925283797059066
- type: nauc_ndcg_at_20_max
value: 41.96413582256493
- type: nauc_ndcg_at_3_diff1
value: 53.86123945887276
- type: nauc_ndcg_at_3_max
value: 42.5192092394243
- type: nauc_ndcg_at_5_diff1
value: 53.02739573145395
- type: nauc_ndcg_at_5_max
value: 42.86255544029417
- type: nauc_precision_at_1000_diff1
value: -14.01444880844629
- type: nauc_precision_at_1000_max
value: -3.2426344768649065
- type: nauc_precision_at_100_diff1
value: -2.665892254195872
- type: nauc_precision_at_100_max
value: 11.174117765610346
- type: nauc_precision_at_10_diff1
value: 17.760500367118006
- type: nauc_precision_at_10_max
value: 25.819513742057314
- type: nauc_precision_at_1_diff1
value: 57.776230077156235
- type: nauc_precision_at_1_max
value: 46.471474228551344
- type: nauc_precision_at_20_diff1
value: 10.720961197841934
- type: nauc_precision_at_20_max
value: 20.104016753843656
- type: nauc_precision_at_3_diff1
value: 38.00682945145973
- type: nauc_precision_at_3_max
value: 39.91552880079303
- type: nauc_precision_at_5_diff1
value: 29.195186929472932
- type: nauc_precision_at_5_max
value: 36.060771452887344
- type: nauc_recall_at_1000_diff1
value: 34.24272104794043
- type: nauc_recall_at_1000_max
value: 56.510230841605825
- type: nauc_recall_at_100_diff1
value: 39.42477153393114
- type: nauc_recall_at_100_max
value: 41.44622822460404
- type: nauc_recall_at_10_diff1
value: 42.98765339932259
- type: nauc_recall_at_10_max
value: 34.34817326152696
- type: nauc_recall_at_1_diff1
value: 56.844131977626574
- type: nauc_recall_at_1_max
value: 39.50909847050082
- type: nauc_recall_at_20_diff1
value: 42.49763875384549
- type: nauc_recall_at_20_max
value: 34.211320392734436
- type: nauc_recall_at_3_diff1
value: 49.54385449610674
- type: nauc_recall_at_3_max
value: 37.050307605313755
- type: nauc_recall_at_5_diff1
value: 45.79369932076432
- type: nauc_recall_at_5_max
value: 38.06187420388636
- type: ndcg_at_1
value: 40.056999999999995
- type: ndcg_at_10
value: 49.228
- type: ndcg_at_100
value: 54.162
- type: ndcg_at_1000
value: 56.205000000000005
- type: ndcg_at_20
value: 51.034
- type: ndcg_at_3
value: 43.94
- type: ndcg_at_5
value: 46.504
- type: precision_at_1
value: 40.056999999999995
- type: precision_at_10
value: 9.528
- type: precision_at_100
value: 1.472
- type: precision_at_1000
value: 0.192
- type: precision_at_20
value: 5.494000000000001
- type: precision_at_3
value: 20.887
- type: precision_at_5
value: 15.193000000000001
- type: recall_at_1
value: 32.464
- type: recall_at_10
value: 60.831
- type: recall_at_100
value: 81.85900000000001
- type: recall_at_1000
value: 95.15
- type: recall_at_20
value: 67.657
- type: recall_at_3
value: 45.489000000000004
- type: recall_at_5
value: 52.839000000000006
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: map_at_1
value: 27.204
- type: map_at_10
value: 36.565999999999995
- type: map_at_100
value: 37.706
- type: map_at_1000
value: 37.827
- type: map_at_20
value: 37.124
- type: map_at_3
value: 33.629999999999995
- type: map_at_5
value: 35.345
- type: mrr_at_1
value: 33.88535031847134
- type: mrr_at_10
value: 42.00993327267216
- type: mrr_at_100
value: 42.69324389051348
- type: mrr_at_1000
value: 42.742001707727674
- type: mrr_at_20
value: 42.383657095896574
- type: mrr_at_3
value: 39.61783439490446
- type: mrr_at_5
value: 41.02547770700639
- type: nauc_map_at_1000_diff1
value: 51.2434173008466
- type: nauc_map_at_1000_max
value: 42.89551471851398
- type: nauc_map_at_100_diff1
value: 51.25803151639599
- type: nauc_map_at_100_max
value: 42.84835058448656
- type: nauc_map_at_10_diff1
value: 51.392478648037475
- type: nauc_map_at_10_max
value: 42.520436932382275
- type: nauc_map_at_1_diff1
value: 58.311410816649435
- type: nauc_map_at_1_max
value: 38.78632287563295
- type: nauc_map_at_20_diff1
value: 51.2961213976287
- type: nauc_map_at_20_max
value: 42.5853171119173
- type: nauc_map_at_3_diff1
value: 52.988281664633696
- type: nauc_map_at_3_max
value: 41.255285265369714
- type: nauc_map_at_5_diff1
value: 51.90811230897579
- type: nauc_map_at_5_max
value: 42.25025338907201
- type: nauc_mrr_at_1000_diff1
value: 49.968831428382956
- type: nauc_mrr_at_1000_max
value: 44.835796996668066
- type: nauc_mrr_at_100_diff1
value: 49.96427305359113
- type: nauc_mrr_at_100_max
value: 44.83231841203824
- type: nauc_mrr_at_10_diff1
value: 49.94029375694121
- type: nauc_mrr_at_10_max
value: 44.88750685573963
- type: nauc_mrr_at_1_diff1
value: 56.40160291266728
- type: nauc_mrr_at_1_max
value: 45.557456279594454
- type: nauc_mrr_at_20_diff1
value: 49.948501688516814
- type: nauc_mrr_at_20_max
value: 44.86680460708911
- type: nauc_mrr_at_3_diff1
value: 50.70198183915884
- type: nauc_mrr_at_3_max
value: 44.69764399444459
- type: nauc_mrr_at_5_diff1
value: 50.171095819167164
- type: nauc_mrr_at_5_max
value: 44.81579964530846
- type: nauc_ndcg_at_1000_diff1
value: 48.15540595763338
- type: nauc_ndcg_at_1000_max
value: 43.71537508558133
- type: nauc_ndcg_at_100_diff1
value: 48.272332711054126
- type: nauc_ndcg_at_100_max
value: 43.6322161272428
- type: nauc_ndcg_at_10_diff1
value: 48.18746476758319
- type: nauc_ndcg_at_10_max
value: 43.36809828847912
- type: nauc_ndcg_at_1_diff1
value: 56.40160291266728
- type: nauc_ndcg_at_1_max
value: 45.557456279594454
- type: nauc_ndcg_at_20_diff1
value: 48.17338076733571
- type: nauc_ndcg_at_20_max
value: 43.20321056220099
- type: nauc_ndcg_at_3_diff1
value: 50.105385726603714
- type: nauc_ndcg_at_3_max
value: 43.120332022171915
- type: nauc_ndcg_at_5_diff1
value: 48.8630439359171
- type: nauc_ndcg_at_5_max
value: 43.370066685949446
- type: nauc_precision_at_1000_diff1
value: -11.350357006977681
- type: nauc_precision_at_1000_max
value: 12.582096763421525
- type: nauc_precision_at_100_diff1
value: -2.958036676255927
- type: nauc_precision_at_100_max
value: 22.696487876398155
- type: nauc_precision_at_10_diff1
value: 16.189353401009978
- type: nauc_precision_at_10_max
value: 38.13442143062204
- type: nauc_precision_at_1_diff1
value: 56.40160291266728
- type: nauc_precision_at_1_max
value: 45.557456279594454
- type: nauc_precision_at_20_diff1
value: 8.797894276494759
- type: nauc_precision_at_20_max
value: 32.53273333292465
- type: nauc_precision_at_3_diff1
value: 33.166335907173284
- type: nauc_precision_at_3_max
value: 43.54274244894697
- type: nauc_precision_at_5_diff1
value: 24.890638457308835
- type: nauc_precision_at_5_max
value: 41.85350446231859
- type: nauc_recall_at_1000_diff1
value: 30.966590369789042
- type: nauc_recall_at_1000_max
value: 40.05217189462629
- type: nauc_recall_at_100_diff1
value: 36.50185764515
- type: nauc_recall_at_100_max
value: 40.40225246071926
- type: nauc_recall_at_10_diff1
value: 39.21222014929766
- type: nauc_recall_at_10_max
value: 39.510881532659106
- type: nauc_recall_at_1_diff1
value: 58.311410816649435
- type: nauc_recall_at_1_max
value: 38.78632287563295
- type: nauc_recall_at_20_diff1
value: 37.90625645817586
- type: nauc_recall_at_20_max
value: 38.83095083812718
- type: nauc_recall_at_3_diff1
value: 45.67833862057349
- type: nauc_recall_at_3_max
value: 38.301387193837385
- type: nauc_recall_at_5_diff1
value: 41.97377098035378
- type: nauc_recall_at_5_max
value: 39.44428303279494
- type: ndcg_at_1
value: 33.885
- type: ndcg_at_10
value: 41.959999999999994
- type: ndcg_at_100
value: 46.444
- type: ndcg_at_1000
value: 48.542
- type: ndcg_at_20
value: 43.516
- type: ndcg_at_3
value: 37.662
- type: ndcg_at_5
value: 39.694
- type: precision_at_1
value: 33.885
- type: precision_at_10
value: 7.911
- type: precision_at_100
value: 1.306
- type: precision_at_1000
value: 0.17600000000000002
- type: precision_at_20
value: 4.634
- type: precision_at_3
value: 18.195
- type: precision_at_5
value: 13.032
- type: recall_at_1
value: 27.204
- type: recall_at_10
value: 51.964999999999996
- type: recall_at_100
value: 70.977
- type: recall_at_1000
value: 84.48
- type: recall_at_20
value: 57.568
- type: recall_at_3
value: 39.292
- type: recall_at_5
value: 45.051
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: map_at_1
value: 40.092
- type: map_at_10
value: 51.94499999999999
- type: map_at_100
value: 52.952999999999996
- type: map_at_1000
value: 53.010999999999996
- type: map_at_20
value: 52.544000000000004
- type: map_at_3
value: 48.798
- type: map_at_5
value: 50.575
- type: mrr_at_1
value: 45.57993730407524
- type: mrr_at_10
value: 55.19226750261236
- type: mrr_at_100
value: 55.86648188807898
- type: mrr_at_1000
value: 55.893179256732914
- type: mrr_at_20
value: 55.605862164423684
- type: mrr_at_3
value: 52.737722048066914
- type: mrr_at_5
value: 54.142110762800485
- type: nauc_map_at_1000_diff1
value: 56.4825391687947
- type: nauc_map_at_1000_max
value: 42.69718253696078
- type: nauc_map_at_100_diff1
value: 56.472594143313714
- type: nauc_map_at_100_max
value: 42.68390703868357
- type: nauc_map_at_10_diff1
value: 56.60851591326905
- type: nauc_map_at_10_max
value: 42.545318648853254
- type: nauc_map_at_1_diff1
value: 58.78580013920528
- type: nauc_map_at_1_max
value: 37.250129371959034
- type: nauc_map_at_20_diff1
value: 56.522847775596496
- type: nauc_map_at_20_max
value: 42.67436226258157
- type: nauc_map_at_3_diff1
value: 56.41058843854863
- type: nauc_map_at_3_max
value: 41.1447087205128
- type: nauc_map_at_5_diff1
value: 56.615742462460375
- type: nauc_map_at_5_max
value: 42.18432838422091
- type: nauc_mrr_at_1000_diff1
value: 57.02890931424712
- type: nauc_mrr_at_1000_max
value: 44.542419456217395
- type: nauc_mrr_at_100_diff1
value: 57.015358825202966
- type: nauc_mrr_at_100_max
value: 44.53905706111591
- type: nauc_mrr_at_10_diff1
value: 57.04585925976531
- type: nauc_mrr_at_10_max
value: 44.61348989967417
- type: nauc_mrr_at_1_diff1
value: 59.97805122993276
- type: nauc_mrr_at_1_max
value: 43.74889272537995
- type: nauc_mrr_at_20_diff1
value: 57.006157936095484
- type: nauc_mrr_at_20_max
value: 44.59603635627128
- type: nauc_mrr_at_3_diff1
value: 56.917680357532504
- type: nauc_mrr_at_3_max
value: 44.16899447567816
- type: nauc_mrr_at_5_diff1
value: 56.92085593489732
- type: nauc_mrr_at_5_max
value: 44.6067245655727
- type: nauc_ndcg_at_1000_diff1
value: 55.99301213747579
- type: nauc_ndcg_at_1000_max
value: 44.13571318751295
- type: nauc_ndcg_at_100_diff1
value: 55.69267672766463
- type: nauc_ndcg_at_100_max
value: 44.01363451781653
- type: nauc_ndcg_at_10_diff1
value: 56.08101977835497
- type: nauc_ndcg_at_10_max
value: 44.04565223998733
- type: nauc_ndcg_at_1_diff1
value: 59.97805122993276
- type: nauc_ndcg_at_1_max
value: 43.74889272537995
- type: nauc_ndcg_at_20_diff1
value: 55.9395678717101
- type: nauc_ndcg_at_20_max
value: 44.276016640316584
- type: nauc_ndcg_at_3_diff1
value: 55.61181442897005
- type: nauc_ndcg_at_3_max
value: 42.505752873203875
- type: nauc_ndcg_at_5_diff1
value: 55.931533774058074
- type: nauc_ndcg_at_5_max
value: 43.62473544458933
- type: nauc_precision_at_1000_diff1
value: -13.91854408201959
- type: nauc_precision_at_1000_max
value: 8.959796412269117
- type: nauc_precision_at_100_diff1
value: -6.051946111858287
- type: nauc_precision_at_100_max
value: 15.919914740220339
- type: nauc_precision_at_10_diff1
value: 19.584103811469795
- type: nauc_precision_at_10_max
value: 32.679327751531886
- type: nauc_precision_at_1_diff1
value: 59.97805122993276
- type: nauc_precision_at_1_max
value: 43.74889272537995
- type: nauc_precision_at_20_diff1
value: 10.708778552460565
- type: nauc_precision_at_20_max
value: 27.76302369902412
- type: nauc_precision_at_3_diff1
value: 37.72812007268646
- type: nauc_precision_at_3_max
value: 40.9098215392736
- type: nauc_precision_at_5_diff1
value: 29.8927353855664
- type: nauc_precision_at_5_max
value: 38.77105720875548
- type: nauc_recall_at_1000_diff1
value: 49.43352356696205
- type: nauc_recall_at_1000_max
value: 54.87661194579149
- type: nauc_recall_at_100_diff1
value: 46.097079017519164
- type: nauc_recall_at_100_max
value: 44.71576750940437
- type: nauc_recall_at_10_diff1
value: 52.66222731151876
- type: nauc_recall_at_10_max
value: 44.98829150528362
- type: nauc_recall_at_1_diff1
value: 58.78580013920528
- type: nauc_recall_at_1_max
value: 37.250129371959034
- type: nauc_recall_at_20_diff1
value: 51.55229424448056
- type: nauc_recall_at_20_max
value: 46.82438704609937
- type: nauc_recall_at_3_diff1
value: 52.87567308584833
- type: nauc_recall_at_3_max
value: 41.13816110816809
- type: nauc_recall_at_5_diff1
value: 52.83904035972527
- type: nauc_recall_at_5_max
value: 43.519187012248025
- type: ndcg_at_1
value: 45.58
- type: ndcg_at_10
value: 57.534
- type: ndcg_at_100
value: 61.6
- type: ndcg_at_1000
value: 62.742
- type: ndcg_at_20
value: 59.270999999999994
- type: ndcg_at_3
value: 52.193
- type: ndcg_at_5
value: 54.725
- type: precision_at_1
value: 45.58
- type: precision_at_10
value: 9.129
- type: precision_at_100
value: 1.203
- type: precision_at_1000
value: 0.136
- type: precision_at_20
value: 5.082
- type: precision_at_3
value: 23.051
- type: precision_at_5
value: 15.748999999999999
- type: recall_at_1
value: 40.092
- type: recall_at_10
value: 70.889
- type: recall_at_100
value: 88.45100000000001
- type: recall_at_1000
value: 96.447
- type: recall_at_20
value: 77.239
- type: recall_at_3
value: 56.489999999999995
- type: recall_at_5
value: 62.647
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: map_at_1
value: 20.277
- type: map_at_10
value: 27.969
- type: map_at_100
value: 28.933999999999997
- type: map_at_1000
value: 29.038000000000004
- type: map_at_20
value: 28.486
- type: map_at_3
value: 25.418000000000003
- type: map_at_5
value: 26.709
- type: mrr_at_1
value: 21.694915254237287
- type: mrr_at_10
value: 29.60447493498341
- type: mrr_at_100
value: 30.512620484407922
- type: mrr_at_1000
value: 30.591656063000244
- type: mrr_at_20
value: 30.121039448386362
- type: mrr_at_3
value: 27.19397363465162
- type: mrr_at_5
value: 28.448210922787204
- type: nauc_map_at_1000_diff1
value: 45.363822324742415
- type: nauc_map_at_1000_max
value: 29.509295922731372
- type: nauc_map_at_100_diff1
value: 45.331606636295966
- type: nauc_map_at_100_max
value: 29.505487961576044
- type: nauc_map_at_10_diff1
value: 45.38885724901821
- type: nauc_map_at_10_max
value: 28.946567703884206
- type: nauc_map_at_1_diff1
value: 54.7423053253451
- type: nauc_map_at_1_max
value: 30.202680999900373
- type: nauc_map_at_20_diff1
value: 45.43050910968979
- type: nauc_map_at_20_max
value: 29.35034157464228
- type: nauc_map_at_3_diff1
value: 47.51058437623272
- type: nauc_map_at_3_max
value: 29.740666890218183
- type: nauc_map_at_5_diff1
value: 45.90224481327457
- type: nauc_map_at_5_max
value: 28.80931616822233
- type: nauc_mrr_at_1000_diff1
value: 45.38410126007919
- type: nauc_mrr_at_1000_max
value: 31.462744626905998
- type: nauc_mrr_at_100_diff1
value: 45.36092538448443
- type: nauc_mrr_at_100_max
value: 31.48088167063395
- type: nauc_mrr_at_10_diff1
value: 45.38915659941786
- type: nauc_mrr_at_10_max
value: 31.07285932737546
- type: nauc_mrr_at_1_diff1
value: 54.930775252405226
- type: nauc_mrr_at_1_max
value: 33.5116859460449
- type: nauc_mrr_at_20_diff1
value: 45.418208062544515
- type: nauc_mrr_at_20_max
value: 31.423541265829346
- type: nauc_mrr_at_3_diff1
value: 47.521366857933685
- type: nauc_mrr_at_3_max
value: 32.27219903173878
- type: nauc_mrr_at_5_diff1
value: 45.77958904462302
- type: nauc_mrr_at_5_max
value: 31.03500930751467
- type: nauc_ndcg_at_1000_diff1
value: 41.635595953748044
- type: nauc_ndcg_at_1000_max
value: 29.99928035763284
- type: nauc_ndcg_at_100_diff1
value: 40.88371796938874
- type: nauc_ndcg_at_100_max
value: 30.281800111940075
- type: nauc_ndcg_at_10_diff1
value: 41.21530633973889
- type: nauc_ndcg_at_10_max
value: 28.03405573161477
- type: nauc_ndcg_at_1_diff1
value: 54.930775252405226
- type: nauc_ndcg_at_1_max
value: 33.5116859460449
- type: nauc_ndcg_at_20_diff1
value: 41.354735186387494
- type: nauc_ndcg_at_20_max
value: 29.290000578859498
- type: nauc_ndcg_at_3_diff1
value: 45.31600437511932
- type: nauc_ndcg_at_3_max
value: 30.107259401213447
- type: nauc_ndcg_at_5_diff1
value: 42.46548676756585
- type: nauc_ndcg_at_5_max
value: 28.066140473016777
- type: nauc_precision_at_1000_diff1
value: 3.3001494044534
- type: nauc_precision_at_1000_max
value: 23.86920410371473
- type: nauc_precision_at_100_diff1
value: 14.600936720175225
- type: nauc_precision_at_100_max
value: 34.79005291009276
- type: nauc_precision_at_10_diff1
value: 25.191040884814313
- type: nauc_precision_at_10_max
value: 27.787630029931737
- type: nauc_precision_at_1_diff1
value: 54.930775252405226
- type: nauc_precision_at_1_max
value: 33.5116859460449
- type: nauc_precision_at_20_diff1
value: 23.94526878532444
- type: nauc_precision_at_20_max
value: 31.64356816310904
- type: nauc_precision_at_3_diff1
value: 37.36686654535447
- type: nauc_precision_at_3_max
value: 31.809307942763166
- type: nauc_precision_at_5_diff1
value: 30.658077015337877
- type: nauc_precision_at_5_max
value: 27.987876687409614
- type: nauc_recall_at_1000_diff1
value: 16.313332570062347
- type: nauc_recall_at_1000_max
value: 24.611193005552156
- type: nauc_recall_at_100_diff1
value: 22.517502540871675
- type: nauc_recall_at_100_max
value: 30.270048758028008
- type: nauc_recall_at_10_diff1
value: 28.942161278215146
- type: nauc_recall_at_10_max
value: 22.367333726084272
- type: nauc_recall_at_1_diff1
value: 54.7423053253451
- type: nauc_recall_at_1_max
value: 30.202680999900373
- type: nauc_recall_at_20_diff1
value: 28.593619502228517
- type: nauc_recall_at_20_max
value: 26.029280134895316
- type: nauc_recall_at_3_diff1
value: 38.74661393996696
- type: nauc_recall_at_3_max
value: 27.640169897015266
- type: nauc_recall_at_5_diff1
value: 32.83863931854332
- type: nauc_recall_at_5_max
value: 23.190141862761386
- type: ndcg_at_1
value: 21.695
- type: ndcg_at_10
value: 32.698
- type: ndcg_at_100
value: 37.641000000000005
- type: ndcg_at_1000
value: 40.245
- type: ndcg_at_20
value: 34.55
- type: ndcg_at_3
value: 27.632
- type: ndcg_at_5
value: 29.814
- type: precision_at_1
value: 21.695
- type: precision_at_10
value: 5.311
- type: precision_at_100
value: 0.819
- type: precision_at_1000
value: 0.108
- type: precision_at_20
value: 3.073
- type: precision_at_3
value: 11.977
- type: precision_at_5
value: 8.497
- type: recall_at_1
value: 20.277
- type: recall_at_10
value: 45.751999999999995
- type: recall_at_100
value: 68.72500000000001
- type: recall_at_1000
value: 88.307
- type: recall_at_20
value: 52.845
- type: recall_at_3
value: 31.928
- type: recall_at_5
value: 37.129
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: map_at_1
value: 13.061
- type: map_at_10
value: 19.952
- type: map_at_100
value: 21.177
- type: map_at_1000
value: 21.304000000000002
- type: map_at_20
value: 20.543
- type: map_at_3
value: 17.552
- type: map_at_5
value: 18.83
- type: mrr_at_1
value: 16.417910447761194
- type: mrr_at_10
value: 23.800146094922205
- type: mrr_at_100
value: 24.80931429553203
- type: mrr_at_1000
value: 24.883782140653754
- type: mrr_at_20
value: 24.263678541366147
- type: mrr_at_3
value: 21.22719734660033
- type: mrr_at_5
value: 22.763266998341624
- type: nauc_map_at_1000_diff1
value: 28.454223094067572
- type: nauc_map_at_1000_max
value: 16.318450252339733
- type: nauc_map_at_100_diff1
value: 28.45468920929943
- type: nauc_map_at_100_max
value: 16.280745093761492
- type: nauc_map_at_10_diff1
value: 28.475318654355913
- type: nauc_map_at_10_max
value: 16.371297539246918
- type: nauc_map_at_1_diff1
value: 31.42806317607707
- type: nauc_map_at_1_max
value: 16.441570076459733
- type: nauc_map_at_20_diff1
value: 28.39188164693206
- type: nauc_map_at_20_max
value: 16.395102199165805
- type: nauc_map_at_3_diff1
value: 29.86515593563127
- type: nauc_map_at_3_max
value: 15.942028463305657
- type: nauc_map_at_5_diff1
value: 28.801171298398238
- type: nauc_map_at_5_max
value: 16.4938392502406
- type: nauc_mrr_at_1000_diff1
value: 29.404578525355905
- type: nauc_mrr_at_1000_max
value: 17.06043073367033
- type: nauc_mrr_at_100_diff1
value: 29.36603539662459
- type: nauc_mrr_at_100_max
value: 17.04266140433032
- type: nauc_mrr_at_10_diff1
value: 29.53064924621513
- type: nauc_mrr_at_10_max
value: 17.262149332295344
- type: nauc_mrr_at_1_diff1
value: 34.4591422232893
- type: nauc_mrr_at_1_max
value: 18.38441531072269
- type: nauc_mrr_at_20_diff1
value: 29.460658307695237
- type: nauc_mrr_at_20_max
value: 17.177008114438692
- type: nauc_mrr_at_3_diff1
value: 31.401082424691413
- type: nauc_mrr_at_3_max
value: 17.3600916517026
- type: nauc_mrr_at_5_diff1
value: 30.215482150264055
- type: nauc_mrr_at_5_max
value: 17.113047363760682
- type: nauc_ndcg_at_1000_diff1
value: 26.56223239664528
- type: nauc_ndcg_at_1000_max
value: 17.183346228015548
- type: nauc_ndcg_at_100_diff1
value: 26.452687521093587
- type: nauc_ndcg_at_100_max
value: 16.227786533978918
- type: nauc_ndcg_at_10_diff1
value: 26.789816487503863
- type: nauc_ndcg_at_10_max
value: 16.746307834455642
- type: nauc_ndcg_at_1_diff1
value: 34.4591422232893
- type: nauc_ndcg_at_1_max
value: 18.38441531072269
- type: nauc_ndcg_at_20_diff1
value: 26.5048210959802
- type: nauc_ndcg_at_20_max
value: 16.715661819049974
- type: nauc_ndcg_at_3_diff1
value: 29.856963970494903
- type: nauc_ndcg_at_3_max
value: 16.30448334725527
- type: nauc_ndcg_at_5_diff1
value: 27.70865544302564
- type: nauc_ndcg_at_5_max
value: 16.848739633174784
- type: nauc_precision_at_1000_diff1
value: 2.8134729866690966
- type: nauc_precision_at_1000_max
value: 4.912645906722423
- type: nauc_precision_at_100_diff1
value: 12.322710301703319
- type: nauc_precision_at_100_max
value: 7.326042531678355
- type: nauc_precision_at_10_diff1
value: 21.62505224748476
- type: nauc_precision_at_10_max
value: 13.898621571795822
- type: nauc_precision_at_1_diff1
value: 34.4591422232893
- type: nauc_precision_at_1_max
value: 18.38441531072269
- type: nauc_precision_at_20_diff1
value: 18.470843518995792
- type: nauc_precision_at_20_max
value: 12.518698137323229
- type: nauc_precision_at_3_diff1
value: 29.716961833159882
- type: nauc_precision_at_3_max
value: 15.75778937513801
- type: nauc_precision_at_5_diff1
value: 25.58620475567927
- type: nauc_precision_at_5_max
value: 15.305405508622808
- type: nauc_recall_at_1000_diff1
value: 14.510689791158532
- type: nauc_recall_at_1000_max
value: 28.477079172098108
- type: nauc_recall_at_100_diff1
value: 17.76094115011345
- type: nauc_recall_at_100_max
value: 14.496601818232598
- type: nauc_recall_at_10_diff1
value: 20.649486228934894
- type: nauc_recall_at_10_max
value: 16.53168596633394
- type: nauc_recall_at_1_diff1
value: 31.42806317607707
- type: nauc_recall_at_1_max
value: 16.441570076459733
- type: nauc_recall_at_20_diff1
value: 19.624191122275327
- type: nauc_recall_at_20_max
value: 16.252919740686675
- type: nauc_recall_at_3_diff1
value: 26.283117235001736
- type: nauc_recall_at_3_max
value: 15.13584134035691
- type: nauc_recall_at_5_diff1
value: 22.423046028190434
- type: nauc_recall_at_5_max
value: 16.432091896884675
- type: ndcg_at_1
value: 16.418
- type: ndcg_at_10
value: 24.565
- type: ndcg_at_100
value: 30.801000000000002
- type: ndcg_at_1000
value: 33.806999999999995
- type: ndcg_at_20
value: 26.512999999999998
- type: ndcg_at_3
value: 20.036
- type: ndcg_at_5
value: 22.131999999999998
- type: precision_at_1
value: 16.418
- type: precision_at_10
value: 4.776
- type: precision_at_100
value: 0.919
- type: precision_at_1000
value: 0.131
- type: precision_at_20
value: 2.91
- type: precision_at_3
value: 9.701
- type: precision_at_5
value: 7.289
- type: recall_at_1
value: 13.061
- type: recall_at_10
value: 34.961999999999996
- type: recall_at_100
value: 63.068000000000005
- type: recall_at_1000
value: 84.441
- type: recall_at_20
value: 42.013
- type: recall_at_3
value: 22.584
- type: recall_at_5
value: 27.950999999999997
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: map_at_1
value: 24.813
- type: map_at_10
value: 33.593
- type: map_at_100
value: 34.909
- type: map_at_1000
value: 35.03
- type: map_at_20
value: 34.314
- type: map_at_3
value: 30.537999999999997
- type: map_at_5
value: 31.926
- type: mrr_at_1
value: 30.702598652550527
- type: mrr_at_10
value: 39.06545518431948
- type: mrr_at_100
value: 39.96716518258886
- type: mrr_at_1000
value: 40.01632070119006
- type: mrr_at_20
value: 39.530652551228556
- type: mrr_at_3
value: 36.58966955405838
- type: mrr_at_5
value: 37.75906320179657
- type: nauc_map_at_1000_diff1
value: 48.28735795160243
- type: nauc_map_at_1000_max
value: 35.857827572549965
- type: nauc_map_at_100_diff1
value: 48.28389536809195
- type: nauc_map_at_100_max
value: 35.8215491031998
- type: nauc_map_at_10_diff1
value: 48.4740670479628
- type: nauc_map_at_10_max
value: 35.580153501789354
- type: nauc_map_at_1_diff1
value: 53.76162783827061
- type: nauc_map_at_1_max
value: 35.987724515959904
- type: nauc_map_at_20_diff1
value: 48.39315138781542
- type: nauc_map_at_20_max
value: 35.67428155833968
- type: nauc_map_at_3_diff1
value: 49.222529850894034
- type: nauc_map_at_3_max
value: 35.79333062105859
- type: nauc_map_at_5_diff1
value: 49.39208013650273
- type: nauc_map_at_5_max
value: 35.69664733704277
- type: nauc_mrr_at_1000_diff1
value: 49.444671325795056
- type: nauc_mrr_at_1000_max
value: 38.3202725278323
- type: nauc_mrr_at_100_diff1
value: 49.42200393852792
- type: nauc_mrr_at_100_max
value: 38.31143458434877
- type: nauc_mrr_at_10_diff1
value: 49.370146109325866
- type: nauc_mrr_at_10_max
value: 38.160124098730236
- type: nauc_mrr_at_1_diff1
value: 56.1525302339788
- type: nauc_mrr_at_1_max
value: 40.79527109574158
- type: nauc_mrr_at_20_diff1
value: 49.45102444653989
- type: nauc_mrr_at_20_max
value: 38.25756256181159
- type: nauc_mrr_at_3_diff1
value: 50.14838465022493
- type: nauc_mrr_at_3_max
value: 38.52708666540869
- type: nauc_mrr_at_5_diff1
value: 49.904819237426004
- type: nauc_mrr_at_5_max
value: 38.38035220573582
- type: nauc_ndcg_at_1000_diff1
value: 45.58168600860826
- type: nauc_ndcg_at_1000_max
value: 36.563706940380555
- type: nauc_ndcg_at_100_diff1
value: 45.04365109638583
- type: nauc_ndcg_at_100_max
value: 36.033369265758196
- type: nauc_ndcg_at_10_diff1
value: 45.93349643770066
- type: nauc_ndcg_at_10_max
value: 34.89977214117315
- type: nauc_ndcg_at_1_diff1
value: 56.1525302339788
- type: nauc_ndcg_at_1_max
value: 40.79527109574158
- type: nauc_ndcg_at_20_diff1
value: 45.7339281351243
- type: nauc_ndcg_at_20_max
value: 35.06101137124627
- type: nauc_ndcg_at_3_diff1
value: 47.98894511737239
- type: nauc_ndcg_at_3_max
value: 36.848781920983924
- type: nauc_ndcg_at_5_diff1
value: 47.734244333699536
- type: nauc_ndcg_at_5_max
value: 35.698338385055536
- type: nauc_precision_at_1000_diff1
value: -10.146987477879856
- type: nauc_precision_at_1000_max
value: 4.5697671337926735
- type: nauc_precision_at_100_diff1
value: -0.23979892626648153
- type: nauc_precision_at_100_max
value: 16.05933541503149
- type: nauc_precision_at_10_diff1
value: 21.283169904859836
- type: nauc_precision_at_10_max
value: 26.180251486947377
- type: nauc_precision_at_1_diff1
value: 56.1525302339788
- type: nauc_precision_at_1_max
value: 40.79527109574158
- type: nauc_precision_at_20_diff1
value: 15.36557800905963
- type: nauc_precision_at_20_max
value: 23.405016571239443
- type: nauc_precision_at_3_diff1
value: 38.577821157959704
- type: nauc_precision_at_3_max
value: 36.41036363960068
- type: nauc_precision_at_5_diff1
value: 34.52857379797606
- type: nauc_precision_at_5_max
value: 33.5572774413252
- type: nauc_recall_at_1000_diff1
value: 17.59228181321267
- type: nauc_recall_at_1000_max
value: 38.45146719434902
- type: nauc_recall_at_100_diff1
value: 23.718352007830674
- type: nauc_recall_at_100_max
value: 30.191167925909102
- type: nauc_recall_at_10_diff1
value: 35.33833540132451
- type: nauc_recall_at_10_max
value: 27.994679353081946
- type: nauc_recall_at_1_diff1
value: 53.76162783827061
- type: nauc_recall_at_1_max
value: 35.987724515959904
- type: nauc_recall_at_20_diff1
value: 34.02078540569994
- type: nauc_recall_at_20_max
value: 27.685543279801237
- type: nauc_recall_at_3_diff1
value: 42.17648880447465
- type: nauc_recall_at_3_max
value: 32.62814119536231
- type: nauc_recall_at_5_diff1
value: 41.358303440502375
- type: nauc_recall_at_5_max
value: 30.630510317531744
- type: ndcg_at_1
value: 30.703000000000003
- type: ndcg_at_10
value: 39.300000000000004
- type: ndcg_at_100
value: 45.1
- type: ndcg_at_1000
value: 47.386
- type: ndcg_at_20
value: 41.461999999999996
- type: ndcg_at_3
value: 34.277
- type: ndcg_at_5
value: 36.027
- type: precision_at_1
value: 30.703000000000003
- type: precision_at_10
value: 7.401000000000001
- type: precision_at_100
value: 1.218
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_20
value: 4.398
- type: precision_at_3
value: 16.426
- type: precision_at_5
value: 11.472999999999999
- type: recall_at_1
value: 24.813
- type: recall_at_10
value: 51.044999999999995
- type: recall_at_100
value: 76.106
- type: recall_at_1000
value: 91.19
- type: recall_at_20
value: 58.744
- type: recall_at_3
value: 36.222
- type: recall_at_5
value: 41.349000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: map_at_1
value: 23.785999999999998
- type: map_at_10
value: 32.908
- type: map_at_100
value: 34.216
- type: map_at_1000
value: 34.345
- type: map_at_20
value: 33.669
- type: map_at_3
value: 30.084
- type: map_at_5
value: 31.692999999999998
- type: mrr_at_1
value: 28.538812785388128
- type: mrr_at_10
value: 37.57986337609625
- type: mrr_at_100
value: 38.51813582385385
- type: mrr_at_1000
value: 38.57741905983437
- type: mrr_at_20
value: 38.12193172703318
- type: mrr_at_3
value: 35.10273972602741
- type: mrr_at_5
value: 36.63812785388129
- type: nauc_map_at_1000_diff1
value: 50.257939242705326
- type: nauc_map_at_1000_max
value: 40.82148200341322
- type: nauc_map_at_100_diff1
value: 50.2364465622847
- type: nauc_map_at_100_max
value: 40.80019994119006
- type: nauc_map_at_10_diff1
value: 50.37138441336593
- type: nauc_map_at_10_max
value: 40.50437470647407
- type: nauc_map_at_1_diff1
value: 56.771276390581896
- type: nauc_map_at_1_max
value: 39.21668184007358
- type: nauc_map_at_20_diff1
value: 50.27381803917208
- type: nauc_map_at_20_max
value: 40.64985824674605
- type: nauc_map_at_3_diff1
value: 51.75055615731813
- type: nauc_map_at_3_max
value: 39.78757508816205
- type: nauc_map_at_5_diff1
value: 50.8734893320248
- type: nauc_map_at_5_max
value: 40.02410017589514
- type: nauc_mrr_at_1000_diff1
value: 50.713285499907116
- type: nauc_mrr_at_1000_max
value: 41.177149045516344
- type: nauc_mrr_at_100_diff1
value: 50.68880760672645
- type: nauc_mrr_at_100_max
value: 41.15209896241968
- type: nauc_mrr_at_10_diff1
value: 50.74366283036783
- type: nauc_mrr_at_10_max
value: 41.282470784533444
- type: nauc_mrr_at_1_diff1
value: 57.84445991591638
- type: nauc_mrr_at_1_max
value: 43.215624153592266
- type: nauc_mrr_at_20_diff1
value: 50.64084950415708
- type: nauc_mrr_at_20_max
value: 41.08394597751598
- type: nauc_mrr_at_3_diff1
value: 51.65659849102624
- type: nauc_mrr_at_3_max
value: 41.60925465118275
- type: nauc_mrr_at_5_diff1
value: 50.950695800932365
- type: nauc_mrr_at_5_max
value: 41.279261412729824
- type: nauc_ndcg_at_1000_diff1
value: 47.749991208061715
- type: nauc_ndcg_at_1000_max
value: 41.127897310574845
- type: nauc_ndcg_at_100_diff1
value: 47.105720634992295
- type: nauc_ndcg_at_100_max
value: 40.47798885234411
- type: nauc_ndcg_at_10_diff1
value: 47.531993133798885
- type: nauc_ndcg_at_10_max
value: 40.31306642364056
- type: nauc_ndcg_at_1_diff1
value: 57.84445991591638
- type: nauc_ndcg_at_1_max
value: 43.215624153592266
- type: nauc_ndcg_at_20_diff1
value: 47.312682165844976
- type: nauc_ndcg_at_20_max
value: 40.288339506648256
- type: nauc_ndcg_at_3_diff1
value: 50.0455086369841
- type: nauc_ndcg_at_3_max
value: 40.54078090764959
- type: nauc_ndcg_at_5_diff1
value: 48.579497493398414
- type: nauc_ndcg_at_5_max
value: 40.12205334756227
- type: nauc_precision_at_1000_diff1
value: -10.060709814882319
- type: nauc_precision_at_1000_max
value: 3.3172918415791113
- type: nauc_precision_at_100_diff1
value: 2.693932701389068
- type: nauc_precision_at_100_max
value: 18.87077564079401
- type: nauc_precision_at_10_diff1
value: 25.065184074398722
- type: nauc_precision_at_10_max
value: 37.59757586895368
- type: nauc_precision_at_1_diff1
value: 57.84445991591638
- type: nauc_precision_at_1_max
value: 43.215624153592266
- type: nauc_precision_at_20_diff1
value: 18.242635445538607
- type: nauc_precision_at_20_max
value: 32.84491156206929
- type: nauc_precision_at_3_diff1
value: 40.10849878825809
- type: nauc_precision_at_3_max
value: 41.60542328360796
- type: nauc_precision_at_5_diff1
value: 33.704250787432464
- type: nauc_precision_at_5_max
value: 39.62104984042399
- type: nauc_recall_at_1000_diff1
value: 20.865834650783867
- type: nauc_recall_at_1000_max
value: 40.46838059326433
- type: nauc_recall_at_100_diff1
value: 27.936404516968814
- type: nauc_recall_at_100_max
value: 31.42492046918158
- type: nauc_recall_at_10_diff1
value: 36.13832214819092
- type: nauc_recall_at_10_max
value: 35.455673437705734
- type: nauc_recall_at_1_diff1
value: 56.771276390581896
- type: nauc_recall_at_1_max
value: 39.21668184007358
- type: nauc_recall_at_20_diff1
value: 34.82064123770155
- type: nauc_recall_at_20_max
value: 34.607469690168344
- type: nauc_recall_at_3_diff1
value: 44.00375363375299
- type: nauc_recall_at_3_max
value: 36.44058673547244
- type: nauc_recall_at_5_diff1
value: 40.13678179130244
- type: nauc_recall_at_5_max
value: 35.72641024766304
- type: ndcg_at_1
value: 28.538999999999998
- type: ndcg_at_10
value: 38.234
- type: ndcg_at_100
value: 44.025
- type: ndcg_at_1000
value: 46.611999999999995
- type: ndcg_at_20
value: 40.528999999999996
- type: ndcg_at_3
value: 33.603
- type: ndcg_at_5
value: 35.91
- type: precision_at_1
value: 28.538999999999998
- type: precision_at_10
value: 6.848999999999999
- type: precision_at_100
value: 1.146
- type: precision_at_1000
value: 0.155
- type: precision_at_20
value: 4.15
- type: precision_at_3
value: 16.02
- type: precision_at_5
value: 11.416
- type: recall_at_1
value: 23.785999999999998
- type: recall_at_10
value: 49.475
- type: recall_at_100
value: 74.211
- type: recall_at_1000
value: 91.69699999999999
- type: recall_at_20
value: 57.399
- type: recall_at_3
value: 36.716
- type: recall_at_5
value: 42.698
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 19.383
- type: map_at_10
value: 25.779999999999998
- type: map_at_100
value: 26.692
- type: map_at_1000
value: 26.790000000000003
- type: map_at_20
value: 26.288
- type: map_at_3
value: 23.286
- type: map_at_5
value: 24.881
- type: mrr_at_1
value: 21.625766871165645
- type: mrr_at_10
value: 28.134677183756935
- type: mrr_at_100
value: 28.990470265944246
- type: mrr_at_1000
value: 29.06015337908212
- type: mrr_at_20
value: 28.6217210745573
- type: mrr_at_3
value: 25.894683026584875
- type: mrr_at_5
value: 27.29038854805726
- type: nauc_map_at_1000_diff1
value: 49.911847914254295
- type: nauc_map_at_1000_max
value: 35.48333790982145
- type: nauc_map_at_100_diff1
value: 49.90404203205197
- type: nauc_map_at_100_max
value: 35.467667772052444
- type: nauc_map_at_10_diff1
value: 50.116677861558436
- type: nauc_map_at_10_max
value: 35.22777804014755
- type: nauc_map_at_1_diff1
value: 54.43337006606851
- type: nauc_map_at_1_max
value: 34.97044319260595
- type: nauc_map_at_20_diff1
value: 50.00485022476988
- type: nauc_map_at_20_max
value: 35.27772351072898
- type: nauc_map_at_3_diff1
value: 51.101154626515466
- type: nauc_map_at_3_max
value: 35.01188192392699
- type: nauc_map_at_5_diff1
value: 50.85455903915764
- type: nauc_map_at_5_max
value: 35.222924790317556
- type: nauc_mrr_at_1000_diff1
value: 50.469777332868446
- type: nauc_mrr_at_1000_max
value: 36.806239966091134
- type: nauc_mrr_at_100_diff1
value: 50.43774386023924
- type: nauc_mrr_at_100_max
value: 36.81415281954135
- type: nauc_mrr_at_10_diff1
value: 50.65191632415702
- type: nauc_mrr_at_10_max
value: 36.796669555237735
- type: nauc_mrr_at_1_diff1
value: 56.69444714733734
- type: nauc_mrr_at_1_max
value: 37.950238556672936
- type: nauc_mrr_at_20_diff1
value: 50.58591151000893
- type: nauc_mrr_at_20_max
value: 36.74486652850544
- type: nauc_mrr_at_3_diff1
value: 51.874376496561666
- type: nauc_mrr_at_3_max
value: 37.17436215275038
- type: nauc_mrr_at_5_diff1
value: 51.23784797508226
- type: nauc_mrr_at_5_max
value: 36.797843583446976
- type: nauc_ndcg_at_1000_diff1
value: 47.02453368687982
- type: nauc_ndcg_at_1000_max
value: 35.645475773480015
- type: nauc_ndcg_at_100_diff1
value: 46.3919750229052
- type: nauc_ndcg_at_100_max
value: 35.52540027815628
- type: nauc_ndcg_at_10_diff1
value: 47.783397540510954
- type: nauc_ndcg_at_10_max
value: 34.978511185065415
- type: nauc_ndcg_at_1_diff1
value: 56.69444714733734
- type: nauc_ndcg_at_1_max
value: 37.950238556672936
- type: nauc_ndcg_at_20_diff1
value: 47.54223429140186
- type: nauc_ndcg_at_20_max
value: 34.96367876086221
- type: nauc_ndcg_at_3_diff1
value: 49.6543909342716
- type: nauc_ndcg_at_3_max
value: 35.55329341746738
- type: nauc_ndcg_at_5_diff1
value: 49.27526999339532
- type: nauc_ndcg_at_5_max
value: 35.269553382209025
- type: nauc_precision_at_1000_diff1
value: 4.152639847319254
- type: nauc_precision_at_1000_max
value: 19.860239840663723
- type: nauc_precision_at_100_diff1
value: 20.5112056117488
- type: nauc_precision_at_100_max
value: 33.986584990989556
- type: nauc_precision_at_10_diff1
value: 36.61149278468018
- type: nauc_precision_at_10_max
value: 38.71670013842566
- type: nauc_precision_at_1_diff1
value: 56.69444714733734
- type: nauc_precision_at_1_max
value: 37.950238556672936
- type: nauc_precision_at_20_diff1
value: 33.440399762319224
- type: nauc_precision_at_20_max
value: 36.81534392845937
- type: nauc_precision_at_3_diff1
value: 46.57940283237786
- type: nauc_precision_at_3_max
value: 40.2021686353609
- type: nauc_precision_at_5_diff1
value: 43.24878459897664
- type: nauc_precision_at_5_max
value: 39.56338396559801
- type: nauc_recall_at_1000_diff1
value: 30.848441444485346
- type: nauc_recall_at_1000_max
value: 29.206281789808227
- type: nauc_recall_at_100_diff1
value: 30.51257893193596
- type: nauc_recall_at_100_max
value: 31.092511899847807
- type: nauc_recall_at_10_diff1
value: 39.87582825785208
- type: nauc_recall_at_10_max
value: 31.21163188638994
- type: nauc_recall_at_1_diff1
value: 54.43337006606851
- type: nauc_recall_at_1_max
value: 34.97044319260595
- type: nauc_recall_at_20_diff1
value: 38.87715004078399
- type: nauc_recall_at_20_max
value: 30.6988866615607
- type: nauc_recall_at_3_diff1
value: 45.86720941947824
- type: nauc_recall_at_3_max
value: 32.61976516194995
- type: nauc_recall_at_5_diff1
value: 44.153048811811296
- type: nauc_recall_at_5_max
value: 32.11676236101473
- type: ndcg_at_1
value: 21.626
- type: ndcg_at_10
value: 29.859
- type: ndcg_at_100
value: 34.472
- type: ndcg_at_1000
value: 37.038
- type: ndcg_at_20
value: 31.635
- type: ndcg_at_3
value: 25.288
- type: ndcg_at_5
value: 27.855999999999998
- type: precision_at_1
value: 21.626
- type: precision_at_10
value: 4.954
- type: precision_at_100
value: 0.7779999999999999
- type: precision_at_1000
value: 0.108
- type: precision_at_20
value: 2.899
- type: precision_at_3
value: 11.094
- type: precision_at_5
value: 8.251999999999999
- type: recall_at_1
value: 19.383
- type: recall_at_10
value: 40.076
- type: recall_at_100
value: 61.242
- type: recall_at_1000
value: 80.314
- type: recall_at_20
value: 46.758
- type: recall_at_3
value: 27.962999999999997
- type: recall_at_5
value: 34.147
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 13.971
- type: map_at_10
value: 19.858
- type: map_at_100
value: 20.909
- type: map_at_1000
value: 21.047
- type: map_at_20
value: 20.426
- type: map_at_3
value: 17.888
- type: map_at_5
value: 18.948
- type: mrr_at_1
value: 17.377838953888507
- type: mrr_at_10
value: 23.3541168245229
- type: mrr_at_100
value: 24.28548028171366
- type: mrr_at_1000
value: 24.377827358449824
- type: mrr_at_20
value: 23.88638570357191
- type: mrr_at_3
value: 21.36958017894013
- type: mrr_at_5
value: 22.512044046799744
- type: nauc_map_at_1000_diff1
value: 37.755702284175236
- type: nauc_map_at_1000_max
value: 29.985902989676845
- type: nauc_map_at_100_diff1
value: 37.75580303049384
- type: nauc_map_at_100_max
value: 29.948110193131978
- type: nauc_map_at_10_diff1
value: 38.173556250676114
- type: nauc_map_at_10_max
value: 29.977909805969883
- type: nauc_map_at_1_diff1
value: 46.397651367070175
- type: nauc_map_at_1_max
value: 30.5126306843905
- type: nauc_map_at_20_diff1
value: 37.90916483077938
- type: nauc_map_at_20_max
value: 29.968172386265085
- type: nauc_map_at_3_diff1
value: 39.72488280969923
- type: nauc_map_at_3_max
value: 30.188740025946746
- type: nauc_map_at_5_diff1
value: 38.630985019403546
- type: nauc_map_at_5_max
value: 29.879481875315722
- type: nauc_mrr_at_1000_diff1
value: 35.84642181893316
- type: nauc_mrr_at_1000_max
value: 31.670254385165258
- type: nauc_mrr_at_100_diff1
value: 35.83045706635439
- type: nauc_mrr_at_100_max
value: 31.66496126819178
- type: nauc_mrr_at_10_diff1
value: 36.09970407587168
- type: nauc_mrr_at_10_max
value: 31.8396436118298
- type: nauc_mrr_at_1_diff1
value: 43.10155389869899
- type: nauc_mrr_at_1_max
value: 34.16020753098804
- type: nauc_mrr_at_20_diff1
value: 35.896835477664894
- type: nauc_mrr_at_20_max
value: 31.73239216068521
- type: nauc_mrr_at_3_diff1
value: 37.466645069277035
- type: nauc_mrr_at_3_max
value: 32.49242404383092
- type: nauc_mrr_at_5_diff1
value: 36.405092730921915
- type: nauc_mrr_at_5_max
value: 31.92760166562469
- type: nauc_ndcg_at_1000_diff1
value: 33.90603402215118
- type: nauc_ndcg_at_1000_max
value: 29.729336831998786
- type: nauc_ndcg_at_100_diff1
value: 33.50850724053531
- type: nauc_ndcg_at_100_max
value: 29.306492255119792
- type: nauc_ndcg_at_10_diff1
value: 34.97587417274376
- type: nauc_ndcg_at_10_max
value: 29.85287300723461
- type: nauc_ndcg_at_1_diff1
value: 43.10155389869899
- type: nauc_ndcg_at_1_max
value: 34.16020753098804
- type: nauc_ndcg_at_20_diff1
value: 34.20570916045498
- type: nauc_ndcg_at_20_max
value: 29.60222341192852
- type: nauc_ndcg_at_3_diff1
value: 37.339592233518914
- type: nauc_ndcg_at_3_max
value: 31.040627782319678
- type: nauc_ndcg_at_5_diff1
value: 35.77389927348168
- type: nauc_ndcg_at_5_max
value: 29.914791666809233
- type: nauc_precision_at_1000_diff1
value: 2.899363456166234
- type: nauc_precision_at_1000_max
value: 22.023156102458266
- type: nauc_precision_at_100_diff1
value: 11.303787835861796
- type: nauc_precision_at_100_max
value: 26.139688179760295
- type: nauc_precision_at_10_diff1
value: 22.48116840886295
- type: nauc_precision_at_10_max
value: 31.359997435260933
- type: nauc_precision_at_1_diff1
value: 43.10155389869899
- type: nauc_precision_at_1_max
value: 34.16020753098804
- type: nauc_precision_at_20_diff1
value: 19.052342801259027
- type: nauc_precision_at_20_max
value: 30.295818240552265
- type: nauc_precision_at_3_diff1
value: 29.98671296818897
- type: nauc_precision_at_3_max
value: 33.518872240321095
- type: nauc_precision_at_5_diff1
value: 26.140183342571895
- type: nauc_precision_at_5_max
value: 31.731967908857495
- type: nauc_recall_at_1000_diff1
value: 18.21949169710172
- type: nauc_recall_at_1000_max
value: 21.981372080200686
- type: nauc_recall_at_100_diff1
value: 20.257733390464356
- type: nauc_recall_at_100_max
value: 22.351366657877755
- type: nauc_recall_at_10_diff1
value: 27.478094748761023
- type: nauc_recall_at_10_max
value: 25.693669844365168
- type: nauc_recall_at_1_diff1
value: 46.397651367070175
- type: nauc_recall_at_1_max
value: 30.5126306843905
- type: nauc_recall_at_20_diff1
value: 24.426997641435758
- type: nauc_recall_at_20_max
value: 24.371909403981874
- type: nauc_recall_at_3_diff1
value: 33.01864346236186
- type: nauc_recall_at_3_max
value: 27.470654873232615
- type: nauc_recall_at_5_diff1
value: 29.70016272411814
- type: nauc_recall_at_5_max
value: 26.045940185547146
- type: ndcg_at_1
value: 17.378
- type: ndcg_at_10
value: 23.798
- type: ndcg_at_100
value: 28.907
- type: ndcg_at_1000
value: 32.273
- type: ndcg_at_20
value: 25.707
- type: ndcg_at_3
value: 20.172
- type: ndcg_at_5
value: 21.802
- type: precision_at_1
value: 17.378
- type: precision_at_10
value: 4.425
- type: precision_at_100
value: 0.83
- type: precision_at_1000
value: 0.129
- type: precision_at_20
value: 2.796
- type: precision_at_3
value: 9.600999999999999
- type: precision_at_5
value: 6.999
- type: recall_at_1
value: 13.971
- type: recall_at_10
value: 32.24
- type: recall_at_100
value: 55.257
- type: recall_at_1000
value: 79.59
- type: recall_at_20
value: 39.229
- type: recall_at_3
value: 22.067999999999998
- type: recall_at_5
value: 26.293
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: map_at_1
value: 22.913
- type: map_at_10
value: 31.479000000000003
- type: map_at_100
value: 32.552
- type: map_at_1000
value: 32.653
- type: map_at_20
value: 31.990000000000002
- type: map_at_3
value: 28.592000000000002
- type: map_at_5
value: 30.373
- type: mrr_at_1
value: 26.679104477611943
- type: mrr_at_10
value: 35.04575337597722
- type: mrr_at_100
value: 35.95382623195233
- type: mrr_at_1000
value: 36.010139872633495
- type: mrr_at_20
value: 35.53513175560514
- type: mrr_at_3
value: 32.50932835820894
- type: mrr_at_5
value: 34.029850746268615
- type: nauc_map_at_1000_diff1
value: 48.91111448779822
- type: nauc_map_at_1000_max
value: 42.45001990527906
- type: nauc_map_at_100_diff1
value: 48.89190728335153
- type: nauc_map_at_100_max
value: 42.42208663513962
- type: nauc_map_at_10_diff1
value: 49.18102301155058
- type: nauc_map_at_10_max
value: 42.38922838539626
- type: nauc_map_at_1_diff1
value: 56.80065296129456
- type: nauc_map_at_1_max
value: 44.49602807145463
- type: nauc_map_at_20_diff1
value: 48.8774198345571
- type: nauc_map_at_20_max
value: 42.33035822233443
- type: nauc_map_at_3_diff1
value: 50.18578760557955
- type: nauc_map_at_3_max
value: 42.049682832486525
- type: nauc_map_at_5_diff1
value: 49.486124069477185
- type: nauc_map_at_5_max
value: 42.55783777242684
- type: nauc_mrr_at_1000_diff1
value: 49.36889165411647
- type: nauc_mrr_at_1000_max
value: 44.77127656729937
- type: nauc_mrr_at_100_diff1
value: 49.334724602529384
- type: nauc_mrr_at_100_max
value: 44.74054390604988
- type: nauc_mrr_at_10_diff1
value: 49.51295857027244
- type: nauc_mrr_at_10_max
value: 44.9170190483006
- type: nauc_mrr_at_1_diff1
value: 58.082371939479195
- type: nauc_mrr_at_1_max
value: 47.809669154624714
- type: nauc_mrr_at_20_diff1
value: 49.32453628990772
- type: nauc_mrr_at_20_max
value: 44.85511763034043
- type: nauc_mrr_at_3_diff1
value: 50.28814557566801
- type: nauc_mrr_at_3_max
value: 45.02918648542346
- type: nauc_mrr_at_5_diff1
value: 49.70083559303071
- type: nauc_mrr_at_5_max
value: 45.24452033882872
- type: nauc_ndcg_at_1000_diff1
value: 45.98074456611413
- type: nauc_ndcg_at_1000_max
value: 42.31080875816173
- type: nauc_ndcg_at_100_diff1
value: 45.40775721447589
- type: nauc_ndcg_at_100_max
value: 41.66948346471324
- type: nauc_ndcg_at_10_diff1
value: 46.45033224294541
- type: nauc_ndcg_at_10_max
value: 41.94587530702735
- type: nauc_ndcg_at_1_diff1
value: 58.082371939479195
- type: nauc_ndcg_at_1_max
value: 47.809669154624714
- type: nauc_ndcg_at_20_diff1
value: 45.52119345567974
- type: nauc_ndcg_at_20_max
value: 41.689091488310375
- type: nauc_ndcg_at_3_diff1
value: 47.7611351600258
- type: nauc_ndcg_at_3_max
value: 42.12421531952486
- type: nauc_ndcg_at_5_diff1
value: 46.96076236146089
- type: nauc_ndcg_at_5_max
value: 42.48883644550073
- type: nauc_precision_at_1000_diff1
value: -9.994796100724528
- type: nauc_precision_at_1000_max
value: 4.537719884624942
- type: nauc_precision_at_100_diff1
value: 5.176562004472227
- type: nauc_precision_at_100_max
value: 20.363881706230003
- type: nauc_precision_at_10_diff1
value: 28.13817373553328
- type: nauc_precision_at_10_max
value: 35.95475620553222
- type: nauc_precision_at_1_diff1
value: 58.082371939479195
- type: nauc_precision_at_1_max
value: 47.809669154624714
- type: nauc_precision_at_20_diff1
value: 20.22951508884242
- type: nauc_precision_at_20_max
value: 31.772942110564383
- type: nauc_precision_at_3_diff1
value: 39.394928690349715
- type: nauc_precision_at_3_max
value: 41.22337390889921
- type: nauc_precision_at_5_diff1
value: 33.3002766373711
- type: nauc_precision_at_5_max
value: 39.798736765093004
- type: nauc_recall_at_1000_diff1
value: 23.754029850817286
- type: nauc_recall_at_1000_max
value: 33.93123719288166
- type: nauc_recall_at_100_diff1
value: 27.544628904110198
- type: nauc_recall_at_100_max
value: 30.334114782639638
- type: nauc_recall_at_10_diff1
value: 36.834663549355106
- type: nauc_recall_at_10_max
value: 35.98186975365149
- type: nauc_recall_at_1_diff1
value: 56.80065296129456
- type: nauc_recall_at_1_max
value: 44.49602807145463
- type: nauc_recall_at_20_diff1
value: 32.36845729763492
- type: nauc_recall_at_20_max
value: 33.854227154499725
- type: nauc_recall_at_3_diff1
value: 41.3767634461603
- type: nauc_recall_at_3_max
value: 37.614960977002795
- type: nauc_recall_at_5_diff1
value: 38.83337733461508
- type: nauc_recall_at_5_max
value: 38.23953256920769
- type: ndcg_at_1
value: 26.679000000000002
- type: ndcg_at_10
value: 36.620999999999995
- type: ndcg_at_100
value: 41.942
- type: ndcg_at_1000
value: 44.374
- type: ndcg_at_20
value: 38.415
- type: ndcg_at_3
value: 31.538
- type: ndcg_at_5
value: 34.178999999999995
- type: precision_at_1
value: 26.679000000000002
- type: precision_at_10
value: 6.259
- type: precision_at_100
value: 1.006
- type: precision_at_1000
value: 0.133
- type: precision_at_20
value: 3.6290000000000004
- type: precision_at_3
value: 14.335
- type: precision_at_5
value: 10.485
- type: recall_at_1
value: 22.913
- type: recall_at_10
value: 48.716
- type: recall_at_100
value: 72.372
- type: recall_at_1000
value: 89.531
- type: recall_at_20
value: 55.269999999999996
- type: recall_at_3
value: 35.074
- type: recall_at_5
value: 41.537
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: map_at_1
value: 24.111
- type: map_at_10
value: 32.586999999999996
- type: map_at_100
value: 34.12
- type: map_at_1000
value: 34.365
- type: map_at_20
value: 33.357
- type: map_at_3
value: 29.941000000000003
- type: map_at_5
value: 31.576999999999998
- type: mrr_at_1
value: 29.841897233201582
- type: mrr_at_10
value: 37.7974621996361
- type: mrr_at_100
value: 38.70855926216216
- type: mrr_at_1000
value: 38.78160750260466
- type: mrr_at_20
value: 38.28642292998807
- type: mrr_at_3
value: 35.540184453227944
- type: mrr_at_5
value: 36.9631093544137
- type: nauc_map_at_1000_diff1
value: 48.66304930719204
- type: nauc_map_at_1000_max
value: 41.95032096153431
- type: nauc_map_at_100_diff1
value: 48.79765165759156
- type: nauc_map_at_100_max
value: 42.07729091897765
- type: nauc_map_at_10_diff1
value: 48.857016210602815
- type: nauc_map_at_10_max
value: 41.40602447689144
- type: nauc_map_at_1_diff1
value: 56.30285091540639
- type: nauc_map_at_1_max
value: 41.50722701029977
- type: nauc_map_at_20_diff1
value: 48.81899029977082
- type: nauc_map_at_20_max
value: 41.59748805021434
- type: nauc_map_at_3_diff1
value: 50.427376588223524
- type: nauc_map_at_3_max
value: 42.16021881535689
- type: nauc_map_at_5_diff1
value: 49.30376475055564
- type: nauc_map_at_5_max
value: 40.80672149673538
- type: nauc_mrr_at_1000_diff1
value: 46.345186006817585
- type: nauc_mrr_at_1000_max
value: 43.50174997374244
- type: nauc_mrr_at_100_diff1
value: 46.295807235163586
- type: nauc_mrr_at_100_max
value: 43.50031316913962
- type: nauc_mrr_at_10_diff1
value: 46.47773451307542
- type: nauc_mrr_at_10_max
value: 43.458160190412194
- type: nauc_mrr_at_1_diff1
value: 52.74875572154898
- type: nauc_mrr_at_1_max
value: 44.75642046390427
- type: nauc_mrr_at_20_diff1
value: 46.3900630839787
- type: nauc_mrr_at_20_max
value: 43.50880808108073
- type: nauc_mrr_at_3_diff1
value: 48.19554935809951
- type: nauc_mrr_at_3_max
value: 44.6333875693719
- type: nauc_mrr_at_5_diff1
value: 46.93570802196158
- type: nauc_mrr_at_5_max
value: 43.125336922131
- type: nauc_ndcg_at_1000_diff1
value: 45.33511371430761
- type: nauc_ndcg_at_1000_max
value: 42.71458917809584
- type: nauc_ndcg_at_100_diff1
value: 44.722449600774205
- type: nauc_ndcg_at_100_max
value: 42.914978315188804
- type: nauc_ndcg_at_10_diff1
value: 45.227438065629464
- type: nauc_ndcg_at_10_max
value: 41.683893995546676
- type: nauc_ndcg_at_1_diff1
value: 52.74875572154898
- type: nauc_ndcg_at_1_max
value: 44.75642046390427
- type: nauc_ndcg_at_20_diff1
value: 44.55699203003113
- type: nauc_ndcg_at_20_max
value: 41.415096016236674
- type: nauc_ndcg_at_3_diff1
value: 48.10326999177321
- type: nauc_ndcg_at_3_max
value: 44.23088613607569
- type: nauc_ndcg_at_5_diff1
value: 46.38361769072502
- type: nauc_ndcg_at_5_max
value: 41.022399131998824
- type: nauc_precision_at_1000_diff1
value: -14.552159603323588
- type: nauc_precision_at_1000_max
value: -3.1254911408763344
- type: nauc_precision_at_100_diff1
value: -0.23909748335372277
- type: nauc_precision_at_100_max
value: 16.89399096801419
- type: nauc_precision_at_10_diff1
value: 20.38093826207771
- type: nauc_precision_at_10_max
value: 33.609116276999984
- type: nauc_precision_at_1_diff1
value: 52.74875572154898
- type: nauc_precision_at_1_max
value: 44.75642046390427
- type: nauc_precision_at_20_diff1
value: 14.390742980745472
- type: nauc_precision_at_20_max
value: 28.70169752553835
- type: nauc_precision_at_3_diff1
value: 35.95450638656823
- type: nauc_precision_at_3_max
value: 43.164677486075306
- type: nauc_precision_at_5_diff1
value: 28.145486984369327
- type: nauc_precision_at_5_max
value: 35.15010507177889
- type: nauc_recall_at_1000_diff1
value: 18.31197862072379
- type: nauc_recall_at_1000_max
value: 39.21531256166399
- type: nauc_recall_at_100_diff1
value: 25.523825639252152
- type: nauc_recall_at_100_max
value: 41.261468285876326
- type: nauc_recall_at_10_diff1
value: 33.25089536691914
- type: nauc_recall_at_10_max
value: 35.62911707394771
- type: nauc_recall_at_1_diff1
value: 56.30285091540639
- type: nauc_recall_at_1_max
value: 41.50722701029977
- type: nauc_recall_at_20_diff1
value: 29.960428793914986
- type: nauc_recall_at_20_max
value: 35.185821233232936
- type: nauc_recall_at_3_diff1
value: 43.06694028157036
- type: nauc_recall_at_3_max
value: 39.592097716636886
- type: nauc_recall_at_5_diff1
value: 37.78776183699997
- type: nauc_recall_at_5_max
value: 33.29553795647041
- type: ndcg_at_1
value: 29.842000000000002
- type: ndcg_at_10
value: 38.17
- type: ndcg_at_100
value: 43.69
- type: ndcg_at_1000
value: 46.647
- type: ndcg_at_20
value: 40.071
- type: ndcg_at_3
value: 34.095
- type: ndcg_at_5
value: 36.24
- type: precision_at_1
value: 29.842000000000002
- type: precision_at_10
value: 7.273000000000001
- type: precision_at_100
value: 1.47
- type: precision_at_1000
value: 0.23800000000000002
- type: precision_at_20
value: 4.595
- type: precision_at_3
value: 16.073999999999998
- type: precision_at_5
value: 11.738999999999999
- type: recall_at_1
value: 24.111
- type: recall_at_10
value: 48.004000000000005
- type: recall_at_100
value: 72.94699999999999
- type: recall_at_1000
value: 91.888
- type: recall_at_20
value: 55.216
- type: recall_at_3
value: 35.811
- type: recall_at_5
value: 41.89
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 18.028
- type: map_at_10
value: 24.82
- type: map_at_100
value: 25.768
- type: map_at_1000
value: 25.884
- type: map_at_20
value: 25.320999999999998
- type: map_at_3
value: 22.585
- type: map_at_5
value: 23.97
- type: mrr_at_1
value: 19.963031423290204
- type: mrr_at_10
value: 26.794589678138646
- type: mrr_at_100
value: 27.68954610737053
- type: mrr_at_1000
value: 27.779869498156962
- type: mrr_at_20
value: 27.282527769829105
- type: mrr_at_3
value: 24.522489217498453
- type: mrr_at_5
value: 25.89956869993838
- type: nauc_map_at_1000_diff1
value: 29.354656347993824
- type: nauc_map_at_1000_max
value: 25.777632482963902
- type: nauc_map_at_100_diff1
value: 29.344606522701266
- type: nauc_map_at_100_max
value: 25.74884197256006
- type: nauc_map_at_10_diff1
value: 29.263520383732228
- type: nauc_map_at_10_max
value: 25.956046243549185
- type: nauc_map_at_1_diff1
value: 32.10083227622593
- type: nauc_map_at_1_max
value: 26.082934151928335
- type: nauc_map_at_20_diff1
value: 29.252814048502522
- type: nauc_map_at_20_max
value: 25.73021877076165
- type: nauc_map_at_3_diff1
value: 30.402946945740624
- type: nauc_map_at_3_max
value: 25.479666391115586
- type: nauc_map_at_5_diff1
value: 30.112881326178037
- type: nauc_map_at_5_max
value: 26.181377819243316
- type: nauc_mrr_at_1000_diff1
value: 29.36011085257817
- type: nauc_mrr_at_1000_max
value: 26.512397267441905
- type: nauc_mrr_at_100_diff1
value: 29.34716126133153
- type: nauc_mrr_at_100_max
value: 26.492126338060768
- type: nauc_mrr_at_10_diff1
value: 29.291501370936746
- type: nauc_mrr_at_10_max
value: 26.720460613779785
- type: nauc_mrr_at_1_diff1
value: 32.59370226571806
- type: nauc_mrr_at_1_max
value: 27.210974235559654
- type: nauc_mrr_at_20_diff1
value: 29.339683741214824
- type: nauc_mrr_at_20_max
value: 26.565206125640618
- type: nauc_mrr_at_3_diff1
value: 30.615760229041822
- type: nauc_mrr_at_3_max
value: 26.964923490024372
- type: nauc_mrr_at_5_diff1
value: 30.09283430145986
- type: nauc_mrr_at_5_max
value: 26.97653024091469
- type: nauc_ndcg_at_1000_diff1
value: 28.1229347584593
- type: nauc_ndcg_at_1000_max
value: 25.58333272731477
- type: nauc_ndcg_at_100_diff1
value: 27.785141959567877
- type: nauc_ndcg_at_100_max
value: 25.262023849022043
- type: nauc_ndcg_at_10_diff1
value: 27.471970751404058
- type: nauc_ndcg_at_10_max
value: 26.100161257581366
- type: nauc_ndcg_at_1_diff1
value: 32.59370226571806
- type: nauc_ndcg_at_1_max
value: 27.210974235559654
- type: nauc_ndcg_at_20_diff1
value: 27.493348155478664
- type: nauc_ndcg_at_20_max
value: 25.429920376418064
- type: nauc_ndcg_at_3_diff1
value: 30.049291118944282
- type: nauc_ndcg_at_3_max
value: 25.87324242231816
- type: nauc_ndcg_at_5_diff1
value: 29.285225144397696
- type: nauc_ndcg_at_5_max
value: 26.538239428331035
- type: nauc_precision_at_1000_diff1
value: 0.30786182255546335
- type: nauc_precision_at_1000_max
value: -1.122583222669982
- type: nauc_precision_at_100_diff1
value: 16.643044236960975
- type: nauc_precision_at_100_max
value: 16.898061651611094
- type: nauc_precision_at_10_diff1
value: 22.225745733008576
- type: nauc_precision_at_10_max
value: 25.897094746875343
- type: nauc_precision_at_1_diff1
value: 32.59370226571806
- type: nauc_precision_at_1_max
value: 27.210974235559654
- type: nauc_precision_at_20_diff1
value: 21.25369337146511
- type: nauc_precision_at_20_max
value: 22.501776705458052
- type: nauc_precision_at_3_diff1
value: 29.752252136844444
- type: nauc_precision_at_3_max
value: 26.54042152706389
- type: nauc_precision_at_5_diff1
value: 28.014614694166003
- type: nauc_precision_at_5_max
value: 28.096365928752963
- type: nauc_recall_at_1000_diff1
value: 23.27380094527733
- type: nauc_recall_at_1000_max
value: 21.84162629652965
- type: nauc_recall_at_100_diff1
value: 21.646953220120835
- type: nauc_recall_at_100_max
value: 20.865427838218878
- type: nauc_recall_at_10_diff1
value: 21.50707716122318
- type: nauc_recall_at_10_max
value: 25.11348571349948
- type: nauc_recall_at_1_diff1
value: 32.10083227622593
- type: nauc_recall_at_1_max
value: 26.082934151928335
- type: nauc_recall_at_20_diff1
value: 21.149584140557366
- type: nauc_recall_at_20_max
value: 22.687778440936103
- type: nauc_recall_at_3_diff1
value: 28.105583308602416
- type: nauc_recall_at_3_max
value: 24.808247917706677
- type: nauc_recall_at_5_diff1
value: 26.268258977975016
- type: nauc_recall_at_5_max
value: 26.14783487728073
- type: ndcg_at_1
value: 19.963
- type: ndcg_at_10
value: 28.988999999999997
- type: ndcg_at_100
value: 33.835
- type: ndcg_at_1000
value: 37.07
- type: ndcg_at_20
value: 30.808000000000003
- type: ndcg_at_3
value: 24.581
- type: ndcg_at_5
value: 26.979999999999997
- type: precision_at_1
value: 19.963
- type: precision_at_10
value: 4.621
- type: precision_at_100
value: 0.754
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 2.7449999999999997
- type: precision_at_3
value: 10.783
- type: precision_at_5
value: 7.837
- type: recall_at_1
value: 18.028
- type: recall_at_10
value: 39.997
- type: recall_at_100
value: 62.361
- type: recall_at_1000
value: 87.083
- type: recall_at_20
value: 46.936
- type: recall_at_3
value: 28.323999999999998
- type: recall_at_5
value: 34.091
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 6.18
- type: map_at_10
value: 11.277
- type: map_at_100
value: 12.873000000000001
- type: map_at_1000
value: 13.098
- type: map_at_20
value: 12.033000000000001
- type: map_at_3
value: 9.213000000000001
- type: map_at_5
value: 10.179
- type: mrr_at_1
value: 13.615635179153093
- type: mrr_at_10
value: 22.3759371283801
- type: mrr_at_100
value: 23.74043839617308
- type: mrr_at_1000
value: 23.807597594686023
- type: mrr_at_20
value: 23.172313674880147
- type: mrr_at_3
value: 19.15309446254072
- type: mrr_at_5
value: 20.902280130293132
- type: nauc_map_at_1000_diff1
value: 28.07875585225803
- type: nauc_map_at_1000_max
value: 35.83708929348549
- type: nauc_map_at_100_diff1
value: 28.13253751629951
- type: nauc_map_at_100_max
value: 35.74641807227035
- type: nauc_map_at_10_diff1
value: 28.494200987801044
- type: nauc_map_at_10_max
value: 34.583975326049966
- type: nauc_map_at_1_diff1
value: 39.996859549061355
- type: nauc_map_at_1_max
value: 39.270510397353526
- type: nauc_map_at_20_diff1
value: 28.025812489675044
- type: nauc_map_at_20_max
value: 35.177169215298406
- type: nauc_map_at_3_diff1
value: 32.30909470003803
- type: nauc_map_at_3_max
value: 36.37733076481426
- type: nauc_map_at_5_diff1
value: 29.921198050945296
- type: nauc_map_at_5_max
value: 34.94586908456363
- type: nauc_mrr_at_1000_diff1
value: 26.08074340015364
- type: nauc_mrr_at_1000_max
value: 33.02687297171295
- type: nauc_mrr_at_100_diff1
value: 26.054902916636646
- type: nauc_mrr_at_100_max
value: 33.01617535618753
- type: nauc_mrr_at_10_diff1
value: 25.88148928931446
- type: nauc_mrr_at_10_max
value: 32.61799742547017
- type: nauc_mrr_at_1_diff1
value: 36.03138484582729
- type: nauc_mrr_at_1_max
value: 36.277950419702755
- type: nauc_mrr_at_20_diff1
value: 25.974259829372738
- type: nauc_mrr_at_20_max
value: 32.797465492032124
- type: nauc_mrr_at_3_diff1
value: 28.465203801115152
- type: nauc_mrr_at_3_max
value: 33.765630602498895
- type: nauc_mrr_at_5_diff1
value: 26.436793504159496
- type: nauc_mrr_at_5_max
value: 32.62012479096292
- type: nauc_ndcg_at_1000_diff1
value: 23.672305808597077
- type: nauc_ndcg_at_1000_max
value: 37.08958734194627
- type: nauc_ndcg_at_100_diff1
value: 23.944898359513253
- type: nauc_ndcg_at_100_max
value: 35.90189193251265
- type: nauc_ndcg_at_10_diff1
value: 23.75418336772388
- type: nauc_ndcg_at_10_max
value: 32.36026460519453
- type: nauc_ndcg_at_1_diff1
value: 36.03138484582729
- type: nauc_ndcg_at_1_max
value: 36.277950419702755
- type: nauc_ndcg_at_20_diff1
value: 23.079788090123536
- type: nauc_ndcg_at_20_max
value: 33.46154223206268
- type: nauc_ndcg_at_3_diff1
value: 28.612088697615302
- type: nauc_ndcg_at_3_max
value: 34.42302593383679
- type: nauc_ndcg_at_5_diff1
value: 25.671378300813853
- type: nauc_ndcg_at_5_max
value: 32.64433627531644
- type: nauc_precision_at_1000_diff1
value: -0.3052718758543331
- type: nauc_precision_at_1000_max
value: 18.16387047369377
- type: nauc_precision_at_100_diff1
value: 7.956051604214289
- type: nauc_precision_at_100_max
value: 25.73158237184035
- type: nauc_precision_at_10_diff1
value: 10.163750744754575
- type: nauc_precision_at_10_max
value: 26.00696664055645
- type: nauc_precision_at_1_diff1
value: 36.03138484582729
- type: nauc_precision_at_1_max
value: 36.277950419702755
- type: nauc_precision_at_20_diff1
value: 8.314279554483267
- type: nauc_precision_at_20_max
value: 27.115560839727205
- type: nauc_precision_at_3_diff1
value: 21.690833394205402
- type: nauc_precision_at_3_max
value: 32.156497547258645
- type: nauc_precision_at_5_diff1
value: 15.032164068271097
- type: nauc_precision_at_5_max
value: 28.07574462716985
- type: nauc_recall_at_1000_diff1
value: 10.738783260564638
- type: nauc_recall_at_1000_max
value: 35.56192865936298
- type: nauc_recall_at_100_diff1
value: 14.296129488159078
- type: nauc_recall_at_100_max
value: 30.18732747422109
- type: nauc_recall_at_10_diff1
value: 15.306405656539345
- type: nauc_recall_at_10_max
value: 25.621311074599586
- type: nauc_recall_at_1_diff1
value: 39.996859549061355
- type: nauc_recall_at_1_max
value: 39.270510397353526
- type: nauc_recall_at_20_diff1
value: 13.106484977306085
- type: nauc_recall_at_20_max
value: 26.123290353715582
- type: nauc_recall_at_3_diff1
value: 25.514669409942993
- type: nauc_recall_at_3_max
value: 31.83833126301056
- type: nauc_recall_at_5_diff1
value: 18.916230651494935
- type: nauc_recall_at_5_max
value: 27.401847297469374
- type: ndcg_at_1
value: 13.616
- type: ndcg_at_10
value: 17.005
- type: ndcg_at_100
value: 24.686
- type: ndcg_at_1000
value: 29.037000000000003
- type: ndcg_at_20
value: 19.575
- type: ndcg_at_3
value: 12.867
- type: ndcg_at_5
value: 14.313
- type: precision_at_1
value: 13.616
- type: precision_at_10
value: 5.603000000000001
- type: precision_at_100
value: 1.384
- type: precision_at_1000
value: 0.218
- type: precision_at_20
value: 3.8629999999999995
- type: precision_at_3
value: 9.62
- type: precision_at_5
value: 7.686999999999999
- type: recall_at_1
value: 6.18
- type: recall_at_10
value: 22.253999999999998
- type: recall_at_100
value: 49.857
- type: recall_at_1000
value: 74.509
- type: recall_at_20
value: 29.79
- type: recall_at_3
value: 12.471
- type: recall_at_5
value: 16.154
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 8.291
- type: map_at_10
value: 16.830000000000002
- type: map_at_100
value: 23.034
- type: map_at_1000
value: 24.512999999999998
- type: map_at_20
value: 19.091
- type: map_at_3
value: 12.845999999999998
- type: map_at_5
value: 14.402000000000001
- type: mrr_at_1
value: 58.75
- type: mrr_at_10
value: 68.33035714285714
- type: mrr_at_100
value: 68.71251724781709
- type: mrr_at_1000
value: 68.72409210627302
- type: mrr_at_20
value: 68.47271810039805
- type: mrr_at_3
value: 66.25
- type: mrr_at_5
value: 67.575
- type: nauc_map_at_1000_diff1
value: 27.342350846844752
- type: nauc_map_at_1000_max
value: 14.188457616813544
- type: nauc_map_at_100_diff1
value: 27.710778521551514
- type: nauc_map_at_100_max
value: 11.818644063311075
- type: nauc_map_at_10_diff1
value: 28.06853470498657
- type: nauc_map_at_10_max
value: -0.12310961533344932
- type: nauc_map_at_1_diff1
value: 36.28948693750488
- type: nauc_map_at_1_max
value: -8.633353634959779
- type: nauc_map_at_20_diff1
value: 27.934994633916343
- type: nauc_map_at_20_max
value: 4.66682483439594
- type: nauc_map_at_3_diff1
value: 28.558592385022912
- type: nauc_map_at_3_max
value: -6.5695573701219905
- type: nauc_map_at_5_diff1
value: 28.15758211700583
- type: nauc_map_at_5_max
value: -4.438837627387033
- type: nauc_mrr_at_1000_diff1
value: 32.88741935239777
- type: nauc_mrr_at_1000_max
value: 36.85520170797062
- type: nauc_mrr_at_100_diff1
value: 32.89939422961155
- type: nauc_mrr_at_100_max
value: 36.86316603211002
- type: nauc_mrr_at_10_diff1
value: 32.75700243218855
- type: nauc_mrr_at_10_max
value: 37.04714292361367
- type: nauc_mrr_at_1_diff1
value: 34.13253827440505
- type: nauc_mrr_at_1_max
value: 33.77037186076712
- type: nauc_mrr_at_20_diff1
value: 32.80415591728181
- type: nauc_mrr_at_20_max
value: 36.99253314411835
- type: nauc_mrr_at_3_diff1
value: 32.586811805982016
- type: nauc_mrr_at_3_max
value: 36.12324135058626
- type: nauc_mrr_at_5_diff1
value: 33.03671664465732
- type: nauc_mrr_at_5_max
value: 36.97824557212217
- type: nauc_ndcg_at_1000_diff1
value: 28.337772149714162
- type: nauc_ndcg_at_1000_max
value: 25.377883958551458
- type: nauc_ndcg_at_100_diff1
value: 28.41718749082906
- type: nauc_ndcg_at_100_max
value: 18.123074545882446
- type: nauc_ndcg_at_10_diff1
value: 27.74101109260006
- type: nauc_ndcg_at_10_max
value: 17.69386105978732
- type: nauc_ndcg_at_1_diff1
value: 31.913034148097413
- type: nauc_ndcg_at_1_max
value: 26.268179898794834
- type: nauc_ndcg_at_20_diff1
value: 27.916849997321297
- type: nauc_ndcg_at_20_max
value: 15.44589123370981
- type: nauc_ndcg_at_3_diff1
value: 26.337487002010345
- type: nauc_ndcg_at_3_max
value: 22.565903592425173
- type: nauc_ndcg_at_5_diff1
value: 26.902286744591574
- type: nauc_ndcg_at_5_max
value: 20.51307548413365
- type: nauc_precision_at_1000_diff1
value: -10.757573462902606
- type: nauc_precision_at_1000_max
value: 33.20717701523462
- type: nauc_precision_at_100_diff1
value: 4.142228479859455
- type: nauc_precision_at_100_max
value: 35.16404294730987
- type: nauc_precision_at_10_diff1
value: 12.469406451834095
- type: nauc_precision_at_10_max
value: 37.9712993631463
- type: nauc_precision_at_1_diff1
value: 34.13253827440505
- type: nauc_precision_at_1_max
value: 33.77037186076712
- type: nauc_precision_at_20_diff1
value: 9.319269643229944
- type: nauc_precision_at_20_max
value: 37.327643501927774
- type: nauc_precision_at_3_diff1
value: 16.255946329046314
- type: nauc_precision_at_3_max
value: 32.91012044795064
- type: nauc_precision_at_5_diff1
value: 14.45882910211086
- type: nauc_precision_at_5_max
value: 37.335976736380175
- type: nauc_recall_at_1000_diff1
value: 21.567656720257148
- type: nauc_recall_at_1000_max
value: 21.46402442471943
- type: nauc_recall_at_100_diff1
value: 22.39134946314963
- type: nauc_recall_at_100_max
value: 11.668568431971867
- type: nauc_recall_at_10_diff1
value: 23.937310413594133
- type: nauc_recall_at_10_max
value: -1.3011457352984097
- type: nauc_recall_at_1_diff1
value: 36.28948693750488
- type: nauc_recall_at_1_max
value: -8.633353634959779
- type: nauc_recall_at_20_diff1
value: 23.638781595544128
- type: nauc_recall_at_20_max
value: 5.460347213047418
- type: nauc_recall_at_3_diff1
value: 26.087367269108725
- type: nauc_recall_at_3_max
value: -8.392789032179113
- type: nauc_recall_at_5_diff1
value: 24.741724571041253
- type: nauc_recall_at_5_max
value: -6.393820851085444
- type: ndcg_at_1
value: 47.25
- type: ndcg_at_10
value: 35.081
- type: ndcg_at_100
value: 39.969
- type: ndcg_at_1000
value: 47.847
- type: ndcg_at_20
value: 34.547
- type: ndcg_at_3
value: 39.304
- type: ndcg_at_5
value: 36.79
- type: precision_at_1
value: 58.75
- type: precision_at_10
value: 26.85
- type: precision_at_100
value: 8.703
- type: precision_at_1000
value: 1.8980000000000001
- type: precision_at_20
value: 20.037
- type: precision_at_3
value: 42.083
- type: precision_at_5
value: 35.099999999999994
- type: recall_at_1
value: 8.291
- type: recall_at_10
value: 22.274
- type: recall_at_100
value: 46.904
- type: recall_at_1000
value: 71.71
- type: recall_at_20
value: 27.898
- type: recall_at_3
value: 14.213999999999999
- type: recall_at_5
value: 17.035
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 47.11
- type: f1
value: 41.2294008856841
- type: f1_weighted
value: 49.015064693968355
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 40.014
- type: map_at_10
value: 54.081999999999994
- type: map_at_100
value: 54.698
- type: map_at_1000
value: 54.72
- type: map_at_20
value: 54.48
- type: map_at_3
value: 50.809000000000005
- type: map_at_5
value: 52.79899999999999
- type: mrr_at_1
value: 43.009300930093005
- type: mrr_at_10
value: 57.503827763729085
- type: mrr_at_100
value: 58.049446560229754
- type: mrr_at_1000
value: 58.0600709633308
- type: mrr_at_20
value: 57.875221009859665
- type: mrr_at_3
value: 54.25292529252964
- type: mrr_at_5
value: 56.24212421242145
- type: nauc_map_at_1000_diff1
value: 37.53159168913937
- type: nauc_map_at_1000_max
value: 6.8836860808007465
- type: nauc_map_at_100_diff1
value: 37.528011745089835
- type: nauc_map_at_100_max
value: 6.882491514393514
- type: nauc_map_at_10_diff1
value: 37.3772602442582
- type: nauc_map_at_10_max
value: 6.941476394099929
- type: nauc_map_at_1_diff1
value: 41.86294360198839
- type: nauc_map_at_1_max
value: 6.023892954634666
- type: nauc_map_at_20_diff1
value: 37.427127392559335
- type: nauc_map_at_20_max
value: 6.882487617592033
- type: nauc_map_at_3_diff1
value: 37.20054603111901
- type: nauc_map_at_3_max
value: 6.161906578752757
- type: nauc_map_at_5_diff1
value: 37.07890205012265
- type: nauc_map_at_5_max
value: 6.693250003060114
- type: nauc_mrr_at_1000_diff1
value: 40.01409327276433
- type: nauc_mrr_at_1000_max
value: 6.986140706019336
- type: nauc_mrr_at_100_diff1
value: 40.01603614242155
- type: nauc_mrr_at_100_max
value: 6.994969349070441
- type: nauc_mrr_at_10_diff1
value: 39.88645059936797
- type: nauc_mrr_at_10_max
value: 7.128874648135309
- type: nauc_mrr_at_1_diff1
value: 44.010610515801766
- type: nauc_mrr_at_1_max
value: 5.9421616518924
- type: nauc_mrr_at_20_diff1
value: 39.91760958564354
- type: nauc_mrr_at_20_max
value: 7.001496247992628
- type: nauc_mrr_at_3_diff1
value: 39.55814635404465
- type: nauc_mrr_at_3_max
value: 6.348916278839159
- type: nauc_mrr_at_5_diff1
value: 39.53111951703581
- type: nauc_mrr_at_5_max
value: 6.90608845386575
- type: nauc_ndcg_at_1000_diff1
value: 37.410083910100454
- type: nauc_ndcg_at_1000_max
value: 7.702794760075665
- type: nauc_ndcg_at_100_diff1
value: 37.24367644094166
- type: nauc_ndcg_at_100_max
value: 7.748369388619449
- type: nauc_ndcg_at_10_diff1
value: 36.42739864037634
- type: nauc_ndcg_at_10_max
value: 8.023602519440981
- type: nauc_ndcg_at_1_diff1
value: 44.010610515801766
- type: nauc_ndcg_at_1_max
value: 5.9421616518924
- type: nauc_ndcg_at_20_diff1
value: 36.532843433534836
- type: nauc_ndcg_at_20_max
value: 7.736575556014484
- type: nauc_ndcg_at_3_diff1
value: 36.195062467683485
- type: nauc_ndcg_at_3_max
value: 6.351990387166732
- type: nauc_ndcg_at_5_diff1
value: 35.823128734687835
- type: nauc_ndcg_at_5_max
value: 7.397593069596111
- type: nauc_precision_at_1000_diff1
value: -3.5385176540536514
- type: nauc_precision_at_1000_max
value: 6.514978387518318
- type: nauc_precision_at_100_diff1
value: 3.0567737052705435
- type: nauc_precision_at_100_max
value: 9.197755692738543
- type: nauc_precision_at_10_diff1
value: 22.124829864658473
- type: nauc_precision_at_10_max
value: 13.41228356156045
- type: nauc_precision_at_1_diff1
value: 44.010610515801766
- type: nauc_precision_at_1_max
value: 5.9421616518924
- type: nauc_precision_at_20_diff1
value: 14.960320394382231
- type: nauc_precision_at_20_max
value: 12.26648981111606
- type: nauc_precision_at_3_diff1
value: 31.130457883879092
- type: nauc_precision_at_3_max
value: 6.82126659383764
- type: nauc_precision_at_5_diff1
value: 26.884225039660837
- type: nauc_precision_at_5_max
value: 10.124900855966871
- type: nauc_recall_at_1000_diff1
value: 17.368406898729038
- type: nauc_recall_at_1000_max
value: 20.346937130202836
- type: nauc_recall_at_100_diff1
value: 20.167019111696035
- type: nauc_recall_at_100_max
value: 15.751973809238756
- type: nauc_recall_at_10_diff1
value: 24.579485696194457
- type: nauc_recall_at_10_max
value: 12.597490151740628
- type: nauc_recall_at_1_diff1
value: 41.86294360198839
- type: nauc_recall_at_1_max
value: 6.023892954634666
- type: nauc_recall_at_20_diff1
value: 21.09351386111729
- type: nauc_recall_at_20_max
value: 11.699302732967896
- type: nauc_recall_at_3_diff1
value: 29.17762647595018
- type: nauc_recall_at_3_max
value: 6.461951154139278
- type: nauc_recall_at_5_diff1
value: 26.266588024737242
- type: nauc_recall_at_5_max
value: 9.344922507705471
- type: ndcg_at_1
value: 43.009
- type: ndcg_at_10
value: 61.541999999999994
- type: ndcg_at_100
value: 64.292
- type: ndcg_at_1000
value: 64.781
- type: ndcg_at_20
value: 62.925
- type: ndcg_at_3
value: 55.095000000000006
- type: ndcg_at_5
value: 58.557
- type: precision_at_1
value: 43.009
- type: precision_at_10
value: 8.863
- type: precision_at_100
value: 1.0370000000000001
- type: precision_at_1000
value: 0.11
- type: precision_at_20
value: 4.742
- type: precision_at_3
value: 23.077
- type: precision_at_5
value: 15.701
- type: recall_at_1
value: 40.014
- type: recall_at_10
value: 81.319
- type: recall_at_100
value: 93.362
- type: recall_at_1000
value: 96.72500000000001
- type: recall_at_20
value: 86.54899999999999
- type: recall_at_3
value: 63.975
- type: recall_at_5
value: 72.361
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 14.754999999999999
- type: map_at_10
value: 23.415
- type: map_at_100
value: 25.389
- type: map_at_1000
value: 25.583
- type: map_at_20
value: 24.471999999999998
- type: map_at_3
value: 20.706
- type: map_at_5
value: 22.137
- type: mrr_at_1
value: 29.938271604938272
- type: mrr_at_10
value: 37.82272682735643
- type: mrr_at_100
value: 38.93217561179166
- type: mrr_at_1000
value: 38.993419651389594
- type: mrr_at_20
value: 38.51688181126462
- type: mrr_at_3
value: 35.49382716049384
- type: mrr_at_5
value: 36.69753086419753
- type: nauc_map_at_1000_diff1
value: 39.87836835005687
- type: nauc_map_at_1000_max
value: 27.964955726459046
- type: nauc_map_at_100_diff1
value: 39.85804813979803
- type: nauc_map_at_100_max
value: 27.901085428248518
- type: nauc_map_at_10_diff1
value: 40.40910564822785
- type: nauc_map_at_10_max
value: 27.072531521163906
- type: nauc_map_at_1_diff1
value: 45.20997932526616
- type: nauc_map_at_1_max
value: 24.648676414998096
- type: nauc_map_at_20_diff1
value: 40.028106498724725
- type: nauc_map_at_20_max
value: 27.60132226396262
- type: nauc_map_at_3_diff1
value: 41.05603264971634
- type: nauc_map_at_3_max
value: 26.25426542015784
- type: nauc_map_at_5_diff1
value: 41.00888735158693
- type: nauc_map_at_5_max
value: 27.191449534557897
- type: nauc_mrr_at_1000_diff1
value: 41.89281932766717
- type: nauc_mrr_at_1000_max
value: 35.99284962374552
- type: nauc_mrr_at_100_diff1
value: 41.8809308098677
- type: nauc_mrr_at_100_max
value: 35.99275706919067
- type: nauc_mrr_at_10_diff1
value: 42.034104043793334
- type: nauc_mrr_at_10_max
value: 35.76467432283676
- type: nauc_mrr_at_1_diff1
value: 46.49733800476976
- type: nauc_mrr_at_1_max
value: 37.4658949472576
- type: nauc_mrr_at_20_diff1
value: 41.748351174212104
- type: nauc_mrr_at_20_max
value: 35.9625951228368
- type: nauc_mrr_at_3_diff1
value: 43.03598990961282
- type: nauc_mrr_at_3_max
value: 36.15714656335092
- type: nauc_mrr_at_5_diff1
value: 42.82409168973717
- type: nauc_mrr_at_5_max
value: 36.196423200277614
- type: nauc_ndcg_at_1000_diff1
value: 37.73166244969865
- type: nauc_ndcg_at_1000_max
value: 31.381646846120077
- type: nauc_ndcg_at_100_diff1
value: 37.23016841045615
- type: nauc_ndcg_at_100_max
value: 30.46125187550548
- type: nauc_ndcg_at_10_diff1
value: 38.973941698385175
- type: nauc_ndcg_at_10_max
value: 28.50687601887441
- type: nauc_ndcg_at_1_diff1
value: 46.49733800476976
- type: nauc_ndcg_at_1_max
value: 37.4658949472576
- type: nauc_ndcg_at_20_diff1
value: 37.789595359314184
- type: nauc_ndcg_at_20_max
value: 29.22246454793801
- type: nauc_ndcg_at_3_diff1
value: 41.76335349611918
- type: nauc_ndcg_at_3_max
value: 32.83475312409831
- type: nauc_ndcg_at_5_diff1
value: 41.107481866851366
- type: nauc_ndcg_at_5_max
value: 30.504284365072547
- type: nauc_precision_at_1000_diff1
value: 2.5166465109243528
- type: nauc_precision_at_1000_max
value: 24.899624433788485
- type: nauc_precision_at_100_diff1
value: 10.522599150582685
- type: nauc_precision_at_100_max
value: 29.50873923975521
- type: nauc_precision_at_10_diff1
value: 27.120890973936778
- type: nauc_precision_at_10_max
value: 32.955042844361046
- type: nauc_precision_at_1_diff1
value: 46.49733800476976
- type: nauc_precision_at_1_max
value: 37.4658949472576
- type: nauc_precision_at_20_diff1
value: 20.299314592682165
- type: nauc_precision_at_20_max
value: 33.25503440470617
- type: nauc_precision_at_3_diff1
value: 35.273519611653626
- type: nauc_precision_at_3_max
value: 36.33062698057323
- type: nauc_precision_at_5_diff1
value: 33.590199611021006
- type: nauc_precision_at_5_max
value: 36.68276540744115
- type: nauc_recall_at_1000_diff1
value: 8.618184855067168
- type: nauc_recall_at_1000_max
value: 21.822927142441923
- type: nauc_recall_at_100_diff1
value: 17.055234719322666
- type: nauc_recall_at_100_max
value: 19.555357018393373
- type: nauc_recall_at_10_diff1
value: 28.06102408728667
- type: nauc_recall_at_10_max
value: 19.309443630849117
- type: nauc_recall_at_1_diff1
value: 45.20997932526616
- type: nauc_recall_at_1_max
value: 24.648676414998096
- type: nauc_recall_at_20_diff1
value: 23.428917950250966
- type: nauc_recall_at_20_max
value: 19.351922857081917
- type: nauc_recall_at_3_diff1
value: 35.290875728597044
- type: nauc_recall_at_3_max
value: 22.777706184795857
- type: nauc_recall_at_5_diff1
value: 33.580206464404554
- type: nauc_recall_at_5_max
value: 22.290191050692897
- type: ndcg_at_1
value: 29.938
- type: ndcg_at_10
value: 29.974
- type: ndcg_at_100
value: 37.791999999999994
- type: ndcg_at_1000
value: 41.525
- type: ndcg_at_20
value: 33.032000000000004
- type: ndcg_at_3
value: 27.418
- type: ndcg_at_5
value: 27.925
- type: precision_at_1
value: 29.938
- type: precision_at_10
value: 8.41
- type: precision_at_100
value: 1.608
- type: precision_at_1000
value: 0.22599999999999998
- type: precision_at_20
value: 5.409
- type: precision_at_3
value: 18.724
- type: precision_at_5
value: 13.456999999999999
- type: recall_at_1
value: 14.754999999999999
- type: recall_at_10
value: 34.863
- type: recall_at_100
value: 64.471
- type: recall_at_1000
value: 87.386
- type: recall_at_20
value: 44.574999999999996
- type: recall_at_3
value: 24.359
- type: recall_at_5
value: 28.442
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 35.476
- type: map_at_10
value: 55.208
- type: map_at_100
value: 56.152
- type: map_at_1000
value: 56.22200000000001
- type: map_at_20
value: 55.754000000000005
- type: map_at_3
value: 51.742999999999995
- type: map_at_5
value: 53.900000000000006
- type: mrr_at_1
value: 70.95205941931127
- type: mrr_at_10
value: 78.42775687812804
- type: mrr_at_100
value: 78.68481706123845
- type: mrr_at_1000
value: 78.69468662644054
- type: mrr_at_20
value: 78.59334220969656
- type: mrr_at_3
value: 77.21584514967346
- type: mrr_at_5
value: 78.01395453522359
- type: nauc_map_at_1000_diff1
value: 25.86438441197036
- type: nauc_map_at_1000_max
value: 24.208328720722367
- type: nauc_map_at_100_diff1
value: 25.836404334583698
- type: nauc_map_at_100_max
value: 24.195017226851576
- type: nauc_map_at_10_diff1
value: 25.722782423795227
- type: nauc_map_at_10_max
value: 23.987656322283062
- type: nauc_map_at_1_diff1
value: 65.41482575591807
- type: nauc_map_at_1_max
value: 36.750296668618084
- type: nauc_map_at_20_diff1
value: 25.748480864914974
- type: nauc_map_at_20_max
value: 24.135897754765367
- type: nauc_map_at_3_diff1
value: 26.38356826015294
- type: nauc_map_at_3_max
value: 23.621729891258973
- type: nauc_map_at_5_diff1
value: 26.0945105687306
- type: nauc_map_at_5_max
value: 23.988655536143728
- type: nauc_mrr_at_1000_diff1
value: 64.17645353489316
- type: nauc_mrr_at_1000_max
value: 39.676745401203924
- type: nauc_mrr_at_100_diff1
value: 64.17493074038984
- type: nauc_mrr_at_100_max
value: 39.677377348237144
- type: nauc_mrr_at_10_diff1
value: 64.11955469392967
- type: nauc_mrr_at_10_max
value: 39.82247333641905
- type: nauc_mrr_at_1_diff1
value: 65.41482575591807
- type: nauc_mrr_at_1_max
value: 36.750296668618084
- type: nauc_mrr_at_20_diff1
value: 64.15026091520691
- type: nauc_mrr_at_20_max
value: 39.73722517116609
- type: nauc_mrr_at_3_diff1
value: 63.9908644633026
- type: nauc_mrr_at_3_max
value: 39.70016359929288
- type: nauc_mrr_at_5_diff1
value: 64.13062355820735
- type: nauc_mrr_at_5_max
value: 39.90280825011535
- type: nauc_ndcg_at_1000_diff1
value: 31.23415779213086
- type: nauc_ndcg_at_1000_max
value: 27.776674450652884
- type: nauc_ndcg_at_100_diff1
value: 30.35823573217142
- type: nauc_ndcg_at_100_max
value: 27.34738082248897
- type: nauc_ndcg_at_10_diff1
value: 30.106808177162254
- type: nauc_ndcg_at_10_max
value: 26.953412093415036
- type: nauc_ndcg_at_1_diff1
value: 65.41482575591807
- type: nauc_ndcg_at_1_max
value: 36.750296668618084
- type: nauc_ndcg_at_20_diff1
value: 29.95512057702211
- type: nauc_ndcg_at_20_max
value: 27.167767360883598
- type: nauc_ndcg_at_3_diff1
value: 31.769187019307232
- type: nauc_ndcg_at_3_max
value: 26.73293484943561
- type: nauc_ndcg_at_5_diff1
value: 30.990681805979882
- type: nauc_ndcg_at_5_max
value: 27.06261773043383
- type: nauc_precision_at_1000_diff1
value: 2.7411864902028804
- type: nauc_precision_at_1000_max
value: 21.87546627838
- type: nauc_precision_at_100_diff1
value: 6.07948946116136
- type: nauc_precision_at_100_max
value: 19.74129594300319
- type: nauc_precision_at_10_diff1
value: 12.773005438330138
- type: nauc_precision_at_10_max
value: 21.240483881434862
- type: nauc_precision_at_1_diff1
value: 65.41482575591807
- type: nauc_precision_at_1_max
value: 36.750296668618084
- type: nauc_precision_at_20_diff1
value: 10.059987751705838
- type: nauc_precision_at_20_max
value: 20.886351066202028
- type: nauc_precision_at_3_diff1
value: 19.42571093704271
- type: nauc_precision_at_3_max
value: 22.725022430676766
- type: nauc_precision_at_5_diff1
value: 16.630466686718133
- type: nauc_precision_at_5_max
value: 22.43986381185507
- type: nauc_recall_at_1000_diff1
value: 2.741186490202987
- type: nauc_recall_at_1000_max
value: 21.875466278380117
- type: nauc_recall_at_100_diff1
value: 6.079489461161415
- type: nauc_recall_at_100_max
value: 19.74129594300323
- type: nauc_recall_at_10_diff1
value: 12.77300543833007
- type: nauc_recall_at_10_max
value: 21.24048388143479
- type: nauc_recall_at_1_diff1
value: 65.41482575591807
- type: nauc_recall_at_1_max
value: 36.750296668618084
- type: nauc_recall_at_20_diff1
value: 10.059987751705897
- type: nauc_recall_at_20_max
value: 20.88635106620212
- type: nauc_recall_at_3_diff1
value: 19.42571093704268
- type: nauc_recall_at_3_max
value: 22.725022430676713
- type: nauc_recall_at_5_diff1
value: 16.630466686718112
- type: nauc_recall_at_5_max
value: 22.439863811855034
- type: ndcg_at_1
value: 70.952
- type: ndcg_at_10
value: 64.154
- type: ndcg_at_100
value: 67.54299999999999
- type: ndcg_at_1000
value: 68.931
- type: ndcg_at_20
value: 65.556
- type: ndcg_at_3
value: 59.10300000000001
- type: ndcg_at_5
value: 61.92100000000001
- type: precision_at_1
value: 70.952
- type: precision_at_10
value: 13.611999999999998
- type: precision_at_100
value: 1.627
- type: precision_at_1000
value: 0.181
- type: precision_at_20
value: 7.258000000000001
- type: precision_at_3
value: 37.929
- type: precision_at_5
value: 24.986
- type: recall_at_1
value: 35.476
- type: recall_at_10
value: 68.062
- type: recall_at_100
value: 81.34400000000001
- type: recall_at_1000
value: 90.567
- type: recall_at_20
value: 72.57900000000001
- type: recall_at_3
value: 56.894
- type: recall_at_5
value: 62.465
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 87.392
- type: ap
value: 82.30893640195251
- type: ap_weighted
value: 82.30893640195251
- type: f1
value: 87.35348856878436
- type: f1_weighted
value: 87.35348856878437
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 37.701
- type: map_at_1
value: 19.483
- type: map_at_10
value: 31.148
- type: map_at_100
value: 32.402
- type: map_at_1000
value: 32.462
- type: map_at_20
value: 31.921
- type: map_at_3
value: 27.509
- type: map_at_5
value: 29.521
- type: mrr_at_1
value: 19.95702005730659
- type: mrr_at_10
value: 31.629388957110926
- type: mrr_at_100
value: 32.835516469756676
- type: mrr_at_1000
value: 32.889168712361034
- type: mrr_at_20
value: 32.38456688305533
- type: mrr_at_3
value: 28.04680038204374
- type: mrr_at_5
value: 30.005969436485113
- type: nauc_map_at_1000_diff1
value: 32.10821100880179
- type: nauc_map_at_1000_max
value: 0.7085504734279151
- type: nauc_map_at_1000_std
value: -9.657081445961802
- type: nauc_map_at_100_diff1
value: 32.1022582818382
- type: nauc_map_at_100_max
value: 0.7094263225288184
- type: nauc_map_at_100_std
value: -9.615141441552195
- type: nauc_map_at_10_diff1
value: 32.12324150765439
- type: nauc_map_at_10_max
value: 0.6031410503880614
- type: nauc_map_at_10_std
value: -10.446787175853538
- type: nauc_map_at_1_diff1
value: 33.742442076477175
- type: nauc_map_at_1_max
value: -0.4682625514356794
- type: nauc_map_at_1_std
value: -10.128931659708204
- type: nauc_map_at_20_diff1
value: 32.0860174618957
- type: nauc_map_at_20_max
value: 0.6702984410061132
- type: nauc_map_at_20_std
value: -9.906667239123404
- type: nauc_map_at_3_diff1
value: 32.29226575652717
- type: nauc_map_at_3_max
value: 0.0973438744261487
- type: nauc_map_at_3_std
value: -11.124768365213317
- type: nauc_map_at_5_diff1
value: 32.08229672223041
- type: nauc_map_at_5_max
value: 0.2176450911149463
- type: nauc_map_at_5_std
value: -11.055413229428249
- type: nauc_mrr_at_1000_diff1
value: 31.895348209132734
- type: nauc_mrr_at_1000_max
value: 0.7016011591304079
- type: nauc_mrr_at_1000_std
value: -9.67662400401361
- type: nauc_mrr_at_100_diff1
value: 31.8866191175737
- type: nauc_mrr_at_100_max
value: 0.7081721058731258
- type: nauc_mrr_at_100_std
value: -9.633818059393716
- type: nauc_mrr_at_10_diff1
value: 31.89471221387619
- type: nauc_mrr_at_10_max
value: 0.6339660994085835
- type: nauc_mrr_at_10_std
value: -10.40302377816781
- type: nauc_mrr_at_1_diff1
value: 33.51497482281671
- type: nauc_mrr_at_1_max
value: -0.38461440436551425
- type: nauc_mrr_at_1_std
value: -10.229237135864578
- type: nauc_mrr_at_20_diff1
value: 31.858413430545546
- type: nauc_mrr_at_20_max
value: 0.6976488035968785
- type: nauc_mrr_at_20_std
value: -9.889412090836752
- type: nauc_mrr_at_3_diff1
value: 32.07820212397262
- type: nauc_mrr_at_3_max
value: 0.0237815936067523
- type: nauc_mrr_at_3_std
value: -11.225901208970873
- type: nauc_mrr_at_5_diff1
value: 31.880984335275738
- type: nauc_mrr_at_5_max
value: 0.199684088046682
- type: nauc_mrr_at_5_std
value: -11.076286377930138
- type: nauc_ndcg_at_1000_diff1
value: 31.54073203534171
- type: nauc_ndcg_at_1000_max
value: 1.865885878739077
- type: nauc_ndcg_at_1000_std
value: -7.111772836122038
- type: nauc_ndcg_at_100_diff1
value: 31.37901877227891
- type: nauc_ndcg_at_100_max
value: 1.9480183608898676
- type: nauc_ndcg_at_100_std
value: -5.691552787254062
- type: nauc_ndcg_at_10_diff1
value: 31.432464505042674
- type: nauc_ndcg_at_10_max
value: 1.37534724565308
- type: nauc_ndcg_at_10_std
value: -9.688757807073005
- type: nauc_ndcg_at_1_diff1
value: 33.44622804608476
- type: nauc_ndcg_at_1_max
value: -0.4275117298270247
- type: nauc_ndcg_at_1_std
value: -10.195443857766566
- type: nauc_ndcg_at_20_diff1
value: 31.27757208526727
- type: nauc_ndcg_at_20_max
value: 1.6486846485417688
- type: nauc_ndcg_at_20_std
value: -7.731364695550273
- type: nauc_ndcg_at_3_diff1
value: 31.833281451625755
- type: nauc_ndcg_at_3_max
value: 0.248993633296169
- type: nauc_ndcg_at_3_std
value: -11.375142227624853
- type: nauc_ndcg_at_5_diff1
value: 31.450773538855685
- type: nauc_ndcg_at_5_max
value: 0.4439465859365249
- type: nauc_ndcg_at_5_std
value: -11.21243082848607
- type: nauc_precision_at_1000_diff1
value: -3.189589259900143
- type: nauc_precision_at_1000_max
value: 16.455244940685287
- type: nauc_precision_at_1000_std
value: 14.259564795238846
- type: nauc_precision_at_100_diff1
value: 14.87654355875184
- type: nauc_precision_at_100_max
value: 11.935690745346687
- type: nauc_precision_at_100_std
value: 23.08831102598726
- type: nauc_precision_at_10_diff1
value: 27.37421025197246
- type: nauc_precision_at_10_max
value: 4.166107809672891
- type: nauc_precision_at_10_std
value: -6.881018792063406
- type: nauc_precision_at_1_diff1
value: 33.44622804608476
- type: nauc_precision_at_1_max
value: -0.4275117298270247
- type: nauc_precision_at_1_std
value: -10.195443857766566
- type: nauc_precision_at_20_diff1
value: 24.609029763068264
- type: nauc_precision_at_20_max
value: 6.284294179586118
- type: nauc_precision_at_20_std
value: 1.9907354399675787
- type: nauc_precision_at_3_diff1
value: 30.032708101293274
- type: nauc_precision_at_3_max
value: 0.3723674743540282
- type: nauc_precision_at_3_std
value: -12.3372142678907
- type: nauc_precision_at_5_diff1
value: 28.660692204010886
- type: nauc_precision_at_5_max
value: 1.2268562134706205
- type: nauc_precision_at_5_std
value: -11.633329112055833
- type: nauc_recall_at_1000_diff1
value: 25.817560788852198
- type: nauc_recall_at_1000_max
value: 36.86227659755896
- type: nauc_recall_at_1000_std
value: 63.94303180569221
- type: nauc_recall_at_100_diff1
value: 27.1728992415636
- type: nauc_recall_at_100_max
value: 11.548635552653852
- type: nauc_recall_at_100_std
value: 31.974599323501035
- type: nauc_recall_at_10_diff1
value: 29.294882367129404
- type: nauc_recall_at_10_max
value: 3.763234551980347
- type: nauc_recall_at_10_std
value: -6.861891907951573
- type: nauc_recall_at_1_diff1
value: 33.742442076477175
- type: nauc_recall_at_1_max
value: -0.4682625514356794
- type: nauc_recall_at_1_std
value: -10.128931659708204
- type: nauc_recall_at_20_diff1
value: 28.258984645981585
- type: nauc_recall_at_20_max
value: 5.291852480348364
- type: nauc_recall_at_20_std
value: 2.243022569638662
- type: nauc_recall_at_3_diff1
value: 30.6436214049594
- type: nauc_recall_at_3_max
value: 0.7472464014018717
- type: nauc_recall_at_3_std
value: -11.831114059680123
- type: nauc_recall_at_5_diff1
value: 29.74258077127522
- type: nauc_recall_at_5_max
value: 1.0386095329679945
- type: nauc_recall_at_5_std
value: -11.487480890097885
- type: ndcg_at_1
value: 19.971
- type: ndcg_at_10
value: 37.701
- type: ndcg_at_100
value: 43.71
- type: ndcg_at_1000
value: 45.191
- type: ndcg_at_20
value: 40.421
- type: ndcg_at_3
value: 30.25
- type: ndcg_at_5
value: 33.816
- type: precision_at_1
value: 19.971
- type: precision_at_10
value: 6.037
- type: precision_at_100
value: 0.904
- type: precision_at_1000
value: 0.103
- type: precision_at_20
value: 3.58
- type: precision_at_3
value: 12.97
- type: precision_at_5
value: 9.59
- type: recall_at_1
value: 19.483
- type: recall_at_10
value: 57.972
- type: recall_at_100
value: 85.639
- type: recall_at_1000
value: 96.954
- type: recall_at_20
value: 68.456
- type: recall_at_3
value: 37.628
- type: recall_at_5
value: 46.169
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.86365709074327
- type: f1
value: 92.6364668121745
- type: f1_weighted
value: 92.86565911176659
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 64.8518011855905
- type: f1
value: 46.19074540696208
- type: f1_weighted
value: 67.21842739260879
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 68.86348352387357
- type: f1
value: 66.61591434283466
- type: f1_weighted
value: 67.89865692906163
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 75.24882313382649
- type: f1
value: 74.48847159335763
- type: f1_weighted
value: 74.9792940543356
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.112200560363956
- type: v_measures
value:
- 0.2907912540071734
- 0.30018368642906285
- 0.2969957025066252
- 0.3046412932920165
- 0.3023643866062867
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 29.10468325586837
- type: v_measures
value:
- 0.2762290794660957
- 0.27088303670750474
- 0.27869334502955523
- 0.2877927347410669
- 0.283558635107815
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: map
value: 31.65436388779704
- type: mrr
value: 32.70570836057599
- type: nAUC_map_diff1
value: 11.29046170729857
- type: nAUC_map_max
value: -21.303851901712402
- type: nAUC_mrr_diff1
value: 10.839304152084038
- type: nAUC_mrr_max
value: -15.980370460373264
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 5.349
- type: map_at_10
value: 11.943
- type: map_at_100
value: 14.838999999999999
- type: map_at_1000
value: 16.228
- type: map_at_20
value: 13.255
- type: map_at_3
value: 8.712
- type: map_at_5
value: 10.078
- type: mrr_at_1
value: 41.48606811145511
- type: mrr_at_10
value: 50.93174111749962
- type: mrr_at_100
value: 51.51424977382773
- type: mrr_at_1000
value: 51.54588577020572
- type: mrr_at_20
value: 51.23754793809378
- type: mrr_at_3
value: 48.14241486068111
- type: mrr_at_5
value: 50.123839009287906
- type: nauc_map_at_1000_diff1
value: 24.080224706969375
- type: nauc_map_at_1000_max
value: 19.837568780211047
- type: nauc_map_at_100_diff1
value: 24.547349720088924
- type: nauc_map_at_100_max
value: 18.76780474051508
- type: nauc_map_at_10_diff1
value: 27.36097408135702
- type: nauc_map_at_10_max
value: 12.918546361288225
- type: nauc_map_at_1_diff1
value: 37.536183652718385
- type: nauc_map_at_1_max
value: -1.1491546718720773
- type: nauc_map_at_20_diff1
value: 25.802748647118108
- type: nauc_map_at_20_max
value: 15.721455228191134
- type: nauc_map_at_3_diff1
value: 34.211955433524196
- type: nauc_map_at_3_max
value: 6.1567837982868
- type: nauc_map_at_5_diff1
value: 31.355144847293875
- type: nauc_map_at_5_max
value: 9.248778872692705
- type: nauc_mrr_at_1000_diff1
value: 32.6636800918941
- type: nauc_mrr_at_1000_max
value: 38.762875976765784
- type: nauc_mrr_at_100_diff1
value: 32.68119918270669
- type: nauc_mrr_at_100_max
value: 38.78855177547366
- type: nauc_mrr_at_10_diff1
value: 32.6341499099646
- type: nauc_mrr_at_10_max
value: 38.57304636650009
- type: nauc_mrr_at_1_diff1
value: 33.31813734214396
- type: nauc_mrr_at_1_max
value: 32.615374725091584
- type: nauc_mrr_at_20_diff1
value: 32.70066434653636
- type: nauc_mrr_at_20_max
value: 38.65649435307692
- type: nauc_mrr_at_3_diff1
value: 31.970185140740586
- type: nauc_mrr_at_3_max
value: 37.36826662425585
- type: nauc_mrr_at_5_diff1
value: 32.75800999798963
- type: nauc_mrr_at_5_max
value: 38.54932999541346
- type: nauc_ndcg_at_1000_diff1
value: 24.176402213150016
- type: nauc_ndcg_at_1000_max
value: 37.64114068923691
- type: nauc_ndcg_at_100_diff1
value: 24.70407050925309
- type: nauc_ndcg_at_100_max
value: 32.22741268616694
- type: nauc_ndcg_at_10_diff1
value: 22.754607233929026
- type: nauc_ndcg_at_10_max
value: 31.40000991648274
- type: nauc_ndcg_at_1_diff1
value: 35.00398764062468
- type: nauc_ndcg_at_1_max
value: 31.74496244016824
- type: nauc_ndcg_at_20_diff1
value: 22.663343998503983
- type: nauc_ndcg_at_20_max
value: 29.9805490570407
- type: nauc_ndcg_at_3_diff1
value: 28.436841714938453
- type: nauc_ndcg_at_3_max
value: 32.998271531027235
- type: nauc_ndcg_at_5_diff1
value: 25.421553164974465
- type: nauc_ndcg_at_5_max
value: 32.18602590821988
- type: nauc_precision_at_1000_diff1
value: -0.3756162839426823
- type: nauc_precision_at_1000_max
value: 10.910413856430598
- type: nauc_precision_at_100_diff1
value: 1.1336658089729603
- type: nauc_precision_at_100_max
value: 22.634879988362034
- type: nauc_precision_at_10_diff1
value: 6.74407085117157
- type: nauc_precision_at_10_max
value: 34.47976455090075
- type: nauc_precision_at_1_diff1
value: 33.31813734214396
- type: nauc_precision_at_1_max
value: 32.615374725091584
- type: nauc_precision_at_20_diff1
value: 4.689841488175409
- type: nauc_precision_at_20_max
value: 30.590963857775392
- type: nauc_precision_at_3_diff1
value: 20.55747518226839
- type: nauc_precision_at_3_max
value: 37.32360882162725
- type: nauc_precision_at_5_diff1
value: 13.519365761095049
- type: nauc_precision_at_5_max
value: 36.50427925753384
- type: nauc_recall_at_1000_diff1
value: 6.311137710079621
- type: nauc_recall_at_1000_max
value: 17.25930964555457
- type: nauc_recall_at_100_diff1
value: 12.070904435192633
- type: nauc_recall_at_100_max
value: 16.897787779896493
- type: nauc_recall_at_10_diff1
value: 18.611832015375775
- type: nauc_recall_at_10_max
value: 11.574222141528578
- type: nauc_recall_at_1_diff1
value: 37.536183652718385
- type: nauc_recall_at_1_max
value: -1.1491546718720773
- type: nauc_recall_at_20_diff1
value: 16.07623501237203
- type: nauc_recall_at_20_max
value: 13.067066121164272
- type: nauc_recall_at_3_diff1
value: 30.081195021905327
- type: nauc_recall_at_3_max
value: 5.842397752446413
- type: nauc_recall_at_5_diff1
value: 24.93661141138374
- type: nauc_recall_at_5_max
value: 9.101458243965707
- type: ndcg_at_1
value: 40.402
- type: ndcg_at_10
value: 32.586999999999996
- type: ndcg_at_100
value: 29.584
- type: ndcg_at_1000
value: 38.547
- type: ndcg_at_20
value: 30.375999999999998
- type: ndcg_at_3
value: 36.538
- type: ndcg_at_5
value: 35.221999999999994
- type: precision_at_1
value: 41.486000000000004
- type: precision_at_10
value: 24.334
- type: precision_at_100
value: 7.424
- type: precision_at_1000
value: 2.0340000000000003
- type: precision_at_20
value: 17.91
- type: precision_at_3
value: 34.056
- type: precision_at_5
value: 30.464000000000002
- type: recall_at_1
value: 5.349
- type: recall_at_10
value: 16.242
- type: recall_at_100
value: 29.945
- type: recall_at_1000
value: 62.05199999999999
- type: recall_at_20
value: 19.902
- type: recall_at_3
value: 9.876
- type: recall_at_5
value: 12.572
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 29.425
- type: map_at_10
value: 44.198
- type: map_at_100
value: 45.295
- type: map_at_1000
value: 45.33
- type: map_at_20
value: 44.936
- type: map_at_3
value: 39.875
- type: map_at_5
value: 42.436
- type: mrr_at_1
value: 33.25608342989571
- type: mrr_at_10
value: 46.87629899391188
- type: mrr_at_100
value: 47.690164701118185
- type: mrr_at_1000
value: 47.71428403625546
- type: mrr_at_20
value: 47.42833555993071
- type: mrr_at_3
value: 43.34685206643475
- type: mrr_at_5
value: 45.51950560061793
- type: nauc_map_at_1000_diff1
value: 27.312226360073222
- type: nauc_map_at_1000_max
value: 22.962888694992817
- type: nauc_map_at_100_diff1
value: 27.31236017939728
- type: nauc_map_at_100_max
value: 22.98214732521748
- type: nauc_map_at_10_diff1
value: 27.124754062247607
- type: nauc_map_at_10_max
value: 22.98523700527181
- type: nauc_map_at_1_diff1
value: 30.166695274339734
- type: nauc_map_at_1_max
value: 16.94040610050655
- type: nauc_map_at_20_diff1
value: 27.347142209622294
- type: nauc_map_at_20_max
value: 23.0670669691066
- type: nauc_map_at_3_diff1
value: 26.632306929470623
- type: nauc_map_at_3_max
value: 21.481691542717822
- type: nauc_map_at_5_diff1
value: 27.287804705337535
- type: nauc_map_at_5_max
value: 22.493844564235342
- type: nauc_mrr_at_1000_diff1
value: 27.30127737418056
- type: nauc_mrr_at_1000_max
value: 22.787859374079716
- type: nauc_mrr_at_100_diff1
value: 27.303876802541748
- type: nauc_mrr_at_100_max
value: 22.80721855197395
- type: nauc_mrr_at_10_diff1
value: 27.186611528500187
- type: nauc_mrr_at_10_max
value: 22.859824168434336
- type: nauc_mrr_at_1_diff1
value: 29.671840768485236
- type: nauc_mrr_at_1_max
value: 18.62641271291652
- type: nauc_mrr_at_20_diff1
value: 27.319675868007113
- type: nauc_mrr_at_20_max
value: 22.87274340612363
- type: nauc_mrr_at_3_diff1
value: 26.61707654253056
- type: nauc_mrr_at_3_max
value: 22.025508910524508
- type: nauc_mrr_at_5_diff1
value: 27.275599678159214
- type: nauc_mrr_at_5_max
value: 22.817841124325863
- type: nauc_ndcg_at_1000_diff1
value: 27.024135971460566
- type: nauc_ndcg_at_1000_max
value: 24.731731553474926
- type: nauc_ndcg_at_100_diff1
value: 27.04262454578955
- type: nauc_ndcg_at_100_max
value: 25.345992976621467
- type: nauc_ndcg_at_10_diff1
value: 26.52062330830679
- type: nauc_ndcg_at_10_max
value: 25.54987961260865
- type: nauc_ndcg_at_1_diff1
value: 29.75855826437188
- type: nauc_ndcg_at_1_max
value: 18.533988613886347
- type: nauc_ndcg_at_20_diff1
value: 27.179672428049358
- type: nauc_ndcg_at_20_max
value: 25.868852780159955
- type: nauc_ndcg_at_3_diff1
value: 25.73603612782681
- type: nauc_ndcg_at_3_max
value: 22.822406256607508
- type: nauc_ndcg_at_5_diff1
value: 26.866765656608166
- type: nauc_ndcg_at_5_max
value: 24.563327197364192
- type: nauc_precision_at_1000_diff1
value: -3.6671099515474546
- type: nauc_precision_at_1000_max
value: 8.392883425148419
- type: nauc_precision_at_100_diff1
value: 1.6665941155151767
- type: nauc_precision_at_100_max
value: 17.17133780287315
- type: nauc_precision_at_10_diff1
value: 12.52603911510069
- type: nauc_precision_at_10_max
value: 27.829277569200784
- type: nauc_precision_at_1_diff1
value: 29.75855826437188
- type: nauc_precision_at_1_max
value: 18.533988613886347
- type: nauc_precision_at_20_diff1
value: 10.394727205117283
- type: nauc_precision_at_20_max
value: 25.940765842937154
- type: nauc_precision_at_3_diff1
value: 18.89131093283048
- type: nauc_precision_at_3_max
value: 27.157524819932267
- type: nauc_precision_at_5_diff1
value: 18.540350280124553
- type: nauc_precision_at_5_max
value: 28.899931159479568
- type: nauc_recall_at_1000_diff1
value: 17.289718955680986
- type: nauc_recall_at_1000_max
value: 69.19421724583071
- type: nauc_recall_at_100_diff1
value: 24.72129337125488
- type: nauc_recall_at_100_max
value: 50.247836461213026
- type: nauc_recall_at_10_diff1
value: 23.094557038973154
- type: nauc_recall_at_10_max
value: 34.688707228391436
- type: nauc_recall_at_1_diff1
value: 30.166695274339734
- type: nauc_recall_at_1_max
value: 16.94040610050655
- type: nauc_recall_at_20_diff1
value: 26.066983320875796
- type: nauc_recall_at_20_max
value: 40.1137815499548
- type: nauc_recall_at_3_diff1
value: 22.431670311997458
- type: nauc_recall_at_3_max
value: 25.214444970878137
- type: nauc_recall_at_5_diff1
value: 24.77117131128259
- type: nauc_recall_at_5_max
value: 29.723938351180635
- type: ndcg_at_1
value: 33.227000000000004
- type: ndcg_at_10
value: 51.919000000000004
- type: ndcg_at_100
value: 56.484
- type: ndcg_at_1000
value: 57.282999999999994
- type: ndcg_at_20
value: 54.269999999999996
- type: ndcg_at_3
value: 43.828
- type: ndcg_at_5
value: 48.098
- type: precision_at_1
value: 33.227000000000004
- type: precision_at_10
value: 8.652999999999999
- type: precision_at_100
value: 1.123
- type: precision_at_1000
value: 0.12
- type: precision_at_20
value: 4.89
- type: precision_at_3
value: 20.133000000000003
- type: precision_at_5
value: 14.513000000000002
- type: recall_at_1
value: 29.425
- type: recall_at_10
value: 72.82
- type: recall_at_100
value: 92.538
- type: recall_at_1000
value: 98.424
- type: recall_at_20
value: 81.477
- type: recall_at_3
value: 51.815
- type: recall_at_5
value: 61.667
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 69.82000000000001
- type: map_at_10
value: 83.673
- type: map_at_100
value: 84.344
- type: map_at_1000
value: 84.36099999999999
- type: map_at_20
value: 84.112
- type: map_at_3
value: 80.729
- type: map_at_5
value: 82.61500000000001
- type: mrr_at_1
value: 80.53
- type: mrr_at_10
value: 86.92019047619019
- type: mrr_at_100
value: 87.04157853007743
- type: mrr_at_1000
value: 87.04266956945463
- type: mrr_at_20
value: 87.01226011501363
- type: mrr_at_3
value: 85.9499999999997
- type: mrr_at_5
value: 86.63349999999961
- type: nauc_map_at_1000_diff1
value: 75.65678265654154
- type: nauc_map_at_1000_max
value: 31.033445730504262
- type: nauc_map_at_100_diff1
value: 75.665676378331
- type: nauc_map_at_100_max
value: 31.01031193403524
- type: nauc_map_at_10_diff1
value: 75.92155211732666
- type: nauc_map_at_10_max
value: 30.699553005920876
- type: nauc_map_at_1_diff1
value: 78.81016014060471
- type: nauc_map_at_1_max
value: 22.814760471331834
- type: nauc_map_at_20_diff1
value: 75.74929629006137
- type: nauc_map_at_20_max
value: 30.893554874139433
- type: nauc_map_at_3_diff1
value: 76.1764115683232
- type: nauc_map_at_3_max
value: 28.16660891891235
- type: nauc_map_at_5_diff1
value: 76.09603035768426
- type: nauc_map_at_5_max
value: 29.56936639444799
- type: nauc_mrr_at_1000_diff1
value: 75.78580796966573
- type: nauc_mrr_at_1000_max
value: 34.02109834360725
- type: nauc_mrr_at_100_diff1
value: 75.78595527403508
- type: nauc_mrr_at_100_max
value: 34.021087682823335
- type: nauc_mrr_at_10_diff1
value: 75.7979018845172
- type: nauc_mrr_at_10_max
value: 34.135531496766916
- type: nauc_mrr_at_1_diff1
value: 76.43928247510952
- type: nauc_mrr_at_1_max
value: 33.337959508505584
- type: nauc_mrr_at_20_diff1
value: 75.79212450365954
- type: nauc_mrr_at_20_max
value: 34.06210079146971
- type: nauc_mrr_at_3_diff1
value: 75.5255736362254
- type: nauc_mrr_at_3_max
value: 33.89721705659265
- type: nauc_mrr_at_5_diff1
value: 75.68937847088145
- type: nauc_mrr_at_5_max
value: 34.02467565216077
- type: nauc_ndcg_at_1000_diff1
value: 75.4126317877968
- type: nauc_ndcg_at_1000_max
value: 32.699594674546205
- type: nauc_ndcg_at_100_diff1
value: 75.47759102907804
- type: nauc_ndcg_at_100_max
value: 32.66261940818275
- type: nauc_ndcg_at_10_diff1
value: 75.73588489669638
- type: nauc_ndcg_at_10_max
value: 32.33245124470892
- type: nauc_ndcg_at_1_diff1
value: 76.45767684895692
- type: nauc_ndcg_at_1_max
value: 33.20840934731383
- type: nauc_ndcg_at_20_diff1
value: 75.58603380019049
- type: nauc_ndcg_at_20_max
value: 32.38108118316705
- type: nauc_ndcg_at_3_diff1
value: 74.93057981530794
- type: nauc_ndcg_at_3_max
value: 30.454945230766768
- type: nauc_ndcg_at_5_diff1
value: 75.51622080687214
- type: nauc_ndcg_at_5_max
value: 31.13850590682269
- type: nauc_precision_at_1000_diff1
value: -43.024967717775205
- type: nauc_precision_at_1000_max
value: -3.1998109745927548
- type: nauc_precision_at_100_diff1
value: -42.515126578347335
- type: nauc_precision_at_100_max
value: -2.9690115801151893
- type: nauc_precision_at_10_diff1
value: -35.9659880370386
- type: nauc_precision_at_10_max
value: 1.9839275718355172
- type: nauc_precision_at_1_diff1
value: 76.45767684895692
- type: nauc_precision_at_1_max
value: 33.20840934731383
- type: nauc_precision_at_20_diff1
value: -39.88046573159446
- type: nauc_precision_at_20_max
value: -0.9048730965169257
- type: nauc_precision_at_3_diff1
value: -14.92778542739045
- type: nauc_precision_at_3_max
value: 9.506709583490675
- type: nauc_precision_at_5_diff1
value: -28.135454012537338
- type: nauc_precision_at_5_max
value: 4.920384611100925
- type: nauc_recall_at_1000_diff1
value: 50.96814010736587
- type: nauc_recall_at_1000_max
value: 35.178726454686455
- type: nauc_recall_at_100_diff1
value: 73.73669235424917
- type: nauc_recall_at_100_max
value: 37.233185728668374
- type: nauc_recall_at_10_diff1
value: 72.24423264106863
- type: nauc_recall_at_10_max
value: 31.982200960724956
- type: nauc_recall_at_1_diff1
value: 78.81016014060471
- type: nauc_recall_at_1_max
value: 22.814760471331834
- type: nauc_recall_at_20_diff1
value: 71.93499290798466
- type: nauc_recall_at_20_max
value: 32.59815791665593
- type: nauc_recall_at_3_diff1
value: 72.3320862681771
- type: nauc_recall_at_3_max
value: 25.07376413220408
- type: nauc_recall_at_5_diff1
value: 71.67188030305823
- type: nauc_recall_at_5_max
value: 26.80994890402375
- type: ndcg_at_1
value: 80.52
- type: ndcg_at_10
value: 87.561
- type: ndcg_at_100
value: 88.90299999999999
- type: ndcg_at_1000
value: 89.01400000000001
- type: ndcg_at_20
value: 88.293
- type: ndcg_at_3
value: 84.682
- type: ndcg_at_5
value: 86.319
- type: precision_at_1
value: 80.52
- type: precision_at_10
value: 13.288
- type: precision_at_100
value: 1.529
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.077
- type: precision_at_3
value: 37.047000000000004
- type: precision_at_5
value: 24.398
- type: recall_at_1
value: 69.82000000000001
- type: recall_at_10
value: 94.826
- type: recall_at_100
value: 99.451
- type: recall_at_1000
value: 99.97399999999999
- type: recall_at_20
value: 97.18900000000001
- type: recall_at_3
value: 86.514
- type: recall_at_5
value: 91.142
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 51.343294599772406
- type: v_measures
value:
- 0.524406904623621
- 0.6101985612354274
- 0.4897743980881878
- 0.4778925279162627
- 0.5135415040552358
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 62.5095092123788
- type: v_measures
value:
- 0.6648234836097784
- 0.6647202577739932
- 0.6578622320980865
- 0.3861971752849744
- 0.702695555977878
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 4.077999999999999
- type: map_at_10
value: 9.778
- type: map_at_100
value: 11.82
- type: map_at_1000
value: 12.115
- type: map_at_20
value: 10.781
- type: map_at_3
value: 6.973999999999999
- type: map_at_5
value: 8.305
- type: mrr_at_1
value: 20.0
- type: mrr_at_10
value: 29.48242063492062
- type: mrr_at_100
value: 30.73048798111141
- type: mrr_at_1000
value: 30.80176607280717
- type: mrr_at_20
value: 30.25008647742002
- type: mrr_at_3
value: 26.200000000000035
- type: mrr_at_5
value: 28.159999999999997
- type: nauc_map_at_1000_diff1
value: 11.636747601961716
- type: nauc_map_at_1000_max
value: 26.56203998243688
- type: nauc_map_at_100_diff1
value: 11.563351860766852
- type: nauc_map_at_100_max
value: 26.424696755662403
- type: nauc_map_at_10_diff1
value: 11.60703222490682
- type: nauc_map_at_10_max
value: 25.186183431711402
- type: nauc_map_at_1_diff1
value: 17.854436578277337
- type: nauc_map_at_1_max
value: 18.26224581093851
- type: nauc_map_at_20_diff1
value: 12.180332838724942
- type: nauc_map_at_20_max
value: 25.8033910164551
- type: nauc_map_at_3_diff1
value: 12.934911478090966
- type: nauc_map_at_3_max
value: 23.735462709754234
- type: nauc_map_at_5_diff1
value: 12.555897350050973
- type: nauc_map_at_5_max
value: 24.934261010188717
- type: nauc_mrr_at_1000_diff1
value: 15.322270869482562
- type: nauc_mrr_at_1000_max
value: 21.176483776434594
- type: nauc_mrr_at_100_diff1
value: 15.313592100314633
- type: nauc_mrr_at_100_max
value: 21.189701285575325
- type: nauc_mrr_at_10_diff1
value: 15.04116376326651
- type: nauc_mrr_at_10_max
value: 20.925070769290475
- type: nauc_mrr_at_1_diff1
value: 17.964804649660955
- type: nauc_mrr_at_1_max
value: 18.691637068130458
- type: nauc_mrr_at_20_diff1
value: 15.2990030423077
- type: nauc_mrr_at_20_max
value: 21.217369625839176
- type: nauc_mrr_at_3_diff1
value: 15.528981019166746
- type: nauc_mrr_at_3_max
value: 20.603019869260343
- type: nauc_mrr_at_5_diff1
value: 15.466774363671028
- type: nauc_mrr_at_5_max
value: 20.975652450389344
- type: nauc_ndcg_at_1000_diff1
value: 12.038972353500306
- type: nauc_ndcg_at_1000_max
value: 27.903890926586932
- type: nauc_ndcg_at_100_diff1
value: 11.319931937239677
- type: nauc_ndcg_at_100_max
value: 27.027157611973795
- type: nauc_ndcg_at_10_diff1
value: 11.078446709122273
- type: nauc_ndcg_at_10_max
value: 23.822320107334757
- type: nauc_ndcg_at_1_diff1
value: 17.964804649660955
- type: nauc_ndcg_at_1_max
value: 18.691637068130458
- type: nauc_ndcg_at_20_diff1
value: 12.181596567416559
- type: nauc_ndcg_at_20_max
value: 25.37079586511582
- type: nauc_ndcg_at_3_diff1
value: 13.160188878029732
- type: nauc_ndcg_at_3_max
value: 23.08138307792905
- type: nauc_ndcg_at_5_diff1
value: 12.469734888035655
- type: nauc_ndcg_at_5_max
value: 23.90995773496041
- type: nauc_precision_at_1000_diff1
value: 6.917224255812411
- type: nauc_precision_at_1000_max
value: 25.68380359473843
- type: nauc_precision_at_100_diff1
value: 6.398565019403672
- type: nauc_precision_at_100_max
value: 25.768394101162112
- type: nauc_precision_at_10_diff1
value: 6.984700975104491
- type: nauc_precision_at_10_max
value: 22.95876859709157
- type: nauc_precision_at_1_diff1
value: 17.964804649660955
- type: nauc_precision_at_1_max
value: 18.691637068130458
- type: nauc_precision_at_20_diff1
value: 9.297910278094806
- type: nauc_precision_at_20_max
value: 25.047556185054287
- type: nauc_precision_at_3_diff1
value: 11.002794885922452
- type: nauc_precision_at_3_max
value: 24.196674867665706
- type: nauc_precision_at_5_diff1
value: 10.022107536962826
- type: nauc_precision_at_5_max
value: 25.168302306099687
- type: nauc_recall_at_1000_diff1
value: 7.394647014691793
- type: nauc_recall_at_1000_max
value: 25.484913499786305
- type: nauc_recall_at_100_diff1
value: 6.725259371546906
- type: nauc_recall_at_100_max
value: 25.516933161468554
- type: nauc_recall_at_10_diff1
value: 7.129477895634021
- type: nauc_recall_at_10_max
value: 22.349457271477668
- type: nauc_recall_at_1_diff1
value: 17.854436578277337
- type: nauc_recall_at_1_max
value: 18.26224581093851
- type: nauc_recall_at_20_diff1
value: 9.42187360268394
- type: nauc_recall_at_20_max
value: 24.71382966903428
- type: nauc_recall_at_3_diff1
value: 10.921292270138911
- type: nauc_recall_at_3_max
value: 23.694131354239822
- type: nauc_recall_at_5_diff1
value: 9.99247973152595
- type: nauc_recall_at_5_max
value: 24.651761102821084
- type: ndcg_at_1
value: 20.0
- type: ndcg_at_10
value: 16.927
- type: ndcg_at_100
value: 25.258999999999997
- type: ndcg_at_1000
value: 30.653999999999996
- type: ndcg_at_20
value: 19.764
- type: ndcg_at_3
value: 15.744
- type: ndcg_at_5
value: 13.925
- type: precision_at_1
value: 20.0
- type: precision_at_10
value: 8.83
- type: precision_at_100
value: 2.095
- type: precision_at_1000
value: 0.33899999999999997
- type: precision_at_20
value: 6.0600000000000005
- type: precision_at_3
value: 14.6
- type: precision_at_5
value: 12.24
- type: recall_at_1
value: 4.077999999999999
- type: recall_at_10
value: 17.928
- type: recall_at_100
value: 42.518
- type: recall_at_1000
value: 68.845
- type: recall_at_20
value: 24.6
- type: recall_at_3
value: 8.898
- type: recall_at_5
value: 12.413
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 85.7559383087264
- type: cos_sim_spearman
value: 79.49310740723678
- type: euclidean_pearson
value: 83.65824145595195
- type: euclidean_spearman
value: 79.49312535113798
- type: manhattan_pearson
value: 83.66988365842141
- type: manhattan_spearman
value: 79.47470834406325
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 87.5839985534636
- type: cos_sim_spearman
value: 79.59450354665624
- type: euclidean_pearson
value: 84.43014644677757
- type: euclidean_spearman
value: 79.59390361649422
- type: manhattan_pearson
value: 84.29576591448196
- type: manhattan_spearman
value: 79.41063925463973
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.29076815493453
- type: cos_sim_spearman
value: 84.70010174539925
- type: euclidean_pearson
value: 84.61503525685455
- type: euclidean_spearman
value: 84.70010174539925
- type: manhattan_pearson
value: 84.49870751490295
- type: manhattan_spearman
value: 84.56101687530112
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 85.9713152765247
- type: cos_sim_spearman
value: 83.91546630697559
- type: euclidean_pearson
value: 85.24770099001337
- type: euclidean_spearman
value: 83.915468446163
- type: manhattan_pearson
value: 85.10357473564157
- type: manhattan_spearman
value: 83.73948507923797
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.93457583410698
- type: cos_sim_spearman
value: 89.87899103812357
- type: euclidean_pearson
value: 89.3577529833881
- type: euclidean_spearman
value: 89.87899029911844
- type: manhattan_pearson
value: 89.27376081191959
- type: manhattan_spearman
value: 89.7855896343813
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.07870989011116
- type: cos_sim_spearman
value: 84.87521134248455
- type: euclidean_pearson
value: 84.64895196926211
- type: euclidean_spearman
value: 84.87521088458564
- type: manhattan_pearson
value: 84.5177988181249
- type: manhattan_spearman
value: 84.75674790631112
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cos_sim_pearson
value: 88.2908976539434
- type: cos_sim_spearman
value: 88.69212374652548
- type: euclidean_pearson
value: 89.05936753064138
- type: euclidean_spearman
value: 88.69212374652548
- type: manhattan_pearson
value: 89.01731329350842
- type: manhattan_spearman
value: 88.59540957427528
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cos_sim_pearson
value: 64.635158432127
- type: cos_sim_spearman
value: 64.27073239884248
- type: euclidean_pearson
value: 66.21751368412394
- type: euclidean_spearman
value: 64.27073239884248
- type: manhattan_pearson
value: 66.15088837552513
- type: manhattan_spearman
value: 64.15068735594215
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.42604775914748
- type: cos_sim_spearman
value: 87.44031003802738
- type: euclidean_pearson
value: 87.43316615586107
- type: euclidean_spearman
value: 87.44031555024793
- type: manhattan_pearson
value: 87.31365950205998
- type: manhattan_spearman
value: 87.2941204713115
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 81.48265276238037
- type: mrr
value: 95.01133216819491
- type: nAUC_map_diff1
value: 7.09429277125843
- type: nAUC_map_max
value: 49.94029950841183
- type: nAUC_mrr_diff1
value: 50.34339361427615
- type: nAUC_mrr_max
value: 79.45634760563627
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 54.678000000000004
- type: map_at_10
value: 63.80200000000001
- type: map_at_100
value: 64.41
- type: map_at_1000
value: 64.444
- type: map_at_20
value: 64.164
- type: map_at_3
value: 60.925
- type: map_at_5
value: 62.572
- type: mrr_at_1
value: 57.333333333333336
- type: mrr_at_10
value: 65.36190476190477
- type: mrr_at_100
value: 65.81385754624793
- type: mrr_at_1000
value: 65.84158115043161
- type: mrr_at_20
value: 65.65317979234389
- type: mrr_at_3
value: 63.0
- type: mrr_at_5
value: 64.41666666666667
- type: nauc_map_at_1000_diff1
value: 69.67809035584142
- type: nauc_map_at_1000_max
value: 48.96413821482873
- type: nauc_map_at_100_diff1
value: 69.65364392825721
- type: nauc_map_at_100_max
value: 48.94627564310418
- type: nauc_map_at_10_diff1
value: 69.57800581171497
- type: nauc_map_at_10_max
value: 48.67897603770599
- type: nauc_map_at_1_diff1
value: 73.01790551734226
- type: nauc_map_at_1_max
value: 45.104875261851916
- type: nauc_map_at_20_diff1
value: 69.61362614678308
- type: nauc_map_at_20_max
value: 48.84035952302365
- type: nauc_map_at_3_diff1
value: 70.38590108900951
- type: nauc_map_at_3_max
value: 46.43843764953461
- type: nauc_map_at_5_diff1
value: 70.52260971372544
- type: nauc_map_at_5_max
value: 48.476797316953416
- type: nauc_mrr_at_1000_diff1
value: 69.5164716438929
- type: nauc_mrr_at_1000_max
value: 51.01945033286556
- type: nauc_mrr_at_100_diff1
value: 69.49106498529696
- type: nauc_mrr_at_100_max
value: 50.99948856957515
- type: nauc_mrr_at_10_diff1
value: 69.36739032618048
- type: nauc_mrr_at_10_max
value: 51.12574202596153
- type: nauc_mrr_at_1_diff1
value: 72.36743551825465
- type: nauc_mrr_at_1_max
value: 47.803395494440075
- type: nauc_mrr_at_20_diff1
value: 69.45736580905654
- type: nauc_mrr_at_20_max
value: 51.125870226973
- type: nauc_mrr_at_3_diff1
value: 70.18553354726865
- type: nauc_mrr_at_3_max
value: 50.0088700597719
- type: nauc_mrr_at_5_diff1
value: 70.13590171518094
- type: nauc_mrr_at_5_max
value: 51.43303825871863
- type: nauc_ndcg_at_1000_diff1
value: 68.59647494694465
- type: nauc_ndcg_at_1000_max
value: 50.84423309342368
- type: nauc_ndcg_at_100_diff1
value: 67.82685442401551
- type: nauc_ndcg_at_100_max
value: 50.69511102823468
- type: nauc_ndcg_at_10_diff1
value: 67.42699840483867
- type: nauc_ndcg_at_10_max
value: 50.367163593062216
- type: nauc_ndcg_at_1_diff1
value: 72.36743551825465
- type: nauc_ndcg_at_1_max
value: 47.803395494440075
- type: nauc_ndcg_at_20_diff1
value: 67.52338557685287
- type: nauc_ndcg_at_20_max
value: 50.79192152642611
- type: nauc_ndcg_at_3_diff1
value: 69.49850475650591
- type: nauc_ndcg_at_3_max
value: 47.69895483323495
- type: nauc_ndcg_at_5_diff1
value: 69.63182188059407
- type: nauc_ndcg_at_5_max
value: 50.692751514480086
- type: nauc_precision_at_1000_diff1
value: -22.076090806418165
- type: nauc_precision_at_1000_max
value: 15.457406924757958
- type: nauc_precision_at_100_diff1
value: -8.958717111709591
- type: nauc_precision_at_100_max
value: 23.39568973722963
- type: nauc_precision_at_10_diff1
value: 18.145183858510112
- type: nauc_precision_at_10_max
value: 38.39226201682134
- type: nauc_precision_at_1_diff1
value: 72.36743551825465
- type: nauc_precision_at_1_max
value: 47.803395494440075
- type: nauc_precision_at_20_diff1
value: 8.777082697589234
- type: nauc_precision_at_20_max
value: 35.78403592135664
- type: nauc_precision_at_3_diff1
value: 51.376349362119726
- type: nauc_precision_at_3_max
value: 42.810598626104
- type: nauc_precision_at_5_diff1
value: 40.9296274632404
- type: nauc_precision_at_5_max
value: 45.61709594788111
- type: nauc_recall_at_1000_diff1
value: 77.7077497665738
- type: nauc_recall_at_1000_max
value: 100.0
- type: nauc_recall_at_100_diff1
value: 46.35143397460506
- type: nauc_recall_at_100_max
value: 53.648092062544094
- type: nauc_recall_at_10_diff1
value: 55.95034026811939
- type: nauc_recall_at_10_max
value: 52.01290145176738
- type: nauc_recall_at_1_diff1
value: 73.01790551734226
- type: nauc_recall_at_1_max
value: 45.104875261851916
- type: nauc_recall_at_20_diff1
value: 53.20691212906598
- type: nauc_recall_at_20_max
value: 54.72055923613812
- type: nauc_recall_at_3_diff1
value: 66.24729517787732
- type: nauc_recall_at_3_max
value: 46.4286391286208
- type: nauc_recall_at_5_diff1
value: 65.39243758829612
- type: nauc_recall_at_5_max
value: 54.04465496293424
- type: ndcg_at_1
value: 57.333
- type: ndcg_at_10
value: 68.471
- type: ndcg_at_100
value: 71.16900000000001
- type: ndcg_at_1000
value: 71.934
- type: ndcg_at_20
value: 69.706
- type: ndcg_at_3
value: 63.404
- type: ndcg_at_5
value: 65.93900000000001
- type: precision_at_1
value: 57.333
- type: precision_at_10
value: 9.133
- type: precision_at_100
value: 1.06
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_20
value: 4.833
- type: precision_at_3
value: 24.444
- type: precision_at_5
value: 16.267
- type: recall_at_1
value: 54.678000000000004
- type: recall_at_10
value: 81.244
- type: recall_at_100
value: 93.43299999999999
- type: recall_at_1000
value: 99.333
- type: recall_at_20
value: 86.02199999999999
- type: recall_at_3
value: 67.878
- type: recall_at_5
value: 74.06700000000001
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.79702970297029
- type: cos_sim_ap
value: 94.75976312657727
- type: cos_sim_f1
value: 89.7029702970297
- type: cos_sim_precision
value: 88.8235294117647
- type: cos_sim_recall
value: 90.60000000000001
- type: dot_accuracy
value: 99.79702970297029
- type: dot_ap
value: 94.75976312657727
- type: dot_f1
value: 89.7029702970297
- type: dot_precision
value: 88.8235294117647
- type: dot_recall
value: 90.60000000000001
- type: euclidean_accuracy
value: 99.79702970297029
- type: euclidean_ap
value: 94.75976312657727
- type: euclidean_f1
value: 89.7029702970297
- type: euclidean_precision
value: 88.8235294117647
- type: euclidean_recall
value: 90.60000000000001
- type: manhattan_accuracy
value: 99.79207920792079
- type: manhattan_ap
value: 94.55264782714548
- type: manhattan_f1
value: 89.30753564154786
- type: manhattan_precision
value: 90.97510373443983
- type: manhattan_recall
value: 87.7
- type: max_accuracy
value: 99.79702970297029
- type: max_ap
value: 94.75976312657727
- type: max_f1
value: 89.7029702970297
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 61.56750444120404
- type: v_measures
value:
- 0.6143066231410037
- 0.6484543949297663
- 0.5142449933097217
- 0.6062244515066045
- 0.5739832317328382
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.59242218010789
- type: v_measures
value:
- 0.32392220242444014
- 0.32718501590648996
- 0.32976751674384125
- 0.3203167039651582
- 0.32297852686667516
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.200337844678295
- type: mrr
value: 49.95621923011629
- type: nAUC_map_diff1
value: 35.98209315270176
- type: nAUC_map_max
value: 12.780142559584018
- type: nAUC_mrr_diff1
value: 36.332794804706545
- type: nAUC_mrr_max
value: 13.650142919994185
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.273860160997156
- type: cos_sim_spearman
value: 30.256535662300372
- type: dot_pearson
value: 30.273861391746525
- type: dot_spearman
value: 30.25651496178948
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.161
- type: map_at_10
value: 1.0410000000000001
- type: map_at_100
value: 5.558
- type: map_at_1000
value: 15.296000000000001
- type: map_at_20
value: 1.755
- type: map_at_3
value: 0.437
- type: map_at_5
value: 0.628
- type: mrr_at_1
value: 64.0
- type: mrr_at_10
value: 73.77222222222223
- type: mrr_at_100
value: 74.10160298638559
- type: mrr_at_1000
value: 74.10160298638559
- type: mrr_at_20
value: 73.9540404040404
- type: mrr_at_3
value: 70.0
- type: mrr_at_5
value: 73.3
- type: nauc_map_at_1000_diff1
value: -1.9604698462344767
- type: nauc_map_at_1000_max
value: 53.358985327864715
- type: nauc_map_at_100_diff1
value: -0.5161702872199433
- type: nauc_map_at_100_max
value: 46.53235662200936
- type: nauc_map_at_10_diff1
value: 3.9256229008973924
- type: nauc_map_at_10_max
value: 26.82251128561187
- type: nauc_map_at_1_diff1
value: 4.127739790921559
- type: nauc_map_at_1_max
value: 10.596981259216367
- type: nauc_map_at_20_diff1
value: 1.6849110098963962
- type: nauc_map_at_20_max
value: 32.645496648968034
- type: nauc_map_at_3_diff1
value: 6.0165331028800715
- type: nauc_map_at_3_max
value: 16.690807762030964
- type: nauc_map_at_5_diff1
value: 3.151304647408004
- type: nauc_map_at_5_max
value: 22.316738900184266
- type: nauc_mrr_at_1000_diff1
value: 8.665368838521031
- type: nauc_mrr_at_1000_max
value: 48.23582325840371
- type: nauc_mrr_at_100_diff1
value: 8.665368838521031
- type: nauc_mrr_at_100_max
value: 48.23582325840371
- type: nauc_mrr_at_10_diff1
value: 9.331739591001785
- type: nauc_mrr_at_10_max
value: 48.89453679791346
- type: nauc_mrr_at_1_diff1
value: 0.5428534934218375
- type: nauc_mrr_at_1_max
value: 35.480265678886184
- type: nauc_mrr_at_20_diff1
value: 8.583612874582078
- type: nauc_mrr_at_20_max
value: 48.472852713493815
- type: nauc_mrr_at_3_diff1
value: 9.854859452507785
- type: nauc_mrr_at_3_max
value: 50.846959397391124
- type: nauc_mrr_at_5_diff1
value: 9.223998156393836
- type: nauc_mrr_at_5_max
value: 49.03025489502146
- type: nauc_ndcg_at_1000_diff1
value: 1.8220536687131508
- type: nauc_ndcg_at_1000_max
value: 49.93338657126098
- type: nauc_ndcg_at_100_diff1
value: 3.0321366749721466
- type: nauc_ndcg_at_100_max
value: 51.5400551444691
- type: nauc_ndcg_at_10_diff1
value: 8.579231691222738
- type: nauc_ndcg_at_10_max
value: 46.76810123148509
- type: nauc_ndcg_at_1_diff1
value: -3.008490760055262
- type: nauc_ndcg_at_1_max
value: 26.51379381261564
- type: nauc_ndcg_at_20_diff1
value: 7.688195422853383
- type: nauc_ndcg_at_20_max
value: 49.01894979259541
- type: nauc_ndcg_at_3_diff1
value: 4.482353844424605
- type: nauc_ndcg_at_3_max
value: 41.5568352350729
- type: nauc_ndcg_at_5_diff1
value: 5.0965815841199005
- type: nauc_ndcg_at_5_max
value: 48.0173572974474
- type: nauc_precision_at_1000_diff1
value: -1.522279672648178
- type: nauc_precision_at_1000_max
value: 48.14464502949045
- type: nauc_precision_at_100_diff1
value: 0.3803220198283984
- type: nauc_precision_at_100_max
value: 54.606530270656286
- type: nauc_precision_at_10_diff1
value: 10.17060237919451
- type: nauc_precision_at_10_max
value: 51.07174301856844
- type: nauc_precision_at_1_diff1
value: 0.5428534934218375
- type: nauc_precision_at_1_max
value: 35.480265678886184
- type: nauc_precision_at_20_diff1
value: 5.7555901777882825
- type: nauc_precision_at_20_max
value: 51.63129458224357
- type: nauc_precision_at_3_diff1
value: 6.697227309781205
- type: nauc_precision_at_3_max
value: 48.75128365287913
- type: nauc_precision_at_5_diff1
value: 3.675984060933098
- type: nauc_precision_at_5_max
value: 54.034024908467984
- type: nauc_recall_at_1000_diff1
value: 4.99265973475678
- type: nauc_recall_at_1000_max
value: 47.39125173916412
- type: nauc_recall_at_100_diff1
value: 0.6537761781214193
- type: nauc_recall_at_100_max
value: 37.699187570549284
- type: nauc_recall_at_10_diff1
value: 8.17628273209583
- type: nauc_recall_at_10_max
value: 20.08017524188776
- type: nauc_recall_at_1_diff1
value: 4.127739790921559
- type: nauc_recall_at_1_max
value: 10.596981259216367
- type: nauc_recall_at_20_diff1
value: 4.210774786757633
- type: nauc_recall_at_20_max
value: 24.62795703117278
- type: nauc_recall_at_3_diff1
value: 8.110601816749067
- type: nauc_recall_at_3_max
value: 15.51743399119835
- type: nauc_recall_at_5_diff1
value: 5.312647840696286
- type: nauc_recall_at_5_max
value: 18.88262264074873
- type: ndcg_at_1
value: 57.99999999999999
- type: ndcg_at_10
value: 49.443
- type: ndcg_at_100
value: 37.479
- type: ndcg_at_1000
value: 38.735
- type: ndcg_at_20
value: 46.115
- type: ndcg_at_3
value: 54.458
- type: ndcg_at_5
value: 53.601
- type: precision_at_1
value: 64.0
- type: precision_at_10
value: 52.2
- type: precision_at_100
value: 38.64
- type: precision_at_1000
value: 17.98
- type: precision_at_20
value: 48.5
- type: precision_at_3
value: 59.333000000000006
- type: precision_at_5
value: 57.99999999999999
- type: recall_at_1
value: 0.161
- type: recall_at_10
value: 1.31
- type: recall_at_100
value: 9.105
- type: recall_at_1000
value: 38.330999999999996
- type: recall_at_20
value: 2.382
- type: recall_at_3
value: 0.47400000000000003
- type: recall_at_5
value: 0.735
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 1.773
- type: map_at_10
value: 5.819
- type: map_at_100
value: 9.791
- type: map_at_1000
value: 11.152
- type: map_at_20
value: 7.800999999999999
- type: map_at_3
value: 3.778
- type: map_at_5
value: 4.5760000000000005
- type: mrr_at_1
value: 26.53061224489796
- type: mrr_at_10
value: 36.790573372206026
- type: mrr_at_100
value: 38.9989669597618
- type: mrr_at_1000
value: 38.9989669597618
- type: mrr_at_20
value: 38.626122355982716
- type: mrr_at_3
value: 32.6530612244898
- type: mrr_at_5
value: 35.61224489795919
- type: nauc_map_at_1000_diff1
value: 5.982723549423614
- type: nauc_map_at_1000_max
value: -38.778150862184184
- type: nauc_map_at_100_diff1
value: 8.35542066448559
- type: nauc_map_at_100_max
value: -36.95988939092301
- type: nauc_map_at_10_diff1
value: 16.727112997939685
- type: nauc_map_at_10_max
value: -34.864329426120634
- type: nauc_map_at_1_diff1
value: 15.68698509866931
- type: nauc_map_at_1_max
value: -38.49856837383727
- type: nauc_map_at_20_diff1
value: 12.131431984811561
- type: nauc_map_at_20_max
value: -35.58027185761546
- type: nauc_map_at_3_diff1
value: 26.51714323506847
- type: nauc_map_at_3_max
value: -42.90178838356341
- type: nauc_map_at_5_diff1
value: 19.97087359992273
- type: nauc_map_at_5_max
value: -39.34647766735783
- type: nauc_mrr_at_1000_diff1
value: 1.9748555750391668
- type: nauc_mrr_at_1000_max
value: -38.23327494222865
- type: nauc_mrr_at_100_diff1
value: 1.9748555750391668
- type: nauc_mrr_at_100_max
value: -38.23327494222865
- type: nauc_mrr_at_10_diff1
value: 3.026383371657329
- type: nauc_mrr_at_10_max
value: -37.357911445290675
- type: nauc_mrr_at_1_diff1
value: -3.6234515245372143
- type: nauc_mrr_at_1_max
value: -34.918413083959635
- type: nauc_mrr_at_20_diff1
value: 2.785643581147567
- type: nauc_mrr_at_20_max
value: -39.027829254611596
- type: nauc_mrr_at_3_diff1
value: -0.652257776491799
- type: nauc_mrr_at_3_max
value: -35.777046370826746
- type: nauc_mrr_at_5_diff1
value: -1.0723788161779884
- type: nauc_mrr_at_5_max
value: -37.74663638254447
- type: nauc_ndcg_at_1000_diff1
value: -5.603421065562765
- type: nauc_ndcg_at_1000_max
value: -48.302585883872254
- type: nauc_ndcg_at_100_diff1
value: -0.4142249503459385
- type: nauc_ndcg_at_100_max
value: -44.266171155232605
- type: nauc_ndcg_at_10_diff1
value: 9.09113299295375
- type: nauc_ndcg_at_10_max
value: -33.95506408586246
- type: nauc_ndcg_at_1_diff1
value: -2.3509910942232137
- type: nauc_ndcg_at_1_max
value: -31.9181129505804
- type: nauc_ndcg_at_20_diff1
value: 6.711479298611486
- type: nauc_ndcg_at_20_max
value: -41.17797709135335
- type: nauc_ndcg_at_3_diff1
value: 7.181833876703895
- type: nauc_ndcg_at_3_max
value: -36.76673572406525
- type: nauc_ndcg_at_5_diff1
value: 4.220139919243461
- type: nauc_ndcg_at_5_max
value: -36.01626374596527
- type: nauc_precision_at_1000_diff1
value: -21.500096998480743
- type: nauc_precision_at_1000_max
value: 17.423538290188787
- type: nauc_precision_at_100_diff1
value: -20.576518815311264
- type: nauc_precision_at_100_max
value: -33.43443540744943
- type: nauc_precision_at_10_diff1
value: 5.916347999274714
- type: nauc_precision_at_10_max
value: -31.375195302655644
- type: nauc_precision_at_1_diff1
value: -3.6234515245372143
- type: nauc_precision_at_1_max
value: -34.918413083959635
- type: nauc_precision_at_20_diff1
value: -5.5440042532199145
- type: nauc_precision_at_20_max
value: -41.606107555682485
- type: nauc_precision_at_3_diff1
value: 9.493481238903758
- type: nauc_precision_at_3_max
value: -39.77246958608447
- type: nauc_precision_at_5_diff1
value: 0.9616292047999846
- type: nauc_precision_at_5_max
value: -36.360179658412726
- type: nauc_recall_at_1000_diff1
value: -18.950139772725883
- type: nauc_recall_at_1000_max
value: -49.50001953592577
- type: nauc_recall_at_100_diff1
value: -4.101410227998355
- type: nauc_recall_at_100_max
value: -43.41533454443838
- type: nauc_recall_at_10_diff1
value: 15.471367681837625
- type: nauc_recall_at_10_max
value: -30.21854343397064
- type: nauc_recall_at_1_diff1
value: 15.68698509866931
- type: nauc_recall_at_1_max
value: -38.49856837383727
- type: nauc_recall_at_20_diff1
value: 6.295179926244505
- type: nauc_recall_at_20_max
value: -39.20825139905824
- type: nauc_recall_at_3_diff1
value: 26.54887286634497
- type: nauc_recall_at_3_max
value: -39.46308906643022
- type: nauc_recall_at_5_diff1
value: 15.955004561636251
- type: nauc_recall_at_5_max
value: -36.491415148404585
- type: ndcg_at_1
value: 23.469
- type: ndcg_at_10
value: 16.07
- type: ndcg_at_100
value: 25.61
- type: ndcg_at_1000
value: 38.092999999999996
- type: ndcg_at_20
value: 17.980999999999998
- type: ndcg_at_3
value: 18.332
- type: ndcg_at_5
value: 17.302
- type: precision_at_1
value: 26.531
- type: precision_at_10
value: 14.285999999999998
- type: precision_at_100
value: 5.469
- type: precision_at_1000
value: 1.331
- type: precision_at_20
value: 12.449
- type: precision_at_3
value: 19.048000000000002
- type: precision_at_5
value: 17.551
- type: recall_at_1
value: 1.773
- type: recall_at_10
value: 10.698
- type: recall_at_100
value: 35.684
- type: recall_at_1000
value: 72.932
- type: recall_at_20
value: 18.723
- type: recall_at_3
value: 4.788
- type: recall_at_5
value: 6.715
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 63.38378906249999
- type: ap
value: 11.003129023708196
- type: ap_weighted
value: 11.003129023708196
- type: f1
value: 48.57435688911943
- type: f1_weighted
value: 71.50552650067205
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 62.467458970005666
- type: f1
value: 62.66021402025028
- type: f1_weighted
value: 61.71229183506532
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 44.96874447839597
- type: v_measures
value:
- 0.44089700334011683
- 0.4808871718296333
- 0.4655762216311635
- 0.4108889263207817
- 0.45449139982441744
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.83179352685224
- type: cos_sim_ap
value: 73.75870454252158
- type: cos_sim_f1
value: 67.61786600496278
- type: cos_sim_precision
value: 63.81733021077284
- type: cos_sim_recall
value: 71.89973614775725
- type: dot_accuracy
value: 85.83179352685224
- type: dot_ap
value: 73.75870536224079
- type: dot_f1
value: 67.61786600496278
- type: dot_precision
value: 63.81733021077284
- type: dot_recall
value: 71.89973614775725
- type: euclidean_accuracy
value: 85.83179352685224
- type: euclidean_ap
value: 73.7587242895193
- type: euclidean_f1
value: 67.61786600496278
- type: euclidean_precision
value: 63.81733021077284
- type: euclidean_recall
value: 71.89973614775725
- type: manhattan_accuracy
value: 85.91524110389224
- type: manhattan_ap
value: 73.77139111004601
- type: manhattan_f1
value: 67.52419453632244
- type: manhattan_precision
value: 63.023096272581746
- type: manhattan_recall
value: 72.71767810026385
- type: max_accuracy
value: 85.91524110389224
- type: max_ap
value: 73.77139111004601
- type: max_f1
value: 67.61786600496278
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.2711607870532
- type: cos_sim_ap
value: 86.48986874793765
- type: cos_sim_f1
value: 79.10280373831775
- type: cos_sim_precision
value: 76.87836070338614
- type: cos_sim_recall
value: 81.45980905451185
- type: dot_accuracy
value: 89.2711607870532
- type: dot_ap
value: 86.48986996838993
- type: dot_f1
value: 79.10280373831775
- type: dot_precision
value: 76.87836070338614
- type: dot_recall
value: 81.45980905451185
- type: euclidean_accuracy
value: 89.2711607870532
- type: euclidean_ap
value: 86.4898691356683
- type: euclidean_f1
value: 79.10280373831775
- type: euclidean_precision
value: 76.87836070338614
- type: euclidean_recall
value: 81.45980905451185
- type: manhattan_accuracy
value: 89.2711607870532
- type: manhattan_ap
value: 86.46475884590569
- type: manhattan_f1
value: 78.9534579927593
- type: manhattan_precision
value: 76.61716769286491
- type: manhattan_recall
value: 81.43671080997844
- type: max_accuracy
value: 89.2711607870532
- type: max_ap
value: 86.48986996838993
- type: max_f1
value: 79.10280373831775
---
# [bilingual-embedding-base](https://huggingface.co/Lajavaness/bilingual-embedding-base)
Bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base), a pre-trained language model based on the [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Training and Fine-tuning process
#### Stage 1: NLI Training
- Dataset: [(SNLI+XNLI) for english+french]
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
- Dataset: [STSB-fr and en]
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
### Stage 4: Advanced Augmentation Fine-tuning
- Dataset: STSB with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
## Usage:
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
model = SentenceTransformer('Lajavaness/bilingual-embedding-base', trust_remote_code=True)
print(embeddings)
```
## Evaluation
TODO
## Citation
@article{conneau2019unsupervised,
title={Unsupervised cross-lingual representation learning at scale},
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
journal={arXiv preprint arXiv:1911.02116},
year={2019}
}
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={https://arxiv.org/abs/1908.10084},
year={2019}
}
@article{thakur2020augmented,
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
journal={arXiv e-prints},
pages={arXiv--2010},
year={2020}
| [
"BIOSSES",
"SCIFACT"
] |
gpustack/bge-reranker-v2-m3-GGUF | gpustack | text-classification | [
"sentence-transformers",
"gguf",
"transformers",
"text-embeddings-inference",
"text-classification",
"multilingual",
"arxiv:2312.15503",
"arxiv:2402.03216",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"feature-extraction"
] | "2024-09-29T06:46:01Z" | 2024-09-29T07:18:36+00:00 | 5,567 | 11 | ---
language:
- multilingual
license: apache-2.0
pipeline_tag: text-classification
tags:
- transformers
- sentence-transformers
- text-embeddings-inference
---
# bge-reranker-v2-m3-GGUF
**Model creator**: [BAAI](https://huggingface.co/BAAI)<br/>
**Original model**: [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3)<br/>
**GGUF quantization**: based on llama.cpp release [f4d2b](https://github.com/ggerganov/llama.cpp/commit/f4d2b8846a6b34419ff9e9491aee6cd95e444bfc)
---
# Reranker
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master).**
- [Model List](#model-list)
- [Usage](#usage)
- [Fine-tuning](#fine-tune)
- [Evaluation](#evaluation)
- [Citation](#citation)
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
And the score can be mapped to a float value in [0,1] by sigmoid function.
## Model List
| Model | Base model | Language | layerwise | feature |
|:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
You can select the model according your senario and resource.
- For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
- For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
- For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
- For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
## Usage
### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score) # -5.65234375
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
score = reranker.compute_score(['query', 'passage'], normalize=True)
print(score) # 0.003497010252573502
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores) # [-8.1875, 5.26171875]
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
print(scores) # [0.00027803096387751553, 0.9948403768236574]
```
#### For LLM-based reranker
```python
from FlagEmbedding import FlagLLMReranker
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### For LLM-based layerwise reranker
```python
from FlagEmbedding import LayerWiseFlagLLMReranker
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
# reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
print(scores)
```
### Using Huggingface transformers
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
Get relevance scores (higher scores indicate more relevance):
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
#### For LLM-based reranker
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
if prompt is None:
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
sep = "\n"
prompt_inputs = tokenizer(prompt,
return_tensors=None,
add_special_tokens=False)['input_ids']
sep_inputs = tokenizer(sep,
return_tensors=None,
add_special_tokens=False)['input_ids']
inputs = []
for query, passage in pairs:
query_inputs = tokenizer(f'A: {query}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length * 3 // 4,
truncation=True)
passage_inputs = tokenizer(f'B: {passage}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length,
truncation=True)
item = tokenizer.prepare_for_model(
[tokenizer.bos_token_id] + query_inputs['input_ids'],
sep_inputs + passage_inputs['input_ids'],
truncation='only_second',
max_length=max_length,
padding=False,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=False
)
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
item['attention_mask'] = [1] * len(item['input_ids'])
inputs.append(item)
return tokenizer.pad(
inputs,
padding=True,
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
pad_to_multiple_of=8,
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = get_inputs(pairs, tokenizer)
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
print(scores)
```
#### For LLM-based layerwise reranker
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
if prompt is None:
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
sep = "\n"
prompt_inputs = tokenizer(prompt,
return_tensors=None,
add_special_tokens=False)['input_ids']
sep_inputs = tokenizer(sep,
return_tensors=None,
add_special_tokens=False)['input_ids']
inputs = []
for query, passage in pairs:
query_inputs = tokenizer(f'A: {query}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length * 3 // 4,
truncation=True)
passage_inputs = tokenizer(f'B: {passage}',
return_tensors=None,
add_special_tokens=False,
max_length=max_length,
truncation=True)
item = tokenizer.prepare_for_model(
[tokenizer.bos_token_id] + query_inputs['input_ids'],
sep_inputs + passage_inputs['input_ids'],
truncation='only_second',
max_length=max_length,
padding=False,
return_attention_mask=False,
return_token_type_ids=False,
add_special_tokens=False
)
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
item['attention_mask'] = [1] * len(item['input_ids'])
inputs.append(item)
return tokenizer.pad(
inputs,
padding=True,
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
pad_to_multiple_of=8,
return_tensors='pt',
)
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to('cuda')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = get_inputs(pairs, tokenizer).to(model.device)
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
print(all_scores)
```
## Fine-tune
### Data Format
Train data should be a json file, where each line is a dict like this:
```
{"query": str, "pos": List[str], "neg":List[str], "prompt": str}
```
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts, `prompt` indicates the relationship between query and texts. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
See [toy_finetune_data.jsonl](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker/toy_finetune_data.jsonl) for a toy data file.
### Train
You can fine-tune the reranker with the following code:
**For llm-based reranker**
```shell
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
--output_dir {path to save model} \
--model_name_or_path google/gemma-2b \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--dataloader_drop_last True \
--query_max_len 512 \
--passage_max_len 512 \
--train_group_size 16 \
--logging_steps 1 \
--save_steps 2000 \
--save_total_limit 50 \
--ddp_find_unused_parameters False \
--gradient_checkpointing \
--deepspeed stage1.json \
--warmup_ratio 0.1 \
--bf16 \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--use_flash_attn True \
--target_modules q_proj k_proj v_proj o_proj
```
**For llm-based layerwise reranker**
```shell
torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
--output_dir {path to save model} \
--model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \
--train_data ./toy_finetune_data.jsonl \
--learning_rate 2e-4 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--dataloader_drop_last True \
--query_max_len 512 \
--passage_max_len 512 \
--train_group_size 16 \
--logging_steps 1 \
--save_steps 2000 \
--save_total_limit 50 \
--ddp_find_unused_parameters False \
--gradient_checkpointing \
--deepspeed stage1.json \
--warmup_ratio 0.1 \
--bf16 \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--use_flash_attn True \
--target_modules q_proj k_proj v_proj o_proj \
--start_layer 8 \
--head_multi True \
--head_type simple \
--lora_extra_parameters linear_head
```
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
- [quora train data](https://huggingface.co/datasets/quora)
- [fever train data](https://fever.ai/dataset/fever.html)
## Evaluation
- llama-index.

- BEIR.
rereank the top 100 results from bge-en-v1.5 large.

rereank the top 100 results from e5 mistral 7b instruct.

- CMTEB-retrieval.
It rereank the top 100 results from bge-zh-v1.5 large.

- miracl (multi-language).
It rereank the top 100 results from bge-m3.

## Citation
If you find this repository useful, please consider giving a star and citation
```bibtex
@misc{li2023making,
title={Making Large Language Models A Better Foundation For Dense Retrieval},
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
year={2023},
eprint={2312.15503},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{chen2024bge,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
"BEAR"
] |
sapienzanlp/Minerva-3B-base-v1.0 | sapienzanlp | text-generation | [
"transformers",
"pytorch",
"safetensors",
"gguf",
"mistral",
"text-generation",
"pretrained",
"it",
"en",
"dataset:uonlp/CulturaX",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-04-19T13:30:21Z" | 2024-12-05T11:58:24+00:00 | 5,526 | 54 | ---
datasets:
- uonlp/CulturaX
language:
- it
- en
license: apache-2.0
pipeline_tag: text-generation
tags:
- pretrained
inference:
parameters:
temperature: 0.5
do_sample: true
widget:
- text: 'La capitale dell''Italia è '
example_title: Example 1
- text: 'Nel mezzo del cammin di nostra vita '
example_title: Example 2
- text: 'Una cena senza vino è come '
example_title: Example 3
---
<div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0/resolve/main/minerva-logo.png" style="max-width: 550px; height: auto;">
</div>
# Model Card for Minerva-3B-base-v1.0
Minerva is the first family of **LLMs pretrained from scratch on Italian** developed by [Sapienza NLP](https://nlp.uniroma1.it)
in collaboration with [Future Artificial Intelligence Research (FAIR)](https://fondazione-fair.it/) and [CINECA](https://www.cineca.it/).
Notably, the Minerva models are truly-open (data and model) Italian-English LLMs, with approximately half of the pretraining data
including Italian text.
* [Minerva LLMs - website](https://nlp.uniroma1.it/minerva/)
## Description
This is the model card for **Minerva-3B-base-v1.0**, a 3 billion parameter model trained on 660 billion tokens (330 billion in Italian, 330 billion in English).
This model is part of the Minerva LLM family:
* [Minerva-350M-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-350M-base-v1.0)
* [Minerva-1B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0)
* [Minerva-3B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0)
* [Minerva-7B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0)
* [Minerva-7B-instruct-v1.0](https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0)
## 🚨⚠️🚨 Bias, Risks, and Limitations 🚨⚠️🚨
*This section identifies foreseeable harms and misunderstandings.*
This is a foundation model, not subject to alignment. Model may:
- Overrepresent some viewpoints and underrepresent others
- Contain stereotypes
- Contain [personal information](#personal-data-and-information)
- Generate:
- Racist and sexist content
- Hateful, abusive, or violent language
- Discriminatory or prejudicial language
- Content that may not be appropriate for all settings, including sexual content
- Make errors, including producing incorrect information or historical facts as if it were factual
- Generate irrelevant or repetitive outputs
We are aware of the biases and potential problematic/toxic content that current pretrained large language models exhibit: more specifically, as probabilistic models of (Italian and English) languages, they reflect and amplify the biases of their training data.
For more information about this issue, please refer to our survey:
* [Biases in Large Language Models: Origins, Inventory, and Discussion](https://dl.acm.org/doi/full/10.1145/3597307)
## How to use Minerva with Hugging Face transformers
```python
import transformers
import torch
model_id = "sapienzanlp/Minerva-3B-base-v1.0"
# Initialize the pipeline.
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
# Input text for the model.
input_text = "La capitale dell'Italia è"
# Compute the outputs.
output = pipeline(
input_text,
max_new_tokens=128,
)
# Output:
# [{'generated_text': "La capitale dell'Italia è la città di Roma, che si trova a [...]"}]
```
## Model Architecture
Minerva-3B-base-v1.0 is a Transformer model based on the Mistral architecture, where the number of layers, number of heads, and the hidden states dimension are modified to reach 3B parameters.
Please, take a look at the configuration file for a detailed breakdown of the hyperparameters we chose for this model.
The Minerva LLM family is composed of:
| Model Name | Tokens | Layers | Hidden Size | Attention Heads | KV Heads | Sliding Window | Max Context Length |
| --- | --- | --- | --- | --- | --- | --- | --- |
| Minerva-350M-base-v1.0 | 70B (35B it + 35B en) | 16 | 1152 | 16 | 4 | 2048 | 16384 |
| Minerva-1B-base-v1.0 | 200B (100B it + 100B en) | 16 | 2048 | 16 | 4 | 2048 | 16384 |
| **Minerva-3B-base-v1.0** | 660B (330B it + 330B en) | 32 | 2560 | 32 | 8 | 2048 | 16384 |
## Model Training
Minerva-3B-base-v1.0 was trained using [llm-foundry 0.6.0](https://github.com/mosaicml/llm-foundry) from [MosaicML](https://mosaicml.com/). The hyperparameters used are the following:
| Model Name | Optimizer | lr | betas | eps | weight decay | Scheduler | Warmup Steps | Batch Size (Tokens) | Total Steps |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Minerva-350M-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 16,690 |
| Minerva-1B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 47,684 |
| **Minerva-3B-base-v1.0** | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 157,357 |
## Model Evaluation
We assessed our model using the [LM-Evaluation-Harness](https://github.com/EleutherAI/lm-evaluation-harness) library, which serves as a comprehensive framework for testing generative language models across a wide range of evaluation tasks.
All the reported benchmark data was already present in the LM-Evaluation-Harness suite.
**Italian** Data:
| Task | Accuracy |
| --- | --- |
| [xcopa](https://huggingface.co/datasets/xcopa) (0-shot) | 0.694 |
| [Hellaswag](https://huggingface.co/datasets/alexandrainst/m_hellaswag) (5-shot) | 0.5293 |
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2333 |
| [TruthfulQA MC 1](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.2363 |
| [TruthfulQA MC 2](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.3731 |
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.2612 |
| [arc challenge](https://huggingface.co/datasets/alexandrainst/m_arc) (5-shot) | 0.3268 |
**English** Data:
| Task | Accuracy |
| --- | --- |
| [Hellaswag](https://huggingface.co/datasets/Rowan/hellaswag) (5-shot) | 0.6168 |
| [piqa](https://huggingface.co/datasets/piqa) (5-shot) | 0.7535 |
| [sciq](https://huggingface.co/datasets/sciq) (5-shot) | 0.925 |
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2278 |
| [TruthfulQA MC 1](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.2142 |
| [TruthfulQA MC 2](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.3643 |
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.263 |
| [arc challenge](allenai/ai2_arc) (5-shot) | 0.3319 |
| [arc easy](allenai/ai2_arc) (5-shot) | 0.6540 |
## Training Data
Minerva-3B-base-v1.0 was trained on 330B Italian tokens and 330B English tokens sampled from CulturaX.
We have extracted some statistics on Italian (115B tokens) and English (210B tokens) documents from CulturaX on the selected sources:
*Proportion of number of tokens per domain (Italian)*
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_it.png?raw=true" alt="italian-tok-counts" border="0" width="1800px">
*Proportion of number of tokens per domain (English)*
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_en.png?raw=true" alt="english-tok-counts" border="0" width="1800px">
## Tokenizer Fertility
The tokenizer fertility measures the average amount of tokens produced per tokenized word.
A tokenizer displaying high fertility values in a particular language typically indicates that it segments words in that language extensively.
The tokenizer fertility is strictly correlated with the inference speed of the model with respect to a specific language,
as higher values mean longer sequences of tokens to generate and thus lower inference speed.
**Fertility computed over a sample of Cultura X (CX) data and Wikipedia (Wp):**
| Model | Voc. Size | Fertility IT (CX) | Fertility EN (CX) | Fertility IT (Wp) | Fertility EN (Wp) |
| --- | --- | --- |--- | --- |--- |
| Mistral-7B-v0.1 | 32000 | 1.87 | 1.32 | 2.05 | 1.57 |
| gemma-7b | 256000 | 1.42 | 1.18 | 1.56 | 1.34 |
| Minerva-3B-base-v1.0 | 32768 | 1.39 | 1.32 | 1.66 | 1.59 |
## Notice
Minerva-3B-base-v1.0 is a pretrained base model and, therefore, has no moderation mechanisms.
## The Sapienza NLP Team
* **Riccardo Orlando:** data preprocessing, model training
* **Pere-Lluis Huguet Cabot:** data preprocessing, vocabulary, evaluation
* **Luca Moroni:** data curation, data analysis, downstream tasks, evaluation
* **Simone Conia:** data curation, evaluation, project supervision
* **Edoardo Barba:** data preprocessing, downstream tasks, project supervision
* **Roberto Navigli:** project lead and coordination
### Special thanks for their support
* Giuseppe Fiameni, Nvidia
* Sergio Orlandini, CINECA
## Acknowledgments
This work was funded by the PNRR MUR project [PE0000013-FAIR](https://fondazione-fair.it).
We acknowledge the [CINECA](https://www.cineca.it) award "IscB_medit" under the ISCRA initiative, for the availability of high performance computing resources and support. | [
"SCIQ"
] |
Mihaiii/Bulbasaur | Mihaiii | sentence-similarity | [
"sentence-transformers",
"onnx",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"gte",
"mteb",
"dataset:Mihaiii/qa-assistant",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-04-27T09:53:29Z" | 2024-04-30T07:30:42+00:00 | 5,457 | 2 | ---
datasets:
- Mihaiii/qa-assistant
library_name: sentence-transformers
license: mit
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- gte
- mteb
model-index:
- name: Bulbasaur
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.86567164179104
- type: ap
value: 34.08685244750869
- type: f1
value: 65.66014356237362
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 78.78927499999999
- type: ap
value: 73.46960735629719
- type: f1
value: 78.6951990840684
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 39.312
- type: f1
value: 38.94567141563064
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 22.191
- type: map_at_10
value: 36.504
- type: map_at_100
value: 37.676
- type: map_at_1000
value: 37.693
- type: map_at_20
value: 37.329
- type: map_at_3
value: 31.840000000000003
- type: map_at_5
value: 34.333000000000006
- type: mrr_at_1
value: 23.186
- type: mrr_at_10
value: 36.856
- type: mrr_at_100
value: 38.048
- type: mrr_at_1000
value: 38.065
- type: mrr_at_20
value: 37.701
- type: mrr_at_3
value: 32.16
- type: mrr_at_5
value: 34.756
- type: ndcg_at_1
value: 22.191
- type: ndcg_at_10
value: 44.798
- type: ndcg_at_100
value: 50.141999999999996
- type: ndcg_at_1000
value: 50.599000000000004
- type: ndcg_at_20
value: 47.778999999999996
- type: ndcg_at_3
value: 35.071999999999996
- type: ndcg_at_5
value: 39.574
- type: precision_at_1
value: 22.191
- type: precision_at_10
value: 7.148000000000001
- type: precision_at_100
value: 0.9570000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_20
value: 4.1610000000000005
- type: precision_at_3
value: 14.817
- type: precision_at_5
value: 11.081000000000001
- type: recall_at_1
value: 22.191
- type: recall_at_10
value: 71.479
- type: recall_at_100
value: 95.661
- type: recall_at_1000
value: 99.289
- type: recall_at_20
value: 83.21499999999999
- type: recall_at_3
value: 44.452000000000005
- type: recall_at_5
value: 55.405
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 40.283298409035076
- type: v_measures
value:
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- 0.3532106296315629
- 0.38211196645121454
- 0.4115695136452048
- 0.41137132653792025
- 0.3837736540549879
- 0.3747132869956856
- 0.39691152506736527
- 0.39788336468446533
- 0.3642563557059312
- 0.41116083049947033
- 0.45922387863541325
- 0.469635375348701
- 0.46766327774202016
- 0.4625872980544393
- 0.47185794625113725
- 0.47528841611119615
- 0.4772024530512538
- 0.4708000082870702
- 0.4717644230002225
- 0.4660063378028352
- 0.4555746206742128
- 0.28465696985786276
- 0.3226387432684682
- 0.36349250452617954
- 0.31579079512572683
- 0.23387076944848043
- 0.28341764616852566
- 0.16191336340497103
- 0.2368224145727693
- 1.0
- 0.25065281219558383
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 31.058723747886102
- type: v_measures
value:
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- 0.2882904295615362
- 0.2980529709767411
- 0.31096049987441265
- 0.3092869524544665
- 0.272113281785075
- 0.30377284563414125
- 0.3041650358315243
- 0.2834163757068413
- 0.3033397511276131
- 0.277467860679742
- 0.3540105139063772
- 0.3537847989150468
- 0.3556330775006952
- 0.35591610291120984
- 0.35652508475268124
- 0.35847496958487485
- 0.35778401933080983
- 0.3592993694802176
- 0.35581486235835447
- 0.3562712175584336
- 0.33728057204383954
- 0.19297016209936776
- 0.22972650043926732
- 0.28712526095212015
- 0.23455462464814825
- 0.17725689545412332
- 0.20084207532752152
- 0.11288219701406794
- 0.17247501115114902
- 1.0
- 0.16871104278429117
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 57.489775602270086
- type: mrr
value: 71.4973838104032
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 85.81314286759594
- type: cos_sim_spearman
value: 85.04832342591277
- type: euclidean_pearson
value: 84.20540608390993
- type: euclidean_spearman
value: 84.54831203281398
- type: manhattan_pearson
value: 84.11283044138868
- type: manhattan_spearman
value: 84.13384475757064
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 80.57792207792207
- type: f1
value: 80.510338047888
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.17908628951979
- type: v_measures
value:
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- 0.343694756605891
- 0.34509905427411436
- 0.348726287923308
- 0.3443447447775894
- 0.35379848849192064
- 0.36302463987647937
- 0.34047230042267046
- 0.3608793757384582
- 0.354042604080738
- 0.36382637676080914
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.18471478622865
- type: v_measures
value:
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- 0.28357199974042563
- 0.28345784387850087
- 0.26770142292888577
- 0.2753654124345929
- 0.2742889905380932
- 0.2791462854667945
- 0.2803842827173626
- 0.2942286071197305
- 0.2835815777164675
- 0.2967450560820113
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.7776266029616
- type: mrr
value: 32.9057970138914
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: mteb/cqadupstack
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 24.78675
- type: map_at_10
value: 33.18391666666666
- type: map_at_100
value: 34.34583333333333
- type: map_at_1000
value: 34.46825
- type: map_at_20
value: 33.819
- type: map_at_3
value: 30.636500000000005
- type: map_at_5
value: 32.02091666666667
- type: mrr_at_1
value: 29.478749999999998
- type: mrr_at_10
value: 37.385
- type: mrr_at_100
value: 38.23491666666667
- type: mrr_at_1000
value: 38.298833333333334
- type: mrr_at_20
value: 37.87508333333333
- type: mrr_at_3
value: 35.089666666666666
- type: mrr_at_5
value: 36.36816666666667
- type: ndcg_at_1
value: 29.478749999999998
- type: ndcg_at_10
value: 38.2035
- type: ndcg_at_100
value: 43.301083333333324
- type: ndcg_at_1000
value: 45.758666666666656
- type: ndcg_at_20
value: 40.15116666666667
- type: ndcg_at_3
value: 33.86033333333334
- type: ndcg_at_5
value: 35.81266666666666
- type: precision_at_1
value: 29.478749999999998
- type: precision_at_10
value: 6.642833333333334
- type: precision_at_100
value: 1.08425
- type: precision_at_1000
value: 0.14850000000000002
- type: precision_at_20
value: 3.948083333333334
- type: precision_at_3
value: 15.511
- type: precision_at_5
value: 10.929833333333333
- type: recall_at_1
value: 24.78675
- type: recall_at_10
value: 48.9305
- type: recall_at_100
value: 71.49416666666666
- type: recall_at_1000
value: 88.54375
- type: recall_at_20
value: 56.06475
- type: recall_at_3
value: 36.66891666666666
- type: recall_at_5
value: 41.790499999999994
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: map_at_1
value: 24.271
- type: map_at_10
value: 33.5
- type: map_at_100
value: 34.818
- type: map_at_1000
value: 34.967
- type: map_at_20
value: 34.238
- type: map_at_3
value: 30.488
- type: map_at_5
value: 32.303
- type: mrr_at_1
value: 30.615
- type: mrr_at_10
value: 39.076
- type: mrr_at_100
value: 40.022000000000006
- type: mrr_at_1000
value: 40.082
- type: mrr_at_20
value: 39.669
- type: mrr_at_3
value: 36.552
- type: mrr_at_5
value: 38.096999999999994
- type: ndcg_at_1
value: 30.615
- type: ndcg_at_10
value: 39.106
- type: ndcg_at_100
value: 44.519
- type: ndcg_at_1000
value: 47.274
- type: ndcg_at_20
value: 41.289
- type: ndcg_at_3
value: 34.55
- type: ndcg_at_5
value: 36.815999999999995
- type: precision_at_1
value: 30.615
- type: precision_at_10
value: 7.5249999999999995
- type: precision_at_100
value: 1.282
- type: precision_at_1000
value: 0.181
- type: precision_at_20
value: 4.549
- type: precision_at_3
value: 16.643
- type: precision_at_5
value: 12.275
- type: recall_at_1
value: 24.271
- type: recall_at_10
value: 49.714000000000006
- type: recall_at_100
value: 72.792
- type: recall_at_1000
value: 91.21000000000001
- type: recall_at_20
value: 57.799
- type: recall_at_3
value: 36.494
- type: recall_at_5
value: 42.764
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: map_at_1
value: 19.414
- type: map_at_10
value: 25.766
- type: map_at_100
value: 26.627000000000002
- type: map_at_1000
value: 26.749000000000002
- type: map_at_20
value: 26.201999999999998
- type: map_at_3
value: 23.738
- type: map_at_5
value: 24.829
- type: mrr_at_1
value: 24.013
- type: mrr_at_10
value: 30.208000000000002
- type: mrr_at_100
value: 30.903000000000002
- type: mrr_at_1000
value: 30.976
- type: mrr_at_20
value: 30.585
- type: mrr_at_3
value: 28.376
- type: mrr_at_5
value: 29.462
- type: ndcg_at_1
value: 24.013
- type: ndcg_at_10
value: 29.871
- type: ndcg_at_100
value: 33.867999999999995
- type: ndcg_at_1000
value: 36.565
- type: ndcg_at_20
value: 31.251
- type: ndcg_at_3
value: 26.579000000000004
- type: ndcg_at_5
value: 28.094
- type: precision_at_1
value: 24.013
- type: precision_at_10
value: 5.503
- type: precision_at_100
value: 0.936
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_20
value: 3.2800000000000002
- type: precision_at_3
value: 12.590000000000002
- type: precision_at_5
value: 8.994
- type: recall_at_1
value: 19.414
- type: recall_at_10
value: 37.582
- type: recall_at_100
value: 55.181000000000004
- type: recall_at_1000
value: 73.342
- type: recall_at_20
value: 42.596000000000004
- type: recall_at_3
value: 28.102
- type: recall_at_5
value: 32.267
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: map_at_1
value: 31.5
- type: map_at_10
value: 42.179
- type: map_at_100
value: 43.231
- type: map_at_1000
value: 43.302
- type: map_at_20
value: 42.786
- type: map_at_3
value: 39.17
- type: map_at_5
value: 40.854
- type: mrr_at_1
value: 36.113
- type: mrr_at_10
value: 45.378
- type: mrr_at_100
value: 46.153
- type: mrr_at_1000
value: 46.194
- type: mrr_at_20
value: 45.831
- type: mrr_at_3
value: 42.947
- type: mrr_at_5
value: 44.339
- type: ndcg_at_1
value: 36.113
- type: ndcg_at_10
value: 47.616
- type: ndcg_at_100
value: 52.125
- type: ndcg_at_1000
value: 53.717999999999996
- type: ndcg_at_20
value: 49.495
- type: ndcg_at_3
value: 42.354
- type: ndcg_at_5
value: 44.885999999999996
- type: precision_at_1
value: 36.113
- type: precision_at_10
value: 7.799
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.129
- type: precision_at_20
value: 4.4670000000000005
- type: precision_at_3
value: 19.017999999999997
- type: precision_at_5
value: 13.254
- type: recall_at_1
value: 31.5
- type: recall_at_10
value: 60.67
- type: recall_at_100
value: 80.484
- type: recall_at_1000
value: 92.04599999999999
- type: recall_at_20
value: 67.644
- type: recall_at_3
value: 46.671
- type: recall_at_5
value: 52.723
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: map_at_1
value: 17.339
- type: map_at_10
value: 23.014000000000003
- type: map_at_100
value: 23.918
- type: map_at_1000
value: 24.027
- type: map_at_20
value: 23.507
- type: map_at_3
value: 21.176000000000002
- type: map_at_5
value: 22.126
- type: mrr_at_1
value: 18.531
- type: mrr_at_10
value: 24.356
- type: mrr_at_100
value: 25.247000000000003
- type: mrr_at_1000
value: 25.338
- type: mrr_at_20
value: 24.858
- type: mrr_at_3
value: 22.542
- type: mrr_at_5
value: 23.508000000000003
- type: ndcg_at_1
value: 18.531
- type: ndcg_at_10
value: 26.51
- type: ndcg_at_100
value: 31.367
- type: ndcg_at_1000
value: 34.38
- type: ndcg_at_20
value: 28.328999999999997
- type: ndcg_at_3
value: 22.861
- type: ndcg_at_5
value: 24.456
- type: precision_at_1
value: 18.531
- type: precision_at_10
value: 4.147
- type: precision_at_100
value: 0.695
- type: precision_at_1000
value: 0.099
- type: precision_at_20
value: 2.492
- type: precision_at_3
value: 9.793000000000001
- type: precision_at_5
value: 6.825
- type: recall_at_1
value: 17.339
- type: recall_at_10
value: 36.010999999999996
- type: recall_at_100
value: 59.040000000000006
- type: recall_at_1000
value: 82.282
- type: recall_at_20
value: 43.04
- type: recall_at_3
value: 25.904
- type: recall_at_5
value: 29.837000000000003
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: map_at_1
value: 9.251
- type: map_at_10
value: 14.848
- type: map_at_100
value: 15.940999999999999
- type: map_at_1000
value: 16.055
- type: map_at_20
value: 15.423
- type: map_at_3
value: 12.556999999999999
- type: map_at_5
value: 13.649000000000001
- type: mrr_at_1
value: 12.313
- type: mrr_at_10
value: 18.528
- type: mrr_at_100
value: 19.522000000000002
- type: mrr_at_1000
value: 19.601
- type: mrr_at_20
value: 19.107
- type: mrr_at_3
value: 16.231
- type: mrr_at_5
value: 17.294999999999998
- type: ndcg_at_1
value: 12.313
- type: ndcg_at_10
value: 19.303
- type: ndcg_at_100
value: 24.728
- type: ndcg_at_1000
value: 27.823999999999998
- type: ndcg_at_20
value: 21.318
- type: ndcg_at_3
value: 14.848
- type: ndcg_at_5
value: 16.509
- type: precision_at_1
value: 12.313
- type: precision_at_10
value: 4.03
- type: precision_at_100
value: 0.777
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_20
value: 2.562
- type: precision_at_3
value: 7.546
- type: precision_at_5
value: 5.672
- type: recall_at_1
value: 9.251
- type: recall_at_10
value: 29.677999999999997
- type: recall_at_100
value: 53.586
- type: recall_at_1000
value: 76.181
- type: recall_at_20
value: 36.963
- type: recall_at_3
value: 17.072000000000003
- type: recall_at_5
value: 21.481
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: map_at_1
value: 21.135
- type: map_at_10
value: 29.431
- type: map_at_100
value: 30.662
- type: map_at_1000
value: 30.792
- type: map_at_20
value: 30.086000000000002
- type: map_at_3
value: 26.593
- type: map_at_5
value: 28.011999999999997
- type: mrr_at_1
value: 26.564
- type: mrr_at_10
value: 34.735
- type: mrr_at_100
value: 35.65
- type: mrr_at_1000
value: 35.711999999999996
- type: mrr_at_20
value: 35.286
- type: mrr_at_3
value: 32.002
- type: mrr_at_5
value: 33.527
- type: ndcg_at_1
value: 26.564
- type: ndcg_at_10
value: 35.108
- type: ndcg_at_100
value: 40.601
- type: ndcg_at_1000
value: 43.329
- type: ndcg_at_20
value: 37.192
- type: ndcg_at_3
value: 29.961
- type: ndcg_at_5
value: 32.131
- type: precision_at_1
value: 26.564
- type: precision_at_10
value: 6.564
- type: precision_at_100
value: 1.105
- type: precision_at_1000
value: 0.154
- type: precision_at_20
value: 3.941
- type: precision_at_3
value: 14.212
- type: precision_at_5
value: 10.337
- type: recall_at_1
value: 21.135
- type: recall_at_10
value: 47.242
- type: recall_at_100
value: 70.645
- type: recall_at_1000
value: 89.403
- type: recall_at_20
value: 54.663
- type: recall_at_3
value: 32.647
- type: recall_at_5
value: 38.122
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: map_at_1
value: 16.86
- type: map_at_10
value: 23.477999999999998
- type: map_at_100
value: 24.68
- type: map_at_1000
value: 24.826999999999998
- type: map_at_20
value: 24.122
- type: map_at_3
value: 21.288999999999998
- type: map_at_5
value: 22.453
- type: mrr_at_1
value: 20.776
- type: mrr_at_10
value: 28.029
- type: mrr_at_100
value: 28.951
- type: mrr_at_1000
value: 29.038000000000004
- type: mrr_at_20
value: 28.546
- type: mrr_at_3
value: 25.818
- type: mrr_at_5
value: 26.994
- type: ndcg_at_1
value: 20.776
- type: ndcg_at_10
value: 28.152
- type: ndcg_at_100
value: 33.82
- type: ndcg_at_1000
value: 37.039
- type: ndcg_at_20
value: 30.238
- type: ndcg_at_3
value: 24.197
- type: ndcg_at_5
value: 25.861
- type: precision_at_1
value: 20.776
- type: precision_at_10
value: 5.297000000000001
- type: precision_at_100
value: 0.96
- type: precision_at_1000
value: 0.14200000000000002
- type: precision_at_20
value: 3.276
- type: precision_at_3
value: 11.606
- type: precision_at_5
value: 8.356
- type: recall_at_1
value: 16.86
- type: recall_at_10
value: 37.782
- type: recall_at_100
value: 62.67
- type: recall_at_1000
value: 85.03
- type: recall_at_20
value: 45.2
- type: recall_at_3
value: 26.506999999999998
- type: recall_at_5
value: 31.113000000000003
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 15.234
- type: map_at_10
value: 20.939
- type: map_at_100
value: 21.704
- type: map_at_1000
value: 21.804000000000002
- type: map_at_20
value: 21.311
- type: map_at_3
value: 18.972
- type: map_at_5
value: 19.929
- type: mrr_at_1
value: 17.485
- type: mrr_at_10
value: 23.267
- type: mrr_at_100
value: 23.967
- type: mrr_at_1000
value: 24.054000000000002
- type: mrr_at_20
value: 23.604
- type: mrr_at_3
value: 21.345
- type: mrr_at_5
value: 22.303
- type: ndcg_at_1
value: 17.485
- type: ndcg_at_10
value: 24.744
- type: ndcg_at_100
value: 28.801
- type: ndcg_at_1000
value: 31.619999999999997
- type: ndcg_at_20
value: 26.046000000000003
- type: ndcg_at_3
value: 20.862
- type: ndcg_at_5
value: 22.459
- type: precision_at_1
value: 17.485
- type: precision_at_10
value: 4.109999999999999
- type: precision_at_100
value: 0.676
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 2.3619999999999997
- type: precision_at_3
value: 9.254
- type: precision_at_5
value: 6.503
- type: recall_at_1
value: 15.234
- type: recall_at_10
value: 34.48
- type: recall_at_100
value: 53.225
- type: recall_at_1000
value: 74.64699999999999
- type: recall_at_20
value: 39.421
- type: recall_at_3
value: 23.554
- type: recall_at_5
value: 27.662
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 9.564
- type: map_at_10
value: 13.869000000000002
- type: map_at_100
value: 14.728
- type: map_at_1000
value: 14.853
- type: map_at_20
value: 14.32
- type: map_at_3
value: 12.307
- type: map_at_5
value: 13.177
- type: mrr_at_1
value: 11.941
- type: mrr_at_10
value: 16.777
- type: mrr_at_100
value: 17.571
- type: mrr_at_1000
value: 17.663999999999998
- type: mrr_at_20
value: 17.203
- type: mrr_at_3
value: 15.067
- type: mrr_at_5
value: 16.003999999999998
- type: ndcg_at_1
value: 11.941
- type: ndcg_at_10
value: 17.111
- type: ndcg_at_100
value: 21.438
- type: ndcg_at_1000
value: 24.756
- type: ndcg_at_20
value: 18.616
- type: ndcg_at_3
value: 14.143
- type: ndcg_at_5
value: 15.501000000000001
- type: precision_at_1
value: 11.941
- type: precision_at_10
value: 3.304
- type: precision_at_100
value: 0.658
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_20
value: 2.077
- type: precision_at_3
value: 6.882000000000001
- type: precision_at_5
value: 5.12
- type: recall_at_1
value: 9.564
- type: recall_at_10
value: 24.068
- type: recall_at_100
value: 43.759
- type: recall_at_1000
value: 68.101
- type: recall_at_20
value: 29.657
- type: recall_at_3
value: 15.68
- type: recall_at_5
value: 19.238
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: map_at_1
value: 16.171
- type: map_at_10
value: 22.142
- type: map_at_100
value: 23.261000000000003
- type: map_at_1000
value: 23.371
- type: map_at_20
value: 22.766000000000002
- type: map_at_3
value: 20.251
- type: map_at_5
value: 21.349
- type: mrr_at_1
value: 19.403000000000002
- type: mrr_at_10
value: 25.619999999999997
- type: mrr_at_100
value: 26.659
- type: mrr_at_1000
value: 26.735
- type: mrr_at_20
value: 26.212000000000003
- type: mrr_at_3
value: 23.694000000000003
- type: mrr_at_5
value: 24.781
- type: ndcg_at_1
value: 19.403000000000002
- type: ndcg_at_10
value: 26.104
- type: ndcg_at_100
value: 31.724000000000004
- type: ndcg_at_1000
value: 34.581
- type: ndcg_at_20
value: 28.231
- type: ndcg_at_3
value: 22.464000000000002
- type: ndcg_at_5
value: 24.233
- type: precision_at_1
value: 19.403000000000002
- type: precision_at_10
value: 4.422000000000001
- type: precision_at_100
value: 0.8170000000000001
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_20
value: 2.78
- type: precision_at_3
value: 10.168000000000001
- type: precision_at_5
value: 7.295
- type: recall_at_1
value: 16.171
- type: recall_at_10
value: 34.899
- type: recall_at_100
value: 60.197
- type: recall_at_1000
value: 80.798
- type: recall_at_20
value: 42.591
- type: recall_at_3
value: 25.024
- type: recall_at_5
value: 29.42
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: map_at_1
value: 16.412
- type: map_at_10
value: 23.138
- type: map_at_100
value: 24.46
- type: map_at_1000
value: 24.668
- type: map_at_20
value: 23.791
- type: map_at_3
value: 20.965
- type: map_at_5
value: 22.005
- type: mrr_at_1
value: 20.949
- type: mrr_at_10
value: 27.46
- type: mrr_at_100
value: 28.546
- type: mrr_at_1000
value: 28.619
- type: mrr_at_20
value: 28.038999999999998
- type: mrr_at_3
value: 25.461
- type: mrr_at_5
value: 26.528000000000002
- type: ndcg_at_1
value: 20.949
- type: ndcg_at_10
value: 27.919
- type: ndcg_at_100
value: 33.886
- type: ndcg_at_1000
value: 37.284
- type: ndcg_at_20
value: 29.876
- type: ndcg_at_3
value: 24.246000000000002
- type: ndcg_at_5
value: 25.607999999999997
- type: precision_at_1
value: 20.949
- type: precision_at_10
value: 5.534
- type: precision_at_100
value: 1.2409999999999999
- type: precision_at_1000
value: 0.22
- type: precision_at_20
value: 3.5180000000000002
- type: precision_at_3
value: 11.726
- type: precision_at_5
value: 8.498
- type: recall_at_1
value: 16.412
- type: recall_at_10
value: 37.012
- type: recall_at_100
value: 64.702
- type: recall_at_1000
value: 87.442
- type: recall_at_20
value: 44.797
- type: recall_at_3
value: 25.872
- type: recall_at_5
value: 29.732999999999997
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 11.158
- type: map_at_10
value: 15.809999999999999
- type: map_at_100
value: 16.821
- type: map_at_1000
value: 16.925
- type: map_at_20
value: 16.403000000000002
- type: map_at_3
value: 13.791999999999998
- type: map_at_5
value: 14.817
- type: mrr_at_1
value: 12.384
- type: mrr_at_10
value: 17.291999999999998
- type: mrr_at_100
value: 18.271
- type: mrr_at_1000
value: 18.360000000000003
- type: mrr_at_20
value: 17.854999999999997
- type: mrr_at_3
value: 15.096000000000002
- type: mrr_at_5
value: 16.214000000000002
- type: ndcg_at_1
value: 12.384
- type: ndcg_at_10
value: 19.250999999999998
- type: ndcg_at_100
value: 24.524
- type: ndcg_at_1000
value: 27.624
- type: ndcg_at_20
value: 21.387999999999998
- type: ndcg_at_3
value: 14.995
- type: ndcg_at_5
value: 16.861
- type: precision_at_1
value: 12.384
- type: precision_at_10
value: 3.29
- type: precision_at_100
value: 0.632
- type: precision_at_1000
value: 0.095
- type: precision_at_20
value: 2.1260000000000003
- type: precision_at_3
value: 6.47
- type: precision_at_5
value: 4.917
- type: recall_at_1
value: 11.158
- type: recall_at_10
value: 28.737000000000002
- type: recall_at_100
value: 53.400000000000006
- type: recall_at_1000
value: 77.509
- type: recall_at_20
value: 36.969
- type: recall_at_3
value: 17.197000000000003
- type: recall_at_5
value: 21.701
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 7.172000000000001
- type: map_at_10
value: 11.935
- type: map_at_100
value: 13.305
- type: map_at_1000
value: 13.517000000000001
- type: map_at_20
value: 12.589
- type: map_at_3
value: 9.9
- type: map_at_5
value: 10.839
- type: mrr_at_1
value: 15.895999999999999
- type: mrr_at_10
value: 24.215999999999998
- type: mrr_at_100
value: 25.418000000000003
- type: mrr_at_1000
value: 25.480000000000004
- type: mrr_at_20
value: 24.934
- type: mrr_at_3
value: 21.064
- type: mrr_at_5
value: 22.676
- type: ndcg_at_1
value: 15.895999999999999
- type: ndcg_at_10
value: 17.69
- type: ndcg_at_100
value: 24.232
- type: ndcg_at_1000
value: 28.405
- type: ndcg_at_20
value: 19.933999999999997
- type: ndcg_at_3
value: 13.761000000000001
- type: ndcg_at_5
value: 14.963000000000001
- type: precision_at_1
value: 15.895999999999999
- type: precision_at_10
value: 5.733
- type: precision_at_100
value: 1.266
- type: precision_at_1000
value: 0.203
- type: precision_at_20
value: 3.798
- type: precision_at_3
value: 10.076
- type: precision_at_5
value: 7.9479999999999995
- type: recall_at_1
value: 7.172000000000001
- type: recall_at_10
value: 22.149
- type: recall_at_100
value: 45.491
- type: recall_at_1000
value: 69.34
- type: recall_at_20
value: 28.634999999999998
- type: recall_at_3
value: 12.701
- type: recall_at_5
value: 15.952
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 7.101
- type: map_at_10
value: 15.125
- type: map_at_100
value: 20.026
- type: map_at_1000
value: 21.194
- type: map_at_20
value: 17.008000000000003
- type: map_at_3
value: 10.915999999999999
- type: map_at_5
value: 12.705
- type: mrr_at_1
value: 53.5
- type: mrr_at_10
value: 63.475
- type: mrr_at_100
value: 63.998
- type: mrr_at_1000
value: 64.019
- type: mrr_at_20
value: 63.800999999999995
- type: mrr_at_3
value: 62.041999999999994
- type: mrr_at_5
value: 62.678999999999995
- type: ndcg_at_1
value: 41.875
- type: ndcg_at_10
value: 32.967
- type: ndcg_at_100
value: 35.557
- type: ndcg_at_1000
value: 42.537000000000006
- type: ndcg_at_20
value: 31.930999999999997
- type: ndcg_at_3
value: 36.67
- type: ndcg_at_5
value: 34.474
- type: precision_at_1
value: 53.5
- type: precision_at_10
value: 27.0
- type: precision_at_100
value: 7.872999999999999
- type: precision_at_1000
value: 1.637
- type: precision_at_20
value: 19.487
- type: precision_at_3
value: 41.583
- type: precision_at_5
value: 34.699999999999996
- type: recall_at_1
value: 7.101
- type: recall_at_10
value: 20.408
- type: recall_at_100
value: 40.286
- type: recall_at_1000
value: 63.49399999999999
- type: recall_at_20
value: 25.478
- type: recall_at_3
value: 12.278
- type: recall_at_5
value: 15.392
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 44.79
- type: f1
value: 39.606429663804356
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 27.898
- type: map_at_10
value: 39.315
- type: map_at_100
value: 40.219
- type: map_at_1000
value: 40.268
- type: map_at_20
value: 39.893
- type: map_at_3
value: 35.993
- type: map_at_5
value: 38.016
- type: mrr_at_1
value: 30.003
- type: mrr_at_10
value: 41.85
- type: mrr_at_100
value: 42.722
- type: mrr_at_1000
value: 42.760999999999996
- type: mrr_at_20
value: 42.419000000000004
- type: mrr_at_3
value: 38.451
- type: mrr_at_5
value: 40.547
- type: ndcg_at_1
value: 30.003
- type: ndcg_at_10
value: 45.907
- type: ndcg_at_100
value: 50.198
- type: ndcg_at_1000
value: 51.405
- type: ndcg_at_20
value: 47.97
- type: ndcg_at_3
value: 39.234
- type: ndcg_at_5
value: 42.844
- type: precision_at_1
value: 30.003
- type: precision_at_10
value: 7.0040000000000004
- type: precision_at_100
value: 0.9259999999999999
- type: precision_at_1000
value: 0.104
- type: precision_at_20
value: 3.9510000000000005
- type: precision_at_3
value: 16.647000000000002
- type: precision_at_5
value: 11.914
- type: recall_at_1
value: 27.898
- type: recall_at_10
value: 64.003
- type: recall_at_100
value: 83.42500000000001
- type: recall_at_1000
value: 92.448
- type: recall_at_20
value: 71.93
- type: recall_at_3
value: 46.12
- type: recall_at_5
value: 54.812000000000005
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 10.282
- type: map_at_10
value: 16.141
- type: map_at_100
value: 17.634
- type: map_at_1000
value: 17.836
- type: map_at_20
value: 16.99
- type: map_at_3
value: 13.947000000000001
- type: map_at_5
value: 15.149000000000001
- type: mrr_at_1
value: 20.679
- type: mrr_at_10
value: 26.966
- type: mrr_at_100
value: 28.108
- type: mrr_at_1000
value: 28.183999999999997
- type: mrr_at_20
value: 27.672
- type: mrr_at_3
value: 24.743000000000002
- type: mrr_at_5
value: 25.916
- type: ndcg_at_1
value: 20.679
- type: ndcg_at_10
value: 21.291
- type: ndcg_at_100
value: 27.884999999999998
- type: ndcg_at_1000
value: 32.122
- type: ndcg_at_20
value: 23.898
- type: ndcg_at_3
value: 18.553
- type: ndcg_at_5
value: 19.468
- type: precision_at_1
value: 20.679
- type: precision_at_10
value: 6.019
- type: precision_at_100
value: 1.252
- type: precision_at_1000
value: 0.201
- type: precision_at_20
value: 4.0120000000000005
- type: precision_at_3
value: 12.243
- type: precision_at_5
value: 9.321
- type: recall_at_1
value: 10.282
- type: recall_at_10
value: 25.901999999999997
- type: recall_at_100
value: 50.956999999999994
- type: recall_at_1000
value: 76.935
- type: recall_at_20
value: 34.104
- type: recall_at_3
value: 16.973
- type: recall_at_5
value: 20.549999999999997
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 30.567
- type: map_at_10
value: 42.314
- type: map_at_100
value: 43.205
- type: map_at_1000
value: 43.288
- type: map_at_20
value: 42.812
- type: map_at_3
value: 39.695
- type: map_at_5
value: 41.214
- type: mrr_at_1
value: 61.134
- type: mrr_at_10
value: 68.57600000000001
- type: mrr_at_100
value: 68.95599999999999
- type: mrr_at_1000
value: 68.97999999999999
- type: mrr_at_20
value: 68.818
- type: mrr_at_3
value: 66.99300000000001
- type: mrr_at_5
value: 67.919
- type: ndcg_at_1
value: 61.134
- type: ndcg_at_10
value: 51.518
- type: ndcg_at_100
value: 55.022000000000006
- type: ndcg_at_1000
value: 56.81699999999999
- type: ndcg_at_20
value: 52.893
- type: ndcg_at_3
value: 47.216
- type: ndcg_at_5
value: 49.413000000000004
- type: precision_at_1
value: 61.134
- type: precision_at_10
value: 10.729
- type: precision_at_100
value: 1.351
- type: precision_at_1000
value: 0.159
- type: precision_at_20
value: 5.8069999999999995
- type: precision_at_3
value: 29.336000000000002
- type: precision_at_5
value: 19.346
- type: recall_at_1
value: 30.567
- type: recall_at_10
value: 53.64600000000001
- type: recall_at_100
value: 67.562
- type: recall_at_1000
value: 79.521
- type: recall_at_20
value: 58.069
- type: recall_at_3
value: 44.004
- type: recall_at_5
value: 48.366
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 71.5272
- type: ap
value: 65.49215755861609
- type: f1
value: 71.4156268611186
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: map_at_1
value: 14.574000000000002
- type: map_at_10
value: 23.966
- type: map_at_100
value: 25.19
- type: map_at_1000
value: 25.266
- type: map_at_20
value: 24.668
- type: map_at_3
value: 20.815
- type: map_at_5
value: 22.576
- type: mrr_at_1
value: 14.957
- type: mrr_at_10
value: 24.413999999999998
- type: mrr_at_100
value: 25.616
- type: mrr_at_1000
value: 25.685999999999996
- type: mrr_at_20
value: 25.11
- type: mrr_at_3
value: 21.304000000000002
- type: mrr_at_5
value: 23.047
- type: ndcg_at_1
value: 14.957
- type: ndcg_at_10
value: 29.49
- type: ndcg_at_100
value: 35.734
- type: ndcg_at_1000
value: 37.785000000000004
- type: ndcg_at_20
value: 32.004
- type: ndcg_at_3
value: 23.006999999999998
- type: ndcg_at_5
value: 26.154
- type: precision_at_1
value: 14.957
- type: precision_at_10
value: 4.8500000000000005
- type: precision_at_100
value: 0.8009999999999999
- type: precision_at_1000
value: 0.098
- type: precision_at_20
value: 2.943
- type: precision_at_3
value: 9.962
- type: precision_at_5
value: 7.556
- type: recall_at_1
value: 14.574000000000002
- type: recall_at_10
value: 46.655
- type: recall_at_100
value: 76.26899999999999
- type: recall_at_1000
value: 92.303
- type: recall_at_20
value: 56.424
- type: recall_at_3
value: 28.874
- type: recall_at_5
value: 36.441
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.78887368901049
- type: f1
value: 90.30465646125157
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 68.71865025079799
- type: f1
value: 50.7484789245504
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.8399462004035
- type: f1
value: 66.66574227334513
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.74915938130464
- type: f1
value: 73.61179700374726
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 30.3983428793953
- type: v_measures
value:
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- 0.2897998146059277
- 0.2892991395982456
- 0.2895468464510795
- 0.294117690228455
- 0.29987260303639823
- 0.3247642769384547
- 0.31050042169105724
- 0.30994953770318107
- 0.31969964495780845
- 0.31228431272892265
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.78917156239751
- type: v_measures
value:
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- 0.2778513235855922
- 0.28421867096674863
- 0.26686384263192103
- 0.2891902768882141
- 0.27793747293511695
- 0.30323125759570635
- 0.2807541398062003
- 0.3122697317735093
- 0.2933394111230221
- 0.29326102893371997
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 3.726
- type: map_at_10
value: 8.604000000000001
- type: map_at_100
value: 10.95
- type: map_at_1000
value: 12.256
- type: map_at_20
value: 9.573
- type: map_at_3
value: 6.264
- type: map_at_5
value: 7.343
- type: mrr_at_1
value: 37.771
- type: mrr_at_10
value: 46.476
- type: mrr_at_100
value: 47.164
- type: mrr_at_1000
value: 47.213
- type: mrr_at_20
value: 46.792
- type: mrr_at_3
value: 44.272
- type: mrr_at_5
value: 45.728
- type: ndcg_at_1
value: 35.604
- type: ndcg_at_10
value: 26.778000000000002
- type: ndcg_at_100
value: 24.313000000000002
- type: ndcg_at_1000
value: 33.601
- type: ndcg_at_20
value: 24.788
- type: ndcg_at_3
value: 30.991999999999997
- type: ndcg_at_5
value: 28.9
- type: precision_at_1
value: 37.152
- type: precision_at_10
value: 19.875999999999998
- type: precision_at_100
value: 6.449000000000001
- type: precision_at_1000
value: 1.934
- type: precision_at_20
value: 14.721
- type: precision_at_3
value: 28.999000000000002
- type: precision_at_5
value: 24.582
- type: recall_at_1
value: 3.726
- type: recall_at_10
value: 12.529000000000002
- type: recall_at_100
value: 25.726
- type: recall_at_1000
value: 58.336
- type: recall_at_20
value: 16.028000000000002
- type: recall_at_3
value: 7.176
- type: recall_at_5
value: 9.511
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 15.110000000000001
- type: map_at_10
value: 25.983
- type: map_at_100
value: 27.332
- type: map_at_1000
value: 27.406999999999996
- type: map_at_20
value: 26.804
- type: map_at_3
value: 22.182
- type: map_at_5
value: 24.247
- type: mrr_at_1
value: 17.236
- type: mrr_at_10
value: 28.177999999999997
- type: mrr_at_100
value: 29.346
- type: mrr_at_1000
value: 29.401
- type: mrr_at_20
value: 28.906
- type: mrr_at_3
value: 24.593999999999998
- type: mrr_at_5
value: 26.540999999999997
- type: ndcg_at_1
value: 17.207
- type: ndcg_at_10
value: 32.603
- type: ndcg_at_100
value: 38.883
- type: ndcg_at_1000
value: 40.708
- type: ndcg_at_20
value: 35.397
- type: ndcg_at_3
value: 25.002999999999997
- type: ndcg_at_5
value: 28.572999999999997
- type: precision_at_1
value: 17.207
- type: precision_at_10
value: 5.985
- type: precision_at_100
value: 0.951
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_20
value: 3.656
- type: precision_at_3
value: 11.848
- type: precision_at_5
value: 9.125
- type: recall_at_1
value: 15.110000000000001
- type: recall_at_10
value: 51.00900000000001
- type: recall_at_100
value: 79.193
- type: recall_at_1000
value: 92.828
- type: recall_at_20
value: 61.402
- type: recall_at_3
value: 30.791
- type: recall_at_5
value: 39.091
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 67.465
- type: map_at_10
value: 81.035
- type: map_at_100
value: 81.718
- type: map_at_1000
value: 81.742
- type: map_at_20
value: 81.486
- type: map_at_3
value: 77.972
- type: map_at_5
value: 79.903
- type: mrr_at_1
value: 77.64
- type: mrr_at_10
value: 84.584
- type: mrr_at_100
value: 84.722
- type: mrr_at_1000
value: 84.724
- type: mrr_at_20
value: 84.684
- type: mrr_at_3
value: 83.325
- type: mrr_at_5
value: 84.15899999999999
- type: ndcg_at_1
value: 77.66999999999999
- type: ndcg_at_10
value: 85.30499999999999
- type: ndcg_at_100
value: 86.834
- type: ndcg_at_1000
value: 87.033
- type: ndcg_at_20
value: 86.12100000000001
- type: ndcg_at_3
value: 81.974
- type: ndcg_at_5
value: 83.813
- type: precision_at_1
value: 77.66999999999999
- type: precision_at_10
value: 12.931000000000001
- type: precision_at_100
value: 1.5
- type: precision_at_1000
value: 0.156
- type: precision_at_20
value: 6.903
- type: precision_at_3
value: 35.730000000000004
- type: precision_at_5
value: 23.642
- type: recall_at_1
value: 67.465
- type: recall_at_10
value: 93.581
- type: recall_at_100
value: 98.91499999999999
- type: recall_at_1000
value: 99.90599999999999
- type: recall_at_20
value: 96.221
- type: recall_at_3
value: 84.071
- type: recall_at_5
value: 89.14999999999999
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 45.929215298244664
- type: v_measures
value:
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- 0.5005163734033015
- 0.553109801970322
- 0.41398508662376254
- 0.42141314229941573
- 0.4538781792482074
- 0.4020501279564094
- 0.47479152270449987
- 0.4099927798506668
- 0.4120557111594749
- 0.4201880097400573
- 0.42440122539823744
- 0.4946100035438165
- 0.4781440076390112
- 0.4670832635547185
- 0.5771247406191055
- 0.411666253943506
- 0.47763075003515215
- 0.5272837549236378
- 0.4452503211520816
- 0.41778723041123167
- 0.40422491239768005
- 0.430149995306435
- 0.5936566115456993
- 0.4401734496854905
- 0.43113656944924467
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 51.444598402601414
- type: v_measures
value:
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- 0.5651003661101165
- 0.5711537036766935
- 0.5987455713312818
- 0.31409385867326506
- 0.5578455339174134
- 0.4983473414145347
- 0.2540544357081523
- 0.6081787161021057
- 0.5498858360771133
- 0.6270544772494664
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 3.5929999999999995
- type: map_at_10
value: 8.753
- type: map_at_100
value: 10.349
- type: map_at_1000
value: 10.624
- type: map_at_20
value: 9.553
- type: map_at_3
value: 6.2700000000000005
- type: map_at_5
value: 7.5329999999999995
- type: mrr_at_1
value: 17.7
- type: mrr_at_10
value: 27.167
- type: mrr_at_100
value: 28.351
- type: mrr_at_1000
value: 28.418
- type: mrr_at_20
value: 27.819
- type: mrr_at_3
value: 24.282999999999998
- type: mrr_at_5
value: 26.073
- type: ndcg_at_1
value: 17.7
- type: ndcg_at_10
value: 15.312000000000001
- type: ndcg_at_100
value: 22.178
- type: ndcg_at_1000
value: 27.575
- type: ndcg_at_20
value: 17.648
- type: ndcg_at_3
value: 14.41
- type: ndcg_at_5
value: 12.774
- type: precision_at_1
value: 17.7
- type: precision_at_10
value: 7.93
- type: precision_at_100
value: 1.7930000000000001
- type: precision_at_1000
value: 0.31
- type: precision_at_20
value: 5.315
- type: precision_at_3
value: 13.367
- type: precision_at_5
value: 11.26
- type: recall_at_1
value: 3.5929999999999995
- type: recall_at_10
value: 16.088
- type: recall_at_100
value: 36.39
- type: recall_at_1000
value: 62.932
- type: recall_at_20
value: 21.562
- type: recall_at_3
value: 8.123
- type: recall_at_5
value: 11.393
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 82.6885494958054
- type: cos_sim_spearman
value: 76.0433546110243
- type: euclidean_pearson
value: 79.85820435751087
- type: euclidean_spearman
value: 75.9326257444857
- type: manhattan_pearson
value: 79.6973024858654
- type: manhattan_spearman
value: 75.71084698490509
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 77.34659218404506
- type: cos_sim_spearman
value: 69.49541146727839
- type: euclidean_pearson
value: 74.80982564474151
- type: euclidean_spearman
value: 70.04102091813081
- type: manhattan_pearson
value: 75.00200126757426
- type: manhattan_spearman
value: 70.22802660355588
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 79.91444494464905
- type: cos_sim_spearman
value: 80.96085686108583
- type: euclidean_pearson
value: 80.5915387592164
- type: euclidean_spearman
value: 80.8861855866439
- type: manhattan_pearson
value: 80.46881359994653
- type: manhattan_spearman
value: 80.80230339264102
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 80.81974904249208
- type: cos_sim_spearman
value: 77.08348207580887
- type: euclidean_pearson
value: 80.13431221409199
- type: euclidean_spearman
value: 77.31778188790902
- type: manhattan_pearson
value: 80.05343415464556
- type: manhattan_spearman
value: 77.26095229151665
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 84.37398871508579
- type: cos_sim_spearman
value: 85.41548418250477
- type: euclidean_pearson
value: 85.18569982361353
- type: euclidean_spearman
value: 85.73446512176643
- type: manhattan_pearson
value: 85.1016252976206
- type: manhattan_spearman
value: 85.66092136939069
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 80.59702638640928
- type: cos_sim_spearman
value: 82.29583005583622
- type: euclidean_pearson
value: 81.83307796549182
- type: euclidean_spearman
value: 82.39554204652183
- type: manhattan_pearson
value: 81.78282737393326
- type: manhattan_spearman
value: 82.34235304571907
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 86.89190122908971
- type: cos_sim_spearman
value: 88.03461344591356
- type: euclidean_pearson
value: 87.81999485969313
- type: euclidean_spearman
value: 88.07040076481854
- type: manhattan_pearson
value: 87.53382294293554
- type: manhattan_spearman
value: 87.76615089464353
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 57.97869820676485
- type: cos_sim_spearman
value: 64.12171377270657
- type: euclidean_pearson
value: 60.9601725696545
- type: euclidean_spearman
value: 63.48982922146721
- type: manhattan_pearson
value: 61.37553142926566
- type: manhattan_spearman
value: 63.759462595791796
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 83.14812517797631
- type: cos_sim_spearman
value: 83.33681512924129
- type: euclidean_pearson
value: 84.0552689078266
- type: euclidean_spearman
value: 83.45075258664495
- type: manhattan_pearson
value: 83.94309504683835
- type: manhattan_spearman
value: 83.37311472277489
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 77.89395841192561
- type: mrr
value: 93.39039319431475
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 47.65
- type: map_at_10
value: 58.287
- type: map_at_100
value: 58.965999999999994
- type: map_at_1000
value: 58.998
- type: map_at_20
value: 58.709
- type: map_at_3
value: 55.272
- type: map_at_5
value: 57.135999999999996
- type: mrr_at_1
value: 50.333000000000006
- type: mrr_at_10
value: 59.589999999999996
- type: mrr_at_100
value: 60.129999999999995
- type: mrr_at_1000
value: 60.162000000000006
- type: mrr_at_20
value: 59.95700000000001
- type: mrr_at_3
value: 57.389
- type: mrr_at_5
value: 58.656
- type: ndcg_at_1
value: 50.333000000000006
- type: ndcg_at_10
value: 63.232
- type: ndcg_at_100
value: 66.213
- type: ndcg_at_1000
value: 67.203
- type: ndcg_at_20
value: 64.63499999999999
- type: ndcg_at_3
value: 58.163
- type: ndcg_at_5
value: 60.785999999999994
- type: precision_at_1
value: 50.333000000000006
- type: precision_at_10
value: 8.633000000000001
- type: precision_at_100
value: 1.03
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_20
value: 4.633
- type: precision_at_3
value: 22.889
- type: precision_at_5
value: 15.4
- type: recall_at_1
value: 47.65
- type: recall_at_10
value: 76.95
- type: recall_at_100
value: 90.333
- type: recall_at_1000
value: 98.333
- type: recall_at_20
value: 82.267
- type: recall_at_3
value: 63.632999999999996
- type: recall_at_5
value: 69.978
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.82277227722773
- type: cos_sim_ap
value: 95.3535743677476
- type: cos_sim_f1
value: 91.00050276520865
- type: cos_sim_precision
value: 91.50657229524772
- type: cos_sim_recall
value: 90.5
- type: dot_accuracy
value: 99.73267326732673
- type: dot_ap
value: 92.1266370356305
- type: dot_f1
value: 86.13810741687979
- type: dot_precision
value: 88.1675392670157
- type: dot_recall
value: 84.2
- type: euclidean_accuracy
value: 99.82277227722773
- type: euclidean_ap
value: 95.24537694377634
- type: euclidean_f1
value: 90.91831557584982
- type: euclidean_precision
value: 92.27600411946447
- type: euclidean_recall
value: 89.60000000000001
- type: manhattan_accuracy
value: 99.81881188118813
- type: manhattan_ap
value: 95.30188096008806
- type: manhattan_f1
value: 90.83625438157236
- type: manhattan_precision
value: 90.97291875626881
- type: manhattan_recall
value: 90.7
- type: max_accuracy
value: 99.82277227722773
- type: max_ap
value: 95.3535743677476
- type: max_f1
value: 91.00050276520865
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 52.18146042107239
- type: v_measures
value:
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- 0.5364875187827791
- 0.5679299303873145
- 0.44106298408975836
- 0.5406958464125032
- 0.4979264528781713
- 0.4762228276272928
- 0.4777826734534763
- 0.5777786652028727
- 0.5461510519376557
- 0.5168553556755343
- 0.577879257543513
- 0.5845565212560989
- 0.6151603528753354
- 0.5719681846462936
- 0.49266002482795135
- 0.4992519351578576
- 0.5201585621226349
- 0.49488624259982555
- 0.5026045640513042
- 0.4781310026025221
- 0.520040341596719
- 0.4854477150657903
- 0.48039481107512233
- 0.5294089599539328
- 0.5139233234458377
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 30.666751785479224
- type: v_measures
value:
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- 0.2961435813128549
- 0.29377421770311174
- 0.2920979816328222
- 0.28868614709214024
- 0.28703664876586243
- 0.33192718718065084
- 0.3159774213288751
- 0.31901923873086113
- 0.32546250570545476
- 0.31655024909528856
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 46.78149995864765
- type: mrr
value: 47.45282393260334
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.202698233290022
- type: cos_sim_spearman
value: 30.971936219818662
- type: dot_pearson
value: 25.486069760264634
- type: dot_spearman
value: 25.811060638581246
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.16999999999999998
- type: map_at_10
value: 0.943
- type: map_at_100
value: 5.0200000000000005
- type: map_at_1000
value: 13.855
- type: map_at_20
value: 1.609
- type: map_at_3
value: 0.384
- type: map_at_5
value: 0.5660000000000001
- type: mrr_at_1
value: 68.0
- type: mrr_at_10
value: 77.983
- type: mrr_at_100
value: 78.16499999999999
- type: mrr_at_1000
value: 78.16499999999999
- type: mrr_at_20
value: 78.16499999999999
- type: mrr_at_3
value: 75.667
- type: mrr_at_5
value: 77.067
- type: ndcg_at_1
value: 62.0
- type: ndcg_at_10
value: 47.772999999999996
- type: ndcg_at_100
value: 36.15
- type: ndcg_at_1000
value: 36.071
- type: ndcg_at_20
value: 44.641
- type: ndcg_at_3
value: 52.608999999999995
- type: ndcg_at_5
value: 50.397999999999996
- type: precision_at_1
value: 68.0
- type: precision_at_10
value: 50.8
- type: precision_at_100
value: 37.62
- type: precision_at_1000
value: 16.97
- type: precision_at_20
value: 47.099999999999994
- type: precision_at_3
value: 56.667
- type: precision_at_5
value: 54.0
- type: recall_at_1
value: 0.16999999999999998
- type: recall_at_10
value: 1.2349999999999999
- type: recall_at_100
value: 8.666
- type: recall_at_1000
value: 35.326
- type: recall_at_20
value: 2.276
- type: recall_at_3
value: 0.428
- type: recall_at_5
value: 0.672
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 1.897
- type: map_at_10
value: 6.034
- type: map_at_100
value: 10.475
- type: map_at_1000
value: 11.95
- type: map_at_20
value: 8.149000000000001
- type: map_at_3
value: 2.8449999999999998
- type: map_at_5
value: 3.972
- type: mrr_at_1
value: 24.490000000000002
- type: mrr_at_10
value: 33.751
- type: mrr_at_100
value: 35.544
- type: mrr_at_1000
value: 35.544
- type: mrr_at_20
value: 34.926
- type: mrr_at_3
value: 29.252
- type: mrr_at_5
value: 31.905
- type: ndcg_at_1
value: 22.448999999999998
- type: ndcg_at_10
value: 16.303
- type: ndcg_at_100
value: 27.165
- type: ndcg_at_1000
value: 39.736
- type: ndcg_at_20
value: 18.340999999999998
- type: ndcg_at_3
value: 15.137999999999998
- type: ndcg_at_5
value: 16.332
- type: precision_at_1
value: 24.490000000000002
- type: precision_at_10
value: 15.714
- type: precision_at_100
value: 6.184
- type: precision_at_1000
value: 1.439
- type: precision_at_20
value: 13.163
- type: precision_at_3
value: 15.645999999999999
- type: precision_at_5
value: 17.551
- type: recall_at_1
value: 1.897
- type: recall_at_10
value: 11.938
- type: recall_at_100
value: 39.249
- type: recall_at_1000
value: 78.121
- type: recall_at_20
value: 19.244
- type: recall_at_3
value: 3.5409999999999995
- type: recall_at_5
value: 6.297999999999999
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 66.2939453125
- type: ap
value: 11.764275936169392
- type: f1
value: 50.50689429240701
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.49066213921902
- type: f1
value: 59.85044985699777
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 39.44109250212289
- type: v_measures
value:
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- 0.40669764182281876
- 0.4138730431378403
- 0.3900030656920992
- 0.4129323940635477
- 0.3817333080350274
- 0.40499040520658186
- 0.36911177861804156
- 0.4101285395437541
- 0.37178970000889994
- 0.3828493740836783
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.25821064552662
- type: cos_sim_ap
value: 67.96785265119063
- type: cos_sim_f1
value: 65.0070788107598
- type: cos_sim_precision
value: 58.792146820315835
- type: cos_sim_recall
value: 72.69129287598945
- type: dot_accuracy
value: 81.47463789712106
- type: dot_ap
value: 58.234902049577684
- type: dot_f1
value: 56.73442037078401
- type: dot_precision
value: 49.18667699457785
- type: dot_recall
value: 67.01846965699208
- type: euclidean_accuracy
value: 84.30589497526375
- type: euclidean_ap
value: 68.07824251821404
- type: euclidean_f1
value: 65.09073543457498
- type: euclidean_precision
value: 59.44177932839075
- type: euclidean_recall
value: 71.92612137203166
- type: manhattan_accuracy
value: 84.24032902187518
- type: manhattan_ap
value: 67.76838044141897
- type: manhattan_f1
value: 64.75698520779525
- type: manhattan_precision
value: 58.333333333333336
- type: manhattan_recall
value: 72.77044854881267
- type: max_accuracy
value: 84.30589497526375
- type: max_ap
value: 68.07824251821404
- type: max_f1
value: 65.09073543457498
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.2951061435169
- type: cos_sim_ap
value: 84.74905878045149
- type: cos_sim_f1
value: 77.01659871869538
- type: cos_sim_precision
value: 73.0392156862745
- type: cos_sim_recall
value: 81.45210963966738
- type: dot_accuracy
value: 86.37598478674273
- type: dot_ap
value: 79.17253140971533
- type: dot_f1
value: 73.19411657889958
- type: dot_precision
value: 69.27201484842236
- type: dot_recall
value: 77.58700338774254
- type: euclidean_accuracy
value: 88.29122521054062
- type: euclidean_ap
value: 84.64901724668165
- type: euclidean_f1
value: 76.99685189252507
- type: euclidean_precision
value: 73.39148639218422
- type: euclidean_recall
value: 80.97474591931014
- type: manhattan_accuracy
value: 88.29316567702877
- type: manhattan_ap
value: 84.5869003947086
- type: manhattan_f1
value: 76.9094138543517
- type: manhattan_precision
value: 74.03818751781134
- type: manhattan_recall
value: 80.01231906375116
- type: max_accuracy
value: 88.2951061435169
- type: max_ap
value: 84.74905878045149
- type: max_f1
value: 77.01659871869538
---
# Bulbasaur
This is a distill of [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny) trained using [qa-assistant](https://huggingface.co/datasets/Mihaiii/qa-assistant).
## Intended purpose
<span style="color:blue">This model is designed for use in semantic-autocomplete ([click here for demo](https://mihaiii.github.io/semantic-autocomplete/)).</span>
## Usage (Sentence-Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny))
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('Mihaiii/Bulbasaur')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny))
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('Mihaiii/Bulbasaur')
model = AutoModel.from_pretrained('Mihaiii/Bulbasaur')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
### Limitation (same as [gte-small](https://huggingface.co/thenlper/gte-small))
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens. | [
"BIOSSES",
"SCIFACT"
] |
alimama-creative/SDXL-EcomID | alimama-creative | text-to-image | [
"diffusers",
"safetensors",
"Text-to-Image",
"SDXL",
"Stable Diffusion",
"ID Customization",
"text-to-image",
"en",
"zh",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:apache-2.0",
"region:us"
] | "2024-10-22T06:16:24Z" | 2024-10-24T07:24:26+00:00 | 5,415 | 77 | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
language:
- en
- zh
library_name: diffusers
license: apache-2.0
pipeline_tag: text-to-image
tags:
- Text-to-Image
- SDXL
- Stable Diffusion
- ID Customization
---
<div style="display: flex; justify-content: center; align-items: center;">
<img src="./images/images_alibaba.png" alt="alibaba" style="width: 20%; height: auto; margin-right: 5%;">
<img src="./images/images_alimama.png" alt="alimama" style="width: 20%; height: auto;">
</div>
[中文版Readme](./README_ZH.md)
EcomID aims to generate customized images from a single reference ID image, ensuring strong semantic consistency while being controlled by keypoints.
This repository provides the EcomID method and model, combining the strengths of [PuLID](https://github.com/ToTheBeginning/PuLID) and [InstantID](https://github.com/instantX-research/InstantID) for better background consistency, facial keypoint control, and realistic facial representation with improved similarity.
# EcomID Overview
## EcomID Structure
<img src="./images/overflow.png" alt="alibaba" style="width: 100%; height: auto; margin-right: 5%;">
- **IP-Adapter of PuLID**: EcomID incorporates the ID-Encoder and cross-attention components from PuLID, trained with alignment loss.
This method effectively reduces the interference of ID embeddings on text embeddings within the cross-attention part, minimizing disruption to the underlying model's text-to-image capabilities.
- **InstantID’s IdentityNet Architecture**: Utilizing **a dataset of 2 million aesthetically pleasing portrait images**, IdentityNet enhances keypoint control, improving ID consistency and facial realism. During training, the IP-adapter is frozen, and only the IdentityNet is trained. Facial landmarks are used as conditional inputs, while face embeddings are integrated into IdentityNet via cross-attention.
# Show Cases
## Comparison with Other Methods
### 1、Preserved Text-to-Image Capability
<table>
<tr>
<th style="width: 28%;">Prompt</th>
<th style="width: 24%;">Reference Image</th>
<th style="width: 24%;">EcomID</th>
<th style="width: 24%;">InstantID</th>
</tr>
<tr>
<td style="font-size: 12px;">girl, white skin, black hair, long wavy hair, <span style="color:red"><strong>in European style living room, Retro tone, decorations</strong></span>, depth of field.</td>
<td><img src="images/show_case/50.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/49.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/48.png" alt="InstantID图像" width="100%"></td>
</tr>
<table>
As shown above, EcomID ***preserves background generation abilities while minimizing stylization, greatly enhancing realism***.
The visualizations highlight more authentic portraits with improved background semantic consistency, showcasing EcomID's advantage in generating realistic images.
### 2、Improved Facial Control and Consistency
<table>
<tr>
<th style="width: 24%;">Prompt</th>
<th style="width: 19%;">Reference Image</th>
<th style="width: 19%;">EcomID</th>
<th style="width: 19%;">InstantID</th>
<th style="width: 19%;">PuLID</th>
</tr>
<tr>
<td style="font-size: 12px;">A close-up portrait of a man standing in the library, holding <span style="color:red"><strong>two smiling toddlers</strong></span> next to him.</td>
<td><img src="images/show_case/20.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/17.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/18.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/19.png" alt="PuLID图像" width="100%"></td>
</tr>
<table>
As shown above, EcomID employs keypoints as conditional inputs for training, ***allowing for precise adjustments of facial positions, sizes, and orientations***. This capability ensures that the generated portraits are more controllable while further enhancing facial similarity and the overall quality of the images.
### More showcases
EcomID enhances portrait representation, delivering a more authentic and aesthetically pleasing appearance while ensuring semantic consistency and greater internal ID similarity (i.e., traits that do not vary with age, hairstyle, glasses, or other physical changes).
<table>
<tr>
<th style="width: 24%;">Prompt</th>
<th style="width: 19%;">Reference Image</th>
<th style="width: 19%;">EcomID</th>
<th style="width: 19%;">InstantID</th>
<th style="width: 19%;">PuLID</th>
</tr>
<tr>
<td style="font-size: 12px;">A close-up portrait of a <span style="color:red"><strong>little girl with double braids</strong></span>, wearing a white dress, standing on the beach during sunset.</td>
<td><img src="images/show_case/21.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/22.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/23.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/24.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td style="font-size: 12px;">A close-up portrait of a <span style="color:red"><strong>very little girl</strong></span> with double braids, wearing <span style="color:red"><strong>a hat</strong></span> and white dress, standing on the beach during sunset.</td>
<td><img src="images/show_case/44.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/47.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/46.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/45.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td style="font-size: 12px;">Agrizzled detective, <span style="color:red"><strong>fedora</strong></span> casting a shadow over his square jaw, a <span style="color:red"><strong>cigar dangling from his lips</strong></span>, his trench coat evocative of film noir, in a <span style="color:red"><strong>rainy alley</strong></span>.</td>
<td><img src="images/show_case/25.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/26.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/27.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/28.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td style="font-size: 12px;">A smiling girl with <span style="color:red"><strong>bangs and long hair</strong></span> in a school uniform stands under cherry trees, holding a book.</td>
<td><img src="images/show_case/29.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/30.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/31.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/32.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td style="font-size: 12px;">A <span style="color:red"><strong>very old</strong></span> witch, wearing a black cloak, with a pointed hat, holding a magic wand, against a background of a misty forest.</td>
<td><img src="images/show_case/33.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/34.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/35.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/36.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td style="font-size: 12px;">A man clad in cyberpunk fashion: <span style="color:red"><strong>neon accents, reflective sunglasses,</strong></span> and a leather jacket with glowing circuit patterns. He stands stoically amidst a soaked cityscape.</td>
<td><img src="images/show_case/37.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/38.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/39.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/40.png" alt="PuLID图像" width="100%"></td>
</tr>
</table>
### More Base Models, Resolutions, and Styles
<table>
<tr>
<th style="width: 12%;">SDXL models</th>
<th style="width: 24%;">Prompt</th>
<th style="width: 16%;">Reference Image</th>
<th style="width: 16%;">EcomID</th>
<th style="width: 16%;">InstantID</th>
<th style="width: 16%;">PuLID</th>
</tr>
<tr>
<td>sd-xl-base-1.0</td>
<td style="font-size: 12px;">girl, solo, brown hair, holding a little teddy bear on her hands, wearing a school uniform, standing in the library, <span style="color:red"><strong>cartoon style</strong></span>.</td>
<td><img src="images/show_case/1.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/2.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/3.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/4.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td>EcomXL</td>
<td style="font-size: 12px;">A close-up portrait of a <span style="color:red"><strong>very little girl</strong></span> with double braids, wearing <span style="color:red"><strong>a hat</strong></span> and white dress, standing on the beach during sunset.</td>
<td><img src="images/show_case/44.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/47.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/46.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/45.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td>DreamShaperXL</td>
<td style="font-size: 12px;">solo, looking_at_viewer, smile, brown_hair, upper_body, open_clothes, teeth, open_jacket, black_jacket, blurry_background, realistic</td>
<td><img src="images/show_case/44.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/6.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/7.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/8.png" alt="PuLID图像" width="100%"></td>
</tr>
<tr>
<td>leosam_xl_v7</td>
<td style="font-size: 12px;">A close-up portrait of a girl, solo, dress, jewelry, beach and sea, pink_dress, realistic.</td>
<td><img src="images/show_case/9.png" alt="参考图像" width="100%"></td>
<td><img src="images/show_case/15.png" alt="EcomID图像" width="100%"></td>
<td><img src="images/show_case/14.png" alt="InstantID图像" width="100%"></td>
<td><img src="images/show_case/16.png" alt="PuLID图像" width="100%"></td>
</tr>
</table>
### Notes
- Unless otherwise specified, the showcases are generated using the base model EcomXL, which is also highly compatible with various other SDXL-based models, such as [leosams-helloworld-xl](https://civitai.com/models/43977/leosams-helloworld-xl), [dreamshaper-xl](https://civitai.com/models/112902/dreamshaper-xl), [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and so on.
- It works very well with SDXL Turbo/Lighting, [EcomXL Inpainting ControlNet](https://huggingface.co/alimama-creative/EcomXL_controlnet_inpaint) and [EcomXL Softedge ControlNet](https://huggingface.co/alimama-creative/EcomXL_controlnet_softedge).
# How to use
## ComfyUI
- The EcomID_ComfyUI node has been released: [click here](https://github.com/alimama-creative/SDXL_EcomID_ComfyUI)
# Training Details
The model is trained on 2M Taobao images, where the proportion of human faces is greater than 3%. The images have a resolution greater than 800, and the aesthetic score is above 5.5.
Mixed precision: fp16
Learning rate: 1e-4
Batch size: 2
Image size: 1024x1024 | [
"BEAR"
] |
sapienzanlp/Minerva-350M-base-v1.0 | sapienzanlp | text-generation | [
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"pretrained",
"it",
"en",
"dataset:uonlp/CulturaX",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-04-19T12:19:10Z" | 2024-12-05T11:58:58+00:00 | 5,378 | 15 | ---
datasets:
- uonlp/CulturaX
language:
- it
- en
license: apache-2.0
pipeline_tag: text-generation
tags:
- pretrained
widget:
- text: 'La capitale dell''Italia è '
example_title: Example 1
- text: 'Nel mezzo del cammin di nostra vita '
example_title: Example 2
- text: 'Una cena senza vino è come '
example_title: Example 3
---
<div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0/resolve/main/minerva-logo.png" style="max-width: 550px; height: auto;">
</div>
# Model Card for Minerva-350M-base-v1.0
Minerva is the first family of **LLMs pretrained from scratch on Italian** developed by [Sapienza NLP](https://nlp.uniroma1.it)
in collaboration with [Future Artificial Intelligence Research (FAIR)](https://fondazione-fair.it/) and [CINECA](https://www.cineca.it/).
Notably, the Minerva models are truly-open (data and model) Italian-English LLMs, with approximately half of the pretraining data
including Italian text.
* [Minerva LLMs - website](https://nlp.uniroma1.it/minerva/)
## Description
This is the model card for **Minerva-350M-base-v1.0**, a 350 million parameter model trained on 70 billion tokens (35 billion in Italian, 35 billion in English).
This model is part of the Minerva LLM family:
* [Minerva-350M-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-350M-base-v1.0)
* [Minerva-1B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0)
* [Minerva-3B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0)
* [Minerva-7B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0)
* [Minerva-7B-instruct-v1.0](https://huggingface.co/sapienzanlp/Minerva-7B-instruct-v1.0)
## 🚨⚠️🚨 Bias, Risks, and Limitations 🚨⚠️🚨
*This section identifies foreseeable harms and misunderstandings.*
This is a foundation model, not subject to alignment. Model may:
- Overrepresent some viewpoints and underrepresent others
- Contain stereotypes
- Contain [personal information](#personal-data-and-information)
- Generate:
- Hateful, abusive, or violent language
- Discriminatory or prejudicial language
- Content that may not be appropriate for all settings, including sexual content
- Make errors, including producing incorrect information as if it were factual
- Generate irrelevant or repetitive outputs
We are aware of the biases that current pretrained large language models exhibit: more specifically, as probabilistic models of (Italian and English) languages, they reflect and amplify the biases of their training data.
For more information about this issue, please refer to our survey:
* [Biases in Large Language Models: Origins, Inventory, and Discussion](https://dl.acm.org/doi/full/10.1145/3597307)
## How to use Minerva with Hugging Face transformers
```python
import transformers
import torch
model_id = "sapienzanlp/Minerva-350M-base-v1.0"
# Initialize the pipeline.
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
# Input text for the model.
input_text = "La capitale dell'Italia è"
# Compute the outputs.
output = pipeline(
input_text,
max_new_tokens=128,
)
# Output:
# [{'generated_text': "La capitale dell'Italia è la città di Roma, che si trova a [...]"}]
```
## Model Architecture
Minerva-350M-base-v1.0 is a Transformer model based on the Mistral architecture, where the number of layers, number of heads, and the hidden states dimension are modified to reach 350M parameters.
Please, take a look at the configuration file for a detailed breakdown of the hyperparameters we chose for this model.
The Minerva LLM family is composed of:
| Model Name | Tokens | Layers | Hidden Size | Attention Heads | KV Heads | Sliding Window | Max Context Length |
| --- | --- | --- | --- | --- | --- | --- | --- |
| **Minerva-350M-base-v1.0** | 70B (35B it + 35B en) | 16 | 1152 | 16 | 4 | 2048 | 16384 |
| Minerva-1B-base-v1.0 | 200B (100B it + 100B en) | 16 | 2048 | 16 | 4 | 2048 | 16384 |
| Minerva-3B-base-v1.0 | 660B (330B it + 330B en) | 32 | 2560 | 32 | 8 | 2048 | 16384 |
## Model Training
Minerva-350M-base-v1.0 was trained using [llm-foundry 0.6.0](https://github.com/mosaicml/llm-foundry) from [MosaicML](https://mosaicml.com/). The hyperparameters used are the following:
| Model Name | Optimizer | lr | betas | eps | weight decay | Scheduler | Warmup Steps | Batch Size (Tokens) | Total Steps |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| **Minerva-350M-base-v1.0** | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 16,690 |
| Minerva-1B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 47,684 |
| Minerva-3B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 157,357 |
## Model Evaluation
We assessed our model using the [LM-Evaluation-Harness](https://github.com/EleutherAI/lm-evaluation-harness) library, which serves as a comprehensive framework for testing generative language models across a wide range of evaluation tasks.
All the reported benchmark data was already present in the LM-Evaluation-Harness suite.
**Italian** Data:
| Task | Accuracy |
| --- | --- |
| [xcopa](https://huggingface.co/datasets/xcopa) (0-shot) | 0.554 |
| [Hellaswag](https://huggingface.co/datasets/alexandrainst/m_hellaswag) (5-shot) | 0.3205 |
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2489 |
| [TruthfulQA MC 1](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.2503 |
| [TruthfulQA MC 2](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.4080 |
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.2544 |
| [arc challenge](https://huggingface.co/datasets/alexandrainst/m_arc) (5-shot) | 0.2293 |
**English** Data:
| Task | Accuracy |
| --- | --- |
| [Hellaswag](https://huggingface.co/datasets/Rowan/hellaswag) (5-shot) | 0.3248 |
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2200 |
| [TruthfulQA MC 1](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.2497|
| [TruthfulQA MC 2](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.4438 |
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.2560 |
| [arc challenge](https://huggingface.co/datasets/allenai/ai2_arc) (5-shot) | 0.2372 |
| [arc easy](https://huggingface.co/datasets/allenai/ai2_arc) (5-shot) | 0.3965 |
| [piqa](https://huggingface.co/datasets/piqa) (5-shot) | 0.6540 |
| [sciq](https://huggingface.co/datasets/sciq) (5-shot) | 0.6730 |
## Training Data
Minerva-350M-base-v1.0 was trained on 35B Italian tokens and 35B English tokens sampled from CulturaX.
The data was selected from the following sources:
* OSCAR-2201
* OSCAR-2301
* mC4
We have extracted some statistics on Italian (115B tokens) and English (210B tokens) documents from CulturaX on the selected sources:
*Proportion of number of tokens per domain (Italian)*
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_it.png?raw=true" alt="italian-tok-counts" border="0" width="1800px">
*Proportion of number of tokens per domain (English)*
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_en.png?raw=true" alt="english-tok-counts" border="0" width="1800px">
## Tokenizer Fertility
The tokenizer fertility measures the average amount of tokens produced per tokenized word.
A tokenizer displaying high fertility values in a particular language typically indicates that it segments words in that language extensively.
The tokenizer fertility is strictly correlated with the inference speed of the model with respect to a specific language,
as higher values mean longer sequences of tokens to generate and thus lower inference speed.
**Fertility computed over a sample of Cultura X (CX) data and Wikipedia (Wp):**
| Model | Voc. Size | Fertility IT (CX) | Fertility EN (CX) | Fertility IT (Wp) | Fertility EN (Wp) |
| --- | --- | --- |--- | --- |--- |
| Mistral-7B-v0.1 | 32000 | 1.87 | 1.32 | 2.05 | 1.57 |
| gemma-7b | 256000 | 1.42 | 1.18 | 1.56 | 1.34 |
| Minerva-350M-base-v1.0 | 32768 | 1.39 | 1.32 | 1.66 | 1.59 |
## Notice
Minerva-350M-base-v1.0 is a pretrained base model and, therefore, has no moderation mechanisms.
## The Sapienza NLP Team
* **Riccardo Orlando:** data preprocessing, model training
* **Pere-Lluis Huguet Cabot:** data preprocessing, vocabulary, evaluation
* **Luca Moroni:** data curation, data analysis, downstream tasks, evaluation
* **Simone Conia:** data curation, evaluation, project supervision
* **Edoardo Barba:** data preprocessing, downstream tasks, project supervision
* **Roberto Navigli:** project lead and coordination
### Special thanks for their support
* Giuseppe Fiameni, Nvidia
* Sergio Orlandini, CINECA
## Acknowledgments
This work was funded by the PNRR MUR project [PE0000013-FAIR](https://fondazione-fair.it).
We acknowledge the [CINECA](https://www.cineca.it) award "IscB_medit" under the ISCRA initiative, for the availability of high performance computing resources and support.
| [
"SCIQ"
] |
Backedman/TriviaAnsweringMachineREAL | Backedman | question-answering | [
"transformers",
"pytorch",
"TFIDF-QA",
"question-answering",
"custom_code",
"en",
"license:mit",
"region:us"
] | "2024-05-07T01:04:47Z" | 2024-05-12T22:28:55+00:00 | 5,270 | 0 | ---
language:
- en
license: mit
pipeline_tag: question-answering
---
The evaluation of this project is to answer trivia questions. You do
not need to do well at this task, but you should submit a system that
completes the task or create adversarial questions in that setting. This will help the whole class share data and
resources.
If you focus on something other than predicting answers, *that's fine*!
About the Data
==============
Quiz bowl is an academic competition between schools in
English-speaking countries; hundreds of teams compete in dozens of
tournaments each year. Quiz bowl is different from Jeopardy, a recent
application area. While Jeopardy also uses signaling devices, these
are only usable after a question is completed (interrupting Jeopardy's
questions would make for bad television). Thus, Jeopardy is rapacious
classification followed by a race---among those who know the
answer---to punch a button first.
Here's an example of a quiz bowl question:
Expanding on a 1908 paper by Smoluchowski, he derived a formula for
the intensity of scattered light in media fluctuating densities that
reduces to Rayleigh's law for ideal gases in The Theory of the
Opalescence of Homogenous Fluids and Liquid Mixtures near the Critical
State. That research supported his theories of matter first developed
when he calculated the diffusion constant in terms of fundamental
parameters of the particles of a gas undergoing Brownian Motion. In
that same year, 1905, he also published On a Heuristic Point of View
Concerning the Production and Transformation of Light. That
explication of the photoelectric effect won him 1921 Nobel in Physics.
For ten points, name this German physicist best known for his theory
of Relativity.
*ANSWER*: Albert _Einstein_
Two teams listen to the same question. Teams interrupt the question at
any point by "buzzing in"; if the answer is correct, the team gets
points and the next question is read. Otherwise, the team loses
points and the other team can answer.
You are welcome to use any *automatic* method to choose an answer. It
need not be similar nor build on our provided systems. In addition to
the data we provide, you are welcome to use any external data *except*
our test quiz bowl questions (i.e., don't hack our server!). You are
welcome (an encouraged) to use any publicly available software, but
you may want to check on Piazza for suggestions as many tools are
better (or easier to use) than others.
If you don't like the interruptability of questions, you can also just answer entire questions. However, you must also output a confidence.
Competition
==================
We will use Dynabech website (https://dynabench.org/tasks/qa). If you remember the past workshop about Dynabench submission, this is the way to do it. The specific task name is "Grounded QA". Here, with the help of the video tutorial, you submit your QA model and assess how your QA model did compared to others. The assessment will take place by testing your QA model on several QA test datasets and the results of yours and your competitors will be visible on the leaderboard. Your goal is to rank the highest in terms of expected wins: you buzz in with probability proportional to your confidence, and if you're more right than the competition, you win.
Writing Questions
==================
Alternatively, you can also *write* 50 adversarial questions that
challenge modern NLP systems. These questions must be diverse in the
subjects asked about, the skills computers need to answer the
questions, and the entities in those questions. Remember that your questions should be *factual* and
*specific* enough for humans to answer, because your task is to stump
the computers relative to humans!
In addition to the raw questions, you will also need to create citations describing:
* Why the question is difficult for computers: include citations from the NLP/AI/ML literature
* Why the information in the question is correct: include citations from the sources you drew on the write the question
* Why the question is interesting: include scholarly / popular culture artifacts to prove that people care about this
* Why the question is pyramidal: discuss why your first clues are harder than your later clues
**Category**
We want questions from many domains such as Art, Literature, Geography, History,
Science, TV and Film, Music, Lifestyle, and Sport. The questions
should be written using all topics above (5 questions for each
category and 5 more for the remaining categories). Indicate in your
writeup which category you chose to write on for each question.
Art:
* Questions about works: Mona Lisa, Raft of the Medussa
* Questions about forms: color, contour, texture
* Questions about artists: Picasso, Monet, Leonardo da Vinci
* Questions about context: Renaissance, post-modernism, expressionism, surrealism
Literature:
* Questions about works: novels (1984), plays (The Lion and the Jewel), poems (Rubaiyat), criticism (Poetics)
* Questions about major characters or events in literature: The Death of Anna Karenina, Noboru Wataya, the Marriage of Hippolyta and Theseus
* Questions about literary movements (Sturm und Drang)
* Questions about translations
* Cross-cutting questions (appearances of Overcoats in novels)
* Common link questions (the literary output of a country/region)
Geography:
* Questions about location: names of capital, state, river
* Questions about the place: temperature, wind flow, humidity
History:
* When: When did the First World war start?
* Who: Who is called Napoleon of Iran?
* Where: Where was the first Summer Olympics held?
* Which: Which is the oldest civilization in the world?
Science:
* Questions about terminology: The concept of gravity was discovered by which famous physicist?
* Questions about the experiment
* Questions about theory: The social action theory believes that individuals are influenced by this theory.
TV and Film:
* Quotes: What are the dying words of Charles Foster Kane in Citizen Kane?
* Title: What 1927 musical was the first "talkie"?
* Plot: In The Matrix, does Neo take the blue pill or the red pill?
Music:
* Singer: What singer has had a Billboard No. 1 hit in each of the last four decades?
* Band: Before Bleachers and fun., Jack Antonoff fronted what band?
* Title: What was Madonna's first top 10 hit?
* History: Which classical composer was deaf?
Lifestyle:
* Clothes: What clothing company, founded by a tennis player, has an alligator logo?
* Decoration: What was the first perfume sold by Coco Chanel?
Sport:
* Known facts: What sport is best known as the ‘king of sports’?
* Nationality: What’s the national sport of Canada?
* Sport player: The classic 1980 movie called Raging Bull is about which real-life boxer?
* Country: What country has competed the most times in the Summer Olympics yet hasn’t won any kind of medal?
**Diversity**
Other than category diversity, if you find an ingenious way of writing questions about underrepresented countries, you will get bonus points (indicate which questions you included the diversity component in your writeup). You may decide which are underrepresented countries with your own reasonable reason (etc., less population may indicate underrepresented), but make sure to articulate this in your writeup.
* Run state of the art QA systems on the questions to show they struggle, give individual results for each question and a summary over all questions
For an example of what the writeup for a single question should look like, see the adversarial HW:
https://github.com/Pinafore/nlp-hw/blob/master/adversarial/question.tex
Proposal
==================
The project proposal is a one page PDF document that describes:
* Who is on your team (team sizes can be between three and six
students, but six is really too big to be effective; my suggestion
is that most groups should be between four or five).
* What techniques you will explore
* Your timeline for completing the project (be realistic; you should
have your first submission in a week or two)
Submit the proposal on Gradescope, but make sure to include all group
members. If all group members are not included, you will lose points. Late days cannot be used on this
assignment.
Milestone 1
======================
You'll have to update how things are going: what's
working, what isn't, and how does it change your timeline? How does it change your division of labor?
*Question Writing*: You'll need to have answers selected for all of
your questions and first drafts of at least 15 questions. This must
be submitted as a JSON file so that we run computer QA systems on it.
*Project*: You'll need to have made a submission to the leaderboard with something that satisfies the API.
Submit a PDF updating on your progress to Gradescope. If all team
members are not on the submission, you will lose points.
Milestone 2
===================
As before, provide an updated timeline / division of labor, provide your intermediary results.
*Question Writing*: You'll need to have reflected the feedback from the first questions and completed a first draft of at least 30 questions. You'll also need machine results to your questions and an overall evaluation of your human/computer accuracy.
*Project*: You'll need to have a made a submission to the leaderboard with a working system (e.g., not just obey the API, but actually get reasonable answers).
Submit a PDF updating on your progress.
Final Presentation
======================
The final presentation will be virtual (uploading a video). In
the final presentation you will:
* Explain what you did
* Who did what. For example, for the question writing project a team of five people might write: A wrote the first draft of questions. B and C verified they were initially answerable by a human. B ran computer systems to verify they were challenging to a computer. C edited the questions and increased the computer difficulty. D and E verified that the edited questions were still answerable by a human. D and E checked all of the questions for factual accuracy and created citations and the writeup.
* What challenges you had
* Review how well you did (based on the competition or your own metrics). If you do not use the course infrastructure to evaluate your project's work, you should talk about what alternative evaluations you used, why they're appropriate/fair, and how well you did on them.
* Provide an error analysis. An error analysis must contain examples from the
development set that you get wrong. You should show those sentences
and explain why (in terms of features or the model) they have the
wrong answer. You should have been doing this all along as you
derive new features, but this is your final inspection of
your errors. The feature or model problems you discover should not
be trivial features you could add easily. Instead, these should be
features or models that are difficult to correct. An error analysis
is not the same thing as simply presenting the error matrix, as it
does not inspect any individual examples. If you're writing questions, talk about examples of questions that didn't work out as intended.
* The linguistic motivation for your features / how your wrote the questions. This is a
computational linguistics class, so you should give precedence to
features / techniques that we use in this class (e.g., syntax,
morphology, part of speech, word sense, etc.). Given two features
that work equally well and one that is linguistically motivated,
we'll prefer the linguistically motivated one.
* Presumably you did many different things; how did they each
individually contribute to your final result?
Each group has 10 minutes to deliver their presentation. Please record the video, and upload it to Google Drive, and include the link in your writeup submission.
Final Question Submission
======================
Because we need to get the questions ready for the systems, upload your raw questions on May 10. This doesn't include the citations or other parts of the writeup.
System Submission
======================
You must submit a version of your system by May 12. It may not be perfect, but this what the question writing teams will use to test their results.
Your system should be sent directly to the professor and TAs in zip files, including the correct dependencies and a working inference code. Your inference code should run successfully in the root folder (extracted from zip folder) directory with the command:
```
> python3 inference.py --data=evaluation_set.json
```
The input will be in the form of a .json file () in the same format as the file the adversarial question writing team submits. The output format should also be in string.
If you have any notes or comments that we should be aware of while running your code, please include them in the folder as a .txt file. Also, dependency information should be included as a .txt file.
Please prepend your email title with [2024-CMSC 470 System Submission].
Project Writeup and JSON file
======================
By May 17, submit your project writeup explaining what
you did and what results you achieved. This document should
make it clear:
* Why this is a good idea
* What you did
* Who did what
* Whether your technique worked or not
For systems, please do not go over 2500 words unless you have a really good reason.
Images are a much better use of space than words, usually (there's no
limit on including images, but use judgement and be selective).
For question writing, you have one page (single spaced, two column) per question plus a two page summary of results. Talk about how you organized the question writing, how you evaluated the questions, and a summary of the results. Along with your writeup, turn in a json including the raw text of the question and answer and category. The json file is included in this directory. Make sure your json file is in the correct format and is callable via below code. Your submission will not be graded if it does not follow the format of the example json file.
```
with open('path to your json file', 'r') as f:
data = json.load(f)
```
Grade
======================
The grade will be out of 25 points, broken into five areas:
* _Presentation_: For your oral presentation, do you highlight what
you did and make people care? Did you use time well during the
presentation?
* _Writeup_: Does the writeup explain what you did in a way that is
clear and effective?
The final three areas are different between the system and the questions.
| | System | Questions |
|----------|:-------------:|------:|
| _Technical Soundness_ | Did you use the right tools for the job, and did you use them correctly? Were they relevant to this class? | Were your questions correct and accurately cited. |
| _Effort_ | Did you do what you say you would, and was it the right ammount of effort. | Are the questions well-written, interesting, and thoroughly edited? |
| _Performance_ | How did your techniques perform in terms of accuracy, recall, etc.? | Is the human accuracy substantially higher than the computer accuracy? |
All members of the group will receive the same grade. It's impossible for the course staff to adjudicate Rashomon-style accounts of who did what, and the goal of a group project is for all team members to work together to create a cohesive project that works well together. While it makes sense to divide the work into distinct areas of responsibility, at grading time we have now way to know who really did what, so it's the groups responsibility to create a piece of output that reflects well on the whole group.
| [
"MEDAL"
] |
Salesforce/SFR-Embedding-2_R | Salesforce | feature-extraction | [
"sentence-transformers",
"safetensors",
"mistral",
"feature-extraction",
"mteb",
"transformers",
"en",
"license:cc-by-nc-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-06-14T19:34:13Z" | 2025-02-04T21:05:42+00:00 | 5,249 | 84 | ---
language:
- en
license: cc-by-nc-4.0
tags:
- mteb
- sentence-transformers
- transformers
model-index:
- name: Salesforce/SFR-Embedding-2_R
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 92.71641791044776
- type: ap
value: 69.47931007147756
- type: f1
value: 88.0252625393374
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 97.31075
- type: ap
value: 96.26693923450127
- type: f1
value: 97.31042448894502
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 61.040000000000006
- type: f1
value: 60.78646832640785
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 37.767
- type: map_at_10
value: 53.908
- type: map_at_100
value: 54.583000000000006
- type: map_at_1000
value: 54.583999999999996
- type: map_at_20
value: 54.50899999999999
- type: map_at_3
value: 49.514
- type: map_at_5
value: 52.059999999999995
- type: mrr_at_1
value: 38.26458036984353
- type: mrr_at_10
value: 54.120408001987066
- type: mrr_at_100
value: 54.780719904297406
- type: mrr_at_1000
value: 54.78174226698592
- type: mrr_at_20
value: 54.706604527160295
- type: mrr_at_3
value: 49.71550497866294
- type: mrr_at_5
value: 52.247510668563436
- type: ndcg_at_1
value: 37.767
- type: ndcg_at_10
value: 62.339999999999996
- type: ndcg_at_100
value: 64.89399999999999
- type: ndcg_at_1000
value: 64.914
- type: ndcg_at_20
value: 64.402
- type: ndcg_at_3
value: 53.33
- type: ndcg_at_5
value: 57.93899999999999
- type: precision_at_1
value: 37.767
- type: precision_at_10
value: 8.905000000000001
- type: precision_at_100
value: 0.9950000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.8469999999999995
- type: precision_at_3
value: 21.456
- type: precision_at_5
value: 15.121
- type: recall_at_1
value: 37.767
- type: recall_at_10
value: 89.047
- type: recall_at_100
value: 99.502
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 96.942
- type: recall_at_3
value: 64.36699999999999
- type: recall_at_5
value: 75.605
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 54.024325012036314
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 48.817300846601675
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 66.71478959728732
- type: mrr
value: 79.07202216066482
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 88.79517914982239
- type: cos_sim_spearman
value: 87.60440576436838
- type: euclidean_pearson
value: 87.75596873521118
- type: euclidean_spearman
value: 87.60440576436838
- type: manhattan_pearson
value: 87.74113773865973
- type: manhattan_spearman
value: 87.50560833247899
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 90.02272727272727
- type: f1
value: 89.96681880265936
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 50.75930389699286
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 46.57286439805565
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: mteb/cqadupstack
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 28.056666666666665
- type: map_at_10
value: 39.61749999999999
- type: map_at_100
value: 41.00666666666666
- type: map_at_1000
value: 41.11358333333334
- type: map_at_20
value: 40.410250000000005
- type: map_at_3
value: 35.98591666666667
- type: map_at_5
value: 38.02
- type: mrr_at_1
value: 33.73950708467142
- type: mrr_at_10
value: 44.0987162763402
- type: mrr_at_100
value: 44.94302678553521
- type: mrr_at_1000
value: 44.98758207055161
- type: mrr_at_20
value: 44.61156907536121
- type: mrr_at_3
value: 41.247253732468415
- type: mrr_at_5
value: 42.84859071071954
- type: ndcg_at_1
value: 33.739666666666665
- type: ndcg_at_10
value: 46.10683333333334
- type: ndcg_at_100
value: 51.49275000000001
- type: ndcg_at_1000
value: 53.2585
- type: ndcg_at_20
value: 48.349
- type: ndcg_at_3
value: 40.12416666666667
- type: ndcg_at_5
value: 42.94783333333333
- type: precision_at_1
value: 33.739666666666665
- type: precision_at_10
value: 8.46025
- type: precision_at_100
value: 1.3215833333333333
- type: precision_at_1000
value: 0.16524999999999998
- type: precision_at_20
value: 4.9935833333333335
- type: precision_at_3
value: 19.00516666666667
- type: precision_at_5
value: 13.72141666666667
- type: recall_at_1
value: 28.056666666666665
- type: recall_at_10
value: 60.68825000000001
- type: recall_at_100
value: 83.74433333333334
- type: recall_at_1000
value: 95.62299999999999
- type: recall_at_20
value: 68.77641666666668
- type: recall_at_3
value: 44.06991666666667
- type: recall_at_5
value: 51.324999999999996
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 15.609
- type: map_at_10
value: 25.584
- type: map_at_100
value: 27.291999999999998
- type: map_at_1000
value: 27.471
- type: map_at_20
value: 26.497
- type: map_at_3
value: 21.61
- type: map_at_5
value: 23.76
- type: mrr_at_1
value: 34.98371335504886
- type: mrr_at_10
value: 45.73747479447807
- type: mrr_at_100
value: 46.4973410206458
- type: mrr_at_1000
value: 46.53372527933685
- type: mrr_at_20
value: 46.19978503202757
- type: mrr_at_3
value: 42.85559174809991
- type: mrr_at_5
value: 44.65038002171556
- type: ndcg_at_1
value: 34.984
- type: ndcg_at_10
value: 34.427
- type: ndcg_at_100
value: 40.908
- type: ndcg_at_1000
value: 44.118
- type: ndcg_at_20
value: 36.885
- type: ndcg_at_3
value: 29.09
- type: ndcg_at_5
value: 30.979
- type: precision_at_1
value: 34.984
- type: precision_at_10
value: 10.476
- type: precision_at_100
value: 1.748
- type: precision_at_1000
value: 0.23500000000000001
- type: precision_at_20
value: 6.313000000000001
- type: precision_at_3
value: 21.39
- type: precision_at_5
value: 16.378
- type: recall_at_1
value: 15.609
- type: recall_at_10
value: 39.619
- type: recall_at_100
value: 61.952
- type: recall_at_1000
value: 79.861
- type: recall_at_20
value: 46.489000000000004
- type: recall_at_3
value: 26.134
- type: recall_at_5
value: 31.955
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 10.482
- type: map_at_10
value: 25.155
- type: map_at_100
value: 36.606
- type: map_at_1000
value: 38.617000000000004
- type: map_at_20
value: 29.676000000000002
- type: map_at_3
value: 16.881
- type: map_at_5
value: 20.043
- type: mrr_at_1
value: 76.0
- type: mrr_at_10
value: 82.5610119047619
- type: mrr_at_100
value: 82.74795937825128
- type: mrr_at_1000
value: 82.75526942226163
- type: mrr_at_20
value: 82.70580357142858
- type: mrr_at_3
value: 81.41666666666667
- type: mrr_at_5
value: 82.26666666666667
- type: ndcg_at_1
value: 63.625
- type: ndcg_at_10
value: 51.214000000000006
- type: ndcg_at_100
value: 56.411
- type: ndcg_at_1000
value: 63.429
- type: ndcg_at_20
value: 50.595
- type: ndcg_at_3
value: 54.989
- type: ndcg_at_5
value: 52.589
- type: precision_at_1
value: 76.0
- type: precision_at_10
value: 41.975
- type: precision_at_100
value: 13.26
- type: precision_at_1000
value: 2.493
- type: precision_at_20
value: 32.15
- type: precision_at_3
value: 59.0
- type: precision_at_5
value: 51.24999999999999
- type: recall_at_1
value: 10.482
- type: recall_at_10
value: 31.075000000000003
- type: recall_at_100
value: 63.119
- type: recall_at_1000
value: 85.32300000000001
- type: recall_at_20
value: 40.345
- type: recall_at_3
value: 17.916
- type: recall_at_5
value: 22.475
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 93.36500000000001
- type: f1
value: 89.89541440183861
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 81.948
- type: map_at_10
value: 89.47500000000001
- type: map_at_100
value: 89.66199999999999
- type: map_at_1000
value: 89.671
- type: map_at_20
value: 89.582
- type: map_at_3
value: 88.646
- type: map_at_5
value: 89.19
- type: mrr_at_1
value: 88.23882388238825
- type: mrr_at_10
value: 93.2122736083131
- type: mrr_at_100
value: 93.23908769526588
- type: mrr_at_1000
value: 93.23932393435209
- type: mrr_at_20
value: 93.23217832106207
- type: mrr_at_3
value: 92.98679867986787
- type: mrr_at_5
value: 93.16906690669056
- type: ndcg_at_1
value: 88.239
- type: ndcg_at_10
value: 92.155
- type: ndcg_at_100
value: 92.735
- type: ndcg_at_1000
value: 92.866
- type: ndcg_at_20
value: 92.39699999999999
- type: ndcg_at_3
value: 91.188
- type: ndcg_at_5
value: 91.754
- type: precision_at_1
value: 88.239
- type: precision_at_10
value: 10.903
- type: precision_at_100
value: 1.147
- type: precision_at_1000
value: 0.117
- type: precision_at_20
value: 5.5440000000000005
- type: precision_at_3
value: 34.598
- type: precision_at_5
value: 21.302
- type: recall_at_1
value: 81.948
- type: recall_at_10
value: 96.518
- type: recall_at_100
value: 98.646
- type: recall_at_1000
value: 99.399
- type: recall_at_20
value: 97.262
- type: recall_at_3
value: 93.89800000000001
- type: recall_at_5
value: 95.38600000000001
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 32.033
- type: map_at_10
value: 53.55
- type: map_at_100
value: 55.672
- type: map_at_1000
value: 55.764
- type: map_at_20
value: 54.87800000000001
- type: map_at_3
value: 46.761
- type: map_at_5
value: 50.529
- type: mrr_at_1
value: 60.95679012345679
- type: mrr_at_10
value: 68.70835782872815
- type: mrr_at_100
value: 69.21918402444501
- type: mrr_at_1000
value: 69.23608783148705
- type: mrr_at_20
value: 69.07497388036454
- type: mrr_at_3
value: 66.76954732510285
- type: mrr_at_5
value: 67.95781893004109
- type: ndcg_at_1
value: 60.956999999999994
- type: ndcg_at_10
value: 61.766
- type: ndcg_at_100
value: 67.652
- type: ndcg_at_1000
value: 68.94500000000001
- type: ndcg_at_20
value: 64.48700000000001
- type: ndcg_at_3
value: 57.25
- type: ndcg_at_5
value: 58.64
- type: precision_at_1
value: 60.956999999999994
- type: precision_at_10
value: 17.083000000000002
- type: precision_at_100
value: 2.346
- type: precision_at_1000
value: 0.257
- type: precision_at_20
value: 9.807
- type: precision_at_3
value: 38.477
- type: precision_at_5
value: 27.962999999999997
- type: recall_at_1
value: 32.033
- type: recall_at_10
value: 69.44
- type: recall_at_100
value: 90.17500000000001
- type: recall_at_1000
value: 97.90100000000001
- type: recall_at_20
value: 77.629
- type: recall_at_3
value: 51.664
- type: recall_at_5
value: 59.565
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 42.741
- type: map_at_10
value: 74.811
- type: map_at_100
value: 75.508
- type: map_at_1000
value: 75.541
- type: map_at_20
value: 75.25699999999999
- type: map_at_3
value: 71.31
- type: map_at_5
value: 73.69
- type: mrr_at_1
value: 85.48278190411884
- type: mrr_at_10
value: 90.20347684425987
- type: mrr_at_100
value: 90.29734129342121
- type: mrr_at_1000
value: 90.30017606259217
- type: mrr_at_20
value: 90.27225310310567
- type: mrr_at_3
value: 89.67364393427842
- type: mrr_at_5
value: 90.02408282691847
- type: ndcg_at_1
value: 85.483
- type: ndcg_at_10
value: 81.361
- type: ndcg_at_100
value: 83.588
- type: ndcg_at_1000
value: 84.19
- type: ndcg_at_20
value: 82.42699999999999
- type: ndcg_at_3
value: 76.779
- type: ndcg_at_5
value: 79.581
- type: precision_at_1
value: 85.483
- type: precision_at_10
value: 17.113
- type: precision_at_100
value: 1.882
- type: precision_at_1000
value: 0.196
- type: precision_at_20
value: 8.899
- type: precision_at_3
value: 50.397999999999996
- type: precision_at_5
value: 32.443
- type: recall_at_1
value: 42.741
- type: recall_at_10
value: 85.564
- type: recall_at_100
value: 94.07799999999999
- type: recall_at_1000
value: 97.995
- type: recall_at_20
value: 88.98700000000001
- type: recall_at_3
value: 75.598
- type: recall_at_5
value: 81.107
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 96.80320000000002
- type: ap
value: 94.98856145360044
- type: f1
value: 96.80287885839178
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: map_at_1
value: 22.539
- type: map_at_10
value: 35.109
- type: map_at_100
value: 36.287000000000006
- type: map_at_1000
value: 36.335
- type: map_at_20
value: 35.838
- type: map_at_3
value: 31.11
- type: map_at_5
value: 33.455
- type: mrr_at_1
value: 23.15186246418338
- type: mrr_at_10
value: 35.70532018920268
- type: mrr_at_100
value: 36.815167506137584
- type: mrr_at_1000
value: 36.85695349443505
- type: mrr_at_20
value: 36.39500867880642
- type: mrr_at_3
value: 31.81232091690535
- type: mrr_at_5
value: 34.096704871060155
- type: ndcg_at_1
value: 23.152
- type: ndcg_at_10
value: 42.181999999999995
- type: ndcg_at_100
value: 47.847
- type: ndcg_at_1000
value: 48.988
- type: ndcg_at_20
value: 44.767
- type: ndcg_at_3
value: 34.088
- type: ndcg_at_5
value: 38.257999999999996
- type: precision_at_1
value: 23.152
- type: precision_at_10
value: 6.678000000000001
- type: precision_at_100
value: 0.9530000000000001
- type: precision_at_1000
value: 0.105
- type: precision_at_20
value: 3.881
- type: precision_at_3
value: 14.518
- type: precision_at_5
value: 10.831
- type: recall_at_1
value: 22.539
- type: recall_at_10
value: 63.965
- type: recall_at_100
value: 90.129
- type: recall_at_1000
value: 98.721
- type: recall_at_20
value: 74.00999999999999
- type: recall_at_3
value: 42.004999999999995
- type: recall_at_5
value: 52.028
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 98.5750113999088
- type: f1
value: 98.41576079230245
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 91.29502963976289
- type: f1
value: 74.84400169335184
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 85.96839273705447
- type: f1
value: 82.43129186593926
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 90.60860793544047
- type: f1
value: 89.79415994859477
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 46.661892807041355
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 44.17598473858937
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: map
value: 31.260919294024603
- type: mrr
value: 32.37049108835034
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 6.672000000000001
- type: map_at_10
value: 15.972
- type: map_at_100
value: 20.94
- type: map_at_1000
value: 22.877
- type: map_at_20
value: 17.986
- type: map_at_3
value: 11.161
- type: map_at_5
value: 13.293
- type: mrr_at_1
value: 53.56037151702786
- type: mrr_at_10
value: 61.915696103002595
- type: mrr_at_100
value: 62.4130902631107
- type: mrr_at_1000
value: 62.45228087711845
- type: mrr_at_20
value: 62.1983715004112
- type: mrr_at_3
value: 60.31991744066049
- type: mrr_at_5
value: 61.27966976264191
- type: ndcg_at_1
value: 50.929
- type: ndcg_at_10
value: 41.336
- type: ndcg_at_100
value: 38.586999999999996
- type: ndcg_at_1000
value: 48.155
- type: ndcg_at_20
value: 38.888
- type: ndcg_at_3
value: 47.0
- type: ndcg_at_5
value: 44.335
- type: precision_at_1
value: 53.251000000000005
- type: precision_at_10
value: 31.146
- type: precision_at_100
value: 10.040000000000001
- type: precision_at_1000
value: 2.432
- type: precision_at_20
value: 23.421
- type: precision_at_3
value: 45.098
- type: precision_at_5
value: 39.071
- type: recall_at_1
value: 6.672000000000001
- type: recall_at_10
value: 20.764
- type: recall_at_100
value: 40.759
- type: recall_at_1000
value: 75.015
- type: recall_at_20
value: 25.548
- type: recall_at_3
value: 12.328
- type: recall_at_5
value: 15.601999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 50.944
- type: map_at_10
value: 67.565
- type: map_at_100
value: 68.10300000000001
- type: map_at_1000
value: 68.109
- type: map_at_20
value: 67.973
- type: map_at_3
value: 64.176
- type: map_at_5
value: 66.39699999999999
- type: mrr_at_1
value: 57.01042873696408
- type: mrr_at_10
value: 69.76629605105849
- type: mrr_at_100
value: 70.09927347130204
- type: mrr_at_1000
value: 70.10309675839956
- type: mrr_at_20
value: 70.02288627712392
- type: mrr_at_3
value: 67.46813441483191
- type: mrr_at_5
value: 68.93105446118189
- type: ndcg_at_1
value: 57.010000000000005
- type: ndcg_at_10
value: 73.956
- type: ndcg_at_100
value: 75.90299999999999
- type: ndcg_at_1000
value: 76.03999999999999
- type: ndcg_at_20
value: 75.17
- type: ndcg_at_3
value: 68.13900000000001
- type: ndcg_at_5
value: 71.532
- type: precision_at_1
value: 57.010000000000005
- type: precision_at_10
value: 10.91
- type: precision_at_100
value: 1.2
- type: precision_at_1000
value: 0.121
- type: precision_at_20
value: 5.753
- type: precision_at_3
value: 29.828
- type: precision_at_5
value: 19.971
- type: recall_at_1
value: 50.944
- type: recall_at_10
value: 90.754
- type: recall_at_100
value: 98.699
- type: recall_at_1000
value: 99.701
- type: recall_at_20
value: 95.148
- type: recall_at_3
value: 76.224
- type: recall_at_5
value: 83.872
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 71.856
- type: map_at_10
value: 86.077
- type: map_at_100
value: 86.696
- type: map_at_1000
value: 86.708
- type: map_at_20
value: 86.493
- type: map_at_3
value: 83.176
- type: map_at_5
value: 85.008
- type: mrr_at_1
value: 82.74000000000001
- type: mrr_at_10
value: 88.68947222222207
- type: mrr_at_100
value: 88.78196949571182
- type: mrr_at_1000
value: 88.78223256200576
- type: mrr_at_20
value: 88.76455636228219
- type: mrr_at_3
value: 87.85833333333316
- type: mrr_at_5
value: 88.43933333333311
- type: ndcg_at_1
value: 82.74000000000001
- type: ndcg_at_10
value: 89.583
- type: ndcg_at_100
value: 90.652
- type: ndcg_at_1000
value: 90.711
- type: ndcg_at_20
value: 90.203
- type: ndcg_at_3
value: 86.967
- type: ndcg_at_5
value: 88.43299999999999
- type: precision_at_1
value: 82.74000000000001
- type: precision_at_10
value: 13.617
- type: precision_at_100
value: 1.542
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.217999999999999
- type: precision_at_3
value: 38.163000000000004
- type: precision_at_5
value: 25.05
- type: recall_at_1
value: 71.856
- type: recall_at_10
value: 96.244
- type: recall_at_100
value: 99.773
- type: recall_at_1000
value: 99.99900000000001
- type: recall_at_20
value: 98.221
- type: recall_at_3
value: 88.715
- type: recall_at_5
value: 92.88499999999999
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 62.91969510127886
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 72.74201090913765
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 5.8229999999999995
- type: map_at_10
value: 15.152
- type: map_at_100
value: 17.936
- type: map_at_1000
value: 18.292
- type: map_at_20
value: 16.526
- type: map_at_3
value: 10.294
- type: map_at_5
value: 12.794
- type: mrr_at_1
value: 28.599999999999998
- type: mrr_at_10
value: 40.68206349206347
- type: mrr_at_100
value: 41.673752995361795
- type: mrr_at_1000
value: 41.71500072915374
- type: mrr_at_20
value: 41.28552805166964
- type: mrr_at_3
value: 36.84999999999998
- type: mrr_at_5
value: 39.19999999999995
- type: ndcg_at_1
value: 28.599999999999998
- type: ndcg_at_10
value: 24.866
- type: ndcg_at_100
value: 34.597
- type: ndcg_at_1000
value: 39.994
- type: ndcg_at_20
value: 28.309
- type: ndcg_at_3
value: 22.749
- type: ndcg_at_5
value: 20.502000000000002
- type: precision_at_1
value: 28.599999999999998
- type: precision_at_10
value: 13.089999999999998
- type: precision_at_100
value: 2.7119999999999997
- type: precision_at_1000
value: 0.39899999999999997
- type: precision_at_20
value: 8.53
- type: precision_at_3
value: 21.099999999999998
- type: precision_at_5
value: 18.22
- type: recall_at_1
value: 5.8229999999999995
- type: recall_at_10
value: 26.522000000000002
- type: recall_at_100
value: 55.003
- type: recall_at_1000
value: 80.977
- type: recall_at_20
value: 34.618
- type: recall_at_3
value: 12.848
- type: recall_at_5
value: 18.477
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 80.72562067620224
- type: cos_sim_spearman
value: 77.00710192931953
- type: euclidean_pearson
value: 78.65843289108192
- type: euclidean_spearman
value: 77.00710077709005
- type: manhattan_pearson
value: 78.48859522905846
- type: manhattan_spearman
value: 76.8213740840866
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 81.15015325911659
- type: cos_sim_spearman
value: 75.67268325741222
- type: euclidean_pearson
value: 75.54004763633206
- type: euclidean_spearman
value: 75.67262179635058
- type: manhattan_pearson
value: 75.80681616893116
- type: manhattan_spearman
value: 75.93721016401406
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 81.71651874476737
- type: cos_sim_spearman
value: 82.39667472464997
- type: euclidean_pearson
value: 82.28256504757712
- type: euclidean_spearman
value: 82.39663674872656
- type: manhattan_pearson
value: 82.3192873176068
- type: manhattan_spearman
value: 82.41915252757059
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 81.222967367593
- type: cos_sim_spearman
value: 79.92685877403252
- type: euclidean_pearson
value: 79.95053542861498
- type: euclidean_spearman
value: 79.9268858850991
- type: manhattan_pearson
value: 79.90485851323321
- type: manhattan_spearman
value: 79.93878025669312
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 85.27539130156643
- type: cos_sim_spearman
value: 85.81645767911826
- type: euclidean_pearson
value: 85.5488615685444
- type: euclidean_spearman
value: 85.81647022566916
- type: manhattan_pearson
value: 85.6358149547879
- type: manhattan_spearman
value: 85.96347118567043
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.43727336154858
- type: cos_sim_spearman
value: 84.50468882202796
- type: euclidean_pearson
value: 83.23576727105372
- type: euclidean_spearman
value: 84.50468882202796
- type: manhattan_pearson
value: 83.28843314503176
- type: manhattan_spearman
value: 84.60383766214322
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cos_sim_pearson
value: 88.86589365166874
- type: cos_sim_spearman
value: 88.93117996163835
- type: euclidean_pearson
value: 89.12271565981082
- type: euclidean_spearman
value: 88.93117996163835
- type: manhattan_pearson
value: 88.94419759325545
- type: manhattan_spearman
value: 88.63073561731899
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.96578378422929
- type: cos_sim_spearman
value: 67.10257461424345
- type: euclidean_pearson
value: 67.51317866195149
- type: euclidean_spearman
value: 67.10257461424345
- type: manhattan_pearson
value: 67.74940912013754
- type: manhattan_spearman
value: 67.46694183937207
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 83.55433725920493
- type: cos_sim_spearman
value: 83.60373857254014
- type: euclidean_pearson
value: 83.08086082334839
- type: euclidean_spearman
value: 83.6036864776559
- type: manhattan_pearson
value: 83.2232267589246
- type: manhattan_spearman
value: 83.78923946962664
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.28566757174322
- type: mrr
value: 96.63827639317836
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 70.661
- type: map_at_10
value: 82.051
- type: map_at_100
value: 82.162
- type: map_at_1000
value: 82.167
- type: map_at_20
value: 82.122
- type: map_at_3
value: 79.919
- type: map_at_5
value: 81.368
- type: mrr_at_1
value: 74.33333333333333
- type: mrr_at_10
value: 82.98452380952381
- type: mrr_at_100
value: 83.09512420633841
- type: mrr_at_1000
value: 83.10026279387446
- type: mrr_at_20
value: 83.05460927960928
- type: mrr_at_3
value: 81.8888888888889
- type: mrr_at_5
value: 82.65555555555557
- type: ndcg_at_1
value: 74.333
- type: ndcg_at_10
value: 85.914
- type: ndcg_at_100
value: 86.473
- type: ndcg_at_1000
value: 86.602
- type: ndcg_at_20
value: 86.169
- type: ndcg_at_3
value: 83.047
- type: ndcg_at_5
value: 84.72
- type: precision_at_1
value: 74.333
- type: precision_at_10
value: 10.933
- type: precision_at_100
value: 1.1199999999999999
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_20
value: 5.5169999999999995
- type: precision_at_3
value: 32.444
- type: precision_at_5
value: 20.8
- type: recall_at_1
value: 70.661
- type: recall_at_10
value: 96.333
- type: recall_at_100
value: 99.0
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 97.333
- type: recall_at_3
value: 88.64999999999999
- type: recall_at_5
value: 93.089
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.89108910891089
- type: cos_sim_ap
value: 97.61815451002174
- type: cos_sim_f1
value: 94.51097804391219
- type: cos_sim_precision
value: 94.32270916334662
- type: cos_sim_recall
value: 94.69999999999999
- type: dot_accuracy
value: 99.89108910891089
- type: dot_ap
value: 97.61815451002175
- type: dot_f1
value: 94.51097804391219
- type: dot_precision
value: 94.32270916334662
- type: dot_recall
value: 94.69999999999999
- type: euclidean_accuracy
value: 99.89108910891089
- type: euclidean_ap
value: 97.61815534251431
- type: euclidean_f1
value: 94.51097804391219
- type: euclidean_precision
value: 94.32270916334662
- type: euclidean_recall
value: 94.69999999999999
- type: manhattan_accuracy
value: 99.8940594059406
- type: manhattan_ap
value: 97.66124472227202
- type: manhattan_f1
value: 94.65267366316841
- type: manhattan_precision
value: 94.60539460539461
- type: manhattan_recall
value: 94.69999999999999
- type: max_accuracy
value: 99.8940594059406
- type: max_ap
value: 97.66124472227202
- type: max_f1
value: 94.65267366316841
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 76.482776391195
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 48.29023235124473
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.3190739691685
- type: mrr
value: 56.40441972243442
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.98570594378664
- type: cos_sim_spearman
value: 30.712965330802174
- type: dot_pearson
value: 31.98570540209124
- type: dot_spearman
value: 30.712965330802174
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.25
- type: map_at_10
value: 2.2640000000000002
- type: map_at_100
value: 14.447
- type: map_at_1000
value: 35.452
- type: map_at_20
value: 4.163
- type: map_at_3
value: 0.715
- type: map_at_5
value: 1.1780000000000002
- type: mrr_at_1
value: 94.0
- type: mrr_at_10
value: 96.66666666666667
- type: mrr_at_100
value: 96.66666666666667
- type: mrr_at_1000
value: 96.66666666666667
- type: mrr_at_20
value: 96.66666666666667
- type: mrr_at_3
value: 96.66666666666667
- type: mrr_at_5
value: 96.66666666666667
- type: ndcg_at_1
value: 92.0
- type: ndcg_at_10
value: 87.26899999999999
- type: ndcg_at_100
value: 68.586
- type: ndcg_at_1000
value: 61.056999999999995
- type: ndcg_at_20
value: 83.452
- type: ndcg_at_3
value: 90.11200000000001
- type: ndcg_at_5
value: 89.103
- type: precision_at_1
value: 94.0
- type: precision_at_10
value: 91.2
- type: precision_at_100
value: 70.12
- type: precision_at_1000
value: 26.773999999999997
- type: precision_at_20
value: 87.3
- type: precision_at_3
value: 92.667
- type: precision_at_5
value: 92.4
- type: recall_at_1
value: 0.25
- type: recall_at_10
value: 2.3970000000000002
- type: recall_at_100
value: 17.233999999999998
- type: recall_at_1000
value: 57.879000000000005
- type: recall_at_20
value: 4.508
- type: recall_at_3
value: 0.734
- type: recall_at_5
value: 1.2269999999999999
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 2.806
- type: map_at_10
value: 11.369
- type: map_at_100
value: 17.791
- type: map_at_1000
value: 19.363
- type: map_at_20
value: 14.038999999999998
- type: map_at_3
value: 5.817
- type: map_at_5
value: 8.331
- type: mrr_at_1
value: 36.734693877551024
- type: mrr_at_10
value: 53.355199222546155
- type: mrr_at_100
value: 53.648197984932665
- type: mrr_at_1000
value: 53.648197984932665
- type: mrr_at_20
value: 53.500971817298336
- type: mrr_at_3
value: 48.63945578231292
- type: mrr_at_5
value: 51.29251700680272
- type: ndcg_at_1
value: 35.714
- type: ndcg_at_10
value: 28.18
- type: ndcg_at_100
value: 39.22
- type: ndcg_at_1000
value: 50.807
- type: ndcg_at_20
value: 28.979
- type: ndcg_at_3
value: 31.114000000000004
- type: ndcg_at_5
value: 29.687
- type: precision_at_1
value: 36.735
- type: precision_at_10
value: 24.898
- type: precision_at_100
value: 7.918
- type: precision_at_1000
value: 1.5779999999999998
- type: precision_at_20
value: 18.878
- type: precision_at_3
value: 31.293
- type: precision_at_5
value: 29.387999999999998
- type: recall_at_1
value: 2.806
- type: recall_at_10
value: 17.776
- type: recall_at_100
value: 49.41
- type: recall_at_1000
value: 84.97200000000001
- type: recall_at_20
value: 26.589000000000002
- type: recall_at_3
value: 6.866999999999999
- type: recall_at_5
value: 10.964
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 91.1376953125
- type: ap
value: 40.51219896084815
- type: f1
value: 77.5195445434559
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 79.69722693831352
- type: f1
value: 80.02969178591319
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 66.42427742893598
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.81069321094355
- type: cos_sim_ap
value: 78.57014017906349
- type: cos_sim_f1
value: 72.38883143743536
- type: cos_sim_precision
value: 70.95793208312215
- type: cos_sim_recall
value: 73.87862796833772
- type: dot_accuracy
value: 87.81069321094355
- type: dot_ap
value: 78.5701399541226
- type: dot_f1
value: 72.38883143743536
- type: dot_precision
value: 70.95793208312215
- type: dot_recall
value: 73.87862796833772
- type: euclidean_accuracy
value: 87.81069321094355
- type: euclidean_ap
value: 78.57015336777854
- type: euclidean_f1
value: 72.38883143743536
- type: euclidean_precision
value: 70.95793208312215
- type: euclidean_recall
value: 73.87862796833772
- type: manhattan_accuracy
value: 87.57227156225785
- type: manhattan_ap
value: 78.19109731614216
- type: manhattan_f1
value: 71.87819856704198
- type: manhattan_precision
value: 69.77148534525584
- type: manhattan_recall
value: 74.1160949868074
- type: max_accuracy
value: 87.81069321094355
- type: max_ap
value: 78.57015336777854
- type: max_f1
value: 72.38883143743536
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.95032405790352
- type: cos_sim_ap
value: 88.03104739249996
- type: cos_sim_f1
value: 80.34377190070451
- type: cos_sim_precision
value: 77.11534376548892
- type: cos_sim_recall
value: 83.85432707114259
- type: dot_accuracy
value: 89.95032405790352
- type: dot_ap
value: 88.03105328515932
- type: dot_f1
value: 80.34377190070451
- type: dot_precision
value: 77.11534376548892
- type: dot_recall
value: 83.85432707114259
- type: euclidean_accuracy
value: 89.95032405790352
- type: euclidean_ap
value: 88.03105084564575
- type: euclidean_f1
value: 80.34377190070451
- type: euclidean_precision
value: 77.11534376548892
- type: euclidean_recall
value: 83.85432707114259
- type: manhattan_accuracy
value: 89.88046726433035
- type: manhattan_ap
value: 88.01484191858279
- type: manhattan_f1
value: 80.34005593993817
- type: manhattan_precision
value: 76.95290468133108
- type: manhattan_recall
value: 84.03911302740991
- type: max_accuracy
value: 89.95032405790352
- type: max_ap
value: 88.03105328515932
- type: max_f1
value: 80.34377190070451
---
<h1 align="center">Salesforce/SFR-Embedding-2_R</h1>
**SFR-Embedding by Salesforce Research.**
The model is for **research purposes only**.
More technical details will be updated later. Meanwhile, please refer to our previous work [SFR-Embedding](https://www.salesforce.com/blog/sfr-embedding/) for details.
### Ethical Considerations
This release is for research purposes only in support of an academic paper. Our models, datasets, and code are not specifically designed or evaluated for all downstream purposes. We strongly recommend users evaluate and address potential concerns related to accuracy, safety, and fairness before deploying this model. We encourage users to consider the common limitations of AI, comply with applicable laws, and leverage best practices when selecting use cases, particularly for high-risk scenarios where errors or misuse could significantly impact people’s lives, rights, or safety. For further guidance on use cases, refer to our [AUP](https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/policies/ExternalFacing_Services_Policy.pdf) and [AI AUP](https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/policies/ai-acceptable-use-policy.pdf).
SFR-Embedding Team (∗indicates equal contributors, † indicates co-leaders).
* Rui Meng*
* Ye Liu*
* Tong Niu
* Shafiq Rayhan Joty
* Caiming Xiong †
* Yingbo Zhou †
* Semih Yavuz †
### Citation
```bibtex
@misc{SFR-embedding-2,
title={SFR-Embedding-2: Advanced Text Embedding with Multi-stage Training},
author={Rui Meng*, Ye Liu*, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, Semih Yavuz},
year={2024},
url={https://huggingface.co/Salesforce/SFR-Embedding-2_R}
}
```
## How to run
#### Transformers
The models can be used as follows:
```python
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'How to bake a chocolate cake'),
get_detailed_instruct(task, 'Symptoms of the flu')
]
# No need to add instruction for retrieval documents
passages = [
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!",
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness."
]
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SFR-Embedding-2_R')
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-2_R')
# get the embeddings
max_length = 4096
input_texts = queries + passages
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt")
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
# [[40.132083892822266, 25.032529830932617], [15.006855010986328, 39.93733215332031]]
```
### Sentence Transformers
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Salesforce/SFR-Embedding-2_R")
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'How to bake a chocolate cake'),
get_detailed_instruct(task, 'Symptoms of the flu')
]
# No need to add instruction for retrieval documents
passages = [
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!",
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness."
]
embeddings = model.encode(queries + passages)
scores = model.similarity(embeddings[:2], embeddings[2:]) * 100
print(scores.tolist())
# [[40.13203811645508, 25.032546997070312], [15.00684642791748, 39.937339782714844]]
```
| [
"BIOSSES",
"SCIFACT"
] |
Hiveurban/multilingual-e5-large-pooled | Hiveurban | feature-extraction | [
"sentence-transformers",
"pytorch",
"onnx",
"safetensors",
"xlm-roberta",
"mteb",
"Sentence Transformers",
"sentence-similarity",
"feature-extraction",
"multilingual",
"af",
"am",
"ar",
"as",
"az",
"be",
"bg",
"bn",
"br",
"bs",
"ca",
"cs",
"cy",
"da",
"de",
"el",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"fy",
"ga",
"gd",
"gl",
"gu",
"ha",
"he",
"hi",
"hr",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"ku",
"ky",
"la",
"lo",
"lt",
"lv",
"mg",
"mk",
"ml",
"mn",
"mr",
"ms",
"my",
"ne",
"nl",
"no",
"om",
"or",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sa",
"sd",
"si",
"sk",
"sl",
"so",
"sq",
"sr",
"su",
"sv",
"sw",
"ta",
"te",
"th",
"tl",
"tr",
"ug",
"uk",
"ur",
"uz",
"vi",
"xh",
"yi",
"zh",
"arxiv:2402.05672",
"arxiv:2108.08787",
"arxiv:2104.08663",
"arxiv:2210.07316",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-09-24T12:15:49Z" | 2024-09-24T13:06:40+00:00 | 5,176 | 1 | ---
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
tags:
- mteb
- Sentence Transformers
- sentence-similarity
- feature-extraction
- sentence-transformers
model-index:
- name: multilingual-e5-large
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 79.05970149253731
- type: ap
value: 43.486574390835635
- type: f1
value: 73.32700092140148
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (de)
type: mteb/amazon_counterfactual
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.22055674518201
- type: ap
value: 81.55756710830498
- type: f1
value: 69.28271787752661
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 80.41979010494754
- type: ap
value: 29.34879922376344
- type: f1
value: 67.62475449011278
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (ja)
type: mteb/amazon_counterfactual
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 77.8372591006424
- type: ap
value: 26.557560591210738
- type: f1
value: 64.96619417368707
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.489875
- type: ap
value: 90.98758636917603
- type: f1
value: 93.48554819717332
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.564
- type: f1
value: 46.75122173518047
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (de)
type: mteb/amazon_reviews_multi
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 45.400000000000006
- type: f1
value: 44.17195682400632
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (es)
type: mteb/amazon_reviews_multi
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 43.068
- type: f1
value: 42.38155696855596
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 41.89
- type: f1
value: 40.84407321682663
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (ja)
type: mteb/amazon_reviews_multi
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.120000000000005
- type: f1
value: 39.522976223819114
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 38.832
- type: f1
value: 38.0392533394713
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.725
- type: map_at_10
value: 46.055
- type: map_at_100
value: 46.900999999999996
- type: map_at_1000
value: 46.911
- type: map_at_3
value: 41.548
- type: map_at_5
value: 44.297
- type: mrr_at_1
value: 31.152
- type: mrr_at_10
value: 46.231
- type: mrr_at_100
value: 47.07
- type: mrr_at_1000
value: 47.08
- type: mrr_at_3
value: 41.738
- type: mrr_at_5
value: 44.468999999999994
- type: ndcg_at_1
value: 30.725
- type: ndcg_at_10
value: 54.379999999999995
- type: ndcg_at_100
value: 58.138
- type: ndcg_at_1000
value: 58.389
- type: ndcg_at_3
value: 45.156
- type: ndcg_at_5
value: 50.123
- type: precision_at_1
value: 30.725
- type: precision_at_10
value: 8.087
- type: precision_at_100
value: 0.9769999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.54
- type: precision_at_5
value: 13.542000000000002
- type: recall_at_1
value: 30.725
- type: recall_at_10
value: 80.868
- type: recall_at_100
value: 97.653
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 55.619
- type: recall_at_5
value: 67.71000000000001
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 44.30960650674069
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 38.427074197498996
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 60.28270056031872
- type: mrr
value: 74.38332673789738
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 84.05942144105269
- type: cos_sim_spearman
value: 82.51212105850809
- type: euclidean_pearson
value: 81.95639829909122
- type: euclidean_spearman
value: 82.3717564144213
- type: manhattan_pearson
value: 81.79273425468256
- type: manhattan_spearman
value: 82.20066817871039
- task:
type: BitextMining
dataset:
name: MTEB BUCC (de-en)
type: mteb/bucc-bitext-mining
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.46764091858039
- type: f1
value: 99.37717466945023
- type: precision
value: 99.33194154488518
- type: recall
value: 99.46764091858039
- task:
type: BitextMining
dataset:
name: MTEB BUCC (fr-en)
type: mteb/bucc-bitext-mining
config: fr-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.29407880255337
- type: f1
value: 98.11248073959938
- type: precision
value: 98.02443319392472
- type: recall
value: 98.29407880255337
- task:
type: BitextMining
dataset:
name: MTEB BUCC (ru-en)
type: mteb/bucc-bitext-mining
config: ru-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 97.79009352268791
- type: f1
value: 97.5176076665512
- type: precision
value: 97.38136473848286
- type: recall
value: 97.79009352268791
- task:
type: BitextMining
dataset:
name: MTEB BUCC (zh-en)
type: mteb/bucc-bitext-mining
config: zh-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.26276987888363
- type: f1
value: 99.20133403545726
- type: precision
value: 99.17500438827453
- type: recall
value: 99.26276987888363
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.72727272727273
- type: f1
value: 84.67672206031433
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.34220182511161
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 33.4987096128766
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.558249999999997
- type: map_at_10
value: 34.44425000000001
- type: map_at_100
value: 35.59833333333333
- type: map_at_1000
value: 35.706916666666665
- type: map_at_3
value: 31.691749999999995
- type: map_at_5
value: 33.252916666666664
- type: mrr_at_1
value: 30.252666666666666
- type: mrr_at_10
value: 38.60675
- type: mrr_at_100
value: 39.42666666666666
- type: mrr_at_1000
value: 39.48408333333334
- type: mrr_at_3
value: 36.17441666666665
- type: mrr_at_5
value: 37.56275
- type: ndcg_at_1
value: 30.252666666666666
- type: ndcg_at_10
value: 39.683
- type: ndcg_at_100
value: 44.68541666666667
- type: ndcg_at_1000
value: 46.94316666666668
- type: ndcg_at_3
value: 34.961749999999995
- type: ndcg_at_5
value: 37.215666666666664
- type: precision_at_1
value: 30.252666666666666
- type: precision_at_10
value: 6.904166666666667
- type: precision_at_100
value: 1.0989999999999995
- type: precision_at_1000
value: 0.14733333333333334
- type: precision_at_3
value: 16.037666666666667
- type: precision_at_5
value: 11.413583333333333
- type: recall_at_1
value: 25.558249999999997
- type: recall_at_10
value: 51.13341666666666
- type: recall_at_100
value: 73.08366666666667
- type: recall_at_1000
value: 88.79483333333334
- type: recall_at_3
value: 37.989083333333326
- type: recall_at_5
value: 43.787833333333325
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.338
- type: map_at_10
value: 18.360000000000003
- type: map_at_100
value: 19.942
- type: map_at_1000
value: 20.134
- type: map_at_3
value: 15.174000000000001
- type: map_at_5
value: 16.830000000000002
- type: mrr_at_1
value: 23.257
- type: mrr_at_10
value: 33.768
- type: mrr_at_100
value: 34.707
- type: mrr_at_1000
value: 34.766000000000005
- type: mrr_at_3
value: 30.977
- type: mrr_at_5
value: 32.528
- type: ndcg_at_1
value: 23.257
- type: ndcg_at_10
value: 25.733
- type: ndcg_at_100
value: 32.288
- type: ndcg_at_1000
value: 35.992000000000004
- type: ndcg_at_3
value: 20.866
- type: ndcg_at_5
value: 22.612
- type: precision_at_1
value: 23.257
- type: precision_at_10
value: 8.124
- type: precision_at_100
value: 1.518
- type: precision_at_1000
value: 0.219
- type: precision_at_3
value: 15.679000000000002
- type: precision_at_5
value: 12.117
- type: recall_at_1
value: 10.338
- type: recall_at_10
value: 31.154
- type: recall_at_100
value: 54.161
- type: recall_at_1000
value: 75.21900000000001
- type: recall_at_3
value: 19.427
- type: recall_at_5
value: 24.214
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.498
- type: map_at_10
value: 19.103
- type: map_at_100
value: 27.375
- type: map_at_1000
value: 28.981
- type: map_at_3
value: 13.764999999999999
- type: map_at_5
value: 15.950000000000001
- type: mrr_at_1
value: 65.5
- type: mrr_at_10
value: 74.53800000000001
- type: mrr_at_100
value: 74.71799999999999
- type: mrr_at_1000
value: 74.725
- type: mrr_at_3
value: 72.792
- type: mrr_at_5
value: 73.554
- type: ndcg_at_1
value: 53.37499999999999
- type: ndcg_at_10
value: 41.286
- type: ndcg_at_100
value: 45.972
- type: ndcg_at_1000
value: 53.123
- type: ndcg_at_3
value: 46.172999999999995
- type: ndcg_at_5
value: 43.033
- type: precision_at_1
value: 65.5
- type: precision_at_10
value: 32.725
- type: precision_at_100
value: 10.683
- type: precision_at_1000
value: 1.978
- type: precision_at_3
value: 50
- type: precision_at_5
value: 41.349999999999994
- type: recall_at_1
value: 8.498
- type: recall_at_10
value: 25.070999999999998
- type: recall_at_100
value: 52.383
- type: recall_at_1000
value: 74.91499999999999
- type: recall_at_3
value: 15.207999999999998
- type: recall_at_5
value: 18.563
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 46.5
- type: f1
value: 41.93833713984145
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 67.914
- type: map_at_10
value: 78.10000000000001
- type: map_at_100
value: 78.333
- type: map_at_1000
value: 78.346
- type: map_at_3
value: 76.626
- type: map_at_5
value: 77.627
- type: mrr_at_1
value: 72.74199999999999
- type: mrr_at_10
value: 82.414
- type: mrr_at_100
value: 82.511
- type: mrr_at_1000
value: 82.513
- type: mrr_at_3
value: 81.231
- type: mrr_at_5
value: 82.065
- type: ndcg_at_1
value: 72.74199999999999
- type: ndcg_at_10
value: 82.806
- type: ndcg_at_100
value: 83.677
- type: ndcg_at_1000
value: 83.917
- type: ndcg_at_3
value: 80.305
- type: ndcg_at_5
value: 81.843
- type: precision_at_1
value: 72.74199999999999
- type: precision_at_10
value: 10.24
- type: precision_at_100
value: 1.089
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 31.268
- type: precision_at_5
value: 19.706000000000003
- type: recall_at_1
value: 67.914
- type: recall_at_10
value: 92.889
- type: recall_at_100
value: 96.42699999999999
- type: recall_at_1000
value: 97.92
- type: recall_at_3
value: 86.21
- type: recall_at_5
value: 90.036
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.166
- type: map_at_10
value: 35.57
- type: map_at_100
value: 37.405
- type: map_at_1000
value: 37.564
- type: map_at_3
value: 30.379
- type: map_at_5
value: 33.324
- type: mrr_at_1
value: 43.519000000000005
- type: mrr_at_10
value: 51.556000000000004
- type: mrr_at_100
value: 52.344
- type: mrr_at_1000
value: 52.373999999999995
- type: mrr_at_3
value: 48.868
- type: mrr_at_5
value: 50.319
- type: ndcg_at_1
value: 43.519000000000005
- type: ndcg_at_10
value: 43.803
- type: ndcg_at_100
value: 50.468999999999994
- type: ndcg_at_1000
value: 53.111
- type: ndcg_at_3
value: 38.893
- type: ndcg_at_5
value: 40.653
- type: precision_at_1
value: 43.519000000000005
- type: precision_at_10
value: 12.253
- type: precision_at_100
value: 1.931
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 25.617
- type: precision_at_5
value: 19.383
- type: recall_at_1
value: 22.166
- type: recall_at_10
value: 51.6
- type: recall_at_100
value: 76.574
- type: recall_at_1000
value: 92.192
- type: recall_at_3
value: 34.477999999999994
- type: recall_at_5
value: 41.835
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 39.041
- type: map_at_10
value: 62.961999999999996
- type: map_at_100
value: 63.79899999999999
- type: map_at_1000
value: 63.854
- type: map_at_3
value: 59.399
- type: map_at_5
value: 61.669
- type: mrr_at_1
value: 78.082
- type: mrr_at_10
value: 84.321
- type: mrr_at_100
value: 84.49600000000001
- type: mrr_at_1000
value: 84.502
- type: mrr_at_3
value: 83.421
- type: mrr_at_5
value: 83.977
- type: ndcg_at_1
value: 78.082
- type: ndcg_at_10
value: 71.229
- type: ndcg_at_100
value: 74.10900000000001
- type: ndcg_at_1000
value: 75.169
- type: ndcg_at_3
value: 66.28699999999999
- type: ndcg_at_5
value: 69.084
- type: precision_at_1
value: 78.082
- type: precision_at_10
value: 14.993
- type: precision_at_100
value: 1.7239999999999998
- type: precision_at_1000
value: 0.186
- type: precision_at_3
value: 42.737
- type: precision_at_5
value: 27.843
- type: recall_at_1
value: 39.041
- type: recall_at_10
value: 74.96300000000001
- type: recall_at_100
value: 86.199
- type: recall_at_1000
value: 93.228
- type: recall_at_3
value: 64.105
- type: recall_at_5
value: 69.608
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 90.23160000000001
- type: ap
value: 85.5674856808308
- type: f1
value: 90.18033354786317
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 24.091
- type: map_at_10
value: 36.753
- type: map_at_100
value: 37.913000000000004
- type: map_at_1000
value: 37.958999999999996
- type: map_at_3
value: 32.818999999999996
- type: map_at_5
value: 35.171
- type: mrr_at_1
value: 24.742
- type: mrr_at_10
value: 37.285000000000004
- type: mrr_at_100
value: 38.391999999999996
- type: mrr_at_1000
value: 38.431
- type: mrr_at_3
value: 33.440999999999995
- type: mrr_at_5
value: 35.75
- type: ndcg_at_1
value: 24.742
- type: ndcg_at_10
value: 43.698
- type: ndcg_at_100
value: 49.145
- type: ndcg_at_1000
value: 50.23800000000001
- type: ndcg_at_3
value: 35.769
- type: ndcg_at_5
value: 39.961999999999996
- type: precision_at_1
value: 24.742
- type: precision_at_10
value: 6.7989999999999995
- type: precision_at_100
value: 0.95
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 15.096000000000002
- type: precision_at_5
value: 11.183
- type: recall_at_1
value: 24.091
- type: recall_at_10
value: 65.068
- type: recall_at_100
value: 89.899
- type: recall_at_1000
value: 98.16
- type: recall_at_3
value: 43.68
- type: recall_at_5
value: 53.754999999999995
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.66621067031465
- type: f1
value: 93.49622853272142
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (de)
type: mteb/mtop_domain
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 91.94702733164272
- type: f1
value: 91.17043441745282
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (es)
type: mteb/mtop_domain
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.20146764509674
- type: f1
value: 91.98359080555608
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.99780770435328
- type: f1
value: 89.19746342724068
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (hi)
type: mteb/mtop_domain
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.78486912871998
- type: f1
value: 89.24578823628642
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (th)
type: mteb/mtop_domain
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.74502712477394
- type: f1
value: 89.00297573881542
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 77.9046967624259
- type: f1
value: 59.36787125785957
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (de)
type: mteb/mtop_intent
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 74.5280360664976
- type: f1
value: 57.17723440888718
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (es)
type: mteb/mtop_intent
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 75.44029352901934
- type: f1
value: 54.052855531072964
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 70.5606013153774
- type: f1
value: 52.62215934386531
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (hi)
type: mteb/mtop_intent
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 73.11581211903908
- type: f1
value: 52.341291845645465
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (th)
type: mteb/mtop_intent
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 74.28933092224233
- type: f1
value: 57.07918745504911
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (af)
type: mteb/amazon_massive_intent
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.38063214525892
- type: f1
value: 59.46463723443009
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (am)
type: mteb/amazon_massive_intent
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.06926698049766
- type: f1
value: 52.49084283283562
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ar)
type: mteb/amazon_massive_intent
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.74983187626093
- type: f1
value: 56.960640620165904
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (az)
type: mteb/amazon_massive_intent
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.86550100874243
- type: f1
value: 62.47370548140688
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (bn)
type: mteb/amazon_massive_intent
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.971082716879636
- type: f1
value: 61.03812421957381
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (cy)
type: mteb/amazon_massive_intent
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.98318762609282
- type: f1
value: 51.51207916008392
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (da)
type: mteb/amazon_massive_intent
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.45527908540686
- type: f1
value: 66.16631905400318
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (de)
type: mteb/amazon_massive_intent
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.32750504371216
- type: f1
value: 66.16755288646591
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (el)
type: mteb/amazon_massive_intent
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.09213180901143
- type: f1
value: 66.95654394661507
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.75588433086752
- type: f1
value: 71.79973779656923
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (es)
type: mteb/amazon_massive_intent
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.49428379287154
- type: f1
value: 68.37494379215734
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fa)
type: mteb/amazon_massive_intent
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.90921318090115
- type: f1
value: 66.79517376481645
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fi)
type: mteb/amazon_massive_intent
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.12104909213181
- type: f1
value: 67.29448842879584
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.34095494283793
- type: f1
value: 67.01134288992947
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (he)
type: mteb/amazon_massive_intent
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.61264290517822
- type: f1
value: 64.68730512660757
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hi)
type: mteb/amazon_massive_intent
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.79757901815738
- type: f1
value: 65.24938539425598
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hu)
type: mteb/amazon_massive_intent
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.68728984532616
- type: f1
value: 67.0487169762553
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hy)
type: mteb/amazon_massive_intent
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.07464694014795
- type: f1
value: 59.183532276789286
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (id)
type: mteb/amazon_massive_intent
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.04707464694015
- type: f1
value: 67.66829629003848
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (is)
type: mteb/amazon_massive_intent
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.42434431741762
- type: f1
value: 59.01617226544757
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (it)
type: mteb/amazon_massive_intent
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.53127101546738
- type: f1
value: 68.10033760906255
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ja)
type: mteb/amazon_massive_intent
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.50504371217215
- type: f1
value: 69.74931103158923
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (jv)
type: mteb/amazon_massive_intent
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.91190316072628
- type: f1
value: 54.05551136648796
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ka)
type: mteb/amazon_massive_intent
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 51.78211163416275
- type: f1
value: 49.874888544058535
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (km)
type: mteb/amazon_massive_intent
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 47.017484868863484
- type: f1
value: 44.53364263352014
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (kn)
type: mteb/amazon_massive_intent
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.16207128446537
- type: f1
value: 59.01185692320829
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ko)
type: mteb/amazon_massive_intent
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.42501681237391
- type: f1
value: 67.13169450166086
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (lv)
type: mteb/amazon_massive_intent
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.0780094149294
- type: f1
value: 64.41720167850707
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ml)
type: mteb/amazon_massive_intent
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.57162071284466
- type: f1
value: 62.414138683804424
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (mn)
type: mteb/amazon_massive_intent
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.71149966375252
- type: f1
value: 58.594805125087234
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ms)
type: mteb/amazon_massive_intent
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.03900470746471
- type: f1
value: 63.87937257883887
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (my)
type: mteb/amazon_massive_intent
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.8776059179556
- type: f1
value: 57.48587618059131
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nb)
type: mteb/amazon_massive_intent
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.87895090786819
- type: f1
value: 66.8141299430347
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nl)
type: mteb/amazon_massive_intent
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.45057162071285
- type: f1
value: 67.46444039673516
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.546738399462
- type: f1
value: 68.63640876702655
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pt)
type: mteb/amazon_massive_intent
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.72965702757229
- type: f1
value: 68.54119560379115
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ro)
type: mteb/amazon_massive_intent
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.35574983187625
- type: f1
value: 65.88844917691927
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.70477471418964
- type: f1
value: 69.19665697061978
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sl)
type: mteb/amazon_massive_intent
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.0880968392737
- type: f1
value: 64.76962317666086
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sq)
type: mteb/amazon_massive_intent
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.18493611297916
- type: f1
value: 62.49984559035371
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sv)
type: mteb/amazon_massive_intent
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.75857431069265
- type: f1
value: 69.20053687623418
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sw)
type: mteb/amazon_massive_intent
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.500336247478145
- type: f1
value: 55.2972398687929
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ta)
type: mteb/amazon_massive_intent
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.68997982515132
- type: f1
value: 59.36848202755348
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (te)
type: mteb/amazon_massive_intent
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.01950235373235
- type: f1
value: 60.09351954625423
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (th)
type: mteb/amazon_massive_intent
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.29186281102892
- type: f1
value: 67.57860496703447
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tl)
type: mteb/amazon_massive_intent
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.77471418964357
- type: f1
value: 61.913983147713836
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tr)
type: mteb/amazon_massive_intent
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.87222595830532
- type: f1
value: 66.03679033708141
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ur)
type: mteb/amazon_massive_intent
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.04505716207127
- type: f1
value: 61.28569169817908
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (vi)
type: mteb/amazon_massive_intent
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.38466711499663
- type: f1
value: 67.20532357036844
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.12306657700067
- type: f1
value: 68.91251226588182
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-TW)
type: mteb/amazon_massive_intent
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.20040349697378
- type: f1
value: 66.02657347714175
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (af)
type: mteb/amazon_massive_scenario
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.73907195696032
- type: f1
value: 66.98484521791418
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (am)
type: mteb/amazon_massive_scenario
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.58843308675185
- type: f1
value: 58.95591723092005
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ar)
type: mteb/amazon_massive_scenario
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.22730329522528
- type: f1
value: 66.0894499712115
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (az)
type: mteb/amazon_massive_scenario
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.48285137861465
- type: f1
value: 65.21963176785157
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (bn)
type: mteb/amazon_massive_scenario
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.74714189643578
- type: f1
value: 66.8212192745412
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (cy)
type: mteb/amazon_massive_scenario
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.09213180901143
- type: f1
value: 56.70735546356339
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (da)
type: mteb/amazon_massive_scenario
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.05716207128448
- type: f1
value: 74.8413712365364
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (de)
type: mteb/amazon_massive_scenario
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.69737726967047
- type: f1
value: 74.7664341963
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (el)
type: mteb/amazon_massive_scenario
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.90383322125084
- type: f1
value: 73.59201554448323
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.51176866173503
- type: f1
value: 77.46104434577758
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (es)
type: mteb/amazon_massive_scenario
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.31069266980496
- type: f1
value: 74.61048660675635
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fa)
type: mteb/amazon_massive_scenario
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.95225285810356
- type: f1
value: 72.33160006574627
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fi)
type: mteb/amazon_massive_scenario
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.12373907195696
- type: f1
value: 73.20921012557481
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.86684599865501
- type: f1
value: 73.82348774610831
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (he)
type: mteb/amazon_massive_scenario
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.40215198386012
- type: f1
value: 71.11945183971858
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hi)
type: mteb/amazon_massive_scenario
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.12844653665098
- type: f1
value: 71.34450495911766
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hu)
type: mteb/amazon_massive_scenario
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.52252858103566
- type: f1
value: 73.98878711342999
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hy)
type: mteb/amazon_massive_scenario
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.93611297915265
- type: f1
value: 63.723200467653385
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (id)
type: mteb/amazon_massive_scenario
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.11903160726295
- type: f1
value: 73.82138439467096
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (is)
type: mteb/amazon_massive_scenario
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.15198386012105
- type: f1
value: 66.02172193802167
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (it)
type: mteb/amazon_massive_scenario
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.32414256893072
- type: f1
value: 74.30943421170574
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ja)
type: mteb/amazon_massive_scenario
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.46805648957633
- type: f1
value: 77.62808409298209
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (jv)
type: mteb/amazon_massive_scenario
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.318762609280434
- type: f1
value: 62.094284066075076
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ka)
type: mteb/amazon_massive_scenario
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 58.34902488231338
- type: f1
value: 57.12893860987984
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (km)
type: mteb/amazon_massive_scenario
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 50.88433086751849
- type: f1
value: 48.2272350802058
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (kn)
type: mteb/amazon_massive_scenario
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.4425016812374
- type: f1
value: 64.61463095996173
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ko)
type: mteb/amazon_massive_scenario
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.04707464694015
- type: f1
value: 75.05099199098998
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (lv)
type: mteb/amazon_massive_scenario
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.50437121721586
- type: f1
value: 69.83397721096314
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ml)
type: mteb/amazon_massive_scenario
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.94283792871553
- type: f1
value: 68.8704663703913
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (mn)
type: mteb/amazon_massive_scenario
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.79488903833222
- type: f1
value: 63.615424063345436
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ms)
type: mteb/amazon_massive_scenario
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.88231338264963
- type: f1
value: 68.57892302593237
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (my)
type: mteb/amazon_massive_scenario
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.248150638870214
- type: f1
value: 61.06680605338809
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nb)
type: mteb/amazon_massive_scenario
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.84196368527236
- type: f1
value: 74.52566464968763
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nl)
type: mteb/amazon_massive_scenario
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.8285137861466
- type: f1
value: 74.8853197608802
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.13248150638869
- type: f1
value: 74.3982040999179
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pt)
type: mteb/amazon_massive_scenario
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.49024882313383
- type: f1
value: 73.82153848368573
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ro)
type: mteb/amazon_massive_scenario
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.72158708809684
- type: f1
value: 71.85049433180541
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.137861466039
- type: f1
value: 75.37628348188467
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sl)
type: mteb/amazon_massive_scenario
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.86953597848016
- type: f1
value: 71.87537624521661
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sq)
type: mteb/amazon_massive_scenario
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.27572293207801
- type: f1
value: 68.80017302344231
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sv)
type: mteb/amazon_massive_scenario
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.09952925353059
- type: f1
value: 76.07992707688408
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sw)
type: mteb/amazon_massive_scenario
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.140551445864155
- type: f1
value: 61.73855010331415
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ta)
type: mteb/amazon_massive_scenario
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.27774041694687
- type: f1
value: 64.83664868894539
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (te)
type: mteb/amazon_massive_scenario
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.69468728984533
- type: f1
value: 64.76239666920868
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (th)
type: mteb/amazon_massive_scenario
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.44653665097512
- type: f1
value: 73.14646052013873
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tl)
type: mteb/amazon_massive_scenario
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.71351714862139
- type: f1
value: 66.67212180163382
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tr)
type: mteb/amazon_massive_scenario
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.9946200403497
- type: f1
value: 73.87348793725525
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ur)
type: mteb/amazon_massive_scenario
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.15400134498992
- type: f1
value: 67.09433241421094
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (vi)
type: mteb/amazon_massive_scenario
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.11365164761264
- type: f1
value: 73.59502539433753
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.82582380632145
- type: f1
value: 76.89992945316313
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-TW)
type: mteb/amazon_massive_scenario
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.81237390719569
- type: f1
value: 72.36499770986265
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.480506569594695
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 29.71252128004552
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.421396787056548
- type: mrr
value: 32.48155274872267
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.595
- type: map_at_10
value: 12.642000000000001
- type: map_at_100
value: 15.726
- type: map_at_1000
value: 17.061999999999998
- type: map_at_3
value: 9.125
- type: map_at_5
value: 10.866000000000001
- type: mrr_at_1
value: 43.344
- type: mrr_at_10
value: 52.227999999999994
- type: mrr_at_100
value: 52.898999999999994
- type: mrr_at_1000
value: 52.944
- type: mrr_at_3
value: 49.845
- type: mrr_at_5
value: 51.115
- type: ndcg_at_1
value: 41.949999999999996
- type: ndcg_at_10
value: 33.995
- type: ndcg_at_100
value: 30.869999999999997
- type: ndcg_at_1000
value: 39.487
- type: ndcg_at_3
value: 38.903999999999996
- type: ndcg_at_5
value: 37.236999999999995
- type: precision_at_1
value: 43.344
- type: precision_at_10
value: 25.480000000000004
- type: precision_at_100
value: 7.672
- type: precision_at_1000
value: 2.028
- type: precision_at_3
value: 36.636
- type: precision_at_5
value: 32.632
- type: recall_at_1
value: 5.595
- type: recall_at_10
value: 16.466
- type: recall_at_100
value: 31.226
- type: recall_at_1000
value: 62.778999999999996
- type: recall_at_3
value: 9.931
- type: recall_at_5
value: 12.884
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.414
- type: map_at_10
value: 56.754000000000005
- type: map_at_100
value: 57.457
- type: map_at_1000
value: 57.477999999999994
- type: map_at_3
value: 52.873999999999995
- type: map_at_5
value: 55.175
- type: mrr_at_1
value: 45.278
- type: mrr_at_10
value: 59.192
- type: mrr_at_100
value: 59.650000000000006
- type: mrr_at_1000
value: 59.665
- type: mrr_at_3
value: 56.141
- type: mrr_at_5
value: 57.998000000000005
- type: ndcg_at_1
value: 45.278
- type: ndcg_at_10
value: 64.056
- type: ndcg_at_100
value: 66.89
- type: ndcg_at_1000
value: 67.364
- type: ndcg_at_3
value: 56.97
- type: ndcg_at_5
value: 60.719
- type: precision_at_1
value: 45.278
- type: precision_at_10
value: 9.994
- type: precision_at_100
value: 1.165
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 25.512
- type: precision_at_5
value: 17.509
- type: recall_at_1
value: 40.414
- type: recall_at_10
value: 83.596
- type: recall_at_100
value: 95.72
- type: recall_at_1000
value: 99.24
- type: recall_at_3
value: 65.472
- type: recall_at_5
value: 74.039
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.352
- type: map_at_10
value: 84.369
- type: map_at_100
value: 85.02499999999999
- type: map_at_1000
value: 85.04
- type: map_at_3
value: 81.42399999999999
- type: map_at_5
value: 83.279
- type: mrr_at_1
value: 81.05
- type: mrr_at_10
value: 87.401
- type: mrr_at_100
value: 87.504
- type: mrr_at_1000
value: 87.505
- type: mrr_at_3
value: 86.443
- type: mrr_at_5
value: 87.10799999999999
- type: ndcg_at_1
value: 81.04
- type: ndcg_at_10
value: 88.181
- type: ndcg_at_100
value: 89.411
- type: ndcg_at_1000
value: 89.507
- type: ndcg_at_3
value: 85.28099999999999
- type: ndcg_at_5
value: 86.888
- type: precision_at_1
value: 81.04
- type: precision_at_10
value: 13.406
- type: precision_at_100
value: 1.5350000000000001
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.31
- type: precision_at_5
value: 24.54
- type: recall_at_1
value: 70.352
- type: recall_at_10
value: 95.358
- type: recall_at_100
value: 99.541
- type: recall_at_1000
value: 99.984
- type: recall_at_3
value: 87.111
- type: recall_at_5
value: 91.643
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 46.54068723291946
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 63.216287629895994
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.023000000000001
- type: map_at_10
value: 10.071
- type: map_at_100
value: 11.892
- type: map_at_1000
value: 12.196
- type: map_at_3
value: 7.234
- type: map_at_5
value: 8.613999999999999
- type: mrr_at_1
value: 19.900000000000002
- type: mrr_at_10
value: 30.516
- type: mrr_at_100
value: 31.656000000000002
- type: mrr_at_1000
value: 31.723000000000003
- type: mrr_at_3
value: 27.400000000000002
- type: mrr_at_5
value: 29.270000000000003
- type: ndcg_at_1
value: 19.900000000000002
- type: ndcg_at_10
value: 17.474
- type: ndcg_at_100
value: 25.020999999999997
- type: ndcg_at_1000
value: 30.728
- type: ndcg_at_3
value: 16.588
- type: ndcg_at_5
value: 14.498
- type: precision_at_1
value: 19.900000000000002
- type: precision_at_10
value: 9.139999999999999
- type: precision_at_100
value: 2.011
- type: precision_at_1000
value: 0.33899999999999997
- type: precision_at_3
value: 15.667
- type: precision_at_5
value: 12.839999999999998
- type: recall_at_1
value: 4.023000000000001
- type: recall_at_10
value: 18.497
- type: recall_at_100
value: 40.8
- type: recall_at_1000
value: 68.812
- type: recall_at_3
value: 9.508
- type: recall_at_5
value: 12.983
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.967008785134
- type: cos_sim_spearman
value: 80.23142141101837
- type: euclidean_pearson
value: 81.20166064704539
- type: euclidean_spearman
value: 80.18961335654585
- type: manhattan_pearson
value: 81.13925443187625
- type: manhattan_spearman
value: 80.07948723044424
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.94262461316023
- type: cos_sim_spearman
value: 80.01596278563865
- type: euclidean_pearson
value: 83.80799622922581
- type: euclidean_spearman
value: 79.94984954947103
- type: manhattan_pearson
value: 83.68473841756281
- type: manhattan_spearman
value: 79.84990707951822
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 80.57346443146068
- type: cos_sim_spearman
value: 81.54689837570866
- type: euclidean_pearson
value: 81.10909881516007
- type: euclidean_spearman
value: 81.56746243261762
- type: manhattan_pearson
value: 80.87076036186582
- type: manhattan_spearman
value: 81.33074987964402
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 79.54733787179849
- type: cos_sim_spearman
value: 77.72202105610411
- type: euclidean_pearson
value: 78.9043595478849
- type: euclidean_spearman
value: 77.93422804309435
- type: manhattan_pearson
value: 78.58115121621368
- type: manhattan_spearman
value: 77.62508135122033
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.59880017237558
- type: cos_sim_spearman
value: 89.31088630824758
- type: euclidean_pearson
value: 88.47069261564656
- type: euclidean_spearman
value: 89.33581971465233
- type: manhattan_pearson
value: 88.40774264100956
- type: manhattan_spearman
value: 89.28657485627835
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.08055117917084
- type: cos_sim_spearman
value: 85.78491813080304
- type: euclidean_pearson
value: 84.99329155500392
- type: euclidean_spearman
value: 85.76728064677287
- type: manhattan_pearson
value: 84.87947428989587
- type: manhattan_spearman
value: 85.62429454917464
- task:
type: STS
dataset:
name: MTEB STS17 (ko-ko)
type: mteb/sts17-crosslingual-sts
config: ko-ko
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 82.14190939287384
- type: cos_sim_spearman
value: 82.27331573306041
- type: euclidean_pearson
value: 81.891896953716
- type: euclidean_spearman
value: 82.37695542955998
- type: manhattan_pearson
value: 81.73123869460504
- type: manhattan_spearman
value: 82.19989168441421
- task:
type: STS
dataset:
name: MTEB STS17 (ar-ar)
type: mteb/sts17-crosslingual-sts
config: ar-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 76.84695301843362
- type: cos_sim_spearman
value: 77.87790986014461
- type: euclidean_pearson
value: 76.91981583106315
- type: euclidean_spearman
value: 77.88154772749589
- type: manhattan_pearson
value: 76.94953277451093
- type: manhattan_spearman
value: 77.80499230728604
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 75.44657840482016
- type: cos_sim_spearman
value: 75.05531095119674
- type: euclidean_pearson
value: 75.88161755829299
- type: euclidean_spearman
value: 74.73176238219332
- type: manhattan_pearson
value: 75.63984765635362
- type: manhattan_spearman
value: 74.86476440770737
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 85.64700140524133
- type: cos_sim_spearman
value: 86.16014210425672
- type: euclidean_pearson
value: 86.49086860843221
- type: euclidean_spearman
value: 86.09729326815614
- type: manhattan_pearson
value: 86.43406265125513
- type: manhattan_spearman
value: 86.17740150939994
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.91170098764921
- type: cos_sim_spearman
value: 88.12437004058931
- type: euclidean_pearson
value: 88.81828254494437
- type: euclidean_spearman
value: 88.14831794572122
- type: manhattan_pearson
value: 88.93442183448961
- type: manhattan_spearman
value: 88.15254630778304
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 72.91390577997292
- type: cos_sim_spearman
value: 71.22979457536074
- type: euclidean_pearson
value: 74.40314008106749
- type: euclidean_spearman
value: 72.54972136083246
- type: manhattan_pearson
value: 73.85687539530218
- type: manhattan_spearman
value: 72.09500771742637
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 80.9301067983089
- type: cos_sim_spearman
value: 80.74989828346473
- type: euclidean_pearson
value: 81.36781301814257
- type: euclidean_spearman
value: 80.9448819964426
- type: manhattan_pearson
value: 81.0351322685609
- type: manhattan_spearman
value: 80.70192121844177
- task:
type: STS
dataset:
name: MTEB STS17 (es-es)
type: mteb/sts17-crosslingual-sts
config: es-es
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.13820465980005
- type: cos_sim_spearman
value: 86.73532498758757
- type: euclidean_pearson
value: 87.21329451846637
- type: euclidean_spearman
value: 86.57863198601002
- type: manhattan_pearson
value: 87.06973713818554
- type: manhattan_spearman
value: 86.47534918791499
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 85.48720108904415
- type: cos_sim_spearman
value: 85.62221757068387
- type: euclidean_pearson
value: 86.1010129512749
- type: euclidean_spearman
value: 85.86580966509942
- type: manhattan_pearson
value: 86.26800938808971
- type: manhattan_spearman
value: 85.88902721678429
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 83.98021347333516
- type: cos_sim_spearman
value: 84.53806553803501
- type: euclidean_pearson
value: 84.61483347248364
- type: euclidean_spearman
value: 85.14191408011702
- type: manhattan_pearson
value: 84.75297588825967
- type: manhattan_spearman
value: 85.33176753669242
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 84.51856644893233
- type: cos_sim_spearman
value: 85.27510748506413
- type: euclidean_pearson
value: 85.09886861540977
- type: euclidean_spearman
value: 85.62579245860887
- type: manhattan_pearson
value: 84.93017860464607
- type: manhattan_spearman
value: 85.5063988898453
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 62.581573200584195
- type: cos_sim_spearman
value: 63.05503590247928
- type: euclidean_pearson
value: 63.652564812602094
- type: euclidean_spearman
value: 62.64811520876156
- type: manhattan_pearson
value: 63.506842893061076
- type: manhattan_spearman
value: 62.51289573046917
- task:
type: STS
dataset:
name: MTEB STS22 (de)
type: mteb/sts22-crosslingual-sts
config: de
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 48.2248801729127
- type: cos_sim_spearman
value: 56.5936604678561
- type: euclidean_pearson
value: 43.98149464089
- type: euclidean_spearman
value: 56.108561882423615
- type: manhattan_pearson
value: 43.86880305903564
- type: manhattan_spearman
value: 56.04671150510166
- task:
type: STS
dataset:
name: MTEB STS22 (es)
type: mteb/sts22-crosslingual-sts
config: es
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 55.17564527009831
- type: cos_sim_spearman
value: 64.57978560979488
- type: euclidean_pearson
value: 58.8818330154583
- type: euclidean_spearman
value: 64.99214839071281
- type: manhattan_pearson
value: 58.72671436121381
- type: manhattan_spearman
value: 65.10713416616109
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 26.772131864023297
- type: cos_sim_spearman
value: 34.68200792408681
- type: euclidean_pearson
value: 16.68082419005441
- type: euclidean_spearman
value: 34.83099932652166
- type: manhattan_pearson
value: 16.52605949659529
- type: manhattan_spearman
value: 34.82075801399475
- task:
type: STS
dataset:
name: MTEB STS22 (tr)
type: mteb/sts22-crosslingual-sts
config: tr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 54.42415189043831
- type: cos_sim_spearman
value: 63.54594264576758
- type: euclidean_pearson
value: 57.36577498297745
- type: euclidean_spearman
value: 63.111466379158074
- type: manhattan_pearson
value: 57.584543715873885
- type: manhattan_spearman
value: 63.22361054139183
- task:
type: STS
dataset:
name: MTEB STS22 (ar)
type: mteb/sts22-crosslingual-sts
config: ar
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 47.55216762405518
- type: cos_sim_spearman
value: 56.98670142896412
- type: euclidean_pearson
value: 50.15318757562699
- type: euclidean_spearman
value: 56.524941926541906
- type: manhattan_pearson
value: 49.955618528674904
- type: manhattan_spearman
value: 56.37102209240117
- task:
type: STS
dataset:
name: MTEB STS22 (ru)
type: mteb/sts22-crosslingual-sts
config: ru
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 49.20540980338571
- type: cos_sim_spearman
value: 59.9009453504406
- type: euclidean_pearson
value: 49.557749853620535
- type: euclidean_spearman
value: 59.76631621172456
- type: manhattan_pearson
value: 49.62340591181147
- type: manhattan_spearman
value: 59.94224880322436
- task:
type: STS
dataset:
name: MTEB STS22 (zh)
type: mteb/sts22-crosslingual-sts
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 51.508169956576985
- type: cos_sim_spearman
value: 66.82461565306046
- type: euclidean_pearson
value: 56.2274426480083
- type: euclidean_spearman
value: 66.6775323848333
- type: manhattan_pearson
value: 55.98277796300661
- type: manhattan_spearman
value: 66.63669848497175
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 72.86478788045507
- type: cos_sim_spearman
value: 76.7946552053193
- type: euclidean_pearson
value: 75.01598530490269
- type: euclidean_spearman
value: 76.83618917858281
- type: manhattan_pearson
value: 74.68337628304332
- type: manhattan_spearman
value: 76.57480204017773
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 55.922619099401984
- type: cos_sim_spearman
value: 56.599362477240774
- type: euclidean_pearson
value: 56.68307052369783
- type: euclidean_spearman
value: 54.28760436777401
- type: manhattan_pearson
value: 56.67763566500681
- type: manhattan_spearman
value: 53.94619541711359
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 66.74357206710913
- type: cos_sim_spearman
value: 72.5208244925311
- type: euclidean_pearson
value: 67.49254562186032
- type: euclidean_spearman
value: 72.02469076238683
- type: manhattan_pearson
value: 67.45251772238085
- type: manhattan_spearman
value: 72.05538819984538
- task:
type: STS
dataset:
name: MTEB STS22 (it)
type: mteb/sts22-crosslingual-sts
config: it
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 71.25734330033191
- type: cos_sim_spearman
value: 76.98349083946823
- type: euclidean_pearson
value: 73.71642838667736
- type: euclidean_spearman
value: 77.01715504651384
- type: manhattan_pearson
value: 73.61712711868105
- type: manhattan_spearman
value: 77.01392571153896
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 63.18215462781212
- type: cos_sim_spearman
value: 65.54373266117607
- type: euclidean_pearson
value: 64.54126095439005
- type: euclidean_spearman
value: 65.30410369102711
- type: manhattan_pearson
value: 63.50332221148234
- type: manhattan_spearman
value: 64.3455878104313
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 62.30509221440029
- type: cos_sim_spearman
value: 65.99582704642478
- type: euclidean_pearson
value: 63.43818859884195
- type: euclidean_spearman
value: 66.83172582815764
- type: manhattan_pearson
value: 63.055779168508764
- type: manhattan_spearman
value: 65.49585020501449
- task:
type: STS
dataset:
name: MTEB STS22 (es-it)
type: mteb/sts22-crosslingual-sts
config: es-it
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 59.587830825340404
- type: cos_sim_spearman
value: 68.93467614588089
- type: euclidean_pearson
value: 62.3073527367404
- type: euclidean_spearman
value: 69.69758171553175
- type: manhattan_pearson
value: 61.9074580815789
- type: manhattan_spearman
value: 69.57696375597865
- task:
type: STS
dataset:
name: MTEB STS22 (de-fr)
type: mteb/sts22-crosslingual-sts
config: de-fr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 57.143220125577066
- type: cos_sim_spearman
value: 67.78857859159226
- type: euclidean_pearson
value: 55.58225107923733
- type: euclidean_spearman
value: 67.80662907184563
- type: manhattan_pearson
value: 56.24953502726514
- type: manhattan_spearman
value: 67.98262125431616
- task:
type: STS
dataset:
name: MTEB STS22 (de-pl)
type: mteb/sts22-crosslingual-sts
config: de-pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 21.826928900322066
- type: cos_sim_spearman
value: 49.578506634400405
- type: euclidean_pearson
value: 27.939890138843214
- type: euclidean_spearman
value: 52.71950519136242
- type: manhattan_pearson
value: 26.39878683847546
- type: manhattan_spearman
value: 47.54609580342499
- task:
type: STS
dataset:
name: MTEB STS22 (fr-pl)
type: mteb/sts22-crosslingual-sts
config: fr-pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 57.27603854632001
- type: cos_sim_spearman
value: 50.709255283710995
- type: euclidean_pearson
value: 59.5419024445929
- type: euclidean_spearman
value: 50.709255283710995
- type: manhattan_pearson
value: 59.03256832438492
- type: manhattan_spearman
value: 61.97797868009122
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.00757054859712
- type: cos_sim_spearman
value: 87.29283629622222
- type: euclidean_pearson
value: 86.54824171775536
- type: euclidean_spearman
value: 87.24364730491402
- type: manhattan_pearson
value: 86.5062156915074
- type: manhattan_spearman
value: 87.15052170378574
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 82.03549357197389
- type: mrr
value: 95.05437645143527
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 57.260999999999996
- type: map_at_10
value: 66.259
- type: map_at_100
value: 66.884
- type: map_at_1000
value: 66.912
- type: map_at_3
value: 63.685
- type: map_at_5
value: 65.35499999999999
- type: mrr_at_1
value: 60.333000000000006
- type: mrr_at_10
value: 67.5
- type: mrr_at_100
value: 68.013
- type: mrr_at_1000
value: 68.038
- type: mrr_at_3
value: 65.61099999999999
- type: mrr_at_5
value: 66.861
- type: ndcg_at_1
value: 60.333000000000006
- type: ndcg_at_10
value: 70.41
- type: ndcg_at_100
value: 73.10600000000001
- type: ndcg_at_1000
value: 73.846
- type: ndcg_at_3
value: 66.133
- type: ndcg_at_5
value: 68.499
- type: precision_at_1
value: 60.333000000000006
- type: precision_at_10
value: 9.232999999999999
- type: precision_at_100
value: 1.0630000000000002
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 25.667
- type: precision_at_5
value: 17.067
- type: recall_at_1
value: 57.260999999999996
- type: recall_at_10
value: 81.94399999999999
- type: recall_at_100
value: 93.867
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 70.339
- type: recall_at_5
value: 76.25
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.74356435643564
- type: cos_sim_ap
value: 93.13411948212683
- type: cos_sim_f1
value: 86.80521991300147
- type: cos_sim_precision
value: 84.00374181478017
- type: cos_sim_recall
value: 89.8
- type: dot_accuracy
value: 99.67920792079208
- type: dot_ap
value: 89.27277565444479
- type: dot_f1
value: 83.9276990718124
- type: dot_precision
value: 82.04393505253104
- type: dot_recall
value: 85.9
- type: euclidean_accuracy
value: 99.74257425742574
- type: euclidean_ap
value: 93.17993008259062
- type: euclidean_f1
value: 86.69396110542476
- type: euclidean_precision
value: 88.78406708595388
- type: euclidean_recall
value: 84.7
- type: manhattan_accuracy
value: 99.74257425742574
- type: manhattan_ap
value: 93.14413755550099
- type: manhattan_f1
value: 86.82483594144371
- type: manhattan_precision
value: 87.66564729867483
- type: manhattan_recall
value: 86
- type: max_accuracy
value: 99.74356435643564
- type: max_ap
value: 93.17993008259062
- type: max_f1
value: 86.82483594144371
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 57.525863806168566
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 32.68850574423839
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.71580650644033
- type: mrr
value: 50.50971903913081
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 29.152190498799484
- type: cos_sim_spearman
value: 29.686180371952727
- type: dot_pearson
value: 27.248664793816342
- type: dot_spearman
value: 28.37748983721745
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.20400000000000001
- type: map_at_10
value: 1.6209999999999998
- type: map_at_100
value: 9.690999999999999
- type: map_at_1000
value: 23.733
- type: map_at_3
value: 0.575
- type: map_at_5
value: 0.885
- type: mrr_at_1
value: 78
- type: mrr_at_10
value: 86.56700000000001
- type: mrr_at_100
value: 86.56700000000001
- type: mrr_at_1000
value: 86.56700000000001
- type: mrr_at_3
value: 85.667
- type: mrr_at_5
value: 86.56700000000001
- type: ndcg_at_1
value: 76
- type: ndcg_at_10
value: 71.326
- type: ndcg_at_100
value: 54.208999999999996
- type: ndcg_at_1000
value: 49.252
- type: ndcg_at_3
value: 74.235
- type: ndcg_at_5
value: 73.833
- type: precision_at_1
value: 78
- type: precision_at_10
value: 74.8
- type: precision_at_100
value: 55.50000000000001
- type: precision_at_1000
value: 21.836
- type: precision_at_3
value: 78
- type: precision_at_5
value: 78
- type: recall_at_1
value: 0.20400000000000001
- type: recall_at_10
value: 1.894
- type: recall_at_100
value: 13.245999999999999
- type: recall_at_1000
value: 46.373
- type: recall_at_3
value: 0.613
- type: recall_at_5
value: 0.991
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (sqi-eng)
type: mteb/tatoeba-bitext-mining
config: sqi-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.89999999999999
- type: f1
value: 94.69999999999999
- type: precision
value: 94.11666666666667
- type: recall
value: 95.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fry-eng)
type: mteb/tatoeba-bitext-mining
config: fry-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 68.20809248554913
- type: f1
value: 63.431048720066066
- type: precision
value: 61.69143958161298
- type: recall
value: 68.20809248554913
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kur-eng)
type: mteb/tatoeba-bitext-mining
config: kur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 71.21951219512195
- type: f1
value: 66.82926829268293
- type: precision
value: 65.1260162601626
- type: recall
value: 71.21951219512195
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tur-eng)
type: mteb/tatoeba-bitext-mining
config: tur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.2
- type: f1
value: 96.26666666666667
- type: precision
value: 95.8
- type: recall
value: 97.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (deu-eng)
type: mteb/tatoeba-bitext-mining
config: deu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.3
- type: f1
value: 99.06666666666666
- type: precision
value: 98.95
- type: recall
value: 99.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nld-eng)
type: mteb/tatoeba-bitext-mining
config: nld-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.63333333333333
- type: precision
value: 96.26666666666668
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ron-eng)
type: mteb/tatoeba-bitext-mining
config: ron-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96
- type: f1
value: 94.86666666666666
- type: precision
value: 94.31666666666668
- type: recall
value: 96
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ang-eng)
type: mteb/tatoeba-bitext-mining
config: ang-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 47.01492537313433
- type: f1
value: 40.178867566927266
- type: precision
value: 38.179295828549556
- type: recall
value: 47.01492537313433
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ido-eng)
type: mteb/tatoeba-bitext-mining
config: ido-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.5
- type: f1
value: 83.62537480063796
- type: precision
value: 82.44555555555554
- type: recall
value: 86.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jav-eng)
type: mteb/tatoeba-bitext-mining
config: jav-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 80.48780487804879
- type: f1
value: 75.45644599303138
- type: precision
value: 73.37398373983739
- type: recall
value: 80.48780487804879
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (isl-eng)
type: mteb/tatoeba-bitext-mining
config: isl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.95666666666666
- type: precision
value: 91.125
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slv-eng)
type: mteb/tatoeba-bitext-mining
config: slv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.73754556500607
- type: f1
value: 89.65168084244632
- type: precision
value: 88.73025516403402
- type: recall
value: 91.73754556500607
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cym-eng)
type: mteb/tatoeba-bitext-mining
config: cym-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.04347826086956
- type: f1
value: 76.2128364389234
- type: precision
value: 74.2
- type: recall
value: 81.04347826086956
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kaz-eng)
type: mteb/tatoeba-bitext-mining
config: kaz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.65217391304348
- type: f1
value: 79.4376811594203
- type: precision
value: 77.65797101449274
- type: recall
value: 83.65217391304348
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (est-eng)
type: mteb/tatoeba-bitext-mining
config: est-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.5
- type: f1
value: 85.02690476190476
- type: precision
value: 83.96261904761904
- type: recall
value: 87.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (heb-eng)
type: mteb/tatoeba-bitext-mining
config: heb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.3
- type: f1
value: 86.52333333333333
- type: precision
value: 85.22833333333332
- type: recall
value: 89.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gla-eng)
type: mteb/tatoeba-bitext-mining
config: gla-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.01809408926418
- type: f1
value: 59.00594446432805
- type: precision
value: 56.827215807915444
- type: recall
value: 65.01809408926418
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mar-eng)
type: mteb/tatoeba-bitext-mining
config: mar-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.2
- type: f1
value: 88.58
- type: precision
value: 87.33333333333334
- type: recall
value: 91.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lat-eng)
type: mteb/tatoeba-bitext-mining
config: lat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 59.199999999999996
- type: f1
value: 53.299166276284915
- type: precision
value: 51.3383908045977
- type: recall
value: 59.199999999999996
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bel-eng)
type: mteb/tatoeba-bitext-mining
config: bel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.2
- type: f1
value: 91.2
- type: precision
value: 90.25
- type: recall
value: 93.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pms-eng)
type: mteb/tatoeba-bitext-mining
config: pms-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 64.76190476190476
- type: f1
value: 59.867110667110666
- type: precision
value: 58.07390192653351
- type: recall
value: 64.76190476190476
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gle-eng)
type: mteb/tatoeba-bitext-mining
config: gle-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.2
- type: f1
value: 71.48147546897547
- type: precision
value: 69.65409090909091
- type: recall
value: 76.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pes-eng)
type: mteb/tatoeba-bitext-mining
config: pes-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.8
- type: f1
value: 92.14
- type: precision
value: 91.35833333333333
- type: recall
value: 93.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nob-eng)
type: mteb/tatoeba-bitext-mining
config: nob-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.89999999999999
- type: f1
value: 97.2
- type: precision
value: 96.85000000000001
- type: recall
value: 97.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bul-eng)
type: mteb/tatoeba-bitext-mining
config: bul-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.6
- type: f1
value: 92.93333333333334
- type: precision
value: 92.13333333333333
- type: recall
value: 94.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cbk-eng)
type: mteb/tatoeba-bitext-mining
config: cbk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.1
- type: f1
value: 69.14817460317461
- type: precision
value: 67.2515873015873
- type: recall
value: 74.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hun-eng)
type: mteb/tatoeba-bitext-mining
config: hun-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.19999999999999
- type: f1
value: 94.01333333333335
- type: precision
value: 93.46666666666667
- type: recall
value: 95.19999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uig-eng)
type: mteb/tatoeba-bitext-mining
config: uig-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.9
- type: f1
value: 72.07523809523809
- type: precision
value: 70.19777777777779
- type: recall
value: 76.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (rus-eng)
type: mteb/tatoeba-bitext-mining
config: rus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.31666666666666
- type: precision
value: 91.43333333333332
- type: recall
value: 94.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (spa-eng)
type: mteb/tatoeba-bitext-mining
config: spa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.1
- type: precision
value: 96.76666666666668
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hye-eng)
type: mteb/tatoeba-bitext-mining
config: hye-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.85714285714286
- type: f1
value: 90.92093441150045
- type: precision
value: 90.00449236298293
- type: recall
value: 92.85714285714286
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tel-eng)
type: mteb/tatoeba-bitext-mining
config: tel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.16239316239316
- type: f1
value: 91.33903133903132
- type: precision
value: 90.56267806267806
- type: recall
value: 93.16239316239316
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (afr-eng)
type: mteb/tatoeba-bitext-mining
config: afr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.4
- type: f1
value: 90.25666666666666
- type: precision
value: 89.25833333333334
- type: recall
value: 92.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mon-eng)
type: mteb/tatoeba-bitext-mining
config: mon-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.22727272727272
- type: f1
value: 87.53030303030303
- type: precision
value: 86.37121212121211
- type: recall
value: 90.22727272727272
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arz-eng)
type: mteb/tatoeba-bitext-mining
config: arz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.03563941299791
- type: f1
value: 74.7349505840072
- type: precision
value: 72.9035639412998
- type: recall
value: 79.03563941299791
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hrv-eng)
type: mteb/tatoeba-bitext-mining
config: hrv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97
- type: f1
value: 96.15
- type: precision
value: 95.76666666666668
- type: recall
value: 97
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nov-eng)
type: mteb/tatoeba-bitext-mining
config: nov-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.26459143968872
- type: f1
value: 71.55642023346303
- type: precision
value: 69.7544932369835
- type: recall
value: 76.26459143968872
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gsw-eng)
type: mteb/tatoeba-bitext-mining
config: gsw-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 58.119658119658126
- type: f1
value: 51.65242165242165
- type: precision
value: 49.41768108434775
- type: recall
value: 58.119658119658126
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nds-eng)
type: mteb/tatoeba-bitext-mining
config: nds-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.3
- type: f1
value: 69.52055555555555
- type: precision
value: 67.7574938949939
- type: recall
value: 74.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ukr-eng)
type: mteb/tatoeba-bitext-mining
config: ukr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.8
- type: f1
value: 93.31666666666666
- type: precision
value: 92.60000000000001
- type: recall
value: 94.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uzb-eng)
type: mteb/tatoeba-bitext-mining
config: uzb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.63551401869158
- type: f1
value: 72.35202492211837
- type: precision
value: 70.60358255451713
- type: recall
value: 76.63551401869158
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lit-eng)
type: mteb/tatoeba-bitext-mining
config: lit-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.4
- type: f1
value: 88.4811111111111
- type: precision
value: 87.7452380952381
- type: recall
value: 90.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ina-eng)
type: mteb/tatoeba-bitext-mining
config: ina-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95
- type: f1
value: 93.60666666666667
- type: precision
value: 92.975
- type: recall
value: 95
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lfn-eng)
type: mteb/tatoeba-bitext-mining
config: lfn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 67.2
- type: f1
value: 63.01595782872099
- type: precision
value: 61.596587301587306
- type: recall
value: 67.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (zsm-eng)
type: mteb/tatoeba-bitext-mining
config: zsm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.7
- type: f1
value: 94.52999999999999
- type: precision
value: 94
- type: recall
value: 95.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ita-eng)
type: mteb/tatoeba-bitext-mining
config: ita-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.6
- type: f1
value: 93.28999999999999
- type: precision
value: 92.675
- type: recall
value: 94.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cmn-eng)
type: mteb/tatoeba-bitext-mining
config: cmn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.39999999999999
- type: f1
value: 95.28333333333333
- type: precision
value: 94.75
- type: recall
value: 96.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lvs-eng)
type: mteb/tatoeba-bitext-mining
config: lvs-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.9
- type: f1
value: 89.83
- type: precision
value: 88.92
- type: recall
value: 91.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (glg-eng)
type: mteb/tatoeba-bitext-mining
config: glg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.34222222222223
- type: precision
value: 92.75416666666668
- type: recall
value: 94.69999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ceb-eng)
type: mteb/tatoeba-bitext-mining
config: ceb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 60.333333333333336
- type: f1
value: 55.31203703703703
- type: precision
value: 53.39971108326371
- type: recall
value: 60.333333333333336
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bre-eng)
type: mteb/tatoeba-bitext-mining
config: bre-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 12.9
- type: f1
value: 11.099861903031458
- type: precision
value: 10.589187932631877
- type: recall
value: 12.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ben-eng)
type: mteb/tatoeba-bitext-mining
config: ben-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.7
- type: f1
value: 83.0152380952381
- type: precision
value: 81.37833333333333
- type: recall
value: 86.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swg-eng)
type: mteb/tatoeba-bitext-mining
config: swg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.39285714285714
- type: f1
value: 56.832482993197274
- type: precision
value: 54.56845238095237
- type: recall
value: 63.39285714285714
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arq-eng)
type: mteb/tatoeba-bitext-mining
config: arq-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 48.73765093304062
- type: f1
value: 41.555736920720456
- type: precision
value: 39.06874531737319
- type: recall
value: 48.73765093304062
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kab-eng)
type: mteb/tatoeba-bitext-mining
config: kab-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 41.099999999999994
- type: f1
value: 36.540165945165946
- type: precision
value: 35.05175685425686
- type: recall
value: 41.099999999999994
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fra-eng)
type: mteb/tatoeba-bitext-mining
config: fra-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.89999999999999
- type: f1
value: 93.42333333333333
- type: precision
value: 92.75833333333333
- type: recall
value: 94.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (por-eng)
type: mteb/tatoeba-bitext-mining
config: por-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.89999999999999
- type: f1
value: 93.63333333333334
- type: precision
value: 93.01666666666665
- type: recall
value: 94.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tat-eng)
type: mteb/tatoeba-bitext-mining
config: tat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.9
- type: f1
value: 73.64833333333334
- type: precision
value: 71.90282106782105
- type: recall
value: 77.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (oci-eng)
type: mteb/tatoeba-bitext-mining
config: oci-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 59.4
- type: f1
value: 54.90521367521367
- type: precision
value: 53.432840025471606
- type: recall
value: 59.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pol-eng)
type: mteb/tatoeba-bitext-mining
config: pol-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.6
- type: precision
value: 96.2
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (war-eng)
type: mteb/tatoeba-bitext-mining
config: war-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 67.2
- type: f1
value: 62.25926129426129
- type: precision
value: 60.408376623376626
- type: recall
value: 67.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (aze-eng)
type: mteb/tatoeba-bitext-mining
config: aze-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.2
- type: f1
value: 87.60666666666667
- type: precision
value: 86.45277777777778
- type: recall
value: 90.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (vie-eng)
type: mteb/tatoeba-bitext-mining
config: vie-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 97
- type: precision
value: 96.65
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nno-eng)
type: mteb/tatoeba-bitext-mining
config: nno-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.2
- type: f1
value: 91.39746031746031
- type: precision
value: 90.6125
- type: recall
value: 93.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cha-eng)
type: mteb/tatoeba-bitext-mining
config: cha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 32.11678832116788
- type: f1
value: 27.210415386260234
- type: precision
value: 26.20408990846947
- type: recall
value: 32.11678832116788
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mhr-eng)
type: mteb/tatoeba-bitext-mining
config: mhr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.5
- type: f1
value: 6.787319277832475
- type: precision
value: 6.3452094433344435
- type: recall
value: 8.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dan-eng)
type: mteb/tatoeba-bitext-mining
config: dan-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.08
- type: precision
value: 94.61666666666667
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ell-eng)
type: mteb/tatoeba-bitext-mining
config: ell-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.3
- type: f1
value: 93.88333333333333
- type: precision
value: 93.18333333333332
- type: recall
value: 95.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (amh-eng)
type: mteb/tatoeba-bitext-mining
config: amh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.11904761904762
- type: f1
value: 80.69444444444444
- type: precision
value: 78.72023809523809
- type: recall
value: 85.11904761904762
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pam-eng)
type: mteb/tatoeba-bitext-mining
config: pam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 11.1
- type: f1
value: 9.276381801735853
- type: precision
value: 8.798174603174601
- type: recall
value: 11.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hsb-eng)
type: mteb/tatoeba-bitext-mining
config: hsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.56107660455487
- type: f1
value: 58.70433569191332
- type: precision
value: 56.896926581464015
- type: recall
value: 63.56107660455487
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (srp-eng)
type: mteb/tatoeba-bitext-mining
config: srp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.10000000000001
- type: precision
value: 92.35
- type: recall
value: 94.69999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (epo-eng)
type: mteb/tatoeba-bitext-mining
config: epo-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8
- type: f1
value: 96.01222222222222
- type: precision
value: 95.67083333333332
- type: recall
value: 96.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kzj-eng)
type: mteb/tatoeba-bitext-mining
config: kzj-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 9.2
- type: f1
value: 7.911555250305249
- type: precision
value: 7.631246556216846
- type: recall
value: 9.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (awa-eng)
type: mteb/tatoeba-bitext-mining
config: awa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.48917748917748
- type: f1
value: 72.27375798804371
- type: precision
value: 70.14430014430013
- type: recall
value: 77.48917748917748
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fao-eng)
type: mteb/tatoeba-bitext-mining
config: fao-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.09923664122137
- type: f1
value: 72.61541257724463
- type: precision
value: 70.8998380754106
- type: recall
value: 77.09923664122137
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mal-eng)
type: mteb/tatoeba-bitext-mining
config: mal-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2532751091703
- type: f1
value: 97.69529354682193
- type: precision
value: 97.42843279961184
- type: recall
value: 98.2532751091703
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ile-eng)
type: mteb/tatoeba-bitext-mining
config: ile-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.8
- type: f1
value: 79.14672619047619
- type: precision
value: 77.59489247311828
- type: recall
value: 82.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bos-eng)
type: mteb/tatoeba-bitext-mining
config: bos-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.35028248587571
- type: f1
value: 92.86252354048965
- type: precision
value: 92.2080979284369
- type: recall
value: 94.35028248587571
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cor-eng)
type: mteb/tatoeba-bitext-mining
config: cor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.5
- type: f1
value: 6.282429263935621
- type: precision
value: 5.783274240739785
- type: recall
value: 8.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cat-eng)
type: mteb/tatoeba-bitext-mining
config: cat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.7
- type: f1
value: 91.025
- type: precision
value: 90.30428571428571
- type: recall
value: 92.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (eus-eng)
type: mteb/tatoeba-bitext-mining
config: eus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81
- type: f1
value: 77.8232380952381
- type: precision
value: 76.60194444444444
- type: recall
value: 81
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yue-eng)
type: mteb/tatoeba-bitext-mining
config: yue-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91
- type: f1
value: 88.70857142857142
- type: precision
value: 87.7
- type: recall
value: 91
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swe-eng)
type: mteb/tatoeba-bitext-mining
config: swe-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.39999999999999
- type: f1
value: 95.3
- type: precision
value: 94.76666666666667
- type: recall
value: 96.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dtp-eng)
type: mteb/tatoeba-bitext-mining
config: dtp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.1
- type: f1
value: 7.001008218834307
- type: precision
value: 6.708329562594269
- type: recall
value: 8.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kat-eng)
type: mteb/tatoeba-bitext-mining
config: kat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.1313672922252
- type: f1
value: 84.09070598748882
- type: precision
value: 82.79171454104429
- type: recall
value: 87.1313672922252
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jpn-eng)
type: mteb/tatoeba-bitext-mining
config: jpn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.39999999999999
- type: f1
value: 95.28333333333333
- type: precision
value: 94.73333333333332
- type: recall
value: 96.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (csb-eng)
type: mteb/tatoeba-bitext-mining
config: csb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 42.29249011857708
- type: f1
value: 36.981018542283365
- type: precision
value: 35.415877813576024
- type: recall
value: 42.29249011857708
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (xho-eng)
type: mteb/tatoeba-bitext-mining
config: xho-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.80281690140845
- type: f1
value: 80.86854460093896
- type: precision
value: 79.60093896713614
- type: recall
value: 83.80281690140845
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (orv-eng)
type: mteb/tatoeba-bitext-mining
config: orv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 45.26946107784431
- type: f1
value: 39.80235464678088
- type: precision
value: 38.14342660001342
- type: recall
value: 45.26946107784431
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ind-eng)
type: mteb/tatoeba-bitext-mining
config: ind-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.9
- type: precision
value: 92.26666666666668
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tuk-eng)
type: mteb/tatoeba-bitext-mining
config: tuk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 37.93103448275862
- type: f1
value: 33.15192743764172
- type: precision
value: 31.57456528146183
- type: recall
value: 37.93103448275862
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (max-eng)
type: mteb/tatoeba-bitext-mining
config: max-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 69.01408450704226
- type: f1
value: 63.41549295774648
- type: precision
value: 61.342778895595806
- type: recall
value: 69.01408450704226
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swh-eng)
type: mteb/tatoeba-bitext-mining
config: swh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.66666666666667
- type: f1
value: 71.60705960705961
- type: precision
value: 69.60683760683762
- type: recall
value: 76.66666666666667
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hin-eng)
type: mteb/tatoeba-bitext-mining
config: hin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.8
- type: f1
value: 94.48333333333333
- type: precision
value: 93.83333333333333
- type: recall
value: 95.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dsb-eng)
type: mteb/tatoeba-bitext-mining
config: dsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 52.81837160751566
- type: f1
value: 48.435977731384824
- type: precision
value: 47.11291973845539
- type: recall
value: 52.81837160751566
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ber-eng)
type: mteb/tatoeba-bitext-mining
config: ber-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 44.9
- type: f1
value: 38.88962621607783
- type: precision
value: 36.95936507936508
- type: recall
value: 44.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tam-eng)
type: mteb/tatoeba-bitext-mining
config: tam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.55374592833876
- type: f1
value: 88.22553125484721
- type: precision
value: 87.26927252985884
- type: recall
value: 90.55374592833876
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slk-eng)
type: mteb/tatoeba-bitext-mining
config: slk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.6
- type: f1
value: 93.13333333333333
- type: precision
value: 92.45333333333333
- type: recall
value: 94.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tgl-eng)
type: mteb/tatoeba-bitext-mining
config: tgl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.99666666666667
- type: precision
value: 91.26666666666668
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ast-eng)
type: mteb/tatoeba-bitext-mining
config: ast-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.03937007874016
- type: f1
value: 81.75853018372703
- type: precision
value: 80.34120734908137
- type: recall
value: 85.03937007874016
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mkd-eng)
type: mteb/tatoeba-bitext-mining
config: mkd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.3
- type: f1
value: 85.5
- type: precision
value: 84.25833333333334
- type: recall
value: 88.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (khm-eng)
type: mteb/tatoeba-bitext-mining
config: khm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.51246537396122
- type: f1
value: 60.02297410192148
- type: precision
value: 58.133467727289236
- type: recall
value: 65.51246537396122
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ces-eng)
type: mteb/tatoeba-bitext-mining
config: ces-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96
- type: f1
value: 94.89
- type: precision
value: 94.39166666666667
- type: recall
value: 96
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tzl-eng)
type: mteb/tatoeba-bitext-mining
config: tzl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 57.692307692307686
- type: f1
value: 53.162393162393165
- type: precision
value: 51.70673076923077
- type: recall
value: 57.692307692307686
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (urd-eng)
type: mteb/tatoeba-bitext-mining
config: urd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.60000000000001
- type: f1
value: 89.21190476190475
- type: precision
value: 88.08666666666667
- type: recall
value: 91.60000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ara-eng)
type: mteb/tatoeba-bitext-mining
config: ara-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88
- type: f1
value: 85.47
- type: precision
value: 84.43266233766234
- type: recall
value: 88
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kor-eng)
type: mteb/tatoeba-bitext-mining
config: kor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.7
- type: f1
value: 90.64999999999999
- type: precision
value: 89.68333333333332
- type: recall
value: 92.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yid-eng)
type: mteb/tatoeba-bitext-mining
config: yid-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 80.30660377358491
- type: f1
value: 76.33044137466307
- type: precision
value: 74.78970125786164
- type: recall
value: 80.30660377358491
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fin-eng)
type: mteb/tatoeba-bitext-mining
config: fin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.39999999999999
- type: f1
value: 95.44
- type: precision
value: 94.99166666666666
- type: recall
value: 96.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tha-eng)
type: mteb/tatoeba-bitext-mining
config: tha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.53284671532847
- type: f1
value: 95.37712895377129
- type: precision
value: 94.7992700729927
- type: recall
value: 96.53284671532847
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (wuu-eng)
type: mteb/tatoeba-bitext-mining
config: wuu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89
- type: f1
value: 86.23190476190476
- type: precision
value: 85.035
- type: recall
value: 89
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.585
- type: map_at_10
value: 9.012
- type: map_at_100
value: 14.027000000000001
- type: map_at_1000
value: 15.565000000000001
- type: map_at_3
value: 5.032
- type: map_at_5
value: 6.657
- type: mrr_at_1
value: 28.571
- type: mrr_at_10
value: 45.377
- type: mrr_at_100
value: 46.119
- type: mrr_at_1000
value: 46.127
- type: mrr_at_3
value: 41.156
- type: mrr_at_5
value: 42.585
- type: ndcg_at_1
value: 27.551
- type: ndcg_at_10
value: 23.395
- type: ndcg_at_100
value: 33.342
- type: ndcg_at_1000
value: 45.523
- type: ndcg_at_3
value: 25.158
- type: ndcg_at_5
value: 23.427
- type: precision_at_1
value: 28.571
- type: precision_at_10
value: 21.429000000000002
- type: precision_at_100
value: 6.714
- type: precision_at_1000
value: 1.473
- type: precision_at_3
value: 27.211000000000002
- type: precision_at_5
value: 24.490000000000002
- type: recall_at_1
value: 2.585
- type: recall_at_10
value: 15.418999999999999
- type: recall_at_100
value: 42.485
- type: recall_at_1000
value: 79.536
- type: recall_at_3
value: 6.239999999999999
- type: recall_at_5
value: 8.996
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.3234
- type: ap
value: 14.361688653847423
- type: f1
value: 54.819068624319044
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.97792869269949
- type: f1
value: 62.28965628513728
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 38.90540145385218
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.53513739047506
- type: cos_sim_ap
value: 75.27741586677557
- type: cos_sim_f1
value: 69.18792902473774
- type: cos_sim_precision
value: 67.94708725515136
- type: cos_sim_recall
value: 70.47493403693932
- type: dot_accuracy
value: 84.7052512368123
- type: dot_ap
value: 69.36075482849378
- type: dot_f1
value: 64.44688376631296
- type: dot_precision
value: 59.92288500793831
- type: dot_recall
value: 69.70976253298153
- type: euclidean_accuracy
value: 86.60666388508076
- type: euclidean_ap
value: 75.47512772621097
- type: euclidean_f1
value: 69.413872536473
- type: euclidean_precision
value: 67.39562624254472
- type: euclidean_recall
value: 71.55672823218997
- type: manhattan_accuracy
value: 86.52917684925792
- type: manhattan_ap
value: 75.34000110496703
- type: manhattan_f1
value: 69.28489190226429
- type: manhattan_precision
value: 67.24608889992551
- type: manhattan_recall
value: 71.45118733509234
- type: max_accuracy
value: 86.60666388508076
- type: max_ap
value: 75.47512772621097
- type: max_f1
value: 69.413872536473
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.01695967710637
- type: cos_sim_ap
value: 85.8298270742901
- type: cos_sim_f1
value: 78.46988128389272
- type: cos_sim_precision
value: 74.86017897091722
- type: cos_sim_recall
value: 82.44533415460425
- type: dot_accuracy
value: 88.19420188613343
- type: dot_ap
value: 83.82679165901324
- type: dot_f1
value: 76.55833777304208
- type: dot_precision
value: 75.6884875846501
- type: dot_recall
value: 77.44841392054204
- type: euclidean_accuracy
value: 89.03054294252338
- type: euclidean_ap
value: 85.89089555185325
- type: euclidean_f1
value: 78.62997658079624
- type: euclidean_precision
value: 74.92329149232914
- type: euclidean_recall
value: 82.72251308900523
- type: manhattan_accuracy
value: 89.0266620095471
- type: manhattan_ap
value: 85.86458997929147
- type: manhattan_f1
value: 78.50685331000291
- type: manhattan_precision
value: 74.5499861534201
- type: manhattan_recall
value: 82.90729904527257
- type: max_accuracy
value: 89.03054294252338
- type: max_ap
value: 85.89089555185325
- type: max_f1
value: 78.62997658079624
---
## Multilingual-E5-large
[Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672).
Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024
This model has 24 layers and the embedding size is 1024.
## Usage
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Each input text should start with "query: " or "passage: ", even for non-English texts.
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = ['query: how much protein should a female eat',
'query: 南瓜的家常做法',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"]
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large')
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large')
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```
## Supported Languages
This model is initialized from [xlm-roberta-large](https://huggingface.co/xlm-roberta-large)
and continually trained on a mixture of multilingual datasets.
It supports 100 languages from xlm-roberta,
but low-resource languages may see performance degradation.
## Training Details
**Initialization**: [xlm-roberta-large](https://huggingface.co/xlm-roberta-large)
**First stage**: contrastive pre-training with weak supervision
| Dataset | Weak supervision | # of text pairs |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
| Filtered [mC4](https://huggingface.co/datasets/mc4) | (title, page content) | 1B |
| [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news) | (title, news content) | 400M |
| [NLLB](https://huggingface.co/datasets/allenai/nllb) | translation pairs | 2.4B |
| [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia) | (hierarchical section title, passage) | 150M |
| Filtered [Reddit](https://www.reddit.com/) | (comment, response) | 800M |
| [S2ORC](https://github.com/allenai/s2orc) | (title, abstract) and citation pairs | 100M |
| [Stackexchange](https://stackexchange.com/) | (question, answer) | 50M |
| [xP3](https://huggingface.co/datasets/bigscience/xP3) | (input prompt, response) | 80M |
| [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | - | 10M |
**Second stage**: supervised fine-tuning
| Dataset | Language | # of text pairs |
|----------------------------------------------------------------------------------------|--------------|-----------------|
| [MS MARCO](https://microsoft.github.io/msmarco/) | English | 500k |
| [NQ](https://github.com/facebookresearch/DPR) | English | 70k |
| [Trivia QA](https://github.com/facebookresearch/DPR) | English | 60k |
| [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE) | English | <300k |
| [ELI5](https://huggingface.co/datasets/eli5) | English | 500k |
| [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese | 86k |
| [KILT Fever](https://huggingface.co/datasets/kilt_tasks) | English | 70k |
| [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks) | English | 70k |
| [SQuAD](https://huggingface.co/datasets/squad) | English | 87k |
| [Quora](https://huggingface.co/datasets/quora) | English | 150k |
| [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | 11 languages | 50k |
| [MIRACL](https://huggingface.co/datasets/miracl/miracl) | 16 languages | 40k |
For all labeled datasets, we only use its training set for fine-tuning.
For other training details, please refer to our paper at [https://arxiv.org/pdf/2402.05672](https://arxiv.org/pdf/2402.05672).
## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787)
| Model | Avg MRR@10 | | ar | bn | en | fi | id | ja | ko | ru | sw | te | th |
|-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- |
| BM25 | 33.3 | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 |
| mDPR | 16.7 | | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 |
| BM25 + mDPR | 41.7 | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 |
| | |
| multilingual-e5-small | 64.4 | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 |
| multilingual-e5-base | 65.9 | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 |
| multilingual-e5-large | **70.5** | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 |
## MTEB Benchmark Evaluation
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
## Support for Sentence Transformers
Below is an example for usage with sentence_transformers.
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('intfloat/multilingual-e5-large')
input_texts = [
'query: how much protein should a female eat',
'query: 南瓜的家常做法',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"
]
embeddings = model.encode(input_texts, normalize_embeddings=True)
```
Package requirements
`pip install sentence_transformers~=2.2.2`
Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
## FAQ
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
Yes, this is how the model is trained, otherwise you will see a performance degradation.
Here are some rules of thumb:
- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
- Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.
- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
**2. Why are my reproduced results slightly different from reported in the model card?**
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
**3. Why does the cosine similarity scores distribute around 0.7 to 1.0?**
This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.
For text embedding tasks like text retrieval or semantic similarity,
what matters is the relative order of the scores instead of the absolute values,
so this should not be an issue.
## Citation
If you find our paper or models helpful, please consider cite as follows:
```
@article{wang2024multilingual,
title={Multilingual E5 Text Embeddings: A Technical Report},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2402.05672},
year={2024}
}
```
## Limitations
Long texts will be truncated to at most 512 tokens.
| [
"BIOSSES",
"SCIFACT"
] |
billatsectorflow/stella_en_400M_v5 | billatsectorflow | sentence-similarity | [
"sentence-transformers",
"pytorch",
"safetensors",
"new",
"feature-extraction",
"mteb",
"transformers",
"sentence-similarity",
"custom_code",
"arxiv:2205.13147",
"license:mit",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2025-01-22T10:55:37Z" | 2025-01-22T11:45:51+00:00 | 5,141 | 3 | ---
license: mit
tags:
- mteb
- sentence-transformers
- transformers
- sentence-similarity
model-index:
- name: stella_en_400M_v5
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 92.35820895522387
- type: ap
value: 70.81322736988783
- type: ap_weighted
value: 70.81322736988783
- type: f1
value: 88.9505466159595
- type: f1_weighted
value: 92.68630932872613
- type: main_score
value: 92.35820895522387
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 97.1945
- type: ap
value: 96.08192192244094
- type: ap_weighted
value: 96.08192192244094
- type: f1
value: 97.1936887167346
- type: f1_weighted
value: 97.1936887167346
- type: main_score
value: 97.1945
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 59.528000000000006
- type: f1
value: 59.21016819840188
- type: f1_weighted
value: 59.21016819840188
- type: main_score
value: 59.528000000000006
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 64.24
- type: map_at_1
value: 40.398
- type: map_at_10
value: 56.215
- type: map_at_100
value: 56.833999999999996
- type: map_at_1000
value: 56.835
- type: map_at_20
value: 56.747
- type: map_at_3
value: 52.181
- type: map_at_5
value: 54.628
- type: mrr_at_1
value: 41.25177809388336
- type: mrr_at_10
value: 56.570762491815216
- type: mrr_at_100
value: 57.17548614361504
- type: mrr_at_1000
value: 57.176650626377466
- type: mrr_at_20
value: 57.08916253512566
- type: mrr_at_3
value: 52.47747747747754
- type: mrr_at_5
value: 54.94547178757718
- type: nauc_map_at_1000_diff1
value: 22.408086887100158
- type: nauc_map_at_1000_max
value: -8.730419096847543
- type: nauc_map_at_1000_std
value: -17.789262741255737
- type: nauc_map_at_100_diff1
value: 22.407371684274025
- type: nauc_map_at_100_max
value: -8.732263549026266
- type: nauc_map_at_100_std
value: -17.79550515579994
- type: nauc_map_at_10_diff1
value: 21.925005073301246
- type: nauc_map_at_10_max
value: -8.990323944492134
- type: nauc_map_at_10_std
value: -18.199246301671458
- type: nauc_map_at_1_diff1
value: 26.23276644969203
- type: nauc_map_at_1_max
value: -12.376511389571245
- type: nauc_map_at_1_std
value: -18.11411715207284
- type: nauc_map_at_20_diff1
value: 22.32455790850922
- type: nauc_map_at_20_max
value: -8.664671547236034
- type: nauc_map_at_20_std
value: -17.8290016125137
- type: nauc_map_at_3_diff1
value: 22.395462147465064
- type: nauc_map_at_3_max
value: -8.206580750918844
- type: nauc_map_at_3_std
value: -17.604490446911484
- type: nauc_map_at_5_diff1
value: 21.95307379904799
- type: nauc_map_at_5_max
value: -8.03958102978443
- type: nauc_map_at_5_std
value: -17.36578866595004
- type: nauc_mrr_at_1000_diff1
value: 20.124236798365587
- type: nauc_mrr_at_1000_max
value: -9.587376069575898
- type: nauc_mrr_at_1000_std
value: -17.79191612151833
- type: nauc_mrr_at_100_diff1
value: 20.123612603474033
- type: nauc_mrr_at_100_max
value: -9.589187218607831
- type: nauc_mrr_at_100_std
value: -17.7981617777748
- type: nauc_mrr_at_10_diff1
value: 19.723683875738075
- type: nauc_mrr_at_10_max
value: -9.774151729178815
- type: nauc_mrr_at_10_std
value: -18.168668675495162
- type: nauc_mrr_at_1_diff1
value: 23.945332059908132
- type: nauc_mrr_at_1_max
value: -12.260461466152819
- type: nauc_mrr_at_1_std
value: -18.007194922921148
- type: nauc_mrr_at_20_diff1
value: 20.04819461810257
- type: nauc_mrr_at_20_max
value: -9.518368283588936
- type: nauc_mrr_at_20_std
value: -17.831608149836136
- type: nauc_mrr_at_3_diff1
value: 19.8571785245832
- type: nauc_mrr_at_3_max
value: -9.464375021240478
- type: nauc_mrr_at_3_std
value: -17.728533927330453
- type: nauc_mrr_at_5_diff1
value: 19.670313652167827
- type: nauc_mrr_at_5_max
value: -8.966372585728434
- type: nauc_mrr_at_5_std
value: -17.468955834324817
- type: nauc_ndcg_at_1000_diff1
value: 21.863049281767417
- type: nauc_ndcg_at_1000_max
value: -8.18698520924057
- type: nauc_ndcg_at_1000_std
value: -17.634483364794804
- type: nauc_ndcg_at_100_diff1
value: 21.849924385738586
- type: nauc_ndcg_at_100_max
value: -8.226437560889345
- type: nauc_ndcg_at_100_std
value: -17.774648478087002
- type: nauc_ndcg_at_10_diff1
value: 19.888395590413573
- type: nauc_ndcg_at_10_max
value: -8.968706085632382
- type: nauc_ndcg_at_10_std
value: -19.31386964628115
- type: nauc_ndcg_at_1_diff1
value: 26.23276644969203
- type: nauc_ndcg_at_1_max
value: -12.376511389571245
- type: nauc_ndcg_at_1_std
value: -18.11411715207284
- type: nauc_ndcg_at_20_diff1
value: 21.38413342416933
- type: nauc_ndcg_at_20_max
value: -7.636238194084164
- type: nauc_ndcg_at_20_std
value: -17.946390844693028
- type: nauc_ndcg_at_3_diff1
value: 21.29169165029195
- type: nauc_ndcg_at_3_max
value: -6.793840499730093
- type: nauc_ndcg_at_3_std
value: -17.52359001586737
- type: nauc_ndcg_at_5_diff1
value: 20.238297656671364
- type: nauc_ndcg_at_5_max
value: -6.424992706950072
- type: nauc_ndcg_at_5_std
value: -17.082391132291356
- type: nauc_precision_at_1000_diff1
value: -7.05195108528572
- type: nauc_precision_at_1000_max
value: 34.439879624882145
- type: nauc_precision_at_1000_std
value: 68.72436351659353
- type: nauc_precision_at_100_diff1
value: -2.769464113932605
- type: nauc_precision_at_100_max
value: 9.89562961226698
- type: nauc_precision_at_100_std
value: -0.5880967482224028
- type: nauc_precision_at_10_diff1
value: 2.1371544726832323
- type: nauc_precision_at_10_max
value: -11.93051325147756
- type: nauc_precision_at_10_std
value: -30.83144187392059
- type: nauc_precision_at_1_diff1
value: 26.23276644969203
- type: nauc_precision_at_1_max
value: -12.376511389571245
- type: nauc_precision_at_1_std
value: -18.11411715207284
- type: nauc_precision_at_20_diff1
value: 3.780146814257504
- type: nauc_precision_at_20_max
value: 17.06527540214615
- type: nauc_precision_at_20_std
value: -20.36832563035565
- type: nauc_precision_at_3_diff1
value: 17.63894384012077
- type: nauc_precision_at_3_max
value: -2.0220490624638887
- type: nauc_precision_at_3_std
value: -17.285601413493918
- type: nauc_precision_at_5_diff1
value: 12.557855071944601
- type: nauc_precision_at_5_max
value: 0.5840236463956658
- type: nauc_precision_at_5_std
value: -15.827224420217846
- type: nauc_recall_at_1000_diff1
value: -7.051951085286463
- type: nauc_recall_at_1000_max
value: 34.43987962487738
- type: nauc_recall_at_1000_std
value: 68.724363516591
- type: nauc_recall_at_100_diff1
value: -2.769464113930314
- type: nauc_recall_at_100_max
value: 9.895629612270017
- type: nauc_recall_at_100_std
value: -0.58809674821745
- type: nauc_recall_at_10_diff1
value: 2.1371544726834495
- type: nauc_recall_at_10_max
value: -11.930513251477253
- type: nauc_recall_at_10_std
value: -30.83144187392047
- type: nauc_recall_at_1_diff1
value: 26.23276644969203
- type: nauc_recall_at_1_max
value: -12.376511389571245
- type: nauc_recall_at_1_std
value: -18.11411715207284
- type: nauc_recall_at_20_diff1
value: 3.7801468142575922
- type: nauc_recall_at_20_max
value: 17.0652754021456
- type: nauc_recall_at_20_std
value: -20.36832563035559
- type: nauc_recall_at_3_diff1
value: 17.63894384012074
- type: nauc_recall_at_3_max
value: -2.02204906246383
- type: nauc_recall_at_3_std
value: -17.28560141349386
- type: nauc_recall_at_5_diff1
value: 12.55785507194463
- type: nauc_recall_at_5_max
value: 0.5840236463957296
- type: nauc_recall_at_5_std
value: -15.827224420217856
- type: ndcg_at_1
value: 40.398
- type: ndcg_at_10
value: 64.24
- type: ndcg_at_100
value: 66.631
- type: ndcg_at_1000
value: 66.65100000000001
- type: ndcg_at_20
value: 66.086
- type: ndcg_at_3
value: 55.938
- type: ndcg_at_5
value: 60.370000000000005
- type: precision_at_1
value: 40.398
- type: precision_at_10
value: 8.962
- type: precision_at_100
value: 0.9950000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.836
- type: precision_at_3
value: 22.262
- type: precision_at_5
value: 15.519
- type: recall_at_1
value: 40.398
- type: recall_at_10
value: 89.616
- type: recall_at_100
value: 99.502
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 96.72800000000001
- type: recall_at_3
value: 66.78500000000001
- type: recall_at_5
value: 77.596
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: main_score
value: 55.1564333205451
- type: v_measure
value: 55.1564333205451
- type: v_measure_std
value: 14.696883012214512
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: main_score
value: 49.823698316694795
- type: v_measure
value: 49.823698316694795
- type: v_measure_std
value: 14.951660654298186
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 66.15294503553424
- type: map
value: 66.15294503553424
- type: mrr
value: 78.53438420612935
- type: nAUC_map_diff1
value: 12.569697092717997
- type: nAUC_map_max
value: 21.50670312412572
- type: nAUC_map_std
value: 16.943786429229064
- type: nAUC_mrr_diff1
value: 15.590272897361238
- type: nAUC_mrr_max
value: 34.96072022474653
- type: nAUC_mrr_std
value: 21.649217605241045
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 85.7824546319275
- type: cosine_spearman
value: 83.29587385660628
- type: euclidean_pearson
value: 84.58764190565167
- type: euclidean_spearman
value: 83.30069324352772
- type: main_score
value: 83.29587385660628
- type: manhattan_pearson
value: 84.95996839947179
- type: manhattan_spearman
value: 83.87480271054358
- type: pearson
value: 85.7824546319275
- type: spearman
value: 83.29587385660628
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 89.30194805194806
- type: f1
value: 89.26182507266391
- type: f1_weighted
value: 89.26182507266391
- type: main_score
value: 89.30194805194806
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: main_score
value: 50.67972171889736
- type: v_measure
value: 50.67972171889736
- type: v_measure_std
value: 0.7687409980036303
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: main_score
value: 45.80539715556144
- type: v_measure
value: 45.80539715556144
- type: v_measure_std
value: 0.9601346216579142
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: mteb/cqadupstack
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 44.361250000000005
- type: map_at_1
value: 28.304499999999997
- type: map_at_10
value: 38.54841666666666
- type: map_at_100
value: 39.83141666666667
- type: map_at_1000
value: 39.944750000000006
- type: map_at_20
value: 39.25341666666667
- type: map_at_3
value: 35.406749999999995
- type: map_at_5
value: 37.15558333333333
- type: mrr_at_1
value: 34.09077232860122
- type: mrr_at_10
value: 43.15445393211421
- type: mrr_at_100
value: 43.98645286848257
- type: mrr_at_1000
value: 44.037631313469404
- type: mrr_at_20
value: 43.64045813249614
- type: mrr_at_3
value: 40.674138648480486
- type: mrr_at_5
value: 42.106251182620255
- type: nauc_map_at_1000_diff1
value: 46.250011739434996
- type: nauc_map_at_1000_max
value: 30.13664446260598
- type: nauc_map_at_1000_std
value: 5.422301791618935
- type: nauc_map_at_100_diff1
value: 46.253631351999395
- type: nauc_map_at_100_max
value: 30.12612918885181
- type: nauc_map_at_100_std
value: 5.367077019987172
- type: nauc_map_at_10_diff1
value: 46.328171341741346
- type: nauc_map_at_10_max
value: 29.80274612581464
- type: nauc_map_at_10_std
value: 4.62996685176396
- type: nauc_map_at_1_diff1
value: 51.56118117729493
- type: nauc_map_at_1_max
value: 27.94885243863768
- type: nauc_map_at_1_std
value: 1.700366508927356
- type: nauc_map_at_20_diff1
value: 46.286750260299094
- type: nauc_map_at_20_max
value: 29.979205290353278
- type: nauc_map_at_20_std
value: 5.010588412441873
- type: nauc_map_at_3_diff1
value: 47.10018183619064
- type: nauc_map_at_3_max
value: 29.062318206078753
- type: nauc_map_at_3_std
value: 3.2235696254694197
- type: nauc_map_at_5_diff1
value: 46.41971733050039
- type: nauc_map_at_5_max
value: 29.456798617695657
- type: nauc_map_at_5_std
value: 4.0921691023077145
- type: nauc_mrr_at_1000_diff1
value: 45.88888977975723
- type: nauc_mrr_at_1000_max
value: 32.162138978089544
- type: nauc_mrr_at_1000_std
value: 6.2811943424217915
- type: nauc_mrr_at_100_diff1
value: 45.87480433011124
- type: nauc_mrr_at_100_max
value: 32.16011334212834
- type: nauc_mrr_at_100_std
value: 6.2865717772421785
- type: nauc_mrr_at_10_diff1
value: 45.849652904658825
- type: nauc_mrr_at_10_max
value: 32.13847916232293
- type: nauc_mrr_at_10_std
value: 6.105718728141999
- type: nauc_mrr_at_1_diff1
value: 51.013730325062156
- type: nauc_mrr_at_1_max
value: 32.77457396492779
- type: nauc_mrr_at_1_std
value: 4.415684893471724
- type: nauc_mrr_at_20_diff1
value: 45.86663046255274
- type: nauc_mrr_at_20_max
value: 32.15219360697865
- type: nauc_mrr_at_20_std
value: 6.19603046412763
- type: nauc_mrr_at_3_diff1
value: 46.522376582423185
- type: nauc_mrr_at_3_max
value: 32.18259009733714
- type: nauc_mrr_at_3_std
value: 5.288000648220897
- type: nauc_mrr_at_5_diff1
value: 45.86611481369745
- type: nauc_mrr_at_5_max
value: 32.14261639054921
- type: nauc_mrr_at_5_std
value: 5.8811238177073735
- type: nauc_ndcg_at_1000_diff1
value: 44.5055097547565
- type: nauc_ndcg_at_1000_max
value: 31.149682057975458
- type: nauc_ndcg_at_1000_std
value: 8.157937194901333
- type: nauc_ndcg_at_100_diff1
value: 44.12398363638596
- type: nauc_ndcg_at_100_max
value: 30.878064321409994
- type: nauc_ndcg_at_100_std
value: 8.40493441452808
- type: nauc_ndcg_at_10_diff1
value: 44.200093505221474
- type: nauc_ndcg_at_10_max
value: 30.15267107733158
- type: nauc_ndcg_at_10_std
value: 6.407495361566107
- type: nauc_ndcg_at_1_diff1
value: 51.013730325062156
- type: nauc_ndcg_at_1_max
value: 32.77457396492779
- type: nauc_ndcg_at_1_std
value: 4.415684893471724
- type: nauc_ndcg_at_20_diff1
value: 44.16988321564116
- type: nauc_ndcg_at_20_max
value: 30.333532500651213
- type: nauc_ndcg_at_20_std
value: 7.10024701386895
- type: nauc_ndcg_at_3_diff1
value: 45.35982873879988
- type: nauc_ndcg_at_3_max
value: 30.288312457948702
- type: nauc_ndcg_at_3_std
value: 4.653900898293395
- type: nauc_ndcg_at_5_diff1
value: 44.324558115380185
- type: nauc_ndcg_at_5_max
value: 30.048149698941373
- type: nauc_ndcg_at_5_std
value: 5.6684459618413205
- type: nauc_precision_at_1000_diff1
value: -7.282175798304458
- type: nauc_precision_at_1000_max
value: 7.820142031765352
- type: nauc_precision_at_1000_std
value: 11.736131836431172
- type: nauc_precision_at_100_diff1
value: 1.0222940256506976
- type: nauc_precision_at_100_max
value: 16.12346497070298
- type: nauc_precision_at_100_std
value: 18.202607395247874
- type: nauc_precision_at_10_diff1
value: 18.289439185857837
- type: nauc_precision_at_10_max
value: 26.116517399154375
- type: nauc_precision_at_10_std
value: 13.921214069982302
- type: nauc_precision_at_1_diff1
value: 51.013730325062156
- type: nauc_precision_at_1_max
value: 32.77457396492779
- type: nauc_precision_at_1_std
value: 4.415684893471724
- type: nauc_precision_at_20_diff1
value: 12.365165405210886
- type: nauc_precision_at_20_max
value: 22.946297258937367
- type: nauc_precision_at_20_std
value: 16.13862870358933
- type: nauc_precision_at_3_diff1
value: 32.063423642849685
- type: nauc_precision_at_3_max
value: 30.140965811989407
- type: nauc_precision_at_3_std
value: 8.501746262550146
- type: nauc_precision_at_5_diff1
value: 24.777203357717948
- type: nauc_precision_at_5_max
value: 28.401579566848472
- type: nauc_precision_at_5_std
value: 11.643246774390914
- type: nauc_recall_at_1000_diff1
value: 30.04216463401409
- type: nauc_recall_at_1000_max
value: 34.98067760563842
- type: nauc_recall_at_1000_std
value: 48.01453905250591
- type: nauc_recall_at_100_diff1
value: 31.193415507513972
- type: nauc_recall_at_100_max
value: 28.69740149270981
- type: nauc_recall_at_100_std
value: 25.20960758920368
- type: nauc_recall_at_10_diff1
value: 36.18870823636506
- type: nauc_recall_at_10_max
value: 26.005625231341238
- type: nauc_recall_at_10_std
value: 8.891983977041376
- type: nauc_recall_at_1_diff1
value: 51.56118117729493
- type: nauc_recall_at_1_max
value: 27.94885243863768
- type: nauc_recall_at_1_std
value: 1.700366508927356
- type: nauc_recall_at_20_diff1
value: 34.93996118564803
- type: nauc_recall_at_20_max
value: 26.149961715956138
- type: nauc_recall_at_20_std
value: 12.0657502367633
- type: nauc_recall_at_3_diff1
value: 40.80743946709512
- type: nauc_recall_at_3_max
value: 26.443127773025783
- type: nauc_recall_at_3_std
value: 3.7011448604241477
- type: nauc_recall_at_5_diff1
value: 37.608535157055776
- type: nauc_recall_at_5_max
value: 26.168016189725822
- type: nauc_recall_at_5_std
value: 6.344191564595316
- type: ndcg_at_1
value: 34.09083333333333
- type: ndcg_at_10
value: 44.361250000000005
- type: ndcg_at_100
value: 49.586166666666664
- type: ndcg_at_1000
value: 51.623583333333336
- type: ndcg_at_20
value: 46.40158333333333
- type: ndcg_at_3
value: 39.27733333333333
- type: ndcg_at_5
value: 41.662333333333336
- type: precision_at_1
value: 34.09083333333333
- type: precision_at_10
value: 7.957000000000002
- type: precision_at_100
value: 1.2521666666666669
- type: precision_at_1000
value: 0.16125
- type: precision_at_20
value: 4.6755
- type: precision_at_3
value: 18.402083333333334
- type: precision_at_5
value: 13.104333333333335
- type: recall_at_1
value: 28.304499999999997
- type: recall_at_10
value: 56.80666666666667
- type: recall_at_100
value: 79.66208333333334
- type: recall_at_1000
value: 93.6455
- type: recall_at_20
value: 64.2495
- type: recall_at_3
value: 42.431333333333335
- type: recall_at_5
value: 48.665416666666665
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 43.525999999999996
- type: map_at_1
value: 19.291
- type: map_at_10
value: 33.471000000000004
- type: map_at_100
value: 35.388999999999996
- type: map_at_1000
value: 35.568
- type: map_at_20
value: 34.496
- type: map_at_3
value: 28.713
- type: map_at_5
value: 31.384
- type: mrr_at_1
value: 43.77850162866449
- type: mrr_at_10
value: 56.28576598934912
- type: mrr_at_100
value: 56.8588518168194
- type: mrr_at_1000
value: 56.878236725973544
- type: mrr_at_20
value: 56.6409328120183
- type: mrr_at_3
value: 53.56134636264935
- type: mrr_at_5
value: 55.27795874049956
- type: nauc_map_at_1000_diff1
value: 27.262513153363876
- type: nauc_map_at_1000_max
value: 40.099398684385584
- type: nauc_map_at_1000_std
value: 18.847812394005512
- type: nauc_map_at_100_diff1
value: 27.238993503030745
- type: nauc_map_at_100_max
value: 40.07730434492169
- type: nauc_map_at_100_std
value: 18.795349250833684
- type: nauc_map_at_10_diff1
value: 27.70929180366227
- type: nauc_map_at_10_max
value: 39.55987024970173
- type: nauc_map_at_10_std
value: 17.214881544648996
- type: nauc_map_at_1_diff1
value: 43.34155892182403
- type: nauc_map_at_1_max
value: 38.23324890148018
- type: nauc_map_at_1_std
value: 6.0781444393516075
- type: nauc_map_at_20_diff1
value: 27.311577477800103
- type: nauc_map_at_20_max
value: 39.624414083413456
- type: nauc_map_at_20_std
value: 18.149811054163287
- type: nauc_map_at_3_diff1
value: 30.475965062734367
- type: nauc_map_at_3_max
value: 38.49324825043695
- type: nauc_map_at_3_std
value: 13.357656038648487
- type: nauc_map_at_5_diff1
value: 28.425110095017747
- type: nauc_map_at_5_max
value: 39.017894870747796
- type: nauc_map_at_5_std
value: 15.543817194122564
- type: nauc_mrr_at_1000_diff1
value: 33.16689354701644
- type: nauc_mrr_at_1000_max
value: 41.70755363247148
- type: nauc_mrr_at_1000_std
value: 24.61667417463176
- type: nauc_mrr_at_100_diff1
value: 33.147229262917506
- type: nauc_mrr_at_100_max
value: 41.712455697170725
- type: nauc_mrr_at_100_std
value: 24.6418922043652
- type: nauc_mrr_at_10_diff1
value: 32.94185191112572
- type: nauc_mrr_at_10_max
value: 41.64272730141954
- type: nauc_mrr_at_10_std
value: 24.663391015702707
- type: nauc_mrr_at_1_diff1
value: 39.571969559016395
- type: nauc_mrr_at_1_max
value: 39.396249211263495
- type: nauc_mrr_at_1_std
value: 16.984149923258357
- type: nauc_mrr_at_20_diff1
value: 33.10040770334742
- type: nauc_mrr_at_20_max
value: 41.807565560083034
- type: nauc_mrr_at_20_std
value: 24.8064180365271
- type: nauc_mrr_at_3_diff1
value: 33.065406161485704
- type: nauc_mrr_at_3_max
value: 41.049510969934694
- type: nauc_mrr_at_3_std
value: 23.18371458928609
- type: nauc_mrr_at_5_diff1
value: 33.2389593543916
- type: nauc_mrr_at_5_max
value: 41.629486918949915
- type: nauc_mrr_at_5_std
value: 24.5777253036149
- type: nauc_ndcg_at_1000_diff1
value: 25.868840609197637
- type: nauc_ndcg_at_1000_max
value: 42.79564910784761
- type: nauc_ndcg_at_1000_std
value: 27.035091271680113
- type: nauc_ndcg_at_100_diff1
value: 25.019789319579942
- type: nauc_ndcg_at_100_max
value: 42.482345143533735
- type: nauc_ndcg_at_100_std
value: 26.76872010731345
- type: nauc_ndcg_at_10_diff1
value: 25.949464660653238
- type: nauc_ndcg_at_10_max
value: 40.79769544643906
- type: nauc_ndcg_at_10_std
value: 22.486116508973204
- type: nauc_ndcg_at_1_diff1
value: 39.571969559016395
- type: nauc_ndcg_at_1_max
value: 39.396249211263495
- type: nauc_ndcg_at_1_std
value: 16.984149923258357
- type: nauc_ndcg_at_20_diff1
value: 25.173455685962214
- type: nauc_ndcg_at_20_max
value: 40.88873540662413
- type: nauc_ndcg_at_20_std
value: 24.4451041955519
- type: nauc_ndcg_at_3_diff1
value: 28.185416070726333
- type: nauc_ndcg_at_3_max
value: 39.10600031163912
- type: nauc_ndcg_at_3_std
value: 18.42694044215541
- type: nauc_ndcg_at_5_diff1
value: 27.112647584005583
- type: nauc_ndcg_at_5_max
value: 40.154045682322526
- type: nauc_ndcg_at_5_std
value: 20.26822517176828
- type: nauc_precision_at_1000_diff1
value: -16.42087927044017
- type: nauc_precision_at_1000_max
value: 3.5326295053913
- type: nauc_precision_at_1000_std
value: 24.406810708493197
- type: nauc_precision_at_100_diff1
value: -12.17648135724982
- type: nauc_precision_at_100_max
value: 15.895489260126183
- type: nauc_precision_at_100_std
value: 32.48346122610907
- type: nauc_precision_at_10_diff1
value: -1.2493131347748072
- type: nauc_precision_at_10_max
value: 26.409459305604376
- type: nauc_precision_at_10_std
value: 31.115432019300016
- type: nauc_precision_at_1_diff1
value: 39.571969559016395
- type: nauc_precision_at_1_max
value: 39.396249211263495
- type: nauc_precision_at_1_std
value: 16.984149923258357
- type: nauc_precision_at_20_diff1
value: -6.597509397240593
- type: nauc_precision_at_20_max
value: 21.461984620659695
- type: nauc_precision_at_20_std
value: 32.9450259748889
- type: nauc_precision_at_3_diff1
value: 9.46378764865453
- type: nauc_precision_at_3_max
value: 32.03650819375425
- type: nauc_precision_at_3_std
value: 26.489382638510765
- type: nauc_precision_at_5_diff1
value: 3.5987036728169537
- type: nauc_precision_at_5_max
value: 30.633955978579703
- type: nauc_precision_at_5_std
value: 30.532430088014443
- type: nauc_recall_at_1000_diff1
value: 10.714633106872254
- type: nauc_recall_at_1000_max
value: 43.94958623961
- type: nauc_recall_at_1000_std
value: 51.78914468954123
- type: nauc_recall_at_100_diff1
value: 9.63781472255557
- type: nauc_recall_at_100_max
value: 38.50917465255336
- type: nauc_recall_at_100_std
value: 37.78623984642377
- type: nauc_recall_at_10_diff1
value: 16.480342820841688
- type: nauc_recall_at_10_max
value: 35.982566867357406
- type: nauc_recall_at_10_std
value: 23.30688188788895
- type: nauc_recall_at_1_diff1
value: 43.34155892182403
- type: nauc_recall_at_1_max
value: 38.23324890148018
- type: nauc_recall_at_1_std
value: 6.0781444393516075
- type: nauc_recall_at_20_diff1
value: 13.521048985146367
- type: nauc_recall_at_20_max
value: 34.62462209239834
- type: nauc_recall_at_20_std
value: 27.85924191501618
- type: nauc_recall_at_3_diff1
value: 23.57032748533523
- type: nauc_recall_at_3_max
value: 36.32703197635613
- type: nauc_recall_at_3_std
value: 15.730238734014337
- type: nauc_recall_at_5_diff1
value: 19.61387036368584
- type: nauc_recall_at_5_max
value: 36.22030835529556
- type: nauc_recall_at_5_std
value: 19.76310648649897
- type: ndcg_at_1
value: 43.779
- type: ndcg_at_10
value: 43.525999999999996
- type: ndcg_at_100
value: 50.138000000000005
- type: ndcg_at_1000
value: 52.991
- type: ndcg_at_20
value: 46.083
- type: ndcg_at_3
value: 38.002
- type: ndcg_at_5
value: 39.842
- type: precision_at_1
value: 43.779
- type: precision_at_10
value: 13.205
- type: precision_at_100
value: 2.051
- type: precision_at_1000
value: 0.259
- type: precision_at_20
value: 7.722999999999999
- type: precision_at_3
value: 28.903000000000002
- type: precision_at_5
value: 21.368000000000002
- type: recall_at_1
value: 19.291
- type: recall_at_10
value: 48.754
- type: recall_at_100
value: 70.97200000000001
- type: recall_at_1000
value: 86.611
- type: recall_at_20
value: 55.884
- type: recall_at_3
value: 34.101
- type: recall_at_5
value: 40.784
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 49.884
- type: map_at_1
value: 9.913
- type: map_at_10
value: 23.186999999999998
- type: map_at_100
value: 34.207
- type: map_at_1000
value: 36.318
- type: map_at_20
value: 27.419
- type: map_at_3
value: 15.656
- type: map_at_5
value: 18.945999999999998
- type: mrr_at_1
value: 75.75
- type: mrr_at_10
value: 82.16279761904761
- type: mrr_at_100
value: 82.48445635330299
- type: mrr_at_1000
value: 82.4870246719901
- type: mrr_at_20
value: 82.36203632968338
- type: mrr_at_3
value: 81.29166666666666
- type: mrr_at_5
value: 82.02916666666667
- type: nauc_map_at_1000_diff1
value: 17.0739966990996
- type: nauc_map_at_1000_max
value: 28.440065298437133
- type: nauc_map_at_1000_std
value: 20.83498154003865
- type: nauc_map_at_100_diff1
value: 17.75982086107111
- type: nauc_map_at_100_max
value: 26.87850835673573
- type: nauc_map_at_100_std
value: 18.350282298599275
- type: nauc_map_at_10_diff1
value: 17.15984258564116
- type: nauc_map_at_10_max
value: 10.846179132675553
- type: nauc_map_at_10_std
value: -6.263534464094614
- type: nauc_map_at_1_diff1
value: 24.014897777973694
- type: nauc_map_at_1_max
value: -4.556638938723358
- type: nauc_map_at_1_std
value: -22.7844467526989
- type: nauc_map_at_20_diff1
value: 16.3179372493187
- type: nauc_map_at_20_max
value: 17.176378915498915
- type: nauc_map_at_20_std
value: 1.9378637630340372
- type: nauc_map_at_3_diff1
value: 19.12786794046792
- type: nauc_map_at_3_max
value: 0.09063919305677291
- type: nauc_map_at_3_std
value: -16.713143158330492
- type: nauc_map_at_5_diff1
value: 18.76504725420023
- type: nauc_map_at_5_max
value: 5.040867712207419
- type: nauc_map_at_5_std
value: -12.382578318931165
- type: nauc_mrr_at_1000_diff1
value: 54.61266255011247
- type: nauc_mrr_at_1000_max
value: 60.83961280977112
- type: nauc_mrr_at_1000_std
value: 32.70429260443016
- type: nauc_mrr_at_100_diff1
value: 54.61346236538542
- type: nauc_mrr_at_100_max
value: 60.8407974416647
- type: nauc_mrr_at_100_std
value: 32.69272843993462
- type: nauc_mrr_at_10_diff1
value: 54.74633685810871
- type: nauc_mrr_at_10_max
value: 61.084525933097865
- type: nauc_mrr_at_10_std
value: 33.001220210025565
- type: nauc_mrr_at_1_diff1
value: 56.12708423835806
- type: nauc_mrr_at_1_max
value: 58.9314540998289
- type: nauc_mrr_at_1_std
value: 27.39422607651012
- type: nauc_mrr_at_20_diff1
value: 54.58896150245695
- type: nauc_mrr_at_20_max
value: 60.890929983464815
- type: nauc_mrr_at_20_std
value: 32.65559641276393
- type: nauc_mrr_at_3_diff1
value: 54.38229071443791
- type: nauc_mrr_at_3_max
value: 59.987849044098596
- type: nauc_mrr_at_3_std
value: 33.439813880719974
- type: nauc_mrr_at_5_diff1
value: 54.961790262449824
- type: nauc_mrr_at_5_max
value: 61.17705173908951
- type: nauc_mrr_at_5_std
value: 33.30939850734856
- type: nauc_ndcg_at_1000_diff1
value: 29.27465932507067
- type: nauc_ndcg_at_1000_max
value: 47.952543312315214
- type: nauc_ndcg_at_1000_std
value: 36.17132236391485
- type: nauc_ndcg_at_100_diff1
value: 28.63072328980134
- type: nauc_ndcg_at_100_max
value: 41.460833419186564
- type: nauc_ndcg_at_100_std
value: 27.157100358988135
- type: nauc_ndcg_at_10_diff1
value: 23.41488013023301
- type: nauc_ndcg_at_10_max
value: 39.27798133072349
- type: nauc_ndcg_at_10_std
value: 21.979241438928312
- type: nauc_ndcg_at_1_diff1
value: 46.12120543657642
- type: nauc_ndcg_at_1_max
value: 47.28452124039853
- type: nauc_ndcg_at_1_std
value: 19.799884708952543
- type: nauc_ndcg_at_20_diff1
value: 23.627669045115574
- type: nauc_ndcg_at_20_max
value: 35.88225062457673
- type: nauc_ndcg_at_20_std
value: 18.218628030529498
- type: nauc_ndcg_at_3_diff1
value: 25.37309228946118
- type: nauc_ndcg_at_3_max
value: 40.64426332992231
- type: nauc_ndcg_at_3_std
value: 24.608330645901482
- type: nauc_ndcg_at_5_diff1
value: 24.055798594999654
- type: nauc_ndcg_at_5_max
value: 41.16180524175431
- type: nauc_ndcg_at_5_std
value: 24.048305528761315
- type: nauc_precision_at_1000_diff1
value: -18.234943251015576
- type: nauc_precision_at_1000_max
value: 0.48708502364659184
- type: nauc_precision_at_1000_std
value: 2.4473601543134027
- type: nauc_precision_at_100_diff1
value: -3.0077810947381227
- type: nauc_precision_at_100_max
value: 25.27249321108913
- type: nauc_precision_at_100_std
value: 37.36575792126928
- type: nauc_precision_at_10_diff1
value: -0.2393778190297635
- type: nauc_precision_at_10_max
value: 36.40513293547299
- type: nauc_precision_at_10_std
value: 37.4827885766009
- type: nauc_precision_at_1_diff1
value: 56.12708423835806
- type: nauc_precision_at_1_max
value: 58.9314540998289
- type: nauc_precision_at_1_std
value: 27.39422607651012
- type: nauc_precision_at_20_diff1
value: -1.2010133229402933
- type: nauc_precision_at_20_max
value: 34.117541814385966
- type: nauc_precision_at_20_std
value: 39.13273254177449
- type: nauc_precision_at_3_diff1
value: 11.757378092198486
- type: nauc_precision_at_3_max
value: 42.637962482588875
- type: nauc_precision_at_3_std
value: 37.42465077352342
- type: nauc_precision_at_5_diff1
value: 7.233177203405101
- type: nauc_precision_at_5_max
value: 43.1663582897407
- type: nauc_precision_at_5_std
value: 38.848449220750055
- type: nauc_recall_at_1000_diff1
value: 27.33938551969145
- type: nauc_recall_at_1000_max
value: 45.5614254479334
- type: nauc_recall_at_1000_std
value: 50.58528916250458
- type: nauc_recall_at_100_diff1
value: 23.610383761920097
- type: nauc_recall_at_100_max
value: 31.422168485847184
- type: nauc_recall_at_100_std
value: 25.58649926458304
- type: nauc_recall_at_10_diff1
value: 14.62495111808408
- type: nauc_recall_at_10_max
value: 7.4295041277681095
- type: nauc_recall_at_10_std
value: -9.32297089600654
- type: nauc_recall_at_1_diff1
value: 24.014897777973694
- type: nauc_recall_at_1_max
value: -4.556638938723358
- type: nauc_recall_at_1_std
value: -22.7844467526989
- type: nauc_recall_at_20_diff1
value: 14.027862330014662
- type: nauc_recall_at_20_max
value: 12.437478731690844
- type: nauc_recall_at_20_std
value: -3.0740743798103676
- type: nauc_recall_at_3_diff1
value: 16.354018356566712
- type: nauc_recall_at_3_max
value: -2.9812231240997917
- type: nauc_recall_at_3_std
value: -18.27746460743442
- type: nauc_recall_at_5_diff1
value: 16.81486583473587
- type: nauc_recall_at_5_max
value: 2.420128513974744
- type: nauc_recall_at_5_std
value: -14.441820321214108
- type: ndcg_at_1
value: 63.87500000000001
- type: ndcg_at_10
value: 49.884
- type: ndcg_at_100
value: 54.738
- type: ndcg_at_1000
value: 61.635
- type: ndcg_at_20
value: 48.894999999999996
- type: ndcg_at_3
value: 54.287
- type: ndcg_at_5
value: 52.40899999999999
- type: precision_at_1
value: 75.75
- type: precision_at_10
value: 40.9
- type: precision_at_100
value: 13.139999999999999
- type: precision_at_1000
value: 2.533
- type: precision_at_20
value: 30.8
- type: precision_at_3
value: 57.667
- type: precision_at_5
value: 51.05
- type: recall_at_1
value: 9.913
- type: recall_at_10
value: 28.591
- type: recall_at_100
value: 61.017999999999994
- type: recall_at_1000
value: 83.383
- type: recall_at_20
value: 37.834
- type: recall_at_3
value: 17.049
- type: recall_at_5
value: 21.685
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 78.77499999999999
- type: f1
value: 73.74058240799386
- type: f1_weighted
value: 79.78804377638227
- type: main_score
value: 78.77499999999999
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 90.986
- type: map_at_1
value: 81.601
- type: map_at_10
value: 88.242
- type: map_at_100
value: 88.46000000000001
- type: map_at_1000
value: 88.472
- type: map_at_20
value: 88.375
- type: map_at_3
value: 87.237
- type: map_at_5
value: 87.85300000000001
- type: mrr_at_1
value: 87.81878187818782
- type: mrr_at_10
value: 92.20301196786335
- type: mrr_at_100
value: 92.24884236673292
- type: mrr_at_1000
value: 92.2496338899362
- type: mrr_at_20
value: 92.23112073283473
- type: mrr_at_3
value: 91.77417741774165
- type: mrr_at_5
value: 92.03970397039689
- type: nauc_map_at_1000_diff1
value: 56.54670664910505
- type: nauc_map_at_1000_max
value: 33.08375749975477
- type: nauc_map_at_1000_std
value: 2.7491595418252865
- type: nauc_map_at_100_diff1
value: 56.50887688686924
- type: nauc_map_at_100_max
value: 33.075487189958494
- type: nauc_map_at_100_std
value: 2.7675869969253375
- type: nauc_map_at_10_diff1
value: 56.08080806610569
- type: nauc_map_at_10_max
value: 32.776972098819066
- type: nauc_map_at_10_std
value: 2.5904846711290097
- type: nauc_map_at_1_diff1
value: 60.645344065853145
- type: nauc_map_at_1_max
value: 31.232776777514797
- type: nauc_map_at_1_std
value: -1.1946138176109171
- type: nauc_map_at_20_diff1
value: 56.28378454162355
- type: nauc_map_at_20_max
value: 32.98207150385811
- type: nauc_map_at_20_std
value: 2.8469814040214025
- type: nauc_map_at_3_diff1
value: 55.81958007095375
- type: nauc_map_at_3_max
value: 31.602707711038313
- type: nauc_map_at_3_std
value: 0.8117019292273401
- type: nauc_map_at_5_diff1
value: 55.706025752316535
- type: nauc_map_at_5_max
value: 32.16032683604737
- type: nauc_map_at_5_std
value: 1.8853201503498669
- type: nauc_mrr_at_1000_diff1
value: 75.4997173366251
- type: nauc_mrr_at_1000_max
value: 41.49117135484116
- type: nauc_mrr_at_1000_std
value: -2.0636172883680852
- type: nauc_mrr_at_100_diff1
value: 75.50118860648519
- type: nauc_mrr_at_100_max
value: 41.49490161517194
- type: nauc_mrr_at_100_std
value: -2.057024385178682
- type: nauc_mrr_at_10_diff1
value: 75.47295153099428
- type: nauc_mrr_at_10_max
value: 41.55003304042536
- type: nauc_mrr_at_10_std
value: -2.0353663198929253
- type: nauc_mrr_at_1_diff1
value: 76.632058433229
- type: nauc_mrr_at_1_max
value: 39.754483718891656
- type: nauc_mrr_at_1_std
value: -2.962241058101701
- type: nauc_mrr_at_20_diff1
value: 75.47221882396194
- type: nauc_mrr_at_20_max
value: 41.50779280480839
- type: nauc_mrr_at_20_std
value: -1.9620212266426307
- type: nauc_mrr_at_3_diff1
value: 75.5682297897137
- type: nauc_mrr_at_3_max
value: 41.53543801506081
- type: nauc_mrr_at_3_std
value: -3.391681195945978
- type: nauc_mrr_at_5_diff1
value: 75.37562775183947
- type: nauc_mrr_at_5_max
value: 41.42028509006753
- type: nauc_mrr_at_5_std
value: -2.418698675622726
- type: nauc_ndcg_at_1000_diff1
value: 59.364557011624
- type: nauc_ndcg_at_1000_max
value: 35.4112238125149
- type: nauc_ndcg_at_1000_std
value: 3.717516193303376
- type: nauc_ndcg_at_100_diff1
value: 58.55706703023122
- type: nauc_ndcg_at_100_max
value: 35.352285999934594
- type: nauc_ndcg_at_100_std
value: 4.273437944266781
- type: nauc_ndcg_at_10_diff1
value: 56.77422701267037
- type: nauc_ndcg_at_10_max
value: 34.24909893882957
- type: nauc_ndcg_at_10_std
value: 4.178151434006727
- type: nauc_ndcg_at_1_diff1
value: 76.632058433229
- type: nauc_ndcg_at_1_max
value: 39.754483718891656
- type: nauc_ndcg_at_1_std
value: -2.962241058101701
- type: nauc_ndcg_at_20_diff1
value: 57.27343398231262
- type: nauc_ndcg_at_20_max
value: 34.7416626740278
- type: nauc_ndcg_at_20_std
value: 4.955858766014002
- type: nauc_ndcg_at_3_diff1
value: 57.69267803121093
- type: nauc_ndcg_at_3_max
value: 33.13744317023105
- type: nauc_ndcg_at_3_std
value: 0.40380284030057023
- type: nauc_ndcg_at_5_diff1
value: 56.57461019113917
- type: nauc_ndcg_at_5_max
value: 33.244657840804386
- type: nauc_ndcg_at_5_std
value: 2.5121440827702046
- type: nauc_precision_at_1000_diff1
value: -14.54492513449718
- type: nauc_precision_at_1000_max
value: -5.94552147573623
- type: nauc_precision_at_1000_std
value: 1.2446209816057374
- type: nauc_precision_at_100_diff1
value: -15.452676132568344
- type: nauc_precision_at_100_max
value: -3.760241749847617
- type: nauc_precision_at_100_std
value: 4.623534605290865
- type: nauc_precision_at_10_diff1
value: -12.712908026086176
- type: nauc_precision_at_10_max
value: 0.45241316994816805
- type: nauc_precision_at_10_std
value: 7.849478570138391
- type: nauc_precision_at_1_diff1
value: 76.632058433229
- type: nauc_precision_at_1_max
value: 39.754483718891656
- type: nauc_precision_at_1_std
value: -2.962241058101701
- type: nauc_precision_at_20_diff1
value: -14.514618673172041
- type: nauc_precision_at_20_max
value: -1.113635490621818
- type: nauc_precision_at_20_std
value: 8.599811730457576
- type: nauc_precision_at_3_diff1
value: 6.1367799850003815
- type: nauc_precision_at_3_max
value: 8.466271950897857
- type: nauc_precision_at_3_std
value: 1.7458051543195068
- type: nauc_precision_at_5_diff1
value: -5.804548945783379
- type: nauc_precision_at_5_max
value: 3.4060251839074818
- type: nauc_precision_at_5_std
value: 5.583410511782371
- type: nauc_recall_at_1000_diff1
value: 19.329432953574095
- type: nauc_recall_at_1000_max
value: 43.260442595158736
- type: nauc_recall_at_1000_std
value: 53.89644660661804
- type: nauc_recall_at_100_diff1
value: 21.265326296051235
- type: nauc_recall_at_100_max
value: 38.573000195373695
- type: nauc_recall_at_100_std
value: 42.169391082152785
- type: nauc_recall_at_10_diff1
value: 29.785129558987432
- type: nauc_recall_at_10_max
value: 28.379657867558034
- type: nauc_recall_at_10_std
value: 21.132574624091973
- type: nauc_recall_at_1_diff1
value: 60.645344065853145
- type: nauc_recall_at_1_max
value: 31.232776777514797
- type: nauc_recall_at_1_std
value: -1.1946138176109171
- type: nauc_recall_at_20_diff1
value: 25.88845612373954
- type: nauc_recall_at_20_max
value: 30.24785945821152
- type: nauc_recall_at_20_std
value: 31.73911437468067
- type: nauc_recall_at_3_diff1
value: 42.2968464797395
- type: nauc_recall_at_3_max
value: 26.494318009870018
- type: nauc_recall_at_3_std
value: 2.6045977160467544
- type: nauc_recall_at_5_diff1
value: 35.81340094401374
- type: nauc_recall_at_5_max
value: 25.91082947510634
- type: nauc_recall_at_5_std
value: 9.759404930864779
- type: ndcg_at_1
value: 87.819
- type: ndcg_at_10
value: 90.986
- type: ndcg_at_100
value: 91.69
- type: ndcg_at_1000
value: 91.863
- type: ndcg_at_20
value: 91.293
- type: ndcg_at_3
value: 89.621
- type: ndcg_at_5
value: 90.333
- type: precision_at_1
value: 87.819
- type: precision_at_10
value: 10.753
- type: precision_at_100
value: 1.138
- type: precision_at_1000
value: 0.117
- type: precision_at_20
value: 5.4879999999999995
- type: precision_at_3
value: 33.703
- type: precision_at_5
value: 20.831
- type: recall_at_1
value: 81.601
- type: recall_at_10
value: 95.44200000000001
- type: recall_at_100
value: 98.14399999999999
- type: recall_at_1000
value: 99.157
- type: recall_at_20
value: 96.43
- type: recall_at_3
value: 91.729
- type: recall_at_5
value: 93.552
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 56.056
- type: map_at_1
value: 28.666000000000004
- type: map_at_10
value: 47.437000000000005
- type: map_at_100
value: 49.537
- type: map_at_1000
value: 49.665
- type: map_at_20
value: 48.618
- type: map_at_3
value: 41.355
- type: map_at_5
value: 44.525
- type: mrr_at_1
value: 55.55555555555556
- type: mrr_at_10
value: 63.705173427395614
- type: mrr_at_100
value: 64.25449940779741
- type: mrr_at_1000
value: 64.27635581092147
- type: mrr_at_20
value: 64.03796029079103
- type: mrr_at_3
value: 61.49691358024688
- type: mrr_at_5
value: 62.73148148148143
- type: nauc_map_at_1000_diff1
value: 43.24282910397747
- type: nauc_map_at_1000_max
value: 28.506093180265644
- type: nauc_map_at_1000_std
value: -13.040508386155054
- type: nauc_map_at_100_diff1
value: 43.23650442904607
- type: nauc_map_at_100_max
value: 28.470565635459156
- type: nauc_map_at_100_std
value: -12.988098780714935
- type: nauc_map_at_10_diff1
value: 43.393840733087686
- type: nauc_map_at_10_max
value: 26.637302062720153
- type: nauc_map_at_10_std
value: -14.47500292113762
- type: nauc_map_at_1_diff1
value: 47.705150227211725
- type: nauc_map_at_1_max
value: 15.354189686550129
- type: nauc_map_at_1_std
value: -14.559819859039067
- type: nauc_map_at_20_diff1
value: 43.14121075706104
- type: nauc_map_at_20_max
value: 27.811170590408395
- type: nauc_map_at_20_std
value: -13.459413585283583
- type: nauc_map_at_3_diff1
value: 44.33938667720801
- type: nauc_map_at_3_max
value: 21.785619884549398
- type: nauc_map_at_3_std
value: -15.569980103071593
- type: nauc_map_at_5_diff1
value: 43.39280905665027
- type: nauc_map_at_5_max
value: 25.021492190645017
- type: nauc_map_at_5_std
value: -14.48856622187443
- type: nauc_mrr_at_1000_diff1
value: 52.971563939946286
- type: nauc_mrr_at_1000_max
value: 38.88019486172324
- type: nauc_mrr_at_1000_std
value: -12.412991642381616
- type: nauc_mrr_at_100_diff1
value: 52.978468139876945
- type: nauc_mrr_at_100_max
value: 38.89751787948751
- type: nauc_mrr_at_100_std
value: -12.3677876252269
- type: nauc_mrr_at_10_diff1
value: 52.78507148048174
- type: nauc_mrr_at_10_max
value: 38.55079809310022
- type: nauc_mrr_at_10_std
value: -12.944127025078755
- type: nauc_mrr_at_1_diff1
value: 55.52626805861546
- type: nauc_mrr_at_1_max
value: 40.49306809164979
- type: nauc_mrr_at_1_std
value: -12.886607701317681
- type: nauc_mrr_at_20_diff1
value: 52.9592152665678
- type: nauc_mrr_at_20_max
value: 38.88514014589964
- type: nauc_mrr_at_20_std
value: -12.434464359819444
- type: nauc_mrr_at_3_diff1
value: 52.73696844091174
- type: nauc_mrr_at_3_max
value: 38.61018727252859
- type: nauc_mrr_at_3_std
value: -13.123989867364166
- type: nauc_mrr_at_5_diff1
value: 53.037110010188
- type: nauc_mrr_at_5_max
value: 38.44770729849151
- type: nauc_mrr_at_5_std
value: -13.49318771828972
- type: nauc_ndcg_at_1000_diff1
value: 44.73813840091289
- type: nauc_ndcg_at_1000_max
value: 33.70113904685389
- type: nauc_ndcg_at_1000_std
value: -10.328687058192742
- type: nauc_ndcg_at_100_diff1
value: 44.595174119928835
- type: nauc_ndcg_at_100_max
value: 33.4788285112467
- type: nauc_ndcg_at_100_std
value: -8.695355259716946
- type: nauc_ndcg_at_10_diff1
value: 44.39837225263
- type: nauc_ndcg_at_10_max
value: 29.188289725593393
- type: nauc_ndcg_at_10_std
value: -13.67608323673103
- type: nauc_ndcg_at_1_diff1
value: 55.52626805861546
- type: nauc_ndcg_at_1_max
value: 40.49306809164979
- type: nauc_ndcg_at_1_std
value: -12.886607701317681
- type: nauc_ndcg_at_20_diff1
value: 44.24661739902305
- type: nauc_ndcg_at_20_max
value: 31.667868318249965
- type: nauc_ndcg_at_20_std
value: -10.65470780066342
- type: nauc_ndcg_at_3_diff1
value: 43.39857166975522
- type: nauc_ndcg_at_3_max
value: 31.764668313577495
- type: nauc_ndcg_at_3_std
value: -14.494866954678152
- type: nauc_ndcg_at_5_diff1
value: 43.16976647347281
- type: nauc_ndcg_at_5_max
value: 29.878329062643143
- type: nauc_ndcg_at_5_std
value: -13.987689089179739
- type: nauc_precision_at_1000_diff1
value: -9.807973252625484
- type: nauc_precision_at_1000_max
value: 26.6279603849494
- type: nauc_precision_at_1000_std
value: 7.113187103520632
- type: nauc_precision_at_100_diff1
value: -4.777149603323976
- type: nauc_precision_at_100_max
value: 31.03410463692187
- type: nauc_precision_at_100_std
value: 10.463144150275435
- type: nauc_precision_at_10_diff1
value: 8.691528703215962
- type: nauc_precision_at_10_max
value: 33.329579434123374
- type: nauc_precision_at_10_std
value: -0.8002015226329403
- type: nauc_precision_at_1_diff1
value: 55.52626805861546
- type: nauc_precision_at_1_max
value: 40.49306809164979
- type: nauc_precision_at_1_std
value: -12.886607701317681
- type: nauc_precision_at_20_diff1
value: 3.4564653474184284
- type: nauc_precision_at_20_max
value: 34.401070158471136
- type: nauc_precision_at_20_std
value: 5.813431200164549
- type: nauc_precision_at_3_diff1
value: 22.463219705462187
- type: nauc_precision_at_3_max
value: 34.77413976546924
- type: nauc_precision_at_3_std
value: -7.083890789741479
- type: nauc_precision_at_5_diff1
value: 14.011006004883154
- type: nauc_precision_at_5_max
value: 35.73655466853702
- type: nauc_precision_at_5_std
value: -2.8395172077771598
- type: nauc_recall_at_1000_diff1
value: 16.478046357391555
- type: nauc_recall_at_1000_max
value: 43.231704288282344
- type: nauc_recall_at_1000_std
value: 38.430684937573645
- type: nauc_recall_at_100_diff1
value: 30.764718344602436
- type: nauc_recall_at_100_max
value: 31.769050487166655
- type: nauc_recall_at_100_std
value: 23.48468311677149
- type: nauc_recall_at_10_diff1
value: 34.47339565324045
- type: nauc_recall_at_10_max
value: 19.054212335800454
- type: nauc_recall_at_10_std
value: -11.039734015330437
- type: nauc_recall_at_1_diff1
value: 47.705150227211725
- type: nauc_recall_at_1_max
value: 15.354189686550129
- type: nauc_recall_at_1_std
value: -14.559819859039067
- type: nauc_recall_at_20_diff1
value: 32.1011474016873
- type: nauc_recall_at_20_max
value: 25.546372988304423
- type: nauc_recall_at_20_std
value: -0.007233471152482897
- type: nauc_recall_at_3_diff1
value: 37.5708138019065
- type: nauc_recall_at_3_max
value: 16.66410785756736
- type: nauc_recall_at_3_std
value: -15.404817020108966
- type: nauc_recall_at_5_diff1
value: 35.714519648479595
- type: nauc_recall_at_5_max
value: 19.02075233009296
- type: nauc_recall_at_5_std
value: -13.180963359760725
- type: ndcg_at_1
value: 55.556000000000004
- type: ndcg_at_10
value: 56.056
- type: ndcg_at_100
value: 62.44
- type: ndcg_at_1000
value: 64.263
- type: ndcg_at_20
value: 58.638999999999996
- type: ndcg_at_3
value: 51.722
- type: ndcg_at_5
value: 52.701
- type: precision_at_1
value: 55.556000000000004
- type: precision_at_10
value: 15.679000000000002
- type: precision_at_100
value: 2.252
- type: precision_at_1000
value: 0.257
- type: precision_at_20
value: 9.02
- type: precision_at_3
value: 34.619
- type: precision_at_5
value: 25.093
- type: recall_at_1
value: 28.666000000000004
- type: recall_at_10
value: 63.717999999999996
- type: recall_at_100
value: 86.938
- type: recall_at_1000
value: 97.603
- type: recall_at_20
value: 71.649
- type: recall_at_3
value: 46.663
- type: recall_at_5
value: 53.313
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 71.74199999999999
- type: map_at_1
value: 41.729
- type: map_at_10
value: 63.168
- type: map_at_100
value: 64.132
- type: map_at_1000
value: 64.199
- type: map_at_20
value: 63.736000000000004
- type: map_at_3
value: 59.826
- type: map_at_5
value: 61.882000000000005
- type: mrr_at_1
value: 83.45712356515868
- type: mrr_at_10
value: 87.850342432719
- type: mrr_at_100
value: 88.0016320691113
- type: mrr_at_1000
value: 88.00576596968136
- type: mrr_at_20
value: 87.94463253190389
- type: mrr_at_3
value: 87.13706954760278
- type: mrr_at_5
value: 87.59419311276136
- type: nauc_map_at_1000_diff1
value: 13.635446621095054
- type: nauc_map_at_1000_max
value: 18.670632529445633
- type: nauc_map_at_1000_std
value: 10.444842636150575
- type: nauc_map_at_100_diff1
value: 13.599262398010783
- type: nauc_map_at_100_max
value: 18.636389405484806
- type: nauc_map_at_100_std
value: 10.460027483576043
- type: nauc_map_at_10_diff1
value: 13.235053919323942
- type: nauc_map_at_10_max
value: 18.252140477080047
- type: nauc_map_at_10_std
value: 9.9075337042203
- type: nauc_map_at_1_diff1
value: 76.51940497836482
- type: nauc_map_at_1_max
value: 51.251419487235474
- type: nauc_map_at_1_std
value: 0.16714896857146574
- type: nauc_map_at_20_diff1
value: 13.4178245722222
- type: nauc_map_at_20_max
value: 18.40988771210718
- type: nauc_map_at_20_std
value: 10.216685163366282
- type: nauc_map_at_3_diff1
value: 13.38370761663418
- type: nauc_map_at_3_max
value: 17.760962555456537
- type: nauc_map_at_3_std
value: 7.15741965624388
- type: nauc_map_at_5_diff1
value: 13.138133309724855
- type: nauc_map_at_5_max
value: 17.871761295251044
- type: nauc_map_at_5_std
value: 8.475147426940074
- type: nauc_mrr_at_1000_diff1
value: 75.82650818891959
- type: nauc_mrr_at_1000_max
value: 53.6736100668434
- type: nauc_mrr_at_1000_std
value: 1.8025016349213916
- type: nauc_mrr_at_100_diff1
value: 75.82530574210111
- type: nauc_mrr_at_100_max
value: 53.68067545829002
- type: nauc_mrr_at_100_std
value: 1.8147470536495791
- type: nauc_mrr_at_10_diff1
value: 75.8330135686799
- type: nauc_mrr_at_10_max
value: 53.78626885349077
- type: nauc_mrr_at_10_std
value: 1.7975782717226636
- type: nauc_mrr_at_1_diff1
value: 76.51940497836482
- type: nauc_mrr_at_1_max
value: 51.251419487235474
- type: nauc_mrr_at_1_std
value: 0.16714896857146574
- type: nauc_mrr_at_20_diff1
value: 75.82783382464166
- type: nauc_mrr_at_20_max
value: 53.68364567043885
- type: nauc_mrr_at_20_std
value: 1.742037904463963
- type: nauc_mrr_at_3_diff1
value: 75.6944609768663
- type: nauc_mrr_at_3_max
value: 53.803941340341666
- type: nauc_mrr_at_3_std
value: 1.1849945458077804
- type: nauc_mrr_at_5_diff1
value: 75.73006960604903
- type: nauc_mrr_at_5_max
value: 53.62223096420106
- type: nauc_mrr_at_5_std
value: 1.6144067563410909
- type: nauc_ndcg_at_1000_diff1
value: 21.58025241642726
- type: nauc_ndcg_at_1000_max
value: 24.675747527001153
- type: nauc_ndcg_at_1000_std
value: 13.075943547492718
- type: nauc_ndcg_at_100_diff1
value: 20.30260137544846
- type: nauc_ndcg_at_100_max
value: 23.757528813872018
- type: nauc_ndcg_at_100_std
value: 13.648994687574062
- type: nauc_ndcg_at_10_diff1
value: 18.995052360997818
- type: nauc_ndcg_at_10_max
value: 22.254260808196037
- type: nauc_ndcg_at_10_std
value: 11.27212390633054
- type: nauc_ndcg_at_1_diff1
value: 76.51940497836482
- type: nauc_ndcg_at_1_max
value: 51.251419487235474
- type: nauc_ndcg_at_1_std
value: 0.16714896857146574
- type: nauc_ndcg_at_20_diff1
value: 19.333742380695757
- type: nauc_ndcg_at_20_max
value: 22.527779834633364
- type: nauc_ndcg_at_20_std
value: 12.161009000707917
- type: nauc_ndcg_at_3_diff1
value: 20.013329040965534
- type: nauc_ndcg_at_3_max
value: 21.99692460311921
- type: nauc_ndcg_at_3_std
value: 6.8076290638386165
- type: nauc_ndcg_at_5_diff1
value: 19.08226315942471
- type: nauc_ndcg_at_5_max
value: 21.71185964294168
- type: nauc_ndcg_at_5_std
value: 8.671911269518214
- type: nauc_precision_at_1000_diff1
value: 2.4462475489446764
- type: nauc_precision_at_1000_max
value: 29.145662064268578
- type: nauc_precision_at_1000_std
value: 49.20704909525856
- type: nauc_precision_at_100_diff1
value: 0.11271196725540299
- type: nauc_precision_at_100_max
value: 17.37584606388067
- type: nauc_precision_at_100_std
value: 34.66099346244071
- type: nauc_precision_at_10_diff1
value: 2.9923183951227825
- type: nauc_precision_at_10_max
value: 14.261884731124264
- type: nauc_precision_at_10_std
value: 18.084188795498378
- type: nauc_precision_at_1_diff1
value: 76.51940497836482
- type: nauc_precision_at_1_max
value: 51.251419487235474
- type: nauc_precision_at_1_std
value: 0.16714896857146574
- type: nauc_precision_at_20_diff1
value: 1.9180293008303761
- type: nauc_precision_at_20_max
value: 13.832269193468512
- type: nauc_precision_at_20_std
value: 21.65284406055607
- type: nauc_precision_at_3_diff1
value: 7.226609484731811
- type: nauc_precision_at_3_max
value: 15.162908526977272
- type: nauc_precision_at_3_std
value: 8.451859972962776
- type: nauc_precision_at_5_diff1
value: 4.705236845538159
- type: nauc_precision_at_5_max
value: 14.022910843582666
- type: nauc_precision_at_5_std
value: 11.777269322821605
- type: nauc_recall_at_1000_diff1
value: 2.446247548945172
- type: nauc_recall_at_1000_max
value: 29.14566206426889
- type: nauc_recall_at_1000_std
value: 49.20704909525879
- type: nauc_recall_at_100_diff1
value: 0.1127119672553316
- type: nauc_recall_at_100_max
value: 17.37584606388062
- type: nauc_recall_at_100_std
value: 34.660993462440686
- type: nauc_recall_at_10_diff1
value: 2.9923183951227927
- type: nauc_recall_at_10_max
value: 14.261884731124299
- type: nauc_recall_at_10_std
value: 18.08418879549837
- type: nauc_recall_at_1_diff1
value: 76.51940497836482
- type: nauc_recall_at_1_max
value: 51.251419487235474
- type: nauc_recall_at_1_std
value: 0.16714896857146574
- type: nauc_recall_at_20_diff1
value: 1.918029300830432
- type: nauc_recall_at_20_max
value: 13.832269193468566
- type: nauc_recall_at_20_std
value: 21.65284406055605
- type: nauc_recall_at_3_diff1
value: 7.226609484731802
- type: nauc_recall_at_3_max
value: 15.162908526977182
- type: nauc_recall_at_3_std
value: 8.451859972962634
- type: nauc_recall_at_5_diff1
value: 4.705236845538197
- type: nauc_recall_at_5_max
value: 14.02291084358265
- type: nauc_recall_at_5_std
value: 11.777269322821638
- type: ndcg_at_1
value: 83.45700000000001
- type: ndcg_at_10
value: 71.74199999999999
- type: ndcg_at_100
value: 75.008
- type: ndcg_at_1000
value: 76.242
- type: ndcg_at_20
value: 73.114
- type: ndcg_at_3
value: 67.128
- type: ndcg_at_5
value: 69.645
- type: precision_at_1
value: 83.45700000000001
- type: precision_at_10
value: 14.747
- type: precision_at_100
value: 1.73
- type: precision_at_1000
value: 0.189
- type: precision_at_20
value: 7.8149999999999995
- type: precision_at_3
value: 42.323
- type: precision_at_5
value: 27.381
- type: recall_at_1
value: 41.729
- type: recall_at_10
value: 73.734
- type: recall_at_100
value: 86.502
- type: recall_at_1000
value: 94.60499999999999
- type: recall_at_20
value: 78.14999999999999
- type: recall_at_3
value: 63.483999999999995
- type: recall_at_5
value: 68.45400000000001
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 96.4904
- type: ap
value: 94.85481918794709
- type: ap_weighted
value: 94.85481918794709
- type: f1
value: 96.4898592305707
- type: f1_weighted
value: 96.4898592305707
- type: main_score
value: 96.4904
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 43.692
- type: map_at_1
value: 23.751
- type: map_at_10
value: 36.553999999999995
- type: map_at_100
value: 37.721
- type: map_at_1000
value: 37.763999999999996
- type: map_at_20
value: 37.289
- type: map_at_3
value: 32.643
- type: map_at_5
value: 34.851
- type: mrr_at_1
value: 24.455587392550143
- type: mrr_at_10
value: 37.18388706963206
- type: mrr_at_100
value: 38.28330737932916
- type: mrr_at_1000
value: 38.32054399710817
- type: mrr_at_20
value: 37.8818001216278
- type: mrr_at_3
value: 33.35721107927405
- type: mrr_at_5
value: 35.52483285577843
- type: nauc_map_at_1000_diff1
value: 36.3576177260684
- type: nauc_map_at_1000_max
value: 7.854511605962703
- type: nauc_map_at_1000_std
value: -17.701121059746878
- type: nauc_map_at_100_diff1
value: 36.356075649230505
- type: nauc_map_at_100_max
value: 7.862168042999533
- type: nauc_map_at_100_std
value: -17.670102459097233
- type: nauc_map_at_10_diff1
value: 36.22122978875574
- type: nauc_map_at_10_max
value: 7.80848606967416
- type: nauc_map_at_10_std
value: -18.3265151386167
- type: nauc_map_at_1_diff1
value: 39.28605466408357
- type: nauc_map_at_1_max
value: 6.20202977590459
- type: nauc_map_at_1_std
value: -15.734334090045026
- type: nauc_map_at_20_diff1
value: 36.33637880909657
- type: nauc_map_at_20_max
value: 7.843437969476022
- type: nauc_map_at_20_std
value: -17.917533363025996
- type: nauc_map_at_3_diff1
value: 36.24864976076741
- type: nauc_map_at_3_max
value: 7.420345251835957
- type: nauc_map_at_3_std
value: -18.71678497722944
- type: nauc_map_at_5_diff1
value: 36.0789619291824
- type: nauc_map_at_5_max
value: 7.7314285669514495
- type: nauc_map_at_5_std
value: -18.748688764538706
- type: nauc_mrr_at_1000_diff1
value: 36.23912675623378
- type: nauc_mrr_at_1000_max
value: 7.690553436255147
- type: nauc_mrr_at_1000_std
value: -17.609526070212304
- type: nauc_mrr_at_100_diff1
value: 36.23782651189002
- type: nauc_mrr_at_100_max
value: 7.70075095171647
- type: nauc_mrr_at_100_std
value: -17.575714144960184
- type: nauc_mrr_at_10_diff1
value: 36.125229472534215
- type: nauc_mrr_at_10_max
value: 7.635472248755658
- type: nauc_mrr_at_10_std
value: -18.208166616511086
- type: nauc_mrr_at_1_diff1
value: 39.20986875554532
- type: nauc_mrr_at_1_max
value: 6.062668487561363
- type: nauc_mrr_at_1_std
value: -16.04130340817602
- type: nauc_mrr_at_20_diff1
value: 36.21207088739667
- type: nauc_mrr_at_20_max
value: 7.699610250145951
- type: nauc_mrr_at_20_std
value: -17.778245221724028
- type: nauc_mrr_at_3_diff1
value: 36.03957583885305
- type: nauc_mrr_at_3_max
value: 7.225515576504581
- type: nauc_mrr_at_3_std
value: -18.74478742943741
- type: nauc_mrr_at_5_diff1
value: 35.969152496648974
- type: nauc_mrr_at_5_max
value: 7.584059789018233
- type: nauc_mrr_at_5_std
value: -18.569374723129332
- type: nauc_ndcg_at_1000_diff1
value: 35.894655529841806
- type: nauc_ndcg_at_1000_max
value: 8.579327424366236
- type: nauc_ndcg_at_1000_std
value: -16.359677367747896
- type: nauc_ndcg_at_100_diff1
value: 35.89861902483983
- type: nauc_ndcg_at_100_max
value: 8.830873623962242
- type: nauc_ndcg_at_100_std
value: -15.173125564722978
- type: nauc_ndcg_at_10_diff1
value: 35.36499811105169
- type: nauc_ndcg_at_10_max
value: 8.449267180956992
- type: nauc_ndcg_at_10_std
value: -18.41978802362402
- type: nauc_ndcg_at_1_diff1
value: 39.15422481210622
- type: nauc_ndcg_at_1_max
value: 6.055515791928331
- type: nauc_ndcg_at_1_std
value: -16.042779610876252
- type: nauc_ndcg_at_20_diff1
value: 35.73402868264468
- type: nauc_ndcg_at_20_max
value: 8.695705518210847
- type: nauc_ndcg_at_20_std
value: -16.7735829470466
- type: nauc_ndcg_at_3_diff1
value: 35.31358242856231
- type: nauc_ndcg_at_3_max
value: 7.645692789058997
- type: nauc_ndcg_at_3_std
value: -19.460003734786874
- type: nauc_ndcg_at_5_diff1
value: 35.05216588927143
- type: nauc_ndcg_at_5_max
value: 8.216690520604715
- type: nauc_ndcg_at_5_std
value: -19.3982054492159
- type: nauc_precision_at_1000_diff1
value: -4.440002625111349
- type: nauc_precision_at_1000_max
value: 7.886988951901723
- type: nauc_precision_at_1000_std
value: 9.88111187048247
- type: nauc_precision_at_100_diff1
value: 15.728286119463325
- type: nauc_precision_at_100_max
value: 13.218650824470654
- type: nauc_precision_at_100_std
value: 16.113245895522553
- type: nauc_precision_at_10_diff1
value: 29.51218489610567
- type: nauc_precision_at_10_max
value: 10.197432401942912
- type: nauc_precision_at_10_std
value: -16.950603431359493
- type: nauc_precision_at_1_diff1
value: 39.15422481210622
- type: nauc_precision_at_1_max
value: 6.055515791928331
- type: nauc_precision_at_1_std
value: -16.042779610876252
- type: nauc_precision_at_20_diff1
value: 27.825993070397338
- type: nauc_precision_at_20_max
value: 11.437632287846007
- type: nauc_precision_at_20_std
value: -7.450353566405601
- type: nauc_precision_at_3_diff1
value: 32.14135556796588
- type: nauc_precision_at_3_max
value: 7.989252443574163
- type: nauc_precision_at_3_std
value: -21.566254595671055
- type: nauc_precision_at_5_diff1
value: 30.68778685307082
- type: nauc_precision_at_5_max
value: 9.332160758499892
- type: nauc_precision_at_5_std
value: -20.928554713448914
- type: nauc_recall_at_1000_diff1
value: 25.00810478716878
- type: nauc_recall_at_1000_max
value: 46.518165765201644
- type: nauc_recall_at_1000_std
value: 61.4734635576085
- type: nauc_recall_at_100_diff1
value: 33.895581318261726
- type: nauc_recall_at_100_max
value: 20.10706035872801
- type: nauc_recall_at_100_std
value: 24.204226584457047
- type: nauc_recall_at_10_diff1
value: 32.363127359576296
- type: nauc_recall_at_10_max
value: 10.729923804989545
- type: nauc_recall_at_10_std
value: -18.1335370184202
- type: nauc_recall_at_1_diff1
value: 39.28605466408357
- type: nauc_recall_at_1_max
value: 6.20202977590459
- type: nauc_recall_at_1_std
value: -15.734334090045026
- type: nauc_recall_at_20_diff1
value: 33.47804003169795
- type: nauc_recall_at_20_max
value: 12.781494765263382
- type: nauc_recall_at_20_std
value: -9.263970132202658
- type: nauc_recall_at_3_diff1
value: 32.71001429428999
- type: nauc_recall_at_3_max
value: 8.353439197382693
- type: nauc_recall_at_3_std
value: -21.235097744366954
- type: nauc_recall_at_5_diff1
value: 31.87451464963415
- type: nauc_recall_at_5_max
value: 9.635051450907305
- type: nauc_recall_at_5_std
value: -21.113235357132794
- type: ndcg_at_1
value: 24.47
- type: ndcg_at_10
value: 43.692
- type: ndcg_at_100
value: 49.211
- type: ndcg_at_1000
value: 50.244
- type: ndcg_at_20
value: 46.278000000000006
- type: ndcg_at_3
value: 35.719
- type: ndcg_at_5
value: 39.652
- type: precision_at_1
value: 24.47
- type: precision_at_10
value: 6.857
- type: precision_at_100
value: 0.9610000000000001
- type: precision_at_1000
value: 0.105
- type: precision_at_20
value: 3.968
- type: precision_at_3
value: 15.181000000000001
- type: precision_at_5
value: 11.117
- type: recall_at_1
value: 23.751
- type: recall_at_10
value: 65.64
- type: recall_at_100
value: 90.967
- type: recall_at_1000
value: 98.738
- type: recall_at_20
value: 75.639
- type: recall_at_3
value: 43.927
- type: recall_at_5
value: 53.366
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 98.82580939352485
- type: f1
value: 98.75201754333801
- type: f1_weighted
value: 98.82795205108245
- type: main_score
value: 98.82580939352485
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 92.29822161422709
- type: f1
value: 77.75210224871594
- type: f1_weighted
value: 93.58661422540348
- type: main_score
value: 92.29822161422709
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 85.17484868863484
- type: f1
value: 81.94484244487094
- type: f1_weighted
value: 85.21022593423332
- type: main_score
value: 85.17484868863484
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 89.61667787491594
- type: f1
value: 89.02701927621264
- type: f1_weighted
value: 89.56306982022801
- type: main_score
value: 89.61667787491594
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: main_score
value: 46.318282423948574
- type: v_measure
value: 46.318282423948574
- type: v_measure_std
value: 0.9729055662461538
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: main_score
value: 44.29033625273981
- type: v_measure
value: 44.29033625273981
- type: v_measure_std
value: 1.0596383629128594
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: main_score
value: 33.0526129239962
- type: map
value: 33.0526129239962
- type: mrr
value: 34.29260046890935
- type: nAUC_map_diff1
value: 12.579738077238032
- type: nAUC_map_max
value: -20.936629344962
- type: nAUC_map_std
value: -1.6096805784945216
- type: nAUC_mrr_diff1
value: 11.597584463580807
- type: nAUC_mrr_max
value: -15.723702838537504
- type: nAUC_mrr_std
value: 0.2719172965777737
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 41.486000000000004
- type: map_at_1
value: 6.866
- type: map_at_10
value: 15.895999999999999
- type: map_at_100
value: 21.093
- type: map_at_1000
value: 23.067
- type: map_at_20
value: 18.125
- type: map_at_3
value: 11.421000000000001
- type: map_at_5
value: 13.415
- type: mrr_at_1
value: 52.63157894736842
- type: mrr_at_10
value: 61.486805248415166
- type: mrr_at_100
value: 62.08211009182091
- type: mrr_at_1000
value: 62.10828701365016
- type: mrr_at_20
value: 61.904411187915784
- type: mrr_at_3
value: 59.90712074303407
- type: mrr_at_5
value: 60.91331269349847
- type: nauc_map_at_1000_diff1
value: 25.484625278529403
- type: nauc_map_at_1000_max
value: 31.206600396418853
- type: nauc_map_at_1000_std
value: 15.569448072357156
- type: nauc_map_at_100_diff1
value: 27.636750226316764
- type: nauc_map_at_100_max
value: 29.66992681250722
- type: nauc_map_at_100_std
value: 10.570600484002671
- type: nauc_map_at_10_diff1
value: 32.76642525548697
- type: nauc_map_at_10_max
value: 21.459225397237663
- type: nauc_map_at_10_std
value: -3.546494734209264
- type: nauc_map_at_1_diff1
value: 48.8002894871328
- type: nauc_map_at_1_max
value: 5.7236722609868815
- type: nauc_map_at_1_std
value: -13.283554044471352
- type: nauc_map_at_20_diff1
value: 30.57169701502308
- type: nauc_map_at_20_max
value: 25.79666139518404
- type: nauc_map_at_20_std
value: 1.781732492989651
- type: nauc_map_at_3_diff1
value: 40.076315947201095
- type: nauc_map_at_3_max
value: 12.862524429140054
- type: nauc_map_at_3_std
value: -9.188349777126817
- type: nauc_map_at_5_diff1
value: 36.9918718052938
- type: nauc_map_at_5_max
value: 16.74234374361876
- type: nauc_map_at_5_std
value: -7.818523349307494
- type: nauc_mrr_at_1000_diff1
value: 26.88183002609805
- type: nauc_mrr_at_1000_max
value: 47.10209348428658
- type: nauc_mrr_at_1000_std
value: 32.067825924992924
- type: nauc_mrr_at_100_diff1
value: 26.871482491566745
- type: nauc_mrr_at_100_max
value: 47.11303868498556
- type: nauc_mrr_at_100_std
value: 32.08961428818868
- type: nauc_mrr_at_10_diff1
value: 26.6356914977722
- type: nauc_mrr_at_10_max
value: 47.091624558810366
- type: nauc_mrr_at_10_std
value: 31.942424120660164
- type: nauc_mrr_at_1_diff1
value: 28.19774198483673
- type: nauc_mrr_at_1_max
value: 41.44380927834253
- type: nauc_mrr_at_1_std
value: 25.18222691885917
- type: nauc_mrr_at_20_diff1
value: 26.86487347109452
- type: nauc_mrr_at_20_max
value: 47.1987778214726
- type: nauc_mrr_at_20_std
value: 32.143517921610034
- type: nauc_mrr_at_3_diff1
value: 27.34340373236422
- type: nauc_mrr_at_3_max
value: 46.358726506276646
- type: nauc_mrr_at_3_std
value: 31.74924155572593
- type: nauc_mrr_at_5_diff1
value: 27.209667205060672
- type: nauc_mrr_at_5_max
value: 46.79883369072009
- type: nauc_mrr_at_5_std
value: 31.655605306670758
- type: nauc_ndcg_at_1000_diff1
value: 18.940195769769687
- type: nauc_ndcg_at_1000_max
value: 46.48551313937331
- type: nauc_ndcg_at_1000_std
value: 33.64819502089232
- type: nauc_ndcg_at_100_diff1
value: 19.50885253809146
- type: nauc_ndcg_at_100_max
value: 40.53174462354878
- type: nauc_ndcg_at_100_std
value: 28.516152877751118
- type: nauc_ndcg_at_10_diff1
value: 16.01699218096564
- type: nauc_ndcg_at_10_max
value: 41.17322878314514
- type: nauc_ndcg_at_10_std
value: 29.002233224832196
- type: nauc_ndcg_at_1_diff1
value: 27.443547710102205
- type: nauc_ndcg_at_1_max
value: 40.66529763309582
- type: nauc_ndcg_at_1_std
value: 24.15016766225869
- type: nauc_ndcg_at_20_diff1
value: 17.541197675685062
- type: nauc_ndcg_at_20_max
value: 40.53231266973844
- type: nauc_ndcg_at_20_std
value: 29.54096347876548
- type: nauc_ndcg_at_3_diff1
value: 18.649628357473716
- type: nauc_ndcg_at_3_max
value: 41.18603570171764
- type: nauc_ndcg_at_3_std
value: 27.125524188420396
- type: nauc_ndcg_at_5_diff1
value: 17.519593751448483
- type: nauc_ndcg_at_5_max
value: 42.715997890377345
- type: nauc_ndcg_at_5_std
value: 27.902627839899868
- type: nauc_precision_at_1000_diff1
value: -15.528797630565155
- type: nauc_precision_at_1000_max
value: 13.741640921778671
- type: nauc_precision_at_1000_std
value: 44.50896053788372
- type: nauc_precision_at_100_diff1
value: -14.491464489721887
- type: nauc_precision_at_100_max
value: 23.136434418999457
- type: nauc_precision_at_100_std
value: 49.73145147863128
- type: nauc_precision_at_10_diff1
value: -4.829188942994277
- type: nauc_precision_at_10_max
value: 40.327612559528866
- type: nauc_precision_at_10_std
value: 39.34919529635044
- type: nauc_precision_at_1_diff1
value: 28.19774198483673
- type: nauc_precision_at_1_max
value: 41.44380927834253
- type: nauc_precision_at_1_std
value: 25.18222691885917
- type: nauc_precision_at_20_diff1
value: -7.210726293112847
- type: nauc_precision_at_20_max
value: 37.195679576636984
- type: nauc_precision_at_20_std
value: 45.4597096418357
- type: nauc_precision_at_3_diff1
value: 7.578219537774854
- type: nauc_precision_at_3_max
value: 41.59775233475654
- type: nauc_precision_at_3_std
value: 30.764584790895118
- type: nauc_precision_at_5_diff1
value: 1.655451789039598
- type: nauc_precision_at_5_max
value: 43.435739407610455
- type: nauc_precision_at_5_std
value: 33.42552263325999
- type: nauc_recall_at_1000_diff1
value: 5.030705700690516
- type: nauc_recall_at_1000_max
value: 19.108072570815583
- type: nauc_recall_at_1000_std
value: 14.697734974217308
- type: nauc_recall_at_100_diff1
value: 14.746540318132407
- type: nauc_recall_at_100_max
value: 21.798705033854795
- type: nauc_recall_at_100_std
value: 11.416195108842587
- type: nauc_recall_at_10_diff1
value: 25.548642427860486
- type: nauc_recall_at_10_max
value: 18.711677681987474
- type: nauc_recall_at_10_std
value: -5.988904818971677
- type: nauc_recall_at_1_diff1
value: 48.8002894871328
- type: nauc_recall_at_1_max
value: 5.7236722609868815
- type: nauc_recall_at_1_std
value: -13.283554044471352
- type: nauc_recall_at_20_diff1
value: 23.39140739154809
- type: nauc_recall_at_20_max
value: 19.351150636155474
- type: nauc_recall_at_20_std
value: -2.757280266915132
- type: nauc_recall_at_3_diff1
value: 38.17453576012812
- type: nauc_recall_at_3_max
value: 13.47003839643972
- type: nauc_recall_at_3_std
value: -8.75780163862688
- type: nauc_recall_at_5_diff1
value: 33.02812855226899
- type: nauc_recall_at_5_max
value: 15.477626408978477
- type: nauc_recall_at_5_std
value: -9.072206441070708
- type: ndcg_at_1
value: 50.773999999999994
- type: ndcg_at_10
value: 41.486000000000004
- type: ndcg_at_100
value: 39.051
- type: ndcg_at_1000
value: 48.106
- type: ndcg_at_20
value: 39.432
- type: ndcg_at_3
value: 47.428
- type: ndcg_at_5
value: 45.227000000000004
- type: precision_at_1
value: 52.632
- type: precision_at_10
value: 31.146
- type: precision_at_100
value: 10.328
- type: precision_at_1000
value: 2.432
- type: precision_at_20
value: 23.793
- type: precision_at_3
value: 45.201
- type: precision_at_5
value: 39.876
- type: recall_at_1
value: 6.866
- type: recall_at_10
value: 20.447000000000003
- type: recall_at_100
value: 40.607
- type: recall_at_1000
value: 73.411
- type: recall_at_20
value: 26.082
- type: recall_at_3
value: 12.484
- type: recall_at_5
value: 15.847
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 69.072
- type: map_at_1
value: 45.483000000000004
- type: map_at_10
value: 62.050000000000004
- type: map_at_100
value: 62.693
- type: map_at_1000
value: 62.702999999999996
- type: map_at_20
value: 62.498
- type: map_at_3
value: 58.285
- type: map_at_5
value: 60.711000000000006
- type: mrr_at_1
value: 50.840092699884124
- type: mrr_at_10
value: 64.54635224116673
- type: mrr_at_100
value: 64.9526548702289
- type: mrr_at_1000
value: 64.95908460752281
- type: mrr_at_20
value: 64.82949565799959
- type: mrr_at_3
value: 61.89165701042856
- type: mrr_at_5
value: 63.632676709154026
- type: nauc_map_at_1000_diff1
value: 43.187285304185224
- type: nauc_map_at_1000_max
value: 32.39921659632756
- type: nauc_map_at_1000_std
value: -5.780901333066553
- type: nauc_map_at_100_diff1
value: 43.184487221204456
- type: nauc_map_at_100_max
value: 32.41176116347982
- type: nauc_map_at_100_std
value: -5.76422606662383
- type: nauc_map_at_10_diff1
value: 42.967066814031746
- type: nauc_map_at_10_max
value: 32.489617364418514
- type: nauc_map_at_10_std
value: -6.029045531102664
- type: nauc_map_at_1_diff1
value: 46.16376563218624
- type: nauc_map_at_1_max
value: 26.342624776802232
- type: nauc_map_at_1_std
value: -7.142171388751972
- type: nauc_map_at_20_diff1
value: 43.15894358608328
- type: nauc_map_at_20_max
value: 32.46492198956245
- type: nauc_map_at_20_std
value: -5.788373305449195
- type: nauc_map_at_3_diff1
value: 43.231752344608545
- type: nauc_map_at_3_max
value: 31.68003009949564
- type: nauc_map_at_3_std
value: -8.015235132765458
- type: nauc_map_at_5_diff1
value: 42.86197608819917
- type: nauc_map_at_5_max
value: 32.363857571094485
- type: nauc_map_at_5_std
value: -6.780487416387977
- type: nauc_mrr_at_1000_diff1
value: 43.40542912045782
- type: nauc_mrr_at_1000_max
value: 32.8461770324533
- type: nauc_mrr_at_1000_std
value: -3.6505425530008204
- type: nauc_mrr_at_100_diff1
value: 43.40233508014468
- type: nauc_mrr_at_100_max
value: 32.85598538385942
- type: nauc_mrr_at_100_std
value: -3.637477352635459
- type: nauc_mrr_at_10_diff1
value: 43.260179162806054
- type: nauc_mrr_at_10_max
value: 32.942643527040474
- type: nauc_mrr_at_10_std
value: -3.712052825320437
- type: nauc_mrr_at_1_diff1
value: 46.354919460881206
- type: nauc_mrr_at_1_max
value: 29.1760258591106
- type: nauc_mrr_at_1_std
value: -4.107225031227406
- type: nauc_mrr_at_20_diff1
value: 43.37092385434311
- type: nauc_mrr_at_20_max
value: 32.93390254712846
- type: nauc_mrr_at_20_std
value: -3.5719056112132006
- type: nauc_mrr_at_3_diff1
value: 43.1744474040527
- type: nauc_mrr_at_3_max
value: 32.741290559777994
- type: nauc_mrr_at_3_std
value: -4.72677925120697
- type: nauc_mrr_at_5_diff1
value: 43.108396819975674
- type: nauc_mrr_at_5_max
value: 32.970519514893084
- type: nauc_mrr_at_5_std
value: -4.090906158975974
- type: nauc_ndcg_at_1000_diff1
value: 42.786664193638714
- type: nauc_ndcg_at_1000_max
value: 33.65554095609296
- type: nauc_ndcg_at_1000_std
value: -4.024030130584482
- type: nauc_ndcg_at_100_diff1
value: 42.691246775210814
- type: nauc_ndcg_at_100_max
value: 34.063232335110875
- type: nauc_ndcg_at_100_std
value: -3.477813807415248
- type: nauc_ndcg_at_10_diff1
value: 41.90988990571757
- type: nauc_ndcg_at_10_max
value: 34.58934812881633
- type: nauc_ndcg_at_10_std
value: -4.3295110195497655
- type: nauc_ndcg_at_1_diff1
value: 46.354919460881206
- type: nauc_ndcg_at_1_max
value: 29.1760258591106
- type: nauc_ndcg_at_1_std
value: -4.107225031227406
- type: nauc_ndcg_at_20_diff1
value: 42.493206675867114
- type: nauc_ndcg_at_20_max
value: 34.562441307459544
- type: nauc_ndcg_at_20_std
value: -3.4456116866749107
- type: nauc_ndcg_at_3_diff1
value: 42.24180336502808
- type: nauc_ndcg_at_3_max
value: 33.064267018100594
- type: nauc_ndcg_at_3_std
value: -7.786248093572142
- type: nauc_ndcg_at_5_diff1
value: 41.692714787779565
- type: nauc_ndcg_at_5_max
value: 34.20502498949156
- type: nauc_ndcg_at_5_std
value: -5.979557859282785
- type: nauc_precision_at_1000_diff1
value: -13.779832506640702
- type: nauc_precision_at_1000_max
value: 1.243001688631421
- type: nauc_precision_at_1000_std
value: 17.351623398622323
- type: nauc_precision_at_100_diff1
value: -11.310526816290297
- type: nauc_precision_at_100_max
value: 5.771669506192959
- type: nauc_precision_at_100_std
value: 19.917795079540113
- type: nauc_precision_at_10_diff1
value: 2.163699384635286
- type: nauc_precision_at_10_max
value: 19.66440698458386
- type: nauc_precision_at_10_std
value: 13.689876348315726
- type: nauc_precision_at_1_diff1
value: 46.354919460881206
- type: nauc_precision_at_1_max
value: 29.1760258591106
- type: nauc_precision_at_1_std
value: -4.107225031227406
- type: nauc_precision_at_20_diff1
value: -3.038735879584471
- type: nauc_precision_at_20_max
value: 14.132968299701695
- type: nauc_precision_at_20_std
value: 17.78069734664346
- type: nauc_precision_at_3_diff1
value: 21.783760758070095
- type: nauc_precision_at_3_max
value: 30.244127986404497
- type: nauc_precision_at_3_std
value: -0.12411163467738723
- type: nauc_precision_at_5_diff1
value: 10.980635723302418
- type: nauc_precision_at_5_max
value: 25.302293738975575
- type: nauc_precision_at_5_std
value: 6.4740817488722024
- type: nauc_recall_at_1000_diff1
value: 34.10343772356593
- type: nauc_recall_at_1000_max
value: 80.72497340357538
- type: nauc_recall_at_1000_std
value: 69.54564103264093
- type: nauc_recall_at_100_diff1
value: 33.427719956774126
- type: nauc_recall_at_100_max
value: 71.54086768335449
- type: nauc_recall_at_100_std
value: 49.66157377654885
- type: nauc_recall_at_10_diff1
value: 33.70139560054039
- type: nauc_recall_at_10_max
value: 45.47878072860151
- type: nauc_recall_at_10_std
value: 1.4188516615716378
- type: nauc_recall_at_1_diff1
value: 46.16376563218624
- type: nauc_recall_at_1_max
value: 26.342624776802232
- type: nauc_recall_at_1_std
value: -7.142171388751972
- type: nauc_recall_at_20_diff1
value: 35.805379874970086
- type: nauc_recall_at_20_max
value: 51.80479822253392
- type: nauc_recall_at_20_std
value: 13.531467576460143
- type: nauc_recall_at_3_diff1
value: 37.288500141631616
- type: nauc_recall_at_3_max
value: 35.07078243516728
- type: nauc_recall_at_3_std
value: -10.452926441410405
- type: nauc_recall_at_5_diff1
value: 34.83186104526897
- type: nauc_recall_at_5_max
value: 39.58488976496973
- type: nauc_recall_at_5_std
value: -6.3049292065708835
- type: ndcg_at_1
value: 50.839999999999996
- type: ndcg_at_10
value: 69.072
- type: ndcg_at_100
value: 71.538
- type: ndcg_at_1000
value: 71.77799999999999
- type: ndcg_at_20
value: 70.41
- type: ndcg_at_3
value: 62.544999999999995
- type: ndcg_at_5
value: 66.33099999999999
- type: precision_at_1
value: 50.839999999999996
- type: precision_at_10
value: 10.495000000000001
- type: precision_at_100
value: 1.1900000000000002
- type: precision_at_1000
value: 0.121
- type: precision_at_20
value: 5.5809999999999995
- type: precision_at_3
value: 27.636
- type: precision_at_5
value: 18.864
- type: recall_at_1
value: 45.483000000000004
- type: recall_at_10
value: 87.483
- type: recall_at_100
value: 97.844
- type: recall_at_1000
value: 99.66199999999999
- type: recall_at_20
value: 92.294
- type: recall_at_3
value: 71.2
- type: recall_at_5
value: 79.753
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 89.58
- type: map_at_1
value: 71.819
- type: map_at_10
value: 86.04899999999999
- type: map_at_100
value: 86.648
- type: map_at_1000
value: 86.66199999999999
- type: map_at_20
value: 86.441
- type: map_at_3
value: 83.114
- type: map_at_5
value: 84.981
- type: mrr_at_1
value: 82.62
- type: mrr_at_10
value: 88.62899999999979
- type: mrr_at_100
value: 88.70918591324215
- type: mrr_at_1000
value: 88.70973091492397
- type: mrr_at_20
value: 88.68914765317221
- type: mrr_at_3
value: 87.74999999999979
- type: mrr_at_5
value: 88.36799999999974
- type: nauc_map_at_1000_diff1
value: 77.89207709760448
- type: nauc_map_at_1000_max
value: 29.63371361495422
- type: nauc_map_at_1000_std
value: -48.628180385874344
- type: nauc_map_at_100_diff1
value: 77.89592179104915
- type: nauc_map_at_100_max
value: 29.617171506130756
- type: nauc_map_at_100_std
value: -48.66057170774648
- type: nauc_map_at_10_diff1
value: 78.0618161228185
- type: nauc_map_at_10_max
value: 29.178490609366737
- type: nauc_map_at_10_std
value: -50.74755004592002
- type: nauc_map_at_1_diff1
value: 81.64335579973574
- type: nauc_map_at_1_max
value: 21.813832226652174
- type: nauc_map_at_1_std
value: -42.57570978190876
- type: nauc_map_at_20_diff1
value: 77.9299081005938
- type: nauc_map_at_20_max
value: 29.458718470003888
- type: nauc_map_at_20_std
value: -49.63337236763102
- type: nauc_map_at_3_diff1
value: 78.72941448509229
- type: nauc_map_at_3_max
value: 26.600997896960056
- type: nauc_map_at_3_std
value: -51.889002227479885
- type: nauc_map_at_5_diff1
value: 78.31466610917171
- type: nauc_map_at_5_max
value: 28.09863984582896
- type: nauc_map_at_5_std
value: -52.14058096096497
- type: nauc_mrr_at_1000_diff1
value: 78.42667263739992
- type: nauc_mrr_at_1000_max
value: 31.98996235127974
- type: nauc_mrr_at_1000_std
value: -44.380439148429296
- type: nauc_mrr_at_100_diff1
value: 78.42661032698115
- type: nauc_mrr_at_100_max
value: 31.991652631740102
- type: nauc_mrr_at_100_std
value: -44.37854108460535
- type: nauc_mrr_at_10_diff1
value: 78.39126022544136
- type: nauc_mrr_at_10_max
value: 32.02023484451197
- type: nauc_mrr_at_10_std
value: -44.561252349176954
- type: nauc_mrr_at_1_diff1
value: 79.21630894647448
- type: nauc_mrr_at_1_max
value: 31.526303156060177
- type: nauc_mrr_at_1_std
value: -41.887504422443136
- type: nauc_mrr_at_20_diff1
value: 78.42548039170424
- type: nauc_mrr_at_20_max
value: 31.99588275070137
- type: nauc_mrr_at_20_std
value: -44.44957722627042
- type: nauc_mrr_at_3_diff1
value: 78.26165151833735
- type: nauc_mrr_at_3_max
value: 32.18028826126801
- type: nauc_mrr_at_3_std
value: -44.6998237213182
- type: nauc_mrr_at_5_diff1
value: 78.34786430903962
- type: nauc_mrr_at_5_max
value: 32.168476272879566
- type: nauc_mrr_at_5_std
value: -44.7915919956712
- type: nauc_ndcg_at_1000_diff1
value: 77.79198355957816
- type: nauc_ndcg_at_1000_max
value: 31.14363511518406
- type: nauc_ndcg_at_1000_std
value: -46.69335151274275
- type: nauc_ndcg_at_100_diff1
value: 77.79898090286419
- type: nauc_ndcg_at_100_max
value: 31.115103811629215
- type: nauc_ndcg_at_100_std
value: -46.73078913421965
- type: nauc_ndcg_at_10_diff1
value: 77.74856635461343
- type: nauc_ndcg_at_10_max
value: 30.279584686212747
- type: nauc_ndcg_at_10_std
value: -50.23514662356807
- type: nauc_ndcg_at_1_diff1
value: 79.17833000040999
- type: nauc_ndcg_at_1_max
value: 31.703788144510746
- type: nauc_ndcg_at_1_std
value: -41.854817402870715
- type: nauc_ndcg_at_20_diff1
value: 77.7380353804671
- type: nauc_ndcg_at_20_max
value: 30.622294129001553
- type: nauc_ndcg_at_20_std
value: -49.035794761065254
- type: nauc_ndcg_at_3_diff1
value: 77.41476880573593
- type: nauc_ndcg_at_3_max
value: 29.015949978243032
- type: nauc_ndcg_at_3_std
value: -49.78627087622648
- type: nauc_ndcg_at_5_diff1
value: 77.64439137502896
- type: nauc_ndcg_at_5_max
value: 29.444684897492206
- type: nauc_ndcg_at_5_std
value: -51.21908400252501
- type: nauc_precision_at_1000_diff1
value: -44.92396459446822
- type: nauc_precision_at_1000_max
value: -3.674153720989045
- type: nauc_precision_at_1000_std
value: 39.56552468277785
- type: nauc_precision_at_100_diff1
value: -44.75143023259094
- type: nauc_precision_at_100_max
value: -3.705280025140011
- type: nauc_precision_at_100_std
value: 39.433619999113326
- type: nauc_precision_at_10_diff1
value: -41.0651074726579
- type: nauc_precision_at_10_max
value: -0.21097985601783667
- type: nauc_precision_at_10_std
value: 26.24652824589493
- type: nauc_precision_at_1_diff1
value: 79.17833000040999
- type: nauc_precision_at_1_max
value: 31.703788144510746
- type: nauc_precision_at_1_std
value: -41.854817402870715
- type: nauc_precision_at_20_diff1
value: -43.368001340920294
- type: nauc_precision_at_20_max
value: -2.036990010399129
- type: nauc_precision_at_20_std
value: 32.37747041406297
- type: nauc_precision_at_3_diff1
value: -22.089307548346877
- type: nauc_precision_at_3_max
value: 6.2280973175296
- type: nauc_precision_at_3_std
value: 5.323992514036145
- type: nauc_precision_at_5_diff1
value: -34.07115055244003
- type: nauc_precision_at_5_max
value: 2.5955315789198834
- type: nauc_precision_at_5_std
value: 16.26096689407332
- type: nauc_recall_at_1000_diff1
value: 58.27703860947467
- type: nauc_recall_at_1000_max
value: 68.59835835315768
- type: nauc_recall_at_1000_std
value: 77.96687006056064
- type: nauc_recall_at_100_diff1
value: 73.24371223081737
- type: nauc_recall_at_100_max
value: 39.55925344664591
- type: nauc_recall_at_100_std
value: -32.25605030215798
- type: nauc_recall_at_10_diff1
value: 73.41261201339202
- type: nauc_recall_at_10_max
value: 26.822979434062926
- type: nauc_recall_at_10_std
value: -74.2909332592806
- type: nauc_recall_at_1_diff1
value: 81.64335579973574
- type: nauc_recall_at_1_max
value: 21.813832226652174
- type: nauc_recall_at_1_std
value: -42.57570978190876
- type: nauc_recall_at_20_diff1
value: 72.7621297920656
- type: nauc_recall_at_20_max
value: 26.02492304096079
- type: nauc_recall_at_20_std
value: -77.8724532438279
- type: nauc_recall_at_3_diff1
value: 75.25149312810714
- type: nauc_recall_at_3_max
value: 23.20545662481487
- type: nauc_recall_at_3_std
value: -59.69689982140521
- type: nauc_recall_at_5_diff1
value: 73.69807273001406
- type: nauc_recall_at_5_max
value: 24.073666798066057
- type: nauc_recall_at_5_std
value: -67.91121268130719
- type: ndcg_at_1
value: 82.64
- type: ndcg_at_10
value: 89.58
- type: ndcg_at_100
value: 90.606
- type: ndcg_at_1000
value: 90.676
- type: ndcg_at_20
value: 90.132
- type: ndcg_at_3
value: 86.88
- type: ndcg_at_5
value: 88.40299999999999
- type: precision_at_1
value: 82.64
- type: precision_at_10
value: 13.604
- type: precision_at_100
value: 1.539
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.188
- type: precision_at_3
value: 38.083
- type: precision_at_5
value: 25.018
- type: recall_at_1
value: 71.819
- type: recall_at_10
value: 96.34700000000001
- type: recall_at_100
value: 99.715
- type: recall_at_1000
value: 99.995
- type: recall_at_20
value: 98.073
- type: recall_at_3
value: 88.57300000000001
- type: recall_at_5
value: 92.908
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: main_score
value: 71.18966762070158
- type: v_measure
value: 71.18966762070158
- type: v_measure_std
value: 2.7498969054457048
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: main_score
value: 74.42014716862516
- type: v_measure
value: 74.42014716862516
- type: v_measure_std
value: 9.909739891410648
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 25.041999999999998
- type: map_at_1
value: 5.893000000000001
- type: map_at_10
value: 15.260000000000002
- type: map_at_100
value: 18.084
- type: map_at_1000
value: 18.467
- type: map_at_20
value: 16.675
- type: map_at_3
value: 10.526
- type: map_at_5
value: 12.775
- type: mrr_at_1
value: 28.999999999999996
- type: mrr_at_10
value: 41.03575396825395
- type: mrr_at_100
value: 42.136771862785835
- type: mrr_at_1000
value: 42.16698555415099
- type: mrr_at_20
value: 41.707493696104315
- type: mrr_at_3
value: 37.34999999999998
- type: mrr_at_5
value: 39.59999999999995
- type: nauc_map_at_1000_diff1
value: 12.080002654911883
- type: nauc_map_at_1000_max
value: 29.813563682286276
- type: nauc_map_at_1000_std
value: 20.36659817908673
- type: nauc_map_at_100_diff1
value: 12.108735517749706
- type: nauc_map_at_100_max
value: 29.76830671710955
- type: nauc_map_at_100_std
value: 20.3433621032846
- type: nauc_map_at_10_diff1
value: 12.91575031185637
- type: nauc_map_at_10_max
value: 29.427600958386318
- type: nauc_map_at_10_std
value: 16.89867275177153
- type: nauc_map_at_1_diff1
value: 19.353069488987916
- type: nauc_map_at_1_max
value: 17.093914951159693
- type: nauc_map_at_1_std
value: 8.19886078055046
- type: nauc_map_at_20_diff1
value: 11.977233457943113
- type: nauc_map_at_20_max
value: 29.171812822948805
- type: nauc_map_at_20_std
value: 18.780517506173965
- type: nauc_map_at_3_diff1
value: 14.453129464176092
- type: nauc_map_at_3_max
value: 25.801958649112077
- type: nauc_map_at_3_std
value: 11.572823684429643
- type: nauc_map_at_5_diff1
value: 13.167155808104997
- type: nauc_map_at_5_max
value: 27.355626948365792
- type: nauc_map_at_5_std
value: 14.414151839192183
- type: nauc_mrr_at_1000_diff1
value: 17.262104643988636
- type: nauc_mrr_at_1000_max
value: 23.991373837217058
- type: nauc_mrr_at_1000_std
value: 12.44755488671623
- type: nauc_mrr_at_100_diff1
value: 17.267280132318703
- type: nauc_mrr_at_100_max
value: 24.022189287889294
- type: nauc_mrr_at_100_std
value: 12.480695500214788
- type: nauc_mrr_at_10_diff1
value: 17.012383998246268
- type: nauc_mrr_at_10_max
value: 24.192637911171722
- type: nauc_mrr_at_10_std
value: 12.524608847408917
- type: nauc_mrr_at_1_diff1
value: 19.43518811038007
- type: nauc_mrr_at_1_max
value: 17.747482933395602
- type: nauc_mrr_at_1_std
value: 8.410779775558684
- type: nauc_mrr_at_20_diff1
value: 17.202663281407446
- type: nauc_mrr_at_20_max
value: 24.091991130543118
- type: nauc_mrr_at_20_std
value: 12.503814263019908
- type: nauc_mrr_at_3_diff1
value: 17.52733013432995
- type: nauc_mrr_at_3_max
value: 23.569459518780214
- type: nauc_mrr_at_3_std
value: 11.770846827520726
- type: nauc_mrr_at_5_diff1
value: 17.10817561975543
- type: nauc_mrr_at_5_max
value: 23.945141435234678
- type: nauc_mrr_at_5_std
value: 12.034468615317719
- type: nauc_ndcg_at_1000_diff1
value: 12.317811393346936
- type: nauc_ndcg_at_1000_max
value: 30.809991350156103
- type: nauc_ndcg_at_1000_std
value: 24.517501065205067
- type: nauc_ndcg_at_100_diff1
value: 12.824804203182936
- type: nauc_ndcg_at_100_max
value: 30.895499817010748
- type: nauc_ndcg_at_100_std
value: 25.424376279745402
- type: nauc_ndcg_at_10_diff1
value: 13.32724552457439
- type: nauc_ndcg_at_10_max
value: 30.409088666807456
- type: nauc_ndcg_at_10_std
value: 18.216330475714113
- type: nauc_ndcg_at_1_diff1
value: 19.43518811038007
- type: nauc_ndcg_at_1_max
value: 17.747482933395602
- type: nauc_ndcg_at_1_std
value: 8.410779775558684
- type: nauc_ndcg_at_20_diff1
value: 12.224399111852902
- type: nauc_ndcg_at_20_max
value: 29.86352330445272
- type: nauc_ndcg_at_20_std
value: 21.196937851331807
- type: nauc_ndcg_at_3_diff1
value: 15.367489533734027
- type: nauc_ndcg_at_3_max
value: 26.76486390741532
- type: nauc_ndcg_at_3_std
value: 12.606077508789923
- type: nauc_ndcg_at_5_diff1
value: 13.831157482390935
- type: nauc_ndcg_at_5_max
value: 28.070226983968904
- type: nauc_ndcg_at_5_std
value: 15.236787943125435
- type: nauc_precision_at_1000_diff1
value: 0.016122957101357048
- type: nauc_precision_at_1000_max
value: 24.380929903557334
- type: nauc_precision_at_1000_std
value: 34.54045112720052
- type: nauc_precision_at_100_diff1
value: 7.255224788507301
- type: nauc_precision_at_100_max
value: 27.98453788447542
- type: nauc_precision_at_100_std
value: 35.38999555441665
- type: nauc_precision_at_10_diff1
value: 9.69185099834181
- type: nauc_precision_at_10_max
value: 32.532315522580454
- type: nauc_precision_at_10_std
value: 21.48948348473612
- type: nauc_precision_at_1_diff1
value: 19.43518811038007
- type: nauc_precision_at_1_max
value: 17.747482933395602
- type: nauc_precision_at_1_std
value: 8.410779775558684
- type: nauc_precision_at_20_diff1
value: 6.964076536695672
- type: nauc_precision_at_20_max
value: 29.30087236410044
- type: nauc_precision_at_20_std
value: 26.413625895571986
- type: nauc_precision_at_3_diff1
value: 14.145134359925155
- type: nauc_precision_at_3_max
value: 29.915650960808303
- type: nauc_precision_at_3_std
value: 14.095370019867797
- type: nauc_precision_at_5_diff1
value: 11.043933558522692
- type: nauc_precision_at_5_max
value: 30.93016505807111
- type: nauc_precision_at_5_std
value: 17.749256196062603
- type: nauc_recall_at_1000_diff1
value: -0.7776817772090345
- type: nauc_recall_at_1000_max
value: 23.094717340324518
- type: nauc_recall_at_1000_std
value: 37.189908681396425
- type: nauc_recall_at_100_diff1
value: 6.887748742013364
- type: nauc_recall_at_100_max
value: 27.00798435230277
- type: nauc_recall_at_100_std
value: 35.908147807345344
- type: nauc_recall_at_10_diff1
value: 9.605632017480751
- type: nauc_recall_at_10_max
value: 31.845202901168655
- type: nauc_recall_at_10_std
value: 21.497414586634683
- type: nauc_recall_at_1_diff1
value: 19.353069488987916
- type: nauc_recall_at_1_max
value: 17.093914951159693
- type: nauc_recall_at_1_std
value: 8.19886078055046
- type: nauc_recall_at_20_diff1
value: 6.927503731844782
- type: nauc_recall_at_20_max
value: 28.611698183338202
- type: nauc_recall_at_20_std
value: 26.69018660149911
- type: nauc_recall_at_3_diff1
value: 14.043724087062268
- type: nauc_recall_at_3_max
value: 29.269835821380465
- type: nauc_recall_at_3_std
value: 14.104419605998094
- type: nauc_recall_at_5_diff1
value: 11.017319452873336
- type: nauc_recall_at_5_max
value: 30.295720628306228
- type: nauc_recall_at_5_std
value: 17.758048545573825
- type: ndcg_at_1
value: 28.999999999999996
- type: ndcg_at_10
value: 25.041999999999998
- type: ndcg_at_100
value: 35.045
- type: ndcg_at_1000
value: 40.803
- type: ndcg_at_20
value: 28.584
- type: ndcg_at_3
value: 23.249
- type: ndcg_at_5
value: 20.533
- type: precision_at_1
value: 28.999999999999996
- type: precision_at_10
value: 13.120000000000001
- type: precision_at_100
value: 2.7470000000000003
- type: precision_at_1000
value: 0.41200000000000003
- type: precision_at_20
value: 8.584999999999999
- type: precision_at_3
value: 21.633
- type: precision_at_5
value: 18.099999999999998
- type: recall_at_1
value: 5.893000000000001
- type: recall_at_10
value: 26.567
- type: recall_at_100
value: 55.800000000000004
- type: recall_at_1000
value: 83.608
- type: recall_at_20
value: 34.86
- type: recall_at_3
value: 13.153
- type: recall_at_5
value: 18.323
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 86.57284584320382
- type: cosine_spearman
value: 82.20531642680812
- type: euclidean_pearson
value: 83.94261758556554
- type: euclidean_spearman
value: 82.20721497738559
- type: main_score
value: 82.20531642680812
- type: manhattan_pearson
value: 84.15902154703083
- type: manhattan_spearman
value: 82.19506027155957
- type: pearson
value: 86.57284584320382
- type: spearman
value: 82.20531642680812
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 86.28047602146931
- type: cosine_spearman
value: 79.51504881448884
- type: euclidean_pearson
value: 83.10545189967856
- type: euclidean_spearman
value: 79.50586960492797
- type: main_score
value: 79.51504881448884
- type: manhattan_pearson
value: 83.44244457500889
- type: manhattan_spearman
value: 79.730303339846
- type: pearson
value: 86.28047602146931
- type: spearman
value: 79.51504881448884
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 88.74723553048702
- type: cosine_spearman
value: 89.18936052329725
- type: euclidean_pearson
value: 88.90400878928668
- type: euclidean_spearman
value: 89.19174821431281
- type: main_score
value: 89.18936052329725
- type: manhattan_pearson
value: 88.81504628424054
- type: manhattan_spearman
value: 89.18063294142597
- type: pearson
value: 88.74723553048702
- type: spearman
value: 89.18936052329725
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 86.45403437836023
- type: cosine_spearman
value: 85.14654611519086
- type: euclidean_pearson
value: 85.87509624462743
- type: euclidean_spearman
value: 85.1391108856681
- type: main_score
value: 85.14654611519086
- type: manhattan_pearson
value: 85.96635794953866
- type: manhattan_spearman
value: 85.3271371527667
- type: pearson
value: 86.45403437836023
- type: spearman
value: 85.14654611519086
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 87.84742260009705
- type: cosine_spearman
value: 89.10215217191254
- type: euclidean_pearson
value: 88.97393286325477
- type: euclidean_spearman
value: 89.1014105509662
- type: main_score
value: 89.10215217191254
- type: manhattan_pearson
value: 89.31698781090151
- type: manhattan_spearman
value: 89.53000001764433
- type: pearson
value: 87.84742260009705
- type: spearman
value: 89.10215217191254
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 85.22397535461835
- type: cosine_spearman
value: 87.14066355879785
- type: euclidean_pearson
value: 86.31393364087295
- type: euclidean_spearman
value: 87.14018892702765
- type: main_score
value: 87.14066355879785
- type: manhattan_pearson
value: 86.36366855248434
- type: manhattan_spearman
value: 87.20858630423012
- type: pearson
value: 85.22397535461835
- type: spearman
value: 87.14066355879785
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 90.66131612061355
- type: cosine_spearman
value: 90.97082650129164
- type: euclidean_pearson
value: 90.98181906744969
- type: euclidean_spearman
value: 90.99008476850047
- type: main_score
value: 90.97082650129164
- type: manhattan_pearson
value: 90.75245040709021
- type: manhattan_spearman
value: 90.6199877691265
- type: pearson
value: 90.66131612061355
- type: spearman
value: 90.97082650129164
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 67.270656447085
- type: cosine_spearman
value: 67.82870469746828
- type: euclidean_pearson
value: 69.03857775285664
- type: euclidean_spearman
value: 67.74455108773341
- type: main_score
value: 67.82870469746828
- type: manhattan_pearson
value: 69.25304172245812
- type: manhattan_spearman
value: 68.00987097916055
- type: pearson
value: 67.270656447085
- type: spearman
value: 67.82870469746828
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 87.17245205384889
- type: cosine_spearman
value: 87.7360146030987
- type: euclidean_pearson
value: 87.48919412794656
- type: euclidean_spearman
value: 87.7312047878383
- type: main_score
value: 87.7360146030987
- type: manhattan_pearson
value: 87.61476224354806
- type: manhattan_spearman
value: 87.95220889254693
- type: pearson
value: 87.17245205384889
- type: spearman
value: 87.7360146030987
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 88.43547871921146
- type: map
value: 88.43547871921146
- type: mrr
value: 96.5564473652709
- type: nAUC_map_diff1
value: -13.66029392579231
- type: nAUC_map_max
value: 50.325613574053506
- type: nAUC_map_std
value: 60.02986231275796
- type: nAUC_mrr_diff1
value: 23.83821476411125
- type: nAUC_mrr_max
value: 86.72643311769906
- type: nAUC_mrr_std
value: 72.12741063469213
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 78.233
- type: map_at_1
value: 61.49400000000001
- type: map_at_10
value: 73.30600000000001
- type: map_at_100
value: 73.719
- type: map_at_1000
value: 73.724
- type: map_at_20
value: 73.611
- type: map_at_3
value: 70.626
- type: map_at_5
value: 72.417
- type: mrr_at_1
value: 64.66666666666666
- type: mrr_at_10
value: 74.30357142857143
- type: mrr_at_100
value: 74.56950898079988
- type: mrr_at_1000
value: 74.57295833098681
- type: mrr_at_20
value: 74.46165223665226
- type: mrr_at_3
value: 72.3888888888889
- type: mrr_at_5
value: 73.60555555555557
- type: nauc_map_at_1000_diff1
value: 76.51524604780636
- type: nauc_map_at_1000_max
value: 53.48521938401881
- type: nauc_map_at_1000_std
value: -7.347799382158861
- type: nauc_map_at_100_diff1
value: 76.5122888096236
- type: nauc_map_at_100_max
value: 53.49221847471618
- type: nauc_map_at_100_std
value: -7.329683735681086
- type: nauc_map_at_10_diff1
value: 76.30928630674504
- type: nauc_map_at_10_max
value: 53.00102977185941
- type: nauc_map_at_10_std
value: -7.7467740085108705
- type: nauc_map_at_1_diff1
value: 79.54189281784247
- type: nauc_map_at_1_max
value: 46.630071622109526
- type: nauc_map_at_1_std
value: -14.395943134644112
- type: nauc_map_at_20_diff1
value: 76.41604361947962
- type: nauc_map_at_20_max
value: 53.578883876146875
- type: nauc_map_at_20_std
value: -7.403103451288041
- type: nauc_map_at_3_diff1
value: 76.25911617571941
- type: nauc_map_at_3_max
value: 49.140287380513605
- type: nauc_map_at_3_std
value: -11.35992449218983
- type: nauc_map_at_5_diff1
value: 76.35122077770336
- type: nauc_map_at_5_max
value: 52.1744367901208
- type: nauc_map_at_5_std
value: -7.85753955055384
- type: nauc_mrr_at_1000_diff1
value: 76.97223309515867
- type: nauc_mrr_at_1000_max
value: 57.263787498613326
- type: nauc_mrr_at_1000_std
value: -4.884090708840035
- type: nauc_mrr_at_100_diff1
value: 76.97312970894603
- type: nauc_mrr_at_100_max
value: 57.26850730446478
- type: nauc_mrr_at_100_std
value: -4.875200894216617
- type: nauc_mrr_at_10_diff1
value: 76.65927674223613
- type: nauc_mrr_at_10_max
value: 57.30979763941454
- type: nauc_mrr_at_10_std
value: -4.863331094022142
- type: nauc_mrr_at_1_diff1
value: 80.0454932568644
- type: nauc_mrr_at_1_max
value: 56.76038421319305
- type: nauc_mrr_at_1_std
value: -4.101939392632653
- type: nauc_mrr_at_20_diff1
value: 76.87237970440503
- type: nauc_mrr_at_20_max
value: 57.33843605225869
- type: nauc_mrr_at_20_std
value: -4.96248984417978
- type: nauc_mrr_at_3_diff1
value: 76.74130186666727
- type: nauc_mrr_at_3_max
value: 56.19313244846155
- type: nauc_mrr_at_3_std
value: -5.684365934009136
- type: nauc_mrr_at_5_diff1
value: 76.66406918799962
- type: nauc_mrr_at_5_max
value: 57.56110093228628
- type: nauc_mrr_at_5_std
value: -3.7464413085588073
- type: nauc_ndcg_at_1000_diff1
value: 76.19194173971773
- type: nauc_ndcg_at_1000_max
value: 55.57464600170693
- type: nauc_ndcg_at_1000_std
value: -6.0761689532372625
- type: nauc_ndcg_at_100_diff1
value: 76.14631273843654
- type: nauc_ndcg_at_100_max
value: 55.72246565373382
- type: nauc_ndcg_at_100_std
value: -5.595160698860595
- type: nauc_ndcg_at_10_diff1
value: 75.0108223611192
- type: nauc_ndcg_at_10_max
value: 55.27894212877493
- type: nauc_ndcg_at_10_std
value: -6.968331740214591
- type: nauc_ndcg_at_1_diff1
value: 80.0454932568644
- type: nauc_ndcg_at_1_max
value: 56.76038421319305
- type: nauc_ndcg_at_1_std
value: -4.101939392632653
- type: nauc_ndcg_at_20_diff1
value: 75.54887755702472
- type: nauc_ndcg_at_20_max
value: 56.406879417251496
- type: nauc_ndcg_at_20_std
value: -6.495231061329629
- type: nauc_ndcg_at_3_diff1
value: 75.03620356688509
- type: nauc_ndcg_at_3_max
value: 52.147381077773424
- type: nauc_ndcg_at_3_std
value: -8.448005688956199
- type: nauc_ndcg_at_5_diff1
value: 75.1195898074229
- type: nauc_ndcg_at_5_max
value: 54.2321033861173
- type: nauc_ndcg_at_5_std
value: -5.882690780895338
- type: nauc_precision_at_1000_diff1
value: -28.081979732100532
- type: nauc_precision_at_1000_max
value: 35.055348014832916
- type: nauc_precision_at_1000_std
value: 59.61280468927384
- type: nauc_precision_at_100_diff1
value: -25.112740730587458
- type: nauc_precision_at_100_max
value: 38.26331300116496
- type: nauc_precision_at_100_std
value: 62.46316222328831
- type: nauc_precision_at_10_diff1
value: -2.6766206473658833
- type: nauc_precision_at_10_max
value: 45.95321867204845
- type: nauc_precision_at_10_std
value: 45.07212468670564
- type: nauc_precision_at_1_diff1
value: 80.0454932568644
- type: nauc_precision_at_1_max
value: 56.76038421319305
- type: nauc_precision_at_1_std
value: -4.101939392632653
- type: nauc_precision_at_20_diff1
value: -10.698911116738385
- type: nauc_precision_at_20_max
value: 43.467275950182994
- type: nauc_precision_at_20_std
value: 48.00467321991766
- type: nauc_precision_at_3_diff1
value: 33.6344708541193
- type: nauc_precision_at_3_max
value: 49.309242331670504
- type: nauc_precision_at_3_std
value: 21.02940391379915
- type: nauc_precision_at_5_diff1
value: 13.560415600596318
- type: nauc_precision_at_5_max
value: 48.918726500100085
- type: nauc_precision_at_5_std
value: 39.940930429172184
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_100_diff1
value: 70.82166199813196
- type: nauc_recall_at_100_max
value: 76.6106442577042
- type: nauc_recall_at_100_std
value: 66.47992530345513
- type: nauc_recall_at_10_diff1
value: 62.68908885556092
- type: nauc_recall_at_10_max
value: 58.14262437741839
- type: nauc_recall_at_10_std
value: -12.946717875063369
- type: nauc_recall_at_1_diff1
value: 79.54189281784247
- type: nauc_recall_at_1_max
value: 46.630071622109526
- type: nauc_recall_at_1_std
value: -14.395943134644112
- type: nauc_recall_at_20_diff1
value: 65.79470497876567
- type: nauc_recall_at_20_max
value: 71.68308183488456
- type: nauc_recall_at_20_std
value: -12.556850697268453
- type: nauc_recall_at_3_diff1
value: 68.3240211318129
- type: nauc_recall_at_3_max
value: 45.05998217275036
- type: nauc_recall_at_3_std
value: -14.23179772593869
- type: nauc_recall_at_5_diff1
value: 67.53366869904056
- type: nauc_recall_at_5_max
value: 53.57935627081027
- type: nauc_recall_at_5_std
value: -3.3271112904853393
- type: ndcg_at_1
value: 64.667
- type: ndcg_at_10
value: 78.233
- type: ndcg_at_100
value: 79.806
- type: ndcg_at_1000
value: 79.92099999999999
- type: ndcg_at_20
value: 79.006
- type: ndcg_at_3
value: 74.018
- type: ndcg_at_5
value: 76.334
- type: precision_at_1
value: 64.667
- type: precision_at_10
value: 10.4
- type: precision_at_100
value: 1.1199999999999999
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_20
value: 5.383
- type: precision_at_3
value: 29.444
- type: precision_at_5
value: 19.467000000000002
- type: recall_at_1
value: 61.49400000000001
- type: recall_at_10
value: 92.156
- type: recall_at_100
value: 99.167
- type: recall_at_1000
value: 100.0
- type: recall_at_20
value: 94.833
- type: recall_at_3
value: 80.833
- type: recall_at_5
value: 86.6
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.8039603960396
- type: cosine_accuracy_threshold
value: 84.54211950302124
- type: cosine_ap
value: 95.59056372734358
- type: cosine_f1
value: 90.1394422310757
- type: cosine_f1_threshold
value: 84.54211950302124
- type: cosine_precision
value: 89.78174603174604
- type: cosine_recall
value: 90.5
- type: dot_accuracy
value: 99.80594059405941
- type: dot_accuracy_threshold
value: 85.57180166244507
- type: dot_ap
value: 95.53453431914399
- type: dot_f1
value: 90.10442565887618
- type: dot_f1_threshold
value: 84.59715843200684
- type: dot_precision
value: 89.61424332344214
- type: dot_recall
value: 90.60000000000001
- type: euclidean_accuracy
value: 99.8039603960396
- type: euclidean_accuracy_threshold
value: 53.253382444381714
- type: euclidean_ap
value: 95.5850992402159
- type: euclidean_f1
value: 90.09457441513192
- type: euclidean_f1_threshold
value: 55.725520849227905
- type: euclidean_precision
value: 89.69276511397423
- type: euclidean_recall
value: 90.5
- type: main_score
value: 95.7485189884476
- type: manhattan_accuracy
value: 99.81485148514851
- type: manhattan_accuracy_threshold
value: 3491.29638671875
- type: manhattan_ap
value: 95.7485189884476
- type: manhattan_f1
value: 90.464048954615
- type: manhattan_f1_threshold
value: 3491.29638671875
- type: manhattan_precision
value: 92.2996878251821
- type: manhattan_recall
value: 88.7
- type: max_ap
value: 95.7485189884476
- type: max_f1
value: 90.464048954615
- type: max_precision
value: 92.2996878251821
- type: max_recall
value: 90.60000000000001
- type: similarity_accuracy
value: 99.8039603960396
- type: similarity_accuracy_threshold
value: 84.54211950302124
- type: similarity_ap
value: 95.59056372734358
- type: similarity_f1
value: 90.1394422310757
- type: similarity_f1_threshold
value: 84.54211950302124
- type: similarity_precision
value: 89.78174603174604
- type: similarity_recall
value: 90.5
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: main_score
value: 78.49205191950675
- type: v_measure
value: 78.49205191950675
- type: v_measure_std
value: 2.84869550699959
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: main_score
value: 48.90421736513028
- type: v_measure
value: 48.90421736513028
- type: v_measure_std
value: 1.6875865714471023
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 52.9874730481696
- type: map
value: 52.9874730481696
- type: mrr
value: 53.85867604617604
- type: nAUC_map_diff1
value: 39.633429293407616
- type: nAUC_map_max
value: 10.236807988858546
- type: nAUC_map_std
value: 10.276522217929674
- type: nAUC_mrr_diff1
value: 40.0543079218377
- type: nAUC_mrr_max
value: 10.96209807382042
- type: nAUC_mrr_std
value: 10.524400196109918
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 30.727801109114232
- type: cosine_spearman
value: 31.66058223980157
- type: dot_pearson
value: 30.78818248622866
- type: dot_spearman
value: 31.525158776890265
- type: main_score
value: 31.66058223980157
- type: pearson
value: 30.727801109114232
- type: spearman
value: 31.66058223980157
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 85.206
- type: map_at_1
value: 0.246
- type: map_at_10
value: 2.1950000000000003
- type: map_at_100
value: 14.179
- type: map_at_1000
value: 35.037
- type: map_at_20
value: 4.143
- type: map_at_3
value: 0.7100000000000001
- type: map_at_5
value: 1.135
- type: mrr_at_1
value: 94.0
- type: mrr_at_10
value: 96.66666666666666
- type: mrr_at_100
value: 96.66666666666666
- type: mrr_at_1000
value: 96.66666666666666
- type: mrr_at_20
value: 96.66666666666666
- type: mrr_at_3
value: 96.66666666666666
- type: mrr_at_5
value: 96.66666666666666
- type: nauc_map_at_1000_diff1
value: -4.6264497624527525
- type: nauc_map_at_1000_max
value: 44.594457564749355
- type: nauc_map_at_1000_std
value: 73.17642341400133
- type: nauc_map_at_100_diff1
value: 23.451335157405726
- type: nauc_map_at_100_max
value: 25.426398857299525
- type: nauc_map_at_100_std
value: 64.07416694472633
- type: nauc_map_at_10_diff1
value: 46.57568738568346
- type: nauc_map_at_10_max
value: 9.693233249079238
- type: nauc_map_at_10_std
value: 28.549530265164357
- type: nauc_map_at_1_diff1
value: 53.48238396620123
- type: nauc_map_at_1_max
value: 0.33476619393733076
- type: nauc_map_at_1_std
value: 8.906362219128463
- type: nauc_map_at_20_diff1
value: 39.40719602207749
- type: nauc_map_at_20_max
value: 9.635915072074045
- type: nauc_map_at_20_std
value: 35.15634791346394
- type: nauc_map_at_3_diff1
value: 53.11784737840137
- type: nauc_map_at_3_max
value: 3.059682761072153
- type: nauc_map_at_3_std
value: 21.310633086556617
- type: nauc_map_at_5_diff1
value: 49.91570701185436
- type: nauc_map_at_5_max
value: 8.045082896244576
- type: nauc_map_at_5_std
value: 20.597686235051647
- type: nauc_mrr_at_1000_diff1
value: 41.98412698412726
- type: nauc_mrr_at_1000_max
value: 78.24463118580779
- type: nauc_mrr_at_1000_std
value: 0.30812324930028195
- type: nauc_mrr_at_100_diff1
value: 41.98412698412726
- type: nauc_mrr_at_100_max
value: 78.24463118580779
- type: nauc_mrr_at_100_std
value: 0.30812324930028195
- type: nauc_mrr_at_10_diff1
value: 41.98412698412726
- type: nauc_mrr_at_10_max
value: 78.24463118580779
- type: nauc_mrr_at_10_std
value: 0.30812324930028195
- type: nauc_mrr_at_1_diff1
value: 38.62433862433873
- type: nauc_mrr_at_1_max
value: 80.78120136943666
- type: nauc_mrr_at_1_std
value: -10.768751945222197
- type: nauc_mrr_at_20_diff1
value: 41.98412698412726
- type: nauc_mrr_at_20_max
value: 78.24463118580779
- type: nauc_mrr_at_20_std
value: 0.30812324930028195
- type: nauc_mrr_at_3_diff1
value: 41.98412698412726
- type: nauc_mrr_at_3_max
value: 78.24463118580779
- type: nauc_mrr_at_3_std
value: 0.30812324930028195
- type: nauc_mrr_at_5_diff1
value: 41.98412698412726
- type: nauc_mrr_at_5_max
value: 78.24463118580779
- type: nauc_mrr_at_5_std
value: 0.30812324930028195
- type: nauc_ndcg_at_1000_diff1
value: 0.5174948602880207
- type: nauc_ndcg_at_1000_max
value: 48.60686602077053
- type: nauc_ndcg_at_1000_std
value: 75.72456343175277
- type: nauc_ndcg_at_100_diff1
value: -20.747252137999254
- type: nauc_ndcg_at_100_max
value: 49.985132618254994
- type: nauc_ndcg_at_100_std
value: 61.096383293836574
- type: nauc_ndcg_at_10_diff1
value: 6.791377920463332
- type: nauc_ndcg_at_10_max
value: 57.50019332833286
- type: nauc_ndcg_at_10_std
value: 49.201028841219426
- type: nauc_ndcg_at_1_diff1
value: 54.92683440362145
- type: nauc_ndcg_at_1_max
value: 83.8667228129276
- type: nauc_ndcg_at_1_std
value: 1.6738604063586122
- type: nauc_ndcg_at_20_diff1
value: -5.1948699196314925
- type: nauc_ndcg_at_20_max
value: 54.483087684806556
- type: nauc_ndcg_at_20_std
value: 50.54823818118781
- type: nauc_ndcg_at_3_diff1
value: 26.267246500164372
- type: nauc_ndcg_at_3_max
value: 63.0173212926611
- type: nauc_ndcg_at_3_std
value: 41.025597406368256
- type: nauc_ndcg_at_5_diff1
value: 16.910185454343036
- type: nauc_ndcg_at_5_max
value: 60.9328683868778
- type: nauc_ndcg_at_5_std
value: 36.70169905857712
- type: nauc_precision_at_1000_diff1
value: -46.374447765983525
- type: nauc_precision_at_1000_max
value: 35.36052337813863
- type: nauc_precision_at_1000_std
value: 14.219220668161018
- type: nauc_precision_at_100_diff1
value: -29.7838083657744
- type: nauc_precision_at_100_max
value: 43.93589400385112
- type: nauc_precision_at_100_std
value: 55.425045718579945
- type: nauc_precision_at_10_diff1
value: -12.016613405227687
- type: nauc_precision_at_10_max
value: 57.79924427743131
- type: nauc_precision_at_10_std
value: 49.022036703550675
- type: nauc_precision_at_1_diff1
value: 38.62433862433873
- type: nauc_precision_at_1_max
value: 80.78120136943666
- type: nauc_precision_at_1_std
value: -10.768751945222197
- type: nauc_precision_at_20_diff1
value: -23.95633847880195
- type: nauc_precision_at_20_max
value: 48.34715917258276
- type: nauc_precision_at_20_std
value: 48.82198285255887
- type: nauc_precision_at_3_diff1
value: 6.871296905858807
- type: nauc_precision_at_3_max
value: 70.54805793285054
- type: nauc_precision_at_3_std
value: 44.65108624094803
- type: nauc_precision_at_5_diff1
value: -9.074932448759695
- type: nauc_precision_at_5_max
value: 67.41284242437573
- type: nauc_precision_at_5_std
value: 23.876891983919577
- type: nauc_recall_at_1000_diff1
value: 8.142288830293255
- type: nauc_recall_at_1000_max
value: 38.85182826835104
- type: nauc_recall_at_1000_std
value: 68.60783819217335
- type: nauc_recall_at_100_diff1
value: 34.262914076287466
- type: nauc_recall_at_100_max
value: 12.87009658528838
- type: nauc_recall_at_100_std
value: 56.21330603762995
- type: nauc_recall_at_10_diff1
value: 49.33830945338758
- type: nauc_recall_at_10_max
value: 0.3539875530671406
- type: nauc_recall_at_10_std
value: 26.85864465557644
- type: nauc_recall_at_1_diff1
value: 53.48238396620123
- type: nauc_recall_at_1_max
value: 0.33476619393733076
- type: nauc_recall_at_1_std
value: 8.906362219128463
- type: nauc_recall_at_20_diff1
value: 44.21928181266254
- type: nauc_recall_at_20_max
value: -0.9198356057088594
- type: nauc_recall_at_20_std
value: 31.484376992896784
- type: nauc_recall_at_3_diff1
value: 53.038093080990876
- type: nauc_recall_at_3_max
value: -1.4170895916973003
- type: nauc_recall_at_3_std
value: 21.890202855574497
- type: nauc_recall_at_5_diff1
value: 49.39742214825278
- type: nauc_recall_at_5_max
value: 2.8412267611894517
- type: nauc_recall_at_5_std
value: 18.01598921859512
- type: ndcg_at_1
value: 91.0
- type: ndcg_at_10
value: 85.206
- type: ndcg_at_100
value: 67.29
- type: ndcg_at_1000
value: 60.584
- type: ndcg_at_20
value: 82.321
- type: ndcg_at_3
value: 88.642
- type: ndcg_at_5
value: 87.063
- type: precision_at_1
value: 94.0
- type: precision_at_10
value: 89.8
- type: precision_at_100
value: 69.78
- type: precision_at_1000
value: 26.738
- type: precision_at_20
value: 87.2
- type: precision_at_3
value: 92.0
- type: precision_at_5
value: 90.8
- type: recall_at_1
value: 0.246
- type: recall_at_10
value: 2.344
- type: recall_at_100
value: 16.962
- type: recall_at_1000
value: 57.325
- type: recall_at_20
value: 4.517
- type: recall_at_3
value: 0.731
- type: recall_at_5
value: 1.1780000000000002
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 31.455
- type: map_at_1
value: 2.9739999999999998
- type: map_at_10
value: 12.183
- type: map_at_100
value: 18.772
- type: map_at_1000
value: 20.415
- type: map_at_20
value: 14.451
- type: map_at_3
value: 6.507000000000001
- type: map_at_5
value: 8.66
- type: mrr_at_1
value: 40.816326530612244
- type: mrr_at_10
value: 57.70975056689341
- type: mrr_at_100
value: 58.18379126542391
- type: mrr_at_1000
value: 58.18379126542391
- type: mrr_at_20
value: 57.85552316164561
- type: mrr_at_3
value: 54.08163265306123
- type: mrr_at_5
value: 56.42857142857143
- type: nauc_map_at_1000_diff1
value: 3.1567471051481437
- type: nauc_map_at_1000_max
value: -1.5882060729791523
- type: nauc_map_at_1000_std
value: 18.69622198722074
- type: nauc_map_at_100_diff1
value: 3.3449677678147536
- type: nauc_map_at_100_max
value: -2.8928606866168405
- type: nauc_map_at_100_std
value: 15.789984947653412
- type: nauc_map_at_10_diff1
value: 2.9696743570444264
- type: nauc_map_at_10_max
value: -9.096749212011876
- type: nauc_map_at_10_std
value: -5.38545817258353
- type: nauc_map_at_1_diff1
value: 20.680780404542546
- type: nauc_map_at_1_max
value: -7.04722927447817
- type: nauc_map_at_1_std
value: -7.062494733973898
- type: nauc_map_at_20_diff1
value: 4.070437790119271
- type: nauc_map_at_20_max
value: -4.84491434686032
- type: nauc_map_at_20_std
value: 0.5846341109021014
- type: nauc_map_at_3_diff1
value: 11.9634978045925
- type: nauc_map_at_3_max
value: -8.27834591046608
- type: nauc_map_at_3_std
value: -8.687615453381065
- type: nauc_map_at_5_diff1
value: 0.9195191526009436
- type: nauc_map_at_5_max
value: -1.673813362719489
- type: nauc_map_at_5_std
value: -6.67549753473631
- type: nauc_mrr_at_1000_diff1
value: 19.877993208719573
- type: nauc_mrr_at_1000_max
value: -10.37776706406218
- type: nauc_mrr_at_1000_std
value: 7.132169578056367
- type: nauc_mrr_at_100_diff1
value: 19.877993208719573
- type: nauc_mrr_at_100_max
value: -10.37776706406218
- type: nauc_mrr_at_100_std
value: 7.132169578056367
- type: nauc_mrr_at_10_diff1
value: 20.414285568401457
- type: nauc_mrr_at_10_max
value: -9.677800295687861
- type: nauc_mrr_at_10_std
value: 8.001103690180859
- type: nauc_mrr_at_1_diff1
value: 22.393284073955723
- type: nauc_mrr_at_1_max
value: -5.889370191243167
- type: nauc_mrr_at_1_std
value: -1.5183536173658247
- type: nauc_mrr_at_20_diff1
value: 20.455564720604055
- type: nauc_mrr_at_20_max
value: -10.230642830103074
- type: nauc_mrr_at_20_std
value: 7.863582453266621
- type: nauc_mrr_at_3_diff1
value: 17.554895390732618
- type: nauc_mrr_at_3_max
value: -15.618463505555052
- type: nauc_mrr_at_3_std
value: 5.913231577966864
- type: nauc_mrr_at_5_diff1
value: 18.393678507779914
- type: nauc_mrr_at_5_max
value: -11.903593353147762
- type: nauc_mrr_at_5_std
value: 7.580745996262831
- type: nauc_ndcg_at_1000_diff1
value: 13.746937095530473
- type: nauc_ndcg_at_1000_max
value: -0.9319249687895838
- type: nauc_ndcg_at_1000_std
value: 38.56328031451904
- type: nauc_ndcg_at_100_diff1
value: 13.854865944415895
- type: nauc_ndcg_at_100_max
value: -7.142142012591404
- type: nauc_ndcg_at_100_std
value: 35.61341954818848
- type: nauc_ndcg_at_10_diff1
value: 9.010144273248759
- type: nauc_ndcg_at_10_max
value: -15.320014897424574
- type: nauc_ndcg_at_10_std
value: 2.84883880489144
- type: nauc_ndcg_at_1_diff1
value: 20.939533945592967
- type: nauc_ndcg_at_1_max
value: -6.387319972188946
- type: nauc_ndcg_at_1_std
value: -0.5258673122126726
- type: nauc_ndcg_at_20_diff1
value: 14.660827309009496
- type: nauc_ndcg_at_20_max
value: -13.476196120145994
- type: nauc_ndcg_at_20_std
value: 8.22391881710838
- type: nauc_ndcg_at_3_diff1
value: 13.429985227235935
- type: nauc_ndcg_at_3_max
value: -14.904544592570247
- type: nauc_ndcg_at_3_std
value: 1.599779998183342
- type: nauc_ndcg_at_5_diff1
value: 8.085466231900622
- type: nauc_ndcg_at_5_max
value: -9.09591969526831
- type: nauc_ndcg_at_5_std
value: 3.5794092637248505
- type: nauc_precision_at_1000_diff1
value: -9.31941215946743
- type: nauc_precision_at_1000_max
value: 31.52913520470716
- type: nauc_precision_at_1000_std
value: 22.720784312185856
- type: nauc_precision_at_100_diff1
value: 8.958548406995279
- type: nauc_precision_at_100_max
value: 15.100597910674104
- type: nauc_precision_at_100_std
value: 71.04548238175113
- type: nauc_precision_at_10_diff1
value: 12.4698194690008
- type: nauc_precision_at_10_max
value: -15.84870544871496
- type: nauc_precision_at_10_std
value: 7.575297622501928
- type: nauc_precision_at_1_diff1
value: 22.393284073955723
- type: nauc_precision_at_1_max
value: -5.889370191243167
- type: nauc_precision_at_1_std
value: -1.5183536173658247
- type: nauc_precision_at_20_diff1
value: 15.393505718138758
- type: nauc_precision_at_20_max
value: -3.70684298539384
- type: nauc_precision_at_20_std
value: 29.426137824970304
- type: nauc_precision_at_3_diff1
value: 9.997768085465394
- type: nauc_precision_at_3_max
value: -17.12224314347674
- type: nauc_precision_at_3_std
value: -1.343018166772313
- type: nauc_precision_at_5_diff1
value: 3.8936997437913554
- type: nauc_precision_at_5_max
value: -5.689104289687632
- type: nauc_precision_at_5_std
value: 3.181098051304285
- type: nauc_recall_at_1000_diff1
value: 9.908303508158387
- type: nauc_recall_at_1000_max
value: 6.174506592699848
- type: nauc_recall_at_1000_std
value: 77.41931114780012
- type: nauc_recall_at_100_diff1
value: 10.286839241876192
- type: nauc_recall_at_100_max
value: -6.6138697026666815
- type: nauc_recall_at_100_std
value: 49.608313692633224
- type: nauc_recall_at_10_diff1
value: 2.215545846659851
- type: nauc_recall_at_10_max
value: -17.83025802478445
- type: nauc_recall_at_10_std
value: -3.3784768673705465
- type: nauc_recall_at_1_diff1
value: 20.680780404542546
- type: nauc_recall_at_1_max
value: -7.04722927447817
- type: nauc_recall_at_1_std
value: -7.062494733973898
- type: nauc_recall_at_20_diff1
value: 6.974410239251615
- type: nauc_recall_at_20_max
value: -14.161147924731646
- type: nauc_recall_at_20_std
value: 9.328412057721454
- type: nauc_recall_at_3_diff1
value: 7.904589805754212
- type: nauc_recall_at_3_max
value: -12.1912388648593
- type: nauc_recall_at_3_std
value: -9.221542013385555
- type: nauc_recall_at_5_diff1
value: -3.2604132752706914
- type: nauc_recall_at_5_max
value: -6.886351441658915
- type: nauc_recall_at_5_std
value: -7.014252851712789
- type: ndcg_at_1
value: 39.796
- type: ndcg_at_10
value: 31.455
- type: ndcg_at_100
value: 42.388999999999996
- type: ndcg_at_1000
value: 53.556000000000004
- type: ndcg_at_20
value: 30.808000000000003
- type: ndcg_at_3
value: 35.831
- type: ndcg_at_5
value: 32.845
- type: precision_at_1
value: 40.816
- type: precision_at_10
value: 27.143
- type: precision_at_100
value: 8.449
- type: precision_at_1000
value: 1.6179999999999999
- type: precision_at_20
value: 19.387999999999998
- type: precision_at_3
value: 35.374
- type: precision_at_5
value: 31.019999999999996
- type: recall_at_1
value: 2.9739999999999998
- type: recall_at_10
value: 19.39
- type: recall_at_100
value: 51.636
- type: recall_at_1000
value: 86.99900000000001
- type: recall_at_20
value: 26.478
- type: recall_at_3
value: 7.703
- type: recall_at_5
value: 11.42
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 86.9384765625
- type: ap
value: 31.737513704141552
- type: ap_weighted
value: 31.737513704141552
- type: f1
value: 71.5490757306975
- type: f1_weighted
value: 89.14632533489856
- type: main_score
value: 86.9384765625
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 73.57668364459535
- type: f1
value: 73.90467103648074
- type: f1_weighted
value: 73.42158415034704
- type: main_score
value: 73.57668364459535
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: main_score
value: 58.574148097494685
- type: v_measure
value: 58.574148097494685
- type: v_measure_std
value: 0.9443161637490822
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 88.1385229778864
- type: cosine_accuracy_threshold
value: 83.86307954788208
- type: cosine_ap
value: 80.17965893449055
- type: cosine_f1
value: 73.0614300100705
- type: cosine_f1_threshold
value: 80.7942807674408
- type: cosine_precision
value: 69.8603755416466
- type: cosine_recall
value: 76.56992084432717
- type: dot_accuracy
value: 88.2100494724921
- type: dot_accuracy_threshold
value: 83.84793996810913
- type: dot_ap
value: 80.18603932881858
- type: dot_f1
value: 73.07643714466204
- type: dot_f1_threshold
value: 80.87586164474487
- type: dot_precision
value: 70.10909090909091
- type: dot_recall
value: 76.3060686015831
- type: euclidean_accuracy
value: 88.1385229778864
- type: euclidean_accuracy_threshold
value: 56.77661895751953
- type: euclidean_ap
value: 80.1784070881624
- type: euclidean_f1
value: 73.04830369529574
- type: euclidean_f1_threshold
value: 61.91838979721069
- type: euclidean_precision
value: 69.96859144720948
- type: euclidean_recall
value: 76.41160949868075
- type: main_score
value: 80.18603932881858
- type: manhattan_accuracy
value: 88.0431543184121
- type: manhattan_accuracy_threshold
value: 3755.6137084960938
- type: manhattan_ap
value: 79.98270453664578
- type: manhattan_f1
value: 72.68242015061023
- type: manhattan_f1_threshold
value: 3892.494583129883
- type: manhattan_precision
value: 71.54907975460122
- type: manhattan_recall
value: 73.85224274406332
- type: max_ap
value: 80.18603932881858
- type: max_f1
value: 73.07643714466204
- type: max_precision
value: 71.54907975460122
- type: max_recall
value: 76.56992084432717
- type: similarity_accuracy
value: 88.1385229778864
- type: similarity_accuracy_threshold
value: 83.86307954788208
- type: similarity_ap
value: 80.17965893449055
- type: similarity_f1
value: 73.0614300100705
- type: similarity_f1_threshold
value: 80.7942807674408
- type: similarity_precision
value: 69.8603755416466
- type: similarity_recall
value: 76.56992084432717
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 89.7892653393876
- type: cosine_accuracy_threshold
value: 79.69566583633423
- type: cosine_ap
value: 87.4579867302024
- type: cosine_f1
value: 79.91620843152658
- type: cosine_f1_threshold
value: 78.53609323501587
- type: cosine_precision
value: 77.7155329210622
- type: cosine_recall
value: 82.24514936864799
- type: dot_accuracy
value: 89.78732487289945
- type: dot_accuracy_threshold
value: 80.05315661430359
- type: dot_ap
value: 87.44916182456272
- type: dot_f1
value: 79.90419878751591
- type: dot_f1_threshold
value: 78.57890725135803
- type: dot_precision
value: 77.73409057812728
- type: dot_recall
value: 82.19895287958116
- type: euclidean_accuracy
value: 89.78538440641131
- type: euclidean_accuracy_threshold
value: 62.29925751686096
- type: euclidean_ap
value: 87.45904868911386
- type: euclidean_f1
value: 79.93127404474657
- type: euclidean_f1_threshold
value: 65.61101078987122
- type: euclidean_precision
value: 77.62060210373595
- type: euclidean_recall
value: 82.38373883584848
- type: main_score
value: 87.46554314325058
- type: manhattan_accuracy
value: 89.76597974152986
- type: manhattan_accuracy_threshold
value: 3988.5299682617188
- type: manhattan_ap
value: 87.46554314325058
- type: manhattan_f1
value: 79.97181740645973
- type: manhattan_f1_threshold
value: 4235.905838012695
- type: manhattan_precision
value: 77.13713427283783
- type: manhattan_recall
value: 83.02279026793964
- type: max_ap
value: 87.46554314325058
- type: max_f1
value: 79.97181740645973
- type: max_precision
value: 77.73409057812728
- type: max_recall
value: 83.02279026793964
- type: similarity_accuracy
value: 89.7892653393876
- type: similarity_accuracy_threshold
value: 79.69566583633423
- type: similarity_ap
value: 87.4579867302024
- type: similarity_f1
value: 79.91620843152658
- type: similarity_f1_threshold
value: 78.53609323501587
- type: similarity_precision
value: 77.7155329210622
- type: similarity_recall
value: 82.24514936864799
---
# Updates
Hi, everyone, thanks for using stella models.
After six months of work, I trained the jasper model on top of the stella model, which is a multimodal model, and it can be ranked 2 in mteb (submitted the results on 2024-12-11, which may need official review https://github.com/embeddings-benchmark/results/pull/68).
Model link: https://huggingface.co/infgrad/jasper_en_vision_language_v1
I'll focus on the technical report, training data and related code, hopefully the tricks I've used will be of some help to you guys!
The core training code will be integrated into the rag-retrieval library(https://github.com/NLPJCL/RAG-Retrieval) in the near future. (Welcome to star)
This work was accomplished during my free time, it's a personal hobby. One person's time and energy is limited, and you are welcome to make any contributions!
You can also find these models on my [homepage](https://huggingface.co/infgrad).
# Introduction
The models are trained based on `Alibaba-NLP/gte-large-en-v1.5` and `Alibaba-NLP/gte-Qwen2-1.5B-instruct`. Thanks for
their contributions!
**We simplify usage of prompts, providing two prompts for most general tasks, one is for s2p, another one is for s2s.**
Prompt of s2p task(e.g. retrieve task):
```text
Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: {query}
```
Prompt of s2s task(e.g. semantic textual similarity task):
```text
Instruct: Retrieve semantically similar text.\nQuery: {query}
```
The models are finally trained by [MRL](https://arxiv.org/abs/2205.13147), so they have multiple dimensions: 512, 768,
1024, 2048, 4096, 6144 and 8192.
The higher the dimension, the better the performance.
**Generally speaking, 1024d is good enough.** The MTEB score of 1024d is only 0.001 lower than 8192d.
# Model directory structure
The model directory structure is very simple, it is a standard SentenceTransformer directory **with a series
of `2_Dense_{dims}`
folders**, where `dims` represents the final vector dimension.
For example, the `2_Dense_256` folder stores Linear weights that convert vector dimensions to 256 dimensions.
Please refer to the following chapters for specific instructions on how to use them.
# Usage
You can use `SentenceTransformers` or `transformers` library to encode text.
## Sentence Transformers
```python
from sentence_transformers import SentenceTransformer
# This model supports two prompts: "s2p_query" and "s2s_query" for sentence-to-passage and sentence-to-sentence tasks, respectively.
# They are defined in `config_sentence_transformers.json`
query_prompt_name = "s2p_query"
queries = [
"What are some ways to reduce stress?",
"What are the benefits of drinking green tea?",
]
# docs do not need any prompts
docs = [
"There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.",
"Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.",
]
# !The default dimension is 1024, if you need other dimensions, please clone the model and modify `modules.json` to replace `2_Dense_1024` with another dimension, e.g. `2_Dense_256` or `2_Dense_8192` !
# on gpu
model = SentenceTransformer("dunzhang/stella_en_400M_v5", trust_remote_code=True).cuda()
# you can also use this model without the features of `use_memory_efficient_attention` and `unpad_inputs`. It can be worked in CPU.
# model = SentenceTransformer(
# "dunzhang/stella_en_400M_v5",
# trust_remote_code=True,
# device="cpu",
# config_kwargs={"use_memory_efficient_attention": False, "unpad_inputs": False}
# )
query_embeddings = model.encode(queries, prompt_name=query_prompt_name)
doc_embeddings = model.encode(docs)
print(query_embeddings.shape, doc_embeddings.shape)
# (2, 1024) (2, 1024)
similarities = model.similarity(query_embeddings, doc_embeddings)
print(similarities)
# tensor([[0.8398, 0.2990],
# [0.3282, 0.8095]])
```
## Transformers
```python
import os
import torch
from transformers import AutoModel, AutoTokenizer
from sklearn.preprocessing import normalize
query_prompt = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
queries = [
"What are some ways to reduce stress?",
"What are the benefits of drinking green tea?",
]
queries = [query_prompt + query for query in queries]
# docs do not need any prompts
docs = [
"There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.",
"Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.",
]
# The path of your model after cloning it
model_dir = "{Your MODEL_PATH}"
vector_dim = 1024
vector_linear_directory = f"2_Dense_{vector_dim}"
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cuda().eval()
# you can also use this model without the features of `use_memory_efficient_attention` and `unpad_inputs`. It can be worked in CPU.
# model = AutoModel.from_pretrained(model_dir, trust_remote_code=True,use_memory_efficient_attention=False,unpad_inputs=False).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
vector_linear = torch.nn.Linear(in_features=model.config.hidden_size, out_features=vector_dim)
vector_linear_dict = {
k.replace("linear.", ""): v for k, v in
torch.load(os.path.join(model_dir, f"{vector_linear_directory}/pytorch_model.bin")).items()
}
vector_linear.load_state_dict(vector_linear_dict)
vector_linear.cuda()
# Embed the queries
with torch.no_grad():
input_data = tokenizer(queries, padding="longest", truncation=True, max_length=512, return_tensors="pt")
input_data = {k: v.cuda() for k, v in input_data.items()}
attention_mask = input_data["attention_mask"]
last_hidden_state = model(**input_data)[0]
last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
query_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
query_vectors = normalize(vector_linear(query_vectors).cpu().numpy())
# Embed the documents
with torch.no_grad():
input_data = tokenizer(docs, padding="longest", truncation=True, max_length=512, return_tensors="pt")
input_data = {k: v.cuda() for k, v in input_data.items()}
attention_mask = input_data["attention_mask"]
last_hidden_state = model(**input_data)[0]
last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
docs_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
docs_vectors = normalize(vector_linear(docs_vectors).cpu().numpy())
print(query_vectors.shape, docs_vectors.shape)
# (2, 1024) (2, 1024)
similarities = query_vectors @ docs_vectors.T
print(similarities)
# [[0.8397531 0.29900077]
# [0.32818374 0.80954516]]
```
### infinity_emb
Usage via [infinity, MIT Licensed](https://github.com/michaelfeil/infinity).
```bash
docker run \
--gpus all -p "7997":"7997" \
michaelf34/infinity:0.0.69 \
v2 --model-id dunzhang/stella_en_400M_v5 --revision "refs/pr/24" --dtype bfloat16 --batch-size 16 --device cuda --engine torch --port 7997 --no-bettertransformer
```
# FAQ
Q: The details of training?
A: The training method and datasets will be released in the future. (specific time unknown, may be provided in a paper)
Q: How to choose a suitable prompt for my own task?
A: In most cases, please use the s2p and s2s prompts. These two prompts account for the vast majority of the training
data.
Q: How to reproduce MTEB results?
A: Please use evaluation scripts in `Alibaba-NLP/gte-Qwen2-1.5B-instruct` or `intfloat/e5-mistral-7b-instruct`
Q: Why each dimension has a linear weight?
A: MRL has multiple training methods, we choose this method which has the best performance.
Q: What is the sequence length of models?
A: 512 is recommended, in our experiments, almost all models perform poorly on specialized long text retrieval datasets. Besides, the
model is trained on datasets of 512 length. This may be an optimization term.
If you have any questions, please start a discussion on community. | [
"BIOSSES",
"SCIFACT"
] |
nes470/pipeline-as-repo | nes470 | question-answering | [
"transformers",
"pytorch",
"QA-umd-quizbowl",
"question-answering",
"custom_code",
"license:mit",
"region:us"
] | "2024-05-06T15:27:54Z" | 2024-05-16T22:18:19+00:00 | 5,081 | 0 | ---
library_name: transformers
license: mit
---
Names: Nuran, Joshua, Robert
The evaluation of this project is to answer trivia questions. You do
not need to do well at this task, but you should submit a system that
completes the task or create adversarial questions in that setting. This will help the whole class share data and
resources.
If you focus on something other than predicting answers, *that's fine*!
About the Data
==============
Quiz bowl is an academic competition between schools in
English-speaking countries; hundreds of teams compete in dozens of
tournaments each year. Quiz bowl is different from Jeopardy, a recent
application area. While Jeopardy also uses signaling devices, these
are only usable after a question is completed (interrupting Jeopardy's
questions would make for bad television). Thus, Jeopardy is rapacious
classification followed by a race---among those who know the
answer---to punch a button first.
Here's an example of a quiz bowl question:
Expanding on a 1908 paper by Smoluchowski, he derived a formula for
the intensity of scattered light in media fluctuating densities that
reduces to Rayleigh's law for ideal gases in The Theory of the
Opalescence of Homogenous Fluids and Liquid Mixtures near the Critical
State. That research supported his theories of matter first developed
when he calculated the diffusion constant in terms of fundamental
parameters of the particles of a gas undergoing Brownian Motion. In
that same year, 1905, he also published On a Heuristic Point of View
Concerning the Production and Transformation of Light. That
explication of the photoelectric effect won him 1921 Nobel in Physics.
For ten points, name this German physicist best known for his theory
of Relativity.
*ANSWER*: Albert _Einstein_
Two teams listen to the same question. Teams interrupt the question at
any point by "buzzing in"; if the answer is correct, the team gets
points and the next question is read. Otherwise, the team loses
points and the other team can answer.
You are welcome to use any *automatic* method to choose an answer. It
need not be similar nor build on our provided systems. In addition to
the data we provide, you are welcome to use any external data *except*
our test quiz bowl questions (i.e., don't hack our server!). You are
welcome (an encouraged) to use any publicly available software, but
you may want to check on Piazza for suggestions as many tools are
better (or easier to use) than others.
If you don't like the interruptability of questions, you can also just answer entire questions. However, you must also output a confidence.
Competition
==================
We will use Dynabech website (https://dynabench.org/tasks/qa). If you remember the past workshop about Dynabench submission, this is the way to do it. The specific task name is "Grounded QA". Here, with the help of the video tutorial, you submit your QA model and assess how your QA model did compared to others. The assessment will take place by testing your QA model on several QA test datasets and the results of yours and your competitors will be visible on the leaderboard. Your goal is to rank the highest in terms of expected wins: you buzz in with probability proportional to your confidence, and if you're more right than the competition, you win.
Writing Questions
==================
Alternatively, you can also *write* 50 adversarial questions that
challenge modern NLP systems. These questions must be diverse in the
subjects asked about, the skills computers need to answer the
questions, and the entities in those questions. Remember that your questions should be *factual* and
*specific* enough for humans to answer, because your task is to stump
the computers relative to humans!
In addition to the raw questions, you will also need to create citations describing:
* Why the question is difficult for computers: include citations from the NLP/AI/ML literature
* Why the information in the question is correct: include citations from the sources you drew on the write the question
* Why the question is interesting: include scholarly / popular culture artifacts to prove that people care about this
* Why the question is pyramidal: discuss why your first clues are harder than your later clues
**Category**
We want questions from many domains such as Art, Literature, Geography, History,
Science, TV and Film, Music, Lifestyle, and Sport. The questions
should be written using all topics above (5 questions for each
category and 5 more for the remaining categories). Indicate in your
writeup which category you chose to write on for each question.
Art:
* Questions about works: Mona Lisa, Raft of the Medussa
* Questions about forms: color, contour, texture
* Questions about artists: Picasso, Monet, Leonardo da Vinci
* Questions about context: Renaissance, post-modernism, expressionism, surrealism
Literature:
* Questions about works: novels (1984), plays (The Lion and the Jewel), poems (Rubaiyat), criticism (Poetics)
* Questions about major characters or events in literature: The Death of Anna Karenina, Noboru Wataya, the Marriage of Hippolyta and Theseus
* Questions about literary movements (Sturm und Drang)
* Questions about translations
* Cross-cutting questions (appearances of Overcoats in novels)
* Common link questions (the literary output of a country/region)
Geography:
* Questions about location: names of capital, state, river
* Questions about the place: temperature, wind flow, humidity
History:
* When: When did the First World war start?
* Who: Who is called Napoleon of Iran?
* Where: Where was the first Summer Olympics held?
* Which: Which is the oldest civilization in the world?
Science:
* Questions about terminology: The concept of gravity was discovered by which famous physicist?
* Questions about the experiment
* Questions about theory: The social action theory believes that individuals are influenced by this theory.
TV and Film:
* Quotes: What are the dying words of Charles Foster Kane in Citizen Kane?
* Title: What 1927 musical was the first "talkie"?
* Plot: In The Matrix, does Neo take the blue pill or the red pill?
Music:
* Singer: What singer has had a Billboard No. 1 hit in each of the last four decades?
* Band: Before Bleachers and fun., Jack Antonoff fronted what band?
* Title: What was Madonna's first top 10 hit?
* History: Which classical composer was deaf?
Lifestyle:
* Clothes: What clothing company, founded by a tennis player, has an alligator logo?
* Decoration: What was the first perfume sold by Coco Chanel?
Sport:
* Known facts: What sport is best known as the ‘king of sports’?
* Nationality: What’s the national sport of Canada?
* Sport player: The classic 1980 movie called Raging Bull is about which real-life boxer?
* Country: What country has competed the most times in the Summer Olympics yet hasn’t won any kind of medal?
**Diversity**
Other than category diversity, if you find an ingenious way of writing questions about underrepresented countries, you will get bonus points (indicate which questions you included the diversity component in your writeup). You may decide which are underrepresented countries with your own reasonable reason (etc., less population may indicate underrepresented), but make sure to articulate this in your writeup.
* Run state of the art QA systems on the questions to show they struggle, give individual results for each question and a summary over all questions
For an example of what the writeup for a single question should look like, see the adversarial HW:
https://github.com/Pinafore/nlp-hw/blob/master/adversarial/question.tex
Proposal
==================
The project proposal is a one page PDF document that describes:
* Who is on your team (team sizes can be between three and six
students, but six is really too big to be effective; my suggestion
is that most groups should be between four or five).
* What techniques you will explore
* Your timeline for completing the project (be realistic; you should
have your first submission in a week or two)
Submit the proposal on Gradescope, but make sure to include all group
members. If all group members are not included, you will lose points. Late days cannot be used on this
assignment.
Milestone 1
======================
You'll have to update how things are going: what's
working, what isn't, and how does it change your timeline? How does it change your division of labor?
*Question Writing*: You'll need to have answers selected for all of
your questions and first drafts of at least 15 questions. This must
be submitted as a JSON file so that we run computer QA systems on it.
*Project*: You'll need to have made a submission to the leaderboard with something that satisfies the API.
Submit a PDF updating on your progress to Gradescope. If all team
members are not on the submission, you will lose points.
Milestone 2
===================
As before, provide an updated timeline / division of labor, provide your intermediary results.
*Question Writing*: You'll need to have reflected the feedback from the first questions and completed a first draft of at least 30 questions. You'll also need machine results to your questions and an overall evaluation of your human/computer accuracy.
*Project*: You'll need to have a made a submission to the leaderboard with a working system (e.g., not just obey the API, but actually get reasonable answers).
Submit a PDF updating on your progress.
Final Presentation
======================
The final presentation will be virtual (uploading a video). In
the final presentation you will:
* Explain what you did
* Who did what. For example, for the question writing project a team of five people might write: A wrote the first draft of questions. B and C verified they were initially answerable by a human. B ran computer systems to verify they were challenging to a computer. C edited the questions and increased the computer difficulty. D and E verified that the edited questions were still answerable by a human. D and E checked all of the questions for factual accuracy and created citations and the writeup.
* What challenges you had
* Review how well you did (based on the competition or your own metrics). If you do not use the course infrastructure to evaluate your project's work, you should talk about what alternative evaluations you used, why they're appropriate/fair, and how well you did on them.
* Provide an error analysis. An error analysis must contain examples from the
development set that you get wrong. You should show those sentences
and explain why (in terms of features or the model) they have the
wrong answer. You should have been doing this all along as you
derive new features, but this is your final inspection of
your errors. The feature or model problems you discover should not
be trivial features you could add easily. Instead, these should be
features or models that are difficult to correct. An error analysis
is not the same thing as simply presenting the error matrix, as it
does not inspect any individual examples. If you're writing questions, talk about examples of questions that didn't work out as intended.
* The linguistic motivation for your features / how your wrote the questions. This is a
computational linguistics class, so you should give precedence to
features / techniques that we use in this class (e.g., syntax,
morphology, part of speech, word sense, etc.). Given two features
that work equally well and one that is linguistically motivated,
we'll prefer the linguistically motivated one.
* Presumably you did many different things; how did they each
individually contribute to your final result?
Each group has 10 minutes to deliver their presentation. Please record the video, and upload it to Google Drive, and include the link in your writeup submission.
Final Question Submission
======================
Because we need to get the questions ready for the systems, upload your raw questions on May 10. This doesn't include the citations or other parts of the writeup.
System Submission
======================
You must submit a version of your system by May 12. It may not be perfect, but this what the question writing teams will use to test their results.
Your system should be sent directly to the professor and TAs in zip files, including the correct dependencies and a working inference code. Your inference code should run successfully in the root folder (extracted from zip folder) directory with the command:
```
> python3 inference.py --data=evaluation_set.json
```
The input will be in the form of a .json file () in the same format as the file the adversarial question writing team submits. The output format should also be in string.
If you have any notes or comments that we should be aware of while running your code, please include them in the folder as a .txt file. Also, dependency information should be included as a .txt file.
Please prepend your email title with [2024-CMSC 470 System Submission].
Project Writeup and JSON file
======================
By May 17, submit your project writeup explaining what
you did and what results you achieved. This document should
make it clear:
* Why this is a good idea
* What you did
* Who did what
* Whether your technique worked or not
For systems, please do not go over 2500 words unless you have a really good reason.
Images are a much better use of space than words, usually (there's no
limit on including images, but use judgement and be selective).
For question writing, you have one page (single spaced, two column) per question plus a two page summary of results. Talk about how you organized the question writing, how you evaluated the questions, and a summary of the results. Along with your writeup, turn in a json including the raw text of the question and answer and category. The json file is included in this directory. Make sure your json file is in the correct format and is callable via below code. Your submission will not be graded if it does not follow the format of the example json file.
```
with open('path to your json file', 'r') as f:
data = json.load(f)
```
Grade
======================
The grade will be out of 25 points, broken into five areas:
* _Presentation_: For your oral presentation, do you highlight what
you did and make people care? Did you use time well during the
presentation?
* _Writeup_: Does the writeup explain what you did in a way that is
clear and effective?
The final three areas are different between the system and the questions.
| | System | Questions |
|----------|:-------------:|------:|
| _Technical Soundness_ | Did you use the right tools for the job, and did you use them correctly? Were they relevant to this class? | Were your questions correct and accurately cited. |
| _Effort_ | Did you do what you say you would, and was it the right ammount of effort. | Are the questions well-written, interesting, and thoroughly edited? |
| _Performance_ | How did your techniques perform in terms of accuracy, recall, etc.? | Is the human accuracy substantially higher than the computer accuracy? |
All members of the group will receive the same grade. It's impossible for the course staff to adjudicate Rashomon-style accounts of who did what, and the goal of a group project is for all team members to work together to create a cohesive project that works well together. While it makes sense to divide the work into distinct areas of responsibility, at grading time we have now way to know who really did what, so it's the groups responsibility to create a piece of output that reflects well on the whole group. | [
"MEDAL"
] |
Yntec/Plushie | Yntec | text-to-image | [
"diffusers",
"safetensors",
"Character",
"Photorealistic",
"Woman",
"Man",
"Landscapes",
"camenduru",
"epinikion",
"dimonapatrick243",
"stable-diffusion",
"stable-diffusion-1.5",
"stable-diffusion-diffusers",
"text-to-image",
"en",
"dataset:camenduru/plushies",
"base_model:Yntec/epiCDream",
"base_model:merge:Yntec/epiCDream",
"base_model:Yntec/photographerAlpha7",
"base_model:merge:Yntec/photographerAlpha7",
"base_model:camenduru/plushies-pt",
"base_model:merge:camenduru/plushies-pt",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | "2025-01-20T21:25:18Z" | 2025-01-21T09:56:27+00:00 | 5,052 | 0 | ---
base_model:
- camenduru/plushies-pt
- Yntec/photographerAlpha7
- Yntec/epiCDream
datasets:
- camenduru/plushies
language:
- en
library_name: diffusers
license: creativeml-openrail-m
pipeline_tag: text-to-image
tags:
- Character
- Photorealistic
- Woman
- Man
- Landscapes
- camenduru
- epinikion
- dimonapatrick243
- stable-diffusion
- stable-diffusion-1.5
- stable-diffusion-diffusers
- text-to-image
base_model_relation: merge
inference: true
---
# Plushie
This model guarantees better outputs than epiCDream and photographerAlpha7 when you are drawing plushies and better than the plushies model when you aren't! Not convinced? Check out the comparisons below! Showcase and prompts (all use seed 12021):

(Click for larger)

(Click for larger)

Cute apple plushies

Cute Hamster plushie. Metallic furry. Shiny eyes, smile.

Cute kitty cat plushies. Adorable eyes

a Photograph with plushies of a young cute girl and her blonde mother. Hugging teddy bear plushie. Long hair, 1990 TV shampoo ad screen capture
Note: This prompt has a space at the beginning.
Original pages:
https://huggingface.co/camenduru/plushies-pt
https://civitai.com/models/179674?modelVersionId=201632 (photographerAlpha7)
https://civitai.com/models/125189/epicdream
# Recipes:
- SuperMerger Weight Sum Use MBW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0
Model A:
plushies
Model B:
photographerAlpha7
Output:
plushiesAlpha7
- SuperMerger Weight Sum Use MBW 0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
Model A:
plushiesAlpha7
Model B:
epiCDream
Output:
Plushie
Bake in 840K VAE:
PlushieVAE
# Merge Block Weight Analysis
If each corresponding block was labeled as this:
p = plushies
P = photographerAlpha7
e = epiCDrean
Then the weights of the model would read like this:
p,p,p,p,p,p,p,e,e,e,e,e,e,p,P,P,P,P,P,P,p,p,p,p,p,p | [
"BEAR"
] |
Writer/palmyra-med-20b | Writer | text-generation | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"medical",
"palmyra",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2023-06-29T12:56:09Z" | 2024-08-17T23:49:59+00:00 | 4,991 | 33 | ---
language:
- en
license: apache-2.0
tags:
- medical
- palmyra
---
**DEPRECATED MODEL NOTICE**
==========================
Please note that this model is no longer maintained or supported by our team. We strongly advise against using it in production or for any critical applications.
Instead, we recommend using our latest and greatest models, which can be found at:
https://huggingface.co/collections/Writer/palmyra-writer-license-66476fa8156169f8720a2c89
==========================
# Palmyra-med-20b
## Model description
**Palmyra-Med-20b** is a 20 billion parameter Large Language Model that has been uptrained on
**Palmyra-Large** with a specialized custom-curated medical dataset.
The main objective of this model is to enhance performance in tasks related to medical dialogue
and question-answering.
- **Developed by:** [https://writer.com/](https://writer.com/);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English;
- **License:** Apache 2.0;
- **Finetuned from model:** [Palmyra-Large](https://huggingface.co/Writer/palmyra-large).
### Model Source
[Palmyra-Med: Instruction-Based Fine-Tuning of LLMs Enhancing Medical Domain Performance](https://dev.writer.com/docs/palmyra-med-instruction-based-fine-tuning-of-llms-enhancing-medical-domain-performance)
## Uses
### Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
Palmyra-Med-20B is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
### Recommendations
We recommend users of Palmyra-Med-20B to develop guardrails and to take appropriate precautions for any production use.
## Usage
The model is compatible with the huggingface `AutoModelForCausalLM` and can be easily run on a single 40GB A100.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "Writer/palmyra-med-20b"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16,
)
prompt = "Can you explain in simple terms how vaccines help our body fight diseases?"
input_text = (
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
"USER: {prompt} "
"ASSISTANT:"
)
model_inputs = tokenizer(input_text.format(prompt=prompt), return_tensors="pt").to(
"cuda"
)
gen_conf = {
"temperature": 0.7,
"repetition_penalty": 1.0,
"max_new_tokens": 512,
"do_sample": True,
}
out_tokens = model.generate(**model_inputs, **gen_conf)
response_ids = out_tokens[0][len(model_inputs.input_ids[0]) :]
output = tokenizer.decode(response_ids, skip_special_tokens=True)
print(output)
## output ##
# Vaccines stimulate the production of antibodies by the body's immune system.
# Antibodies are proteins produced by B lymphocytes in response to foreign substances,such as viruses and bacteria.
# The antibodies produced by the immune system can bind to and neutralize the pathogens, preventing them from invading and damaging the host cells.
# Vaccines work by introducing antigens, which are components of the pathogen, into the body.
# The immune system then produces antibodies against the antigens, which can recognize and neutralize the pathogen if it enters the body in the future.
# The use of vaccines has led to a significant reduction in the incidence and severity of many diseases, including measles, mumps, rubella, and polio.
```
It can also be used with text-generation-inference
```sh
model=Writer/palmyra-med-20b
volume=$PWD/data
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference --model-id $model
```
## Dataset
For the fine-tuning of our LLMs, we used a custom-curated medical dataset that combines data from
two publicly available sources: PubMedQA (Jin et al. 2019) and MedQA (Zhang et al. 2018).The
PubMedQA dataset, which originated from the PubMed abstract database, consists of biomedical
articles accompanied by corresponding question-answer pairs. In contrast, the MedQA dataset
features medical questions and answers that are designed to assess the reasoning capabilities of
medical question-answering systems.
We prepared our custom dataset by merging and processing data from the aforementioned sources,
maintaining the dataset mixture ratios detailed in Table 1. These ratios were consistent for finetuning
both Palmyra-20b and Palmyra-40b models. Upon fine-tuning the models with this dataset, we refer
to the resulting models as Palmyra-Med-20b and Palmyra-Med-40b, respectively.
| Dataset | Ratio | Count |
| -----------|----------- | ----------- |
| PubMedQA | 75% | 150,000 |
| MedQA | 25% | 10,178 |
## Evaluation
we present the findings of our experiments, beginning with the evaluation outcomes of
the fine-tuned models and followed by a discussion of the base models’ performance on each of the
evaluation datasets. Additionally, we report the progressive improvement of the Palmyra-Med-40b
model throughout the training process on the PubMedQA dataset.
| Model | PubMedQA | MedQA |
| -----------|----------- | ----------- |
| Palmyra-20b | 49.8 | 31.2 |
| Palmyra-40b | 64.8 | 43.1|
| Palmyra-Med-20b| 75.6 | 44.6|
| Palmyra-Med-40b| 81.1 | 72.4|
## Limitation
The model may not operate efficiently beyond the confines of the healthcare field.
Since it has not been subjected to practical scenarios, its real-time efficacy and precision remain undetermined.
Under no circumstances should it replace the advice of a medical professional, and it must be regarded solely as a tool for research purposes.
## Citation and Related Information
To cite this model:
```
@misc{Palmyra-Med-20B,
author = {Writer Engineering team},
title = {{Palmyra-Large Parameter Autoregressive Language Model}},
howpublished = {\url{https://dev.writer.com}},
year = 2023,
month = March
}
```
## Contact
[email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Writer__palmyra-med-20b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 40.02 |
| ARC (25-shot) | 46.93 |
| HellaSwag (10-shot) | 73.51 |
| MMLU (5-shot) | 44.34 |
| TruthfulQA (0-shot) | 35.47 |
| Winogrande (5-shot) | 65.35 |
| GSM8K (5-shot) | 2.65 |
| DROP (3-shot) | 11.88 |
| [
"MEDQA",
"PUBMEDQA"
] |
mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF | mradermacher | null | [
"transformers",
"gguf",
"en",
"ko",
"ja",
"zh",
"dataset:4DR1455/finance_questions",
"dataset:Aratako/Synthetic-JP-Conversations-Magpie-Nemotron-4-10k",
"dataset:Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k",
"dataset:Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-10.5k-formatted",
"dataset:BCCard/BCCard-Finance-Kor-QnA",
"dataset:CarrotAI/ko-code-alpaca-QA",
"dataset:ChuGyouk/AI_healthcare_QA_samples_Sonnet3.5",
"dataset:DavidLanz/medical_instruction",
"dataset:Dusker/lawyer-llama",
"dataset:Gryphe/Sonnet3.5-Charcard-Roleplay",
"dataset:HAERAE-HUB/qarv-instruct-ko",
"dataset:HachiML/alpaca_jp_math",
"dataset:Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-v0.1",
"dataset:Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese",
"dataset:beomi/KoAlpaca-v1.1a",
"dataset:codefuse-ai/Evol-instruction-66k",
"dataset:frankminors123/belle-math-zh",
"dataset:gbharti/wealth-alpaca_lora",
"dataset:iam-ajaymeena/Self-Instruct-Japanese-Elzya-13B",
"dataset:jihye-moon/LawQA-Ko",
"dataset:jondurbin/gutenberg-dpo-v0.1",
"dataset:junyeong-nero/kin_med_100K_edited",
"dataset:kyujinpy/KOR-OpenOrca-Platypus-v3",
"dataset:lavita/medical-qa-datasets",
"dataset:microsoft/orca-math-word-problems-200k",
"dataset:neural-bridge/rag-dataset-12000",
"dataset:p1atdev/ichikara-instruction",
"dataset:qiaojin/PubMedQA",
"dataset:shibing624/roleplay-zh-sharegpt-gpt4-data",
"dataset:team-hatakeyama-phase2/AutoMultiTurnByCalm3-22B-Corrected-reformatted",
"dataset:ymoslem/Law-StackExchange",
"dataset:zzunyang/LawQA_LawSee",
"base_model:werty1248/Mistral-Nemo-NT-Ko-12B-sft",
"base_model:quantized:werty1248/Mistral-Nemo-NT-Ko-12B-sft",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | "2024-09-20T06:42:44Z" | 2024-09-20T08:36:05+00:00 | 4,861 | 0 | ---
base_model: werty1248/Mistral-Nemo-NT-Ko-12B-sft
datasets:
- 4DR1455/finance_questions
- Aratako/Synthetic-JP-Conversations-Magpie-Nemotron-4-10k
- Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k
- Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-10.5k-formatted
- BCCard/BCCard-Finance-Kor-QnA
- CarrotAI/ko-code-alpaca-QA
- ChuGyouk/AI_healthcare_QA_samples_Sonnet3.5
- DavidLanz/medical_instruction
- Dusker/lawyer-llama
- Gryphe/Sonnet3.5-Charcard-Roleplay
- HAERAE-HUB/qarv-instruct-ko
- HachiML/alpaca_jp_math
- Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-v0.1
- Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese
- beomi/KoAlpaca-v1.1a
- codefuse-ai/Evol-instruction-66k
- frankminors123/belle-math-zh
- gbharti/wealth-alpaca_lora
- iam-ajaymeena/Self-Instruct-Japanese-Elzya-13B
- jihye-moon/LawQA-Ko
- jondurbin/gutenberg-dpo-v0.1
- junyeong-nero/kin_med_100K_edited
- kyujinpy/KOR-OpenOrca-Platypus-v3
- lavita/medical-qa-datasets
- microsoft/orca-math-word-problems-200k
- neural-bridge/rag-dataset-12000
- p1atdev/ichikara-instruction
- qiaojin/PubMedQA
- shibing624/roleplay-zh-sharegpt-gpt4-data
- team-hatakeyama-phase2/AutoMultiTurnByCalm3-22B-Corrected-reformatted
- ymoslem/Law-StackExchange
- zzunyang/LawQA_LawSee
language:
- en
- ko
- ja
- zh
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/werty1248/Mistral-Nemo-NT-Ko-12B-sft
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 7.2 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 7.2 | fast on arm+i8mm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 7.2 | fast on arm+sve, low quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF/resolve/main/Mistral-Nemo-NT-Ko-12B-sft.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
| [
"PUBMEDQA"
] |
gliner-community/gliner_small-v2.5 | gliner-community | token-classification | [
"gliner",
"pytorch",
"token-classification",
"multilingual",
"dataset:urchade/pile-mistral-v0.1",
"arxiv:2311.08526",
"license:apache-2.0",
"region:us"
] | "2024-06-17T18:11:25Z" | 2024-06-18T12:54:21+00:00 | 4,860 | 5 | ---
datasets:
- urchade/pile-mistral-v0.1
language:
- multilingual
library_name: gliner
license: apache-2.0
pipeline_tag: token-classification
---
# About
GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
## Links
* Paper: https://arxiv.org/abs/2311.08526
* Repository: https://github.com/urchade/GLiNER
## Installation
To use this model, you must install the GLiNER Python library:
```
!pip install gliner -U
```
## Usage
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`.
```python
from gliner import GLiNER
model = GLiNER.from_pretrained("gliner-community/gliner_small-v2.5", load_tokenizer=True)
text = """
Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time.
"""
labels = ["person", "award", "date", "competitions", "teams"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
```
```
Cristiano Ronaldo dos Santos Aveiro => person
5 February 1985 => date
Al Nassr => teams
Portugal national team => teams
Ballon d'Or => award
UEFA Men's Player of the Year Awards => award
European Golden Shoes => award
UEFA Champions Leagues => competitions
UEFA European Championship => competitions
UEFA Nations League => competitions
Champions League => competitions
European Championship => competitions
```
## Named Entity Recognition benchmark result
Below is a comparison of results between previous versions of the model and the current one:

### Results on other datasets
| Model | Dataset | Precision | Recall | F1 Score |
|------------------------------------|---------------------|-----------|--------|----------|
| gliner-community/gliner_small-v2.5 | ACE 2004 | 35.18% | 22.81% | 27.67% |
| | ACE 2005 | 35.89% | 22.39% | 27.58% |
| | AnatEM | 49.12% | 31.31% | 38.24% |
| | Broad Tweet Corpus | 59.51% | 77.85% | 67.46% |
| | CoNLL 2003 | 63.16% | 70.43% | 66.60% |
| | FabNER | 23.78% | 22.55% | 23.15% |
| | FindVehicle | 37.46% | 40.06% | 38.72% |
| | GENIA_NER | 45.90% | 54.11% | 49.67% |
| | HarveyNER | 13.20% | 32.58% | 18.78% |
| | MultiNERD | 45.87% | 87.01% | 60.07% |
| | Ontonotes | 23.05% | 41.16% | 29.55% |
| | PolyglotNER | 31.88% | 67.22% | 43.25% |
| | TweetNER7 | 40.98% | 39.91% | 40.44% |
| | WikiANN en | 55.35% | 60.06% | 57.61% |
| | WikiNeural | 64.52% | 86.24% | 73.81% |
| | bc2gm | 51.70% | 49.99% | 50.83% |
| | bc4chemd | 30.78% | 57.56% | 40.11% |
| | bc5cdr | 63.48% | 69.65% | 66.42% |
| | ncbi | 63.36% | 66.67% | 64.97% |
| | **Average** | | | **46.58%** |
|------------------------------------|---------------------|-----------|--------|----------|
| urchade/gliner_small-v2.1 | ACE 2004 | 38.89% | 23.53% | 29.32% |
| | ACE 2005 | 42.09% | 26.82% | 32.76% |
| | AnatEM | 63.71% | 19.45% | 29.80% |
| | Broad Tweet Corpus | 57.01% | 70.49% | 63.04% |
| | CoNLL 2003 | 57.11% | 62.66% | 59.76% |
| | FabNER | 32.41% | 12.33% | 17.87% |
| | FindVehicle | 43.47% | 33.02% | 37.53% |
| | GENIA_NER | 61.03% | 37.25% | 46.26% |
| | HarveyNER | 23.12% | 15.16% | 18.32% |
| | MultiNERD | 43.63% | 83.60% | 57.34% |
| | Ontonotes | 23.25% | 35.41% | 28.07% |
| | PolyglotNER | 29.47% | 64.41% | 40.44% |
| | TweetNER7 | 44.78% | 30.83% | 36.52% |
| | WikiANN en | 52.58% | 58.31% | 55.30% |
| | WikiNeural | 53.38% | 82.19% | 64.72% |
| | bc2gm | 66.64% | 30.56% | 41.90% |
| | bc4chemd | 42.01% | 56.03% | 48.02% |
| | bc5cdr | 72.03% | 58.58% | 64.61% |
| | ncbi | 68.88% | 46.71% | 55.67% |
| | **Average** | | | **43.54%** |
|------------------------------------|---------------------|-----------|--------|----------|
| EmergentMethods/gliner_small-v2.1 | ACE 2004 | 39.92% | 17.50% | 24.34% |
| | ACE 2005 | 38.53% | 16.58% | 23.18% |
| | AnatEM | 55.95% | 25.69% | 35.22% |
| | Broad Tweet Corpus | 66.63% | 72.00% | 69.21% |
| | CoNLL 2003 | 62.89% | 58.96% | 60.86% |
| | FabNER | 32.76% | 13.33% | 18.95% |
| | FindVehicle | 42.93% | 43.20% | 43.06% |
| | GENIA_NER | 51.28% | 43.75% | 47.22% |
| | HarveyNER | 24.82% | 21.52% | 23.05% |
| | MultiNERD | 59.27% | 80.69% | 68.34% |
| | Ontonotes | 32.97% | 37.59% | 35.13% |
| | PolyglotNER | 33.60% | 63.30% | 43.90% |
| | TweetNER7 | 46.90% | 28.66% | 35.58% |
| | WikiANN en | 51.91% | 55.43% | 53.61% |
| | WikiNeural | 70.65% | 82.21% | 75.99% |
| | bc2gm | 49.95% | 43.13% | 46.29% |
| | bc4chemd | 35.88% | 71.64% | 47.81% |
| | bc5cdr | 68.41% | 68.90% | 68.65% |
| | ncbi | 55.31% | 59.87% | 57.50% |
| | **Average** | | | **46.20%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
| gliner-community/gliner_medium-v2.5 | ACE 2004 | 33.06% | 20.96% | 25.66% |
| | ACE 2005 | 33.65% | 19.65% | 24.81% |
| | AnatEM | 52.03% | 35.28% | 42.05% |
| | Broad Tweet Corpus | 60.57% | 79.09% | 68.60% |
| | CoNLL 2003 | 63.80% | 68.31% | 65.98% |
| | FabNER | 26.20% | 22.26% | 24.07% |
| | FindVehicle | 41.95% | 40.68% | 41.30% |
| | GENIA_NER | 51.83% | 62.34% | 56.60% |
| | HarveyNER | 14.04% | 32.17% | 19.55% |
| | MultiNERD | 47.63% | 88.78% | 62.00% |
| | Ontonotes | 21.68% | 38.41% | 27.71% |
| | PolyglotNER | 32.73% | 68.27% | 44.24% |
| | TweetNER7 | 40.39% | 37.64% | 38.97% |
| | WikiANN en | 56.41% | 59.90% | 58.10% |
| | WikiNeural | 65.61% | 86.28% | 74.54% |
| | bc2gm | 55.20% | 56.71% | 55.95% |
| | bc4chemd | 35.94% | 63.67% | 45.94% |
| | bc5cdr | 63.50% | 70.09% | 66.63% |
| | ncbi | 62.96% | 68.55% | 65.63% |
| | **Average** | | | **47.81%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
| urchade/gliner_medium-v2.1 | ACE 2004 | 36.33% | 22.74% | 27.97% |
| | ACE 2005 | 40.49% | 25.46% | 31.27% |
| | AnatEM | 59.75% | 16.87% | 26.31% |
| | Broad Tweet Corpus | 60.89% | 67.25% | 63.91% |
| | CoNLL 2003 | 60.62% | 62.39% | 61.50% |
| | FabNER | 27.72% | 12.24% | 16.98% |
| | FindVehicle | 41.55% | 31.31% | 35.71% |
| | GENIA_NER | 60.86% | 43.93% | 51.03% |
| | HarveyNER | 23.20% | 23.16% | 23.18% |
| | MultiNERD | 41.25% | 83.74% | 55.27% |
| | Ontonotes | 20.58% | 34.11% | 25.67% |
| | PolyglotNER | 31.32% | 64.22% | 42.11% |
| | TweetNER7 | 44.52% | 33.42% | 38.18% |
| | WikiANN en | 54.57% | 56.47% | 55.51% |
| | WikiNeural | 57.60% | 81.57% | 67.52% |
| | bc2gm | 67.98% | 33.45% | 44.84% |
| | bc4chemd | 45.66% | 52.00% | 48.62% |
| | bc5cdr | 72.20% | 58.12% | 64.40% |
| | ncbi | 73.12% | 49.74% | 59.20% |
| | **Average** | | | **44.17%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
| EmergentMethods/gliner_news_medium-v2.1 | ACE 2004 | 39.21% | 17.24% | 23.95% |
| | ACE 2005 | 39.82% | 16.48% | 23.31% |
| | AnatEM | 57.67% | 23.57% | 33.46% |
| | Broad Tweet Corpus | 69.52% | 65.94% | 67.69% |
| | CoNLL 2003 | 68.26% | 58.45% | 62.97% |
| | FabNER | 30.74% | 15.51% | 20.62% |
| | FindVehicle | 40.33% | 37.37% | 38.79% |
| | GENIA_NER | 53.70% | 47.73% | 50.54% |
| | HarveyNER | 26.29% | 27.05% | 26.67% |
| | MultiNERD | 56.78% | 81.96% | 67.08% |
| | Ontonotes | 30.90% | 35.86% | 33.19% |
| | PolyglotNER | 35.98% | 60.96% | 45.25% |
| | TweetNER7 | 52.37% | 30.50% | 38.55% |
| | WikiANN en | 53.81% | 52.29% | 53.04% |
| | WikiNeural | 76.84% | 78.92% | 77.86% |
| | bc2gm | 62.97% | 44.24% | 51.96% |
| | bc4chemd | 44.90% | 65.56% | 53.30% |
| | bc5cdr | 73.93% | 67.03% | 70.31% |
| | ncbi | 69.53% | 60.82% | 64.88% |
| | **Average** | | | **47.55%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
| gliner-community/gliner_large-v2.5 | ACE 2004 | 31.64% | 22.81% | 26.51% |
| | ACE 2005 | 32.10% | 22.56% | 26.49% |
| | AnatEM | 53.64% | 27.82% | 36.64% |
| | Broad Tweet Corpus | 61.93% | 76.85% | 68.59% |
| | CoNLL 2003 | 62.83% | 67.71% | 65.18% |
| | FabNER | 24.54% | 27.03% | 25.73% |
| | FindVehicle | 40.71% | 56.24% | 47.23% |
| | GENIA_NER | 43.56% | 52.56% | 47.64% |
| | HarveyNER | 14.85% | 27.05% | 19.17% |
| | MultiNERD | 38.04% | 89.17% | 53.33% |
| | Ontonotes | 17.28% | 40.16% | 24.16% |
| | PolyglotNER | 32.88% | 63.31% | 43.28% |
| | TweetNER7 | 38.03% | 41.43% | 39.66% |
| | WikiANN en | 57.80% | 60.54% | 59.14% |
| | WikiNeural | 67.72% | 83.94% | 74.96% |
| | bc2gm | 54.74% | 48.54% | 51.45% |
| | bc4chemd | 40.20% | 58.66% | 47.71% |
| | bc5cdr | 66.27% | 71.95% | 69.00% |
| | ncbi | 68.09% | 61.55% | 64.65% |
| | **Average** | | | **46.87%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
| urchade/gliner_large-v2.1 | ACE 2004 | 37.52% | 25.38% | 30.28% |
| | ACE 2005 | 39.02% | 29.00% | 33.27% |
| | AnatEM | 52.86% | 13.64% | 21.68% |
| | Broad Tweet Corpus | 51.44% | 71.73% | 59.91% |
| | CoNLL 2003 | 54.86% | 64.98% | 59.49% |
| | FabNER | 23.98% | 16.00% | 19.19% |
| | FindVehicle | 47.04% | 57.53% | 51.76% |
| | GENIA_NER | 58.10% | 49.98% | 53.74% |
| | HarveyNER | 16.29% | 21.93% | 18.69% |
| | MultiNERD | 34.09% | 85.43% | 48.74% |
| | Ontonotes | 14.02% | 32.01% | 19.50% |
| | PolyglotNER | 28.53% | 64.92% | 39.64% |
| | TweetNER7 | 38.00% | 34.34% | 36.08% |
| | WikiANN en | 51.69% | 59.92% | 55.50% |
| | WikiNeural | 50.94% | 82.08% | 62.87% |
| | bc2gm | 64.48% | 32.47% | 43.19% |
| | bc4chemd | 48.66% | 57.52% | 52.72% |
| | bc5cdr | 72.19% | 64.27% | 68.00% |
| | ncbi | 69.54% | 52.25% | 59.67% |
| | **Average** | | | **43.89%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
| EmergenMethods/fliner_news_large-v2.1 | ACE 2004 | 43.19% | 18.39% | 25.80% |
| | ACE 2005 | 45.24% | 21.20% | 28.87% |
| | AnatEM | 61.51% | 21.66% | 32.04% |
| | Broad Tweet Corpus | 69.38% | 68.99% | 69.18% |
| | CoNLL 2003 | 61.47% | 52.18% | 56.45% |
| | FabNER | 27.42% | 19.11% | 22.52% |
| | FindVehicle | 46.30% | 62.48% | 53.19% |
| | GENIA_NER | 54.13% | 54.02% | 54.07% |
| | HarveyNER | 15.91% | 15.78% | 15.84% |
| | MultiNERD | 53.73% | 79.07% | 63.98% |
| | Ontonotes | 26.78% | 39.77% | 32.01% |
| | PolyglotNER | 34.28% | 55.87% | 42.49% |
| | TweetNER7 | 48.06% | 28.18% | 35.53% |
| | WikiANN en | 53.66% | 51.34% | 52.47% |
| | WikiNeural | 69.81% | 70.75% | 70.28% |
| | bc2gm | 59.83% | 37.62% | 46.20% |
| | bc4chemd | 46.24% | 69.15% | 55.42% |
| | bc5cdr | 71.94% | 70.37% | 71.15% |
| | ncbi | 70.17% | 61.44% | 65.52% |
| | **Average** | | | **47.00%** |
|-----------------------------------------|---------------------|-----------|--------|----------|
## Other available models
| Release | Model Name | # of Parameters | Language | License |
| - | - | - | - | - |
| v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 |
| v1 | [urchade/gliner_small-v1](https://huggingface.co/urchade/gliner_small-v1)<br>[urchade/gliner_medium-v1](https://huggingface.co/urchade/gliner_medium-v1)<br>[urchade/gliner_large-v1](https://huggingface.co/urchade/gliner_large-v1) | 166M<br>209M<br>459M | English <br> English <br> English | cc-by-nc-4.0 |
| v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M | English <br> English <br> English | apache-2.0 |
| v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_large-v2.1](https://huggingface.co/urchade/gliner_large-v2.1) <br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>459M<br>209M | English <br> English <br> English <br> Multilingual | apache-2.0 |
## Model Authors
The model authors are:
* [Urchade Zaratiana](https://huggingface.co/urchade)
* [Ihor Stepanov](https://huggingface.co/Ihor)
* Nadi Tomeh
* Pierre Holat
* Thierry Charnois
## Citation
```bibtex
@misc{zaratiana2023gliner,
title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer},
author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
year={2023},
eprint={2311.08526},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
"ANATEM",
"BC5CDR"
] |
alvaroalon2/biobert_chemical_ner | alvaroalon2 | token-classification | [
"transformers",
"pytorch",
"tf",
"bert",
"token-classification",
"NER",
"Biomedical",
"Chemicals",
"en",
"dataset:BC5CDR-chemicals",
"dataset:BC4CHEMD",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2022-03-02T23:29:05Z" | 2023-03-17T12:10:54+00:00 | 4,818 | 20 | ---
datasets:
- BC5CDR-chemicals
- BC4CHEMD
language: en
license: apache-2.0
tags:
- token-classification
- NER
- Biomedical
- Chemicals
---
BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus.
This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner | [
"BC5CDR"
] |
minishlab/potion-base-32M | minishlab | null | [
"model2vec",
"onnx",
"safetensors",
"embeddings",
"static-embeddings",
"mteb",
"sentence-transformers",
"license:mit",
"model-index",
"region:us"
] | "2025-01-22T17:10:47Z" | 2025-01-29T10:59:27+00:00 | 4,720 | 10 | ---
library_name: model2vec
license: mit
tags:
- embeddings
- static-embeddings
- mteb
- sentence-transformers
model-index:
- name: potion-base-32M
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.49025487256372
- type: ap
value: 23.053406998271548
- type: ap_weighted
value: 23.053406998271548
- type: f1
value: 61.61224310463791
- type: f1_weighted
value: 79.15713131602897
- type: main_score
value: 74.49025487256372
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.55223880597013
- type: ap
value: 36.777904971672484
- type: ap_weighted
value: 36.777904971672484
- type: f1
value: 68.20927320328308
- type: f1_weighted
value: 76.8028646180125
- type: main_score
value: 74.55223880597013
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 72.855975
- type: ap
value: 67.07977033292134
- type: ap_weighted
value: 67.07977033292134
- type: f1
value: 72.67632985018474
- type: f1_weighted
value: 72.67632985018474
- type: main_score
value: 72.855975
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 36.948
- type: f1
value: 36.39230651926405
- type: f1_weighted
value: 36.39230651926405
- type: main_score
value: 36.948
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: main_score
value: 42.864000000000004
- type: map_at_1
value: 21.693
- type: map_at_10
value: 34.859
- type: map_at_100
value: 36.014
- type: map_at_1000
value: 36.047000000000004
- type: map_at_20
value: 35.667
- type: map_at_3
value: 30.416999999999998
- type: map_at_5
value: 32.736
- type: mrr_at_1
value: 22.04836415362731
- type: mrr_at_10
value: 35.01442231705384
- type: mrr_at_100
value: 36.16267051020847
- type: mrr_at_1000
value: 36.19625564960624
- type: mrr_at_20
value: 35.81309792569356
- type: mrr_at_3
value: 30.547652916073904
- type: mrr_at_5
value: 32.87339971550487
- type: nauc_map_at_1000_diff1
value: 7.561195580746018
- type: nauc_map_at_1000_max
value: -1.556531946821957
- type: nauc_map_at_1000_std
value: 2.056871021244521
- type: nauc_map_at_100_diff1
value: 7.576648616531427
- type: nauc_map_at_100_max
value: -1.5197684321804203
- type: nauc_map_at_100_std
value: 2.102558505658414
- type: nauc_map_at_10_diff1
value: 7.643409260188448
- type: nauc_map_at_10_max
value: -1.5534104754693818
- type: nauc_map_at_10_std
value: 1.8735258045916798
- type: nauc_map_at_1_diff1
value: 8.370318054971092
- type: nauc_map_at_1_max
value: -5.083984587735291
- type: nauc_map_at_1_std
value: -1.8039233134026431
- type: nauc_map_at_20_diff1
value: 7.642516551976743
- type: nauc_map_at_20_max
value: -1.388835890563647
- type: nauc_map_at_20_std
value: 2.198921728682202
- type: nauc_map_at_3_diff1
value: 7.437604281774142
- type: nauc_map_at_3_max
value: -2.7586587623340932
- type: nauc_map_at_3_std
value: 0.8031910070187186
- type: nauc_map_at_5_diff1
value: 6.80651166389857
- type: nauc_map_at_5_max
value: -2.7399645587571806
- type: nauc_map_at_5_std
value: 1.0580951572345365
- type: nauc_mrr_at_1000_diff1
value: 6.27575281564605
- type: nauc_mrr_at_1000_max
value: -2.0467879398352458
- type: nauc_mrr_at_1000_std
value: 1.9897114385666632
- type: nauc_mrr_at_100_diff1
value: 6.292566922480118
- type: nauc_mrr_at_100_max
value: -2.009602726575689
- type: nauc_mrr_at_100_std
value: 2.0353272285661115
- type: nauc_mrr_at_10_diff1
value: 6.38514525903419
- type: nauc_mrr_at_10_max
value: -2.0386434404188583
- type: nauc_mrr_at_10_std
value: 1.7937484255337244
- type: nauc_mrr_at_1_diff1
value: 7.131931862611085
- type: nauc_mrr_at_1_max
value: -5.008568891508268
- type: nauc_mrr_at_1_std
value: -1.86541494834969
- type: nauc_mrr_at_20_diff1
value: 6.352383732997516
- type: nauc_mrr_at_20_max
value: -1.8916791965400346
- type: nauc_mrr_at_20_std
value: 2.142946311516978
- type: nauc_mrr_at_3_diff1
value: 5.952701132344548
- type: nauc_mrr_at_3_max
value: -3.433767309685429
- type: nauc_mrr_at_3_std
value: 0.8212723818638477
- type: nauc_mrr_at_5_diff1
value: 5.518638249091068
- type: nauc_mrr_at_5_max
value: -3.284414027772663
- type: nauc_mrr_at_5_std
value: 0.8740053182401986
- type: nauc_ndcg_at_1000_diff1
value: 7.853268129426508
- type: nauc_ndcg_at_1000_max
value: 0.07872546898149692
- type: nauc_ndcg_at_1000_std
value: 3.830950311415248
- type: nauc_ndcg_at_100_diff1
value: 8.18494720374052
- type: nauc_ndcg_at_100_max
value: 1.189039585107088
- type: nauc_ndcg_at_100_std
value: 5.162437147506563
- type: nauc_ndcg_at_10_diff1
value: 8.483384610768821
- type: nauc_ndcg_at_10_max
value: 1.2922857488042296
- type: nauc_ndcg_at_10_std
value: 4.364359149153261
- type: nauc_ndcg_at_1_diff1
value: 8.370318054971092
- type: nauc_ndcg_at_1_max
value: -5.083984587735291
- type: nauc_ndcg_at_1_std
value: -1.8039233134026431
- type: nauc_ndcg_at_20_diff1
value: 8.635794468766242
- type: nauc_ndcg_at_20_max
value: 2.142313693153693
- type: nauc_ndcg_at_20_std
value: 5.854124318847265
- type: nauc_ndcg_at_3_diff1
value: 7.5258085340807375
- type: nauc_ndcg_at_3_max
value: -1.835003355061091
- type: nauc_ndcg_at_3_std
value: 1.7180856674185805
- type: nauc_ndcg_at_5_diff1
value: 6.454885361450212
- type: nauc_ndcg_at_5_max
value: -1.7697904754470226
- type: nauc_ndcg_at_5_std
value: 2.23730543193386
- type: nauc_precision_at_1000_diff1
value: 13.463008420949352
- type: nauc_precision_at_1000_max
value: 39.854067665230545
- type: nauc_precision_at_1000_std
value: 59.278094323029116
- type: nauc_precision_at_100_diff1
value: 17.135034752024826
- type: nauc_precision_at_100_max
value: 37.32457612526076
- type: nauc_precision_at_100_std
value: 48.881195912340196
- type: nauc_precision_at_10_diff1
value: 12.284655559397713
- type: nauc_precision_at_10_max
value: 12.655164738763295
- type: nauc_precision_at_10_std
value: 14.111055058962119
- type: nauc_precision_at_1_diff1
value: 8.370318054971092
- type: nauc_precision_at_1_max
value: -5.083984587735291
- type: nauc_precision_at_1_std
value: -1.8039233134026431
- type: nauc_precision_at_20_diff1
value: 15.208076882937696
- type: nauc_precision_at_20_max
value: 22.831763946168888
- type: nauc_precision_at_20_std
value: 27.573772369307004
- type: nauc_precision_at_3_diff1
value: 7.860638544154737
- type: nauc_precision_at_3_max
value: 0.6713212806084865
- type: nauc_precision_at_3_std
value: 4.175512987337371
- type: nauc_precision_at_5_diff1
value: 5.479186086763304
- type: nauc_precision_at_5_max
value: 0.98921018748054
- type: nauc_precision_at_5_std
value: 5.630076964069638
- type: nauc_recall_at_1000_diff1
value: 13.46300842095073
- type: nauc_recall_at_1000_max
value: 39.854067665229756
- type: nauc_recall_at_1000_std
value: 59.27809432303065
- type: nauc_recall_at_100_diff1
value: 17.135034752024637
- type: nauc_recall_at_100_max
value: 37.32457612526039
- type: nauc_recall_at_100_std
value: 48.88119591234045
- type: nauc_recall_at_10_diff1
value: 12.28465555939771
- type: nauc_recall_at_10_max
value: 12.655164738763315
- type: nauc_recall_at_10_std
value: 14.111055058962066
- type: nauc_recall_at_1_diff1
value: 8.370318054971092
- type: nauc_recall_at_1_max
value: -5.083984587735291
- type: nauc_recall_at_1_std
value: -1.8039233134026431
- type: nauc_recall_at_20_diff1
value: 15.208076882937634
- type: nauc_recall_at_20_max
value: 22.83176394616889
- type: nauc_recall_at_20_std
value: 27.573772369307076
- type: nauc_recall_at_3_diff1
value: 7.860638544154747
- type: nauc_recall_at_3_max
value: 0.6713212806084956
- type: nauc_recall_at_3_std
value: 4.175512987337308
- type: nauc_recall_at_5_diff1
value: 5.479186086763291
- type: nauc_recall_at_5_max
value: 0.989210187480526
- type: nauc_recall_at_5_std
value: 5.630076964069639
- type: ndcg_at_1
value: 21.693
- type: ndcg_at_10
value: 42.864000000000004
- type: ndcg_at_100
value: 48.22
- type: ndcg_at_1000
value: 49.027
- type: ndcg_at_20
value: 45.788000000000004
- type: ndcg_at_3
value: 33.458
- type: ndcg_at_5
value: 37.687
- type: precision_at_1
value: 21.693
- type: precision_at_10
value: 6.877999999999999
- type: precision_at_100
value: 0.932
- type: precision_at_1000
value: 0.099
- type: precision_at_20
value: 4.015
- type: precision_at_3
value: 14.106
- type: precision_at_5
value: 10.541
- type: recall_at_1
value: 21.693
- type: recall_at_10
value: 68.777
- type: recall_at_100
value: 93.243
- type: recall_at_1000
value: 99.431
- type: recall_at_20
value: 80.29899999999999
- type: recall_at_3
value: 42.319
- type: recall_at_5
value: 52.703
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: main_score
value: 37.21515684139779
- type: v_measure
value: 37.21515684139779
- type: v_measure_std
value: 13.948324903262096
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: main_score
value: 27.89275646771196
- type: v_measure
value: 27.89275646771196
- type: v_measure_std
value: 14.54879669291749
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: main_score
value: 54.23949583322935
- type: map
value: 54.23949583322935
- type: mrr
value: 67.55825968429846
- type: nAUC_map_diff1
value: 15.161467557403707
- type: nAUC_map_max
value: 17.924242718354826
- type: nAUC_map_std
value: 11.333118592351424
- type: nAUC_mrr_diff1
value: 22.993618051206965
- type: nAUC_mrr_max
value: 22.90209504491936
- type: nAUC_mrr_std
value: 12.131969980175453
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cosine_pearson
value: 79.97535229997727
- type: cosine_spearman
value: 77.55658645654347
- type: euclidean_pearson
value: 78.45282631461923
- type: euclidean_spearman
value: 77.55658645654347
- type: main_score
value: 77.55658645654347
- type: manhattan_pearson
value: 78.29319221254525
- type: manhattan_spearman
value: 76.68849438732013
- type: pearson
value: 79.97535229997727
- type: spearman
value: 77.55658645654347
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 74.78246753246752
- type: f1
value: 74.03440605955578
- type: f1_weighted
value: 74.03440605955579
- type: main_score
value: 74.78246753246752
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: main_score
value: 31.887047801252244
- type: v_measure
value: 31.887047801252244
- type: v_measure_std
value: 0.5753932069603948
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: main_score
value: 23.44412433231505
- type: v_measure
value: 23.44412433231505
- type: v_measure_std
value: 0.8476197193344371
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: main_score
value: 33.725
- type: map_at_1
value: 21.258
- type: map_at_10
value: 28.599000000000004
- type: map_at_100
value: 29.842999999999996
- type: map_at_1000
value: 30.005
- type: map_at_20
value: 29.229
- type: map_at_3
value: 26.094
- type: map_at_5
value: 27.389000000000003
- type: mrr_at_1
value: 26.46638054363376
- type: mrr_at_10
value: 34.161387015464264
- type: mrr_at_100
value: 35.01880684350975
- type: mrr_at_1000
value: 35.097674914914485
- type: mrr_at_20
value: 34.60887567127352
- type: mrr_at_3
value: 31.75965665236053
- type: mrr_at_5
value: 33.0615164520744
- type: nauc_map_at_1000_diff1
value: 46.76618191845667
- type: nauc_map_at_1000_max
value: 28.936982238257396
- type: nauc_map_at_1000_std
value: 1.5487908974992421
- type: nauc_map_at_100_diff1
value: 46.79609783493257
- type: nauc_map_at_100_max
value: 28.91692780284247
- type: nauc_map_at_100_std
value: 1.502122407253288
- type: nauc_map_at_10_diff1
value: 46.888703900446004
- type: nauc_map_at_10_max
value: 28.430902905408693
- type: nauc_map_at_10_std
value: 1.2744648249804116
- type: nauc_map_at_1_diff1
value: 52.14341894573097
- type: nauc_map_at_1_max
value: 29.875439659067453
- type: nauc_map_at_1_std
value: 0.6705337537921776
- type: nauc_map_at_20_diff1
value: 46.673962191479795
- type: nauc_map_at_20_max
value: 28.6487049197731
- type: nauc_map_at_20_std
value: 1.1964262509403831
- type: nauc_map_at_3_diff1
value: 48.07832610616913
- type: nauc_map_at_3_max
value: 28.603262558740784
- type: nauc_map_at_3_std
value: 0.9437647740681423
- type: nauc_map_at_5_diff1
value: 47.6936940796931
- type: nauc_map_at_5_max
value: 28.652291541508053
- type: nauc_map_at_5_std
value: 0.9717878478952752
- type: nauc_mrr_at_1000_diff1
value: 45.33122685593024
- type: nauc_mrr_at_1000_max
value: 30.204338465284046
- type: nauc_mrr_at_1000_std
value: 2.687826356034323
- type: nauc_mrr_at_100_diff1
value: 45.30601560173918
- type: nauc_mrr_at_100_max
value: 30.18471672521032
- type: nauc_mrr_at_100_std
value: 2.6740730209438905
- type: nauc_mrr_at_10_diff1
value: 45.41931593964348
- type: nauc_mrr_at_10_max
value: 30.227605387613377
- type: nauc_mrr_at_10_std
value: 2.5467078314775105
- type: nauc_mrr_at_1_diff1
value: 52.578617006402695
- type: nauc_mrr_at_1_max
value: 31.533124113425608
- type: nauc_mrr_at_1_std
value: 2.142001651137791
- type: nauc_mrr_at_20_diff1
value: 45.1567569739636
- type: nauc_mrr_at_20_max
value: 30.068202057592075
- type: nauc_mrr_at_20_std
value: 2.498778251276313
- type: nauc_mrr_at_3_diff1
value: 46.53010950514913
- type: nauc_mrr_at_3_max
value: 30.55396071943546
- type: nauc_mrr_at_3_std
value: 2.5301194724381775
- type: nauc_mrr_at_5_diff1
value: 46.05508257170174
- type: nauc_mrr_at_5_max
value: 30.778384564258776
- type: nauc_mrr_at_5_std
value: 2.558309698641406
- type: nauc_ndcg_at_1000_diff1
value: 43.753900702619724
- type: nauc_ndcg_at_1000_max
value: 29.633265380008684
- type: nauc_ndcg_at_1000_std
value: 4.486049141568419
- type: nauc_ndcg_at_100_diff1
value: 43.62494408120729
- type: nauc_ndcg_at_100_max
value: 29.21612586326204
- type: nauc_ndcg_at_100_std
value: 3.8426617907301974
- type: nauc_ndcg_at_10_diff1
value: 43.55664235851717
- type: nauc_ndcg_at_10_max
value: 27.907959174030626
- type: nauc_ndcg_at_10_std
value: 1.9864038329637217
- type: nauc_ndcg_at_1_diff1
value: 52.578617006402695
- type: nauc_ndcg_at_1_max
value: 31.533124113425608
- type: nauc_ndcg_at_1_std
value: 2.142001651137791
- type: nauc_ndcg_at_20_diff1
value: 42.83241987465397
- type: nauc_ndcg_at_20_max
value: 27.88256330396997
- type: nauc_ndcg_at_20_std
value: 1.7703781723570542
- type: nauc_ndcg_at_3_diff1
value: 45.4190097736324
- type: nauc_ndcg_at_3_max
value: 28.560425888173796
- type: nauc_ndcg_at_3_std
value: 1.854268064126404
- type: nauc_ndcg_at_5_diff1
value: 44.98606135986684
- type: nauc_ndcg_at_5_max
value: 28.566365021440337
- type: nauc_ndcg_at_5_std
value: 1.6742805472789761
- type: nauc_precision_at_1000_diff1
value: -5.4841077392281035
- type: nauc_precision_at_1000_max
value: -0.34081891189369173
- type: nauc_precision_at_1000_std
value: 2.1036736091111585
- type: nauc_precision_at_100_diff1
value: 7.441486720589044
- type: nauc_precision_at_100_max
value: 13.334970101878652
- type: nauc_precision_at_100_std
value: 6.9306352695965066
- type: nauc_precision_at_10_diff1
value: 24.853282788022366
- type: nauc_precision_at_10_max
value: 23.45632252018925
- type: nauc_precision_at_10_std
value: 3.7432075056706267
- type: nauc_precision_at_1_diff1
value: 52.578617006402695
- type: nauc_precision_at_1_max
value: 31.533124113425608
- type: nauc_precision_at_1_std
value: 2.142001651137791
- type: nauc_precision_at_20_diff1
value: 16.874948719815144
- type: nauc_precision_at_20_max
value: 20.186814805341797
- type: nauc_precision_at_20_std
value: 1.996681050839198
- type: nauc_precision_at_3_diff1
value: 38.02476874042044
- type: nauc_precision_at_3_max
value: 27.923642221335314
- type: nauc_precision_at_3_std
value: 1.841951122412098
- type: nauc_precision_at_5_diff1
value: 34.257705852347975
- type: nauc_precision_at_5_max
value: 26.51537237704359
- type: nauc_precision_at_5_std
value: 2.1637726175663627
- type: nauc_recall_at_1000_diff1
value: 28.158519011741966
- type: nauc_recall_at_1000_max
value: 33.26807338931001
- type: nauc_recall_at_1000_std
value: 38.0648935642973
- type: nauc_recall_at_100_diff1
value: 30.0156168828398
- type: nauc_recall_at_100_max
value: 26.250024559731
- type: nauc_recall_at_100_std
value: 14.034527192600873
- type: nauc_recall_at_10_diff1
value: 33.362811050628714
- type: nauc_recall_at_10_max
value: 22.08581852634732
- type: nauc_recall_at_10_std
value: 3.287335910498459
- type: nauc_recall_at_1_diff1
value: 52.14341894573097
- type: nauc_recall_at_1_max
value: 29.875439659067453
- type: nauc_recall_at_1_std
value: 0.6705337537921776
- type: nauc_recall_at_20_diff1
value: 29.9377683089396
- type: nauc_recall_at_20_max
value: 21.501166512666366
- type: nauc_recall_at_20_std
value: 2.5674343420113637
- type: nauc_recall_at_3_diff1
value: 40.61950305751733
- type: nauc_recall_at_3_max
value: 24.729983168436682
- type: nauc_recall_at_3_std
value: 1.7296166060546279
- type: nauc_recall_at_5_diff1
value: 38.552821903528056
- type: nauc_recall_at_5_max
value: 24.723317875854455
- type: nauc_recall_at_5_std
value: 1.919467574179939
- type: ndcg_at_1
value: 26.466
- type: ndcg_at_10
value: 33.725
- type: ndcg_at_100
value: 39.173
- type: ndcg_at_1000
value: 42.232
- type: ndcg_at_20
value: 35.567
- type: ndcg_at_3
value: 29.809
- type: ndcg_at_5
value: 31.34
- type: precision_at_1
value: 26.466
- type: precision_at_10
value: 6.465999999999999
- type: precision_at_100
value: 1.157
- type: precision_at_1000
value: 0.17500000000000002
- type: precision_at_20
value: 3.9059999999999997
- type: precision_at_3
value: 14.449000000000002
- type: precision_at_5
value: 10.358
- type: recall_at_1
value: 21.258
- type: recall_at_10
value: 43.312
- type: recall_at_100
value: 67.238
- type: recall_at_1000
value: 87.595
- type: recall_at_20
value: 50.041999999999994
- type: recall_at_3
value: 31.159
- type: recall_at_5
value: 35.879
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: main_score
value: 27.150000000000002
- type: map_at_1
value: 17.43
- type: map_at_10
value: 23.204
- type: map_at_100
value: 24.145
- type: map_at_1000
value: 24.265
- type: map_at_20
value: 23.686
- type: map_at_3
value: 21.189
- type: map_at_5
value: 22.255
- type: mrr_at_1
value: 21.719745222929937
- type: mrr_at_10
value: 27.507557375391766
- type: mrr_at_100
value: 28.30013304854397
- type: mrr_at_1000
value: 28.368740901376388
- type: mrr_at_20
value: 27.951898243025873
- type: mrr_at_3
value: 25.594479830148607
- type: mrr_at_5
value: 26.63588110403395
- type: nauc_map_at_1000_diff1
value: 40.11409523933898
- type: nauc_map_at_1000_max
value: 16.374923278675748
- type: nauc_map_at_1000_std
value: -2.4133717957936653
- type: nauc_map_at_100_diff1
value: 40.162705532329554
- type: nauc_map_at_100_max
value: 16.34063524581922
- type: nauc_map_at_100_std
value: -2.493868733681066
- type: nauc_map_at_10_diff1
value: 40.48041468478108
- type: nauc_map_at_10_max
value: 16.264842404610157
- type: nauc_map_at_10_std
value: -3.2700352899130314
- type: nauc_map_at_1_diff1
value: 46.96738086855307
- type: nauc_map_at_1_max
value: 17.12380109224913
- type: nauc_map_at_1_std
value: -4.311116279351113
- type: nauc_map_at_20_diff1
value: 40.27243337041536
- type: nauc_map_at_20_max
value: 16.212635684878002
- type: nauc_map_at_20_std
value: -2.8818599939377325
- type: nauc_map_at_3_diff1
value: 41.701659705049074
- type: nauc_map_at_3_max
value: 16.359651564201815
- type: nauc_map_at_3_std
value: -4.294683564342943
- type: nauc_map_at_5_diff1
value: 41.028355766533195
- type: nauc_map_at_5_max
value: 16.27940855548611
- type: nauc_map_at_5_std
value: -3.8828196073115726
- type: nauc_mrr_at_1000_diff1
value: 37.35241750993703
- type: nauc_mrr_at_1000_max
value: 16.789493628813503
- type: nauc_mrr_at_1000_std
value: -0.7026807998359369
- type: nauc_mrr_at_100_diff1
value: 37.37319265054083
- type: nauc_mrr_at_100_max
value: 16.785792904909457
- type: nauc_mrr_at_100_std
value: -0.7141300613570387
- type: nauc_mrr_at_10_diff1
value: 37.44022864370511
- type: nauc_mrr_at_10_max
value: 16.822238004660257
- type: nauc_mrr_at_10_std
value: -1.064281278734109
- type: nauc_mrr_at_1_diff1
value: 42.576217828618965
- type: nauc_mrr_at_1_max
value: 20.139157671233285
- type: nauc_mrr_at_1_std
value: -1.1737759527663842
- type: nauc_mrr_at_20_diff1
value: 37.33937055395397
- type: nauc_mrr_at_20_max
value: 16.776195886601606
- type: nauc_mrr_at_20_std
value: -0.7803878999084822
- type: nauc_mrr_at_3_diff1
value: 38.25326211165273
- type: nauc_mrr_at_3_max
value: 17.15336690620075
- type: nauc_mrr_at_3_std
value: -1.2801443058247721
- type: nauc_mrr_at_5_diff1
value: 38.06596720050976
- type: nauc_mrr_at_5_max
value: 17.09392231006509
- type: nauc_mrr_at_5_std
value: -1.3623433653714556
- type: nauc_ndcg_at_1000_diff1
value: 36.435133711331915
- type: nauc_ndcg_at_1000_max
value: 15.586688731412274
- type: nauc_ndcg_at_1000_std
value: 0.7906560302800849
- type: nauc_ndcg_at_100_diff1
value: 36.890721464008045
- type: nauc_ndcg_at_100_max
value: 15.1813884843887
- type: nauc_ndcg_at_100_std
value: 0.09040811909091676
- type: nauc_ndcg_at_10_diff1
value: 37.229997064998585
- type: nauc_ndcg_at_10_max
value: 15.451385774929092
- type: nauc_ndcg_at_10_std
value: -1.8785020804451147
- type: nauc_ndcg_at_1_diff1
value: 42.576217828618965
- type: nauc_ndcg_at_1_max
value: 20.139157671233285
- type: nauc_ndcg_at_1_std
value: -1.1737759527663842
- type: nauc_ndcg_at_20_diff1
value: 36.838912228068594
- type: nauc_ndcg_at_20_max
value: 14.995726844190102
- type: nauc_ndcg_at_20_std
value: -1.0539261339339805
- type: nauc_ndcg_at_3_diff1
value: 38.82534211536086
- type: nauc_ndcg_at_3_max
value: 16.220832428536855
- type: nauc_ndcg_at_3_std
value: -2.813569063131948
- type: nauc_ndcg_at_5_diff1
value: 38.33996404125124
- type: nauc_ndcg_at_5_max
value: 15.8799422475145
- type: nauc_ndcg_at_5_std
value: -2.749146560430897
- type: nauc_precision_at_1000_diff1
value: -4.731735053924757
- type: nauc_precision_at_1000_max
value: 7.435193268192747
- type: nauc_precision_at_1000_std
value: 19.64454136253714
- type: nauc_precision_at_100_diff1
value: 6.077831904313305
- type: nauc_precision_at_100_max
value: 11.106929057800805
- type: nauc_precision_at_100_std
value: 18.011167821410282
- type: nauc_precision_at_10_diff1
value: 20.063107688804948
- type: nauc_precision_at_10_max
value: 14.59451412625624
- type: nauc_precision_at_10_std
value: 6.453563891426743
- type: nauc_precision_at_1_diff1
value: 42.576217828618965
- type: nauc_precision_at_1_max
value: 20.139157671233285
- type: nauc_precision_at_1_std
value: -1.1737759527663842
- type: nauc_precision_at_20_diff1
value: 13.959222956715548
- type: nauc_precision_at_20_max
value: 12.477724590330006
- type: nauc_precision_at_20_std
value: 11.336423270774759
- type: nauc_precision_at_3_diff1
value: 29.664870607877365
- type: nauc_precision_at_3_max
value: 16.707672459588675
- type: nauc_precision_at_3_std
value: 1.2390528951961652
- type: nauc_precision_at_5_diff1
value: 26.04656621005802
- type: nauc_precision_at_5_max
value: 16.277009527866586
- type: nauc_precision_at_5_std
value: 3.1802968656941237
- type: nauc_recall_at_1000_diff1
value: 22.61803986653323
- type: nauc_recall_at_1000_max
value: 10.862168120090677
- type: nauc_recall_at_1000_std
value: 11.350094310700353
- type: nauc_recall_at_100_diff1
value: 27.499885478435775
- type: nauc_recall_at_100_max
value: 9.642182763633409
- type: nauc_recall_at_100_std
value: 5.863748205800293
- type: nauc_recall_at_10_diff1
value: 30.529857718433185
- type: nauc_recall_at_10_max
value: 11.752541699752392
- type: nauc_recall_at_10_std
value: -1.280154699097079
- type: nauc_recall_at_1_diff1
value: 46.96738086855307
- type: nauc_recall_at_1_max
value: 17.12380109224913
- type: nauc_recall_at_1_std
value: -4.311116279351113
- type: nauc_recall_at_20_diff1
value: 28.358327134514628
- type: nauc_recall_at_20_max
value: 9.90049047345775
- type: nauc_recall_at_20_std
value: 1.3182686690583876
- type: nauc_recall_at_3_diff1
value: 36.19909796459414
- type: nauc_recall_at_3_max
value: 13.526137335233242
- type: nauc_recall_at_3_std
value: -4.332223904768279
- type: nauc_recall_at_5_diff1
value: 34.40402552836485
- type: nauc_recall_at_5_max
value: 12.723314342847472
- type: nauc_recall_at_5_std
value: -3.782494828035306
- type: ndcg_at_1
value: 21.72
- type: ndcg_at_10
value: 27.150000000000002
- type: ndcg_at_100
value: 31.439
- type: ndcg_at_1000
value: 34.277
- type: ndcg_at_20
value: 28.663
- type: ndcg_at_3
value: 23.726
- type: ndcg_at_5
value: 25.189
- type: precision_at_1
value: 21.72
- type: precision_at_10
value: 5.0
- type: precision_at_100
value: 0.907
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_20
value: 3.057
- type: precision_at_3
value: 11.04
- type: precision_at_5
value: 7.9750000000000005
- type: recall_at_1
value: 17.43
- type: recall_at_10
value: 34.688
- type: recall_at_100
value: 53.301
- type: recall_at_1000
value: 72.772
- type: recall_at_20
value: 40.198
- type: recall_at_3
value: 24.982
- type: recall_at_5
value: 28.786
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: main_score
value: 41.524
- type: map_at_1
value: 27.182000000000002
- type: map_at_10
value: 36.466
- type: map_at_100
value: 37.509
- type: map_at_1000
value: 37.601
- type: map_at_20
value: 37.013
- type: map_at_3
value: 33.668
- type: map_at_5
value: 35.397
- type: mrr_at_1
value: 31.41065830721003
- type: mrr_at_10
value: 39.7386674628054
- type: mrr_at_100
value: 40.566291942215805
- type: mrr_at_1000
value: 40.62074545423136
- type: mrr_at_20
value: 40.174934295344926
- type: mrr_at_3
value: 37.324973876697996
- type: mrr_at_5
value: 38.826541274817146
- type: nauc_map_at_1000_diff1
value: 43.6362711634798
- type: nauc_map_at_1000_max
value: 26.519736629780972
- type: nauc_map_at_1000_std
value: -9.384141101744808
- type: nauc_map_at_100_diff1
value: 43.61961122855754
- type: nauc_map_at_100_max
value: 26.487007810288453
- type: nauc_map_at_100_std
value: -9.420758617427817
- type: nauc_map_at_10_diff1
value: 43.7524147747428
- type: nauc_map_at_10_max
value: 26.382789751233844
- type: nauc_map_at_10_std
value: -9.769072712489033
- type: nauc_map_at_1_diff1
value: 47.04811157014266
- type: nauc_map_at_1_max
value: 21.54129949413187
- type: nauc_map_at_1_std
value: -12.019452027355847
- type: nauc_map_at_20_diff1
value: 43.672216947782175
- type: nauc_map_at_20_max
value: 26.485649204915397
- type: nauc_map_at_20_std
value: -9.524911676842086
- type: nauc_map_at_3_diff1
value: 44.348004771454576
- type: nauc_map_at_3_max
value: 24.826912771861814
- type: nauc_map_at_3_std
value: -10.965059117490936
- type: nauc_map_at_5_diff1
value: 43.99455131879081
- type: nauc_map_at_5_max
value: 25.971868217929885
- type: nauc_map_at_5_std
value: -10.343047286710718
- type: nauc_mrr_at_1000_diff1
value: 43.665788051551665
- type: nauc_mrr_at_1000_max
value: 28.571240161784754
- type: nauc_mrr_at_1000_std
value: -7.4113510667337525
- type: nauc_mrr_at_100_diff1
value: 43.64279734673117
- type: nauc_mrr_at_100_max
value: 28.567634128513596
- type: nauc_mrr_at_100_std
value: -7.40852157646149
- type: nauc_mrr_at_10_diff1
value: 43.782023975278136
- type: nauc_mrr_at_10_max
value: 28.790688045761286
- type: nauc_mrr_at_10_std
value: -7.440405024660997
- type: nauc_mrr_at_1_diff1
value: 47.695888805627476
- type: nauc_mrr_at_1_max
value: 25.82725382005077
- type: nauc_mrr_at_1_std
value: -9.926228290630222
- type: nauc_mrr_at_20_diff1
value: 43.70864148086972
- type: nauc_mrr_at_20_max
value: 28.624617221296354
- type: nauc_mrr_at_20_std
value: -7.4340361462335665
- type: nauc_mrr_at_3_diff1
value: 44.074855443552025
- type: nauc_mrr_at_3_max
value: 27.910450462219337
- type: nauc_mrr_at_3_std
value: -8.482348718508304
- type: nauc_mrr_at_5_diff1
value: 43.982929810180146
- type: nauc_mrr_at_5_max
value: 28.744111522007042
- type: nauc_mrr_at_5_std
value: -7.787954236435398
- type: nauc_ndcg_at_1000_diff1
value: 42.100416444667374
- type: nauc_ndcg_at_1000_max
value: 28.778897448421066
- type: nauc_ndcg_at_1000_std
value: -5.940439957350017
- type: nauc_ndcg_at_100_diff1
value: 41.67916983287973
- type: nauc_ndcg_at_100_max
value: 28.391295000413553
- type: nauc_ndcg_at_100_std
value: -6.3451034687120735
- type: nauc_ndcg_at_10_diff1
value: 42.43970626182128
- type: nauc_ndcg_at_10_max
value: 28.6158195146179
- type: nauc_ndcg_at_10_std
value: -7.6406087703592505
- type: nauc_ndcg_at_1_diff1
value: 47.695888805627476
- type: nauc_ndcg_at_1_max
value: 25.82725382005077
- type: nauc_ndcg_at_1_std
value: -9.926228290630222
- type: nauc_ndcg_at_20_diff1
value: 42.03681959175668
- type: nauc_ndcg_at_20_max
value: 28.453546652524885
- type: nauc_ndcg_at_20_std
value: -7.152848103502503
- type: nauc_ndcg_at_3_diff1
value: 43.37129896398724
- type: nauc_ndcg_at_3_max
value: 26.478953479700902
- type: nauc_ndcg_at_3_std
value: -9.679309883071229
- type: nauc_ndcg_at_5_diff1
value: 43.0062039655728
- type: nauc_ndcg_at_5_max
value: 28.064633302237336
- type: nauc_ndcg_at_5_std
value: -8.7910164137182
- type: nauc_precision_at_1000_diff1
value: -0.5507173446795858
- type: nauc_precision_at_1000_max
value: 22.126966541299343
- type: nauc_precision_at_1000_std
value: 20.148121474343323
- type: nauc_precision_at_100_diff1
value: 10.44995531655567
- type: nauc_precision_at_100_max
value: 26.56665886767694
- type: nauc_precision_at_100_std
value: 12.195696500074583
- type: nauc_precision_at_10_diff1
value: 26.158452845146336
- type: nauc_precision_at_10_max
value: 32.01459975128394
- type: nauc_precision_at_10_std
value: 1.974561798960782
- type: nauc_precision_at_1_diff1
value: 47.695888805627476
- type: nauc_precision_at_1_max
value: 25.82725382005077
- type: nauc_precision_at_1_std
value: -9.926228290630222
- type: nauc_precision_at_20_diff1
value: 22.032211497868598
- type: nauc_precision_at_20_max
value: 31.233368398218488
- type: nauc_precision_at_20_std
value: 6.013804577433131
- type: nauc_precision_at_3_diff1
value: 35.54675021433468
- type: nauc_precision_at_3_max
value: 30.674121449268544
- type: nauc_precision_at_3_std
value: -5.765186040985941
- type: nauc_precision_at_5_diff1
value: 31.458592549241732
- type: nauc_precision_at_5_max
value: 32.97315493502319
- type: nauc_precision_at_5_std
value: -2.541487737695983
- type: nauc_recall_at_1000_diff1
value: 26.304660389426214
- type: nauc_recall_at_1000_max
value: 40.401428843868544
- type: nauc_recall_at_1000_std
value: 32.529641304158815
- type: nauc_recall_at_100_diff1
value: 29.344646248064482
- type: nauc_recall_at_100_max
value: 30.235178076671676
- type: nauc_recall_at_100_std
value: 7.52291487382479
- type: nauc_recall_at_10_diff1
value: 36.611201944418376
- type: nauc_recall_at_10_max
value: 31.24170076999929
- type: nauc_recall_at_10_std
value: -2.9884690234741784
- type: nauc_recall_at_1_diff1
value: 47.04811157014266
- type: nauc_recall_at_1_max
value: 21.54129949413187
- type: nauc_recall_at_1_std
value: -12.019452027355847
- type: nauc_recall_at_20_diff1
value: 34.63747670575681
- type: nauc_recall_at_20_max
value: 30.43743109165214
- type: nauc_recall_at_20_std
value: -1.227195536805767
- type: nauc_recall_at_3_diff1
value: 39.91051874486281
- type: nauc_recall_at_3_max
value: 26.560414903761114
- type: nauc_recall_at_3_std
value: -8.6755601946905
- type: nauc_recall_at_5_diff1
value: 38.75064222937078
- type: nauc_recall_at_5_max
value: 29.845489039156003
- type: nauc_recall_at_5_std
value: -6.453948528328865
- type: ndcg_at_1
value: 31.411
- type: ndcg_at_10
value: 41.524
- type: ndcg_at_100
value: 46.504
- type: ndcg_at_1000
value: 48.597
- type: ndcg_at_20
value: 43.256
- type: ndcg_at_3
value: 36.579
- type: ndcg_at_5
value: 39.278
- type: precision_at_1
value: 31.411
- type: precision_at_10
value: 6.8709999999999996
- type: precision_at_100
value: 1.023
- type: precision_at_1000
value: 0.128
- type: precision_at_20
value: 3.9149999999999996
- type: precision_at_3
value: 16.384999999999998
- type: precision_at_5
value: 11.687
- type: recall_at_1
value: 27.182000000000002
- type: recall_at_10
value: 53.385000000000005
- type: recall_at_100
value: 76.191
- type: recall_at_1000
value: 91.365
- type: recall_at_20
value: 59.953
- type: recall_at_3
value: 40.388000000000005
- type: recall_at_5
value: 46.885
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: main_score
value: 20.852999999999998
- type: map_at_1
value: 12.659
- type: map_at_10
value: 17.837
- type: map_at_100
value: 18.619
- type: map_at_1000
value: 18.742
- type: map_at_20
value: 18.257
- type: map_at_3
value: 16.283
- type: map_at_5
value: 17.335
- type: mrr_at_1
value: 13.785310734463277
- type: mrr_at_10
value: 19.169491525423734
- type: mrr_at_100
value: 19.95101655525465
- type: mrr_at_1000
value: 20.056219981020202
- type: mrr_at_20
value: 19.592521112159574
- type: mrr_at_3
value: 17.551789077212806
- type: mrr_at_5
value: 18.687382297551792
- type: nauc_map_at_1000_diff1
value: 32.97526567584334
- type: nauc_map_at_1000_max
value: 17.827080363908074
- type: nauc_map_at_1000_std
value: -7.917256868134976
- type: nauc_map_at_100_diff1
value: 33.00071714912684
- type: nauc_map_at_100_max
value: 17.77244247160442
- type: nauc_map_at_100_std
value: -7.954025554315228
- type: nauc_map_at_10_diff1
value: 33.540719726361566
- type: nauc_map_at_10_max
value: 17.985491695772446
- type: nauc_map_at_10_std
value: -7.856378803376327
- type: nauc_map_at_1_diff1
value: 43.67494937362112
- type: nauc_map_at_1_max
value: 21.124340797673945
- type: nauc_map_at_1_std
value: -12.197996046930768
- type: nauc_map_at_20_diff1
value: 33.223910724903206
- type: nauc_map_at_20_max
value: 17.886404791497466
- type: nauc_map_at_20_std
value: -8.16041395141026
- type: nauc_map_at_3_diff1
value: 35.72043899824334
- type: nauc_map_at_3_max
value: 18.432956304616784
- type: nauc_map_at_3_std
value: -9.080010089944173
- type: nauc_map_at_5_diff1
value: 33.971592181962734
- type: nauc_map_at_5_max
value: 18.424185588555975
- type: nauc_map_at_5_std
value: -7.577770606753287
- type: nauc_mrr_at_1000_diff1
value: 31.433579780624594
- type: nauc_mrr_at_1000_max
value: 19.322453443072256
- type: nauc_mrr_at_1000_std
value: -5.854685619590339
- type: nauc_mrr_at_100_diff1
value: 31.445404071603033
- type: nauc_mrr_at_100_max
value: 19.304722387301677
- type: nauc_mrr_at_100_std
value: -5.8736348679902175
- type: nauc_mrr_at_10_diff1
value: 31.83707006941321
- type: nauc_mrr_at_10_max
value: 19.34188797300804
- type: nauc_mrr_at_10_std
value: -5.745261013451921
- type: nauc_mrr_at_1_diff1
value: 40.93685635066508
- type: nauc_mrr_at_1_max
value: 23.439679209668945
- type: nauc_mrr_at_1_std
value: -9.177572150758774
- type: nauc_mrr_at_20_diff1
value: 31.592328454500933
- type: nauc_mrr_at_20_max
value: 19.36391895653557
- type: nauc_mrr_at_20_std
value: -6.040902065763658
- type: nauc_mrr_at_3_diff1
value: 33.84195578174624
- type: nauc_mrr_at_3_max
value: 19.72761095405792
- type: nauc_mrr_at_3_std
value: -6.874819526162579
- type: nauc_mrr_at_5_diff1
value: 32.236409494283755
- type: nauc_mrr_at_5_max
value: 19.697954589210916
- type: nauc_mrr_at_5_std
value: -5.4516874898461625
- type: nauc_ndcg_at_1000_diff1
value: 27.505013952943784
- type: nauc_ndcg_at_1000_max
value: 16.80970010826237
- type: nauc_ndcg_at_1000_std
value: -5.331859971693516
- type: nauc_ndcg_at_100_diff1
value: 27.503387634967602
- type: nauc_ndcg_at_100_max
value: 15.916003406666354
- type: nauc_ndcg_at_100_std
value: -6.1221427231558145
- type: nauc_ndcg_at_10_diff1
value: 29.664304651922325
- type: nauc_ndcg_at_10_max
value: 17.007347849411076
- type: nauc_ndcg_at_10_std
value: -6.266816577956439
- type: nauc_ndcg_at_1_diff1
value: 40.93685635066508
- type: nauc_ndcg_at_1_max
value: 23.439679209668945
- type: nauc_ndcg_at_1_std
value: -9.177572150758774
- type: nauc_ndcg_at_20_diff1
value: 28.647331375815643
- type: nauc_ndcg_at_20_max
value: 16.87787934591494
- type: nauc_ndcg_at_20_std
value: -7.258408352703308
- type: nauc_ndcg_at_3_diff1
value: 33.38934212428272
- type: nauc_ndcg_at_3_max
value: 17.91982977008598
- type: nauc_ndcg_at_3_std
value: -8.009957293234983
- type: nauc_ndcg_at_5_diff1
value: 30.61169550826665
- type: nauc_ndcg_at_5_max
value: 17.91887589124064
- type: nauc_ndcg_at_5_std
value: -5.585432013144523
- type: nauc_precision_at_1000_diff1
value: 0.4226603303036744
- type: nauc_precision_at_1000_max
value: 14.332893022601741
- type: nauc_precision_at_1000_std
value: 9.035818125389602
- type: nauc_precision_at_100_diff1
value: 10.538061012787567
- type: nauc_precision_at_100_max
value: 11.494339713810401
- type: nauc_precision_at_100_std
value: 1.4164358406768551
- type: nauc_precision_at_10_diff1
value: 19.644828725115065
- type: nauc_precision_at_10_max
value: 15.64894166408731
- type: nauc_precision_at_10_std
value: -1.081339939239084
- type: nauc_precision_at_1_diff1
value: 40.93685635066508
- type: nauc_precision_at_1_max
value: 23.439679209668945
- type: nauc_precision_at_1_std
value: -9.177572150758774
- type: nauc_precision_at_20_diff1
value: 16.383600154012903
- type: nauc_precision_at_20_max
value: 14.882146834330158
- type: nauc_precision_at_20_std
value: -3.5303919234659564
- type: nauc_precision_at_3_diff1
value: 26.300673270530456
- type: nauc_precision_at_3_max
value: 17.728543486739575
- type: nauc_precision_at_3_std
value: -4.398100967559122
- type: nauc_precision_at_5_diff1
value: 21.490299955788664
- type: nauc_precision_at_5_max
value: 17.908106757943347
- type: nauc_precision_at_5_std
value: 0.42728730989335834
- type: nauc_recall_at_1000_diff1
value: 7.740221752377091
- type: nauc_recall_at_1000_max
value: 10.555708189438292
- type: nauc_recall_at_1000_std
value: 5.695404463900641
- type: nauc_recall_at_100_diff1
value: 13.228097861724095
- type: nauc_recall_at_100_max
value: 8.046587601353371
- type: nauc_recall_at_100_std
value: -2.8441726501064792
- type: nauc_recall_at_10_diff1
value: 21.245766737033776
- type: nauc_recall_at_10_max
value: 13.355463123202746
- type: nauc_recall_at_10_std
value: -4.306099687448025
- type: nauc_recall_at_1_diff1
value: 43.67494937362112
- type: nauc_recall_at_1_max
value: 21.124340797673945
- type: nauc_recall_at_1_std
value: -12.197996046930768
- type: nauc_recall_at_20_diff1
value: 18.077039106796608
- type: nauc_recall_at_20_max
value: 13.019919308285566
- type: nauc_recall_at_20_std
value: -7.4206526771047
- type: nauc_recall_at_3_diff1
value: 29.086042342675317
- type: nauc_recall_at_3_max
value: 15.5421583851582
- type: nauc_recall_at_3_std
value: -7.123318203911006
- type: nauc_recall_at_5_diff1
value: 23.40979964056917
- type: nauc_recall_at_5_max
value: 15.430969619214412
- type: nauc_recall_at_5_std
value: -2.4671514179639678
- type: ndcg_at_1
value: 13.785
- type: ndcg_at_10
value: 20.852999999999998
- type: ndcg_at_100
value: 25.115
- type: ndcg_at_1000
value: 28.534
- type: ndcg_at_20
value: 22.367
- type: ndcg_at_3
value: 17.775
- type: ndcg_at_5
value: 19.674
- type: precision_at_1
value: 13.785
- type: precision_at_10
value: 3.266
- type: precision_at_100
value: 0.573
- type: precision_at_1000
value: 0.091
- type: precision_at_20
value: 1.994
- type: precision_at_3
value: 7.721
- type: precision_at_5
value: 5.695
- type: recall_at_1
value: 12.659
- type: recall_at_10
value: 28.828
- type: recall_at_100
value: 49.171
- type: recall_at_1000
value: 75.594
- type: recall_at_20
value: 34.544999999999995
- type: recall_at_3
value: 20.754
- type: recall_at_5
value: 25.252999999999997
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: main_score
value: 13.624
- type: map_at_1
value: 7.0809999999999995
- type: map_at_10
value: 10.864
- type: map_at_100
value: 11.705
- type: map_at_1000
value: 11.838
- type: map_at_20
value: 11.251999999999999
- type: map_at_3
value: 9.383
- type: map_at_5
value: 10.235
- type: mrr_at_1
value: 8.582089552238806
- type: mrr_at_10
value: 12.98472913211719
- type: mrr_at_100
value: 13.850379213620226
- type: mrr_at_1000
value: 13.952864877234141
- type: mrr_at_20
value: 13.413476285325437
- type: mrr_at_3
value: 11.38059701492537
- type: mrr_at_5
value: 12.251243781094525
- type: nauc_map_at_1000_diff1
value: 13.869076012836793
- type: nauc_map_at_1000_max
value: 9.793728325817751
- type: nauc_map_at_1000_std
value: 4.900696283931284
- type: nauc_map_at_100_diff1
value: 13.860320769496532
- type: nauc_map_at_100_max
value: 9.686534228015688
- type: nauc_map_at_100_std
value: 4.810028020121735
- type: nauc_map_at_10_diff1
value: 13.143868194306984
- type: nauc_map_at_10_max
value: 9.373464306802715
- type: nauc_map_at_10_std
value: 4.079400193707048
- type: nauc_map_at_1_diff1
value: 24.022346561431156
- type: nauc_map_at_1_max
value: 7.841750008744963
- type: nauc_map_at_1_std
value: 3.3784810578492785
- type: nauc_map_at_20_diff1
value: 13.635585210806106
- type: nauc_map_at_20_max
value: 9.752805074800094
- type: nauc_map_at_20_std
value: 4.654472956329851
- type: nauc_map_at_3_diff1
value: 16.85106726903103
- type: nauc_map_at_3_max
value: 8.426565488274038
- type: nauc_map_at_3_std
value: 5.022674813566249
- type: nauc_map_at_5_diff1
value: 14.134393994697025
- type: nauc_map_at_5_max
value: 9.49019400022355
- type: nauc_map_at_5_std
value: 4.293050389455758
- type: nauc_mrr_at_1000_diff1
value: 15.430729302655086
- type: nauc_mrr_at_1000_max
value: 11.130235636889111
- type: nauc_mrr_at_1000_std
value: 4.877791549279745
- type: nauc_mrr_at_100_diff1
value: 15.410324011690738
- type: nauc_mrr_at_100_max
value: 11.068477306407296
- type: nauc_mrr_at_100_std
value: 4.843658916752368
- type: nauc_mrr_at_10_diff1
value: 15.030861163034931
- type: nauc_mrr_at_10_max
value: 10.949618861931153
- type: nauc_mrr_at_10_std
value: 4.688892607587696
- type: nauc_mrr_at_1_diff1
value: 24.902916052765633
- type: nauc_mrr_at_1_max
value: 9.457290628689096
- type: nauc_mrr_at_1_std
value: 1.9409534012355463
- type: nauc_mrr_at_20_diff1
value: 15.313905861533556
- type: nauc_mrr_at_20_max
value: 11.066794178767129
- type: nauc_mrr_at_20_std
value: 4.8481490714706545
- type: nauc_mrr_at_3_diff1
value: 17.61095753806274
- type: nauc_mrr_at_3_max
value: 10.366089044859502
- type: nauc_mrr_at_3_std
value: 4.49354511499649
- type: nauc_mrr_at_5_diff1
value: 16.108630589516295
- type: nauc_mrr_at_5_max
value: 11.240089407667481
- type: nauc_mrr_at_5_std
value: 4.872629531537418
- type: nauc_ndcg_at_1000_diff1
value: 12.77738687769916
- type: nauc_ndcg_at_1000_max
value: 12.549168176821333
- type: nauc_ndcg_at_1000_std
value: 8.144261457560836
- type: nauc_ndcg_at_100_diff1
value: 12.366782181161682
- type: nauc_ndcg_at_100_max
value: 10.925739246857757
- type: nauc_ndcg_at_100_std
value: 6.689593820129615
- type: nauc_ndcg_at_10_diff1
value: 10.27658665690359
- type: nauc_ndcg_at_10_max
value: 10.668336952263012
- type: nauc_ndcg_at_10_std
value: 4.4421604549442
- type: nauc_ndcg_at_1_diff1
value: 24.902916052765633
- type: nauc_ndcg_at_1_max
value: 9.457290628689096
- type: nauc_ndcg_at_1_std
value: 1.9409534012355463
- type: nauc_ndcg_at_20_diff1
value: 11.717938489930228
- type: nauc_ndcg_at_20_max
value: 11.406968575351918
- type: nauc_ndcg_at_20_std
value: 5.768402464744413
- type: nauc_ndcg_at_3_diff1
value: 15.60942938229517
- type: nauc_ndcg_at_3_max
value: 9.483164984948264
- type: nauc_ndcg_at_3_std
value: 5.000018271561521
- type: nauc_ndcg_at_5_diff1
value: 12.132383932726349
- type: nauc_ndcg_at_5_max
value: 10.951658963146887
- type: nauc_ndcg_at_5_std
value: 4.578775711947606
- type: nauc_precision_at_1000_diff1
value: 1.525064048392746
- type: nauc_precision_at_1000_max
value: 10.570950987477232
- type: nauc_precision_at_1000_std
value: 8.66408675090561
- type: nauc_precision_at_100_diff1
value: 5.8643392920971955
- type: nauc_precision_at_100_max
value: 9.250679060906934
- type: nauc_precision_at_100_std
value: 8.348394285666982
- type: nauc_precision_at_10_diff1
value: 1.2622567591326674
- type: nauc_precision_at_10_max
value: 12.089966028497381
- type: nauc_precision_at_10_std
value: 6.265235180800634
- type: nauc_precision_at_1_diff1
value: 24.902916052765633
- type: nauc_precision_at_1_max
value: 9.457290628689096
- type: nauc_precision_at_1_std
value: 1.9409534012355463
- type: nauc_precision_at_20_diff1
value: 6.213057335341744
- type: nauc_precision_at_20_max
value: 11.784391613266772
- type: nauc_precision_at_20_std
value: 8.07175929908232
- type: nauc_precision_at_3_diff1
value: 11.885541011959809
- type: nauc_precision_at_3_max
value: 11.281984764236645
- type: nauc_precision_at_3_std
value: 5.6489926433109945
- type: nauc_precision_at_5_diff1
value: 5.418248228174057
- type: nauc_precision_at_5_max
value: 13.026748231164703
- type: nauc_precision_at_5_std
value: 4.918677235989275
- type: nauc_recall_at_1000_diff1
value: 11.610656629742031
- type: nauc_recall_at_1000_max
value: 19.460310253620186
- type: nauc_recall_at_1000_std
value: 20.248445144276527
- type: nauc_recall_at_100_diff1
value: 9.369087091417065
- type: nauc_recall_at_100_max
value: 11.173394514490449
- type: nauc_recall_at_100_std
value: 10.671999236699662
- type: nauc_recall_at_10_diff1
value: 3.8578840249529693
- type: nauc_recall_at_10_max
value: 12.090794523545023
- type: nauc_recall_at_10_std
value: 3.9686816569682257
- type: nauc_recall_at_1_diff1
value: 24.022346561431156
- type: nauc_recall_at_1_max
value: 7.841750008744963
- type: nauc_recall_at_1_std
value: 3.3784810578492785
- type: nauc_recall_at_20_diff1
value: 7.7817049051114955
- type: nauc_recall_at_20_max
value: 13.7356823026863
- type: nauc_recall_at_20_std
value: 7.5011443092451575
- type: nauc_recall_at_3_diff1
value: 11.867264801692084
- type: nauc_recall_at_3_max
value: 9.772515269996166
- type: nauc_recall_at_3_std
value: 5.649898224902724
- type: nauc_recall_at_5_diff1
value: 6.7943445242888085
- type: nauc_recall_at_5_max
value: 13.134954628949208
- type: nauc_recall_at_5_std
value: 4.8683311340579465
- type: ndcg_at_1
value: 8.581999999999999
- type: ndcg_at_10
value: 13.624
- type: ndcg_at_100
value: 18.361
- type: ndcg_at_1000
value: 22.017
- type: ndcg_at_20
value: 15.040000000000001
- type: ndcg_at_3
value: 10.735
- type: ndcg_at_5
value: 12.123000000000001
- type: precision_at_1
value: 8.581999999999999
- type: precision_at_10
value: 2.637
- type: precision_at_100
value: 0.59
- type: precision_at_1000
value: 0.105
- type: precision_at_20
value: 1.704
- type: precision_at_3
value: 5.1
- type: precision_at_5
value: 4.005
- type: recall_at_1
value: 7.0809999999999995
- type: recall_at_10
value: 20.022000000000002
- type: recall_at_100
value: 41.921
- type: recall_at_1000
value: 68.60199999999999
- type: recall_at_20
value: 25.156
- type: recall_at_3
value: 12.432
- type: recall_at_5
value: 15.628
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: main_score
value: 28.1
- type: map_at_1
value: 17.408
- type: map_at_10
value: 23.634
- type: map_at_100
value: 24.759999999999998
- type: map_at_1000
value: 24.901
- type: map_at_20
value: 24.144
- type: map_at_3
value: 21.317
- type: map_at_5
value: 22.615
- type: mrr_at_1
value: 21.751684311838307
- type: mrr_at_10
value: 28.205463128466008
- type: mrr_at_100
value: 29.135361539963515
- type: mrr_at_1000
value: 29.21658309312368
- type: mrr_at_20
value: 28.721775483050898
- type: mrr_at_3
value: 25.794032723772865
- type: mrr_at_5
value: 27.175168431183817
- type: nauc_map_at_1000_diff1
value: 43.260365034580076
- type: nauc_map_at_1000_max
value: 25.979886910558747
- type: nauc_map_at_1000_std
value: -2.0849267220215113
- type: nauc_map_at_100_diff1
value: 43.224870619497985
- type: nauc_map_at_100_max
value: 25.88024877542956
- type: nauc_map_at_100_std
value: -2.21391594997994
- type: nauc_map_at_10_diff1
value: 43.47446736665736
- type: nauc_map_at_10_max
value: 25.97259760761233
- type: nauc_map_at_10_std
value: -2.7682768946830407
- type: nauc_map_at_1_diff1
value: 51.23237029644942
- type: nauc_map_at_1_max
value: 29.6416845733838
- type: nauc_map_at_1_std
value: -2.806567544030298
- type: nauc_map_at_20_diff1
value: 43.164927055048096
- type: nauc_map_at_20_max
value: 25.79620371040526
- type: nauc_map_at_20_std
value: -2.527474807557985
- type: nauc_map_at_3_diff1
value: 45.16292828974055
- type: nauc_map_at_3_max
value: 26.192526759218914
- type: nauc_map_at_3_std
value: -3.258122441754642
- type: nauc_map_at_5_diff1
value: 44.27022371461212
- type: nauc_map_at_5_max
value: 25.986943086976233
- type: nauc_map_at_5_std
value: -2.96882589367969
- type: nauc_mrr_at_1000_diff1
value: 40.76319304785522
- type: nauc_mrr_at_1000_max
value: 26.528028493585577
- type: nauc_mrr_at_1000_std
value: 0.5361028661180448
- type: nauc_mrr_at_100_diff1
value: 40.72595239434217
- type: nauc_mrr_at_100_max
value: 26.47864694368845
- type: nauc_mrr_at_100_std
value: 0.5015817550912431
- type: nauc_mrr_at_10_diff1
value: 40.95782826805433
- type: nauc_mrr_at_10_max
value: 26.72257097851632
- type: nauc_mrr_at_10_std
value: 0.3297285535383387
- type: nauc_mrr_at_1_diff1
value: 47.72594645013734
- type: nauc_mrr_at_1_max
value: 30.394324110030567
- type: nauc_mrr_at_1_std
value: 1.4420412083862328
- type: nauc_mrr_at_20_diff1
value: 40.639149396407674
- type: nauc_mrr_at_20_max
value: 26.4962504824028
- type: nauc_mrr_at_20_std
value: 0.41981984468310246
- type: nauc_mrr_at_3_diff1
value: 42.149504777302724
- type: nauc_mrr_at_3_max
value: 27.027528584859734
- type: nauc_mrr_at_3_std
value: -0.3484158715300914
- type: nauc_mrr_at_5_diff1
value: 41.395178216037635
- type: nauc_mrr_at_5_max
value: 27.06751242405021
- type: nauc_mrr_at_5_std
value: 0.24717610402157794
- type: nauc_ndcg_at_1000_diff1
value: 39.575508159078474
- type: nauc_ndcg_at_1000_max
value: 25.568538008813128
- type: nauc_ndcg_at_1000_std
value: 2.0843318101121113
- type: nauc_ndcg_at_100_diff1
value: 38.84505152672922
- type: nauc_ndcg_at_100_max
value: 24.164287066890424
- type: nauc_ndcg_at_100_std
value: 0.4704663117394464
- type: nauc_ndcg_at_10_diff1
value: 39.59921895637892
- type: nauc_ndcg_at_10_max
value: 24.59345472310171
- type: nauc_ndcg_at_10_std
value: -1.8816000573302147
- type: nauc_ndcg_at_1_diff1
value: 47.72594645013734
- type: nauc_ndcg_at_1_max
value: 30.394324110030567
- type: nauc_ndcg_at_1_std
value: 1.4420412083862328
- type: nauc_ndcg_at_20_diff1
value: 38.49214533778004
- type: nauc_ndcg_at_20_max
value: 23.872891791896738
- type: nauc_ndcg_at_20_std
value: -1.2296334118794574
- type: nauc_ndcg_at_3_diff1
value: 42.42673245467605
- type: nauc_ndcg_at_3_max
value: 26.047493631745866
- type: nauc_ndcg_at_3_std
value: -1.9063204994807348
- type: nauc_ndcg_at_5_diff1
value: 41.130666312853634
- type: nauc_ndcg_at_5_max
value: 25.366500049103458
- type: nauc_ndcg_at_5_std
value: -1.8421163435361618
- type: nauc_precision_at_1000_diff1
value: 1.7292134029280288
- type: nauc_precision_at_1000_max
value: 13.882127060898435
- type: nauc_precision_at_1000_std
value: 21.261694377521952
- type: nauc_precision_at_100_diff1
value: 11.75338508774606
- type: nauc_precision_at_100_max
value: 17.089840857788904
- type: nauc_precision_at_100_std
value: 15.621459805832355
- type: nauc_precision_at_10_diff1
value: 23.41970845165901
- type: nauc_precision_at_10_max
value: 23.276769802630838
- type: nauc_precision_at_10_std
value: 6.3952347911663345
- type: nauc_precision_at_1_diff1
value: 47.72594645013734
- type: nauc_precision_at_1_max
value: 30.394324110030567
- type: nauc_precision_at_1_std
value: 1.4420412083862328
- type: nauc_precision_at_20_diff1
value: 17.873164002378125
- type: nauc_precision_at_20_max
value: 19.92501795496989
- type: nauc_precision_at_20_std
value: 9.199279241356155
- type: nauc_precision_at_3_diff1
value: 33.646829737006726
- type: nauc_precision_at_3_max
value: 25.281870315662353
- type: nauc_precision_at_3_std
value: 1.8786825941907552
- type: nauc_precision_at_5_diff1
value: 29.609102130780364
- type: nauc_precision_at_5_max
value: 25.096715780488978
- type: nauc_precision_at_5_std
value: 3.9900430759799645
- type: nauc_recall_at_1000_diff1
value: 23.069295215730058
- type: nauc_recall_at_1000_max
value: 20.572528914896765
- type: nauc_recall_at_1000_std
value: 29.83709673991498
- type: nauc_recall_at_100_diff1
value: 23.33784906640149
- type: nauc_recall_at_100_max
value: 13.56321944922501
- type: nauc_recall_at_100_std
value: 7.46189623877132
- type: nauc_recall_at_10_diff1
value: 29.226182488961662
- type: nauc_recall_at_10_max
value: 18.3684951121155
- type: nauc_recall_at_10_std
value: -2.5415354865089634
- type: nauc_recall_at_1_diff1
value: 51.23237029644942
- type: nauc_recall_at_1_max
value: 29.6416845733838
- type: nauc_recall_at_1_std
value: -2.806567544030298
- type: nauc_recall_at_20_diff1
value: 24.982279789513655
- type: nauc_recall_at_20_max
value: 15.35005827725592
- type: nauc_recall_at_20_std
value: -0.4272837479647023
- type: nauc_recall_at_3_diff1
value: 37.0322476528056
- type: nauc_recall_at_3_max
value: 21.523706479074505
- type: nauc_recall_at_3_std
value: -3.6419367768075075
- type: nauc_recall_at_5_diff1
value: 33.729365708218175
- type: nauc_recall_at_5_max
value: 20.29944173157368
- type: nauc_recall_at_5_std
value: -2.9020859696575236
- type: ndcg_at_1
value: 21.752
- type: ndcg_at_10
value: 28.1
- type: ndcg_at_100
value: 33.794000000000004
- type: ndcg_at_1000
value: 36.83
- type: ndcg_at_20
value: 29.843999999999998
- type: ndcg_at_3
value: 23.990000000000002
- type: ndcg_at_5
value: 25.94
- type: precision_at_1
value: 21.752
- type: precision_at_10
value: 5.207
- type: precision_at_100
value: 0.98
- type: precision_at_1000
value: 0.14300000000000002
- type: precision_at_20
value: 3.152
- type: precision_at_3
value: 11.229
- type: precision_at_5
value: 8.315999999999999
- type: recall_at_1
value: 17.408
- type: recall_at_10
value: 37.165
- type: recall_at_100
value: 62.651
- type: recall_at_1000
value: 83.46900000000001
- type: recall_at_20
value: 43.446
- type: recall_at_3
value: 25.6
- type: recall_at_5
value: 30.654999999999998
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: main_score
value: 23.433
- type: map_at_1
value: 13.699
- type: map_at_10
value: 19.466
- type: map_at_100
value: 20.583000000000002
- type: map_at_1000
value: 20.724999999999998
- type: map_at_20
value: 20.043
- type: map_at_3
value: 17.462
- type: map_at_5
value: 18.529
- type: mrr_at_1
value: 16.32420091324201
- type: mrr_at_10
value: 22.843598245995487
- type: mrr_at_100
value: 23.805814788577347
- type: mrr_at_1000
value: 23.893595459117634
- type: mrr_at_20
value: 23.364083699697467
- type: mrr_at_3
value: 20.71917808219179
- type: mrr_at_5
value: 21.923515981735154
- type: nauc_map_at_1000_diff1
value: 35.29908176677659
- type: nauc_map_at_1000_max
value: 21.19659387825901
- type: nauc_map_at_1000_std
value: -1.1800470644368641
- type: nauc_map_at_100_diff1
value: 35.25437342956425
- type: nauc_map_at_100_max
value: 21.158048137454784
- type: nauc_map_at_100_std
value: -1.2790123198148806
- type: nauc_map_at_10_diff1
value: 35.50950328919451
- type: nauc_map_at_10_max
value: 20.348484824359996
- type: nauc_map_at_10_std
value: -2.4603394968686154
- type: nauc_map_at_1_diff1
value: 41.10727065397603
- type: nauc_map_at_1_max
value: 22.543501102453543
- type: nauc_map_at_1_std
value: -2.7943381702992465
- type: nauc_map_at_20_diff1
value: 35.19029596236487
- type: nauc_map_at_20_max
value: 20.87279038260115
- type: nauc_map_at_20_std
value: -1.82363477470446
- type: nauc_map_at_3_diff1
value: 36.02030150485208
- type: nauc_map_at_3_max
value: 20.38357498006346
- type: nauc_map_at_3_std
value: -2.837404356814094
- type: nauc_map_at_5_diff1
value: 35.8201348144381
- type: nauc_map_at_5_max
value: 20.38035108882887
- type: nauc_map_at_5_std
value: -2.7002422977828346
- type: nauc_mrr_at_1000_diff1
value: 35.04099226290557
- type: nauc_mrr_at_1000_max
value: 21.57427001290516
- type: nauc_mrr_at_1000_std
value: 0.3715347702019008
- type: nauc_mrr_at_100_diff1
value: 35.00428106691662
- type: nauc_mrr_at_100_max
value: 21.56784751335325
- type: nauc_mrr_at_100_std
value: 0.3466863156775645
- type: nauc_mrr_at_10_diff1
value: 35.19156170525377
- type: nauc_mrr_at_10_max
value: 21.106207145262328
- type: nauc_mrr_at_10_std
value: -0.5031832849355399
- type: nauc_mrr_at_1_diff1
value: 40.722261443790906
- type: nauc_mrr_at_1_max
value: 24.15698098634036
- type: nauc_mrr_at_1_std
value: -0.30639756688939146
- type: nauc_mrr_at_20_diff1
value: 35.00790634012167
- type: nauc_mrr_at_20_max
value: 21.383803803042724
- type: nauc_mrr_at_20_std
value: -0.05435467437352896
- type: nauc_mrr_at_3_diff1
value: 36.289465305244846
- type: nauc_mrr_at_3_max
value: 22.291792865731253
- type: nauc_mrr_at_3_std
value: -0.1601560688322784
- type: nauc_mrr_at_5_diff1
value: 36.03061040405196
- type: nauc_mrr_at_5_max
value: 21.4330773038141
- type: nauc_mrr_at_5_std
value: -0.36308819446465274
- type: nauc_ndcg_at_1000_diff1
value: 33.232430146174295
- type: nauc_ndcg_at_1000_max
value: 22.983696106878117
- type: nauc_ndcg_at_1000_std
value: 4.640830565692821
- type: nauc_ndcg_at_100_diff1
value: 32.50338054067435
- type: nauc_ndcg_at_100_max
value: 22.189511219317435
- type: nauc_ndcg_at_100_std
value: 3.105218998038352
- type: nauc_ndcg_at_10_diff1
value: 33.32318612218884
- type: nauc_ndcg_at_10_max
value: 19.56436410436655
- type: nauc_ndcg_at_10_std
value: -1.8344884585445502
- type: nauc_ndcg_at_1_diff1
value: 40.722261443790906
- type: nauc_ndcg_at_1_max
value: 24.15698098634036
- type: nauc_ndcg_at_1_std
value: -0.30639756688939146
- type: nauc_ndcg_at_20_diff1
value: 32.347401402734775
- type: nauc_ndcg_at_20_max
value: 20.83380671662441
- type: nauc_ndcg_at_20_std
value: 0.016563433585529974
- type: nauc_ndcg_at_3_diff1
value: 35.04188810519525
- type: nauc_ndcg_at_3_max
value: 20.764019978598487
- type: nauc_ndcg_at_3_std
value: -1.594528012527463
- type: nauc_ndcg_at_5_diff1
value: 34.43943202369672
- type: nauc_ndcg_at_5_max
value: 20.106254608612055
- type: nauc_ndcg_at_5_std
value: -1.8594865842617228
- type: nauc_precision_at_1000_diff1
value: 7.256129492861672
- type: nauc_precision_at_1000_max
value: 11.996188955211178
- type: nauc_precision_at_1000_std
value: 13.821279312799087
- type: nauc_precision_at_100_diff1
value: 16.06033204193287
- type: nauc_precision_at_100_max
value: 21.298571657566136
- type: nauc_precision_at_100_std
value: 16.33488809216804
- type: nauc_precision_at_10_diff1
value: 25.542062522295577
- type: nauc_precision_at_10_max
value: 20.011563586461563
- type: nauc_precision_at_10_std
value: 3.0291709497281682
- type: nauc_precision_at_1_diff1
value: 40.722261443790906
- type: nauc_precision_at_1_max
value: 24.15698098634036
- type: nauc_precision_at_1_std
value: -0.30639756688939146
- type: nauc_precision_at_20_diff1
value: 21.545331269787848
- type: nauc_precision_at_20_max
value: 21.328836807337613
- type: nauc_precision_at_20_std
value: 6.749273704342807
- type: nauc_precision_at_3_diff1
value: 31.74754387933826
- type: nauc_precision_at_3_max
value: 22.00131054032921
- type: nauc_precision_at_3_std
value: 0.8933994096049079
- type: nauc_precision_at_5_diff1
value: 30.086127422078313
- type: nauc_precision_at_5_max
value: 20.07469952891432
- type: nauc_precision_at_5_std
value: 0.16970208205211193
- type: nauc_recall_at_1000_diff1
value: 20.943658951883773
- type: nauc_recall_at_1000_max
value: 33.25768046293579
- type: nauc_recall_at_1000_std
value: 41.359796251893364
- type: nauc_recall_at_100_diff1
value: 21.484586350505037
- type: nauc_recall_at_100_max
value: 22.854675507253802
- type: nauc_recall_at_100_std
value: 16.02406263632089
- type: nauc_recall_at_10_diff1
value: 27.194572601872668
- type: nauc_recall_at_10_max
value: 16.06431177414546
- type: nauc_recall_at_10_std
value: -1.723302447498358
- type: nauc_recall_at_1_diff1
value: 41.10727065397603
- type: nauc_recall_at_1_max
value: 22.543501102453543
- type: nauc_recall_at_1_std
value: -2.7943381702992465
- type: nauc_recall_at_20_diff1
value: 23.584838236915115
- type: nauc_recall_at_20_max
value: 19.41983426995758
- type: nauc_recall_at_20_std
value: 3.986703252775787
- type: nauc_recall_at_3_diff1
value: 30.56479090838521
- type: nauc_recall_at_3_max
value: 17.872434147655504
- type: nauc_recall_at_3_std
value: -2.5457977048929803
- type: nauc_recall_at_5_diff1
value: 29.89579939854362
- type: nauc_recall_at_5_max
value: 17.285994867348798
- type: nauc_recall_at_5_std
value: -2.0188171694818413
- type: ndcg_at_1
value: 16.323999999999998
- type: ndcg_at_10
value: 23.433
- type: ndcg_at_100
value: 29.032000000000004
- type: ndcg_at_1000
value: 32.389
- type: ndcg_at_20
value: 25.369999999999997
- type: ndcg_at_3
value: 19.661
- type: ndcg_at_5
value: 21.369
- type: precision_at_1
value: 16.323999999999998
- type: precision_at_10
value: 4.543
- type: precision_at_100
value: 0.885
- type: precision_at_1000
value: 0.134
- type: precision_at_20
value: 2.8369999999999997
- type: precision_at_3
value: 9.399000000000001
- type: precision_at_5
value: 7.055
- type: recall_at_1
value: 13.699
- type: recall_at_10
value: 31.89
- type: recall_at_100
value: 56.785
- type: recall_at_1000
value: 80.697
- type: recall_at_20
value: 38.838
- type: recall_at_3
value: 21.813
- type: recall_at_5
value: 25.967000000000002
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 23.69391666666667
- type: ndcg_at_10
value: 23.69391666666667
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: main_score
value: 18.384
- type: map_at_1
value: 11.806
- type: map_at_10
value: 15.659
- type: map_at_100
value: 16.497999999999998
- type: map_at_1000
value: 16.595
- type: map_at_20
value: 16.18
- type: map_at_3
value: 14.137
- type: map_at_5
value: 14.956
- type: mrr_at_1
value: 13.957055214723926
- type: mrr_at_10
value: 17.797679910409965
- type: mrr_at_100
value: 18.634105330873982
- type: mrr_at_1000
value: 18.723872119576956
- type: mrr_at_20
value: 18.315768640080353
- type: mrr_at_3
value: 16.308793456032713
- type: mrr_at_5
value: 17.05265848670756
- type: nauc_map_at_1000_diff1
value: 24.451360941385527
- type: nauc_map_at_1000_max
value: 9.703731227062287
- type: nauc_map_at_1000_std
value: 1.012478774475079
- type: nauc_map_at_100_diff1
value: 24.45541062900218
- type: nauc_map_at_100_max
value: 9.649455487883655
- type: nauc_map_at_100_std
value: 0.910681103488745
- type: nauc_map_at_10_diff1
value: 24.623702264364173
- type: nauc_map_at_10_max
value: 9.96456196295675
- type: nauc_map_at_10_std
value: 0.6883064213253189
- type: nauc_map_at_1_diff1
value: 24.463253990774003
- type: nauc_map_at_1_max
value: 8.44516445733758
- type: nauc_map_at_1_std
value: -2.705228609307227
- type: nauc_map_at_20_diff1
value: 24.41807093882515
- type: nauc_map_at_20_max
value: 9.73079819255772
- type: nauc_map_at_20_std
value: 0.8307302299269684
- type: nauc_map_at_3_diff1
value: 24.647027786393476
- type: nauc_map_at_3_max
value: 10.158348799557
- type: nauc_map_at_3_std
value: 0.6596938602041736
- type: nauc_map_at_5_diff1
value: 24.757624011943456
- type: nauc_map_at_5_max
value: 10.375814716590098
- type: nauc_map_at_5_std
value: 0.048075053740994585
- type: nauc_mrr_at_1000_diff1
value: 26.62518268407276
- type: nauc_mrr_at_1000_max
value: 13.855993519763175
- type: nauc_mrr_at_1000_std
value: 4.62905337450327
- type: nauc_mrr_at_100_diff1
value: 26.607592560385196
- type: nauc_mrr_at_100_max
value: 13.811494487812942
- type: nauc_mrr_at_100_std
value: 4.555702211448958
- type: nauc_mrr_at_10_diff1
value: 26.885862463851208
- type: nauc_mrr_at_10_max
value: 14.333094390691404
- type: nauc_mrr_at_10_std
value: 4.692620223972844
- type: nauc_mrr_at_1_diff1
value: 29.456424929748838
- type: nauc_mrr_at_1_max
value: 14.906357362630688
- type: nauc_mrr_at_1_std
value: 2.4543413134245498
- type: nauc_mrr_at_20_diff1
value: 26.635584926784205
- type: nauc_mrr_at_20_max
value: 13.983672186253978
- type: nauc_mrr_at_20_std
value: 4.533797671279914
- type: nauc_mrr_at_3_diff1
value: 27.257431270887867
- type: nauc_mrr_at_3_max
value: 14.51038573428384
- type: nauc_mrr_at_3_std
value: 4.677541680669749
- type: nauc_mrr_at_5_diff1
value: 27.308407985683008
- type: nauc_mrr_at_5_max
value: 14.725017635611035
- type: nauc_mrr_at_5_std
value: 4.069145623758021
- type: nauc_ndcg_at_1000_diff1
value: 23.87595648875096
- type: nauc_ndcg_at_1000_max
value: 10.790320900447414
- type: nauc_ndcg_at_1000_std
value: 5.82775131929226
- type: nauc_ndcg_at_100_diff1
value: 23.80489864326311
- type: nauc_ndcg_at_100_max
value: 9.542909613337207
- type: nauc_ndcg_at_100_std
value: 3.514583939812324
- type: nauc_ndcg_at_10_diff1
value: 24.468523939453547
- type: nauc_ndcg_at_10_max
value: 10.65620836221067
- type: nauc_ndcg_at_10_std
value: 2.5824019348755596
- type: nauc_ndcg_at_1_diff1
value: 29.456424929748838
- type: nauc_ndcg_at_1_max
value: 14.906357362630688
- type: nauc_ndcg_at_1_std
value: 2.4543413134245498
- type: nauc_ndcg_at_20_diff1
value: 23.90499485855613
- type: nauc_ndcg_at_20_max
value: 9.931714836248881
- type: nauc_ndcg_at_20_std
value: 2.823910728207098
- type: nauc_ndcg_at_3_diff1
value: 25.1439714946535
- type: nauc_ndcg_at_3_max
value: 11.314410735026595
- type: nauc_ndcg_at_3_std
value: 2.6451314305581435
- type: nauc_ndcg_at_5_diff1
value: 25.002955818196547
- type: nauc_ndcg_at_5_max
value: 11.626656177248531
- type: nauc_ndcg_at_5_std
value: 1.2826883242759335
- type: nauc_precision_at_1000_diff1
value: 17.91291822870243
- type: nauc_precision_at_1000_max
value: 16.76675856170149
- type: nauc_precision_at_1000_std
value: 21.28676061856954
- type: nauc_precision_at_100_diff1
value: 22.65384922327202
- type: nauc_precision_at_100_max
value: 14.035389695379298
- type: nauc_precision_at_100_std
value: 13.11748433352797
- type: nauc_precision_at_10_diff1
value: 26.851662967794372
- type: nauc_precision_at_10_max
value: 15.712260548565924
- type: nauc_precision_at_10_std
value: 9.920191712601452
- type: nauc_precision_at_1_diff1
value: 29.456424929748838
- type: nauc_precision_at_1_max
value: 14.906357362630688
- type: nauc_precision_at_1_std
value: 2.4543413134245498
- type: nauc_precision_at_20_diff1
value: 24.220224327836686
- type: nauc_precision_at_20_max
value: 14.588302868445297
- type: nauc_precision_at_20_std
value: 10.92824540303324
- type: nauc_precision_at_3_diff1
value: 28.488577734428645
- type: nauc_precision_at_3_max
value: 15.98246205564231
- type: nauc_precision_at_3_std
value: 7.303904258068353
- type: nauc_precision_at_5_diff1
value: 28.939989997482773
- type: nauc_precision_at_5_max
value: 17.041774400394182
- type: nauc_precision_at_5_std
value: 5.509812446342075
- type: nauc_recall_at_1000_diff1
value: 18.267969017984136
- type: nauc_recall_at_1000_max
value: 11.388634142238113
- type: nauc_recall_at_1000_std
value: 23.91731245454964
- type: nauc_recall_at_100_diff1
value: 19.151833799379745
- type: nauc_recall_at_100_max
value: 4.557136315212161
- type: nauc_recall_at_100_std
value: 7.149764457086401
- type: nauc_recall_at_10_diff1
value: 21.410038364719394
- type: nauc_recall_at_10_max
value: 8.068322780045472
- type: nauc_recall_at_10_std
value: 3.7037571191716747
- type: nauc_recall_at_1_diff1
value: 24.463253990774003
- type: nauc_recall_at_1_max
value: 8.44516445733758
- type: nauc_recall_at_1_std
value: -2.705228609307227
- type: nauc_recall_at_20_diff1
value: 19.90729636016057
- type: nauc_recall_at_20_max
value: 5.978272392594185
- type: nauc_recall_at_20_std
value: 4.320061234796331
- type: nauc_recall_at_3_diff1
value: 22.871302219459302
- type: nauc_recall_at_3_max
value: 10.472443448415733
- type: nauc_recall_at_3_std
value: 3.013314639210661
- type: nauc_recall_at_5_diff1
value: 22.054793329886756
- type: nauc_recall_at_5_max
value: 10.796778960647508
- type: nauc_recall_at_5_std
value: 0.814500718437171
- type: ndcg_at_1
value: 13.957
- type: ndcg_at_10
value: 18.384
- type: ndcg_at_100
value: 22.607
- type: ndcg_at_1000
value: 25.466
- type: ndcg_at_20
value: 20.23
- type: ndcg_at_3
value: 15.527
- type: ndcg_at_5
value: 16.802
- type: precision_at_1
value: 13.957
- type: precision_at_10
value: 3.0669999999999997
- type: precision_at_100
value: 0.555
- type: precision_at_1000
value: 0.087
- type: precision_at_20
value: 1.9709999999999999
- type: precision_at_3
value: 6.800000000000001
- type: precision_at_5
value: 4.939
- type: recall_at_1
value: 11.806
- type: recall_at_10
value: 24.837999999999997
- type: recall_at_100
value: 44.181
- type: recall_at_1000
value: 65.81099999999999
- type: recall_at_20
value: 31.863000000000003
- type: recall_at_3
value: 16.956
- type: recall_at_5
value: 20.112
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: main_score
value: 13.447000000000001
- type: map_at_1
value: 7.4990000000000006
- type: map_at_10
value: 10.988000000000001
- type: map_at_100
value: 11.698
- type: map_at_1000
value: 11.822000000000001
- type: map_at_20
value: 11.349
- type: map_at_3
value: 9.777
- type: map_at_5
value: 10.497
- type: mrr_at_1
value: 9.015829318651067
- type: mrr_at_10
value: 13.109794732299878
- type: mrr_at_100
value: 13.868221537379819
- type: mrr_at_1000
value: 13.968069797611808
- type: mrr_at_20
value: 13.519507570996245
- type: mrr_at_3
value: 11.75728378068364
- type: mrr_at_5
value: 12.557352603808189
- type: nauc_map_at_1000_diff1
value: 30.567002294769587
- type: nauc_map_at_1000_max
value: 15.798512312830034
- type: nauc_map_at_1000_std
value: -1.0859390117945695
- type: nauc_map_at_100_diff1
value: 30.587286610445663
- type: nauc_map_at_100_max
value: 15.73430549325338
- type: nauc_map_at_100_std
value: -1.1937200115265094
- type: nauc_map_at_10_diff1
value: 31.408895433670995
- type: nauc_map_at_10_max
value: 15.77429808454488
- type: nauc_map_at_10_std
value: -1.6732090098666632
- type: nauc_map_at_1_diff1
value: 40.57399794385126
- type: nauc_map_at_1_max
value: 16.149171625208833
- type: nauc_map_at_1_std
value: -2.4218080519307703
- type: nauc_map_at_20_diff1
value: 30.8482877273114
- type: nauc_map_at_20_max
value: 15.720632965606299
- type: nauc_map_at_20_std
value: -1.5062672633905416
- type: nauc_map_at_3_diff1
value: 33.52569401786841
- type: nauc_map_at_3_max
value: 16.615076553444595
- type: nauc_map_at_3_std
value: -1.6384914831039104
- type: nauc_map_at_5_diff1
value: 32.329365367117866
- type: nauc_map_at_5_max
value: 16.216667669611805
- type: nauc_map_at_5_std
value: -1.6533435358995812
- type: nauc_mrr_at_1000_diff1
value: 29.31052121532543
- type: nauc_mrr_at_1000_max
value: 17.53494423521252
- type: nauc_mrr_at_1000_std
value: 0.5840623134394628
- type: nauc_mrr_at_100_diff1
value: 29.323160649455303
- type: nauc_mrr_at_100_max
value: 17.529292065145697
- type: nauc_mrr_at_100_std
value: 0.5580584016696392
- type: nauc_mrr_at_10_diff1
value: 29.981137580131602
- type: nauc_mrr_at_10_max
value: 17.615794933598455
- type: nauc_mrr_at_10_std
value: 0.2123100820677504
- type: nauc_mrr_at_1_diff1
value: 38.54985300740823
- type: nauc_mrr_at_1_max
value: 18.110835976336595
- type: nauc_mrr_at_1_std
value: -1.7903397288683682
- type: nauc_mrr_at_20_diff1
value: 29.499330291362007
- type: nauc_mrr_at_20_max
value: 17.550155012432754
- type: nauc_mrr_at_20_std
value: 0.33244192880021073
- type: nauc_mrr_at_3_diff1
value: 31.78443905858544
- type: nauc_mrr_at_3_max
value: 18.622792547430922
- type: nauc_mrr_at_3_std
value: 0.10837491386435653
- type: nauc_mrr_at_5_diff1
value: 30.634162157096757
- type: nauc_mrr_at_5_max
value: 17.953005511330144
- type: nauc_mrr_at_5_std
value: 0.3011188554086528
- type: nauc_ndcg_at_1000_diff1
value: 24.927260803572327
- type: nauc_ndcg_at_1000_max
value: 15.735187217587246
- type: nauc_ndcg_at_1000_std
value: 2.70536509701587
- type: nauc_ndcg_at_100_diff1
value: 25.222134569922545
- type: nauc_ndcg_at_100_max
value: 15.010537382520306
- type: nauc_ndcg_at_100_std
value: 1.0428591825830975
- type: nauc_ndcg_at_10_diff1
value: 27.980571708839424
- type: nauc_ndcg_at_10_max
value: 15.362543479684104
- type: nauc_ndcg_at_10_std
value: -1.063042923474815
- type: nauc_ndcg_at_1_diff1
value: 38.54985300740823
- type: nauc_ndcg_at_1_max
value: 18.110835976336595
- type: nauc_ndcg_at_1_std
value: -1.7903397288683682
- type: nauc_ndcg_at_20_diff1
value: 26.49918565200889
- type: nauc_ndcg_at_20_max
value: 15.176785050941795
- type: nauc_ndcg_at_20_std
value: -0.5768848393065947
- type: nauc_ndcg_at_3_diff1
value: 31.274664013387905
- type: nauc_ndcg_at_3_max
value: 17.388908933640423
- type: nauc_ndcg_at_3_std
value: -0.6986711713763971
- type: nauc_ndcg_at_5_diff1
value: 29.55493575480121
- type: nauc_ndcg_at_5_max
value: 16.331948175175768
- type: nauc_ndcg_at_5_std
value: -0.7821520443168124
- type: nauc_precision_at_1000_diff1
value: 12.34617356216753
- type: nauc_precision_at_1000_max
value: 24.354588824888587
- type: nauc_precision_at_1000_std
value: 17.750963682106143
- type: nauc_precision_at_100_diff1
value: 14.963876212987392
- type: nauc_precision_at_100_max
value: 19.370472977151568
- type: nauc_precision_at_100_std
value: 9.52576847541998
- type: nauc_precision_at_10_diff1
value: 20.07061887015277
- type: nauc_precision_at_10_max
value: 16.71813468561834
- type: nauc_precision_at_10_std
value: 1.593454819519877
- type: nauc_precision_at_1_diff1
value: 38.54985300740823
- type: nauc_precision_at_1_max
value: 18.110835976336595
- type: nauc_precision_at_1_std
value: -1.7903397288683682
- type: nauc_precision_at_20_diff1
value: 16.740457192476917
- type: nauc_precision_at_20_max
value: 17.946474788321787
- type: nauc_precision_at_20_std
value: 3.9603159921284763
- type: nauc_precision_at_3_diff1
value: 26.55973349893991
- type: nauc_precision_at_3_max
value: 19.498328112386986
- type: nauc_precision_at_3_std
value: 1.5264173782171961
- type: nauc_precision_at_5_diff1
value: 23.225740781746087
- type: nauc_precision_at_5_max
value: 18.2796460850911
- type: nauc_precision_at_5_std
value: 2.1100122710075775
- type: nauc_recall_at_1000_diff1
value: 9.817522629457587
- type: nauc_recall_at_1000_max
value: 11.67612437506304
- type: nauc_recall_at_1000_std
value: 12.86161652413565
- type: nauc_recall_at_100_diff1
value: 13.904333022125268
- type: nauc_recall_at_100_max
value: 10.499528500128406
- type: nauc_recall_at_100_std
value: 4.6754242406439666
- type: nauc_recall_at_10_diff1
value: 21.227509281109402
- type: nauc_recall_at_10_max
value: 12.138466304037836
- type: nauc_recall_at_10_std
value: -1.3590502364993584
- type: nauc_recall_at_1_diff1
value: 40.57399794385126
- type: nauc_recall_at_1_max
value: 16.149171625208833
- type: nauc_recall_at_1_std
value: -2.4218080519307703
- type: nauc_recall_at_20_diff1
value: 17.53031727243238
- type: nauc_recall_at_20_max
value: 11.315767656629951
- type: nauc_recall_at_20_std
value: -0.0815670020293258
- type: nauc_recall_at_3_diff1
value: 26.852256743726844
- type: nauc_recall_at_3_max
value: 15.854361939492712
- type: nauc_recall_at_3_std
value: -1.153367621045346
- type: nauc_recall_at_5_diff1
value: 24.348877280666795
- type: nauc_recall_at_5_max
value: 14.160377863254098
- type: nauc_recall_at_5_std
value: -1.005614215572403
- type: ndcg_at_1
value: 9.016
- type: ndcg_at_10
value: 13.447000000000001
- type: ndcg_at_100
value: 17.307
- type: ndcg_at_1000
value: 20.821
- type: ndcg_at_20
value: 14.735999999999999
- type: ndcg_at_3
value: 11.122
- type: ndcg_at_5
value: 12.303
- type: precision_at_1
value: 9.016
- type: precision_at_10
value: 2.536
- type: precision_at_100
value: 0.534
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 1.635
- type: precision_at_3
value: 5.391
- type: precision_at_5
value: 4.067
- type: recall_at_1
value: 7.4990000000000006
- type: recall_at_10
value: 18.843
- type: recall_at_100
value: 36.508
- type: recall_at_1000
value: 62.564
- type: recall_at_20
value: 23.538
- type: recall_at_3
value: 12.435
- type: recall_at_5
value: 15.443999999999999
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: main_score
value: 21.052
- type: map_at_1
value: 12.426
- type: map_at_10
value: 17.587
- type: map_at_100
value: 18.442
- type: map_at_1000
value: 18.568
- type: map_at_20
value: 18.015
- type: map_at_3
value: 15.917
- type: map_at_5
value: 16.861
- type: mrr_at_1
value: 14.645522388059701
- type: mrr_at_10
value: 20.31272210376687
- type: mrr_at_100
value: 21.125419140238996
- type: mrr_at_1000
value: 21.22837687980679
- type: mrr_at_20
value: 20.729995038526873
- type: mrr_at_3
value: 18.470149253731346
- type: mrr_at_5
value: 19.440298507462682
- type: nauc_map_at_1000_diff1
value: 39.33163341095681
- type: nauc_map_at_1000_max
value: 29.332723485192584
- type: nauc_map_at_1000_std
value: -6.31422961090444
- type: nauc_map_at_100_diff1
value: 39.356962232089494
- type: nauc_map_at_100_max
value: 29.291827447082692
- type: nauc_map_at_100_std
value: -6.358110176588159
- type: nauc_map_at_10_diff1
value: 39.89765883980389
- type: nauc_map_at_10_max
value: 29.498700843025606
- type: nauc_map_at_10_std
value: -6.775819565477977
- type: nauc_map_at_1_diff1
value: 47.64138101908174
- type: nauc_map_at_1_max
value: 36.0817071041123
- type: nauc_map_at_1_std
value: -8.59842963175043
- type: nauc_map_at_20_diff1
value: 39.55686797301435
- type: nauc_map_at_20_max
value: 29.425728630412724
- type: nauc_map_at_20_std
value: -6.6498355486245035
- type: nauc_map_at_3_diff1
value: 41.55255505626839
- type: nauc_map_at_3_max
value: 30.965022540712372
- type: nauc_map_at_3_std
value: -7.321893674664093
- type: nauc_map_at_5_diff1
value: 40.76985356532814
- type: nauc_map_at_5_max
value: 29.511663011170363
- type: nauc_map_at_5_std
value: -7.524984450207084
- type: nauc_mrr_at_1000_diff1
value: 39.110924778504305
- type: nauc_mrr_at_1000_max
value: 30.4866545203556
- type: nauc_mrr_at_1000_std
value: -4.889664679047176
- type: nauc_mrr_at_100_diff1
value: 39.10714043846902
- type: nauc_mrr_at_100_max
value: 30.49597097533955
- type: nauc_mrr_at_100_std
value: -4.8975738964109246
- type: nauc_mrr_at_10_diff1
value: 39.6637855428504
- type: nauc_mrr_at_10_max
value: 30.665144795943938
- type: nauc_mrr_at_10_std
value: -5.168074959781463
- type: nauc_mrr_at_1_diff1
value: 48.386216593053376
- type: nauc_mrr_at_1_max
value: 37.643270167025484
- type: nauc_mrr_at_1_std
value: -6.465749697952698
- type: nauc_mrr_at_20_diff1
value: 39.27186939293
- type: nauc_mrr_at_20_max
value: 30.61566429797341
- type: nauc_mrr_at_20_std
value: -5.16582726329683
- type: nauc_mrr_at_3_diff1
value: 41.23023142998567
- type: nauc_mrr_at_3_max
value: 32.006762101712596
- type: nauc_mrr_at_3_std
value: -5.613867880151202
- type: nauc_mrr_at_5_diff1
value: 40.471318774809276
- type: nauc_mrr_at_5_max
value: 30.358316446904404
- type: nauc_mrr_at_5_std
value: -6.042273290129676
- type: nauc_ndcg_at_1000_diff1
value: 34.039095525228355
- type: nauc_ndcg_at_1000_max
value: 27.339727583523203
- type: nauc_ndcg_at_1000_std
value: -2.1385641663234254
- type: nauc_ndcg_at_100_diff1
value: 34.50706875780665
- type: nauc_ndcg_at_100_max
value: 26.517497925440946
- type: nauc_ndcg_at_100_std
value: -3.0287263572679577
- type: nauc_ndcg_at_10_diff1
value: 36.68381444467528
- type: nauc_ndcg_at_10_max
value: 27.445104277139816
- type: nauc_ndcg_at_10_std
value: -5.434347382364577
- type: nauc_ndcg_at_1_diff1
value: 48.386216593053376
- type: nauc_ndcg_at_1_max
value: 37.643270167025484
- type: nauc_ndcg_at_1_std
value: -6.465749697952698
- type: nauc_ndcg_at_20_diff1
value: 35.62521976436465
- type: nauc_ndcg_at_20_max
value: 27.22284657323637
- type: nauc_ndcg_at_20_std
value: -5.212168832453886
- type: nauc_ndcg_at_3_diff1
value: 39.65658632289389
- type: nauc_ndcg_at_3_max
value: 30.165746048337073
- type: nauc_ndcg_at_3_std
value: -6.483184171621599
- type: nauc_ndcg_at_5_diff1
value: 38.435574597264896
- type: nauc_ndcg_at_5_max
value: 27.29234402819966
- type: nauc_ndcg_at_5_std
value: -7.163637857767252
- type: nauc_precision_at_1000_diff1
value: -0.5757124881694341
- type: nauc_precision_at_1000_max
value: 16.29256700958668
- type: nauc_precision_at_1000_std
value: 12.307495698059249
- type: nauc_precision_at_100_diff1
value: 14.066163778136765
- type: nauc_precision_at_100_max
value: 19.90375717448338
- type: nauc_precision_at_100_std
value: 8.429418360577989
- type: nauc_precision_at_10_diff1
value: 27.40062141138924
- type: nauc_precision_at_10_max
value: 24.331893027882526
- type: nauc_precision_at_10_std
value: -0.14920457766396567
- type: nauc_precision_at_1_diff1
value: 48.386216593053376
- type: nauc_precision_at_1_max
value: 37.643270167025484
- type: nauc_precision_at_1_std
value: -6.465749697952698
- type: nauc_precision_at_20_diff1
value: 22.37358263091247
- type: nauc_precision_at_20_max
value: 22.520668242414693
- type: nauc_precision_at_20_std
value: -0.08668534976010908
- type: nauc_precision_at_3_diff1
value: 34.96831803301659
- type: nauc_precision_at_3_max
value: 26.776959232155157
- type: nauc_precision_at_3_std
value: -4.066190254588547
- type: nauc_precision_at_5_diff1
value: 31.927749511846642
- type: nauc_precision_at_5_max
value: 22.133595472823778
- type: nauc_precision_at_5_std
value: -4.659887568906566
- type: nauc_recall_at_1000_diff1
value: 9.864518875286782
- type: nauc_recall_at_1000_max
value: 16.079783011341842
- type: nauc_recall_at_1000_std
value: 18.422744210796466
- type: nauc_recall_at_100_diff1
value: 19.825105290912774
- type: nauc_recall_at_100_max
value: 15.376507283040288
- type: nauc_recall_at_100_std
value: 6.656479057915567
- type: nauc_recall_at_10_diff1
value: 27.968188448369634
- type: nauc_recall_at_10_max
value: 20.468242077216573
- type: nauc_recall_at_10_std
value: -3.195299662368557
- type: nauc_recall_at_1_diff1
value: 47.64138101908174
- type: nauc_recall_at_1_max
value: 36.0817071041123
- type: nauc_recall_at_1_std
value: -8.59842963175043
- type: nauc_recall_at_20_diff1
value: 24.881472147156558
- type: nauc_recall_at_20_max
value: 19.539649229845484
- type: nauc_recall_at_20_std
value: -2.597679057149296
- type: nauc_recall_at_3_diff1
value: 35.011852772709275
- type: nauc_recall_at_3_max
value: 25.42121427465917
- type: nauc_recall_at_3_std
value: -6.475117977119084
- type: nauc_recall_at_5_diff1
value: 32.33891575382334
- type: nauc_recall_at_5_max
value: 19.84609317314949
- type: nauc_recall_at_5_std
value: -7.713982073904097
- type: ndcg_at_1
value: 14.646
- type: ndcg_at_10
value: 21.052
- type: ndcg_at_100
value: 25.503999999999998
- type: ndcg_at_1000
value: 28.98
- type: ndcg_at_20
value: 22.595000000000002
- type: ndcg_at_3
value: 17.736
- type: ndcg_at_5
value: 19.283
- type: precision_at_1
value: 14.646
- type: precision_at_10
value: 3.703
- type: precision_at_100
value: 0.658
- type: precision_at_1000
value: 0.107
- type: precision_at_20
value: 2.248
- type: precision_at_3
value: 8.209
- type: precision_at_5
value: 5.933
- type: recall_at_1
value: 12.426
- type: recall_at_10
value: 28.977999999999998
- type: recall_at_100
value: 49.309
- type: recall_at_1000
value: 74.90599999999999
- type: recall_at_20
value: 34.777
- type: recall_at_3
value: 19.975
- type: recall_at_5
value: 23.848
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: main_score
value: 24.541
- type: map_at_1
value: 13.947999999999999
- type: map_at_10
value: 20.217
- type: map_at_100
value: 21.542
- type: map_at_1000
value: 21.731
- type: map_at_20
value: 20.918
- type: map_at_3
value: 18.422
- type: map_at_5
value: 19.308
- type: mrr_at_1
value: 17.588932806324113
- type: mrr_at_10
value: 23.858695652173907
- type: mrr_at_100
value: 24.851399845780602
- type: mrr_at_1000
value: 24.935814602119343
- type: mrr_at_20
value: 24.408561689686646
- type: mrr_at_3
value: 22.068511198945977
- type: mrr_at_5
value: 22.947957839262187
- type: nauc_map_at_1000_diff1
value: 43.33859805395678
- type: nauc_map_at_1000_max
value: 16.794319215595962
- type: nauc_map_at_1000_std
value: 1.1069609672810294
- type: nauc_map_at_100_diff1
value: 43.31953768477659
- type: nauc_map_at_100_max
value: 16.80649217527658
- type: nauc_map_at_100_std
value: 0.9267847714960188
- type: nauc_map_at_10_diff1
value: 44.20016434158565
- type: nauc_map_at_10_max
value: 17.616372385010706
- type: nauc_map_at_10_std
value: 0.9811655928155236
- type: nauc_map_at_1_diff1
value: 54.077090204227886
- type: nauc_map_at_1_max
value: 19.709908044012398
- type: nauc_map_at_1_std
value: -3.6121421783838605
- type: nauc_map_at_20_diff1
value: 43.562495604434936
- type: nauc_map_at_20_max
value: 16.862716386830666
- type: nauc_map_at_20_std
value: 0.5191844288914963
- type: nauc_map_at_3_diff1
value: 45.711284130752844
- type: nauc_map_at_3_max
value: 17.36946450306621
- type: nauc_map_at_3_std
value: -0.7230194301728452
- type: nauc_map_at_5_diff1
value: 44.75072357358313
- type: nauc_map_at_5_max
value: 17.32559857940083
- type: nauc_map_at_5_std
value: 0.8658883165628524
- type: nauc_mrr_at_1000_diff1
value: 43.02583464427709
- type: nauc_mrr_at_1000_max
value: 17.219554017696893
- type: nauc_mrr_at_1000_std
value: 1.7672153931182881
- type: nauc_mrr_at_100_diff1
value: 42.99189791126074
- type: nauc_mrr_at_100_max
value: 17.192364035400853
- type: nauc_mrr_at_100_std
value: 1.756535126973775
- type: nauc_mrr_at_10_diff1
value: 43.08444131617144
- type: nauc_mrr_at_10_max
value: 17.29015910503535
- type: nauc_mrr_at_10_std
value: 1.7125365374735448
- type: nauc_mrr_at_1_diff1
value: 50.5556261668236
- type: nauc_mrr_at_1_max
value: 19.294675141150243
- type: nauc_mrr_at_1_std
value: -2.3442346201176356
- type: nauc_mrr_at_20_diff1
value: 42.88013095653635
- type: nauc_mrr_at_20_max
value: 17.00639653815113
- type: nauc_mrr_at_20_std
value: 1.5053330754970131
- type: nauc_mrr_at_3_diff1
value: 44.598903878474786
- type: nauc_mrr_at_3_max
value: 17.615736504224426
- type: nauc_mrr_at_3_std
value: 0.2407821472745429
- type: nauc_mrr_at_5_diff1
value: 43.903767716493434
- type: nauc_mrr_at_5_max
value: 17.209076005917304
- type: nauc_mrr_at_5_std
value: 1.7097976325552382
- type: nauc_ndcg_at_1000_diff1
value: 40.41806553114964
- type: nauc_ndcg_at_1000_max
value: 17.795144923496352
- type: nauc_ndcg_at_1000_std
value: 6.107826233525735
- type: nauc_ndcg_at_100_diff1
value: 39.13804206519448
- type: nauc_ndcg_at_100_max
value: 16.705953947028362
- type: nauc_ndcg_at_100_std
value: 5.151889715872744
- type: nauc_ndcg_at_10_diff1
value: 40.77046801594463
- type: nauc_ndcg_at_10_max
value: 17.398314688629597
- type: nauc_ndcg_at_10_std
value: 3.6749729455778537
- type: nauc_ndcg_at_1_diff1
value: 50.5556261668236
- type: nauc_ndcg_at_1_max
value: 19.294675141150243
- type: nauc_ndcg_at_1_std
value: -2.3442346201176356
- type: nauc_ndcg_at_20_diff1
value: 39.48069335422461
- type: nauc_ndcg_at_20_max
value: 15.585590458050417
- type: nauc_ndcg_at_20_std
value: 2.6822276938545344
- type: nauc_ndcg_at_3_diff1
value: 42.229898693167826
- type: nauc_ndcg_at_3_max
value: 16.613922904445026
- type: nauc_ndcg_at_3_std
value: 1.3855074174214905
- type: nauc_ndcg_at_5_diff1
value: 41.60713305096391
- type: nauc_ndcg_at_5_max
value: 16.484928388833886
- type: nauc_ndcg_at_5_std
value: 3.4073283752555845
- type: nauc_precision_at_1000_diff1
value: 0.3356504625232749
- type: nauc_precision_at_1000_max
value: 4.49983560064616
- type: nauc_precision_at_1000_std
value: 14.303080258454347
- type: nauc_precision_at_100_diff1
value: 8.835404291542027
- type: nauc_precision_at_100_max
value: 3.150943200684829
- type: nauc_precision_at_100_std
value: 15.048767403827714
- type: nauc_precision_at_10_diff1
value: 21.52838092138577
- type: nauc_precision_at_10_max
value: 12.571532848032687
- type: nauc_precision_at_10_std
value: 8.128913556180294
- type: nauc_precision_at_1_diff1
value: 50.5556261668236
- type: nauc_precision_at_1_max
value: 19.294675141150243
- type: nauc_precision_at_1_std
value: -2.3442346201176356
- type: nauc_precision_at_20_diff1
value: 14.781087100941523
- type: nauc_precision_at_20_max
value: 5.988342267683038
- type: nauc_precision_at_20_std
value: 6.082560933226635
- type: nauc_precision_at_3_diff1
value: 31.392623045190426
- type: nauc_precision_at_3_max
value: 14.718033879054303
- type: nauc_precision_at_3_std
value: 4.660197047853719
- type: nauc_precision_at_5_diff1
value: 27.092109888977834
- type: nauc_precision_at_5_max
value: 13.203296668102244
- type: nauc_precision_at_5_std
value: 7.456529374803908
- type: nauc_recall_at_1000_diff1
value: 27.98171442888675
- type: nauc_recall_at_1000_max
value: 25.506878355571327
- type: nauc_recall_at_1000_std
value: 36.45225778705996
- type: nauc_recall_at_100_diff1
value: 24.89136039905334
- type: nauc_recall_at_100_max
value: 15.57355424120746
- type: nauc_recall_at_100_std
value: 18.274980258425174
- type: nauc_recall_at_10_diff1
value: 32.680187174796224
- type: nauc_recall_at_10_max
value: 17.80036586473841
- type: nauc_recall_at_10_std
value: 9.172008959628027
- type: nauc_recall_at_1_diff1
value: 54.077090204227886
- type: nauc_recall_at_1_max
value: 19.709908044012398
- type: nauc_recall_at_1_std
value: -3.6121421783838605
- type: nauc_recall_at_20_diff1
value: 28.310306054990818
- type: nauc_recall_at_20_max
value: 11.540330817577258
- type: nauc_recall_at_20_std
value: 5.916827349873026
- type: nauc_recall_at_3_diff1
value: 37.31685917439632
- type: nauc_recall_at_3_max
value: 15.303688489057219
- type: nauc_recall_at_3_std
value: 3.1192461784588934
- type: nauc_recall_at_5_diff1
value: 34.98096682397507
- type: nauc_recall_at_5_max
value: 14.370025231136207
- type: nauc_recall_at_5_std
value: 8.02340098284342
- type: ndcg_at_1
value: 17.589
- type: ndcg_at_10
value: 24.541
- type: ndcg_at_100
value: 30.098999999999997
- type: ndcg_at_1000
value: 33.522999999999996
- type: ndcg_at_20
value: 26.608999999999998
- type: ndcg_at_3
value: 21.587
- type: ndcg_at_5
value: 22.726
- type: precision_at_1
value: 17.589
- type: precision_at_10
value: 4.862
- type: precision_at_100
value: 1.109
- type: precision_at_1000
value: 0.202
- type: precision_at_20
value: 3.241
- type: precision_at_3
value: 10.54
- type: precision_at_5
value: 7.549
- type: recall_at_1
value: 13.947999999999999
- type: recall_at_10
value: 32.962
- type: recall_at_100
value: 58.475
- type: recall_at_1000
value: 81.281
- type: recall_at_20
value: 40.963
- type: recall_at_3
value: 23.654
- type: recall_at_5
value: 26.976
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: main_score
value: 18.494
- type: map_at_1
value: 12.113
- type: map_at_10
value: 15.742
- type: map_at_100
value: 16.588
- type: map_at_1000
value: 16.695999999999998
- type: map_at_20
value: 16.133
- type: map_at_3
value: 14.235999999999999
- type: map_at_5
value: 14.863999999999999
- type: mrr_at_1
value: 13.123844731977819
- type: mrr_at_10
value: 17.048748643018513
- type: mrr_at_100
value: 17.92317861781634
- type: mrr_at_1000
value: 18.01677808515946
- type: mrr_at_20
value: 17.49017709474638
- type: mrr_at_3
value: 15.372766481823783
- type: mrr_at_5
value: 16.09365372766482
- type: nauc_map_at_1000_diff1
value: 29.177576432015336
- type: nauc_map_at_1000_max
value: 15.675654084454017
- type: nauc_map_at_1000_std
value: -4.940369928551305
- type: nauc_map_at_100_diff1
value: 29.17418032816123
- type: nauc_map_at_100_max
value: 15.70613463825502
- type: nauc_map_at_100_std
value: -4.980070415403916
- type: nauc_map_at_10_diff1
value: 29.52509707922253
- type: nauc_map_at_10_max
value: 15.554777819804485
- type: nauc_map_at_10_std
value: -5.659659507621501
- type: nauc_map_at_1_diff1
value: 34.19820381105881
- type: nauc_map_at_1_max
value: 19.40226008766731
- type: nauc_map_at_1_std
value: -6.841796961195136
- type: nauc_map_at_20_diff1
value: 29.25644111895755
- type: nauc_map_at_20_max
value: 15.60193203494247
- type: nauc_map_at_20_std
value: -5.234632550119407
- type: nauc_map_at_3_diff1
value: 29.839926969290953
- type: nauc_map_at_3_max
value: 15.167659779156203
- type: nauc_map_at_3_std
value: -7.424881973369861
- type: nauc_map_at_5_diff1
value: 29.554402844383716
- type: nauc_map_at_5_max
value: 15.476818672588767
- type: nauc_map_at_5_std
value: -6.489967221653721
- type: nauc_mrr_at_1000_diff1
value: 28.705818533659276
- type: nauc_mrr_at_1000_max
value: 16.67009666276028
- type: nauc_mrr_at_1000_std
value: -4.8854799116351115
- type: nauc_mrr_at_100_diff1
value: 28.686498093818564
- type: nauc_mrr_at_100_max
value: 16.688173945854402
- type: nauc_mrr_at_100_std
value: -4.90598798803822
- type: nauc_mrr_at_10_diff1
value: 28.82460941424038
- type: nauc_mrr_at_10_max
value: 16.510644042417084
- type: nauc_mrr_at_10_std
value: -5.339958505172009
- type: nauc_mrr_at_1_diff1
value: 34.33807774677732
- type: nauc_mrr_at_1_max
value: 20.45291712510333
- type: nauc_mrr_at_1_std
value: -6.922645236892996
- type: nauc_mrr_at_20_diff1
value: 28.69247665330908
- type: nauc_mrr_at_20_max
value: 16.62791528528386
- type: nauc_mrr_at_20_std
value: -5.092785887600711
- type: nauc_mrr_at_3_diff1
value: 29.290860767239312
- type: nauc_mrr_at_3_max
value: 16.38255487970124
- type: nauc_mrr_at_3_std
value: -7.432562336997352
- type: nauc_mrr_at_5_diff1
value: 28.828148893662398
- type: nauc_mrr_at_5_max
value: 16.912586765582905
- type: nauc_mrr_at_5_std
value: -6.185804675986914
- type: nauc_ndcg_at_1000_diff1
value: 27.309410657571785
- type: nauc_ndcg_at_1000_max
value: 14.649682696366165
- type: nauc_ndcg_at_1000_std
value: -0.5489983812758055
- type: nauc_ndcg_at_100_diff1
value: 26.910525741498393
- type: nauc_ndcg_at_100_max
value: 15.076985446932193
- type: nauc_ndcg_at_100_std
value: -1.8950871581487898
- type: nauc_ndcg_at_10_diff1
value: 28.00932597205862
- type: nauc_ndcg_at_10_max
value: 14.797077867874442
- type: nauc_ndcg_at_10_std
value: -4.267843055074893
- type: nauc_ndcg_at_1_diff1
value: 34.33807774677732
- type: nauc_ndcg_at_1_max
value: 20.45291712510333
- type: nauc_ndcg_at_1_std
value: -6.922645236892996
- type: nauc_ndcg_at_20_diff1
value: 27.382899464152366
- type: nauc_ndcg_at_20_max
value: 14.986274451755072
- type: nauc_ndcg_at_20_std
value: -3.0822069038645665
- type: nauc_ndcg_at_3_diff1
value: 28.432220536421777
- type: nauc_ndcg_at_3_max
value: 14.321785354708192
- type: nauc_ndcg_at_3_std
value: -7.499686293742728
- type: nauc_ndcg_at_5_diff1
value: 27.880753061285805
- type: nauc_ndcg_at_5_max
value: 14.872276671266299
- type: nauc_ndcg_at_5_std
value: -5.843553028670821
- type: nauc_precision_at_1000_diff1
value: 1.2054794765973806
- type: nauc_precision_at_1000_max
value: -2.9890375928858197
- type: nauc_precision_at_1000_std
value: 9.673411560271315
- type: nauc_precision_at_100_diff1
value: 15.520027853569504
- type: nauc_precision_at_100_max
value: 10.613328032221544
- type: nauc_precision_at_100_std
value: 6.202043473690328
- type: nauc_precision_at_10_diff1
value: 22.519305955225967
- type: nauc_precision_at_10_max
value: 13.175610226423181
- type: nauc_precision_at_10_std
value: 0.20653933581209644
- type: nauc_precision_at_1_diff1
value: 34.33807774677732
- type: nauc_precision_at_1_max
value: 20.45291712510333
- type: nauc_precision_at_1_std
value: -6.922645236892996
- type: nauc_precision_at_20_diff1
value: 20.245876915517066
- type: nauc_precision_at_20_max
value: 13.163241999366477
- type: nauc_precision_at_20_std
value: 3.31158401781611
- type: nauc_precision_at_3_diff1
value: 23.83680559850096
- type: nauc_precision_at_3_max
value: 11.393759154805142
- type: nauc_precision_at_3_std
value: -8.438766003819104
- type: nauc_precision_at_5_diff1
value: 22.838234962034168
- type: nauc_precision_at_5_max
value: 13.881058833377649
- type: nauc_precision_at_5_std
value: -3.7337045513771745
- type: nauc_recall_at_1000_diff1
value: 22.15205340453375
- type: nauc_recall_at_1000_max
value: 8.73027409332576
- type: nauc_recall_at_1000_std
value: 22.37256072062562
- type: nauc_recall_at_100_diff1
value: 20.88031166008365
- type: nauc_recall_at_100_max
value: 12.338348522414508
- type: nauc_recall_at_100_std
value: 6.332498952277319
- type: nauc_recall_at_10_diff1
value: 25.400373762163714
- type: nauc_recall_at_10_max
value: 12.475974675193605
- type: nauc_recall_at_10_std
value: -1.2784524840082803
- type: nauc_recall_at_1_diff1
value: 34.19820381105881
- type: nauc_recall_at_1_max
value: 19.40226008766731
- type: nauc_recall_at_1_std
value: -6.841796961195136
- type: nauc_recall_at_20_diff1
value: 23.65244983531732
- type: nauc_recall_at_20_max
value: 12.939746629309528
- type: nauc_recall_at_20_std
value: 1.9368049837461982
- type: nauc_recall_at_3_diff1
value: 25.239472329225578
- type: nauc_recall_at_3_max
value: 10.851916276600768
- type: nauc_recall_at_3_std
value: -7.845478941175809
- type: nauc_recall_at_5_diff1
value: 24.587232792243803
- type: nauc_recall_at_5_max
value: 12.327381094603336
- type: nauc_recall_at_5_std
value: -4.431325781211059
- type: ndcg_at_1
value: 13.123999999999999
- type: ndcg_at_10
value: 18.494
- type: ndcg_at_100
value: 23.307
- type: ndcg_at_1000
value: 26.522000000000002
- type: ndcg_at_20
value: 19.932
- type: ndcg_at_3
value: 15.226999999999999
- type: ndcg_at_5
value: 16.352
- type: precision_at_1
value: 13.123999999999999
- type: precision_at_10
value: 2.994
- type: precision_at_100
value: 0.588
- type: precision_at_1000
value: 0.093
- type: precision_at_20
value: 1.848
- type: precision_at_3
value: 6.161
- type: precision_at_5
value: 4.324999999999999
- type: recall_at_1
value: 12.113
- type: recall_at_10
value: 25.912000000000003
- type: recall_at_100
value: 49.112
- type: recall_at_1000
value: 74.208
- type: recall_at_20
value: 31.226
- type: recall_at_3
value: 16.956
- type: recall_at_5
value: 19.667
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: main_score
value: 19.737
- type: map_at_1
value: 7.580000000000001
- type: map_at_10
value: 13.288
- type: map_at_100
value: 14.777999999999999
- type: map_at_1000
value: 14.982000000000001
- type: map_at_20
value: 13.969000000000001
- type: map_at_3
value: 10.871
- type: map_at_5
value: 12.009
- type: mrr_at_1
value: 17.133550488599347
- type: mrr_at_10
value: 26.558450959102398
- type: mrr_at_100
value: 27.706190405221943
- type: mrr_at_1000
value: 27.769512197225342
- type: mrr_at_20
value: 27.2873997190966
- type: mrr_at_3
value: 23.203040173724187
- type: mrr_at_5
value: 24.97176981541797
- type: nauc_map_at_1000_diff1
value: 24.72960374178977
- type: nauc_map_at_1000_max
value: 24.480735633901148
- type: nauc_map_at_1000_std
value: 13.793019923391537
- type: nauc_map_at_100_diff1
value: 24.70242778622659
- type: nauc_map_at_100_max
value: 24.312935578677994
- type: nauc_map_at_100_std
value: 13.557776976404154
- type: nauc_map_at_10_diff1
value: 25.062343539223704
- type: nauc_map_at_10_max
value: 23.281714659693968
- type: nauc_map_at_10_std
value: 11.764008031776111
- type: nauc_map_at_1_diff1
value: 34.84443951215321
- type: nauc_map_at_1_max
value: 23.27803526667906
- type: nauc_map_at_1_std
value: 6.533433240791793
- type: nauc_map_at_20_diff1
value: 24.829658985975623
- type: nauc_map_at_20_max
value: 23.479388707533953
- type: nauc_map_at_20_std
value: 12.527441286050017
- type: nauc_map_at_3_diff1
value: 25.332429880275175
- type: nauc_map_at_3_max
value: 20.852134738989523
- type: nauc_map_at_3_std
value: 8.451908175536312
- type: nauc_map_at_5_diff1
value: 24.700749559954794
- type: nauc_map_at_5_max
value: 21.513612585855956
- type: nauc_map_at_5_std
value: 9.878132842170151
- type: nauc_mrr_at_1000_diff1
value: 21.427128632298302
- type: nauc_mrr_at_1000_max
value: 26.992365852241146
- type: nauc_mrr_at_1000_std
value: 17.321690450890923
- type: nauc_mrr_at_100_diff1
value: 21.427383085782928
- type: nauc_mrr_at_100_max
value: 26.98184853141775
- type: nauc_mrr_at_100_std
value: 17.328094756874613
- type: nauc_mrr_at_10_diff1
value: 21.369108071516347
- type: nauc_mrr_at_10_max
value: 26.902002317172485
- type: nauc_mrr_at_10_std
value: 16.94045381313827
- type: nauc_mrr_at_1_diff1
value: 28.59157297539116
- type: nauc_mrr_at_1_max
value: 26.541603377090272
- type: nauc_mrr_at_1_std
value: 12.319135936486488
- type: nauc_mrr_at_20_diff1
value: 21.2637422505419
- type: nauc_mrr_at_20_max
value: 26.891762697769135
- type: nauc_mrr_at_20_std
value: 17.332417370892916
- type: nauc_mrr_at_3_diff1
value: 21.531125666898667
- type: nauc_mrr_at_3_max
value: 25.0422060271623
- type: nauc_mrr_at_3_std
value: 14.347699109361416
- type: nauc_mrr_at_5_diff1
value: 20.90283927121716
- type: nauc_mrr_at_5_max
value: 25.881301712313892
- type: nauc_mrr_at_5_std
value: 15.7460269053894
- type: nauc_ndcg_at_1000_diff1
value: 21.30311098816425
- type: nauc_ndcg_at_1000_max
value: 30.867798726301167
- type: nauc_ndcg_at_1000_std
value: 24.11583525958116
- type: nauc_ndcg_at_100_diff1
value: 20.90637661138601
- type: nauc_ndcg_at_100_max
value: 28.903383155219046
- type: nauc_ndcg_at_100_std
value: 21.700698920603987
- type: nauc_ndcg_at_10_diff1
value: 21.877322734445865
- type: nauc_ndcg_at_10_max
value: 25.722202242090937
- type: nauc_ndcg_at_10_std
value: 16.313273898123086
- type: nauc_ndcg_at_1_diff1
value: 28.59157297539116
- type: nauc_ndcg_at_1_max
value: 26.541603377090272
- type: nauc_ndcg_at_1_std
value: 12.319135936486488
- type: nauc_ndcg_at_20_diff1
value: 21.352023081638986
- type: nauc_ndcg_at_20_max
value: 26.023607863730085
- type: nauc_ndcg_at_20_std
value: 18.159966552384855
- type: nauc_ndcg_at_3_diff1
value: 21.584694082829326
- type: nauc_ndcg_at_3_max
value: 22.277158070601683
- type: nauc_ndcg_at_3_std
value: 11.280093739110814
- type: nauc_ndcg_at_5_diff1
value: 21.22794762775943
- type: nauc_ndcg_at_5_max
value: 22.814546433767998
- type: nauc_ndcg_at_5_std
value: 13.07693075742485
- type: nauc_precision_at_1000_diff1
value: 1.229127826394365
- type: nauc_precision_at_1000_max
value: 30.428220237747745
- type: nauc_precision_at_1000_std
value: 35.48684383703058
- type: nauc_precision_at_100_diff1
value: 5.839822502358944
- type: nauc_precision_at_100_max
value: 31.749689157158727
- type: nauc_precision_at_100_std
value: 33.030884537557846
- type: nauc_precision_at_10_diff1
value: 13.618894319397986
- type: nauc_precision_at_10_max
value: 29.944256877239983
- type: nauc_precision_at_10_std
value: 25.16799740254062
- type: nauc_precision_at_1_diff1
value: 28.59157297539116
- type: nauc_precision_at_1_max
value: 26.541603377090272
- type: nauc_precision_at_1_std
value: 12.319135936486488
- type: nauc_precision_at_20_diff1
value: 11.016546432068667
- type: nauc_precision_at_20_max
value: 29.384029988434037
- type: nauc_precision_at_20_std
value: 28.29412908144535
- type: nauc_precision_at_3_diff1
value: 14.486980680974531
- type: nauc_precision_at_3_max
value: 22.941300149012807
- type: nauc_precision_at_3_std
value: 15.948074376558303
- type: nauc_precision_at_5_diff1
value: 13.059031709771709
- type: nauc_precision_at_5_max
value: 25.538800002473216
- type: nauc_precision_at_5_std
value: 20.292315419905833
- type: nauc_recall_at_1000_diff1
value: 12.480839027412872
- type: nauc_recall_at_1000_max
value: 37.93110145252946
- type: nauc_recall_at_1000_std
value: 42.06127213739258
- type: nauc_recall_at_100_diff1
value: 11.493155880852662
- type: nauc_recall_at_100_max
value: 27.360977043238695
- type: nauc_recall_at_100_std
value: 28.13450624683099
- type: nauc_recall_at_10_diff1
value: 16.27123527594846
- type: nauc_recall_at_10_max
value: 23.449040506685094
- type: nauc_recall_at_10_std
value: 17.88389362914695
- type: nauc_recall_at_1_diff1
value: 34.84443951215321
- type: nauc_recall_at_1_max
value: 23.27803526667906
- type: nauc_recall_at_1_std
value: 6.533433240791793
- type: nauc_recall_at_20_diff1
value: 14.084418800297216
- type: nauc_recall_at_20_max
value: 21.81909793663393
- type: nauc_recall_at_20_std
value: 20.44410671487353
- type: nauc_recall_at_3_diff1
value: 17.842240049745378
- type: nauc_recall_at_3_max
value: 18.51009355096147
- type: nauc_recall_at_3_std
value: 9.601196022949464
- type: nauc_recall_at_5_diff1
value: 15.974583965720079
- type: nauc_recall_at_5_max
value: 19.18647734660961
- type: nauc_recall_at_5_std
value: 12.592886956245533
- type: ndcg_at_1
value: 17.134
- type: ndcg_at_10
value: 19.737
- type: ndcg_at_100
value: 26.605
- type: ndcg_at_1000
value: 30.625999999999998
- type: ndcg_at_20
value: 22.049
- type: ndcg_at_3
value: 15.219
- type: ndcg_at_5
value: 16.730999999999998
- type: precision_at_1
value: 17.134
- type: precision_at_10
value: 6.502
- type: precision_at_100
value: 1.393
- type: precision_at_1000
value: 0.213
- type: precision_at_20
value: 4.215
- type: precision_at_3
value: 11.488
- type: precision_at_5
value: 9.121
- type: recall_at_1
value: 7.580000000000001
- type: recall_at_10
value: 24.907
- type: recall_at_100
value: 49.186
- type: recall_at_1000
value: 72.18299999999999
- type: recall_at_20
value: 31.623
- type: recall_at_3
value: 14.111
- type: recall_at_5
value: 18.141
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: main_score
value: 25.516
- type: map_at_1
value: 4.585
- type: map_at_10
value: 10.558
- type: map_at_100
value: 14.885000000000002
- type: map_at_1000
value: 15.915000000000001
- type: map_at_20
value: 12.242
- type: map_at_3
value: 7.393
- type: map_at_5
value: 8.594
- type: mrr_at_1
value: 44.5
- type: mrr_at_10
value: 54.874107142857135
- type: mrr_at_100
value: 55.48600960098919
- type: mrr_at_1000
value: 55.51079614224205
- type: mrr_at_20
value: 55.27255238526521
- type: mrr_at_3
value: 52.04166666666667
- type: mrr_at_5
value: 53.516666666666666
- type: nauc_map_at_1000_diff1
value: 28.409792363817722
- type: nauc_map_at_1000_max
value: 29.789652299261782
- type: nauc_map_at_1000_std
value: 30.88764977969059
- type: nauc_map_at_100_diff1
value: 28.73278145547276
- type: nauc_map_at_100_max
value: 27.28526713063023
- type: nauc_map_at_100_std
value: 28.033272815666855
- type: nauc_map_at_10_diff1
value: 35.33410925649162
- type: nauc_map_at_10_max
value: 11.181399501220257
- type: nauc_map_at_10_std
value: 13.180775434092862
- type: nauc_map_at_1_diff1
value: 45.86732346705817
- type: nauc_map_at_1_max
value: -0.7337028924656861
- type: nauc_map_at_1_std
value: 3.969007656387463
- type: nauc_map_at_20_diff1
value: 32.737563371691465
- type: nauc_map_at_20_max
value: 16.712015714292203
- type: nauc_map_at_20_std
value: 18.179837825281563
- type: nauc_map_at_3_diff1
value: 39.35894559294948
- type: nauc_map_at_3_max
value: 5.448695676931316
- type: nauc_map_at_3_std
value: 6.204172744817759
- type: nauc_map_at_5_diff1
value: 37.92885448467568
- type: nauc_map_at_5_max
value: 6.596337276392895
- type: nauc_map_at_5_std
value: 8.235596939594137
- type: nauc_mrr_at_1000_diff1
value: 33.42073777564439
- type: nauc_mrr_at_1000_max
value: 46.136596890287926
- type: nauc_mrr_at_1000_std
value: 29.278108581352296
- type: nauc_mrr_at_100_diff1
value: 33.43760365632699
- type: nauc_mrr_at_100_max
value: 46.15503090492029
- type: nauc_mrr_at_100_std
value: 29.291839612032778
- type: nauc_mrr_at_10_diff1
value: 33.37294072436522
- type: nauc_mrr_at_10_max
value: 45.88502015727753
- type: nauc_mrr_at_10_std
value: 28.974501161757132
- type: nauc_mrr_at_1_diff1
value: 37.038949494421324
- type: nauc_mrr_at_1_max
value: 43.6843515716405
- type: nauc_mrr_at_1_std
value: 29.062767577601583
- type: nauc_mrr_at_20_diff1
value: 33.44943708493421
- type: nauc_mrr_at_20_max
value: 46.100969958613554
- type: nauc_mrr_at_20_std
value: 29.137551697063817
- type: nauc_mrr_at_3_diff1
value: 32.932379921286085
- type: nauc_mrr_at_3_max
value: 45.830465307372144
- type: nauc_mrr_at_3_std
value: 28.98038995101691
- type: nauc_mrr_at_5_diff1
value: 33.01848752761743
- type: nauc_mrr_at_5_max
value: 45.74337639822611
- type: nauc_mrr_at_5_std
value: 28.57219445985183
- type: nauc_ndcg_at_1000_diff1
value: 29.031510049028775
- type: nauc_ndcg_at_1000_max
value: 40.5267703197412
- type: nauc_ndcg_at_1000_std
value: 42.3005865676892
- type: nauc_ndcg_at_100_diff1
value: 29.344739057831067
- type: nauc_ndcg_at_100_max
value: 33.37828801741486
- type: nauc_ndcg_at_100_std
value: 33.98191361448277
- type: nauc_ndcg_at_10_diff1
value: 31.589394876613508
- type: nauc_ndcg_at_10_max
value: 33.05362616825694
- type: nauc_ndcg_at_10_std
value: 28.519650410818052
- type: nauc_ndcg_at_1_diff1
value: 35.29470063230581
- type: nauc_ndcg_at_1_max
value: 31.551140366841896
- type: nauc_ndcg_at_1_std
value: 21.389198724937096
- type: nauc_ndcg_at_20_diff1
value: 31.43160990986207
- type: nauc_ndcg_at_20_max
value: 30.06950946963706
- type: nauc_ndcg_at_20_std
value: 27.355004276047907
- type: nauc_ndcg_at_3_diff1
value: 30.599637518682727
- type: nauc_ndcg_at_3_max
value: 36.791580459789216
- type: nauc_ndcg_at_3_std
value: 25.89479156863662
- type: nauc_ndcg_at_5_diff1
value: 31.29528680366849
- type: nauc_ndcg_at_5_max
value: 34.09363669130639
- type: nauc_ndcg_at_5_std
value: 26.748913229727943
- type: nauc_precision_at_1000_diff1
value: -4.271485933807063
- type: nauc_precision_at_1000_max
value: 25.366163422380914
- type: nauc_precision_at_1000_std
value: 25.530481013838568
- type: nauc_precision_at_100_diff1
value: 0.5495835131704634
- type: nauc_precision_at_100_max
value: 48.557901797757964
- type: nauc_precision_at_100_std
value: 41.815788332436234
- type: nauc_precision_at_10_diff1
value: 9.697772742135413
- type: nauc_precision_at_10_max
value: 47.43346995470456
- type: nauc_precision_at_10_std
value: 39.087209552850155
- type: nauc_precision_at_1_diff1
value: 37.038949494421324
- type: nauc_precision_at_1_max
value: 43.6843515716405
- type: nauc_precision_at_1_std
value: 29.062767577601583
- type: nauc_precision_at_20_diff1
value: 6.5884275452458185
- type: nauc_precision_at_20_max
value: 49.921978818717264
- type: nauc_precision_at_20_std
value: 41.48698751619454
- type: nauc_precision_at_3_diff1
value: 18.39181266067512
- type: nauc_precision_at_3_max
value: 47.13842403524872
- type: nauc_precision_at_3_std
value: 31.204774546957402
- type: nauc_precision_at_5_diff1
value: 14.366934091519495
- type: nauc_precision_at_5_max
value: 44.98856057041664
- type: nauc_precision_at_5_std
value: 33.86434633706037
- type: nauc_recall_at_1000_diff1
value: 19.132953877467653
- type: nauc_recall_at_1000_max
value: 26.484610396399543
- type: nauc_recall_at_1000_std
value: 44.59425418294402
- type: nauc_recall_at_100_diff1
value: 18.2269267679719
- type: nauc_recall_at_100_max
value: 19.23569401472271
- type: nauc_recall_at_100_std
value: 27.95048782794634
- type: nauc_recall_at_10_diff1
value: 29.636393882351232
- type: nauc_recall_at_10_max
value: -1.1451637872846188
- type: nauc_recall_at_10_std
value: 3.5050609115944673
- type: nauc_recall_at_1_diff1
value: 45.86732346705817
- type: nauc_recall_at_1_max
value: -0.7337028924656861
- type: nauc_recall_at_1_std
value: 3.969007656387463
- type: nauc_recall_at_20_diff1
value: 25.416606822860693
- type: nauc_recall_at_20_max
value: 3.507604434126167
- type: nauc_recall_at_20_std
value: 8.204428169089486
- type: nauc_recall_at_3_diff1
value: 33.37396491465469
- type: nauc_recall_at_3_max
value: 0.19079229494584185
- type: nauc_recall_at_3_std
value: 0.29554177247243896
- type: nauc_recall_at_5_diff1
value: 34.374853940101715
- type: nauc_recall_at_5_max
value: -0.09950975618055762
- type: nauc_recall_at_5_std
value: 1.3966333793032766
- type: ndcg_at_1
value: 32.375
- type: ndcg_at_10
value: 25.516
- type: ndcg_at_100
value: 29.213
- type: ndcg_at_1000
value: 36.004000000000005
- type: ndcg_at_20
value: 25.203999999999997
- type: ndcg_at_3
value: 27.889000000000003
- type: ndcg_at_5
value: 26.078000000000003
- type: precision_at_1
value: 44.5
- type: precision_at_10
value: 22.8
- type: precision_at_100
value: 7.305000000000001
- type: precision_at_1000
value: 1.517
- type: precision_at_20
value: 17.087
- type: precision_at_3
value: 34.083000000000006
- type: precision_at_5
value: 28.299999999999997
- type: recall_at_1
value: 4.585
- type: recall_at_10
value: 16.366
- type: recall_at_100
value: 36.771
- type: recall_at_1000
value: 60.239
- type: recall_at_20
value: 21.854000000000003
- type: recall_at_3
value: 8.651
- type: recall_at_5
value: 10.895000000000001
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 48.29
- type: f1
value: 44.290271587607116
- type: f1_weighted
value: 50.242229115627325
- type: main_score
value: 48.29
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: main_score
value: 33.504
- type: map_at_1
value: 18.044
- type: map_at_10
value: 27.644000000000002
- type: map_at_100
value: 28.679
- type: map_at_1000
value: 28.747
- type: map_at_20
value: 28.244999999999997
- type: map_at_3
value: 24.621000000000002
- type: map_at_5
value: 26.262999999999998
- type: mrr_at_1
value: 19.33693369336934
- type: mrr_at_10
value: 29.386295772434227
- type: mrr_at_100
value: 30.393555230790692
- type: mrr_at_1000
value: 30.453245469699535
- type: mrr_at_20
value: 29.9842151301138
- type: mrr_at_3
value: 26.240124012401083
- type: mrr_at_5
value: 27.966046604660388
- type: nauc_map_at_1000_diff1
value: 21.197113358912173
- type: nauc_map_at_1000_max
value: 5.360224767609041
- type: nauc_map_at_1000_std
value: -7.226277841712086
- type: nauc_map_at_100_diff1
value: 21.193070506906462
- type: nauc_map_at_100_max
value: 5.356701213156949
- type: nauc_map_at_100_std
value: -7.234472044843086
- type: nauc_map_at_10_diff1
value: 21.21214854687487
- type: nauc_map_at_10_max
value: 5.013072982452992
- type: nauc_map_at_10_std
value: -7.794680387167297
- type: nauc_map_at_1_diff1
value: 25.128729099735956
- type: nauc_map_at_1_max
value: 3.207160376933345
- type: nauc_map_at_1_std
value: -8.943144740029735
- type: nauc_map_at_20_diff1
value: 21.155814570928587
- type: nauc_map_at_20_max
value: 5.259582088223793
- type: nauc_map_at_20_std
value: -7.385539946755028
- type: nauc_map_at_3_diff1
value: 22.103849786883735
- type: nauc_map_at_3_max
value: 4.351764088403068
- type: nauc_map_at_3_std
value: -8.59002521517384
- type: nauc_map_at_5_diff1
value: 21.584255518496324
- type: nauc_map_at_5_max
value: 4.555448236787204
- type: nauc_map_at_5_std
value: -8.365665226907986
- type: nauc_mrr_at_1000_diff1
value: 21.116177599117904
- type: nauc_mrr_at_1000_max
value: 5.379088881401016
- type: nauc_mrr_at_1000_std
value: -7.396050121471304
- type: nauc_mrr_at_100_diff1
value: 21.1061464811609
- type: nauc_mrr_at_100_max
value: 5.388746595523867
- type: nauc_mrr_at_100_std
value: -7.388052758239189
- type: nauc_mrr_at_10_diff1
value: 21.06141412827479
- type: nauc_mrr_at_10_max
value: 5.066514297953804
- type: nauc_mrr_at_10_std
value: -7.851387966112141
- type: nauc_mrr_at_1_diff1
value: 24.9399024874596
- type: nauc_mrr_at_1_max
value: 2.934019757965467
- type: nauc_mrr_at_1_std
value: -9.197995552521036
- type: nauc_mrr_at_20_diff1
value: 21.039101291564997
- type: nauc_mrr_at_20_max
value: 5.324147531031454
- type: nauc_mrr_at_20_std
value: -7.494277750700694
- type: nauc_mrr_at_3_diff1
value: 21.911864158855586
- type: nauc_mrr_at_3_max
value: 4.338076809740059
- type: nauc_mrr_at_3_std
value: -8.647194753014166
- type: nauc_mrr_at_5_diff1
value: 21.420994334374488
- type: nauc_mrr_at_5_max
value: 4.60819661350377
- type: nauc_mrr_at_5_std
value: -8.37508016803357
- type: nauc_ndcg_at_1000_diff1
value: 19.72912863917798
- type: nauc_ndcg_at_1000_max
value: 7.646491748940034
- type: nauc_ndcg_at_1000_std
value: -4.07147298781353
- type: nauc_ndcg_at_100_diff1
value: 19.611359257064237
- type: nauc_ndcg_at_100_max
value: 7.75610047268901
- type: nauc_ndcg_at_100_std
value: -4.062699446620666
- type: nauc_ndcg_at_10_diff1
value: 19.52738041897796
- type: nauc_ndcg_at_10_max
value: 6.2360420956357725
- type: nauc_ndcg_at_10_std
value: -6.644807690678321
- type: nauc_ndcg_at_1_diff1
value: 24.9399024874596
- type: nauc_ndcg_at_1_max
value: 2.934019757965467
- type: nauc_ndcg_at_1_std
value: -9.197995552521036
- type: nauc_ndcg_at_20_diff1
value: 19.33243817572564
- type: nauc_ndcg_at_20_max
value: 7.146935296531151
- type: nauc_ndcg_at_20_std
value: -5.175504991507281
- type: nauc_ndcg_at_3_diff1
value: 21.154756174209307
- type: nauc_ndcg_at_3_max
value: 4.713982551973281
- type: nauc_ndcg_at_3_std
value: -8.380199025472018
- type: nauc_ndcg_at_5_diff1
value: 20.324843060516955
- type: nauc_ndcg_at_5_max
value: 5.130345378847693
- type: nauc_ndcg_at_5_std
value: -7.943266710819419
- type: nauc_precision_at_1000_diff1
value: 0.4664007752705989
- type: nauc_precision_at_1000_max
value: 19.178304880632005
- type: nauc_precision_at_1000_std
value: 18.97537247447329
- type: nauc_precision_at_100_diff1
value: 8.442165363066986
- type: nauc_precision_at_100_max
value: 18.426727112237952
- type: nauc_precision_at_100_std
value: 13.668898642865269
- type: nauc_precision_at_10_diff1
value: 13.955990554790848
- type: nauc_precision_at_10_max
value: 10.114627302552769
- type: nauc_precision_at_10_std
value: -2.6328324881532263
- type: nauc_precision_at_1_diff1
value: 24.9399024874596
- type: nauc_precision_at_1_max
value: 2.934019757965467
- type: nauc_precision_at_1_std
value: -9.197995552521036
- type: nauc_precision_at_20_diff1
value: 11.81009397896608
- type: nauc_precision_at_20_max
value: 13.552268095662074
- type: nauc_precision_at_20_std
value: 3.40206785511483
- type: nauc_precision_at_3_diff1
value: 18.571494545732914
- type: nauc_precision_at_3_max
value: 5.863463077194485
- type: nauc_precision_at_3_std
value: -7.616080429294618
- type: nauc_precision_at_5_diff1
value: 16.529672676412613
- type: nauc_precision_at_5_max
value: 6.739757756034394
- type: nauc_precision_at_5_std
value: -6.696702432485899
- type: nauc_recall_at_1000_diff1
value: 8.21901292719372
- type: nauc_recall_at_1000_max
value: 24.727650913551372
- type: nauc_recall_at_1000_std
value: 27.25469920285314
- type: nauc_recall_at_100_diff1
value: 12.1659312543603
- type: nauc_recall_at_100_max
value: 18.333798430261503
- type: nauc_recall_at_100_std
value: 13.073233154192657
- type: nauc_recall_at_10_diff1
value: 14.210250438173627
- type: nauc_recall_at_10_max
value: 9.272403472015942
- type: nauc_recall_at_10_std
value: -3.0236654339158395
- type: nauc_recall_at_1_diff1
value: 25.128729099735956
- type: nauc_recall_at_1_max
value: 3.207160376933345
- type: nauc_recall_at_1_std
value: -8.943144740029735
- type: nauc_recall_at_20_diff1
value: 12.949168944136929
- type: nauc_recall_at_20_max
value: 12.842070355653451
- type: nauc_recall_at_20_std
value: 2.869920583633798
- type: nauc_recall_at_3_diff1
value: 18.496377801915955
- type: nauc_recall_at_3_max
value: 5.467087584819722
- type: nauc_recall_at_3_std
value: -7.56424448936203
- type: nauc_recall_at_5_diff1
value: 16.66309779367226
- type: nauc_recall_at_5_max
value: 6.313983077243061
- type: nauc_recall_at_5_std
value: -6.606213139129608
- type: ndcg_at_1
value: 19.337
- type: ndcg_at_10
value: 33.504
- type: ndcg_at_100
value: 38.68
- type: ndcg_at_1000
value: 40.474
- type: ndcg_at_20
value: 35.663
- type: ndcg_at_3
value: 27.232
- type: ndcg_at_5
value: 30.177
- type: precision_at_1
value: 19.337
- type: precision_at_10
value: 5.473
- type: precision_at_100
value: 0.8250000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 3.212
- type: precision_at_3
value: 11.901
- type: precision_at_5
value: 8.713
- type: recall_at_1
value: 18.044
- type: recall_at_10
value: 50.26199999999999
- type: recall_at_100
value: 74.25
- type: recall_at_1000
value: 87.905
- type: recall_at_20
value: 58.550999999999995
- type: recall_at_3
value: 33.161
- type: recall_at_5
value: 40.198
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: main_score
value: 17.976
- type: map_at_1
value: 7.792000000000001
- type: map_at_10
value: 13.0
- type: map_at_100
value: 14.100999999999999
- type: map_at_1000
value: 14.301
- type: map_at_20
value: 13.52
- type: map_at_3
value: 10.843
- type: map_at_5
value: 11.878
- type: mrr_at_1
value: 15.895061728395063
- type: mrr_at_10
value: 22.31193660591808
- type: mrr_at_100
value: 23.2877699627266
- type: mrr_at_1000
value: 23.381067507259456
- type: mrr_at_20
value: 22.827454136542826
- type: mrr_at_3
value: 19.88168724279835
- type: mrr_at_5
value: 20.961934156378597
- type: nauc_map_at_1000_diff1
value: 26.692130203802293
- type: nauc_map_at_1000_max
value: 6.4075849334836565
- type: nauc_map_at_1000_std
value: -3.73275024757571
- type: nauc_map_at_100_diff1
value: 26.632161984458726
- type: nauc_map_at_100_max
value: 6.2287093296309335
- type: nauc_map_at_100_std
value: -3.846917465734305
- type: nauc_map_at_10_diff1
value: 26.82793337901525
- type: nauc_map_at_10_max
value: 5.964060354762653
- type: nauc_map_at_10_std
value: -4.866678549363916
- type: nauc_map_at_1_diff1
value: 34.384366407953124
- type: nauc_map_at_1_max
value: 9.604169568417987
- type: nauc_map_at_1_std
value: -6.260955282260347
- type: nauc_map_at_20_diff1
value: 26.93171611922343
- type: nauc_map_at_20_max
value: 5.834195409943979
- type: nauc_map_at_20_std
value: -4.681006600256935
- type: nauc_map_at_3_diff1
value: 28.36058264123047
- type: nauc_map_at_3_max
value: 7.508527545122337
- type: nauc_map_at_3_std
value: -4.988672072096864
- type: nauc_map_at_5_diff1
value: 27.2345922474392
- type: nauc_map_at_5_max
value: 6.233631918196583
- type: nauc_map_at_5_std
value: -5.591302232606139
- type: nauc_mrr_at_1000_diff1
value: 25.0035885940064
- type: nauc_mrr_at_1000_max
value: 6.896052718656624
- type: nauc_mrr_at_1000_std
value: -6.481600423055105
- type: nauc_mrr_at_100_diff1
value: 24.993122116083757
- type: nauc_mrr_at_100_max
value: 6.837774558302377
- type: nauc_mrr_at_100_std
value: -6.476270787729837
- type: nauc_mrr_at_10_diff1
value: 24.986704881829326
- type: nauc_mrr_at_10_max
value: 6.730638735416298
- type: nauc_mrr_at_10_std
value: -6.875384862951013
- type: nauc_mrr_at_1_diff1
value: 30.757462704144473
- type: nauc_mrr_at_1_max
value: 9.494036047978879
- type: nauc_mrr_at_1_std
value: -8.55327939175485
- type: nauc_mrr_at_20_diff1
value: 25.066582206134203
- type: nauc_mrr_at_20_max
value: 6.640370084188472
- type: nauc_mrr_at_20_std
value: -6.861230381817542
- type: nauc_mrr_at_3_diff1
value: 24.700095299205675
- type: nauc_mrr_at_3_max
value: 6.81056900129325
- type: nauc_mrr_at_3_std
value: -7.54289500858466
- type: nauc_mrr_at_5_diff1
value: 24.911830324957428
- type: nauc_mrr_at_5_max
value: 6.487419609168333
- type: nauc_mrr_at_5_std
value: -7.559191642416501
- type: nauc_ndcg_at_1000_diff1
value: 24.271059266102714
- type: nauc_ndcg_at_1000_max
value: 9.036727250049996
- type: nauc_ndcg_at_1000_std
value: 0.9146422915784614
- type: nauc_ndcg_at_100_diff1
value: 23.3906476337681
- type: nauc_ndcg_at_100_max
value: 6.666510188169236
- type: nauc_ndcg_at_100_std
value: -0.13425031252447506
- type: nauc_ndcg_at_10_diff1
value: 24.467859958572237
- type: nauc_ndcg_at_10_max
value: 5.180189255703774
- type: nauc_ndcg_at_10_std
value: -4.564295424146644
- type: nauc_ndcg_at_1_diff1
value: 30.757462704144473
- type: nauc_ndcg_at_1_max
value: 9.494036047978879
- type: nauc_ndcg_at_1_std
value: -8.55327939175485
- type: nauc_ndcg_at_20_diff1
value: 24.423852550652708
- type: nauc_ndcg_at_20_max
value: 4.621408762131097
- type: nauc_ndcg_at_20_std
value: -4.174045549905428
- type: nauc_ndcg_at_3_diff1
value: 25.581953443217888
- type: nauc_ndcg_at_3_max
value: 7.124469256934023
- type: nauc_ndcg_at_3_std
value: -6.179824512286984
- type: nauc_ndcg_at_5_diff1
value: 24.99310386834495
- type: nauc_ndcg_at_5_max
value: 5.556772674359943
- type: nauc_ndcg_at_5_std
value: -6.44181066458889
- type: nauc_precision_at_1000_diff1
value: 9.05364142609685
- type: nauc_precision_at_1000_max
value: 15.91160424741351
- type: nauc_precision_at_1000_std
value: 5.9579504982280795
- type: nauc_precision_at_100_diff1
value: 14.495341408480996
- type: nauc_precision_at_100_max
value: 10.619524667734845
- type: nauc_precision_at_100_std
value: 6.94473626177151
- type: nauc_precision_at_10_diff1
value: 17.681863001899455
- type: nauc_precision_at_10_max
value: 2.933379217123649
- type: nauc_precision_at_10_std
value: -6.189549061252104
- type: nauc_precision_at_1_diff1
value: 30.757462704144473
- type: nauc_precision_at_1_max
value: 9.494036047978879
- type: nauc_precision_at_1_std
value: -8.55327939175485
- type: nauc_precision_at_20_diff1
value: 16.85819808382462
- type: nauc_precision_at_20_max
value: 1.8703103333361615
- type: nauc_precision_at_20_std
value: -4.095334243709078
- type: nauc_precision_at_3_diff1
value: 21.936934551805678
- type: nauc_precision_at_3_max
value: 5.700969823325045
- type: nauc_precision_at_3_std
value: -7.50541930072883
- type: nauc_precision_at_5_diff1
value: 20.4629322334308
- type: nauc_precision_at_5_max
value: 3.570606410878902
- type: nauc_precision_at_5_std
value: -8.072847794719719
- type: nauc_recall_at_1000_diff1
value: 12.640253594366952
- type: nauc_recall_at_1000_max
value: 15.416517388620205
- type: nauc_recall_at_1000_std
value: 22.104957683222754
- type: nauc_recall_at_100_diff1
value: 11.611361782989556
- type: nauc_recall_at_100_max
value: 5.315964969533011
- type: nauc_recall_at_100_std
value: 10.76920407330154
- type: nauc_recall_at_10_diff1
value: 17.641989640006983
- type: nauc_recall_at_10_max
value: 2.506101915806224
- type: nauc_recall_at_10_std
value: -1.405488559040536
- type: nauc_recall_at_1_diff1
value: 34.384366407953124
- type: nauc_recall_at_1_max
value: 9.604169568417987
- type: nauc_recall_at_1_std
value: -6.260955282260347
- type: nauc_recall_at_20_diff1
value: 17.306971008788068
- type: nauc_recall_at_20_max
value: 1.178463149677817
- type: nauc_recall_at_20_std
value: -1.2622013006761976
- type: nauc_recall_at_3_diff1
value: 21.599954957857086
- type: nauc_recall_at_3_max
value: 4.5988093302070405
- type: nauc_recall_at_3_std
value: -4.111196297634325
- type: nauc_recall_at_5_diff1
value: 18.40790560459866
- type: nauc_recall_at_5_max
value: 2.227515887769542
- type: nauc_recall_at_5_std
value: -5.122348436923138
- type: ndcg_at_1
value: 15.895000000000001
- type: ndcg_at_10
value: 17.976
- type: ndcg_at_100
value: 23.543
- type: ndcg_at_1000
value: 27.942
- type: ndcg_at_20
value: 19.73
- type: ndcg_at_3
value: 14.652000000000001
- type: ndcg_at_5
value: 15.581
- type: precision_at_1
value: 15.895000000000001
- type: precision_at_10
value: 5.2780000000000005
- type: precision_at_100
value: 1.0710000000000002
- type: precision_at_1000
value: 0.185
- type: precision_at_20
value: 3.3099999999999996
- type: precision_at_3
value: 9.774
- type: precision_at_5
value: 7.438000000000001
- type: recall_at_1
value: 7.792000000000001
- type: recall_at_10
value: 23.491999999999997
- type: recall_at_100
value: 46.01
- type: recall_at_1000
value: 72.858
- type: recall_at_20
value: 29.262
- type: recall_at_3
value: 13.442000000000002
- type: recall_at_5
value: 16.885
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: main_score
value: 40.216
- type: map_at_1
value: 23.16
- type: map_at_10
value: 32.046
- type: map_at_100
value: 33.0
- type: map_at_1000
value: 33.102
- type: map_at_20
value: 32.568000000000005
- type: map_at_3
value: 29.654999999999998
- type: map_at_5
value: 31.011
- type: mrr_at_1
value: 46.320054017555705
- type: mrr_at_10
value: 53.95531762108416
- type: mrr_at_100
value: 54.57200329952687
- type: mrr_at_1000
value: 54.613276611506464
- type: mrr_at_20
value: 54.31181386260544
- type: mrr_at_3
value: 52.09318028359241
- type: mrr_at_5
value: 53.16205266711693
- type: nauc_map_at_1000_diff1
value: 44.859067312276274
- type: nauc_map_at_1000_max
value: 25.916972606593696
- type: nauc_map_at_1000_std
value: 6.253445218067477
- type: nauc_map_at_100_diff1
value: 44.8632434061937
- type: nauc_map_at_100_max
value: 25.909099999441942
- type: nauc_map_at_100_std
value: 6.214788111779019
- type: nauc_map_at_10_diff1
value: 45.30759397690741
- type: nauc_map_at_10_max
value: 25.690927362066233
- type: nauc_map_at_10_std
value: 5.285259083844247
- type: nauc_map_at_1_diff1
value: 61.196409961814155
- type: nauc_map_at_1_max
value: 28.72930920023417
- type: nauc_map_at_1_std
value: 0.5023892901280935
- type: nauc_map_at_20_diff1
value: 45.03381245393179
- type: nauc_map_at_20_max
value: 25.80883711775135
- type: nauc_map_at_20_std
value: 5.813602144954199
- type: nauc_map_at_3_diff1
value: 47.606878718192625
- type: nauc_map_at_3_max
value: 26.25063014273412
- type: nauc_map_at_3_std
value: 3.8842714485913095
- type: nauc_map_at_5_diff1
value: 45.969349613068815
- type: nauc_map_at_5_max
value: 25.90509255737118
- type: nauc_map_at_5_std
value: 4.445890407273527
- type: nauc_mrr_at_1000_diff1
value: 58.09795156596312
- type: nauc_mrr_at_1000_max
value: 28.293914309719643
- type: nauc_mrr_at_1000_std
value: 2.9543852693821604
- type: nauc_mrr_at_100_diff1
value: 58.08973285225233
- type: nauc_mrr_at_100_max
value: 28.296027316962384
- type: nauc_mrr_at_100_std
value: 2.9669718825797387
- type: nauc_mrr_at_10_diff1
value: 58.1296976627478
- type: nauc_mrr_at_10_max
value: 28.214896438043247
- type: nauc_mrr_at_10_std
value: 2.6724211845588295
- type: nauc_mrr_at_1_diff1
value: 61.196409961814155
- type: nauc_mrr_at_1_max
value: 28.72930920023417
- type: nauc_mrr_at_1_std
value: 0.5023892901280935
- type: nauc_mrr_at_20_diff1
value: 58.07901672129855
- type: nauc_mrr_at_20_max
value: 28.261220041773193
- type: nauc_mrr_at_20_std
value: 2.8754516882066112
- type: nauc_mrr_at_3_diff1
value: 58.49251126681858
- type: nauc_mrr_at_3_max
value: 28.330048816492358
- type: nauc_mrr_at_3_std
value: 2.088307118099806
- type: nauc_mrr_at_5_diff1
value: 58.293498499452056
- type: nauc_mrr_at_5_max
value: 28.254147613755787
- type: nauc_mrr_at_5_std
value: 2.317453426169504
- type: nauc_ndcg_at_1000_diff1
value: 44.74813748409359
- type: nauc_ndcg_at_1000_max
value: 26.540352967644417
- type: nauc_ndcg_at_1000_std
value: 10.102814146840283
- type: nauc_ndcg_at_100_diff1
value: 44.87337180897993
- type: nauc_ndcg_at_100_max
value: 26.474465177673085
- type: nauc_ndcg_at_100_std
value: 9.579371689924795
- type: nauc_ndcg_at_10_diff1
value: 46.581223548767
- type: nauc_ndcg_at_10_max
value: 25.828889039362295
- type: nauc_ndcg_at_10_std
value: 6.0964295503096295
- type: nauc_ndcg_at_1_diff1
value: 61.196409961814155
- type: nauc_ndcg_at_1_max
value: 28.72930920023417
- type: nauc_ndcg_at_1_std
value: 0.5023892901280935
- type: nauc_ndcg_at_20_diff1
value: 45.77866051784014
- type: nauc_ndcg_at_20_max
value: 26.088161426584833
- type: nauc_ndcg_at_20_std
value: 7.520411389641454
- type: nauc_ndcg_at_3_diff1
value: 49.79589333047773
- type: nauc_ndcg_at_3_max
value: 26.5918118122357
- type: nauc_ndcg_at_3_std
value: 3.8100097440907477
- type: nauc_ndcg_at_5_diff1
value: 47.7687125131952
- type: nauc_ndcg_at_5_max
value: 26.124001776821682
- type: nauc_ndcg_at_5_std
value: 4.552169333444345
- type: nauc_precision_at_1000_diff1
value: 9.937767084200962
- type: nauc_precision_at_1000_max
value: 17.821085008921447
- type: nauc_precision_at_1000_std
value: 30.491638472583794
- type: nauc_precision_at_100_diff1
value: 20.162873612867944
- type: nauc_precision_at_100_max
value: 20.353909763458464
- type: nauc_precision_at_100_std
value: 23.235976792350037
- type: nauc_precision_at_10_diff1
value: 32.88560093643963
- type: nauc_precision_at_10_max
value: 21.411457505696205
- type: nauc_precision_at_10_std
value: 10.425552179784567
- type: nauc_precision_at_1_diff1
value: 61.196409961814155
- type: nauc_precision_at_1_max
value: 28.72930920023417
- type: nauc_precision_at_1_std
value: 0.5023892901280935
- type: nauc_precision_at_20_diff1
value: 28.258115065654987
- type: nauc_precision_at_20_max
value: 20.961811561439706
- type: nauc_precision_at_20_std
value: 14.46899018450582
- type: nauc_precision_at_3_diff1
value: 42.7620046846948
- type: nauc_precision_at_3_max
value: 24.705286955229948
- type: nauc_precision_at_3_std
value: 5.457836377466167
- type: nauc_precision_at_5_diff1
value: 37.60627429610388
- type: nauc_precision_at_5_max
value: 23.124944762838144
- type: nauc_precision_at_5_std
value: 6.786960218266853
- type: nauc_recall_at_1000_diff1
value: 9.937767084201072
- type: nauc_recall_at_1000_max
value: 17.821085008921614
- type: nauc_recall_at_1000_std
value: 30.491638472583965
- type: nauc_recall_at_100_diff1
value: 20.16287361286792
- type: nauc_recall_at_100_max
value: 20.353909763458358
- type: nauc_recall_at_100_std
value: 23.23597679234997
- type: nauc_recall_at_10_diff1
value: 32.88560093643965
- type: nauc_recall_at_10_max
value: 21.41145750569624
- type: nauc_recall_at_10_std
value: 10.425552179784642
- type: nauc_recall_at_1_diff1
value: 61.196409961814155
- type: nauc_recall_at_1_max
value: 28.72930920023417
- type: nauc_recall_at_1_std
value: 0.5023892901280935
- type: nauc_recall_at_20_diff1
value: 28.25811506565502
- type: nauc_recall_at_20_max
value: 20.961811561439756
- type: nauc_recall_at_20_std
value: 14.468990184505875
- type: nauc_recall_at_3_diff1
value: 42.76200468469484
- type: nauc_recall_at_3_max
value: 24.705286955229923
- type: nauc_recall_at_3_std
value: 5.4578363774661485
- type: nauc_recall_at_5_diff1
value: 37.60627429610391
- type: nauc_recall_at_5_max
value: 23.124944762838098
- type: nauc_recall_at_5_std
value: 6.786960218266914
- type: ndcg_at_1
value: 46.32
- type: ndcg_at_10
value: 40.216
- type: ndcg_at_100
value: 44.330000000000005
- type: ndcg_at_1000
value: 46.656
- type: ndcg_at_20
value: 41.787
- type: ndcg_at_3
value: 35.998000000000005
- type: ndcg_at_5
value: 38.089
- type: precision_at_1
value: 46.32
- type: precision_at_10
value: 8.641
- type: precision_at_100
value: 1.191
- type: precision_at_1000
value: 0.15
- type: precision_at_20
value: 4.828
- type: precision_at_3
value: 22.467000000000002
- type: precision_at_5
value: 15.137999999999998
- type: recall_at_1
value: 23.16
- type: recall_at_10
value: 43.207
- type: recall_at_100
value: 59.553999999999995
- type: recall_at_1000
value: 75.03699999999999
- type: recall_at_20
value: 48.285
- type: recall_at_3
value: 33.7
- type: recall_at_5
value: 37.846000000000004
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 70.126
- type: ap
value: 64.38953964700043
- type: ap_weighted
value: 64.38953964700043
- type: f1
value: 69.92812220701516
- type: f1_weighted
value: 69.92812220701516
- type: main_score
value: 70.126
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: main_score
value: 37.678
- type: map_at_1
value: 1.3
- type: map_at_10
value: 6.458
- type: map_at_100
value: 18.192
- type: map_at_1000
value: 22.869
- type: map_at_20
value: 9.508999999999999
- type: map_at_3
value: 2.7449999999999997
- type: map_at_5
value: 3.9989999999999997
- type: mrr_at_1
value: 67.44186046511628
- type: mrr_at_10
value: 76.70542635658914
- type: mrr_at_100
value: 76.75490681180933
- type: mrr_at_1000
value: 76.75897251354947
- type: mrr_at_20
value: 76.70542635658914
- type: mrr_at_3
value: 74.03100775193799
- type: mrr_at_5
value: 76.70542635658914
- type: nauc_map_at_1000_diff1
value: -9.887545588069491
- type: nauc_map_at_1000_max
value: 64.03933042840461
- type: nauc_map_at_1000_std
value: 65.23188262074746
- type: nauc_map_at_100_diff1
value: -10.206004224159292
- type: nauc_map_at_100_max
value: 56.69013155432794
- type: nauc_map_at_100_std
value: 59.28810375228662
- type: nauc_map_at_10_diff1
value: -17.04940102245024
- type: nauc_map_at_10_max
value: 27.273929641443555
- type: nauc_map_at_10_std
value: 27.82349143703665
- type: nauc_map_at_1_diff1
value: -26.202958880643145
- type: nauc_map_at_1_max
value: -7.124386540229982
- type: nauc_map_at_1_std
value: 0.6951328400074942
- type: nauc_map_at_20_diff1
value: -14.164361766078779
- type: nauc_map_at_20_max
value: 35.702893018714846
- type: nauc_map_at_20_std
value: 39.30480590474426
- type: nauc_map_at_3_diff1
value: -25.744666153328176
- type: nauc_map_at_3_max
value: 9.001802346350422
- type: nauc_map_at_3_std
value: 14.553440561965308
- type: nauc_map_at_5_diff1
value: -22.50484947409843
- type: nauc_map_at_5_max
value: 18.57285643186047
- type: nauc_map_at_5_std
value: 22.228488573704613
- type: nauc_mrr_at_1000_diff1
value: -47.733315106072844
- type: nauc_mrr_at_1000_max
value: 44.821461988966924
- type: nauc_mrr_at_1000_std
value: 47.84242487878596
- type: nauc_mrr_at_100_diff1
value: -47.727366114165626
- type: nauc_mrr_at_100_max
value: 44.83250848852219
- type: nauc_mrr_at_100_std
value: 47.852866594915966
- type: nauc_mrr_at_10_diff1
value: -47.88635303336966
- type: nauc_mrr_at_10_max
value: 44.96659313758439
- type: nauc_mrr_at_10_std
value: 47.8236450194703
- type: nauc_mrr_at_1_diff1
value: -39.17983238638767
- type: nauc_mrr_at_1_max
value: 39.6591497254911
- type: nauc_mrr_at_1_std
value: 37.90542432955914
- type: nauc_mrr_at_20_diff1
value: -47.88635303336966
- type: nauc_mrr_at_20_max
value: 44.96659313758439
- type: nauc_mrr_at_20_std
value: 47.8236450194703
- type: nauc_mrr_at_3_diff1
value: -46.2121294259396
- type: nauc_mrr_at_3_max
value: 44.10697671384829
- type: nauc_mrr_at_3_std
value: 49.383440451932195
- type: nauc_mrr_at_5_diff1
value: -47.88635303336966
- type: nauc_mrr_at_5_max
value: 44.96659313758439
- type: nauc_mrr_at_5_std
value: 47.8236450194703
- type: nauc_ndcg_at_1000_diff1
value: -28.786349342559653
- type: nauc_ndcg_at_1000_max
value: 59.97264099708227
- type: nauc_ndcg_at_1000_std
value: 68.20776309895734
- type: nauc_ndcg_at_100_diff1
value: -15.688954074018316
- type: nauc_ndcg_at_100_max
value: 60.23683014554728
- type: nauc_ndcg_at_100_std
value: 63.11339418621779
- type: nauc_ndcg_at_10_diff1
value: -24.90231794908744
- type: nauc_ndcg_at_10_max
value: 53.375692071166156
- type: nauc_ndcg_at_10_std
value: 52.48592330227771
- type: nauc_ndcg_at_1_diff1
value: -21.653521280252825
- type: nauc_ndcg_at_1_max
value: 14.274727299758839
- type: nauc_ndcg_at_1_std
value: 20.292187616514617
- type: nauc_ndcg_at_20_diff1
value: -22.118549404986005
- type: nauc_ndcg_at_20_max
value: 59.42642999251343
- type: nauc_ndcg_at_20_std
value: 60.036912592320654
- type: nauc_ndcg_at_3_diff1
value: -28.0998335530241
- type: nauc_ndcg_at_3_max
value: 37.19495998818337
- type: nauc_ndcg_at_3_std
value: 45.602451446392834
- type: nauc_ndcg_at_5_diff1
value: -29.3466175706748
- type: nauc_ndcg_at_5_max
value: 47.619470848266225
- type: nauc_ndcg_at_5_std
value: 53.344706345912115
- type: nauc_precision_at_1000_diff1
value: -6.998782483418799
- type: nauc_precision_at_1000_max
value: 53.11312314325285
- type: nauc_precision_at_1000_std
value: 48.25955635434035
- type: nauc_precision_at_100_diff1
value: -4.605735408234786
- type: nauc_precision_at_100_max
value: 65.51127106580617
- type: nauc_precision_at_100_std
value: 60.73394086559162
- type: nauc_precision_at_10_diff1
value: -20.30338592030741
- type: nauc_precision_at_10_max
value: 68.4564447240256
- type: nauc_precision_at_10_std
value: 58.60683771481885
- type: nauc_precision_at_1_diff1
value: -39.17983238638767
- type: nauc_precision_at_1_max
value: 39.6591497254911
- type: nauc_precision_at_1_std
value: 37.90542432955914
- type: nauc_precision_at_20_diff1
value: -17.26105647691607
- type: nauc_precision_at_20_max
value: 66.01915424661092
- type: nauc_precision_at_20_std
value: 60.93952502719073
- type: nauc_precision_at_3_diff1
value: -31.21293042037448
- type: nauc_precision_at_3_max
value: 62.24093293515494
- type: nauc_precision_at_3_std
value: 60.55027014842964
- type: nauc_precision_at_5_diff1
value: -29.57322674528564
- type: nauc_precision_at_5_max
value: 67.67852068990298
- type: nauc_precision_at_5_std
value: 62.04281793717718
- type: nauc_recall_at_1000_diff1
value: -32.248423680290855
- type: nauc_recall_at_1000_max
value: 50.18123492869779
- type: nauc_recall_at_1000_std
value: 60.66089355852352
- type: nauc_recall_at_100_diff1
value: -14.301809847601831
- type: nauc_recall_at_100_max
value: 44.515754859360854
- type: nauc_recall_at_100_std
value: 49.81279937525628
- type: nauc_recall_at_10_diff1
value: -16.93047529431789
- type: nauc_recall_at_10_max
value: 20.210519584735927
- type: nauc_recall_at_10_std
value: 21.352140573597637
- type: nauc_recall_at_1_diff1
value: -26.202958880643145
- type: nauc_recall_at_1_max
value: -7.124386540229982
- type: nauc_recall_at_1_std
value: 0.6951328400074942
- type: nauc_recall_at_20_diff1
value: -17.54223589626273
- type: nauc_recall_at_20_max
value: 27.07050603517775
- type: nauc_recall_at_20_std
value: 32.05685363558265
- type: nauc_recall_at_3_diff1
value: -23.618200725056937
- type: nauc_recall_at_3_max
value: 4.640818564571053
- type: nauc_recall_at_3_std
value: 8.168671193501167
- type: nauc_recall_at_5_diff1
value: -21.796040536265913
- type: nauc_recall_at_5_max
value: 12.040922147593534
- type: nauc_recall_at_5_std
value: 15.749947387697357
- type: ndcg_at_1
value: 44.186
- type: ndcg_at_10
value: 37.678
- type: ndcg_at_100
value: 37.508
- type: ndcg_at_1000
value: 46.955999999999996
- type: ndcg_at_20
value: 35.888999999999996
- type: ndcg_at_3
value: 39.298
- type: ndcg_at_5
value: 39.582
- type: precision_at_1
value: 67.44200000000001
- type: precision_at_10
value: 47.674
- type: precision_at_100
value: 25.0
- type: precision_at_1000
value: 5.202
- type: precision_at_20
value: 41.047
- type: precision_at_3
value: 55.814
- type: precision_at_5
value: 53.952999999999996
- type: recall_at_1
value: 1.3
- type: recall_at_10
value: 8.068999999999999
- type: recall_at_100
value: 32.096000000000004
- type: recall_at_1000
value: 59.51499999999999
- type: recall_at_20
value: 12.834000000000001
- type: recall_at_3
value: 3.056
- type: recall_at_5
value: 4.806
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.6110351117191
- type: f1
value: 89.7664246079241
- type: f1_weighted
value: 90.6866222833887
- type: main_score
value: 90.6110351117191
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 59.90424076607387
- type: f1
value: 40.877183239388046
- type: f1_weighted
value: 63.17863037028273
- type: main_score
value: 59.90424076607387
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 65.137861466039
- type: f1
value: 62.90244115213582
- type: f1_weighted
value: 64.11200345839086
- type: main_score
value: 65.137861466039
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 71.38870208473436
- type: f1
value: 70.05482587512654
- type: f1_weighted
value: 71.25688112025705
- type: main_score
value: 71.38870208473436
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: main_score
value: 29.317315039846775
- type: v_measure
value: 29.317315039846775
- type: v_measure_std
value: 1.5543590443494053
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: main_score
value: 25.68391422034485
- type: v_measure
value: 25.68391422034485
- type: v_measure_std
value: 1.729769358006023
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: main_score
value: 30.666907553958655
- type: map
value: 30.666907553958655
- type: mrr
value: 31.595166716117408
- type: nAUC_map_diff1
value: 9.04433618641072
- type: nAUC_map_max
value: -22.25112566123981
- type: nAUC_map_std
value: -7.843708225558461
- type: nAUC_mrr_diff1
value: 9.290814967375317
- type: nAUC_mrr_max
value: -16.507108590097268
- type: nAUC_mrr_std
value: -4.804937846268291
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: main_score
value: 27.16
- type: map_at_1
value: 4.561
- type: map_at_10
value: 9.27
- type: map_at_100
value: 11.644
- type: map_at_1000
value: 12.842999999999998
- type: map_at_20
value: 10.327
- type: map_at_3
value: 7.053
- type: map_at_5
value: 8.037999999999998
- type: mrr_at_1
value: 38.080495356037154
- type: mrr_at_10
value: 47.06840630989237
- type: mrr_at_100
value: 47.74539552696533
- type: mrr_at_1000
value: 47.79398428238601
- type: mrr_at_20
value: 47.39011213236981
- type: mrr_at_3
value: 44.94324045407637
- type: mrr_at_5
value: 46.08875128998968
- type: nauc_map_at_1000_diff1
value: 40.4041423598124
- type: nauc_map_at_1000_max
value: 28.030317236467305
- type: nauc_map_at_1000_std
value: 10.127441487340901
- type: nauc_map_at_100_diff1
value: 42.11665366054116
- type: nauc_map_at_100_max
value: 26.21149470991564
- type: nauc_map_at_100_std
value: 6.062707293500967
- type: nauc_map_at_10_diff1
value: 46.93633791543067
- type: nauc_map_at_10_max
value: 21.297836855982794
- type: nauc_map_at_10_std
value: -1.1914488274665422
- type: nauc_map_at_1_diff1
value: 50.61355369486035
- type: nauc_map_at_1_max
value: 7.072899231939653
- type: nauc_map_at_1_std
value: -8.829084633669
- type: nauc_map_at_20_diff1
value: 44.91818163266758
- type: nauc_map_at_20_max
value: 24.07822822706987
- type: nauc_map_at_20_std
value: 2.199092642576738
- type: nauc_map_at_3_diff1
value: 48.80951904378301
- type: nauc_map_at_3_max
value: 15.221884690575532
- type: nauc_map_at_3_std
value: -6.438393157982664
- type: nauc_map_at_5_diff1
value: 48.314911451618755
- type: nauc_map_at_5_max
value: 17.54244302114833
- type: nauc_map_at_5_std
value: -4.6416655677428915
- type: nauc_mrr_at_1000_diff1
value: 39.63070814105974
- type: nauc_mrr_at_1000_max
value: 39.811442869557354
- type: nauc_mrr_at_1000_std
value: 23.130168597259633
- type: nauc_mrr_at_100_diff1
value: 39.60800937804102
- type: nauc_mrr_at_100_max
value: 39.81499208988893
- type: nauc_mrr_at_100_std
value: 23.157626527293328
- type: nauc_mrr_at_10_diff1
value: 39.699195043308514
- type: nauc_mrr_at_10_max
value: 40.135379961488255
- type: nauc_mrr_at_10_std
value: 23.20287097378104
- type: nauc_mrr_at_1_diff1
value: 41.61660765429233
- type: nauc_mrr_at_1_max
value: 34.296676392780164
- type: nauc_mrr_at_1_std
value: 18.32511578460585
- type: nauc_mrr_at_20_diff1
value: 39.56543789508273
- type: nauc_mrr_at_20_max
value: 39.912772847130746
- type: nauc_mrr_at_20_std
value: 23.220799720122965
- type: nauc_mrr_at_3_diff1
value: 41.558644626992475
- type: nauc_mrr_at_3_max
value: 38.66702619348688
- type: nauc_mrr_at_3_std
value: 20.819707427206062
- type: nauc_mrr_at_5_diff1
value: 40.61298765750478
- type: nauc_mrr_at_5_max
value: 39.5367624676024
- type: nauc_mrr_at_5_std
value: 22.417103243640522
- type: nauc_ndcg_at_1000_diff1
value: 32.41669085796749
- type: nauc_ndcg_at_1000_max
value: 39.3889592555104
- type: nauc_ndcg_at_1000_std
value: 24.29677240633455
- type: nauc_ndcg_at_100_diff1
value: 33.242790506882834
- type: nauc_ndcg_at_100_max
value: 33.898859819559526
- type: nauc_ndcg_at_100_std
value: 18.61550812422668
- type: nauc_ndcg_at_10_diff1
value: 30.975196813400373
- type: nauc_ndcg_at_10_max
value: 36.603905951044055
- type: nauc_ndcg_at_10_std
value: 22.910262023142636
- type: nauc_ndcg_at_1_diff1
value: 40.93200183313147
- type: nauc_ndcg_at_1_max
value: 33.727327384812405
- type: nauc_ndcg_at_1_std
value: 17.786878916105632
- type: nauc_ndcg_at_20_diff1
value: 30.73076927291107
- type: nauc_ndcg_at_20_max
value: 35.390532544063156
- type: nauc_ndcg_at_20_std
value: 23.078635598419257
- type: nauc_ndcg_at_3_diff1
value: 33.658740738364365
- type: nauc_ndcg_at_3_max
value: 36.13180757709057
- type: nauc_ndcg_at_3_std
value: 19.98271369295018
- type: nauc_ndcg_at_5_diff1
value: 32.84341462025322
- type: nauc_ndcg_at_5_max
value: 36.28085467882011
- type: nauc_ndcg_at_5_std
value: 20.68800320297932
- type: nauc_precision_at_1000_diff1
value: -6.708168699596635
- type: nauc_precision_at_1000_max
value: 21.89155039384331
- type: nauc_precision_at_1000_std
value: 41.62103756428509
- type: nauc_precision_at_100_diff1
value: -4.2462696352518785
- type: nauc_precision_at_100_max
value: 28.116955819732453
- type: nauc_precision_at_100_std
value: 41.3128873672253
- type: nauc_precision_at_10_diff1
value: 13.94389231812758
- type: nauc_precision_at_10_max
value: 40.16753554948771
- type: nauc_precision_at_10_std
value: 34.808485925255724
- type: nauc_precision_at_1_diff1
value: 41.61660765429233
- type: nauc_precision_at_1_max
value: 34.296676392780164
- type: nauc_precision_at_1_std
value: 18.32511578460585
- type: nauc_precision_at_20_diff1
value: 6.987363832906253
- type: nauc_precision_at_20_max
value: 36.40277188883766
- type: nauc_precision_at_20_std
value: 37.97660622154215
- type: nauc_precision_at_3_diff1
value: 26.51797121166522
- type: nauc_precision_at_3_max
value: 38.0225037150749
- type: nauc_precision_at_3_std
value: 23.75378167439284
- type: nauc_precision_at_5_diff1
value: 22.753969907185443
- type: nauc_precision_at_5_max
value: 38.65374254523585
- type: nauc_precision_at_5_std
value: 26.53319799305755
- type: nauc_recall_at_1000_diff1
value: 10.443813741265865
- type: nauc_recall_at_1000_max
value: 16.714137409220196
- type: nauc_recall_at_1000_std
value: 13.22317774140933
- type: nauc_recall_at_100_diff1
value: 19.626335453220104
- type: nauc_recall_at_100_max
value: 16.781431613595686
- type: nauc_recall_at_100_std
value: 4.407503051751801
- type: nauc_recall_at_10_diff1
value: 34.40744658686842
- type: nauc_recall_at_10_max
value: 19.6970697427996
- type: nauc_recall_at_10_std
value: 0.06436545050773496
- type: nauc_recall_at_1_diff1
value: 50.61355369486035
- type: nauc_recall_at_1_max
value: 7.072899231939653
- type: nauc_recall_at_1_std
value: -8.829084633669
- type: nauc_recall_at_20_diff1
value: 30.36339862343048
- type: nauc_recall_at_20_max
value: 21.46180231299773
- type: nauc_recall_at_20_std
value: 2.5214200672465066
- type: nauc_recall_at_3_diff1
value: 43.344473400499524
- type: nauc_recall_at_3_max
value: 15.27252008740136
- type: nauc_recall_at_3_std
value: -5.759955800270036
- type: nauc_recall_at_5_diff1
value: 40.3140576520481
- type: nauc_recall_at_5_max
value: 18.203301814299262
- type: nauc_recall_at_5_std
value: -2.833863969265613
- type: ndcg_at_1
value: 36.068
- type: ndcg_at_10
value: 27.16
- type: ndcg_at_100
value: 25.111
- type: ndcg_at_1000
value: 33.936
- type: ndcg_at_20
value: 25.572
- type: ndcg_at_3
value: 31.657999999999998
- type: ndcg_at_5
value: 29.409999999999997
- type: precision_at_1
value: 38.080000000000005
- type: precision_at_10
value: 19.721
- type: precision_at_100
value: 6.494999999999999
- type: precision_at_1000
value: 1.9009999999999998
- type: precision_at_20
value: 15.262999999999998
- type: precision_at_3
value: 29.412
- type: precision_at_5
value: 24.892
- type: recall_at_1
value: 4.561
- type: recall_at_10
value: 13.171
- type: recall_at_100
value: 26.686
- type: recall_at_1000
value: 58.370999999999995
- type: recall_at_20
value: 16.256
- type: recall_at_3
value: 8.121
- type: recall_at_5
value: 10.015
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: main_score
value: 21.157999999999998
- type: map_at_1
value: 8.819
- type: map_at_10
value: 16.304
- type: map_at_100
value: 17.589
- type: map_at_1000
value: 17.686
- type: map_at_20
value: 16.996
- type: map_at_3
value: 13.623
- type: map_at_5
value: 15.052999999999999
- type: mrr_at_1
value: 10.168018539976826
- type: mrr_at_10
value: 18.060050304401404
- type: mrr_at_100
value: 19.238744437400303
- type: mrr_at_1000
value: 19.319259507478357
- type: mrr_at_20
value: 18.714121979500284
- type: mrr_at_3
value: 15.358246427191933
- type: mrr_at_5
value: 16.895036693704107
- type: nauc_map_at_1000_diff1
value: 16.229939570708336
- type: nauc_map_at_1000_max
value: 12.51276425335657
- type: nauc_map_at_1000_std
value: 0.017921811151751794
- type: nauc_map_at_100_diff1
value: 16.224170935226457
- type: nauc_map_at_100_max
value: 12.512374428428034
- type: nauc_map_at_100_std
value: -0.014129877859965362
- type: nauc_map_at_10_diff1
value: 16.361123231572876
- type: nauc_map_at_10_max
value: 12.052286808517218
- type: nauc_map_at_10_std
value: -1.0845583297624024
- type: nauc_map_at_1_diff1
value: 21.69479889364372
- type: nauc_map_at_1_max
value: 8.751825885396515
- type: nauc_map_at_1_std
value: -4.141691109841626
- type: nauc_map_at_20_diff1
value: 16.163837857786525
- type: nauc_map_at_20_max
value: 12.169273900826845
- type: nauc_map_at_20_std
value: -0.5230657088878216
- type: nauc_map_at_3_diff1
value: 17.00414872130665
- type: nauc_map_at_3_max
value: 10.183926939188352
- type: nauc_map_at_3_std
value: -2.7027904518930153
- type: nauc_map_at_5_diff1
value: 16.753072970093537
- type: nauc_map_at_5_max
value: 11.053795082504381
- type: nauc_map_at_5_std
value: -1.8553370232908792
- type: nauc_mrr_at_1000_diff1
value: 15.193441578243188
- type: nauc_mrr_at_1000_max
value: 11.723486184894917
- type: nauc_mrr_at_1000_std
value: 1.1268841139934582
- type: nauc_mrr_at_100_diff1
value: 15.181630298990894
- type: nauc_mrr_at_100_max
value: 11.726527351488125
- type: nauc_mrr_at_100_std
value: 1.1184409088822183
- type: nauc_mrr_at_10_diff1
value: 15.234123726061952
- type: nauc_mrr_at_10_max
value: 11.362873518294107
- type: nauc_mrr_at_10_std
value: 0.3280013067153407
- type: nauc_mrr_at_1_diff1
value: 20.323504485666053
- type: nauc_mrr_at_1_max
value: 8.409582172937483
- type: nauc_mrr_at_1_std
value: -1.7878562506897404
- type: nauc_mrr_at_20_diff1
value: 15.140222590320127
- type: nauc_mrr_at_20_max
value: 11.507085338033452
- type: nauc_mrr_at_20_std
value: 0.7869627376407451
- type: nauc_mrr_at_3_diff1
value: 15.787762647299598
- type: nauc_mrr_at_3_max
value: 9.735742984997959
- type: nauc_mrr_at_3_std
value: -0.7960248100230818
- type: nauc_mrr_at_5_diff1
value: 15.457910256551852
- type: nauc_mrr_at_5_max
value: 10.453812095004862
- type: nauc_mrr_at_5_std
value: -0.19761864109516053
- type: nauc_ndcg_at_1000_diff1
value: 14.525260995964645
- type: nauc_ndcg_at_1000_max
value: 16.40422064372703
- type: nauc_ndcg_at_1000_std
value: 6.160846861359799
- type: nauc_ndcg_at_100_diff1
value: 14.43475714612311
- type: nauc_ndcg_at_100_max
value: 16.126427718957963
- type: nauc_ndcg_at_100_std
value: 5.503813378756256
- type: nauc_ndcg_at_10_diff1
value: 14.653040189468122
- type: nauc_ndcg_at_10_max
value: 13.702892971289238
- type: nauc_ndcg_at_10_std
value: 0.7711212863166211
- type: nauc_ndcg_at_1_diff1
value: 20.527077947621663
- type: nauc_ndcg_at_1_max
value: 8.484625582388178
- type: nauc_ndcg_at_1_std
value: -1.6998416683410011
- type: nauc_ndcg_at_20_diff1
value: 14.234859827158017
- type: nauc_ndcg_at_20_max
value: 14.11446527457659
- type: nauc_ndcg_at_20_std
value: 2.461159703742406
- type: nauc_ndcg_at_3_diff1
value: 15.72722174801643
- type: nauc_ndcg_at_3_max
value: 10.422853598151251
- type: nauc_ndcg_at_3_std
value: -1.8387845418902335
- type: nauc_ndcg_at_5_diff1
value: 15.317720430106904
- type: nauc_ndcg_at_5_max
value: 11.770806512745684
- type: nauc_ndcg_at_5_std
value: -0.5685297839614628
- type: nauc_precision_at_1000_diff1
value: -0.01189627743991246
- type: nauc_precision_at_1000_max
value: 21.456610537983106
- type: nauc_precision_at_1000_std
value: 28.18953073757473
- type: nauc_precision_at_100_diff1
value: 5.914625006277201
- type: nauc_precision_at_100_max
value: 22.377437220824355
- type: nauc_precision_at_100_std
value: 22.22022082888642
- type: nauc_precision_at_10_diff1
value: 10.49047701771545
- type: nauc_precision_at_10_max
value: 17.080750684938735
- type: nauc_precision_at_10_std
value: 6.195671573812195
- type: nauc_precision_at_1_diff1
value: 20.527077947621663
- type: nauc_precision_at_1_max
value: 8.484625582388178
- type: nauc_precision_at_1_std
value: -1.6998416683410011
- type: nauc_precision_at_20_diff1
value: 8.838713882019308
- type: nauc_precision_at_20_max
value: 17.62766208235687
- type: nauc_precision_at_20_std
value: 11.005626718130639
- type: nauc_precision_at_3_diff1
value: 12.633919865132393
- type: nauc_precision_at_3_max
value: 10.985135077103243
- type: nauc_precision_at_3_std
value: 0.669075735470292
- type: nauc_precision_at_5_diff1
value: 11.951488524299245
- type: nauc_precision_at_5_max
value: 13.48960082923163
- type: nauc_precision_at_5_std
value: 2.8417529161489665
- type: nauc_recall_at_1000_diff1
value: 9.755913952030559
- type: nauc_recall_at_1000_max
value: 42.939720406292956
- type: nauc_recall_at_1000_std
value: 44.626368387595214
- type: nauc_recall_at_100_diff1
value: 10.72072635332075
- type: nauc_recall_at_100_max
value: 27.53559494029257
- type: nauc_recall_at_100_std
value: 22.05735513477615
- type: nauc_recall_at_10_diff1
value: 11.489494034849928
- type: nauc_recall_at_10_max
value: 16.996589598773557
- type: nauc_recall_at_10_std
value: 3.4044252519447116
- type: nauc_recall_at_1_diff1
value: 21.69479889364372
- type: nauc_recall_at_1_max
value: 8.751825885396515
- type: nauc_recall_at_1_std
value: -4.141691109841626
- type: nauc_recall_at_20_diff1
value: 10.527813840222096
- type: nauc_recall_at_20_max
value: 17.992129475663315
- type: nauc_recall_at_20_std
value: 7.854098046672443
- type: nauc_recall_at_3_diff1
value: 13.388408419008544
- type: nauc_recall_at_3_max
value: 11.008383225327554
- type: nauc_recall_at_3_std
value: -1.280850893470065
- type: nauc_recall_at_5_diff1
value: 12.859671871295616
- type: nauc_recall_at_5_max
value: 13.256125187808374
- type: nauc_recall_at_5_std
value: 0.9916132686714296
- type: ndcg_at_1
value: 10.139
- type: ndcg_at_10
value: 21.157999999999998
- type: ndcg_at_100
value: 27.668
- type: ndcg_at_1000
value: 30.285
- type: ndcg_at_20
value: 23.569000000000003
- type: ndcg_at_3
value: 15.64
- type: ndcg_at_5
value: 18.257
- type: precision_at_1
value: 10.139
- type: precision_at_10
value: 4.067
- type: precision_at_100
value: 0.777
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_20
value: 2.598
- type: precision_at_3
value: 7.648000000000001
- type: precision_at_5
value: 6.0600000000000005
- type: recall_at_1
value: 8.819
- type: recall_at_10
value: 34.536
- type: recall_at_100
value: 64.781
- type: recall_at_1000
value: 84.859
- type: recall_at_20
value: 43.559
- type: recall_at_3
value: 19.783
- type: recall_at_5
value: 25.966
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: main_score
value: 82.012
- type: map_at_1
value: 64.592
- type: map_at_10
value: 77.402
- type: map_at_100
value: 78.148
- type: map_at_1000
value: 78.18
- type: map_at_20
value: 77.879
- type: map_at_3
value: 74.311
- type: map_at_5
value: 76.20400000000001
- type: mrr_at_1
value: 74.2
- type: mrr_at_10
value: 81.38854365079324
- type: mrr_at_100
value: 81.59512445792092
- type: mrr_at_1000
value: 81.60023780325119
- type: mrr_at_20
value: 81.5363798885578
- type: mrr_at_3
value: 79.95333333333294
- type: mrr_at_5
value: 80.87783333333273
- type: nauc_map_at_1000_diff1
value: 71.563144427743
- type: nauc_map_at_1000_max
value: 36.7381066072989
- type: nauc_map_at_1000_std
value: -21.980738033181833
- type: nauc_map_at_100_diff1
value: 71.56530276635175
- type: nauc_map_at_100_max
value: 36.72147688067881
- type: nauc_map_at_100_std
value: -22.01274484366413
- type: nauc_map_at_10_diff1
value: 71.54359439771537
- type: nauc_map_at_10_max
value: 36.26354669846701
- type: nauc_map_at_10_std
value: -23.013337979083907
- type: nauc_map_at_1_diff1
value: 73.80903272269792
- type: nauc_map_at_1_max
value: 29.97715650504089
- type: nauc_map_at_1_std
value: -21.00007771976864
- type: nauc_map_at_20_diff1
value: 71.57688339120256
- type: nauc_map_at_20_max
value: 36.618589942433395
- type: nauc_map_at_20_std
value: -22.33064443082938
- type: nauc_map_at_3_diff1
value: 71.72670742525665
- type: nauc_map_at_3_max
value: 34.6281120452265
- type: nauc_map_at_3_std
value: -23.899175833520125
- type: nauc_map_at_5_diff1
value: 71.47259917882022
- type: nauc_map_at_5_max
value: 35.62412436441212
- type: nauc_map_at_5_std
value: -23.47998884289205
- type: nauc_mrr_at_1000_diff1
value: 72.80796546579286
- type: nauc_mrr_at_1000_max
value: 39.25693300384676
- type: nauc_mrr_at_1000_std
value: -19.601139084660538
- type: nauc_mrr_at_100_diff1
value: 72.80693590878819
- type: nauc_mrr_at_100_max
value: 39.25913251601793
- type: nauc_mrr_at_100_std
value: -19.597248510226006
- type: nauc_mrr_at_10_diff1
value: 72.73505807995161
- type: nauc_mrr_at_10_max
value: 39.276454616539716
- type: nauc_mrr_at_10_std
value: -19.717754697854193
- type: nauc_mrr_at_1_diff1
value: 74.32519392972422
- type: nauc_mrr_at_1_max
value: 38.476636619971174
- type: nauc_mrr_at_1_std
value: -19.079420393939518
- type: nauc_mrr_at_20_diff1
value: 72.78854375041742
- type: nauc_mrr_at_20_max
value: 39.31033803827273
- type: nauc_mrr_at_20_std
value: -19.55603905094717
- type: nauc_mrr_at_3_diff1
value: 72.45226928418506
- type: nauc_mrr_at_3_max
value: 39.02048177756944
- type: nauc_mrr_at_3_std
value: -19.990652853472366
- type: nauc_mrr_at_5_diff1
value: 72.55978195949999
- type: nauc_mrr_at_5_max
value: 39.23684364430699
- type: nauc_mrr_at_5_std
value: -19.821588662337117
- type: nauc_ndcg_at_1000_diff1
value: 71.53703986610873
- type: nauc_ndcg_at_1000_max
value: 38.2390814708584
- type: nauc_ndcg_at_1000_std
value: -20.26092896395758
- type: nauc_ndcg_at_100_diff1
value: 71.53867175889835
- type: nauc_ndcg_at_100_max
value: 38.13196515267871
- type: nauc_ndcg_at_100_std
value: -20.251462418761683
- type: nauc_ndcg_at_10_diff1
value: 71.0650335459164
- type: nauc_ndcg_at_10_max
value: 37.38571549486721
- type: nauc_ndcg_at_10_std
value: -22.258604100812555
- type: nauc_ndcg_at_1_diff1
value: 74.22381616523879
- type: nauc_ndcg_at_1_max
value: 38.678662109624455
- type: nauc_ndcg_at_1_std
value: -18.93974180166645
- type: nauc_ndcg_at_20_diff1
value: 71.42183736397989
- type: nauc_ndcg_at_20_max
value: 38.04822708035827
- type: nauc_ndcg_at_20_std
value: -20.868258633569194
- type: nauc_ndcg_at_3_diff1
value: 70.56404049371294
- type: nauc_ndcg_at_3_max
value: 36.44618012763879
- type: nauc_ndcg_at_3_std
value: -22.537077598994543
- type: nauc_ndcg_at_5_diff1
value: 70.59978302123125
- type: nauc_ndcg_at_5_max
value: 36.83084353944159
- type: nauc_ndcg_at_5_std
value: -22.506208564791557
- type: nauc_precision_at_1000_diff1
value: -37.04415583634801
- type: nauc_precision_at_1000_max
value: -5.065719458200828
- type: nauc_precision_at_1000_std
value: 22.616085445440955
- type: nauc_precision_at_100_diff1
value: -34.82554531006301
- type: nauc_precision_at_100_max
value: -3.0424194261578172
- type: nauc_precision_at_100_std
value: 21.684667518110853
- type: nauc_precision_at_10_diff1
value: -23.077641035092185
- type: nauc_precision_at_10_max
value: 5.36093469591455
- type: nauc_precision_at_10_std
value: 11.906515810765315
- type: nauc_precision_at_1_diff1
value: 74.22381616523879
- type: nauc_precision_at_1_max
value: 38.678662109624455
- type: nauc_precision_at_1_std
value: -18.93974180166645
- type: nauc_precision_at_20_diff1
value: -29.103864491887173
- type: nauc_precision_at_20_max
value: 1.9096690929564353
- type: nauc_precision_at_20_std
value: 17.636958366277263
- type: nauc_precision_at_3_diff1
value: 4.397256394687356
- type: nauc_precision_at_3_max
value: 17.01622079466081
- type: nauc_precision_at_3_std
value: -1.998336590418495
- type: nauc_precision_at_5_diff1
value: -10.944029853590333
- type: nauc_precision_at_5_max
value: 11.352086411823322
- type: nauc_precision_at_5_std
value: 5.5348305497123755
- type: nauc_recall_at_1000_diff1
value: 57.63858758830721
- type: nauc_recall_at_1000_max
value: 56.154820307155084
- type: nauc_recall_at_1000_std
value: 37.297558664297455
- type: nauc_recall_at_100_diff1
value: 65.12971448538715
- type: nauc_recall_at_100_max
value: 37.459434024112326
- type: nauc_recall_at_100_std
value: -3.4712878121583337
- type: nauc_recall_at_10_diff1
value: 64.05584648206661
- type: nauc_recall_at_10_max
value: 34.334390035941865
- type: nauc_recall_at_10_std
value: -26.024428985438554
- type: nauc_recall_at_1_diff1
value: 73.80903272269792
- type: nauc_recall_at_1_max
value: 29.97715650504089
- type: nauc_recall_at_1_std
value: -21.00007771976864
- type: nauc_recall_at_20_diff1
value: 64.81380914632466
- type: nauc_recall_at_20_max
value: 38.06950127045061
- type: nauc_recall_at_20_std
value: -15.95444205912522
- type: nauc_recall_at_3_diff1
value: 66.90914558056423
- type: nauc_recall_at_3_max
value: 32.23359446748229
- type: nauc_recall_at_3_std
value: -26.18188347743054
- type: nauc_recall_at_5_diff1
value: 65.0856724732645
- type: nauc_recall_at_5_max
value: 33.26433283889179
- type: nauc_recall_at_5_std
value: -26.59355203187721
- type: ndcg_at_1
value: 74.25
- type: ndcg_at_10
value: 82.012
- type: ndcg_at_100
value: 83.907
- type: ndcg_at_1000
value: 84.237
- type: ndcg_at_20
value: 82.98299999999999
- type: ndcg_at_3
value: 78.318
- type: ndcg_at_5
value: 80.257
- type: precision_at_1
value: 74.25
- type: precision_at_10
value: 12.433
- type: precision_at_100
value: 1.471
- type: precision_at_1000
value: 0.155
- type: precision_at_20
value: 6.679
- type: precision_at_3
value: 33.947
- type: precision_at_5
value: 22.52
- type: recall_at_1
value: 64.592
- type: recall_at_10
value: 90.99000000000001
- type: recall_at_100
value: 97.878
- type: recall_at_1000
value: 99.69
- type: recall_at_20
value: 94.21000000000001
- type: recall_at_3
value: 80.487
- type: recall_at_5
value: 85.794
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: main_score
value: 43.25840276111764
- type: v_measure
value: 43.25840276111764
- type: v_measure_std
value: 5.550064583648558
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: main_score
value: 49.64164121828545
- type: v_measure
value: 49.64164121828545
- type: v_measure_std
value: 10.85687862239164
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: main_score
value: 13.587
- type: map_at_1
value: 3.3680000000000003
- type: map_at_10
value: 7.712
- type: map_at_100
value: 9.141
- type: map_at_1000
value: 9.414
- type: map_at_20
value: 8.419
- type: map_at_3
value: 5.683
- type: map_at_5
value: 6.627
- type: mrr_at_1
value: 16.6
- type: mrr_at_10
value: 24.389166666666657
- type: mrr_at_100
value: 25.564348279710202
- type: mrr_at_1000
value: 25.65219733433818
- type: mrr_at_20
value: 25.011801694607428
- type: mrr_at_3
value: 21.50000000000001
- type: mrr_at_5
value: 23.075000000000006
- type: nauc_map_at_1000_diff1
value: 15.792054559873389
- type: nauc_map_at_1000_max
value: 13.56634783353828
- type: nauc_map_at_1000_std
value: 13.522494963276946
- type: nauc_map_at_100_diff1
value: 15.75666330397116
- type: nauc_map_at_100_max
value: 13.371620548211776
- type: nauc_map_at_100_std
value: 13.041945684128557
- type: nauc_map_at_10_diff1
value: 15.948702753831338
- type: nauc_map_at_10_max
value: 11.707911515178242
- type: nauc_map_at_10_std
value: 8.727495324693498
- type: nauc_map_at_1_diff1
value: 17.29360255890909
- type: nauc_map_at_1_max
value: 10.72310668533521
- type: nauc_map_at_1_std
value: 4.112759851902581
- type: nauc_map_at_20_diff1
value: 16.037701154664326
- type: nauc_map_at_20_max
value: 12.828849813839474
- type: nauc_map_at_20_std
value: 10.795705865130165
- type: nauc_map_at_3_diff1
value: 18.23195167071921
- type: nauc_map_at_3_max
value: 9.801116024411058
- type: nauc_map_at_3_std
value: 5.213983881776522
- type: nauc_map_at_5_diff1
value: 17.5626604163625
- type: nauc_map_at_5_max
value: 9.970369227992304
- type: nauc_map_at_5_std
value: 6.735083895176833
- type: nauc_mrr_at_1000_diff1
value: 15.510099983807086
- type: nauc_mrr_at_1000_max
value: 11.343645637837431
- type: nauc_mrr_at_1000_std
value: 7.566937985959651
- type: nauc_mrr_at_100_diff1
value: 15.506985809378149
- type: nauc_mrr_at_100_max
value: 11.340883862596678
- type: nauc_mrr_at_100_std
value: 7.620646271034095
- type: nauc_mrr_at_10_diff1
value: 15.490875842909002
- type: nauc_mrr_at_10_max
value: 11.231094796251513
- type: nauc_mrr_at_10_std
value: 7.130502639986691
- type: nauc_mrr_at_1_diff1
value: 16.883526727193278
- type: nauc_mrr_at_1_max
value: 10.173624986461805
- type: nauc_mrr_at_1_std
value: 4.256034299244473
- type: nauc_mrr_at_20_diff1
value: 15.485170013873923
- type: nauc_mrr_at_20_max
value: 11.233104363368977
- type: nauc_mrr_at_20_std
value: 7.45451688565917
- type: nauc_mrr_at_3_diff1
value: 15.34991113239244
- type: nauc_mrr_at_3_max
value: 9.961720650018536
- type: nauc_mrr_at_3_std
value: 5.38229302774779
- type: nauc_mrr_at_5_diff1
value: 15.873465265800968
- type: nauc_mrr_at_5_max
value: 10.838561422578016
- type: nauc_mrr_at_5_std
value: 6.441461173575752
- type: nauc_ndcg_at_1000_diff1
value: 14.352637695984038
- type: nauc_ndcg_at_1000_max
value: 17.013971425841103
- type: nauc_ndcg_at_1000_std
value: 21.97010413330881
- type: nauc_ndcg_at_100_diff1
value: 13.886964830324594
- type: nauc_ndcg_at_100_max
value: 15.552160909918156
- type: nauc_ndcg_at_100_std
value: 19.26622209227307
- type: nauc_ndcg_at_10_diff1
value: 14.639378627164511
- type: nauc_ndcg_at_10_max
value: 12.825984197211927
- type: nauc_ndcg_at_10_std
value: 10.391285942640947
- type: nauc_ndcg_at_1_diff1
value: 16.883526727193278
- type: nauc_ndcg_at_1_max
value: 10.173624986461805
- type: nauc_ndcg_at_1_std
value: 4.256034299244473
- type: nauc_ndcg_at_20_diff1
value: 14.995243704619316
- type: nauc_ndcg_at_20_max
value: 14.26525727222302
- type: nauc_ndcg_at_20_std
value: 13.639982949452376
- type: nauc_ndcg_at_3_diff1
value: 16.91652612412296
- type: nauc_ndcg_at_3_max
value: 9.78989931219063
- type: nauc_ndcg_at_3_std
value: 5.732330748163062
- type: nauc_ndcg_at_5_diff1
value: 17.00999871755564
- type: nauc_ndcg_at_5_max
value: 10.924554915253575
- type: nauc_ndcg_at_5_std
value: 7.537589771075501
- type: nauc_precision_at_1000_diff1
value: 8.009592365347004
- type: nauc_precision_at_1000_max
value: 20.05874444978994
- type: nauc_precision_at_1000_std
value: 36.79899155088703
- type: nauc_precision_at_100_diff1
value: 8.255276158647746
- type: nauc_precision_at_100_max
value: 17.580852368830026
- type: nauc_precision_at_100_std
value: 30.633816908045635
- type: nauc_precision_at_10_diff1
value: 11.553031122695996
- type: nauc_precision_at_10_max
value: 14.482109658676057
- type: nauc_precision_at_10_std
value: 14.259782606679593
- type: nauc_precision_at_1_diff1
value: 16.883526727193278
- type: nauc_precision_at_1_max
value: 10.173624986461805
- type: nauc_precision_at_1_std
value: 4.256034299244473
- type: nauc_precision_at_20_diff1
value: 12.005709487312277
- type: nauc_precision_at_20_max
value: 16.45307012250548
- type: nauc_precision_at_20_std
value: 19.760010062385792
- type: nauc_precision_at_3_diff1
value: 17.121112206808522
- type: nauc_precision_at_3_max
value: 10.282548766937094
- type: nauc_precision_at_3_std
value: 6.628229870593426
- type: nauc_precision_at_5_diff1
value: 16.639581424506922
- type: nauc_precision_at_5_max
value: 11.595216280079104
- type: nauc_precision_at_5_std
value: 9.706804262911701
- type: nauc_recall_at_1000_diff1
value: 7.944908337255163
- type: nauc_recall_at_1000_max
value: 20.888140916483884
- type: nauc_recall_at_1000_std
value: 37.43522863327242
- type: nauc_recall_at_100_diff1
value: 8.145521632469906
- type: nauc_recall_at_100_max
value: 17.816240183909578
- type: nauc_recall_at_100_std
value: 30.822040834292043
- type: nauc_recall_at_10_diff1
value: 11.626320851379472
- type: nauc_recall_at_10_max
value: 14.568333470882427
- type: nauc_recall_at_10_std
value: 14.086250979150067
- type: nauc_recall_at_1_diff1
value: 17.29360255890909
- type: nauc_recall_at_1_max
value: 10.72310668533521
- type: nauc_recall_at_1_std
value: 4.112759851902581
- type: nauc_recall_at_20_diff1
value: 12.125684404199848
- type: nauc_recall_at_20_max
value: 16.596620432069138
- type: nauc_recall_at_20_std
value: 19.649717933105602
- type: nauc_recall_at_3_diff1
value: 17.332586222101803
- type: nauc_recall_at_3_max
value: 10.609602723354438
- type: nauc_recall_at_3_std
value: 6.326563940802695
- type: nauc_recall_at_5_diff1
value: 16.7930840371413
- type: nauc_recall_at_5_max
value: 11.809252198719197
- type: nauc_recall_at_5_std
value: 9.44067075649909
- type: ndcg_at_1
value: 16.6
- type: ndcg_at_10
value: 13.587
- type: ndcg_at_100
value: 19.980999999999998
- type: ndcg_at_1000
value: 25.484
- type: ndcg_at_20
value: 15.742
- type: ndcg_at_3
value: 12.859000000000002
- type: ndcg_at_5
value: 11.135
- type: precision_at_1
value: 16.6
- type: precision_at_10
value: 7.01
- type: precision_at_100
value: 1.6320000000000001
- type: precision_at_1000
value: 0.296
- type: precision_at_20
value: 4.755
- type: precision_at_3
value: 11.799999999999999
- type: precision_at_5
value: 9.6
- type: recall_at_1
value: 3.3680000000000003
- type: recall_at_10
value: 14.193
- type: recall_at_100
value: 33.107
- type: recall_at_1000
value: 60.145
- type: recall_at_20
value: 19.233
- type: recall_at_3
value: 7.163
- type: recall_at_5
value: 9.713
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cosine_pearson
value: 76.25915789536036
- type: cosine_spearman
value: 65.66845738179555
- type: euclidean_pearson
value: 69.85107857850403
- type: euclidean_spearman
value: 65.6685173896875
- type: main_score
value: 65.66845738179555
- type: manhattan_pearson
value: 69.01865715022275
- type: manhattan_spearman
value: 65.63874813005013
- type: pearson
value: 76.25915789536036
- type: spearman
value: 65.66845738179555
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cosine_pearson
value: 72.40943128011739
- type: cosine_spearman
value: 62.72495538860372
- type: euclidean_pearson
value: 68.11171624405146
- type: euclidean_spearman
value: 62.72485577613837
- type: main_score
value: 62.72495538860372
- type: manhattan_pearson
value: 64.813988464561
- type: manhattan_spearman
value: 60.793210368567216
- type: pearson
value: 72.40943128011739
- type: spearman
value: 62.72495538860372
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cosine_pearson
value: 76.70618047980291
- type: cosine_spearman
value: 77.59358804164447
- type: euclidean_pearson
value: 77.10766267433688
- type: euclidean_spearman
value: 77.59339585903179
- type: main_score
value: 77.59358804164447
- type: manhattan_pearson
value: 75.578854286063
- type: manhattan_spearman
value: 75.9068297217428
- type: pearson
value: 76.70618047980291
- type: spearman
value: 77.59358804164447
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cosine_pearson
value: 76.94540031581289
- type: cosine_spearman
value: 72.90346996863444
- type: euclidean_pearson
value: 75.32643341198654
- type: euclidean_spearman
value: 72.90349626869781
- type: main_score
value: 72.90346996863444
- type: manhattan_pearson
value: 74.65306991359576
- type: manhattan_spearman
value: 72.51411158597628
- type: pearson
value: 76.94540031581289
- type: spearman
value: 72.90346996863444
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cosine_pearson
value: 80.29008555581484
- type: cosine_spearman
value: 80.75923364182438
- type: euclidean_pearson
value: 80.31136434402754
- type: euclidean_spearman
value: 80.75922963811225
- type: main_score
value: 80.75923364182438
- type: manhattan_pearson
value: 79.32871995817709
- type: manhattan_spearman
value: 79.56283194488046
- type: pearson
value: 80.29008555581484
- type: spearman
value: 80.75923364182438
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cosine_pearson
value: 76.19539001140771
- type: cosine_spearman
value: 76.85661925812892
- type: euclidean_pearson
value: 76.08663935674932
- type: euclidean_spearman
value: 76.85661925812892
- type: main_score
value: 76.85661925812892
- type: manhattan_pearson
value: 74.81988866329016
- type: manhattan_spearman
value: 75.50402310757015
- type: pearson
value: 76.19539001140771
- type: spearman
value: 76.85661925812892
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 34.397932428162186
- type: cosine_spearman
value: 29.85196707881456
- type: euclidean_pearson
value: 34.64394718355606
- type: euclidean_spearman
value: 29.85196707881456
- type: main_score
value: 29.85196707881456
- type: manhattan_pearson
value: 34.16832023178801
- type: manhattan_spearman
value: 33.14486169393415
- type: pearson
value: 34.397932428162186
- type: spearman
value: 29.85196707881456
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 20.30327751081854
- type: cosine_spearman
value: 18.674265253799298
- type: euclidean_pearson
value: 20.131998188841948
- type: euclidean_spearman
value: 18.674265253799298
- type: main_score
value: 18.674265253799298
- type: manhattan_pearson
value: 18.622067051882603
- type: manhattan_spearman
value: 18.620291055648483
- type: pearson
value: 20.30327751081854
- type: spearman
value: 18.674265253799298
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 28.49639097934199
- type: cosine_spearman
value: 26.76895298058133
- type: euclidean_pearson
value: 28.51993606461124
- type: euclidean_spearman
value: 26.76895298058133
- type: main_score
value: 26.76895298058133
- type: manhattan_pearson
value: 28.34674577371768
- type: manhattan_spearman
value: 24.811029147686337
- type: pearson
value: 28.49639097934199
- type: spearman
value: 26.76895298058133
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 85.42068849087106
- type: cosine_spearman
value: 87.05993755101053
- type: euclidean_pearson
value: 85.50658100259913
- type: euclidean_spearman
value: 87.05993755101053
- type: main_score
value: 87.05993755101053
- type: manhattan_pearson
value: 85.05037515486939
- type: manhattan_spearman
value: 86.78286451699647
- type: pearson
value: 85.42068849087106
- type: spearman
value: 87.05993755101053
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 28.331000764771648
- type: cosine_spearman
value: 26.924748902731583
- type: euclidean_pearson
value: 27.908262381916842
- type: euclidean_spearman
value: 26.924748902731583
- type: main_score
value: 26.924748902731583
- type: manhattan_pearson
value: 27.64928698735386
- type: manhattan_spearman
value: 26.33489239510866
- type: pearson
value: 28.331000764771648
- type: spearman
value: 26.924748902731583
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 35.99128331010763
- type: cosine_spearman
value: 33.882787753030755
- type: euclidean_pearson
value: 36.125565540276824
- type: euclidean_spearman
value: 33.882787753030755
- type: main_score
value: 33.882787753030755
- type: manhattan_pearson
value: 39.43371979888863
- type: manhattan_spearman
value: 39.98846569097863
- type: pearson
value: 35.99128331010763
- type: spearman
value: 33.882787753030755
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 1.3231798311649463
- type: cosine_spearman
value: 1.968045578690376
- type: euclidean_pearson
value: 1.2443039427500642
- type: euclidean_spearman
value: 1.968045578690376
- type: main_score
value: 1.968045578690376
- type: manhattan_pearson
value: 0.29924785068227155
- type: manhattan_spearman
value: 3.1701763139219117
- type: pearson
value: 1.3231798311649463
- type: spearman
value: 1.968045578690376
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 7.571886460510519
- type: cosine_spearman
value: 6.426199138705195
- type: euclidean_pearson
value: 7.436947146723141
- type: euclidean_spearman
value: 6.426199138705195
- type: main_score
value: 6.426199138705195
- type: manhattan_pearson
value: 5.225717518299594
- type: manhattan_spearman
value: 3.067077550441944
- type: pearson
value: 7.571886460510519
- type: spearman
value: 6.426199138705195
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 61.088670238491204
- type: cosine_spearman
value: 64.25828026896876
- type: euclidean_pearson
value: 63.7609187555772
- type: euclidean_spearman
value: 64.25828026896876
- type: main_score
value: 64.25828026896876
- type: manhattan_pearson
value: 62.601398537174035
- type: manhattan_spearman
value: 62.87332671301306
- type: pearson
value: 61.088670238491204
- type: spearman
value: 64.25828026896876
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 31.0255615174742
- type: cosine_spearman
value: 36.69481137227967
- type: euclidean_pearson
value: 29.900021582547264
- type: euclidean_spearman
value: 36.69481137227967
- type: main_score
value: 36.69481137227967
- type: manhattan_pearson
value: 29.619780557503155
- type: manhattan_spearman
value: 41.91843653096047
- type: pearson
value: 31.0255615174742
- type: spearman
value: 36.69481137227967
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 10.40841334454418
- type: cosine_spearman
value: 28.104310738121512
- type: euclidean_pearson
value: 8.128707220686382
- type: euclidean_spearman
value: 28.104310738121512
- type: main_score
value: 28.104310738121512
- type: manhattan_pearson
value: 14.726925529355325
- type: manhattan_spearman
value: 28.057426809179326
- type: pearson
value: 10.40841334454418
- type: spearman
value: 28.104310738121512
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 10.755722104172923
- type: cosine_spearman
value: 12.444878649130276
- type: euclidean_pearson
value: 10.059477626348706
- type: euclidean_spearman
value: 12.468003510617354
- type: main_score
value: 12.444878649130276
- type: manhattan_pearson
value: 13.507609577564672
- type: manhattan_spearman
value: 18.390599199214037
- type: pearson
value: 10.755722104172923
- type: spearman
value: 12.444878649130276
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 13.26815146152796
- type: cosine_spearman
value: 18.433007526015338
- type: euclidean_pearson
value: 12.020944164266574
- type: euclidean_spearman
value: 18.426334503093322
- type: main_score
value: 18.433007526015338
- type: manhattan_pearson
value: 11.933248448259237
- type: manhattan_spearman
value: 18.324625546075126
- type: pearson
value: 13.26815146152796
- type: spearman
value: 18.433007526015338
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cosine_pearson
value: 78.68909918763245
- type: cosine_spearman
value: 76.83852449552488
- type: euclidean_pearson
value: 78.35108573675653
- type: euclidean_spearman
value: 76.83846447877973
- type: main_score
value: 76.83852449552488
- type: manhattan_pearson
value: 77.02876135749386
- type: manhattan_spearman
value: 75.9170365531251
- type: pearson
value: 78.68909918763245
- type: spearman
value: 76.83852449552488
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: main_score
value: 74.82680371550936
- type: map
value: 74.82680371550936
- type: mrr
value: 91.93418963026807
- type: nAUC_map_diff1
value: 9.068255025841692
- type: nAUC_map_max
value: 53.83045488537594
- type: nAUC_map_std
value: 65.66457388284374
- type: nAUC_mrr_diff1
value: 46.05085316225451
- type: nAUC_mrr_max
value: 75.59509312588396
- type: nAUC_mrr_std
value: 70.87824623580906
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: main_score
value: 56.2
- type: map_at_1
value: 40.666999999999994
- type: map_at_10
value: 51.129999999999995
- type: map_at_100
value: 52.056999999999995
- type: map_at_1000
value: 52.098
- type: map_at_20
value: 51.686
- type: map_at_3
value: 48.634
- type: map_at_5
value: 50.066
- type: mrr_at_1
value: 42.66666666666667
- type: mrr_at_10
value: 52.482142857142854
- type: mrr_at_100
value: 53.19823245085252
- type: mrr_at_1000
value: 53.23357269611506
- type: mrr_at_20
value: 52.87664766434116
- type: mrr_at_3
value: 50.499999999999986
- type: mrr_at_5
value: 51.4
- type: nauc_map_at_1000_diff1
value: 55.679524170340144
- type: nauc_map_at_1000_max
value: 35.34368225457809
- type: nauc_map_at_1000_std
value: -2.043911326695919
- type: nauc_map_at_100_diff1
value: 55.64964353245028
- type: nauc_map_at_100_max
value: 35.33722631779892
- type: nauc_map_at_100_std
value: -2.0539617122568625
- type: nauc_map_at_10_diff1
value: 55.82499509356933
- type: nauc_map_at_10_max
value: 34.59317781850682
- type: nauc_map_at_10_std
value: -3.1860541248309358
- type: nauc_map_at_1_diff1
value: 59.10174915043726
- type: nauc_map_at_1_max
value: 33.416492729123185
- type: nauc_map_at_1_std
value: -5.1952700488175045
- type: nauc_map_at_20_diff1
value: 55.623431232446904
- type: nauc_map_at_20_max
value: 35.296574838119085
- type: nauc_map_at_20_std
value: -2.007783275001443
- type: nauc_map_at_3_diff1
value: 56.556766655254485
- type: nauc_map_at_3_max
value: 33.3155647194758
- type: nauc_map_at_3_std
value: -3.7964967547169106
- type: nauc_map_at_5_diff1
value: 56.553418502313676
- type: nauc_map_at_5_max
value: 34.13639468025285
- type: nauc_map_at_5_std
value: -3.9708550035335346
- type: nauc_mrr_at_1000_diff1
value: 55.331555076880576
- type: nauc_mrr_at_1000_max
value: 37.027463444459606
- type: nauc_mrr_at_1000_std
value: 1.9690692773511222
- type: nauc_mrr_at_100_diff1
value: 55.28850823087701
- type: nauc_mrr_at_100_max
value: 37.03565595888509
- type: nauc_mrr_at_100_std
value: 1.9754212228406436
- type: nauc_mrr_at_10_diff1
value: 55.35398010609678
- type: nauc_mrr_at_10_max
value: 36.813749789783465
- type: nauc_mrr_at_10_std
value: 1.69908309119671
- type: nauc_mrr_at_1_diff1
value: 59.698357986628324
- type: nauc_mrr_at_1_max
value: 36.19184535975336
- type: nauc_mrr_at_1_std
value: -0.3732635881802827
- type: nauc_mrr_at_20_diff1
value: 55.26305584448552
- type: nauc_mrr_at_20_max
value: 37.11198171015867
- type: nauc_mrr_at_20_std
value: 2.1612218864195816
- type: nauc_mrr_at_3_diff1
value: 56.25662215357208
- type: nauc_mrr_at_3_max
value: 35.8103147848101
- type: nauc_mrr_at_3_std
value: 1.408422730019326
- type: nauc_mrr_at_5_diff1
value: 56.409279532488
- type: nauc_mrr_at_5_max
value: 36.24764657740795
- type: nauc_mrr_at_5_std
value: 0.9191877090789675
- type: nauc_ndcg_at_1000_diff1
value: 53.921052108891374
- type: nauc_ndcg_at_1000_max
value: 37.23673471367524
- type: nauc_ndcg_at_1000_std
value: 1.2797242206174546
- type: nauc_ndcg_at_100_diff1
value: 53.08910074626929
- type: nauc_ndcg_at_100_max
value: 37.58307549599563
- type: nauc_ndcg_at_100_std
value: 1.6730489754502
- type: nauc_ndcg_at_10_diff1
value: 53.4900294437438
- type: nauc_ndcg_at_10_max
value: 35.63914186917353
- type: nauc_ndcg_at_10_std
value: -1.2567885269168115
- type: nauc_ndcg_at_1_diff1
value: 59.698357986628324
- type: nauc_ndcg_at_1_max
value: 36.19184535975336
- type: nauc_ndcg_at_1_std
value: -0.3732635881802827
- type: nauc_ndcg_at_20_diff1
value: 52.91626708083731
- type: nauc_ndcg_at_20_max
value: 37.3727463545816
- type: nauc_ndcg_at_20_std
value: 1.794148757644209
- type: nauc_ndcg_at_3_diff1
value: 55.41497362862388
- type: nauc_ndcg_at_3_max
value: 33.84606207970954
- type: nauc_ndcg_at_3_std
value: -1.5037390857368864
- type: nauc_ndcg_at_5_diff1
value: 55.561650253405716
- type: nauc_ndcg_at_5_max
value: 34.55478239305819
- type: nauc_ndcg_at_5_std
value: -2.6884049705546453
- type: nauc_precision_at_1000_diff1
value: -14.220538808948627
- type: nauc_precision_at_1000_max
value: 30.832501838042358
- type: nauc_precision_at_1000_std
value: 51.61025627560141
- type: nauc_precision_at_100_diff1
value: 4.4851329855278665
- type: nauc_precision_at_100_max
value: 42.019199750825834
- type: nauc_precision_at_100_std
value: 44.59826245592179
- type: nauc_precision_at_10_diff1
value: 31.128531158716914
- type: nauc_precision_at_10_max
value: 40.014303427714296
- type: nauc_precision_at_10_std
value: 18.66086480010028
- type: nauc_precision_at_1_diff1
value: 59.698357986628324
- type: nauc_precision_at_1_max
value: 36.19184535975336
- type: nauc_precision_at_1_std
value: -0.3732635881802827
- type: nauc_precision_at_20_diff1
value: 19.729038153986753
- type: nauc_precision_at_20_max
value: 43.018048891935095
- type: nauc_precision_at_20_std
value: 34.93305917294951
- type: nauc_precision_at_3_diff1
value: 47.69367211697757
- type: nauc_precision_at_3_max
value: 36.67930202405817
- type: nauc_precision_at_3_std
value: 10.015396528127898
- type: nauc_precision_at_5_diff1
value: 40.112747160286034
- type: nauc_precision_at_5_max
value: 36.522086663861955
- type: nauc_precision_at_5_std
value: 10.298695835086278
- type: nauc_recall_at_1000_diff1
value: 15.490555196437267
- type: nauc_recall_at_1000_max
value: 65.77784960137889
- type: nauc_recall_at_1000_std
value: 55.6956115779644
- type: nauc_recall_at_100_diff1
value: 31.420573665344186
- type: nauc_recall_at_100_max
value: 51.478517970815986
- type: nauc_recall_at_100_std
value: 21.8667299551994
- type: nauc_recall_at_10_diff1
value: 43.811043753262645
- type: nauc_recall_at_10_max
value: 35.251432327366395
- type: nauc_recall_at_10_std
value: -1.5842166373120425
- type: nauc_recall_at_1_diff1
value: 59.10174915043726
- type: nauc_recall_at_1_max
value: 33.416492729123185
- type: nauc_recall_at_1_std
value: -5.1952700488175045
- type: nauc_recall_at_20_diff1
value: 39.869129286563876
- type: nauc_recall_at_20_max
value: 43.8582881229973
- type: nauc_recall_at_20_std
value: 12.572449527758673
- type: nauc_recall_at_3_diff1
value: 51.9577529837867
- type: nauc_recall_at_3_max
value: 30.893069836408237
- type: nauc_recall_at_3_std
value: -1.959211453851564
- type: nauc_recall_at_5_diff1
value: 51.75561843815883
- type: nauc_recall_at_5_max
value: 32.15736743162173
- type: nauc_recall_at_5_std
value: -4.772474736542438
- type: ndcg_at_1
value: 42.667
- type: ndcg_at_10
value: 56.2
- type: ndcg_at_100
value: 60.260000000000005
- type: ndcg_at_1000
value: 61.483
- type: ndcg_at_20
value: 57.909
- type: ndcg_at_3
value: 51.711
- type: ndcg_at_5
value: 53.783
- type: precision_at_1
value: 42.667
- type: precision_at_10
value: 7.767
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_20
value: 4.3
- type: precision_at_3
value: 20.889
- type: precision_at_5
value: 13.866999999999999
- type: recall_at_1
value: 40.666999999999994
- type: recall_at_10
value: 70.244
- type: recall_at_100
value: 88.656
- type: recall_at_1000
value: 98.26700000000001
- type: recall_at_20
value: 76.589
- type: recall_at_3
value: 58.333
- type: recall_at_5
value: 63.24999999999999
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cosine_accuracy
value: 99.73861386138614
- type: cosine_accuracy_threshold
value: 76.21053359407102
- type: cosine_ap
value: 92.55456011993165
- type: cosine_f1
value: 86.34953464322648
- type: cosine_f1_threshold
value: 76.21053359407102
- type: cosine_precision
value: 89.40042826552462
- type: cosine_recall
value: 83.5
- type: dot_accuracy
value: 99.73861386138614
- type: dot_accuracy_threshold
value: 76.21053204886738
- type: dot_ap
value: 92.55456011993165
- type: dot_f1
value: 86.34953464322648
- type: dot_f1_threshold
value: 76.21053204886738
- type: dot_precision
value: 89.40042826552462
- type: dot_recall
value: 83.5
- type: euclidean_accuracy
value: 99.73861386138614
- type: euclidean_accuracy_threshold
value: 68.9774713436305
- type: euclidean_ap
value: 92.55456011993165
- type: euclidean_f1
value: 86.34953464322648
- type: euclidean_f1_threshold
value: 68.9774713436305
- type: euclidean_precision
value: 89.40042826552462
- type: euclidean_recall
value: 83.5
- type: main_score
value: 92.55456011993165
- type: manhattan_accuracy
value: 99.72079207920792
- type: manhattan_accuracy_threshold
value: 1165.1618136773664
- type: manhattan_ap
value: 91.85005554989056
- type: manhattan_f1
value: 85.55327868852459
- type: manhattan_f1_threshold
value: 1169.146348835659
- type: manhattan_precision
value: 87.71008403361344
- type: manhattan_recall
value: 83.5
- type: max_accuracy
value: 99.73861386138614
- type: max_ap
value: 92.55456011993165
- type: max_f1
value: 86.34953464322648
- type: max_precision
value: 89.40042826552462
- type: max_recall
value: 83.5
- type: similarity_accuracy
value: 99.73861386138614
- type: similarity_accuracy_threshold
value: 76.21053359407102
- type: similarity_ap
value: 92.55456011993165
- type: similarity_f1
value: 86.34953464322648
- type: similarity_f1_threshold
value: 76.21053359407102
- type: similarity_precision
value: 89.40042826552462
- type: similarity_recall
value: 83.5
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: main_score
value: 51.975954494166075
- type: v_measure
value: 51.975954494166075
- type: v_measure_std
value: 4.557795328959378
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: main_score
value: 31.05220500143856
- type: v_measure
value: 31.05220500143856
- type: v_measure_std
value: 1.631365700671601
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: main_score
value: 43.96464532466761
- type: map
value: 43.96464532466761
- type: mrr
value: 44.37866055513114
- type: nAUC_map_diff1
value: 34.95374640225194
- type: nAUC_map_max
value: 14.380255206196887
- type: nAUC_map_std
value: 4.730399252834778
- type: nAUC_mrr_diff1
value: 34.07397654492457
- type: nAUC_mrr_max
value: 14.993446781842392
- type: nAUC_mrr_std
value: 4.8772543186698085
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cosine_pearson
value: 30.188622278722267
- type: cosine_spearman
value: 29.781575832251296
- type: dot_pearson
value: 30.188623059165494
- type: dot_spearman
value: 29.790199244359933
- type: main_score
value: 29.781575832251296
- type: pearson
value: 30.188622278722267
- type: spearman
value: 29.781575832251296
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: main_score
value: 41.931000000000004
- type: map_at_1
value: 0.135
- type: map_at_10
value: 0.855
- type: map_at_100
value: 4.484
- type: map_at_1000
value: 11.498
- type: map_at_20
value: 1.478
- type: map_at_3
value: 0.336
- type: map_at_5
value: 0.503
- type: mrr_at_1
value: 56.00000000000001
- type: mrr_at_10
value: 64.68888888888888
- type: mrr_at_100
value: 65.45360311215018
- type: mrr_at_1000
value: 65.45360311215018
- type: mrr_at_20
value: 65.14263689526848
- type: mrr_at_3
value: 61.999999999999986
- type: mrr_at_5
value: 63.79999999999999
- type: nauc_map_at_1000_diff1
value: -4.815589003347539
- type: nauc_map_at_1000_max
value: 28.88855432647378
- type: nauc_map_at_1000_std
value: 39.02771004823413
- type: nauc_map_at_100_diff1
value: -6.763033694479543
- type: nauc_map_at_100_max
value: 18.19565344487221
- type: nauc_map_at_100_std
value: 20.443536772991617
- type: nauc_map_at_10_diff1
value: -8.372434926443631
- type: nauc_map_at_10_max
value: 21.02046545943698
- type: nauc_map_at_10_std
value: -7.766784888512321
- type: nauc_map_at_1_diff1
value: -11.726444894941686
- type: nauc_map_at_1_max
value: 28.098944623859012
- type: nauc_map_at_1_std
value: -8.992714094540933
- type: nauc_map_at_20_diff1
value: -9.035785185072163
- type: nauc_map_at_20_max
value: 18.506302521346917
- type: nauc_map_at_20_std
value: 0.8278714327228345
- type: nauc_map_at_3_diff1
value: -4.256022640946662
- type: nauc_map_at_3_max
value: 26.426928222979022
- type: nauc_map_at_3_std
value: -13.986031228577922
- type: nauc_map_at_5_diff1
value: -0.7971498197036772
- type: nauc_map_at_5_max
value: 28.264906005693895
- type: nauc_map_at_5_std
value: -9.864600825268974
- type: nauc_mrr_at_1000_diff1
value: -0.4613350723093772
- type: nauc_mrr_at_1000_max
value: 35.284828115023295
- type: nauc_mrr_at_1000_std
value: -1.7243940208394375
- type: nauc_mrr_at_100_diff1
value: -0.4613350723093772
- type: nauc_mrr_at_100_max
value: 35.284828115023295
- type: nauc_mrr_at_100_std
value: -1.7243940208394375
- type: nauc_mrr_at_10_diff1
value: -1.1774961298584272
- type: nauc_mrr_at_10_max
value: 34.502385968248525
- type: nauc_mrr_at_10_std
value: -1.8035899462487706
- type: nauc_mrr_at_1_diff1
value: 5.3401090165795555
- type: nauc_mrr_at_1_max
value: 38.54190324778555
- type: nauc_mrr_at_1_std
value: 6.129343629343582
- type: nauc_mrr_at_20_diff1
value: -0.16879233702767957
- type: nauc_mrr_at_20_max
value: 35.280815463947036
- type: nauc_mrr_at_20_std
value: -1.474513578251734
- type: nauc_mrr_at_3_diff1
value: -1.7688495464888414
- type: nauc_mrr_at_3_max
value: 32.94164095211376
- type: nauc_mrr_at_3_std
value: -6.87747405167847
- type: nauc_mrr_at_5_diff1
value: -1.9018790708586215
- type: nauc_mrr_at_5_max
value: 34.41650619460187
- type: nauc_mrr_at_5_std
value: -4.076153362419268
- type: nauc_ndcg_at_1000_diff1
value: -7.11758000334035
- type: nauc_ndcg_at_1000_max
value: 26.33768168184003
- type: nauc_ndcg_at_1000_std
value: 31.441892174911988
- type: nauc_ndcg_at_100_diff1
value: 5.945901478997322
- type: nauc_ndcg_at_100_max
value: 25.317381446915604
- type: nauc_ndcg_at_100_std
value: 25.557558325471348
- type: nauc_ndcg_at_10_diff1
value: 4.325756905707739
- type: nauc_ndcg_at_10_max
value: 25.232156948625345
- type: nauc_ndcg_at_10_std
value: 3.8168250010393354
- type: nauc_ndcg_at_1_diff1
value: 7.471852610030701
- type: nauc_ndcg_at_1_max
value: 32.29068577277381
- type: nauc_ndcg_at_1_std
value: 2.819515523712047
- type: nauc_ndcg_at_20_diff1
value: 4.7861088304576205
- type: nauc_ndcg_at_20_max
value: 23.59279585898106
- type: nauc_ndcg_at_20_std
value: 11.465220742781467
- type: nauc_ndcg_at_3_diff1
value: 7.68150652123663
- type: nauc_ndcg_at_3_max
value: 28.90636434919282
- type: nauc_ndcg_at_3_std
value: -6.057560500143322
- type: nauc_ndcg_at_5_diff1
value: 7.174553606416769
- type: nauc_ndcg_at_5_max
value: 28.32458435468132
- type: nauc_ndcg_at_5_std
value: -1.3744649180278934
- type: nauc_precision_at_1000_diff1
value: 5.584231801519359
- type: nauc_precision_at_1000_max
value: 28.002541879211844
- type: nauc_precision_at_1000_std
value: 33.27730700949564
- type: nauc_precision_at_100_diff1
value: 6.346489878855957
- type: nauc_precision_at_100_max
value: 26.95277497012729
- type: nauc_precision_at_100_std
value: 28.645191802637154
- type: nauc_precision_at_10_diff1
value: 2.3502489108128826
- type: nauc_precision_at_10_max
value: 27.281466664077225
- type: nauc_precision_at_10_std
value: 6.9364872825671675
- type: nauc_precision_at_1_diff1
value: 5.3401090165795555
- type: nauc_precision_at_1_max
value: 38.54190324778555
- type: nauc_precision_at_1_std
value: 6.129343629343582
- type: nauc_precision_at_20_diff1
value: 3.839972337238674
- type: nauc_precision_at_20_max
value: 27.22170962215984
- type: nauc_precision_at_20_std
value: 17.733276643490875
- type: nauc_precision_at_3_diff1
value: 6.598478731146103
- type: nauc_precision_at_3_max
value: 27.451625444866444
- type: nauc_precision_at_3_std
value: -9.193408499566358
- type: nauc_precision_at_5_diff1
value: 6.452908005912722
- type: nauc_precision_at_5_max
value: 31.655017610453136
- type: nauc_precision_at_5_std
value: 0.8674440814886519
- type: nauc_recall_at_1000_diff1
value: -9.719516261417361
- type: nauc_recall_at_1000_max
value: 25.06055928220044
- type: nauc_recall_at_1000_std
value: 33.23548730908827
- type: nauc_recall_at_100_diff1
value: -11.518579756795685
- type: nauc_recall_at_100_max
value: 15.646642192110278
- type: nauc_recall_at_100_std
value: 19.192418060016227
- type: nauc_recall_at_10_diff1
value: -13.48419022233322
- type: nauc_recall_at_10_max
value: 19.013312050968338
- type: nauc_recall_at_10_std
value: -7.2511820688363855
- type: nauc_recall_at_1_diff1
value: -11.726444894941686
- type: nauc_recall_at_1_max
value: 28.098944623859012
- type: nauc_recall_at_1_std
value: -8.992714094540933
- type: nauc_recall_at_20_diff1
value: -14.398393925439896
- type: nauc_recall_at_20_max
value: 17.2065810175314
- type: nauc_recall_at_20_std
value: 1.3585608911222675
- type: nauc_recall_at_3_diff1
value: -8.290744359014761
- type: nauc_recall_at_3_max
value: 21.881683099047937
- type: nauc_recall_at_3_std
value: -18.361115623762856
- type: nauc_recall_at_5_diff1
value: -5.286572307527278
- type: nauc_recall_at_5_max
value: 25.256200846766614
- type: nauc_recall_at_5_std
value: -10.683496663885045
- type: ndcg_at_1
value: 51.0
- type: ndcg_at_10
value: 41.931000000000004
- type: ndcg_at_100
value: 31.928
- type: ndcg_at_1000
value: 29.409000000000002
- type: ndcg_at_20
value: 40.937
- type: ndcg_at_3
value: 47.704
- type: ndcg_at_5
value: 44.912
- type: precision_at_1
value: 56.00000000000001
- type: precision_at_10
value: 44.4
- type: precision_at_100
value: 33.14
- type: precision_at_1000
value: 14.198
- type: precision_at_20
value: 43.6
- type: precision_at_3
value: 50.0
- type: precision_at_5
value: 46.800000000000004
- type: recall_at_1
value: 0.135
- type: recall_at_10
value: 1.061
- type: recall_at_100
value: 7.166
- type: recall_at_1000
value: 28.378999999999998
- type: recall_at_20
value: 1.9980000000000002
- type: recall_at_3
value: 0.367
- type: recall_at_5
value: 0.5780000000000001
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: main_score
value: 19.628999999999998
- type: map_at_1
value: 1.7770000000000001
- type: map_at_10
value: 7.313
- type: map_at_100
value: 11.988
- type: map_at_1000
value: 13.514999999999999
- type: map_at_20
value: 8.796
- type: map_at_3
value: 3.2169999999999996
- type: map_at_5
value: 4.601
- type: mrr_at_1
value: 20.408163265306122
- type: mrr_at_10
value: 37.27891156462584
- type: mrr_at_100
value: 38.6072477967195
- type: mrr_at_1000
value: 38.6072477967195
- type: mrr_at_20
value: 38.08898163608468
- type: mrr_at_3
value: 32.6530612244898
- type: mrr_at_5
value: 36.734693877551024
- type: nauc_map_at_1000_diff1
value: 10.570624698916106
- type: nauc_map_at_1000_max
value: -31.294202007427387
- type: nauc_map_at_1000_std
value: -14.937652619312106
- type: nauc_map_at_100_diff1
value: 11.868722412438842
- type: nauc_map_at_100_max
value: -30.865420770703604
- type: nauc_map_at_100_std
value: -20.422724780426734
- type: nauc_map_at_10_diff1
value: 0.041493306597119875
- type: nauc_map_at_10_max
value: -40.396176612553965
- type: nauc_map_at_10_std
value: -28.509321814611592
- type: nauc_map_at_1_diff1
value: 7.127954407520293
- type: nauc_map_at_1_max
value: -35.3892053151105
- type: nauc_map_at_1_std
value: -19.49733359371979
- type: nauc_map_at_20_diff1
value: 6.085228939912852
- type: nauc_map_at_20_max
value: -32.67429246305332
- type: nauc_map_at_20_std
value: -25.673480187765403
- type: nauc_map_at_3_diff1
value: 4.0380003376283735
- type: nauc_map_at_3_max
value: -38.314578563212734
- type: nauc_map_at_3_std
value: -22.944579429221008
- type: nauc_map_at_5_diff1
value: 1.279980605614138
- type: nauc_map_at_5_max
value: -43.13533497355372
- type: nauc_map_at_5_std
value: -27.960528588143113
- type: nauc_mrr_at_1000_diff1
value: -1.7632046089447704
- type: nauc_mrr_at_1000_max
value: -37.614642648352415
- type: nauc_mrr_at_1000_std
value: -20.453733496900504
- type: nauc_mrr_at_100_diff1
value: -1.7632046089447704
- type: nauc_mrr_at_100_max
value: -37.614642648352415
- type: nauc_mrr_at_100_std
value: -20.453733496900504
- type: nauc_mrr_at_10_diff1
value: -0.8838352304131204
- type: nauc_mrr_at_10_max
value: -36.76914151415433
- type: nauc_mrr_at_10_std
value: -20.287505509157537
- type: nauc_mrr_at_1_diff1
value: -1.0597262941161223
- type: nauc_mrr_at_1_max
value: -30.53828106000604
- type: nauc_mrr_at_1_std
value: -22.137640176831137
- type: nauc_mrr_at_20_diff1
value: -2.1539344598000856
- type: nauc_mrr_at_20_max
value: -37.69131983804487
- type: nauc_mrr_at_20_std
value: -20.36070687538437
- type: nauc_mrr_at_3_diff1
value: -1.893438268797217
- type: nauc_mrr_at_3_max
value: -36.28440192297394
- type: nauc_mrr_at_3_std
value: -19.991286112256187
- type: nauc_mrr_at_5_diff1
value: -2.0922206601916677
- type: nauc_mrr_at_5_max
value: -39.41732522875257
- type: nauc_mrr_at_5_std
value: -21.491524754378055
- type: nauc_ndcg_at_1000_diff1
value: 14.479754053162955
- type: nauc_ndcg_at_1000_max
value: -32.10581012377326
- type: nauc_ndcg_at_1000_std
value: 13.35087951605272
- type: nauc_ndcg_at_100_diff1
value: 16.80964326984191
- type: nauc_ndcg_at_100_max
value: -32.33147471694196
- type: nauc_ndcg_at_100_std
value: -5.868369097951216
- type: nauc_ndcg_at_10_diff1
value: 2.289700885976584
- type: nauc_ndcg_at_10_max
value: -38.216881297234615
- type: nauc_ndcg_at_10_std
value: -20.20137297942159
- type: nauc_ndcg_at_1_diff1
value: 1.7910846362434194
- type: nauc_ndcg_at_1_max
value: -29.634269914775903
- type: nauc_ndcg_at_1_std
value: -21.190379097876075
- type: nauc_ndcg_at_20_diff1
value: 8.806996779903233
- type: nauc_ndcg_at_20_max
value: -33.96095191892843
- type: nauc_ndcg_at_20_std
value: -20.125770326355852
- type: nauc_ndcg_at_3_diff1
value: -1.091472840622981
- type: nauc_ndcg_at_3_max
value: -33.11081822038949
- type: nauc_ndcg_at_3_std
value: -16.877176763631756
- type: nauc_ndcg_at_5_diff1
value: -1.082579219115309
- type: nauc_ndcg_at_5_max
value: -41.3743136016136
- type: nauc_ndcg_at_5_std
value: -20.715523834992034
- type: nauc_precision_at_1000_diff1
value: -6.323556781007291
- type: nauc_precision_at_1000_max
value: 34.58199835082229
- type: nauc_precision_at_1000_std
value: 60.77523423450688
- type: nauc_precision_at_100_diff1
value: 14.226845553421732
- type: nauc_precision_at_100_max
value: -1.7650024651415825
- type: nauc_precision_at_100_std
value: 26.54538052469
- type: nauc_precision_at_10_diff1
value: 5.217036148150041
- type: nauc_precision_at_10_max
value: -26.095792438253195
- type: nauc_precision_at_10_std
value: -16.80604019839076
- type: nauc_precision_at_1_diff1
value: -1.0597262941161223
- type: nauc_precision_at_1_max
value: -30.53828106000604
- type: nauc_precision_at_1_std
value: -22.137640176831137
- type: nauc_precision_at_20_diff1
value: 11.168974829140431
- type: nauc_precision_at_20_max
value: -16.16782573302428
- type: nauc_precision_at_20_std
value: -11.053623767620662
- type: nauc_precision_at_3_diff1
value: 0.947307929112776
- type: nauc_precision_at_3_max
value: -31.05930383886252
- type: nauc_precision_at_3_std
value: -17.102851167484616
- type: nauc_precision_at_5_diff1
value: 0.9266007195538144
- type: nauc_precision_at_5_max
value: -37.581387889994
- type: nauc_precision_at_5_std
value: -19.690150307959293
- type: nauc_recall_at_1000_diff1
value: 16.984317473823676
- type: nauc_recall_at_1000_max
value: -30.587646676977936
- type: nauc_recall_at_1000_std
value: 57.48516026941197
- type: nauc_recall_at_100_diff1
value: 21.886301436834625
- type: nauc_recall_at_100_max
value: -28.07071340770586
- type: nauc_recall_at_100_std
value: -0.11337935267596243
- type: nauc_recall_at_10_diff1
value: 1.6250953111186457
- type: nauc_recall_at_10_max
value: -38.0654848945014
- type: nauc_recall_at_10_std
value: -28.014162803875355
- type: nauc_recall_at_1_diff1
value: 7.127954407520293
- type: nauc_recall_at_1_max
value: -35.3892053151105
- type: nauc_recall_at_1_std
value: -19.49733359371979
- type: nauc_recall_at_20_diff1
value: 10.635038702861864
- type: nauc_recall_at_20_max
value: -30.098601211040904
- type: nauc_recall_at_20_std
value: -22.936538824524817
- type: nauc_recall_at_3_diff1
value: 3.5564807135760255
- type: nauc_recall_at_3_max
value: -38.0587512734278
- type: nauc_recall_at_3_std
value: -21.84694412548793
- type: nauc_recall_at_5_diff1
value: -0.7556448626996317
- type: nauc_recall_at_5_max
value: -46.540574319477905
- type: nauc_recall_at_5_std
value: -30.56076072609364
- type: ndcg_at_1
value: 16.326999999999998
- type: ndcg_at_10
value: 19.628999999999998
- type: ndcg_at_100
value: 30.853
- type: ndcg_at_1000
value: 42.881
- type: ndcg_at_20
value: 20.232
- type: ndcg_at_3
value: 18.093999999999998
- type: ndcg_at_5
value: 19.089
- type: precision_at_1
value: 20.408
- type: precision_at_10
value: 20.0
- type: precision_at_100
value: 7.204000000000001
- type: precision_at_1000
value: 1.488
- type: precision_at_20
value: 14.796000000000001
- type: precision_at_3
value: 20.408
- type: precision_at_5
value: 21.224
- type: recall_at_1
value: 1.7770000000000001
- type: recall_at_10
value: 14.056
- type: recall_at_100
value: 43.388
- type: recall_at_1000
value: 80.384
- type: recall_at_20
value: 19.73
- type: recall_at_3
value: 4.444
- type: recall_at_5
value: 7.742
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 70.4345703125
- type: ap
value: 13.363055996397314
- type: ap_weighted
value: 13.363055996397314
- type: f1
value: 53.71432014147602
- type: f1_weighted
value: 76.97001715054664
- type: main_score
value: 70.4345703125
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 56.58460667798529
- type: f1
value: 56.81197245206573
- type: f1_weighted
value: 56.13824904215221
- type: main_score
value: 56.58460667798529
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: main_score
value: 36.773580338060434
- type: v_measure
value: 36.773580338060434
- type: v_measure_std
value: 2.1187678513989585
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cosine_accuracy
value: 81.8024676640639
- type: cosine_accuracy_threshold
value: 72.72156987862404
- type: cosine_ap
value: 58.626480762860155
- type: cosine_f1
value: 56.335306196400516
- type: cosine_f1_threshold
value: 63.90516602618299
- type: cosine_precision
value: 51.94920917799064
- type: cosine_recall
value: 61.53034300791557
- type: dot_accuracy
value: 81.8024676640639
- type: dot_accuracy_threshold
value: 72.72157129741353
- type: dot_ap
value: 58.626480927811144
- type: dot_f1
value: 56.335306196400516
- type: dot_f1_threshold
value: 63.90516471984052
- type: dot_precision
value: 51.94920917799064
- type: dot_recall
value: 61.53034300791557
- type: euclidean_accuracy
value: 81.8024676640639
- type: euclidean_accuracy_threshold
value: 73.86261650981828
- type: euclidean_ap
value: 58.626478566508865
- type: euclidean_f1
value: 56.335306196400516
- type: euclidean_f1_threshold
value: 84.96450225024545
- type: euclidean_precision
value: 51.94920917799064
- type: euclidean_recall
value: 61.53034300791557
- type: main_score
value: 59.15380842181217
- type: manhattan_accuracy
value: 81.88591524110389
- type: manhattan_accuracy_threshold
value: 1181.9765670520376
- type: manhattan_ap
value: 59.15380842181217
- type: manhattan_f1
value: 56.939975590813276
- type: manhattan_f1_threshold
value: 1437.7120667882991
- type: manhattan_precision
value: 49.12885314953092
- type: manhattan_recall
value: 67.70448548812665
- type: max_accuracy
value: 81.88591524110389
- type: max_ap
value: 59.15380842181217
- type: max_f1
value: 56.939975590813276
- type: max_precision
value: 51.94920917799064
- type: max_recall
value: 67.70448548812665
- type: similarity_accuracy
value: 81.8024676640639
- type: similarity_accuracy_threshold
value: 72.72156987862404
- type: similarity_ap
value: 58.626480762860155
- type: similarity_f1
value: 56.335306196400516
- type: similarity_f1_threshold
value: 63.90516602618299
- type: similarity_precision
value: 51.94920917799064
- type: similarity_recall
value: 61.53034300791557
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cosine_accuracy
value: 87.36174176271976
- type: cosine_accuracy_threshold
value: 60.648304783781334
- type: cosine_ap
value: 82.50029451974736
- type: cosine_f1
value: 74.85008308648219
- type: cosine_f1_threshold
value: 54.0321362274791
- type: cosine_precision
value: 70.50496801415544
- type: cosine_recall
value: 79.76593778872805
- type: dot_accuracy
value: 87.36174176271976
- type: dot_accuracy_threshold
value: 60.64830361623812
- type: dot_ap
value: 82.50033093545332
- type: dot_f1
value: 74.85008308648219
- type: dot_f1_threshold
value: 54.03213667524275
- type: dot_precision
value: 70.50496801415544
- type: dot_recall
value: 79.76593778872805
- type: euclidean_accuracy
value: 87.36174176271976
- type: euclidean_accuracy_threshold
value: 88.714930435829
- type: euclidean_ap
value: 82.50029575944534
- type: euclidean_f1
value: 74.85008308648219
- type: euclidean_f1_threshold
value: 95.8831206738777
- type: euclidean_precision
value: 70.50496801415544
- type: euclidean_recall
value: 79.76593778872805
- type: main_score
value: 82.79743429849837
- type: manhattan_accuracy
value: 87.51309814879497
- type: manhattan_accuracy_threshold
value: 1458.0611945921191
- type: manhattan_ap
value: 82.79743429849837
- type: manhattan_f1
value: 75.14295079578979
- type: manhattan_f1_threshold
value: 1571.1923710026895
- type: manhattan_precision
value: 71.29725620291659
- type: manhattan_recall
value: 79.4271635355713
- type: max_accuracy
value: 87.51309814879497
- type: max_ap
value: 82.79743429849837
- type: max_f1
value: 75.14295079578979
- type: max_precision
value: 71.29725620291659
- type: max_recall
value: 79.76593778872805
- type: similarity_accuracy
value: 87.36174176271976
- type: similarity_accuracy_threshold
value: 60.648304783781334
- type: similarity_ap
value: 82.50029451974736
- type: similarity_f1
value: 74.85008308648219
- type: similarity_f1_threshold
value: 54.0321362274791
- type: similarity_precision
value: 70.50496801415544
- type: similarity_recall
value: 79.76593778872805
---
# potion-base-32M Model Card
<div align="center">
<img width="35%" alt="Model2Vec logo" src="https://raw.githubusercontent.com/MinishLab/model2vec/main/assets/images/logo_v2.png">
</div>
This [Model2Vec](https://github.com/MinishLab/model2vec) model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It is a distilled version of the [baai/bge-base-en-v1.5](https://huggingface.co/baai/bge-base-en-v1.5) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. It uses a larger vocabulary size than the [potion-base-8M](https://huggingface.co/minishlab/potion-base-8M) model which can be beneficial for tasks that require a larger vocabulary.
## Installation
Install model2vec using pip:
```
pip install model2vec
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec import StaticModel
# Load a pretrained Model2Vec model
model = StaticModel.from_pretrained("minishlab/potion-base-32M")
# Compute text embeddings
embeddings = model.encode(["Example sentence"])
```
## How it works
Model2vec creates a small, static model that outperforms other static embedding models by a large margin on all tasks on [MTEB](https://huggingface.co/spaces/mteb/leaderboard). This model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It's created using the following steps:
- Distillation: first, a model is distilled from a sentence transformer model using Model2Vec.
- Training data creation: the sentence transformer model is used to create training data by creating mean output embeddings on a large corpus.
- Training: the distilled model is trained on the training data using Tokenlearn.
- Post-training re-regularization: after training, the model is re-regularized by weighting the tokens based on their frequency, applying PCA, and finally applying [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx).
## Results
The results for this model are shown in the table below. The full Model2Vec results for all models can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).
```
Average (All) 52.46
Average (MTEB) 51.66
Classification 65.97
Clustering 35.29
PairClassification 78.17
Reranking 50.92
Retrieval 33.52
STS 74.22
Summarization 29.78
PEARL 55.37
WordSim 55.15
```
## Additional Resources
- [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Tokenlearn repo](https://github.com/MinishLab/tokenlearn)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/blob/main/results/README.md)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@software{minishlab2024model2vec,
authors = {Stephan Tulkens and Thomas van Dongen},
title = {Model2Vec: The Fastest State-of-the-Art Static Embeddings in the World},
year = {2024},
url = {https://github.com/MinishLab/model2vec}
}
``` | [
"BIOSSES",
"SCIFACT"
] |
michiyasunaga/BioLinkBERT-base | michiyasunaga | text-classification | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"exbert",
"linkbert",
"biolinkbert",
"fill-mask",
"question-answering",
"text-classification",
"token-classification",
"en",
"dataset:pubmed",
"arxiv:2203.15827",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | "2022-03-08T07:22:12Z" | 2022-03-31T00:51:21+00:00 | 4,645 | 36 | ---
datasets:
- pubmed
language: en
license: apache-2.0
tags:
- bert
- exbert
- linkbert
- biolinkbert
- feature-extraction
- fill-mask
- question-answering
- text-classification
- token-classification
widget:
- text: Sunitinib is a tyrosine kinase inhibitor
---
## BioLinkBERT-base
BioLinkBERT-base model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT).
This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA).
## Model description
LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document.
LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval).
## Intended uses & limitations
The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification.
You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text).
### How to use
To use the model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-base')
model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-base')
inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases.
## Evaluation results
When fine-tuned on downstream tasks, LinkBERT achieves the following results.
**Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art.
| | BLURB score | PubMedQA | BioASQ | MedQA-USMLE |
| ---------------------- | -------- | -------- | ------- | -------- |
| PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 |
| **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** |
| **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** |
| | MMLU-professional medicine |
| ---------------------- | -------- |
| GPT-3 (175 params) | 38.7 |
| UnifiedQA (11B params) | 43.2 |
| **BioLinkBERT-large (340M params)** | **50.7** |
## Citation
If you find LinkBERT useful in your project, please cite the following:
```bibtex
@InProceedings{yasunaga2022linkbert,
author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
title = {LinkBERT: Pretraining Language Models with Document Links},
year = {2022},
booktitle = {Association for Computational Linguistics (ACL)},
}
```
| [
"BLURB",
"MEDQA",
"PUBMEDQA"
] |
joe32140/ModernBERT-base-msmarco | joe32140 | sentence-similarity | [
"sentence-transformers",
"onnx",
"safetensors",
"modernbert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:11662655",
"loss:CachedMultipleNegativesRankingLoss",
"en",
"dataset:sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
"arxiv:1908.10084",
"arxiv:2101.06983",
"base_model:answerdotai/ModernBERT-base",
"base_model:finetune:answerdotai/ModernBERT-base",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-12-20T05:00:55Z" | 2025-01-26T00:05:31+00:00 | 4,630 | 8 | ---
base_model: answerdotai/ModernBERT-base
datasets:
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
language:
- en
library_name: sentence-transformers
metrics:
- cosine_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11662655
- loss:CachedMultipleNegativesRankingLoss
base_model_relation: finetune
widget:
- source_sentence: what county is lyndhurst, ohio in
sentences:
- This article is about the song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
For the Tina Turner song, see Don't Leave Me This Way (Tina Turner song). Don't
Leave Me This Way is a song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
First charting as a hit for Harold Melvin & the Blue Notes featuring Teddy Pendergrass,
an act on Gamble & Huff's Philadelphia International label in 1975, Don't Leave
Me This Way was later a huge disco hit for Motown artist Thelma Houston in 1977.
- "Lyndhurst is a city in Cuyahoga County, Ohio, United States. The population was\
\ 14,001 at the 2010 census. Lyndhurst is located in northeastern Ohio, and is\
\ a suburb of Cleveland. A small part of Lyndhurst was originally part of Mayfield\
\ Township. It used to be called Euclidville before Lyndhurst was chosen. Lyndhurst\
\ is located at 41°31â\x80²17â\x80³N 81°29â\x80²25â\x80³W / 41.52139°N 81.49028°W\
\ / 41.52139; -81.49028 (41.521352, -81.490141)."
- Welcome to Trumbull County... Trumbull County, the county seat, located in Warren,
Ohio, consists of a combination of both urban and rural communities situated in
the northeast corner of Ohio. It is situated roughly between the Youngstown, Cleveland
and Akron corridors.
- source_sentence: who founded the american graphophone company
sentences:
- In 1886, Graham Bell and Charles Sumner Tainter founded the American Graphophone
Company to distribute and sell graphophones in the US and Canada under license
from the Volta Graphophone Company. In 1890, the American Graphophone Company
stopped production of new phonographs due to sagging orders.
- ShelfGenie How much does a ShelfGenie franchise cost? ShelfGenie has a franchise
fee of up to $45,000, with a total initial investment range of $70,100 to $107,750.
Local ShelfGenie franchise opportunities. ShelfGenie is looking to grow in a number
of cities around the country. To find out if there's a franchise opportunity in
your city, unlock more information.
- "A+E Networks. The technology that made the modern music business possible came\
\ into existence in the New Jersey laboratory where Thomas Alva Edison created\
\ the first device to both record sound and play it back. He was awarded U.S.\
\ Patent No. 200,521 for his inventionâ\x80\x93the phonographâ\x80\x93on this\
\ day in 1878."
- source_sentence: is housekeeping camp flooded?
sentences:
- 'What is the importance of housekeeping at work? A: Workplace housekeeping promotes
sanitation, safety, organization and productivity. It also boosts morale. Daily
housekeeping maintenance keeps the workplac... Full Answer >'
- The back patio area of a cabin is partially submerged in flood water at Housekeeping
Camp on Monday, Jan. 9, 2017, in Yosemite National Park. The Merced River, swollen
with storm runoff, crested at 12.7 feet at 4 a.m. SILVIA FLORES [email protected].
- "1 Bake for 8 minutes, then rotate the pan and check the underside of the bagels.\
\ 2 If theyâ\x80\x99re getting too dark, place another pan under the baking sheet.\
\ ( 3 Doubling the pan will insulate the first baking sheet.) Bake for another\
\ 8 to 12 minutes, until the bagels are a golden brown. 4 13."
- source_sentence: causes for infection in the nerve of tooth
sentences:
- If a cavity is causing the toothache, your dentist will fill the cavity or possibly
extract the tooth, if necessary. A root canal might be needed if the cause of
the toothache is determined to be an infection of the tooth's nerve. Bacteria
that have worked their way into the inner aspects of the tooth cause such an infection.
An antibiotic may be prescribed if there is fever or swelling of the jaw.
- "According to Article III, Section 1 of the Constitution, judges and justices\
\ of the Judicial Branch serve during good behavior.. This means they are appointed\
\ for life, unles â\x80¦ s they are impeached and removed from office. + 50 others\
\ found this useful.he term length for members of the House are two years and\
\ a staggering six years for members of the Senate."
- Inflamed or infected pulp (pulpitis) most often causes a toothache. To relieve
the pain and prevent further complications, the tooth may be extracted (surgically
removed) or saved by root canal treatment.
- source_sentence: what county is hayden in
sentences:
- Normally, the Lead Agency is the agency with general governmental powers such
as a city or a county. Agencies with limited powers or districts that provide
a public service/utility such as a recreation and park district will tend to be
a Responsible Agency.
- According to the United States Census Bureau, the city has a total area of 9.61
square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01
square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake,
and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is
located on U.S. Route 95 at the junction of Route 41. It is also four miles (6
km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest
of Hayden.
- Hayden is a city in Kootenai County, Idaho, United States. Located in the northern
portion of the state, just north of Coeur d'Alene, its population was 13,294 at
the 2010 census.
model-index:
- name: SentenceTransformer based on answerdotai/ModernBERT-base
results:
- task:
type: triplet
name: Triplet
dataset:
name: msmarco co condenser dev
type: msmarco-co-condenser-dev
metrics:
- type: cosine_accuracy
value: 0.984
name: Cosine Accuracy
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 65.997
- type: f1
value: 53.595099999999995
- type: f1_weighted
value: 72.5304
- type: ap
value: 16.3093
- type: ap_weighted
value: 16.3093
- type: main_score
value: 65.997
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 64.19399999999999
- type: f1
value: 58.5969
- type: f1_weighted
value: 67.7482
- type: ap
value: 28.0748
- type: ap_weighted
value: 28.0748
- type: main_score
value: 64.19399999999999
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 67.1713
- type: f1
value: 66.9443
- type: f1_weighted
value: 66.9443
- type: ap
value: 61.7296
- type: ap_weighted
value: 61.7296
- type: main_score
value: 67.1713
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 32.318000000000005
- type: f1
value: 31.9973
- type: f1_weighted
value: 31.9973
- type: main_score
value: 32.318000000000005
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: ndcg_at_1
value: 24.609
- type: ndcg_at_3
value: 36.278
- type: ndcg_at_5
value: 40.903
- type: ndcg_at_10
value: 46.381
- type: ndcg_at_20
value: 49.571
- type: ndcg_at_100
value: 51.666000000000004
- type: ndcg_at_1000
value: 52.098
- type: map_at_1
value: 24.609
- type: map_at_3
value: 33.404
- type: map_at_5
value: 35.968
- type: map_at_10
value: 38.204
- type: map_at_20
value: 39.113
- type: map_at_100
value: 39.432
- type: map_at_1000
value: 39.45
- type: recall_at_1
value: 24.609
- type: recall_at_3
value: 44.595
- type: recall_at_5
value: 55.832
- type: recall_at_10
value: 72.902
- type: recall_at_20
value: 85.277
- type: recall_at_100
value: 96.15899999999999
- type: recall_at_1000
value: 99.431
- type: precision_at_1
value: 24.609
- type: precision_at_3
value: 14.865
- type: precision_at_5
value: 11.166
- type: precision_at_10
value: 7.290000000000001
- type: precision_at_20
value: 4.263999999999999
- type: precision_at_100
value: 0.962
- type: precision_at_1000
value: 0.099
- type: mrr_at_1
value: 25.1067
- type: mrr_at_3
value: 33.5941
- type: mrr_at_5
value: 36.154599999999995
- type: mrr_at_10
value: 38.3849
- type: mrr_at_20
value: 39.3004
- type: mrr_at_100
value: 39.618900000000004
- type: mrr_at_1000
value: 39.6374
- type: nauc_ndcg_at_1_max
value: -5.6006
- type: nauc_ndcg_at_1_std
value: -4.8049
- type: nauc_ndcg_at_1_diff1
value: 14.902999999999999
- type: nauc_ndcg_at_3_max
value: -0.40800000000000003
- type: nauc_ndcg_at_3_std
value: -1.9375
- type: nauc_ndcg_at_3_diff1
value: 12.1454
- type: nauc_ndcg_at_5_max
value: -0.46849999999999997
- type: nauc_ndcg_at_5_std
value: -2.0393000000000003
- type: nauc_ndcg_at_5_diff1
value: 10.7318
- type: nauc_ndcg_at_10_max
value: 3.0675
- type: nauc_ndcg_at_10_std
value: -0.3638
- type: nauc_ndcg_at_10_diff1
value: 11.3071
- type: nauc_ndcg_at_20_max
value: 2.5101
- type: nauc_ndcg_at_20_std
value: -0.3348
- type: nauc_ndcg_at_20_diff1
value: 11.5383
- type: nauc_ndcg_at_100_max
value: 1.0754
- type: nauc_ndcg_at_100_std
value: 0.1077
- type: nauc_ndcg_at_100_diff1
value: 11.8117
- type: nauc_ndcg_at_1000_max
value: 0.5791000000000001
- type: nauc_ndcg_at_1000_std
value: -0.6433
- type: nauc_ndcg_at_1000_diff1
value: 11.9586
- type: nauc_map_at_1_max
value: -5.6006
- type: nauc_map_at_1_std
value: -4.8049
- type: nauc_map_at_1_diff1
value: 14.902999999999999
- type: nauc_map_at_3_max
value: -1.5511000000000001
- type: nauc_map_at_3_std
value: -2.4433
- type: nauc_map_at_3_diff1
value: 12.6974
- type: nauc_map_at_5_max
value: -1.5512
- type: nauc_map_at_5_std
value: -2.4537
- type: nauc_map_at_5_diff1
value: 11.982
- type: nauc_map_at_10_max
value: -0.244
- type: nauc_map_at_10_std
value: -1.7697999999999998
- type: nauc_map_at_10_diff1
value: 12.253400000000001
- type: nauc_map_at_20_max
value: -0.477
- type: nauc_map_at_20_std
value: -1.8189
- type: nauc_map_at_20_diff1
value: 12.3218
- type: nauc_map_at_100_max
value: -0.6815
- type: nauc_map_at_100_std
value: -1.7488
- type: nauc_map_at_100_diff1
value: 12.3542
- type: nauc_map_at_1000_max
value: -0.6970999999999999
- type: nauc_map_at_1000_std
value: -1.7691999999999999
- type: nauc_map_at_1000_diff1
value: 12.359399999999999
- type: nauc_recall_at_1_max
value: -5.6006
- type: nauc_recall_at_1_std
value: -4.8049
- type: nauc_recall_at_1_diff1
value: 14.902999999999999
- type: nauc_recall_at_3_max
value: 2.6873
- type: nauc_recall_at_3_std
value: -0.6182
- type: nauc_recall_at_3_diff1
value: 10.6725
- type: nauc_recall_at_5_max
value: 2.5734
- type: nauc_recall_at_5_std
value: -0.9853000000000001
- type: nauc_recall_at_5_diff1
value: 6.8572
- type: nauc_recall_at_10_max
value: 17.8111
- type: nauc_recall_at_10_std
value: 5.651599999999999
- type: nauc_recall_at_10_diff1
value: 7.600999999999999
- type: nauc_recall_at_20_max
value: 23.985899999999997
- type: nauc_recall_at_20_std
value: 10.423499999999999
- type: nauc_recall_at_20_diff1
value: 7.0172
- type: nauc_recall_at_100_max
value: 30.766900000000003
- type: nauc_recall_at_100_std
value: 50.9552
- type: nauc_recall_at_100_diff1
value: 5.1657
- type: nauc_recall_at_1000_max
value: 25.4176
- type: nauc_recall_at_1000_std
value: 73.0444
- type: nauc_recall_at_1000_diff1
value: 16.6349
- type: nauc_precision_at_1_max
value: -5.6006
- type: nauc_precision_at_1_std
value: -4.8049
- type: nauc_precision_at_1_diff1
value: 14.902999999999999
- type: nauc_precision_at_3_max
value: 2.6873
- type: nauc_precision_at_3_std
value: -0.6182
- type: nauc_precision_at_3_diff1
value: 10.6725
- type: nauc_precision_at_5_max
value: 2.5734
- type: nauc_precision_at_5_std
value: -0.9853000000000001
- type: nauc_precision_at_5_diff1
value: 6.8572
- type: nauc_precision_at_10_max
value: 17.8111
- type: nauc_precision_at_10_std
value: 5.651599999999999
- type: nauc_precision_at_10_diff1
value: 7.600999999999999
- type: nauc_precision_at_20_max
value: 23.985899999999997
- type: nauc_precision_at_20_std
value: 10.423499999999999
- type: nauc_precision_at_20_diff1
value: 7.0172
- type: nauc_precision_at_100_max
value: 30.766900000000003
- type: nauc_precision_at_100_std
value: 50.9552
- type: nauc_precision_at_100_diff1
value: 5.1657
- type: nauc_precision_at_1000_max
value: 25.4176
- type: nauc_precision_at_1000_std
value: 73.0444
- type: nauc_precision_at_1000_diff1
value: 16.6349
- type: nauc_mrr_at_1_max
value: -5.1381000000000006
- type: nauc_mrr_at_1_std
value: -4.1855
- type: nauc_mrr_at_1_diff1
value: 13.2056
- type: nauc_mrr_at_3_max
value: -1.7795999999999998
- type: nauc_mrr_at_3_std
value: -2.3432
- type: nauc_mrr_at_3_diff1
value: 11.4369
- type: nauc_mrr_at_5_max
value: -1.7394
- type: nauc_mrr_at_5_std
value: -2.3168
- type: nauc_mrr_at_5_diff1
value: 10.7454
- type: nauc_mrr_at_10_max
value: -0.5075999999999999
- type: nauc_mrr_at_10_std
value: -1.6223
- type: nauc_mrr_at_10_diff1
value: 10.906699999999999
- type: nauc_mrr_at_20_max
value: -0.715
- type: nauc_mrr_at_20_std
value: -1.6808
- type: nauc_mrr_at_20_diff1
value: 10.9766
- type: nauc_mrr_at_100_max
value: -0.9223
- type: nauc_mrr_at_100_std
value: -1.6097000000000001
- type: nauc_mrr_at_100_diff1
value: 10.9945
- type: nauc_mrr_at_1000_max
value: -0.938
- type: nauc_mrr_at_1000_std
value: -1.63
- type: nauc_mrr_at_1000_diff1
value: 10.998800000000001
- type: main_score
value: 46.381
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 38.9781
- type: v_measure_std
value: 14.0064
- type: main_score
value: 38.9781
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 28.964499999999997
- type: v_measure_std
value: 14.276900000000001
- type: main_score
value: 28.964499999999997
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 57.9553
- type: mrr
value: 70.82929999999999
- type: nAUC_map_max
value: 23.2041
- type: nAUC_map_std
value: 21.0013
- type: nAUC_map_diff1
value: 6.7763
- type: nAUC_mrr_max
value: 33.143499999999996
- type: nAUC_mrr_std
value: 25.8722
- type: nAUC_mrr_diff1
value: 10.2834
- type: main_score
value: 57.9553
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: pearson
value: 85.0909
- type: spearman
value: 80.7386
- type: cosine_pearson
value: 85.0909
- type: cosine_spearman
value: 80.7386
- type: manhattan_pearson
value: 82.0327
- type: manhattan_spearman
value: 78.562
- type: euclidean_pearson
value: 82.6159
- type: euclidean_spearman
value: 79.35419999999999
- type: main_score
value: 80.7386
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 82.026
- type: f1
value: 81.9738
- type: f1_weighted
value: 81.9738
- type: main_score
value: 82.026
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 30.787
- type: v_measure_std
value: 0.9286000000000001
- type: main_score
value: 30.787
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 27.099800000000002
- type: v_measure_std
value: 0.7908000000000001
- type: main_score
value: 27.099800000000002
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: ndcg_at_1
value: 29.757
- type: ndcg_at_3
value: 34.736
- type: ndcg_at_5
value: 36.529
- type: ndcg_at_10
value: 39.114
- type: ndcg_at_20
value: 41.05
- type: ndcg_at_100
value: 44.359
- type: ndcg_at_1000
value: 47.015
- type: map_at_1
value: 24.501
- type: map_at_3
value: 30.857
- type: map_at_5
value: 32.307
- type: map_at_10
value: 33.582
- type: map_at_20
value: 34.229
- type: map_at_100
value: 34.801
- type: map_at_1000
value: 34.936
- type: recall_at_1
value: 24.501
- type: recall_at_3
value: 37.393
- type: recall_at_5
value: 42.701
- type: recall_at_10
value: 50.470000000000006
- type: recall_at_20
value: 57.45099999999999
- type: recall_at_100
value: 72.912
- type: recall_at_1000
value: 90.643
- type: precision_at_1
value: 29.757
- type: precision_at_3
value: 16.738
- type: precision_at_5
value: 11.788
- type: precision_at_10
value: 7.282
- type: precision_at_20
value: 4.349
- type: precision_at_100
value: 1.209
- type: precision_at_1000
value: 0.172
- type: mrr_at_1
value: 29.7568
- type: mrr_at_3
value: 36.0515
- type: mrr_at_5
value: 37.432
- type: mrr_at_10
value: 38.4942
- type: mrr_at_20
value: 38.9932
- type: mrr_at_100
value: 39.3632
- type: mrr_at_1000
value: 39.427099999999996
- type: nauc_ndcg_at_1_max
value: 35.163
- type: nauc_ndcg_at_1_std
value: -4.949
- type: nauc_ndcg_at_1_diff1
value: 50.6784
- type: nauc_ndcg_at_3_max
value: 36.0879
- type: nauc_ndcg_at_3_std
value: -3.2672
- type: nauc_ndcg_at_3_diff1
value: 47.2847
- type: nauc_ndcg_at_5_max
value: 36.4638
- type: nauc_ndcg_at_5_std
value: -1.6767
- type: nauc_ndcg_at_5_diff1
value: 46.6553
- type: nauc_ndcg_at_10_max
value: 37.3779
- type: nauc_ndcg_at_10_std
value: -0.7015
- type: nauc_ndcg_at_10_diff1
value: 46.8114
- type: nauc_ndcg_at_20_max
value: 37.459900000000005
- type: nauc_ndcg_at_20_std
value: -0.028499999999999998
- type: nauc_ndcg_at_20_diff1
value: 46.0127
- type: nauc_ndcg_at_100_max
value: 37.6178
- type: nauc_ndcg_at_100_std
value: 0.39170000000000005
- type: nauc_ndcg_at_100_diff1
value: 45.9498
- type: nauc_ndcg_at_1000_max
value: 37.8896
- type: nauc_ndcg_at_1000_std
value: 1.1141
- type: nauc_ndcg_at_1000_diff1
value: 45.977000000000004
- type: nauc_map_at_1_max
value: 32.9735
- type: nauc_map_at_1_std
value: -6.633
- type: nauc_map_at_1_diff1
value: 52.641000000000005
- type: nauc_map_at_3_max
value: 35.2305
- type: nauc_map_at_3_std
value: -5.084700000000001
- type: nauc_map_at_3_diff1
value: 49.615700000000004
- type: nauc_map_at_5_max
value: 35.613299999999995
- type: nauc_map_at_5_std
value: -4.039899999999999
- type: nauc_map_at_5_diff1
value: 48.889500000000005
- type: nauc_map_at_10_max
value: 36.167899999999996
- type: nauc_map_at_10_std
value: -3.5740000000000003
- type: nauc_map_at_10_diff1
value: 48.7396
- type: nauc_map_at_20_max
value: 36.2918
- type: nauc_map_at_20_std
value: -3.2796
- type: nauc_map_at_20_diff1
value: 48.466300000000004
- type: nauc_map_at_100_max
value: 36.449799999999996
- type: nauc_map_at_100_std
value: -3.0688
- type: nauc_map_at_100_diff1
value: 48.452400000000004
- type: nauc_map_at_1000_max
value: 36.4623
- type: nauc_map_at_1000_std
value: -3.0061999999999998
- type: nauc_map_at_1000_diff1
value: 48.4259
- type: nauc_recall_at_1_max
value: 32.9735
- type: nauc_recall_at_1_std
value: -6.633
- type: nauc_recall_at_1_diff1
value: 52.641000000000005
- type: nauc_recall_at_3_max
value: 34.925
- type: nauc_recall_at_3_std
value: -2.0608999999999997
- type: nauc_recall_at_3_diff1
value: 44.1485
- type: nauc_recall_at_5_max
value: 34.760600000000004
- type: nauc_recall_at_5_std
value: 1.6886999999999999
- type: nauc_recall_at_5_diff1
value: 41.4227
- type: nauc_recall_at_10_max
value: 36.57
- type: nauc_recall_at_10_std
value: 5.5427
- type: nauc_recall_at_10_diff1
value: 40.9419
- type: nauc_recall_at_20_max
value: 36.6151
- type: nauc_recall_at_20_std
value: 9.1305
- type: nauc_recall_at_20_diff1
value: 37.2562
- type: nauc_recall_at_100_max
value: 37.5285
- type: nauc_recall_at_100_std
value: 13.8761
- type: nauc_recall_at_100_diff1
value: 35.5754
- type: nauc_recall_at_1000_max
value: 48.5408
- type: nauc_recall_at_1000_std
value: 47.0295
- type: nauc_recall_at_1000_diff1
value: 31.1568
- type: nauc_precision_at_1_max
value: 35.163
- type: nauc_precision_at_1_std
value: -4.949
- type: nauc_precision_at_1_diff1
value: 50.6784
- type: nauc_precision_at_3_max
value: 33.2905
- type: nauc_precision_at_3_std
value: -1.6148
- type: nauc_precision_at_3_diff1
value: 33.1776
- type: nauc_precision_at_5_max
value: 33.325700000000005
- type: nauc_precision_at_5_std
value: 4.401999999999999
- type: nauc_precision_at_5_diff1
value: 27.237099999999998
- type: nauc_precision_at_10_max
value: 30.788700000000002
- type: nauc_precision_at_10_std
value: 7.013800000000001
- type: nauc_precision_at_10_diff1
value: 20.855999999999998
- type: nauc_precision_at_20_max
value: 27.621000000000002
- type: nauc_precision_at_20_std
value: 9.9861
- type: nauc_precision_at_20_diff1
value: 13.1662
- type: nauc_precision_at_100_max
value: 17.6654
- type: nauc_precision_at_100_std
value: 12.6523
- type: nauc_precision_at_100_diff1
value: 0.7577
- type: nauc_precision_at_1000_max
value: -0.0854
- type: nauc_precision_at_1000_std
value: 9.5769
- type: nauc_precision_at_1000_diff1
value: -16.308
- type: nauc_mrr_at_1_max
value: 35.163
- type: nauc_mrr_at_1_std
value: -4.949
- type: nauc_mrr_at_1_diff1
value: 50.6784
- type: nauc_mrr_at_3_max
value: 36.3793
- type: nauc_mrr_at_3_std
value: -3.288
- type: nauc_mrr_at_3_diff1
value: 46.936699999999995
- type: nauc_mrr_at_5_max
value: 36.4904
- type: nauc_mrr_at_5_std
value: -2.1184000000000003
- type: nauc_mrr_at_5_diff1
value: 46.3741
- type: nauc_mrr_at_10_max
value: 36.8009
- type: nauc_mrr_at_10_std
value: -1.6722000000000001
- type: nauc_mrr_at_10_diff1
value: 46.4536
- type: nauc_mrr_at_20_max
value: 36.849199999999996
- type: nauc_mrr_at_20_std
value: -1.5649
- type: nauc_mrr_at_20_diff1
value: 46.2973
- type: nauc_mrr_at_100_max
value: 36.7136
- type: nauc_mrr_at_100_std
value: -1.6903000000000001
- type: nauc_mrr_at_100_diff1
value: 46.3234
- type: nauc_mrr_at_1000_max
value: 36.7098
- type: nauc_mrr_at_1000_std
value: -1.6532000000000002
- type: nauc_mrr_at_1000_diff1
value: 46.320699999999995
- type: main_score
value: 39.114
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: ndcg_at_1
value: 32.229
- type: ndcg_at_3
value: 35.352
- type: ndcg_at_5
value: 36.907000000000004
- type: ndcg_at_10
value: 38.867000000000004
- type: ndcg_at_20
value: 40.624
- type: ndcg_at_100
value: 43.169000000000004
- type: ndcg_at_1000
value: 45.411
- type: map_at_1
value: 25.285999999999998
- type: map_at_3
value: 31.391000000000002
- type: map_at_5
value: 32.76
- type: map_at_10
value: 33.835
- type: map_at_20
value: 34.453
- type: map_at_100
value: 34.926
- type: map_at_1000
value: 35.039
- type: recall_at_1
value: 25.285999999999998
- type: recall_at_3
value: 36.961
- type: recall_at_5
value: 41.54
- type: recall_at_10
value: 47.543
- type: recall_at_20
value: 53.979
- type: recall_at_100
value: 65.744
- type: recall_at_1000
value: 80.437
- type: precision_at_1
value: 32.229
- type: precision_at_3
value: 17.113
- type: precision_at_5
value: 11.962
- type: precision_at_10
value: 7.21
- type: precision_at_20
value: 4.287
- type: precision_at_100
value: 1.1769999999999998
- type: precision_at_1000
value: 0.165
- type: mrr_at_1
value: 32.2293
- type: mrr_at_3
value: 37.770700000000005
- type: mrr_at_5
value: 38.8917
- type: mrr_at_10
value: 39.8009
- type: mrr_at_20
value: 40.2384
- type: mrr_at_100
value: 40.498
- type: mrr_at_1000
value: 40.544999999999995
- type: nauc_ndcg_at_1_max
value: 38.6829
- type: nauc_ndcg_at_1_std
value: 7.4424
- type: nauc_ndcg_at_1_diff1
value: 52.8493
- type: nauc_ndcg_at_3_max
value: 37.0654
- type: nauc_ndcg_at_3_std
value: 5.4984
- type: nauc_ndcg_at_3_diff1
value: 46.6131
- type: nauc_ndcg_at_5_max
value: 36.923
- type: nauc_ndcg_at_5_std
value: 6.1408
- type: nauc_ndcg_at_5_diff1
value: 45.7153
- type: nauc_ndcg_at_10_max
value: 36.5462
- type: nauc_ndcg_at_10_std
value: 6.271100000000001
- type: nauc_ndcg_at_10_diff1
value: 45.588499999999996
- type: nauc_ndcg_at_20_max
value: 36.408699999999996
- type: nauc_ndcg_at_20_std
value: 6.492100000000001
- type: nauc_ndcg_at_20_diff1
value: 45.3433
- type: nauc_ndcg_at_100_max
value: 36.6238
- type: nauc_ndcg_at_100_std
value: 8.3159
- type: nauc_ndcg_at_100_diff1
value: 44.742399999999996
- type: nauc_ndcg_at_1000_max
value: 37.042
- type: nauc_ndcg_at_1000_std
value: 8.9336
- type: nauc_ndcg_at_1000_diff1
value: 44.8673
- type: nauc_map_at_1_max
value: 33.2074
- type: nauc_map_at_1_std
value: 2.1052
- type: nauc_map_at_1_diff1
value: 54.638200000000005
- type: nauc_map_at_3_max
value: 35.233599999999996
- type: nauc_map_at_3_std
value: 2.5225
- type: nauc_map_at_3_diff1
value: 49.159000000000006
- type: nauc_map_at_5_max
value: 35.5997
- type: nauc_map_at_5_std
value: 3.7594000000000003
- type: nauc_map_at_5_diff1
value: 48.411500000000004
- type: nauc_map_at_10_max
value: 35.8431
- type: nauc_map_at_10_std
value: 4.2814
- type: nauc_map_at_10_diff1
value: 48.281800000000004
- type: nauc_map_at_20_max
value: 35.9632
- type: nauc_map_at_20_std
value: 4.6509
- type: nauc_map_at_20_diff1
value: 48.1984
- type: nauc_map_at_100_max
value: 36.180299999999995
- type: nauc_map_at_100_std
value: 5.183800000000001
- type: nauc_map_at_100_diff1
value: 48.0556
- type: nauc_map_at_1000_max
value: 36.2442
- type: nauc_map_at_1000_std
value: 5.2821
- type: nauc_map_at_1000_diff1
value: 48.0396
- type: nauc_recall_at_1_max
value: 33.2074
- type: nauc_recall_at_1_std
value: 2.1052
- type: nauc_recall_at_1_diff1
value: 54.638200000000005
- type: nauc_recall_at_3_max
value: 33.786
- type: nauc_recall_at_3_std
value: 2.2159
- type: nauc_recall_at_3_diff1
value: 42.1871
- type: nauc_recall_at_5_max
value: 33.6662
- type: nauc_recall_at_5_std
value: 4.6278
- type: nauc_recall_at_5_diff1
value: 39.311800000000005
- type: nauc_recall_at_10_max
value: 32.250299999999996
- type: nauc_recall_at_10_std
value: 5.947
- type: nauc_recall_at_10_diff1
value: 37.952000000000005
- type: nauc_recall_at_20_max
value: 31.2259
- type: nauc_recall_at_20_std
value: 6.8895
- type: nauc_recall_at_20_diff1
value: 35.5049
- type: nauc_recall_at_100_max
value: 30.340600000000002
- type: nauc_recall_at_100_std
value: 15.6142
- type: nauc_recall_at_100_diff1
value: 29.562300000000004
- type: nauc_recall_at_1000_max
value: 30.5454
- type: nauc_recall_at_1000_std
value: 21.4645
- type: nauc_recall_at_1000_diff1
value: 27.1848
- type: nauc_precision_at_1_max
value: 38.6829
- type: nauc_precision_at_1_std
value: 7.4424
- type: nauc_precision_at_1_diff1
value: 52.8493
- type: nauc_precision_at_3_max
value: 37.0629
- type: nauc_precision_at_3_std
value: 11.437700000000001
- type: nauc_precision_at_3_diff1
value: 32.2216
- type: nauc_precision_at_5_max
value: 35.6068
- type: nauc_precision_at_5_std
value: 16.178600000000003
- type: nauc_precision_at_5_diff1
value: 25.686500000000002
- type: nauc_precision_at_10_max
value: 33.6078
- type: nauc_precision_at_10_std
value: 18.8689
- type: nauc_precision_at_10_diff1
value: 19.5934
- type: nauc_precision_at_20_max
value: 29.466700000000003
- type: nauc_precision_at_20_std
value: 21.0742
- type: nauc_precision_at_20_diff1
value: 13.482
- type: nauc_precision_at_100_max
value: 22.9317
- type: nauc_precision_at_100_std
value: 27.3075
- type: nauc_precision_at_100_diff1
value: -0.0666
- type: nauc_precision_at_1000_max
value: 13.9545
- type: nauc_precision_at_1000_std
value: 26.4182
- type: nauc_precision_at_1000_diff1
value: -10.3752
- type: nauc_mrr_at_1_max
value: 38.6829
- type: nauc_mrr_at_1_std
value: 7.4424
- type: nauc_mrr_at_1_diff1
value: 52.8493
- type: nauc_mrr_at_3_max
value: 38.7082
- type: nauc_mrr_at_3_std
value: 7.577399999999999
- type: nauc_mrr_at_3_diff1
value: 47.8237
- type: nauc_mrr_at_5_max
value: 38.5714
- type: nauc_mrr_at_5_std
value: 7.875699999999999
- type: nauc_mrr_at_5_diff1
value: 46.983000000000004
- type: nauc_mrr_at_10_max
value: 38.5054
- type: nauc_mrr_at_10_std
value: 7.9545
- type: nauc_mrr_at_10_diff1
value: 46.9465
- type: nauc_mrr_at_20_max
value: 38.3847
- type: nauc_mrr_at_20_std
value: 7.9177
- type: nauc_mrr_at_20_diff1
value: 46.8517
- type: nauc_mrr_at_100_max
value: 38.363
- type: nauc_mrr_at_100_std
value: 8.113299999999999
- type: nauc_mrr_at_100_diff1
value: 46.7934
- type: nauc_mrr_at_1000_max
value: 38.3753
- type: nauc_mrr_at_1000_std
value: 8.116
- type: nauc_mrr_at_1000_diff1
value: 46.8037
- type: main_score
value: 38.867000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: ndcg_at_1
value: 37.555
- type: ndcg_at_3
value: 43.752
- type: ndcg_at_5
value: 45.95
- type: ndcg_at_10
value: 48.592999999999996
- type: ndcg_at_20
value: 50.273999999999994
- type: ndcg_at_100
value: 52.922000000000004
- type: ndcg_at_1000
value: 54.42
- type: map_at_1
value: 32.732
- type: map_at_3
value: 40.392
- type: map_at_5
value: 41.928
- type: map_at_10
value: 43.189
- type: map_at_20
value: 43.74
- type: map_at_100
value: 44.174
- type: map_at_1000
value: 44.242
- type: recall_at_1
value: 32.732
- type: recall_at_3
value: 48.0
- type: recall_at_5
value: 53.474999999999994
- type: recall_at_10
value: 61.265
- type: recall_at_20
value: 67.586
- type: recall_at_100
value: 80.604
- type: recall_at_1000
value: 91.408
- type: precision_at_1
value: 37.555
- type: precision_at_3
value: 19.645000000000003
- type: precision_at_5
value: 13.455
- type: precision_at_10
value: 7.9
- type: precision_at_20
value: 4.436
- type: precision_at_100
value: 1.09
- type: precision_at_1000
value: 0.127
- type: mrr_at_1
value: 37.5549
- type: mrr_at_3
value: 44.357400000000005
- type: mrr_at_5
value: 45.5455
- type: mrr_at_10
value: 46.5721
- type: mrr_at_20
value: 46.9989
- type: mrr_at_100
value: 47.3172
- type: mrr_at_1000
value: 47.3553
- type: nauc_ndcg_at_1_max
value: 34.123
- type: nauc_ndcg_at_1_std
value: -1.7841
- type: nauc_ndcg_at_1_diff1
value: 51.83219999999999
- type: nauc_ndcg_at_3_max
value: 35.477
- type: nauc_ndcg_at_3_std
value: -1.2643
- type: nauc_ndcg_at_3_diff1
value: 47.5991
- type: nauc_ndcg_at_5_max
value: 36.2862
- type: nauc_ndcg_at_5_std
value: -0.0038000000000000004
- type: nauc_ndcg_at_5_diff1
value: 46.5251
- type: nauc_ndcg_at_10_max
value: 36.778800000000004
- type: nauc_ndcg_at_10_std
value: 0.8116999999999999
- type: nauc_ndcg_at_10_diff1
value: 46.728500000000004
- type: nauc_ndcg_at_20_max
value: 37.570100000000004
- type: nauc_ndcg_at_20_std
value: 1.6506
- type: nauc_ndcg_at_20_diff1
value: 46.824
- type: nauc_ndcg_at_100_max
value: 37.8108
- type: nauc_ndcg_at_100_std
value: 2.9329
- type: nauc_ndcg_at_100_diff1
value: 46.624300000000005
- type: nauc_ndcg_at_1000_max
value: 37.867200000000004
- type: nauc_ndcg_at_1000_std
value: 2.9359
- type: nauc_ndcg_at_1000_diff1
value: 46.7787
- type: nauc_map_at_1_max
value: 30.918699999999998
- type: nauc_map_at_1_std
value: -2.6286
- type: nauc_map_at_1_diff1
value: 51.254999999999995
- type: nauc_map_at_3_max
value: 33.9493
- type: nauc_map_at_3_std
value: -2.4583
- type: nauc_map_at_3_diff1
value: 48.5462
- type: nauc_map_at_5_max
value: 34.567
- type: nauc_map_at_5_std
value: -1.5681
- type: nauc_map_at_5_diff1
value: 47.841899999999995
- type: nauc_map_at_10_max
value: 35.0466
- type: nauc_map_at_10_std
value: -1.0182
- type: nauc_map_at_10_diff1
value: 47.9976
- type: nauc_map_at_20_max
value: 35.4014
- type: nauc_map_at_20_std
value: -0.6443
- type: nauc_map_at_20_diff1
value: 48.0216
- type: nauc_map_at_100_max
value: 35.5061
- type: nauc_map_at_100_std
value: -0.3215
- type: nauc_map_at_100_diff1
value: 47.9392
- type: nauc_map_at_1000_max
value: 35.521
- type: nauc_map_at_1000_std
value: -0.3054
- type: nauc_map_at_1000_diff1
value: 47.9491
- type: nauc_recall_at_1_max
value: 30.918699999999998
- type: nauc_recall_at_1_std
value: -2.6286
- type: nauc_recall_at_1_diff1
value: 51.254999999999995
- type: nauc_recall_at_3_max
value: 34.792
- type: nauc_recall_at_3_std
value: -1.7638
- type: nauc_recall_at_3_diff1
value: 44.0913
- type: nauc_recall_at_5_max
value: 36.4564
- type: nauc_recall_at_5_std
value: 1.4874999999999998
- type: nauc_recall_at_5_diff1
value: 40.9842
- type: nauc_recall_at_10_max
value: 37.2517
- type: nauc_recall_at_10_std
value: 3.8871
- type: nauc_recall_at_10_diff1
value: 40.5621
- type: nauc_recall_at_20_max
value: 40.8612
- type: nauc_recall_at_20_std
value: 8.0092
- type: nauc_recall_at_20_diff1
value: 40.0661
- type: nauc_recall_at_100_max
value: 43.1074
- type: nauc_recall_at_100_std
value: 19.531599999999997
- type: nauc_recall_at_100_diff1
value: 36.3097
- type: nauc_recall_at_1000_max
value: 49.301899999999996
- type: nauc_recall_at_1000_std
value: 34.3645
- type: nauc_recall_at_1000_diff1
value: 31.615399999999998
- type: nauc_precision_at_1_max
value: 34.123
- type: nauc_precision_at_1_std
value: -1.7841
- type: nauc_precision_at_1_diff1
value: 51.83219999999999
- type: nauc_precision_at_3_max
value: 35.8498
- type: nauc_precision_at_3_std
value: 2.7106000000000003
- type: nauc_precision_at_3_diff1
value: 34.7859
- type: nauc_precision_at_5_max
value: 34.631
- type: nauc_precision_at_5_std
value: 6.6776
- type: nauc_precision_at_5_diff1
value: 27.4746
- type: nauc_precision_at_10_max
value: 33.807700000000004
- type: nauc_precision_at_10_std
value: 11.2782
- type: nauc_precision_at_10_diff1
value: 22.053900000000002
- type: nauc_precision_at_20_max
value: 34.0661
- type: nauc_precision_at_20_std
value: 16.1584
- type: nauc_precision_at_20_diff1
value: 17.2042
- type: nauc_precision_at_100_max
value: 28.782400000000003
- type: nauc_precision_at_100_std
value: 23.647399999999998
- type: nauc_precision_at_100_diff1
value: 4.4878
- type: nauc_precision_at_1000_max
value: 23.674500000000002
- type: nauc_precision_at_1000_std
value: 22.4593
- type: nauc_precision_at_1000_diff1
value: -2.6637999999999997
- type: nauc_mrr_at_1_max
value: 34.123
- type: nauc_mrr_at_1_std
value: -1.7841
- type: nauc_mrr_at_1_diff1
value: 51.83219999999999
- type: nauc_mrr_at_3_max
value: 36.619
- type: nauc_mrr_at_3_std
value: -0.3463
- type: nauc_mrr_at_3_diff1
value: 48.7033
- type: nauc_mrr_at_5_max
value: 36.939899999999994
- type: nauc_mrr_at_5_std
value: 0.1776
- type: nauc_mrr_at_5_diff1
value: 48.1842
- type: nauc_mrr_at_10_max
value: 37.0071
- type: nauc_mrr_at_10_std
value: 0.34259999999999996
- type: nauc_mrr_at_10_diff1
value: 48.3223
- type: nauc_mrr_at_20_max
value: 37.1624
- type: nauc_mrr_at_20_std
value: 0.5601
- type: nauc_mrr_at_20_diff1
value: 48.3756
- type: nauc_mrr_at_100_max
value: 37.1384
- type: nauc_mrr_at_100_std
value: 0.6386000000000001
- type: nauc_mrr_at_100_diff1
value: 48.377700000000004
- type: nauc_mrr_at_1000_max
value: 37.1237
- type: nauc_mrr_at_1000_std
value: 0.627
- type: nauc_mrr_at_1000_diff1
value: 48.3789
- type: main_score
value: 48.592999999999996
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: ndcg_at_1
value: 19.322
- type: ndcg_at_3
value: 24.64
- type: ndcg_at_5
value: 26.398
- type: ndcg_at_10
value: 28.628999999999998
- type: ndcg_at_20
value: 30.424
- type: ndcg_at_100
value: 33.635
- type: ndcg_at_1000
value: 36.296
- type: map_at_1
value: 17.96
- type: map_at_3
value: 22.722
- type: map_at_5
value: 23.737
- type: map_at_10
value: 24.671000000000003
- type: map_at_20
value: 25.173000000000002
- type: map_at_100
value: 25.633
- type: map_at_1000
value: 25.724999999999998
- type: recall_at_1
value: 17.96
- type: recall_at_3
value: 28.450999999999997
- type: recall_at_5
value: 32.652
- type: recall_at_10
value: 39.283
- type: recall_at_20
value: 46.066
- type: recall_at_100
value: 62.619
- type: recall_at_1000
value: 83.354
- type: precision_at_1
value: 19.322
- type: precision_at_3
value: 10.395
- type: precision_at_5
value: 7.254
- type: precision_at_10
value: 4.475
- type: precision_at_20
value: 2.672
- type: precision_at_100
value: 0.74
- type: precision_at_1000
value: 0.101
- type: mrr_at_1
value: 19.322
- type: mrr_at_3
value: 24.331500000000002
- type: mrr_at_5
value: 25.371
- type: mrr_at_10
value: 26.316699999999997
- type: mrr_at_20
value: 26.810299999999998
- type: mrr_at_100
value: 27.234
- type: mrr_at_1000
value: 27.3059
- type: nauc_ndcg_at_1_max
value: 35.089999999999996
- type: nauc_ndcg_at_1_std
value: -2.8343
- type: nauc_ndcg_at_1_diff1
value: 45.56
- type: nauc_ndcg_at_3_max
value: 33.2288
- type: nauc_ndcg_at_3_std
value: -0.1513
- type: nauc_ndcg_at_3_diff1
value: 38.3786
- type: nauc_ndcg_at_5_max
value: 32.3156
- type: nauc_ndcg_at_5_std
value: -0.2329
- type: nauc_ndcg_at_5_diff1
value: 37.540099999999995
- type: nauc_ndcg_at_10_max
value: 31.9542
- type: nauc_ndcg_at_10_std
value: 0.13140000000000002
- type: nauc_ndcg_at_10_diff1
value: 37.1061
- type: nauc_ndcg_at_20_max
value: 32.278099999999995
- type: nauc_ndcg_at_20_std
value: 0.7944
- type: nauc_ndcg_at_20_diff1
value: 35.9749
- type: nauc_ndcg_at_100_max
value: 32.140800000000006
- type: nauc_ndcg_at_100_std
value: 2.1193
- type: nauc_ndcg_at_100_diff1
value: 35.3214
- type: nauc_ndcg_at_1000_max
value: 33.3213
- type: nauc_ndcg_at_1000_std
value: 2.8037
- type: nauc_ndcg_at_1000_diff1
value: 36.207699999999996
- type: nauc_map_at_1_max
value: 33.4646
- type: nauc_map_at_1_std
value: -4.6068999999999996
- type: nauc_map_at_1_diff1
value: 47.5264
- type: nauc_map_at_3_max
value: 33.095200000000006
- type: nauc_map_at_3_std
value: -1.4788000000000001
- type: nauc_map_at_3_diff1
value: 40.5655
- type: nauc_map_at_5_max
value: 32.6424
- type: nauc_map_at_5_std
value: -1.5209000000000001
- type: nauc_map_at_5_diff1
value: 40.0335
- type: nauc_map_at_10_max
value: 32.5464
- type: nauc_map_at_10_std
value: -1.4892
- type: nauc_map_at_10_diff1
value: 39.8555
- type: nauc_map_at_20_max
value: 32.6796
- type: nauc_map_at_20_std
value: -1.3008
- type: nauc_map_at_20_diff1
value: 39.5344
- type: nauc_map_at_100_max
value: 32.6354
- type: nauc_map_at_100_std
value: -1.094
- type: nauc_map_at_100_diff1
value: 39.4208
- type: nauc_map_at_1000_max
value: 32.6999
- type: nauc_map_at_1000_std
value: -1.055
- type: nauc_map_at_1000_diff1
value: 39.4564
- type: nauc_recall_at_1_max
value: 33.4646
- type: nauc_recall_at_1_std
value: -4.6068999999999996
- type: nauc_recall_at_1_diff1
value: 47.5264
- type: nauc_recall_at_3_max
value: 31.2987
- type: nauc_recall_at_3_std
value: 1.8809
- type: nauc_recall_at_3_diff1
value: 32.953500000000005
- type: nauc_recall_at_5_max
value: 29.1171
- type: nauc_recall_at_5_std
value: 1.5371
- type: nauc_recall_at_5_diff1
value: 31.0569
- type: nauc_recall_at_10_max
value: 27.896700000000003
- type: nauc_recall_at_10_std
value: 2.7129
- type: nauc_recall_at_10_diff1
value: 29.716199999999997
- type: nauc_recall_at_20_max
value: 28.5044
- type: nauc_recall_at_20_std
value: 4.812799999999999
- type: nauc_recall_at_20_diff1
value: 25.583499999999997
- type: nauc_recall_at_100_max
value: 26.5933
- type: nauc_recall_at_100_std
value: 11.9517
- type: nauc_recall_at_100_diff1
value: 20.274800000000003
- type: nauc_recall_at_1000_max
value: 37.3161
- type: nauc_recall_at_1000_std
value: 28.592499999999998
- type: nauc_recall_at_1000_diff1
value: 20.413899999999998
- type: nauc_precision_at_1_max
value: 35.089999999999996
- type: nauc_precision_at_1_std
value: -2.8343
- type: nauc_precision_at_1_diff1
value: 45.56
- type: nauc_precision_at_3_max
value: 34.9653
- type: nauc_precision_at_3_std
value: 3.7262999999999997
- type: nauc_precision_at_3_diff1
value: 31.644299999999998
- type: nauc_precision_at_5_max
value: 33.7659
- type: nauc_precision_at_5_std
value: 3.8751
- type: nauc_precision_at_5_diff1
value: 29.400399999999998
- type: nauc_precision_at_10_max
value: 32.7502
- type: nauc_precision_at_10_std
value: 4.3505
- type: nauc_precision_at_10_diff1
value: 28.5592
- type: nauc_precision_at_20_max
value: 33.199600000000004
- type: nauc_precision_at_20_std
value: 7.6739
- type: nauc_precision_at_20_diff1
value: 23.2499
- type: nauc_precision_at_100_max
value: 29.9848
- type: nauc_precision_at_100_std
value: 14.4632
- type: nauc_precision_at_100_diff1
value: 15.4486
- type: nauc_precision_at_1000_max
value: 28.517
- type: nauc_precision_at_1000_std
value: 20.4971
- type: nauc_precision_at_1000_diff1
value: 9.0991
- type: nauc_mrr_at_1_max
value: 35.089999999999996
- type: nauc_mrr_at_1_std
value: -2.8343
- type: nauc_mrr_at_1_diff1
value: 45.56
- type: nauc_mrr_at_3_max
value: 34.3039
- type: nauc_mrr_at_3_std
value: 0.31939999999999996
- type: nauc_mrr_at_3_diff1
value: 39.502500000000005
- type: nauc_mrr_at_5_max
value: 33.8967
- type: nauc_mrr_at_5_std
value: 0.2291
- type: nauc_mrr_at_5_diff1
value: 38.996399999999994
- type: nauc_mrr_at_10_max
value: 33.719100000000005
- type: nauc_mrr_at_10_std
value: 0.47109999999999996
- type: nauc_mrr_at_10_diff1
value: 38.8168
- type: nauc_mrr_at_20_max
value: 33.8323
- type: nauc_mrr_at_20_std
value: 0.6217
- type: nauc_mrr_at_20_diff1
value: 38.5364
- type: nauc_mrr_at_100_max
value: 33.7901
- type: nauc_mrr_at_100_std
value: 0.7767999999999999
- type: nauc_mrr_at_100_diff1
value: 38.4638
- type: nauc_mrr_at_1000_max
value: 33.8161
- type: nauc_mrr_at_1000_std
value: 0.777
- type: nauc_mrr_at_1000_diff1
value: 38.4956
- type: main_score
value: 28.628999999999998
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: ndcg_at_1
value: 15.920000000000002
- type: ndcg_at_3
value: 18.727
- type: ndcg_at_5
value: 20.573
- type: ndcg_at_10
value: 23.092
- type: ndcg_at_20
value: 24.856
- type: ndcg_at_100
value: 28.660999999999998
- type: ndcg_at_1000
value: 31.839000000000002
- type: map_at_1
value: 12.6
- type: map_at_3
value: 16.45
- type: map_at_5
value: 17.543
- type: map_at_10
value: 18.641
- type: map_at_20
value: 19.162000000000003
- type: map_at_100
value: 19.739
- type: map_at_1000
value: 19.864
- type: recall_at_1
value: 12.6
- type: recall_at_3
value: 20.946
- type: recall_at_5
value: 25.64
- type: recall_at_10
value: 32.952999999999996
- type: recall_at_20
value: 39.2
- type: recall_at_100
value: 57.855000000000004
- type: recall_at_1000
value: 80.74799999999999
- type: precision_at_1
value: 15.920000000000002
- type: precision_at_3
value: 8.955
- type: precision_at_5
value: 6.5920000000000005
- type: precision_at_10
value: 4.366
- type: precision_at_20
value: 2.6679999999999997
- type: precision_at_100
value: 0.832
- type: precision_at_1000
value: 0.124
- type: mrr_at_1
value: 15.9204
- type: mrr_at_3
value: 20.4187
- type: mrr_at_5
value: 21.6563
- type: mrr_at_10
value: 22.836100000000002
- type: mrr_at_20
value: 23.3146
- type: mrr_at_100
value: 23.7804
- type: mrr_at_1000
value: 23.860799999999998
- type: nauc_ndcg_at_1_max
value: 17.3331
- type: nauc_ndcg_at_1_std
value: -7.0922
- type: nauc_ndcg_at_1_diff1
value: 31.357400000000002
- type: nauc_ndcg_at_3_max
value: 14.9226
- type: nauc_ndcg_at_3_std
value: -4.4527
- type: nauc_ndcg_at_3_diff1
value: 23.1067
- type: nauc_ndcg_at_5_max
value: 14.7868
- type: nauc_ndcg_at_5_std
value: -3.3304
- type: nauc_ndcg_at_5_diff1
value: 21.667
- type: nauc_ndcg_at_10_max
value: 13.641300000000001
- type: nauc_ndcg_at_10_std
value: -3.0496
- type: nauc_ndcg_at_10_diff1
value: 19.898
- type: nauc_ndcg_at_20_max
value: 14.0685
- type: nauc_ndcg_at_20_std
value: -2.0516
- type: nauc_ndcg_at_20_diff1
value: 19.9934
- type: nauc_ndcg_at_100_max
value: 15.9372
- type: nauc_ndcg_at_100_std
value: 0.49119999999999997
- type: nauc_ndcg_at_100_diff1
value: 20.5706
- type: nauc_ndcg_at_1000_max
value: 15.8797
- type: nauc_ndcg_at_1000_std
value: 0.0364
- type: nauc_ndcg_at_1000_diff1
value: 20.3824
- type: nauc_map_at_1_max
value: 17.6756
- type: nauc_map_at_1_std
value: -6.1246
- type: nauc_map_at_1_diff1
value: 29.4157
- type: nauc_map_at_3_max
value: 15.135599999999998
- type: nauc_map_at_3_std
value: -4.851500000000001
- type: nauc_map_at_3_diff1
value: 24.1311
- type: nauc_map_at_5_max
value: 15.1841
- type: nauc_map_at_5_std
value: -4.2908
- type: nauc_map_at_5_diff1
value: 23.564
- type: nauc_map_at_10_max
value: 14.6342
- type: nauc_map_at_10_std
value: -4.083699999999999
- type: nauc_map_at_10_diff1
value: 22.656399999999998
- type: nauc_map_at_20_max
value: 14.808499999999999
- type: nauc_map_at_20_std
value: -3.6881999999999997
- type: nauc_map_at_20_diff1
value: 22.6222
- type: nauc_map_at_100_max
value: 15.130099999999999
- type: nauc_map_at_100_std
value: -3.2596
- type: nauc_map_at_100_diff1
value: 22.6917
- type: nauc_map_at_1000_max
value: 15.1171
- type: nauc_map_at_1000_std
value: -3.2835
- type: nauc_map_at_1000_diff1
value: 22.659599999999998
- type: nauc_recall_at_1_max
value: 17.6756
- type: nauc_recall_at_1_std
value: -6.1246
- type: nauc_recall_at_1_diff1
value: 29.4157
- type: nauc_recall_at_3_max
value: 12.9382
- type: nauc_recall_at_3_std
value: -2.6963999999999997
- type: nauc_recall_at_3_diff1
value: 18.206400000000002
- type: nauc_recall_at_5_max
value: 12.6607
- type: nauc_recall_at_5_std
value: -1.0177
- type: nauc_recall_at_5_diff1
value: 15.909200000000002
- type: nauc_recall_at_10_max
value: 10.0506
- type: nauc_recall_at_10_std
value: -0.7446999999999999
- type: nauc_recall_at_10_diff1
value: 12.3114
- type: nauc_recall_at_20_max
value: 10.9598
- type: nauc_recall_at_20_std
value: 2.2768
- type: nauc_recall_at_20_diff1
value: 12.606100000000001
- type: nauc_recall_at_100_max
value: 19.2576
- type: nauc_recall_at_100_std
value: 14.105899999999998
- type: nauc_recall_at_100_diff1
value: 14.8286
- type: nauc_recall_at_1000_max
value: 22.55
- type: nauc_recall_at_1000_std
value: 21.01
- type: nauc_recall_at_1000_diff1
value: 9.7776
- type: nauc_precision_at_1_max
value: 17.3331
- type: nauc_precision_at_1_std
value: -7.0922
- type: nauc_precision_at_1_diff1
value: 31.357400000000002
- type: nauc_precision_at_3_max
value: 12.8165
- type: nauc_precision_at_3_std
value: -3.7662
- type: nauc_precision_at_3_diff1
value: 18.6901
- type: nauc_precision_at_5_max
value: 13.580900000000002
- type: nauc_precision_at_5_std
value: -1.395
- type: nauc_precision_at_5_diff1
value: 16.977999999999998
- type: nauc_precision_at_10_max
value: 11.1158
- type: nauc_precision_at_10_std
value: -1.1867
- type: nauc_precision_at_10_diff1
value: 12.698899999999998
- type: nauc_precision_at_20_max
value: 11.193200000000001
- type: nauc_precision_at_20_std
value: 0.5621
- type: nauc_precision_at_20_diff1
value: 11.5231
- type: nauc_precision_at_100_max
value: 10.6532
- type: nauc_precision_at_100_std
value: 5.8503
- type: nauc_precision_at_100_diff1
value: 7.295400000000001
- type: nauc_precision_at_1000_max
value: 6.5429
- type: nauc_precision_at_1000_std
value: -0.3839
- type: nauc_precision_at_1000_diff1
value: 1.7772
- type: nauc_mrr_at_1_max
value: 17.3331
- type: nauc_mrr_at_1_std
value: -7.0922
- type: nauc_mrr_at_1_diff1
value: 31.357400000000002
- type: nauc_mrr_at_3_max
value: 15.6386
- type: nauc_mrr_at_3_std
value: -4.9645
- type: nauc_mrr_at_3_diff1
value: 24.952199999999998
- type: nauc_mrr_at_5_max
value: 15.444099999999999
- type: nauc_mrr_at_5_std
value: -4.3804
- type: nauc_mrr_at_5_diff1
value: 24.066100000000002
- type: nauc_mrr_at_10_max
value: 14.987
- type: nauc_mrr_at_10_std
value: -4.4188
- type: nauc_mrr_at_10_diff1
value: 23.307
- type: nauc_mrr_at_20_max
value: 15.1533
- type: nauc_mrr_at_20_std
value: -4.2259
- type: nauc_mrr_at_20_diff1
value: 23.4266
- type: nauc_mrr_at_100_max
value: 15.3064
- type: nauc_mrr_at_100_std
value: -3.9756
- type: nauc_mrr_at_100_diff1
value: 23.4561
- type: nauc_mrr_at_1000_max
value: 15.290400000000002
- type: nauc_mrr_at_1000_std
value: -3.9874
- type: nauc_mrr_at_1000_diff1
value: 23.4452
- type: main_score
value: 23.092
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: ndcg_at_1
value: 27.238
- type: ndcg_at_3
value: 32.157000000000004
- type: ndcg_at_5
value: 34.044000000000004
- type: ndcg_at_10
value: 37.013
- type: ndcg_at_20
value: 39.337
- type: ndcg_at_100
value: 42.811
- type: ndcg_at_1000
value: 45.275999999999996
- type: map_at_1
value: 22.537
- type: map_at_3
value: 28.79
- type: map_at_5
value: 30.09
- type: map_at_10
value: 31.508999999999997
- type: map_at_20
value: 32.265
- type: map_at_100
value: 32.835
- type: map_at_1000
value: 32.96
- type: recall_at_1
value: 22.537
- type: recall_at_3
value: 35.122
- type: recall_at_5
value: 39.946
- type: recall_at_10
value: 48.803000000000004
- type: recall_at_20
value: 56.92700000000001
- type: recall_at_100
value: 73.288
- type: recall_at_1000
value: 89.725
- type: precision_at_1
value: 27.238
- type: precision_at_3
value: 15.271
- type: precision_at_5
value: 10.780000000000001
- type: precision_at_10
value: 6.755999999999999
- type: precision_at_20
value: 4.139
- type: precision_at_100
value: 1.153
- type: precision_at_1000
value: 0.154
- type: mrr_at_1
value: 27.237699999999997
- type: mrr_at_3
value: 33.6702
- type: mrr_at_5
value: 35.036899999999996
- type: mrr_at_10
value: 36.334
- type: mrr_at_20
value: 36.889300000000006
- type: mrr_at_100
value: 37.2666
- type: mrr_at_1000
value: 37.3281
- type: nauc_ndcg_at_1_max
value: 43.4963
- type: nauc_ndcg_at_1_std
value: -1.6833999999999998
- type: nauc_ndcg_at_1_diff1
value: 58.719100000000005
- type: nauc_ndcg_at_3_max
value: 37.6659
- type: nauc_ndcg_at_3_std
value: -2.1128
- type: nauc_ndcg_at_3_diff1
value: 49.8754
- type: nauc_ndcg_at_5_max
value: 37.1104
- type: nauc_ndcg_at_5_std
value: -0.6056
- type: nauc_ndcg_at_5_diff1
value: 48.470200000000006
- type: nauc_ndcg_at_10_max
value: 37.1137
- type: nauc_ndcg_at_10_std
value: 0.0755
- type: nauc_ndcg_at_10_diff1
value: 47.2322
- type: nauc_ndcg_at_20_max
value: 37.4454
- type: nauc_ndcg_at_20_std
value: 0.9248
- type: nauc_ndcg_at_20_diff1
value: 47.1307
- type: nauc_ndcg_at_100_max
value: 38.5982
- type: nauc_ndcg_at_100_std
value: 3.2502000000000004
- type: nauc_ndcg_at_100_diff1
value: 47.389399999999995
- type: nauc_ndcg_at_1000_max
value: 39.129000000000005
- type: nauc_ndcg_at_1000_std
value: 3.6103000000000005
- type: nauc_ndcg_at_1000_diff1
value: 47.5898
- type: nauc_map_at_1_max
value: 38.7388
- type: nauc_map_at_1_std
value: -6.3459
- type: nauc_map_at_1_diff1
value: 59.5917
- type: nauc_map_at_3_max
value: 36.8626
- type: nauc_map_at_3_std
value: -4.1075
- type: nauc_map_at_3_diff1
value: 52.043099999999995
- type: nauc_map_at_5_max
value: 36.965199999999996
- type: nauc_map_at_5_std
value: -2.8134
- type: nauc_map_at_5_diff1
value: 51.20289999999999
- type: nauc_map_at_10_max
value: 37.3143
- type: nauc_map_at_10_std
value: -2.1212
- type: nauc_map_at_10_diff1
value: 50.553599999999996
- type: nauc_map_at_20_max
value: 37.5873
- type: nauc_map_at_20_std
value: -1.7235
- type: nauc_map_at_20_diff1
value: 50.532999999999994
- type: nauc_map_at_100_max
value: 37.8729
- type: nauc_map_at_100_std
value: -1.3049
- type: nauc_map_at_100_diff1
value: 50.5814
- type: nauc_map_at_1000_max
value: 37.922200000000004
- type: nauc_map_at_1000_std
value: -1.2218
- type: nauc_map_at_1000_diff1
value: 50.5796
- type: nauc_recall_at_1_max
value: 38.7388
- type: nauc_recall_at_1_std
value: -6.3459
- type: nauc_recall_at_1_diff1
value: 59.5917
- type: nauc_recall_at_3_max
value: 31.7313
- type: nauc_recall_at_3_std
value: -3.8849
- type: nauc_recall_at_3_diff1
value: 44.2818
- type: nauc_recall_at_5_max
value: 31.284
- type: nauc_recall_at_5_std
value: 0.2032
- type: nauc_recall_at_5_diff1
value: 40.7502
- type: nauc_recall_at_10_max
value: 31.018099999999997
- type: nauc_recall_at_10_std
value: 2.9815
- type: nauc_recall_at_10_diff1
value: 35.7645
- type: nauc_recall_at_20_max
value: 30.5273
- type: nauc_recall_at_20_std
value: 5.2793
- type: nauc_recall_at_20_diff1
value: 33.9285
- type: nauc_recall_at_100_max
value: 33.6613
- type: nauc_recall_at_100_std
value: 19.8697
- type: nauc_recall_at_100_diff1
value: 31.4998
- type: nauc_recall_at_1000_max
value: 39.9223
- type: nauc_recall_at_1000_std
value: 38.4869
- type: nauc_recall_at_1000_diff1
value: 22.379199999999997
- type: nauc_precision_at_1_max
value: 43.4963
- type: nauc_precision_at_1_std
value: -1.6833999999999998
- type: nauc_precision_at_1_diff1
value: 58.719100000000005
- type: nauc_precision_at_3_max
value: 37.9844
- type: nauc_precision_at_3_std
value: 5.8961
- type: nauc_precision_at_3_diff1
value: 36.9786
- type: nauc_precision_at_5_max
value: 36.7037
- type: nauc_precision_at_5_std
value: 11.3331
- type: nauc_precision_at_5_diff1
value: 30.429499999999997
- type: nauc_precision_at_10_max
value: 35.3315
- type: nauc_precision_at_10_std
value: 15.9411
- type: nauc_precision_at_10_diff1
value: 21.698600000000003
- type: nauc_precision_at_20_max
value: 32.1937
- type: nauc_precision_at_20_std
value: 21.0608
- type: nauc_precision_at_20_diff1
value: 15.190999999999999
- type: nauc_precision_at_100_max
value: 26.1556
- type: nauc_precision_at_100_std
value: 28.7677
- type: nauc_precision_at_100_diff1
value: 3.8747999999999996
- type: nauc_precision_at_1000_max
value: 14.413699999999999
- type: nauc_precision_at_1000_std
value: 28.311700000000002
- type: nauc_precision_at_1000_diff1
value: -6.848999999999999
- type: nauc_mrr_at_1_max
value: 43.4963
- type: nauc_mrr_at_1_std
value: -1.6833999999999998
- type: nauc_mrr_at_1_diff1
value: 58.719100000000005
- type: nauc_mrr_at_3_max
value: 40.122600000000006
- type: nauc_mrr_at_3_std
value: -0.7172000000000001
- type: nauc_mrr_at_3_diff1
value: 51.634800000000006
- type: nauc_mrr_at_5_max
value: 40.2557
- type: nauc_mrr_at_5_std
value: 0.3495
- type: nauc_mrr_at_5_diff1
value: 50.6254
- type: nauc_mrr_at_10_max
value: 40.3164
- type: nauc_mrr_at_10_std
value: 0.6847
- type: nauc_mrr_at_10_diff1
value: 50.17660000000001
- type: nauc_mrr_at_20_max
value: 40.341
- type: nauc_mrr_at_20_std
value: 0.8421
- type: nauc_mrr_at_20_diff1
value: 50.231899999999996
- type: nauc_mrr_at_100_max
value: 40.3681
- type: nauc_mrr_at_100_std
value: 0.9655
- type: nauc_mrr_at_100_diff1
value: 50.3195
- type: nauc_mrr_at_1000_max
value: 40.3715
- type: nauc_mrr_at_1000_std
value: 0.9560000000000001
- type: nauc_mrr_at_1000_diff1
value: 50.31870000000001
- type: main_score
value: 37.013
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: ndcg_at_1
value: 25.228
- type: ndcg_at_3
value: 29.072
- type: ndcg_at_5
value: 31.289
- type: ndcg_at_10
value: 33.489000000000004
- type: ndcg_at_20
value: 35.565999999999995
- type: ndcg_at_100
value: 39.297
- type: ndcg_at_1000
value: 41.996
- type: map_at_1
value: 20.288
- type: map_at_3
value: 25.911
- type: map_at_5
value: 27.423
- type: map_at_10
value: 28.51
- type: map_at_20
value: 29.14
- type: map_at_100
value: 29.736
- type: map_at_1000
value: 29.862
- type: recall_at_1
value: 20.288
- type: recall_at_3
value: 31.413000000000004
- type: recall_at_5
value: 37.333
- type: recall_at_10
value: 43.861
- type: recall_at_20
value: 51.217
- type: recall_at_100
value: 69.23
- type: recall_at_1000
value: 87.747
- type: precision_at_1
value: 25.228
- type: precision_at_3
value: 13.889000000000001
- type: precision_at_5
value: 10.137
- type: precision_at_10
value: 6.084
- type: precision_at_20
value: 3.687
- type: precision_at_100
value: 1.065
- type: precision_at_1000
value: 0.146
- type: mrr_at_1
value: 25.228299999999997
- type: mrr_at_3
value: 30.707800000000002
- type: mrr_at_5
value: 32.300200000000004
- type: mrr_at_10
value: 33.2576
- type: mrr_at_20
value: 33.7973
- type: mrr_at_100
value: 34.2415
- type: mrr_at_1000
value: 34.3064
- type: nauc_ndcg_at_1_max
value: 40.171600000000005
- type: nauc_ndcg_at_1_std
value: 6.5067
- type: nauc_ndcg_at_1_diff1
value: 39.2721
- type: nauc_ndcg_at_3_max
value: 38.3229
- type: nauc_ndcg_at_3_std
value: 6.5445
- type: nauc_ndcg_at_3_diff1
value: 33.1411
- type: nauc_ndcg_at_5_max
value: 38.8223
- type: nauc_ndcg_at_5_std
value: 7.9156
- type: nauc_ndcg_at_5_diff1
value: 32.1325
- type: nauc_ndcg_at_10_max
value: 38.2528
- type: nauc_ndcg_at_10_std
value: 7.696400000000001
- type: nauc_ndcg_at_10_diff1
value: 31.9019
- type: nauc_ndcg_at_20_max
value: 38.324000000000005
- type: nauc_ndcg_at_20_std
value: 8.8949
- type: nauc_ndcg_at_20_diff1
value: 31.5701
- type: nauc_ndcg_at_100_max
value: 39.4976
- type: nauc_ndcg_at_100_std
value: 11.2611
- type: nauc_ndcg_at_100_diff1
value: 31.8071
- type: nauc_ndcg_at_1000_max
value: 40.0048
- type: nauc_ndcg_at_1000_std
value: 11.615599999999999
- type: nauc_ndcg_at_1000_diff1
value: 32.0789
- type: nauc_map_at_1_max
value: 35.7305
- type: nauc_map_at_1_std
value: 1.5761
- type: nauc_map_at_1_diff1
value: 38.4366
- type: nauc_map_at_3_max
value: 37.3442
- type: nauc_map_at_3_std
value: 4.7477
- type: nauc_map_at_3_diff1
value: 34.2786
- type: nauc_map_at_5_max
value: 37.963
- type: nauc_map_at_5_std
value: 5.8431
- type: nauc_map_at_5_diff1
value: 33.6109
- type: nauc_map_at_10_max
value: 37.9757
- type: nauc_map_at_10_std
value: 5.9797
- type: nauc_map_at_10_diff1
value: 33.6136
- type: nauc_map_at_20_max
value: 38.1347
- type: nauc_map_at_20_std
value: 6.4297
- type: nauc_map_at_20_diff1
value: 33.5546
- type: nauc_map_at_100_max
value: 38.3476
- type: nauc_map_at_100_std
value: 6.920800000000001
- type: nauc_map_at_100_diff1
value: 33.514300000000006
- type: nauc_map_at_1000_max
value: 38.3756
- type: nauc_map_at_1000_std
value: 6.9628
- type: nauc_map_at_1000_diff1
value: 33.5194
- type: nauc_recall_at_1_max
value: 35.7305
- type: nauc_recall_at_1_std
value: 1.5761
- type: nauc_recall_at_1_diff1
value: 38.4366
- type: nauc_recall_at_3_max
value: 35.8924
- type: nauc_recall_at_3_std
value: 5.6564000000000005
- type: nauc_recall_at_3_diff1
value: 30.3315
- type: nauc_recall_at_5_max
value: 36.728300000000004
- type: nauc_recall_at_5_std
value: 9.274000000000001
- type: nauc_recall_at_5_diff1
value: 27.382800000000003
- type: nauc_recall_at_10_max
value: 35.053
- type: nauc_recall_at_10_std
value: 8.9863
- type: nauc_recall_at_10_diff1
value: 26.279400000000003
- type: nauc_recall_at_20_max
value: 33.960499999999996
- type: nauc_recall_at_20_std
value: 12.664800000000001
- type: nauc_recall_at_20_diff1
value: 24.2244
- type: nauc_recall_at_100_max
value: 38.0486
- type: nauc_recall_at_100_std
value: 24.9646
- type: nauc_recall_at_100_diff1
value: 24.052699999999998
- type: nauc_recall_at_1000_max
value: 48.7529
- type: nauc_recall_at_1000_std
value: 46.6888
- type: nauc_recall_at_1000_diff1
value: 23.4965
- type: nauc_precision_at_1_max
value: 40.171600000000005
- type: nauc_precision_at_1_std
value: 6.5067
- type: nauc_precision_at_1_diff1
value: 39.2721
- type: nauc_precision_at_3_max
value: 40.3259
- type: nauc_precision_at_3_std
value: 14.2162
- type: nauc_precision_at_3_diff1
value: 26.9316
- type: nauc_precision_at_5_max
value: 40.4385
- type: nauc_precision_at_5_std
value: 17.8013
- type: nauc_precision_at_5_diff1
value: 22.4482
- type: nauc_precision_at_10_max
value: 36.7242
- type: nauc_precision_at_10_std
value: 17.352999999999998
- type: nauc_precision_at_10_diff1
value: 18.373900000000003
- type: nauc_precision_at_20_max
value: 32.7196
- type: nauc_precision_at_20_std
value: 20.2914
- type: nauc_precision_at_20_diff1
value: 14.331900000000001
- type: nauc_precision_at_100_max
value: 23.4403
- type: nauc_precision_at_100_std
value: 24.6467
- type: nauc_precision_at_100_diff1
value: 3.6826999999999996
- type: nauc_precision_at_1000_max
value: 7.795599999999999
- type: nauc_precision_at_1000_std
value: 14.889199999999999
- type: nauc_precision_at_1000_diff1
value: -6.0821
- type: nauc_mrr_at_1_max
value: 40.171600000000005
- type: nauc_mrr_at_1_std
value: 6.5067
- type: nauc_mrr_at_1_diff1
value: 39.2721
- type: nauc_mrr_at_3_max
value: 40.1914
- type: nauc_mrr_at_3_std
value: 8.0097
- type: nauc_mrr_at_3_diff1
value: 35.1381
- type: nauc_mrr_at_5_max
value: 40.125499999999995
- type: nauc_mrr_at_5_std
value: 8.818299999999999
- type: nauc_mrr_at_5_diff1
value: 34.2425
- type: nauc_mrr_at_10_max
value: 39.5882
- type: nauc_mrr_at_10_std
value: 8.5347
- type: nauc_mrr_at_10_diff1
value: 33.8442
- type: nauc_mrr_at_20_max
value: 39.4937
- type: nauc_mrr_at_20_std
value: 8.6579
- type: nauc_mrr_at_20_diff1
value: 33.7513
- type: nauc_mrr_at_100_max
value: 39.7282
- type: nauc_mrr_at_100_std
value: 8.8992
- type: nauc_mrr_at_100_diff1
value: 33.9029
- type: nauc_mrr_at_1000_max
value: 39.725100000000005
- type: nauc_mrr_at_1000_std
value: 8.884599999999999
- type: nauc_mrr_at_1000_diff1
value: 33.9196
- type: main_score
value: 33.489000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 32.16908333333333
- type: ndcg_at_10
value: 32.16908333333333
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: ndcg_at_1
value: 21.166
- type: ndcg_at_3
value: 24.697
- type: ndcg_at_5
value: 26.206000000000003
- type: ndcg_at_10
value: 28.144000000000002
- type: ndcg_at_20
value: 29.877
- type: ndcg_at_100
value: 32.798
- type: ndcg_at_1000
value: 35.119
- type: map_at_1
value: 18.672
- type: map_at_3
value: 22.689999999999998
- type: map_at_5
value: 23.653
- type: map_at_10
value: 24.468999999999998
- type: map_at_20
value: 24.97
- type: map_at_100
value: 25.401
- type: map_at_1000
value: 25.480999999999998
- type: recall_at_1
value: 18.672
- type: recall_at_3
value: 27.173000000000002
- type: recall_at_5
value: 30.953000000000003
- type: recall_at_10
value: 36.88
- type: recall_at_20
value: 43.444
- type: recall_at_100
value: 58.217
- type: recall_at_1000
value: 75.725
- type: precision_at_1
value: 21.166
- type: precision_at_3
value: 10.685
- type: precision_at_5
value: 7.485
- type: precision_at_10
value: 4.479
- type: precision_at_20
value: 2.669
- type: precision_at_100
value: 0.729
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 21.1656
- type: mrr_at_3
value: 25.511200000000002
- type: mrr_at_5
value: 26.3471
- type: mrr_at_10
value: 27.2333
- type: mrr_at_20
value: 27.6509
- type: mrr_at_100
value: 28.058699999999998
- type: mrr_at_1000
value: 28.122000000000003
- type: nauc_ndcg_at_1_max
value: 26.528800000000004
- type: nauc_ndcg_at_1_std
value: 0.10319999999999999
- type: nauc_ndcg_at_1_diff1
value: 50.654999999999994
- type: nauc_ndcg_at_3_max
value: 25.9172
- type: nauc_ndcg_at_3_std
value: 3.91
- type: nauc_ndcg_at_3_diff1
value: 46.4349
- type: nauc_ndcg_at_5_max
value: 25.367099999999997
- type: nauc_ndcg_at_5_std
value: 5.7907
- type: nauc_ndcg_at_5_diff1
value: 45.3087
- type: nauc_ndcg_at_10_max
value: 25.2675
- type: nauc_ndcg_at_10_std
value: 6.8572
- type: nauc_ndcg_at_10_diff1
value: 43.1656
- type: nauc_ndcg_at_20_max
value: 25.2661
- type: nauc_ndcg_at_20_std
value: 8.5497
- type: nauc_ndcg_at_20_diff1
value: 41.7731
- type: nauc_ndcg_at_100_max
value: 25.757799999999996
- type: nauc_ndcg_at_100_std
value: 9.626999999999999
- type: nauc_ndcg_at_100_diff1
value: 40.9369
- type: nauc_ndcg_at_1000_max
value: 26.693
- type: nauc_ndcg_at_1000_std
value: 10.0071
- type: nauc_ndcg_at_1000_diff1
value: 41.458
- type: nauc_map_at_1_max
value: 28.0534
- type: nauc_map_at_1_std
value: -3.001
- type: nauc_map_at_1_diff1
value: 53.8926
- type: nauc_map_at_3_max
value: 26.472800000000003
- type: nauc_map_at_3_std
value: 1.4403
- type: nauc_map_at_3_diff1
value: 48.676
- type: nauc_map_at_5_max
value: 26.2414
- type: nauc_map_at_5_std
value: 3.0925000000000002
- type: nauc_map_at_5_diff1
value: 47.9445
- type: nauc_map_at_10_max
value: 26.2277
- type: nauc_map_at_10_std
value: 3.7763999999999998
- type: nauc_map_at_10_diff1
value: 47.0099
- type: nauc_map_at_20_max
value: 26.263599999999997
- type: nauc_map_at_20_std
value: 4.315
- type: nauc_map_at_20_diff1
value: 46.5854
- type: nauc_map_at_100_max
value: 26.319100000000002
- type: nauc_map_at_100_std
value: 4.5135000000000005
- type: nauc_map_at_100_diff1
value: 46.3709
- type: nauc_map_at_1000_max
value: 26.3864
- type: nauc_map_at_1000_std
value: 4.5534
- type: nauc_map_at_1000_diff1
value: 46.3922
- type: nauc_recall_at_1_max
value: 28.0534
- type: nauc_recall_at_1_std
value: -3.001
- type: nauc_recall_at_1_diff1
value: 53.8926
- type: nauc_recall_at_3_max
value: 23.6962
- type: nauc_recall_at_3_std
value: 5.4231
- type: nauc_recall_at_3_diff1
value: 42.540499999999994
- type: nauc_recall_at_5_max
value: 22.4468
- type: nauc_recall_at_5_std
value: 9.8421
- type: nauc_recall_at_5_diff1
value: 39.783
- type: nauc_recall_at_10_max
value: 21.8317
- type: nauc_recall_at_10_std
value: 12.8712
- type: nauc_recall_at_10_diff1
value: 33.7508
- type: nauc_recall_at_20_max
value: 21.3863
- type: nauc_recall_at_20_std
value: 18.3436
- type: nauc_recall_at_20_diff1
value: 28.590700000000002
- type: nauc_recall_at_100_max
value: 22.7284
- type: nauc_recall_at_100_std
value: 24.3125
- type: nauc_recall_at_100_diff1
value: 23.3571
- type: nauc_recall_at_1000_max
value: 27.7326
- type: nauc_recall_at_1000_std
value: 32.8397
- type: nauc_recall_at_1000_diff1
value: 20.892
- type: nauc_precision_at_1_max
value: 26.528800000000004
- type: nauc_precision_at_1_std
value: 0.10319999999999999
- type: nauc_precision_at_1_diff1
value: 50.654999999999994
- type: nauc_precision_at_3_max
value: 25.349300000000003
- type: nauc_precision_at_3_std
value: 11.5181
- type: nauc_precision_at_3_diff1
value: 39.2497
- type: nauc_precision_at_5_max
value: 23.4647
- type: nauc_precision_at_5_std
value: 18.7151
- type: nauc_precision_at_5_diff1
value: 33.8881
- type: nauc_precision_at_10_max
value: 23.7545
- type: nauc_precision_at_10_std
value: 21.3893
- type: nauc_precision_at_10_diff1
value: 28.535100000000003
- type: nauc_precision_at_20_max
value: 23.089199999999998
- type: nauc_precision_at_20_std
value: 26.2866
- type: nauc_precision_at_20_diff1
value: 21.0742
- type: nauc_precision_at_100_max
value: 23.2832
- type: nauc_precision_at_100_std
value: 29.4046
- type: nauc_precision_at_100_diff1
value: 14.0878
- type: nauc_precision_at_1000_max
value: 23.9556
- type: nauc_precision_at_1000_std
value: 26.3343
- type: nauc_precision_at_1000_diff1
value: 4.2393
- type: nauc_mrr_at_1_max
value: 26.528800000000004
- type: nauc_mrr_at_1_std
value: 0.10319999999999999
- type: nauc_mrr_at_1_diff1
value: 50.654999999999994
- type: nauc_mrr_at_3_max
value: 25.7994
- type: nauc_mrr_at_3_std
value: 4.0969999999999995
- type: nauc_mrr_at_3_diff1
value: 45.6167
- type: nauc_mrr_at_5_max
value: 25.594499999999996
- type: nauc_mrr_at_5_std
value: 4.9945
- type: nauc_mrr_at_5_diff1
value: 45.0037
- type: nauc_mrr_at_10_max
value: 25.6333
- type: nauc_mrr_at_10_std
value: 5.4663
- type: nauc_mrr_at_10_diff1
value: 44.0708
- type: nauc_mrr_at_20_max
value: 25.5786
- type: nauc_mrr_at_20_std
value: 5.8257
- type: nauc_mrr_at_20_diff1
value: 43.7883
- type: nauc_mrr_at_100_max
value: 25.668499999999998
- type: nauc_mrr_at_100_std
value: 5.888999999999999
- type: nauc_mrr_at_100_diff1
value: 43.6408
- type: nauc_mrr_at_1000_max
value: 25.689099999999996
- type: nauc_mrr_at_1000_std
value: 5.9147
- type: nauc_mrr_at_1000_diff1
value: 43.669200000000004
- type: main_score
value: 28.144000000000002
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: ndcg_at_1
value: 14.177999999999999
- type: ndcg_at_3
value: 17.057
- type: ndcg_at_5
value: 18.56
- type: ndcg_at_10
value: 20.471
- type: ndcg_at_20
value: 22.044
- type: ndcg_at_100
value: 25.03
- type: ndcg_at_1000
value: 28.231
- type: map_at_1
value: 11.552999999999999
- type: map_at_3
value: 15.024999999999999
- type: map_at_5
value: 15.972
- type: map_at_10
value: 16.841
- type: map_at_20
value: 17.291
- type: map_at_100
value: 17.711
- type: map_at_1000
value: 17.832
- type: recall_at_1
value: 11.552999999999999
- type: recall_at_3
value: 18.958
- type: recall_at_5
value: 22.823999999999998
- type: recall_at_10
value: 28.569
- type: recall_at_20
value: 34.504000000000005
- type: recall_at_100
value: 49.491
- type: recall_at_1000
value: 72.82600000000001
- type: precision_at_1
value: 14.177999999999999
- type: precision_at_3
value: 8.097999999999999
- type: precision_at_5
value: 5.953
- type: precision_at_10
value: 3.823
- type: precision_at_20
value: 2.326
- type: precision_at_100
value: 0.7100000000000001
- type: precision_at_1000
value: 0.11399999999999999
- type: mrr_at_1
value: 14.177600000000002
- type: mrr_at_3
value: 17.9456
- type: mrr_at_5
value: 18.9694
- type: mrr_at_10
value: 19.8676
- type: mrr_at_20
value: 20.338800000000003
- type: mrr_at_100
value: 20.7227
- type: mrr_at_1000
value: 20.8095
- type: nauc_ndcg_at_1_max
value: 27.3731
- type: nauc_ndcg_at_1_std
value: -0.0848
- type: nauc_ndcg_at_1_diff1
value: 40.2551
- type: nauc_ndcg_at_3_max
value: 25.4625
- type: nauc_ndcg_at_3_std
value: 0.5476
- type: nauc_ndcg_at_3_diff1
value: 34.3983
- type: nauc_ndcg_at_5_max
value: 25.1083
- type: nauc_ndcg_at_5_std
value: 1.1606999999999998
- type: nauc_ndcg_at_5_diff1
value: 32.8852
- type: nauc_ndcg_at_10_max
value: 24.845
- type: nauc_ndcg_at_10_std
value: 2.4927
- type: nauc_ndcg_at_10_diff1
value: 31.651899999999998
- type: nauc_ndcg_at_20_max
value: 25.155300000000004
- type: nauc_ndcg_at_20_std
value: 3.8962999999999997
- type: nauc_ndcg_at_20_diff1
value: 30.687199999999997
- type: nauc_ndcg_at_100_max
value: 25.391000000000002
- type: nauc_ndcg_at_100_std
value: 4.9506000000000006
- type: nauc_ndcg_at_100_diff1
value: 30.021900000000002
- type: nauc_ndcg_at_1000_max
value: 25.446999999999996
- type: nauc_ndcg_at_1000_std
value: 5.7198
- type: nauc_ndcg_at_1000_diff1
value: 29.710700000000003
- type: nauc_map_at_1_max
value: 24.317
- type: nauc_map_at_1_std
value: -1.3325
- type: nauc_map_at_1_diff1
value: 43.0924
- type: nauc_map_at_3_max
value: 24.5786
- type: nauc_map_at_3_std
value: -0.19870000000000002
- type: nauc_map_at_3_diff1
value: 36.7577
- type: nauc_map_at_5_max
value: 24.5709
- type: nauc_map_at_5_std
value: 0.1682
- type: nauc_map_at_5_diff1
value: 35.649300000000004
- type: nauc_map_at_10_max
value: 24.637
- type: nauc_map_at_10_std
value: 0.9096
- type: nauc_map_at_10_diff1
value: 34.874300000000005
- type: nauc_map_at_20_max
value: 24.7864
- type: nauc_map_at_20_std
value: 1.3651
- type: nauc_map_at_20_diff1
value: 34.5685
- type: nauc_map_at_100_max
value: 24.8458
- type: nauc_map_at_100_std
value: 1.5959
- type: nauc_map_at_100_diff1
value: 34.482800000000005
- type: nauc_map_at_1000_max
value: 24.8587
- type: nauc_map_at_1000_std
value: 1.6378
- type: nauc_map_at_1000_diff1
value: 34.4495
- type: nauc_recall_at_1_max
value: 24.317
- type: nauc_recall_at_1_std
value: -1.3325
- type: nauc_recall_at_1_diff1
value: 43.0924
- type: nauc_recall_at_3_max
value: 23.906299999999998
- type: nauc_recall_at_3_std
value: 0.9005000000000001
- type: nauc_recall_at_3_diff1
value: 31.312600000000003
- type: nauc_recall_at_5_max
value: 22.896900000000002
- type: nauc_recall_at_5_std
value: 1.8905999999999998
- type: nauc_recall_at_5_diff1
value: 27.442100000000003
- type: nauc_recall_at_10_max
value: 22.4291
- type: nauc_recall_at_10_std
value: 4.7312
- type: nauc_recall_at_10_diff1
value: 24.495800000000003
- type: nauc_recall_at_20_max
value: 22.9385
- type: nauc_recall_at_20_std
value: 8.6611
- type: nauc_recall_at_20_diff1
value: 21.223300000000002
- type: nauc_recall_at_100_max
value: 23.7652
- type: nauc_recall_at_100_std
value: 12.2032
- type: nauc_recall_at_100_diff1
value: 18.0425
- type: nauc_recall_at_1000_max
value: 23.2788
- type: nauc_recall_at_1000_std
value: 20.8114
- type: nauc_recall_at_1000_diff1
value: 12.0909
- type: nauc_precision_at_1_max
value: 27.3731
- type: nauc_precision_at_1_std
value: -0.0848
- type: nauc_precision_at_1_diff1
value: 40.2551
- type: nauc_precision_at_3_max
value: 27.5815
- type: nauc_precision_at_3_std
value: 2.3241
- type: nauc_precision_at_3_diff1
value: 28.1068
- type: nauc_precision_at_5_max
value: 27.1773
- type: nauc_precision_at_5_std
value: 3.7777
- type: nauc_precision_at_5_diff1
value: 24.271
- type: nauc_precision_at_10_max
value: 26.4364
- type: nauc_precision_at_10_std
value: 7.381500000000001
- type: nauc_precision_at_10_diff1
value: 21.0453
- type: nauc_precision_at_20_max
value: 27.053700000000003
- type: nauc_precision_at_20_std
value: 10.988199999999999
- type: nauc_precision_at_20_diff1
value: 18.0007
- type: nauc_precision_at_100_max
value: 24.7712
- type: nauc_precision_at_100_std
value: 14.1652
- type: nauc_precision_at_100_diff1
value: 11.0556
- type: nauc_precision_at_1000_max
value: 19.5539
- type: nauc_precision_at_1000_std
value: 15.2915
- type: nauc_precision_at_1000_diff1
value: 0.8828
- type: nauc_mrr_at_1_max
value: 27.3731
- type: nauc_mrr_at_1_std
value: -0.0848
- type: nauc_mrr_at_1_diff1
value: 40.2551
- type: nauc_mrr_at_3_max
value: 26.4306
- type: nauc_mrr_at_3_std
value: 1.3390000000000002
- type: nauc_mrr_at_3_diff1
value: 34.4013
- type: nauc_mrr_at_5_max
value: 26.219199999999997
- type: nauc_mrr_at_5_std
value: 1.7274
- type: nauc_mrr_at_5_diff1
value: 33.3294
- type: nauc_mrr_at_10_max
value: 26.1096
- type: nauc_mrr_at_10_std
value: 2.2398000000000002
- type: nauc_mrr_at_10_diff1
value: 32.811
- type: nauc_mrr_at_20_max
value: 26.2244
- type: nauc_mrr_at_20_std
value: 2.6409
- type: nauc_mrr_at_20_diff1
value: 32.533
- type: nauc_mrr_at_100_max
value: 26.2496
- type: nauc_mrr_at_100_std
value: 2.7576
- type: nauc_mrr_at_100_diff1
value: 32.4713
- type: nauc_mrr_at_1000_max
value: 26.2422
- type: nauc_mrr_at_1000_std
value: 2.7625
- type: nauc_mrr_at_1000_diff1
value: 32.4694
- type: main_score
value: 20.471
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: ndcg_at_1
value: 24.346999999999998
- type: ndcg_at_3
value: 27.389999999999997
- type: ndcg_at_5
value: 29.021
- type: ndcg_at_10
value: 31.19
- type: ndcg_at_20
value: 33.183
- type: ndcg_at_100
value: 36.464999999999996
- type: ndcg_at_1000
value: 39.555
- type: map_at_1
value: 20.973
- type: map_at_3
value: 25.159
- type: map_at_5
value: 26.16
- type: map_at_10
value: 27.125
- type: map_at_20
value: 27.681
- type: map_at_100
value: 28.175
- type: map_at_1000
value: 28.303
- type: recall_at_1
value: 20.973
- type: recall_at_3
value: 29.951
- type: recall_at_5
value: 34.009
- type: recall_at_10
value: 40.363
- type: recall_at_20
value: 47.728
- type: recall_at_100
value: 63.717999999999996
- type: recall_at_1000
value: 85.74000000000001
- type: precision_at_1
value: 24.346999999999998
- type: precision_at_3
value: 11.971
- type: precision_at_5
value: 8.321000000000002
- type: precision_at_10
value: 5.028
- type: precision_at_20
value: 3.032
- type: precision_at_100
value: 0.8670000000000001
- type: precision_at_1000
value: 0.126
- type: mrr_at_1
value: 24.346999999999998
- type: mrr_at_3
value: 28.5914
- type: mrr_at_5
value: 29.701499999999996
- type: mrr_at_10
value: 30.6006
- type: mrr_at_20
value: 31.171599999999998
- type: mrr_at_100
value: 31.5759
- type: mrr_at_1000
value: 31.6592
- type: nauc_ndcg_at_1_max
value: 36.6074
- type: nauc_ndcg_at_1_std
value: -0.2938
- type: nauc_ndcg_at_1_diff1
value: 51.1682
- type: nauc_ndcg_at_3_max
value: 35.5856
- type: nauc_ndcg_at_3_std
value: 3.3005
- type: nauc_ndcg_at_3_diff1
value: 45.524300000000004
- type: nauc_ndcg_at_5_max
value: 34.2306
- type: nauc_ndcg_at_5_std
value: 2.4515
- type: nauc_ndcg_at_5_diff1
value: 43.4606
- type: nauc_ndcg_at_10_max
value: 34.0939
- type: nauc_ndcg_at_10_std
value: 3.6513999999999998
- type: nauc_ndcg_at_10_diff1
value: 42.1622
- type: nauc_ndcg_at_20_max
value: 33.9306
- type: nauc_ndcg_at_20_std
value: 4.1006
- type: nauc_ndcg_at_20_diff1
value: 41.8551
- type: nauc_ndcg_at_100_max
value: 33.9351
- type: nauc_ndcg_at_100_std
value: 5.8532
- type: nauc_ndcg_at_100_diff1
value: 41.3425
- type: nauc_ndcg_at_1000_max
value: 34.5893
- type: nauc_ndcg_at_1000_std
value: 6.3454999999999995
- type: nauc_ndcg_at_1000_diff1
value: 41.893
- type: nauc_map_at_1_max
value: 36.4348
- type: nauc_map_at_1_std
value: -1.6310000000000002
- type: nauc_map_at_1_diff1
value: 52.9856
- type: nauc_map_at_3_max
value: 35.660199999999996
- type: nauc_map_at_3_std
value: 1.7934999999999999
- type: nauc_map_at_3_diff1
value: 47.364200000000004
- type: nauc_map_at_5_max
value: 34.9516
- type: nauc_map_at_5_std
value: 1.5001
- type: nauc_map_at_5_diff1
value: 46.1318
- type: nauc_map_at_10_max
value: 35.0392
- type: nauc_map_at_10_std
value: 2.2047
- type: nauc_map_at_10_diff1
value: 45.5432
- type: nauc_map_at_20_max
value: 35.04
- type: nauc_map_at_20_std
value: 2.3646000000000003
- type: nauc_map_at_20_diff1
value: 45.4156
- type: nauc_map_at_100_max
value: 34.992200000000004
- type: nauc_map_at_100_std
value: 2.6192
- type: nauc_map_at_100_diff1
value: 45.36
- type: nauc_map_at_1000_max
value: 35.0113
- type: nauc_map_at_1000_std
value: 2.6625
- type: nauc_map_at_1000_diff1
value: 45.373200000000004
- type: nauc_recall_at_1_max
value: 36.4348
- type: nauc_recall_at_1_std
value: -1.6310000000000002
- type: nauc_recall_at_1_diff1
value: 52.9856
- type: nauc_recall_at_3_max
value: 34.381699999999995
- type: nauc_recall_at_3_std
value: 5.4702
- type: nauc_recall_at_3_diff1
value: 41.4897
- type: nauc_recall_at_5_max
value: 31.2585
- type: nauc_recall_at_5_std
value: 4.0548
- type: nauc_recall_at_5_diff1
value: 36.7072
- type: nauc_recall_at_10_max
value: 30.2046
- type: nauc_recall_at_10_std
value: 6.7438
- type: nauc_recall_at_10_diff1
value: 32.8025
- type: nauc_recall_at_20_max
value: 28.9
- type: nauc_recall_at_20_std
value: 7.9
- type: nauc_recall_at_20_diff1
value: 30.969600000000003
- type: nauc_recall_at_100_max
value: 27.970200000000002
- type: nauc_recall_at_100_std
value: 17.891399999999997
- type: nauc_recall_at_100_diff1
value: 25.9407
- type: nauc_recall_at_1000_max
value: 35.8183
- type: nauc_recall_at_1000_std
value: 36.287000000000006
- type: nauc_recall_at_1000_diff1
value: 23.275299999999998
- type: nauc_precision_at_1_max
value: 36.6074
- type: nauc_precision_at_1_std
value: -0.2938
- type: nauc_precision_at_1_diff1
value: 51.1682
- type: nauc_precision_at_3_max
value: 34.2215
- type: nauc_precision_at_3_std
value: 7.9457
- type: nauc_precision_at_3_diff1
value: 37.960300000000004
- type: nauc_precision_at_5_max
value: 30.8996
- type: nauc_precision_at_5_std
value: 6.5465
- type: nauc_precision_at_5_diff1
value: 32.7939
- type: nauc_precision_at_10_max
value: 29.3998
- type: nauc_precision_at_10_std
value: 10.972999999999999
- type: nauc_precision_at_10_diff1
value: 26.808100000000003
- type: nauc_precision_at_20_max
value: 26.5752
- type: nauc_precision_at_20_std
value: 12.315900000000001
- type: nauc_precision_at_20_diff1
value: 23.4389
- type: nauc_precision_at_100_max
value: 17.816100000000002
- type: nauc_precision_at_100_std
value: 17.685200000000002
- type: nauc_precision_at_100_diff1
value: 8.921800000000001
- type: nauc_precision_at_1000_max
value: 5.5458
- type: nauc_precision_at_1000_std
value: 14.2567
- type: nauc_precision_at_1000_diff1
value: -4.7612000000000005
- type: nauc_mrr_at_1_max
value: 36.6074
- type: nauc_mrr_at_1_std
value: -0.2938
- type: nauc_mrr_at_1_diff1
value: 51.1682
- type: nauc_mrr_at_3_max
value: 35.4753
- type: nauc_mrr_at_3_std
value: 2.4454
- type: nauc_mrr_at_3_diff1
value: 45.6803
- type: nauc_mrr_at_5_max
value: 34.9086
- type: nauc_mrr_at_5_std
value: 2.1245
- type: nauc_mrr_at_5_diff1
value: 44.4838
- type: nauc_mrr_at_10_max
value: 34.6014
- type: nauc_mrr_at_10_std
value: 2.4307
- type: nauc_mrr_at_10_diff1
value: 44.0129
- type: nauc_mrr_at_20_max
value: 34.5043
- type: nauc_mrr_at_20_std
value: 2.6122
- type: nauc_mrr_at_20_diff1
value: 43.9379
- type: nauc_mrr_at_100_max
value: 34.543400000000005
- type: nauc_mrr_at_100_std
value: 2.8055
- type: nauc_mrr_at_100_diff1
value: 43.9384
- type: nauc_mrr_at_1000_max
value: 34.558
- type: nauc_mrr_at_1000_std
value: 2.8083
- type: nauc_mrr_at_1000_diff1
value: 43.9607
- type: main_score
value: 31.19
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: ndcg_at_1
value: 22.925
- type: ndcg_at_3
value: 27.41
- type: ndcg_at_5
value: 29.29
- type: ndcg_at_10
value: 31.232
- type: ndcg_at_20
value: 33.154
- type: ndcg_at_100
value: 36.606
- type: ndcg_at_1000
value: 39.806000000000004
- type: map_at_1
value: 19.137
- type: map_at_3
value: 23.966
- type: map_at_5
value: 25.369000000000003
- type: map_at_10
value: 26.412999999999997
- type: map_at_20
value: 27.108999999999998
- type: map_at_100
value: 27.726
- type: map_at_1000
value: 27.925
- type: recall_at_1
value: 19.137
- type: recall_at_3
value: 29.464000000000002
- type: recall_at_5
value: 34.544000000000004
- type: recall_at_10
value: 40.694
- type: recall_at_20
value: 47.910000000000004
- type: recall_at_100
value: 65.313
- type: recall_at_1000
value: 86.383
- type: precision_at_1
value: 22.925
- type: precision_at_3
value: 13.109000000000002
- type: precision_at_5
value: 9.684
- type: precision_at_10
value: 6.047000000000001
- type: precision_at_20
value: 3.903
- type: precision_at_100
value: 1.2349999999999999
- type: precision_at_1000
value: 0.207
- type: mrr_at_1
value: 22.9249
- type: mrr_at_3
value: 27.8656
- type: mrr_at_5
value: 29.1601
- type: mrr_at_10
value: 30.079299999999996
- type: mrr_at_20
value: 30.648999999999997
- type: mrr_at_100
value: 31.072699999999998
- type: mrr_at_1000
value: 31.1487
- type: nauc_ndcg_at_1_max
value: 27.8397
- type: nauc_ndcg_at_1_std
value: 7.4006
- type: nauc_ndcg_at_1_diff1
value: 51.337500000000006
- type: nauc_ndcg_at_3_max
value: 27.786300000000004
- type: nauc_ndcg_at_3_std
value: 10.5389
- type: nauc_ndcg_at_3_diff1
value: 48.272999999999996
- type: nauc_ndcg_at_5_max
value: 26.245800000000003
- type: nauc_ndcg_at_5_std
value: 10.9897
- type: nauc_ndcg_at_5_diff1
value: 46.5795
- type: nauc_ndcg_at_10_max
value: 25.9559
- type: nauc_ndcg_at_10_std
value: 11.290899999999999
- type: nauc_ndcg_at_10_diff1
value: 45.8508
- type: nauc_ndcg_at_20_max
value: 25.962400000000002
- type: nauc_ndcg_at_20_std
value: 11.5503
- type: nauc_ndcg_at_20_diff1
value: 44.8082
- type: nauc_ndcg_at_100_max
value: 25.745800000000003
- type: nauc_ndcg_at_100_std
value: 13.347700000000001
- type: nauc_ndcg_at_100_diff1
value: 43.7838
- type: nauc_ndcg_at_1000_max
value: 26.493299999999998
- type: nauc_ndcg_at_1000_std
value: 13.9622
- type: nauc_ndcg_at_1000_diff1
value: 44.8966
- type: nauc_map_at_1_max
value: 26.4657
- type: nauc_map_at_1_std
value: 3.5551
- type: nauc_map_at_1_diff1
value: 53.6002
- type: nauc_map_at_3_max
value: 27.1682
- type: nauc_map_at_3_std
value: 7.7661
- type: nauc_map_at_3_diff1
value: 49.5551
- type: nauc_map_at_5_max
value: 26.631
- type: nauc_map_at_5_std
value: 8.0968
- type: nauc_map_at_5_diff1
value: 48.1763
- type: nauc_map_at_10_max
value: 26.3891
- type: nauc_map_at_10_std
value: 8.4954
- type: nauc_map_at_10_diff1
value: 47.793400000000005
- type: nauc_map_at_20_max
value: 26.3787
- type: nauc_map_at_20_std
value: 8.8554
- type: nauc_map_at_20_diff1
value: 47.5802
- type: nauc_map_at_100_max
value: 26.3258
- type: nauc_map_at_100_std
value: 9.5955
- type: nauc_map_at_100_diff1
value: 47.5416
- type: nauc_map_at_1000_max
value: 26.325599999999998
- type: nauc_map_at_1000_std
value: 9.769
- type: nauc_map_at_1000_diff1
value: 47.5749
- type: nauc_recall_at_1_max
value: 26.4657
- type: nauc_recall_at_1_std
value: 3.5551
- type: nauc_recall_at_1_diff1
value: 53.6002
- type: nauc_recall_at_3_max
value: 26.3286
- type: nauc_recall_at_3_std
value: 11.058300000000001
- type: nauc_recall_at_3_diff1
value: 45.4661
- type: nauc_recall_at_5_max
value: 24.1204
- type: nauc_recall_at_5_std
value: 12.5151
- type: nauc_recall_at_5_diff1
value: 41.1045
- type: nauc_recall_at_10_max
value: 24.008599999999998
- type: nauc_recall_at_10_std
value: 13.7833
- type: nauc_recall_at_10_diff1
value: 38.8961
- type: nauc_recall_at_20_max
value: 23.1511
- type: nauc_recall_at_20_std
value: 15.1779
- type: nauc_recall_at_20_diff1
value: 35.641
- type: nauc_recall_at_100_max
value: 20.5584
- type: nauc_recall_at_100_std
value: 24.2135
- type: nauc_recall_at_100_diff1
value: 26.7027
- type: nauc_recall_at_1000_max
value: 25.923800000000004
- type: nauc_recall_at_1000_std
value: 40.6363
- type: nauc_recall_at_1000_diff1
value: 28.158
- type: nauc_precision_at_1_max
value: 27.8397
- type: nauc_precision_at_1_std
value: 7.4006
- type: nauc_precision_at_1_diff1
value: 51.337500000000006
- type: nauc_precision_at_3_max
value: 25.4205
- type: nauc_precision_at_3_std
value: 15.063299999999998
- type: nauc_precision_at_3_diff1
value: 38.4094
- type: nauc_precision_at_5_max
value: 20.648
- type: nauc_precision_at_5_std
value: 15.8803
- type: nauc_precision_at_5_diff1
value: 31.0389
- type: nauc_precision_at_10_max
value: 17.5023
- type: nauc_precision_at_10_std
value: 18.8265
- type: nauc_precision_at_10_diff1
value: 26.862799999999996
- type: nauc_precision_at_20_max
value: 16.0018
- type: nauc_precision_at_20_std
value: 22.9377
- type: nauc_precision_at_20_diff1
value: 21.6145
- type: nauc_precision_at_100_max
value: 3.9446000000000003
- type: nauc_precision_at_100_std
value: 30.923699999999997
- type: nauc_precision_at_100_diff1
value: 8.1114
- type: nauc_precision_at_1000_max
value: -7.824599999999999
- type: nauc_precision_at_1000_std
value: 22.6591
- type: nauc_precision_at_1000_diff1
value: -2.9668
- type: nauc_mrr_at_1_max
value: 27.8397
- type: nauc_mrr_at_1_std
value: 7.4006
- type: nauc_mrr_at_1_diff1
value: 51.337500000000006
- type: nauc_mrr_at_3_max
value: 27.166400000000003
- type: nauc_mrr_at_3_std
value: 10.5992
- type: nauc_mrr_at_3_diff1
value: 47.5073
- type: nauc_mrr_at_5_max
value: 26.4996
- type: nauc_mrr_at_5_std
value: 10.9831
- type: nauc_mrr_at_5_diff1
value: 46.395599999999995
- type: nauc_mrr_at_10_max
value: 26.5579
- type: nauc_mrr_at_10_std
value: 11.1244
- type: nauc_mrr_at_10_diff1
value: 46.4022
- type: nauc_mrr_at_20_max
value: 26.659
- type: nauc_mrr_at_20_std
value: 11.159099999999999
- type: nauc_mrr_at_20_diff1
value: 46.230900000000005
- type: nauc_mrr_at_100_max
value: 26.5909
- type: nauc_mrr_at_100_std
value: 11.3546
- type: nauc_mrr_at_100_diff1
value: 46.1344
- type: nauc_mrr_at_1000_max
value: 26.611400000000003
- type: nauc_mrr_at_1000_std
value: 11.3636
- type: nauc_mrr_at_1000_diff1
value: 46.1867
- type: main_score
value: 31.232
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: ndcg_at_1
value: 18.299000000000003
- type: ndcg_at_3
value: 22.947
- type: ndcg_at_5
value: 24.288999999999998
- type: ndcg_at_10
value: 26.195
- type: ndcg_at_20
value: 28.138
- type: ndcg_at_100
value: 31.194
- type: ndcg_at_1000
value: 34.148
- type: map_at_1
value: 16.833000000000002
- type: map_at_3
value: 21.099999999999998
- type: map_at_5
value: 21.97
- type: map_at_10
value: 22.788
- type: map_at_20
value: 23.321
- type: map_at_100
value: 23.73
- type: map_at_1000
value: 23.838
- type: recall_at_1
value: 16.833000000000002
- type: recall_at_3
value: 26.334000000000003
- type: recall_at_5
value: 29.575000000000003
- type: recall_at_10
value: 35.120000000000005
- type: recall_at_20
value: 42.532
- type: recall_at_100
value: 58.59799999999999
- type: recall_at_1000
value: 80.809
- type: precision_at_1
value: 18.299000000000003
- type: precision_at_3
value: 9.92
- type: precision_at_5
value: 6.765000000000001
- type: precision_at_10
value: 4.067
- type: precision_at_20
value: 2.486
- type: precision_at_100
value: 0.701
- type: precision_at_1000
value: 0.105
- type: mrr_at_1
value: 18.2994
- type: mrr_at_3
value: 22.7665
- type: mrr_at_5
value: 23.5059
- type: mrr_at_10
value: 24.3175
- type: mrr_at_20
value: 24.8732
- type: mrr_at_100
value: 25.2759
- type: mrr_at_1000
value: 25.362499999999997
- type: nauc_ndcg_at_1_max
value: 29.0492
- type: nauc_ndcg_at_1_std
value: -3.7428999999999997
- type: nauc_ndcg_at_1_diff1
value: 42.7622
- type: nauc_ndcg_at_3_max
value: 24.3326
- type: nauc_ndcg_at_3_std
value: -2.7470000000000003
- type: nauc_ndcg_at_3_diff1
value: 34.0168
- type: nauc_ndcg_at_5_max
value: 23.863400000000002
- type: nauc_ndcg_at_5_std
value: -2.659
- type: nauc_ndcg_at_5_diff1
value: 33.0531
- type: nauc_ndcg_at_10_max
value: 24.7575
- type: nauc_ndcg_at_10_std
value: -1.7911
- type: nauc_ndcg_at_10_diff1
value: 32.075700000000005
- type: nauc_ndcg_at_20_max
value: 24.5705
- type: nauc_ndcg_at_20_std
value: 0.49069999999999997
- type: nauc_ndcg_at_20_diff1
value: 32.0415
- type: nauc_ndcg_at_100_max
value: 24.0886
- type: nauc_ndcg_at_100_std
value: 2.3005999999999998
- type: nauc_ndcg_at_100_diff1
value: 31.633
- type: nauc_ndcg_at_1000_max
value: 24.262700000000002
- type: nauc_ndcg_at_1000_std
value: 2.9307
- type: nauc_ndcg_at_1000_diff1
value: 31.8627
- type: nauc_map_at_1_max
value: 26.5847
- type: nauc_map_at_1_std
value: -3.9069
- type: nauc_map_at_1_diff1
value: 43.0649
- type: nauc_map_at_3_max
value: 24.4435
- type: nauc_map_at_3_std
value: -2.7471
- type: nauc_map_at_3_diff1
value: 35.8874
- type: nauc_map_at_5_max
value: 24.4507
- type: nauc_map_at_5_std
value: -2.6950000000000003
- type: nauc_map_at_5_diff1
value: 35.2913
- type: nauc_map_at_10_max
value: 24.888099999999998
- type: nauc_map_at_10_std
value: -2.3212
- type: nauc_map_at_10_diff1
value: 34.8928
- type: nauc_map_at_20_max
value: 24.8784
- type: nauc_map_at_20_std
value: -1.6656
- type: nauc_map_at_20_diff1
value: 34.8707
- type: nauc_map_at_100_max
value: 24.800900000000002
- type: nauc_map_at_100_std
value: -1.4711999999999998
- type: nauc_map_at_100_diff1
value: 34.8352
- type: nauc_map_at_1000_max
value: 24.8034
- type: nauc_map_at_1000_std
value: -1.4321000000000002
- type: nauc_map_at_1000_diff1
value: 34.8601
- type: nauc_recall_at_1_max
value: 26.5847
- type: nauc_recall_at_1_std
value: -3.9069
- type: nauc_recall_at_1_diff1
value: 43.0649
- type: nauc_recall_at_3_max
value: 21.352899999999998
- type: nauc_recall_at_3_std
value: -2.5467
- type: nauc_recall_at_3_diff1
value: 28.6084
- type: nauc_recall_at_5_max
value: 20.5815
- type: nauc_recall_at_5_std
value: -2.5665
- type: nauc_recall_at_5_diff1
value: 26.563799999999997
- type: nauc_recall_at_10_max
value: 22.3811
- type: nauc_recall_at_10_std
value: -0.2912
- type: nauc_recall_at_10_diff1
value: 23.6385
- type: nauc_recall_at_20_max
value: 21.1582
- type: nauc_recall_at_20_std
value: 6.7677000000000005
- type: nauc_recall_at_20_diff1
value: 23.474500000000003
- type: nauc_recall_at_100_max
value: 18.2712
- type: nauc_recall_at_100_std
value: 17.471999999999998
- type: nauc_recall_at_100_diff1
value: 20.1213
- type: nauc_recall_at_1000_max
value: 17.4778
- type: nauc_recall_at_1000_std
value: 34.0317
- type: nauc_recall_at_1000_diff1
value: 12.5604
- type: nauc_precision_at_1_max
value: 29.0492
- type: nauc_precision_at_1_std
value: -3.7428999999999997
- type: nauc_precision_at_1_diff1
value: 42.7622
- type: nauc_precision_at_3_max
value: 22.7398
- type: nauc_precision_at_3_std
value: -2.8379000000000003
- type: nauc_precision_at_3_diff1
value: 26.6137
- type: nauc_precision_at_5_max
value: 23.0675
- type: nauc_precision_at_5_std
value: -1.7097999999999998
- type: nauc_precision_at_5_diff1
value: 24.137800000000002
- type: nauc_precision_at_10_max
value: 24.3564
- type: nauc_precision_at_10_std
value: 0.5694
- type: nauc_precision_at_10_diff1
value: 20.9227
- type: nauc_precision_at_20_max
value: 23.9849
- type: nauc_precision_at_20_std
value: 8.9154
- type: nauc_precision_at_20_diff1
value: 21.0395
- type: nauc_precision_at_100_max
value: 18.7676
- type: nauc_precision_at_100_std
value: 15.9012
- type: nauc_precision_at_100_diff1
value: 14.5642
- type: nauc_precision_at_1000_max
value: 4.0961
- type: nauc_precision_at_1000_std
value: 14.907599999999999
- type: nauc_precision_at_1000_diff1
value: 2.9816
- type: nauc_mrr_at_1_max
value: 29.0492
- type: nauc_mrr_at_1_std
value: -3.7428999999999997
- type: nauc_mrr_at_1_diff1
value: 42.7622
- type: nauc_mrr_at_3_max
value: 26.1245
- type: nauc_mrr_at_3_std
value: -2.9722
- type: nauc_mrr_at_3_diff1
value: 36.3549
- type: nauc_mrr_at_5_max
value: 25.9592
- type: nauc_mrr_at_5_std
value: -2.8622
- type: nauc_mrr_at_5_diff1
value: 35.7855
- type: nauc_mrr_at_10_max
value: 26.4184
- type: nauc_mrr_at_10_std
value: -2.4333
- type: nauc_mrr_at_10_diff1
value: 35.3717
- type: nauc_mrr_at_20_max
value: 26.4148
- type: nauc_mrr_at_20_std
value: -1.7082
- type: nauc_mrr_at_20_diff1
value: 35.343799999999995
- type: nauc_mrr_at_100_max
value: 26.3672
- type: nauc_mrr_at_100_std
value: -1.5025
- type: nauc_mrr_at_100_diff1
value: 35.3221
- type: nauc_mrr_at_1000_max
value: 26.355600000000003
- type: nauc_mrr_at_1000_std
value: -1.4899
- type: nauc_mrr_at_1000_diff1
value: 35.3607
- type: main_score
value: 26.195
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: ndcg_at_1
value: 21.041999999999998
- type: ndcg_at_3
value: 18.007
- type: ndcg_at_5
value: 19.365
- type: ndcg_at_10
value: 22.698
- type: ndcg_at_20
value: 25.245
- type: ndcg_at_100
value: 29.215999999999998
- type: ndcg_at_1000
value: 32.348
- type: map_at_1
value: 9.732000000000001
- type: map_at_3
value: 13.098
- type: map_at_5
value: 14.246
- type: map_at_10
value: 15.738
- type: map_at_20
value: 16.557
- type: map_at_100
value: 17.281
- type: map_at_1000
value: 17.442
- type: recall_at_1
value: 9.732000000000001
- type: recall_at_3
value: 16.374
- type: recall_at_5
value: 20.321
- type: recall_at_10
value: 27.863
- type: recall_at_20
value: 35.101
- type: recall_at_100
value: 50.446000000000005
- type: recall_at_1000
value: 68.12700000000001
- type: precision_at_1
value: 21.041999999999998
- type: precision_at_3
value: 12.942
- type: precision_at_5
value: 9.966999999999999
- type: precision_at_10
value: 7.114
- type: precision_at_20
value: 4.635
- type: precision_at_100
value: 1.4000000000000001
- type: precision_at_1000
value: 0.197
- type: mrr_at_1
value: 21.0423
- type: mrr_at_3
value: 27.6439
- type: mrr_at_5
value: 29.337699999999998
- type: mrr_at_10
value: 30.923099999999998
- type: mrr_at_20
value: 31.5901
- type: mrr_at_100
value: 31.955299999999998
- type: mrr_at_1000
value: 32.0057
- type: nauc_ndcg_at_1_max
value: 25.3668
- type: nauc_ndcg_at_1_std
value: 4.1982
- type: nauc_ndcg_at_1_diff1
value: 26.3596
- type: nauc_ndcg_at_3_max
value: 30.337500000000002
- type: nauc_ndcg_at_3_std
value: 7.1602
- type: nauc_ndcg_at_3_diff1
value: 23.1569
- type: nauc_ndcg_at_5_max
value: 31.039
- type: nauc_ndcg_at_5_std
value: 8.631
- type: nauc_ndcg_at_5_diff1
value: 23.4282
- type: nauc_ndcg_at_10_max
value: 32.1631
- type: nauc_ndcg_at_10_std
value: 12.864700000000001
- type: nauc_ndcg_at_10_diff1
value: 22.4955
- type: nauc_ndcg_at_20_max
value: 32.9699
- type: nauc_ndcg_at_20_std
value: 15.9557
- type: nauc_ndcg_at_20_diff1
value: 22.8594
- type: nauc_ndcg_at_100_max
value: 34.5065
- type: nauc_ndcg_at_100_std
value: 20.812
- type: nauc_ndcg_at_100_diff1
value: 23.0539
- type: nauc_ndcg_at_1000_max
value: 35.1358
- type: nauc_ndcg_at_1000_std
value: 22.4793
- type: nauc_ndcg_at_1000_diff1
value: 22.8996
- type: nauc_map_at_1_max
value: 28.1958
- type: nauc_map_at_1_std
value: -2.1727
- type: nauc_map_at_1_diff1
value: 31.3643
- type: nauc_map_at_3_max
value: 29.845699999999997
- type: nauc_map_at_3_std
value: 2.2626
- type: nauc_map_at_3_diff1
value: 25.7536
- type: nauc_map_at_5_max
value: 30.446299999999997
- type: nauc_map_at_5_std
value: 3.8367
- type: nauc_map_at_5_diff1
value: 25.7217
- type: nauc_map_at_10_max
value: 31.308999999999997
- type: nauc_map_at_10_std
value: 6.608600000000001
- type: nauc_map_at_10_diff1
value: 25.193199999999997
- type: nauc_map_at_20_max
value: 31.663000000000004
- type: nauc_map_at_20_std
value: 7.943
- type: nauc_map_at_20_diff1
value: 25.3261
- type: nauc_map_at_100_max
value: 32.0402
- type: nauc_map_at_100_std
value: 9.2723
- type: nauc_map_at_100_diff1
value: 25.221300000000003
- type: nauc_map_at_1000_max
value: 32.0828
- type: nauc_map_at_1000_std
value: 9.4498
- type: nauc_map_at_1000_diff1
value: 25.2002
- type: nauc_recall_at_1_max
value: 28.1958
- type: nauc_recall_at_1_std
value: -2.1727
- type: nauc_recall_at_1_diff1
value: 31.3643
- type: nauc_recall_at_3_max
value: 31.1157
- type: nauc_recall_at_3_std
value: 6.0219000000000005
- type: nauc_recall_at_3_diff1
value: 21.0486
- type: nauc_recall_at_5_max
value: 29.711900000000004
- type: nauc_recall_at_5_std
value: 9.6385
- type: nauc_recall_at_5_diff1
value: 19.4008
- type: nauc_recall_at_10_max
value: 29.758000000000003
- type: nauc_recall_at_10_std
value: 16.782700000000002
- type: nauc_recall_at_10_diff1
value: 16.8048
- type: nauc_recall_at_20_max
value: 30.2094
- type: nauc_recall_at_20_std
value: 22.7934
- type: nauc_recall_at_20_diff1
value: 16.747899999999998
- type: nauc_recall_at_100_max
value: 32.5903
- type: nauc_recall_at_100_std
value: 35.6132
- type: nauc_recall_at_100_diff1
value: 16.304299999999998
- type: nauc_recall_at_1000_max
value: 36.5571
- type: nauc_recall_at_1000_std
value: 46.5573
- type: nauc_recall_at_1000_diff1
value: 14.6935
- type: nauc_precision_at_1_max
value: 25.3668
- type: nauc_precision_at_1_std
value: 4.1982
- type: nauc_precision_at_1_diff1
value: 26.3596
- type: nauc_precision_at_3_max
value: 30.263800000000003
- type: nauc_precision_at_3_std
value: 16.4883
- type: nauc_precision_at_3_diff1
value: 16.5101
- type: nauc_precision_at_5_max
value: 29.942400000000003
- type: nauc_precision_at_5_std
value: 20.4229
- type: nauc_precision_at_5_diff1
value: 15.2494
- type: nauc_precision_at_10_max
value: 28.7718
- type: nauc_precision_at_10_std
value: 27.6706
- type: nauc_precision_at_10_diff1
value: 10.5829
- type: nauc_precision_at_20_max
value: 27.6563
- type: nauc_precision_at_20_std
value: 32.9983
- type: nauc_precision_at_20_diff1
value: 10.746
- type: nauc_precision_at_100_max
value: 25.8573
- type: nauc_precision_at_100_std
value: 43.257400000000004
- type: nauc_precision_at_100_diff1
value: 7.983899999999999
- type: nauc_precision_at_1000_max
value: 19.9198
- type: nauc_precision_at_1000_std
value: 44.0233
- type: nauc_precision_at_1000_diff1
value: 2.4789
- type: nauc_mrr_at_1_max
value: 25.3668
- type: nauc_mrr_at_1_std
value: 4.1982
- type: nauc_mrr_at_1_diff1
value: 26.3596
- type: nauc_mrr_at_3_max
value: 29.8863
- type: nauc_mrr_at_3_std
value: 10.6849
- type: nauc_mrr_at_3_diff1
value: 23.0179
- type: nauc_mrr_at_5_max
value: 29.585
- type: nauc_mrr_at_5_std
value: 11.769499999999999
- type: nauc_mrr_at_5_diff1
value: 22.511200000000002
- type: nauc_mrr_at_10_max
value: 29.750700000000002
- type: nauc_mrr_at_10_std
value: 12.8053
- type: nauc_mrr_at_10_diff1
value: 22.2167
- type: nauc_mrr_at_20_max
value: 29.877100000000002
- type: nauc_mrr_at_20_std
value: 13.317
- type: nauc_mrr_at_20_diff1
value: 22.3668
- type: nauc_mrr_at_100_max
value: 29.9334
- type: nauc_mrr_at_100_std
value: 13.3076
- type: nauc_mrr_at_100_diff1
value: 22.4883
- type: nauc_mrr_at_1000_max
value: 29.924899999999997
- type: nauc_mrr_at_1000_std
value: 13.2749
- type: nauc_mrr_at_1000_diff1
value: 22.487099999999998
- type: main_score
value: 22.698
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: ndcg_at_1
value: 41.375
- type: ndcg_at_3
value: 32.494
- type: ndcg_at_5
value: 29.511
- type: ndcg_at_10
value: 27.559
- type: ndcg_at_20
value: 26.821
- type: ndcg_at_100
value: 29.407
- type: ndcg_at_1000
value: 34.784
- type: map_at_1
value: 7.455
- type: map_at_3
value: 10.610999999999999
- type: map_at_5
value: 11.74
- type: map_at_10
value: 13.131
- type: map_at_20
value: 14.319
- type: map_at_100
value: 16.07
- type: map_at_1000
value: 16.730999999999998
- type: recall_at_1
value: 7.455
- type: recall_at_3
value: 11.476
- type: recall_at_5
value: 13.383000000000001
- type: recall_at_10
value: 16.742
- type: recall_at_20
value: 21.34
- type: recall_at_100
value: 32.125
- type: recall_at_1000
value: 49.775999999999996
- type: precision_at_1
value: 51.0
- type: precision_at_3
value: 34.75
- type: precision_at_5
value: 27.05
- type: precision_at_10
value: 19.575
- type: precision_at_20
value: 13.988
- type: precision_at_100
value: 5.35
- type: precision_at_1000
value: 1.072
- type: mrr_at_1
value: 51.0
- type: mrr_at_3
value: 57.875
- type: mrr_at_5
value: 58.537499999999994
- type: mrr_at_10
value: 59.1851
- type: mrr_at_20
value: 59.6647
- type: mrr_at_100
value: 59.8812
- type: mrr_at_1000
value: 59.9078
- type: nauc_ndcg_at_1_max
value: 42.391600000000004
- type: nauc_ndcg_at_1_std
value: 15.5682
- type: nauc_ndcg_at_1_diff1
value: 43.125099999999996
- type: nauc_ndcg_at_3_max
value: 43.8604
- type: nauc_ndcg_at_3_std
value: 19.3398
- type: nauc_ndcg_at_3_diff1
value: 30.8724
- type: nauc_ndcg_at_5_max
value: 41.4941
- type: nauc_ndcg_at_5_std
value: 18.2644
- type: nauc_ndcg_at_5_diff1
value: 28.7275
- type: nauc_ndcg_at_10_max
value: 39.0035
- type: nauc_ndcg_at_10_std
value: 17.647299999999998
- type: nauc_ndcg_at_10_diff1
value: 27.9835
- type: nauc_ndcg_at_20_max
value: 35.706900000000005
- type: nauc_ndcg_at_20_std
value: 16.5987
- type: nauc_ndcg_at_20_diff1
value: 28.2564
- type: nauc_ndcg_at_100_max
value: 34.3485
- type: nauc_ndcg_at_100_std
value: 20.5251
- type: nauc_ndcg_at_100_diff1
value: 25.8367
- type: nauc_ndcg_at_1000_max
value: 38.007200000000005
- type: nauc_ndcg_at_1000_std
value: 26.5801
- type: nauc_ndcg_at_1000_diff1
value: 25.7738
- type: nauc_map_at_1_max
value: 11.8856
- type: nauc_map_at_1_std
value: -9.3654
- type: nauc_map_at_1_diff1
value: 38.366499999999995
- type: nauc_map_at_3_max
value: 16.3439
- type: nauc_map_at_3_std
value: -5.0284
- type: nauc_map_at_3_diff1
value: 32.3527
- type: nauc_map_at_5_max
value: 17.271
- type: nauc_map_at_5_std
value: -3.4506
- type: nauc_map_at_5_diff1
value: 30.5797
- type: nauc_map_at_10_max
value: 18.7527
- type: nauc_map_at_10_std
value: 0.3105
- type: nauc_map_at_10_diff1
value: 28.163700000000002
- type: nauc_map_at_20_max
value: 20.6161
- type: nauc_map_at_20_std
value: 4.3977
- type: nauc_map_at_20_diff1
value: 26.506
- type: nauc_map_at_100_max
value: 23.6987
- type: nauc_map_at_100_std
value: 11.5381
- type: nauc_map_at_100_diff1
value: 23.3655
- type: nauc_map_at_1000_max
value: 24.553
- type: nauc_map_at_1000_std
value: 13.2969
- type: nauc_map_at_1000_diff1
value: 23.0466
- type: nauc_recall_at_1_max
value: 11.8856
- type: nauc_recall_at_1_std
value: -9.3654
- type: nauc_recall_at_1_diff1
value: 38.366499999999995
- type: nauc_recall_at_3_max
value: 14.427100000000001
- type: nauc_recall_at_3_std
value: -5.3232
- type: nauc_recall_at_3_diff1
value: 29.743199999999998
- type: nauc_recall_at_5_max
value: 15.0162
- type: nauc_recall_at_5_std
value: -4.1646
- type: nauc_recall_at_5_diff1
value: 28.3241
- type: nauc_recall_at_10_max
value: 15.5396
- type: nauc_recall_at_10_std
value: -0.623
- type: nauc_recall_at_10_diff1
value: 24.6545
- type: nauc_recall_at_20_max
value: 15.593399999999999
- type: nauc_recall_at_20_std
value: 3.434
- type: nauc_recall_at_20_diff1
value: 21.756600000000002
- type: nauc_recall_at_100_max
value: 18.3441
- type: nauc_recall_at_100_std
value: 17.9899
- type: nauc_recall_at_100_diff1
value: 15.432699999999999
- type: nauc_recall_at_1000_max
value: 25.3257
- type: nauc_recall_at_1000_std
value: 31.3636
- type: nauc_recall_at_1000_diff1
value: 14.7442
- type: nauc_precision_at_1_max
value: 45.1052
- type: nauc_precision_at_1_std
value: 18.9451
- type: nauc_precision_at_1_diff1
value: 46.2767
- type: nauc_precision_at_3_max
value: 44.1379
- type: nauc_precision_at_3_std
value: 26.523200000000003
- type: nauc_precision_at_3_diff1
value: 18.3643
- type: nauc_precision_at_5_max
value: 41.2908
- type: nauc_precision_at_5_std
value: 28.2232
- type: nauc_precision_at_5_diff1
value: 10.5613
- type: nauc_precision_at_10_max
value: 38.9052
- type: nauc_precision_at_10_std
value: 36.619600000000005
- type: nauc_precision_at_10_diff1
value: 3.0044
- type: nauc_precision_at_20_max
value: 37.2606
- type: nauc_precision_at_20_std
value: 45.0747
- type: nauc_precision_at_20_diff1
value: -1.4095
- type: nauc_precision_at_100_max
value: 31.537399999999998
- type: nauc_precision_at_100_std
value: 49.8572
- type: nauc_precision_at_100_diff1
value: -8.2395
- type: nauc_precision_at_1000_max
value: 19.9796
- type: nauc_precision_at_1000_std
value: 38.6212
- type: nauc_precision_at_1000_diff1
value: -11.9969
- type: nauc_mrr_at_1_max
value: 45.1052
- type: nauc_mrr_at_1_std
value: 18.9451
- type: nauc_mrr_at_1_diff1
value: 46.2767
- type: nauc_mrr_at_3_max
value: 48.3251
- type: nauc_mrr_at_3_std
value: 25.3881
- type: nauc_mrr_at_3_diff1
value: 43.4542
- type: nauc_mrr_at_5_max
value: 48.3313
- type: nauc_mrr_at_5_std
value: 25.1794
- type: nauc_mrr_at_5_diff1
value: 43.5443
- type: nauc_mrr_at_10_max
value: 48.039100000000005
- type: nauc_mrr_at_10_std
value: 24.9537
- type: nauc_mrr_at_10_diff1
value: 43.1642
- type: nauc_mrr_at_20_max
value: 47.9453
- type: nauc_mrr_at_20_std
value: 25.1964
- type: nauc_mrr_at_20_diff1
value: 43.1792
- type: nauc_mrr_at_100_max
value: 48.010000000000005
- type: nauc_mrr_at_100_std
value: 25.2416
- type: nauc_mrr_at_100_diff1
value: 43.3313
- type: nauc_mrr_at_1000_max
value: 47.991299999999995
- type: nauc_mrr_at_1000_std
value: 25.2061
- type: nauc_mrr_at_1000_diff1
value: 43.3367
- type: main_score
value: 27.559
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 43.7
- type: f1
value: 39.358
- type: f1_weighted
value: 45.983000000000004
- type: main_score
value: 43.7
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: ndcg_at_1
value: 52.625
- type: ndcg_at_3
value: 61.126000000000005
- type: ndcg_at_5
value: 63.731
- type: ndcg_at_10
value: 65.72099999999999
- type: ndcg_at_20
value: 66.718
- type: ndcg_at_100
value: 67.996
- type: ndcg_at_1000
value: 68.554
- type: map_at_1
value: 48.757
- type: map_at_3
value: 57.408
- type: map_at_5
value: 58.912
- type: map_at_10
value: 59.765
- type: map_at_20
value: 60.053
- type: map_at_100
value: 60.23500000000001
- type: map_at_1000
value: 60.258
- type: recall_at_1
value: 48.757
- type: recall_at_3
value: 67.712
- type: recall_at_5
value: 74.102
- type: recall_at_10
value: 80.181
- type: recall_at_20
value: 83.964
- type: recall_at_100
value: 90.629
- type: recall_at_1000
value: 94.78999999999999
- type: precision_at_1
value: 52.625
- type: precision_at_3
value: 24.482
- type: precision_at_5
value: 16.112000000000002
- type: precision_at_10
value: 8.738
- type: precision_at_20
value: 4.590000000000001
- type: precision_at_100
value: 0.997
- type: precision_at_1000
value: 0.105
- type: mrr_at_1
value: 52.625299999999996
- type: mrr_at_3
value: 61.5912
- type: mrr_at_5
value: 63.118300000000005
- type: mrr_at_10
value: 63.9444
- type: mrr_at_20
value: 64.2131
- type: mrr_at_100
value: 64.38080000000001
- type: mrr_at_1000
value: 64.3955
- type: nauc_ndcg_at_1_max
value: 24.5061
- type: nauc_ndcg_at_1_std
value: -13.700899999999999
- type: nauc_ndcg_at_1_diff1
value: 55.708999999999996
- type: nauc_ndcg_at_3_max
value: 24.8319
- type: nauc_ndcg_at_3_std
value: -10.4366
- type: nauc_ndcg_at_3_diff1
value: 45.7855
- type: nauc_ndcg_at_5_max
value: 25.509300000000003
- type: nauc_ndcg_at_5_std
value: -9.1996
- type: nauc_ndcg_at_5_diff1
value: 45.685900000000004
- type: nauc_ndcg_at_10_max
value: 25.0742
- type: nauc_ndcg_at_10_std
value: -8.0252
- type: nauc_ndcg_at_10_diff1
value: 46.1142
- type: nauc_ndcg_at_20_max
value: 24.7866
- type: nauc_ndcg_at_20_std
value: -7.5957
- type: nauc_ndcg_at_20_diff1
value: 45.9826
- type: nauc_ndcg_at_100_max
value: 24.549000000000003
- type: nauc_ndcg_at_100_std
value: -7.457
- type: nauc_ndcg_at_100_diff1
value: 46.061800000000005
- type: nauc_ndcg_at_1000_max
value: 24.5226
- type: nauc_ndcg_at_1000_std
value: -7.777100000000001
- type: nauc_ndcg_at_1000_diff1
value: 46.212199999999996
- type: nauc_map_at_1_max
value: 22.3226
- type: nauc_map_at_1_std
value: -11.1902
- type: nauc_map_at_1_diff1
value: 50.657700000000006
- type: nauc_map_at_3_max
value: 23.6994
- type: nauc_map_at_3_std
value: -10.190000000000001
- type: nauc_map_at_3_diff1
value: 46.0434
- type: nauc_map_at_5_max
value: 24.124200000000002
- type: nauc_map_at_5_std
value: -9.6404
- type: nauc_map_at_5_diff1
value: 46.1683
- type: nauc_map_at_10_max
value: 23.9856
- type: nauc_map_at_10_std
value: -9.209100000000001
- type: nauc_map_at_10_diff1
value: 46.3714
- type: nauc_map_at_20_max
value: 23.9147
- type: nauc_map_at_20_std
value: -9.1015
- type: nauc_map_at_20_diff1
value: 46.3512
- type: nauc_map_at_100_max
value: 23.8856
- type: nauc_map_at_100_std
value: -9.0851
- type: nauc_map_at_100_diff1
value: 46.3642
- type: nauc_map_at_1000_max
value: 23.8833
- type: nauc_map_at_1000_std
value: -9.0946
- type: nauc_map_at_1000_diff1
value: 46.367599999999996
- type: nauc_recall_at_1_max
value: 22.3226
- type: nauc_recall_at_1_std
value: -11.1902
- type: nauc_recall_at_1_diff1
value: 50.657700000000006
- type: nauc_recall_at_3_max
value: 24.0556
- type: nauc_recall_at_3_std
value: -7.8741
- type: nauc_recall_at_3_diff1
value: 37.2825
- type: nauc_recall_at_5_max
value: 25.7287
- type: nauc_recall_at_5_std
value: -3.9755
- type: nauc_recall_at_5_diff1
value: 35.2184
- type: nauc_recall_at_10_max
value: 23.6078
- type: nauc_recall_at_10_std
value: 2.1126
- type: nauc_recall_at_10_diff1
value: 34.0759
- type: nauc_recall_at_20_max
value: 21.154400000000003
- type: nauc_recall_at_20_std
value: 6.8803
- type: nauc_recall_at_20_diff1
value: 30.2302
- type: nauc_recall_at_100_max
value: 14.6115
- type: nauc_recall_at_100_std
value: 18.329
- type: nauc_recall_at_100_diff1
value: 20.034
- type: nauc_recall_at_1000_max
value: 7.173100000000001
- type: nauc_recall_at_1000_std
value: 25.7758
- type: nauc_recall_at_1000_diff1
value: 6.967099999999999
- type: nauc_precision_at_1_max
value: 24.5061
- type: nauc_precision_at_1_std
value: -13.700899999999999
- type: nauc_precision_at_1_diff1
value: 55.708999999999996
- type: nauc_precision_at_3_max
value: 28.0319
- type: nauc_precision_at_3_std
value: -10.6341
- type: nauc_precision_at_3_diff1
value: 42.1819
- type: nauc_precision_at_5_max
value: 30.6886
- type: nauc_precision_at_5_std
value: -6.3768
- type: nauc_precision_at_5_diff1
value: 40.0642
- type: nauc_precision_at_10_max
value: 28.1175
- type: nauc_precision_at_10_std
value: 1.0407
- type: nauc_precision_at_10_diff1
value: 37.3056
- type: nauc_precision_at_20_max
value: 24.624499999999998
- type: nauc_precision_at_20_std
value: 6.5341
- type: nauc_precision_at_20_diff1
value: 31.325799999999997
- type: nauc_precision_at_100_max
value: 16.1083
- type: nauc_precision_at_100_std
value: 16.5796
- type: nauc_precision_at_100_diff1
value: 14.072999999999999
- type: nauc_precision_at_1000_max
value: 5.5870999999999995
- type: nauc_precision_at_1000_std
value: 14.718300000000001
- type: nauc_precision_at_1000_diff1
value: -1.7647
- type: nauc_mrr_at_1_max
value: 24.5061
- type: nauc_mrr_at_1_std
value: -13.700899999999999
- type: nauc_mrr_at_1_diff1
value: 55.708999999999996
- type: nauc_mrr_at_3_max
value: 26.592
- type: nauc_mrr_at_3_std
value: -12.8604
- type: nauc_mrr_at_3_diff1
value: 51.5274
- type: nauc_mrr_at_5_max
value: 27.010299999999997
- type: nauc_mrr_at_5_std
value: -12.2957
- type: nauc_mrr_at_5_diff1
value: 51.6955
- type: nauc_mrr_at_10_max
value: 26.886100000000003
- type: nauc_mrr_at_10_std
value: -11.963899999999999
- type: nauc_mrr_at_10_diff1
value: 52.02909999999999
- type: nauc_mrr_at_20_max
value: 26.8109
- type: nauc_mrr_at_20_std
value: -11.923
- type: nauc_mrr_at_20_diff1
value: 52.0273
- type: nauc_mrr_at_100_max
value: 26.788099999999996
- type: nauc_mrr_at_100_std
value: -11.9438
- type: nauc_mrr_at_100_diff1
value: 52.0616
- type: nauc_mrr_at_1000_max
value: 26.7828
- type: nauc_mrr_at_1000_std
value: -11.9632
- type: nauc_mrr_at_1000_diff1
value: 52.067099999999996
- type: main_score
value: 65.72099999999999
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: ndcg_at_1
value: 29.166999999999998
- type: ndcg_at_3
value: 26.738
- type: ndcg_at_5
value: 27.998
- type: ndcg_at_10
value: 30.568
- type: ndcg_at_20
value: 32.864
- type: ndcg_at_100
value: 36.516999999999996
- type: ndcg_at_1000
value: 40.22
- type: map_at_1
value: 13.794
- type: map_at_3
value: 19.969
- type: map_at_5
value: 21.926000000000002
- type: map_at_10
value: 23.496
- type: map_at_20
value: 24.335
- type: map_at_100
value: 24.990000000000002
- type: map_at_1000
value: 25.182
- type: recall_at_1
value: 13.794
- type: recall_at_3
value: 24.295
- type: recall_at_5
value: 29.735
- type: recall_at_10
value: 38.048
- type: recall_at_20
value: 44.955
- type: recall_at_100
value: 60.102999999999994
- type: recall_at_1000
value: 82.989
- type: precision_at_1
value: 29.166999999999998
- type: precision_at_3
value: 18.313
- type: precision_at_5
value: 13.827
- type: precision_at_10
value: 8.827
- type: precision_at_20
value: 5.386
- type: precision_at_100
value: 1.489
- type: precision_at_1000
value: 0.213
- type: mrr_at_1
value: 29.166700000000002
- type: mrr_at_3
value: 34.4136
- type: mrr_at_5
value: 35.7639
- type: mrr_at_10
value: 37.0531
- type: mrr_at_20
value: 37.5432
- type: mrr_at_100
value: 37.926500000000004
- type: mrr_at_1000
value: 37.9918
- type: nauc_ndcg_at_1_max
value: 38.286500000000004
- type: nauc_ndcg_at_1_std
value: -1.8401
- type: nauc_ndcg_at_1_diff1
value: 49.7381
- type: nauc_ndcg_at_3_max
value: 32.3251
- type: nauc_ndcg_at_3_std
value: -1.5778
- type: nauc_ndcg_at_3_diff1
value: 39.3907
- type: nauc_ndcg_at_5_max
value: 32.1995
- type: nauc_ndcg_at_5_std
value: 1.0656
- type: nauc_ndcg_at_5_diff1
value: 39.0196
- type: nauc_ndcg_at_10_max
value: 30.751299999999997
- type: nauc_ndcg_at_10_std
value: 2.5637
- type: nauc_ndcg_at_10_diff1
value: 37.6314
- type: nauc_ndcg_at_20_max
value: 30.8166
- type: nauc_ndcg_at_20_std
value: 4.1018
- type: nauc_ndcg_at_20_diff1
value: 36.6269
- type: nauc_ndcg_at_100_max
value: 32.9718
- type: nauc_ndcg_at_100_std
value: 6.2219999999999995
- type: nauc_ndcg_at_100_diff1
value: 37.7411
- type: nauc_ndcg_at_1000_max
value: 34.240500000000004
- type: nauc_ndcg_at_1000_std
value: 6.6922999999999995
- type: nauc_ndcg_at_1000_diff1
value: 37.900800000000004
- type: nauc_map_at_1_max
value: 25.955000000000002
- type: nauc_map_at_1_std
value: -6.8494
- type: nauc_map_at_1_diff1
value: 45.5645
- type: nauc_map_at_3_max
value: 28.4944
- type: nauc_map_at_3_std
value: -2.8556000000000004
- type: nauc_map_at_3_diff1
value: 40.3951
- type: nauc_map_at_5_max
value: 30.217899999999997
- type: nauc_map_at_5_std
value: -0.6054999999999999
- type: nauc_map_at_5_diff1
value: 39.8122
- type: nauc_map_at_10_max
value: 30.4114
- type: nauc_map_at_10_std
value: 0.2683
- type: nauc_map_at_10_diff1
value: 39.1394
- type: nauc_map_at_20_max
value: 30.5538
- type: nauc_map_at_20_std
value: 0.8069
- type: nauc_map_at_20_diff1
value: 38.7448
- type: nauc_map_at_100_max
value: 31.145400000000002
- type: nauc_map_at_100_std
value: 1.3278
- type: nauc_map_at_100_diff1
value: 38.9779
- type: nauc_map_at_1000_max
value: 31.2485
- type: nauc_map_at_1000_std
value: 1.4026
- type: nauc_map_at_1000_diff1
value: 38.980599999999995
- type: nauc_recall_at_1_max
value: 25.955000000000002
- type: nauc_recall_at_1_std
value: -6.8494
- type: nauc_recall_at_1_diff1
value: 45.5645
- type: nauc_recall_at_3_max
value: 24.0749
- type: nauc_recall_at_3_std
value: -0.9688
- type: nauc_recall_at_3_diff1
value: 33.8397
- type: nauc_recall_at_5_max
value: 24.976499999999998
- type: nauc_recall_at_5_std
value: 4.1173
- type: nauc_recall_at_5_diff1
value: 30.6595
- type: nauc_recall_at_10_max
value: 19.4711
- type: nauc_recall_at_10_std
value: 6.870800000000001
- type: nauc_recall_at_10_diff1
value: 23.5346
- type: nauc_recall_at_20_max
value: 18.7834
- type: nauc_recall_at_20_std
value: 11.502600000000001
- type: nauc_recall_at_20_diff1
value: 19.5265
- type: nauc_recall_at_100_max
value: 24.8323
- type: nauc_recall_at_100_std
value: 20.921400000000002
- type: nauc_recall_at_100_diff1
value: 22.2041
- type: nauc_recall_at_1000_max
value: 30.524
- type: nauc_recall_at_1000_std
value: 36.5714
- type: nauc_recall_at_1000_diff1
value: 14.8893
- type: nauc_precision_at_1_max
value: 38.286500000000004
- type: nauc_precision_at_1_std
value: -1.8401
- type: nauc_precision_at_1_diff1
value: 49.7381
- type: nauc_precision_at_3_max
value: 36.722500000000004
- type: nauc_precision_at_3_std
value: 1.3713
- type: nauc_precision_at_3_diff1
value: 33.7091
- type: nauc_precision_at_5_max
value: 37.8168
- type: nauc_precision_at_5_std
value: 6.3933
- type: nauc_precision_at_5_diff1
value: 30.5218
- type: nauc_precision_at_10_max
value: 36.5227
- type: nauc_precision_at_10_std
value: 9.9963
- type: nauc_precision_at_10_diff1
value: 25.2887
- type: nauc_precision_at_20_max
value: 34.2121
- type: nauc_precision_at_20_std
value: 12.2905
- type: nauc_precision_at_20_diff1
value: 21.4998
- type: nauc_precision_at_100_max
value: 34.2554
- type: nauc_precision_at_100_std
value: 16.3248
- type: nauc_precision_at_100_diff1
value: 17.78
- type: nauc_precision_at_1000_max
value: 28.898000000000003
- type: nauc_precision_at_1000_std
value: 14.6869
- type: nauc_precision_at_1000_diff1
value: 8.1735
- type: nauc_mrr_at_1_max
value: 38.286500000000004
- type: nauc_mrr_at_1_std
value: -1.8401
- type: nauc_mrr_at_1_diff1
value: 49.7381
- type: nauc_mrr_at_3_max
value: 36.1507
- type: nauc_mrr_at_3_std
value: -1.0684
- type: nauc_mrr_at_3_diff1
value: 44.8131
- type: nauc_mrr_at_5_max
value: 36.4134
- type: nauc_mrr_at_5_std
value: 0.15
- type: nauc_mrr_at_5_diff1
value: 44.8739
- type: nauc_mrr_at_10_max
value: 35.8277
- type: nauc_mrr_at_10_std
value: 0.39880000000000004
- type: nauc_mrr_at_10_diff1
value: 43.9851
- type: nauc_mrr_at_20_max
value: 35.8842
- type: nauc_mrr_at_20_std
value: 0.8399
- type: nauc_mrr_at_20_diff1
value: 43.8136
- type: nauc_mrr_at_100_max
value: 35.9867
- type: nauc_mrr_at_100_std
value: 0.9228999999999999
- type: nauc_mrr_at_100_diff1
value: 43.947399999999995
- type: nauc_mrr_at_1000_max
value: 35.997299999999996
- type: nauc_mrr_at_1000_std
value: 0.8946000000000001
- type: nauc_mrr_at_1000_diff1
value: 43.9639
- type: main_score
value: 30.568
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: ndcg_at_1
value: 60.162000000000006
- type: ndcg_at_3
value: 44.502
- type: ndcg_at_5
value: 46.294999999999995
- type: ndcg_at_10
value: 47.809000000000005
- type: ndcg_at_20
value: 48.903
- type: ndcg_at_100
value: 50.535
- type: ndcg_at_1000
value: 51.922999999999995
- type: map_at_1
value: 30.081000000000003
- type: map_at_3
value: 36.953
- type: map_at_5
value: 38.167
- type: map_at_10
value: 38.938
- type: map_at_20
value: 39.314
- type: map_at_100
value: 39.603
- type: map_at_1000
value: 39.663
- type: recall_at_1
value: 30.081000000000003
- type: recall_at_3
value: 40.614
- type: recall_at_5
value: 44.159
- type: recall_at_10
value: 47.961
- type: recall_at_20
value: 51.498999999999995
- type: recall_at_100
value: 58.731
- type: recall_at_1000
value: 68.035
- type: precision_at_1
value: 60.162000000000006
- type: precision_at_3
value: 27.076
- type: precision_at_5
value: 17.663999999999998
- type: precision_at_10
value: 9.592
- type: precision_at_20
value: 5.1499999999999995
- type: precision_at_100
value: 1.175
- type: precision_at_1000
value: 0.136
- type: mrr_at_1
value: 60.162099999999995
- type: mrr_at_3
value: 65.2622
- type: mrr_at_5
value: 66.0826
- type: mrr_at_10
value: 66.59009999999999
- type: mrr_at_20
value: 66.8133
- type: mrr_at_100
value: 66.9551
- type: mrr_at_1000
value: 66.97840000000001
- type: nauc_ndcg_at_1_max
value: 51.160000000000004
- type: nauc_ndcg_at_1_std
value: 7.3935
- type: nauc_ndcg_at_1_diff1
value: 71.5694
- type: nauc_ndcg_at_3_max
value: 37.823299999999996
- type: nauc_ndcg_at_3_std
value: 6.7468
- type: nauc_ndcg_at_3_diff1
value: 49.485299999999995
- type: nauc_ndcg_at_5_max
value: 35.9559
- type: nauc_ndcg_at_5_std
value: 7.3257
- type: nauc_ndcg_at_5_diff1
value: 46.5013
- type: nauc_ndcg_at_10_max
value: 33.9948
- type: nauc_ndcg_at_10_std
value: 7.6042
- type: nauc_ndcg_at_10_diff1
value: 44.3659
- type: nauc_ndcg_at_20_max
value: 32.8131
- type: nauc_ndcg_at_20_std
value: 7.4644
- type: nauc_ndcg_at_20_diff1
value: 43.2222
- type: nauc_ndcg_at_100_max
value: 31.2544
- type: nauc_ndcg_at_100_std
value: 7.844900000000001
- type: nauc_ndcg_at_100_diff1
value: 41.5341
- type: nauc_ndcg_at_1000_max
value: 30.518299999999996
- type: nauc_ndcg_at_1000_std
value: 7.8385
- type: nauc_ndcg_at_1000_diff1
value: 40.902699999999996
- type: nauc_map_at_1_max
value: 51.160000000000004
- type: nauc_map_at_1_std
value: 7.3935
- type: nauc_map_at_1_diff1
value: 71.5694
- type: nauc_map_at_3_max
value: 33.4791
- type: nauc_map_at_3_std
value: 5.8541
- type: nauc_map_at_3_diff1
value: 44.4158
- type: nauc_map_at_5_max
value: 31.872
- type: nauc_map_at_5_std
value: 6.0961
- type: nauc_map_at_5_diff1
value: 42.182199999999995
- type: nauc_map_at_10_max
value: 30.7675
- type: nauc_map_at_10_std
value: 6.241
- type: nauc_map_at_10_diff1
value: 41.0375
- type: nauc_map_at_20_max
value: 30.3193
- type: nauc_map_at_20_std
value: 6.1659
- type: nauc_map_at_20_diff1
value: 40.6205
- type: nauc_map_at_100_max
value: 29.993399999999998
- type: nauc_map_at_100_std
value: 6.2056000000000004
- type: nauc_map_at_100_diff1
value: 40.2882
- type: nauc_map_at_1000_max
value: 29.9604
- type: nauc_map_at_1000_std
value: 6.212
- type: nauc_map_at_1000_diff1
value: 40.260400000000004
- type: nauc_recall_at_1_max
value: 51.160000000000004
- type: nauc_recall_at_1_std
value: 7.3935
- type: nauc_recall_at_1_diff1
value: 71.5694
- type: nauc_recall_at_3_max
value: 29.5614
- type: nauc_recall_at_3_std
value: 6.1532
- type: nauc_recall_at_3_diff1
value: 36.5997
- type: nauc_recall_at_5_max
value: 25.0882
- type: nauc_recall_at_5_std
value: 7.2136000000000005
- type: nauc_recall_at_5_diff1
value: 29.686899999999998
- type: nauc_recall_at_10_max
value: 18.7916
- type: nauc_recall_at_10_std
value: 7.506500000000001
- type: nauc_recall_at_10_diff1
value: 22.7623
- type: nauc_recall_at_20_max
value: 13.906099999999999
- type: nauc_recall_at_20_std
value: 6.736599999999999
- type: nauc_recall_at_20_diff1
value: 17.691200000000002
- type: nauc_recall_at_100_max
value: 5.3559
- type: nauc_recall_at_100_std
value: 7.7562999999999995
- type: nauc_recall_at_100_diff1
value: 8.0251
- type: nauc_recall_at_1000_max
value: -3.9570000000000003
- type: nauc_recall_at_1000_std
value: 6.9824
- type: nauc_recall_at_1000_diff1
value: -2.0025
- type: nauc_precision_at_1_max
value: 51.160000000000004
- type: nauc_precision_at_1_std
value: 7.3935
- type: nauc_precision_at_1_diff1
value: 71.5694
- type: nauc_precision_at_3_max
value: 29.5614
- type: nauc_precision_at_3_std
value: 6.1532
- type: nauc_precision_at_3_diff1
value: 36.5997
- type: nauc_precision_at_5_max
value: 25.0882
- type: nauc_precision_at_5_std
value: 7.2136000000000005
- type: nauc_precision_at_5_diff1
value: 29.686899999999998
- type: nauc_precision_at_10_max
value: 18.7916
- type: nauc_precision_at_10_std
value: 7.506500000000001
- type: nauc_precision_at_10_diff1
value: 22.7623
- type: nauc_precision_at_20_max
value: 13.906099999999999
- type: nauc_precision_at_20_std
value: 6.736599999999999
- type: nauc_precision_at_20_diff1
value: 17.691200000000002
- type: nauc_precision_at_100_max
value: 5.3559
- type: nauc_precision_at_100_std
value: 7.7562999999999995
- type: nauc_precision_at_100_diff1
value: 8.0251
- type: nauc_precision_at_1000_max
value: -3.9570000000000003
- type: nauc_precision_at_1000_std
value: 6.9824
- type: nauc_precision_at_1000_diff1
value: -2.0025
- type: nauc_mrr_at_1_max
value: 51.160000000000004
- type: nauc_mrr_at_1_std
value: 7.3935
- type: nauc_mrr_at_1_diff1
value: 71.5694
- type: nauc_mrr_at_3_max
value: 51.621300000000005
- type: nauc_mrr_at_3_std
value: 8.4836
- type: nauc_mrr_at_3_diff1
value: 68.779
- type: nauc_mrr_at_5_max
value: 51.8266
- type: nauc_mrr_at_5_std
value: 9.0287
- type: nauc_mrr_at_5_diff1
value: 68.4759
- type: nauc_mrr_at_10_max
value: 51.6795
- type: nauc_mrr_at_10_std
value: 9.1841
- type: nauc_mrr_at_10_diff1
value: 68.2263
- type: nauc_mrr_at_20_max
value: 51.6508
- type: nauc_mrr_at_20_std
value: 9.2047
- type: nauc_mrr_at_20_diff1
value: 68.2142
- type: nauc_mrr_at_100_max
value: 51.67230000000001
- type: nauc_mrr_at_100_std
value: 9.3048
- type: nauc_mrr_at_100_diff1
value: 68.20739999999999
- type: nauc_mrr_at_1000_max
value: 51.6691
- type: nauc_mrr_at_1000_std
value: 9.3012
- type: nauc_mrr_at_1000_diff1
value: 68.2124
- type: main_score
value: 47.809000000000005
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 61.454
- type: f1
value: 61.17510000000001
- type: f1_weighted
value: 61.17510000000001
- type: ap
value: 57.223800000000004
- type: ap_weighted
value: 57.223800000000004
- type: main_score
value: 61.454
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: test
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: ndcg_at_1
value: 76.744
- type: ndcg_at_3
value: 71.949
- type: ndcg_at_5
value: 68.963
- type: ndcg_at_10
value: 66.652
- type: ndcg_at_20
value: 63.025
- type: ndcg_at_100
value: 57.169000000000004
- type: ndcg_at_1000
value: 64.349
- type: map_at_1
value: 2.314
- type: map_at_3
value: 5.2589999999999995
- type: map_at_5
value: 7.976
- type: map_at_10
value: 13.288
- type: map_at_20
value: 19.885
- type: map_at_100
value: 32.109
- type: map_at_1000
value: 38.117000000000004
- type: recall_at_1
value: 2.314
- type: recall_at_3
value: 5.396999999999999
- type: recall_at_5
value: 8.814
- type: recall_at_10
value: 15.347
- type: recall_at_20
value: 23.955000000000002
- type: recall_at_100
value: 44.498
- type: recall_at_1000
value: 69.357
- type: precision_at_1
value: 95.34899999999999
- type: precision_at_3
value: 86.047
- type: precision_at_5
value: 79.535
- type: precision_at_10
value: 72.558
- type: precision_at_20
value: 62.907000000000004
- type: precision_at_100
value: 31.977
- type: precision_at_1000
value: 6.049
- type: mrr_at_1
value: 95.3488
- type: mrr_at_3
value: 96.5116
- type: mrr_at_5
value: 96.97670000000001
- type: mrr_at_10
value: 96.97670000000001
- type: mrr_at_20
value: 96.97670000000001
- type: mrr_at_100
value: 96.97670000000001
- type: mrr_at_1000
value: 96.97670000000001
- type: nauc_ndcg_at_1_max
value: 33.5394
- type: nauc_ndcg_at_1_std
value: 12.295
- type: nauc_ndcg_at_1_diff1
value: 16.0874
- type: nauc_ndcg_at_3_max
value: 32.949400000000004
- type: nauc_ndcg_at_3_std
value: 21.2066
- type: nauc_ndcg_at_3_diff1
value: 1.9303000000000001
- type: nauc_ndcg_at_5_max
value: 26.862599999999997
- type: nauc_ndcg_at_5_std
value: 19.8698
- type: nauc_ndcg_at_5_diff1
value: -13.0704
- type: nauc_ndcg_at_10_max
value: 25.812099999999997
- type: nauc_ndcg_at_10_std
value: 31.4913
- type: nauc_ndcg_at_10_diff1
value: -32.1204
- type: nauc_ndcg_at_20_max
value: 30.847400000000004
- type: nauc_ndcg_at_20_std
value: 48.6443
- type: nauc_ndcg_at_20_diff1
value: -41.2659
- type: nauc_ndcg_at_100_max
value: 31.9625
- type: nauc_ndcg_at_100_std
value: 56.118900000000004
- type: nauc_ndcg_at_100_diff1
value: -45.175599999999996
- type: nauc_ndcg_at_1000_max
value: 38.8789
- type: nauc_ndcg_at_1000_std
value: 60.3502
- type: nauc_ndcg_at_1000_diff1
value: -46.390100000000004
- type: nauc_map_at_1_max
value: -28.652300000000004
- type: nauc_map_at_1_std
value: -33.1061
- type: nauc_map_at_1_diff1
value: -11.994
- type: nauc_map_at_3_max
value: -16.0122
- type: nauc_map_at_3_std
value: -21.9302
- type: nauc_map_at_3_diff1
value: -3.8522
- type: nauc_map_at_5_max
value: -12.0035
- type: nauc_map_at_5_std
value: -20.9837
- type: nauc_map_at_5_diff1
value: -5.801
- type: nauc_map_at_10_max
value: -4.4091
- type: nauc_map_at_10_std
value: -13.442799999999998
- type: nauc_map_at_10_diff1
value: -10.4398
- type: nauc_map_at_20_max
value: 2.9722
- type: nauc_map_at_20_std
value: -2.1077
- type: nauc_map_at_20_diff1
value: -20.5479
- type: nauc_map_at_100_max
value: 18.1352
- type: nauc_map_at_100_std
value: 36.323100000000004
- type: nauc_map_at_100_diff1
value: -38.3395
- type: nauc_map_at_1000_max
value: 28.169
- type: nauc_map_at_1000_std
value: 60.0619
- type: nauc_map_at_1000_diff1
value: -43.8413
- type: nauc_recall_at_1_max
value: -28.652300000000004
- type: nauc_recall_at_1_std
value: -33.1061
- type: nauc_recall_at_1_diff1
value: -11.994
- type: nauc_recall_at_3_max
value: -16.2157
- type: nauc_recall_at_3_std
value: -23.0294
- type: nauc_recall_at_3_diff1
value: -4.2975
- type: nauc_recall_at_5_max
value: -18.3205
- type: nauc_recall_at_5_std
value: -26.8365
- type: nauc_recall_at_5_diff1
value: -10.1943
- type: nauc_recall_at_10_max
value: -11.9993
- type: nauc_recall_at_10_std
value: -20.104
- type: nauc_recall_at_10_diff1
value: -12.4464
- type: nauc_recall_at_20_max
value: -6.8623
- type: nauc_recall_at_20_std
value: -11.426699999999999
- type: nauc_recall_at_20_diff1
value: -20.285700000000002
- type: nauc_recall_at_100_max
value: 5.5972
- type: nauc_recall_at_100_std
value: 20.759900000000002
- type: nauc_recall_at_100_diff1
value: -35.416199999999996
- type: nauc_recall_at_1000_max
value: 26.0786
- type: nauc_recall_at_1000_std
value: 52.6085
- type: nauc_recall_at_1000_diff1
value: -41.1833
- type: nauc_precision_at_1_max
value: 55.870200000000004
- type: nauc_precision_at_1_std
value: 67.915
- type: nauc_precision_at_1_diff1
value: 61.4293
- type: nauc_precision_at_3_max
value: 37.3974
- type: nauc_precision_at_3_std
value: 61.6163
- type: nauc_precision_at_3_diff1
value: -12.510299999999999
- type: nauc_precision_at_5_max
value: 31.739299999999997
- type: nauc_precision_at_5_std
value: 45.3637
- type: nauc_precision_at_5_diff1
value: -30.1655
- type: nauc_precision_at_10_max
value: 34.679300000000005
- type: nauc_precision_at_10_std
value: 58.9706
- type: nauc_precision_at_10_diff1
value: -42.1495
- type: nauc_precision_at_20_max
value: 33.9533
- type: nauc_precision_at_20_std
value: 66.64750000000001
- type: nauc_precision_at_20_diff1
value: -41.8728
- type: nauc_precision_at_100_max
value: 29.294199999999996
- type: nauc_precision_at_100_std
value: 74.2772
- type: nauc_precision_at_100_diff1
value: -33.4855
- type: nauc_precision_at_1000_max
value: 27.12
- type: nauc_precision_at_1000_std
value: 67.7077
- type: nauc_precision_at_1000_diff1
value: -22.2352
- type: nauc_mrr_at_1_max
value: 55.870200000000004
- type: nauc_mrr_at_1_std
value: 67.915
- type: nauc_mrr_at_1_diff1
value: 61.4293
- type: nauc_mrr_at_3_max
value: 70.5801
- type: nauc_mrr_at_3_std
value: 78.61
- type: nauc_mrr_at_3_diff1
value: 69.9624
- type: nauc_mrr_at_5_max
value: 66.054
- type: nauc_mrr_at_5_std
value: 75.3192
- type: nauc_mrr_at_5_diff1
value: 67.3369
- type: nauc_mrr_at_10_max
value: 66.054
- type: nauc_mrr_at_10_std
value: 75.3192
- type: nauc_mrr_at_10_diff1
value: 67.3369
- type: nauc_mrr_at_20_max
value: 66.054
- type: nauc_mrr_at_20_std
value: 75.3192
- type: nauc_mrr_at_20_diff1
value: 67.3369
- type: nauc_mrr_at_100_max
value: 66.054
- type: nauc_mrr_at_100_std
value: 75.3192
- type: nauc_mrr_at_100_diff1
value: 67.3369
- type: nauc_mrr_at_1000_max
value: 66.054
- type: nauc_mrr_at_1000_std
value: 75.3192
- type: nauc_mrr_at_1000_diff1
value: 67.3369
- type: main_score
value: 66.652
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.9124
- type: f1
value: 88.75800000000001
- type: f1_weighted
value: 88.9747
- type: main_score
value: 88.9124
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 65.64750000000001
- type: f1
value: 49.0948
- type: f1_weighted
value: 69.3994
- type: main_score
value: 65.64750000000001
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 65.2354
- type: f1
value: 63.5945
- type: f1_weighted
value: 65.03949999999999
- type: main_score
value: 65.2354
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 72.6126
- type: f1
value: 72.4117
- type: f1_weighted
value: 72.6333
- type: main_score
value: 72.6126
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 28.95
- type: v_measure_std
value: 1.3911
- type: main_score
value: 28.95
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 27.076
- type: v_measure_std
value: 1.7323000000000002
- type: main_score
value: 27.076
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: map
value: 30.643700000000003
- type: mrr
value: 31.6768
- type: nAUC_map_max
value: -18.2556
- type: nAUC_map_std
value: -1.6764999999999999
- type: nAUC_map_diff1
value: 13.488900000000001
- type: nAUC_mrr_max
value: -12.8279
- type: nAUC_mrr_std
value: 0.3295
- type: nAUC_mrr_diff1
value: 12.8104
- type: main_score
value: 30.643700000000003
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: ndcg_at_1
value: 34.675
- type: ndcg_at_3
value: 31.048
- type: ndcg_at_5
value: 29.451
- type: ndcg_at_10
value: 26.63
- type: ndcg_at_20
value: 24.401999999999997
- type: ndcg_at_100
value: 24.319
- type: ndcg_at_1000
value: 33.458
- type: map_at_1
value: 4.3229999999999995
- type: map_at_3
value: 6.7059999999999995
- type: map_at_5
value: 8.085
- type: map_at_10
value: 9.278
- type: map_at_20
value: 10.11
- type: map_at_100
value: 11.312
- type: map_at_1000
value: 12.461
- type: recall_at_1
value: 4.3229999999999995
- type: recall_at_3
value: 7.573
- type: recall_at_5
value: 10.248
- type: recall_at_10
value: 12.778999999999998
- type: recall_at_20
value: 15.931000000000001
- type: recall_at_100
value: 25.618999999999996
- type: recall_at_1000
value: 57.667
- type: precision_at_1
value: 36.223
- type: precision_at_3
value: 29.102
- type: precision_at_5
value: 25.573
- type: precision_at_10
value: 19.505
- type: precision_at_20
value: 13.824
- type: precision_at_100
value: 6.037
- type: precision_at_1000
value: 1.8800000000000001
- type: mrr_at_1
value: 36.2229
- type: mrr_at_3
value: 42.7245
- type: mrr_at_5
value: 44.3189
- type: mrr_at_10
value: 45.2435
- type: mrr_at_20
value: 45.666000000000004
- type: mrr_at_100
value: 45.9342
- type: mrr_at_1000
value: 45.9762
- type: nauc_ndcg_at_1_max
value: 48.9247
- type: nauc_ndcg_at_1_std
value: 20.7882
- type: nauc_ndcg_at_1_diff1
value: 45.5278
- type: nauc_ndcg_at_3_max
value: 48.4014
- type: nauc_ndcg_at_3_std
value: 27.963300000000004
- type: nauc_ndcg_at_3_diff1
value: 37.3273
- type: nauc_ndcg_at_5_max
value: 49.9214
- type: nauc_ndcg_at_5_std
value: 28.519299999999998
- type: nauc_ndcg_at_5_diff1
value: 37.7699
- type: nauc_ndcg_at_10_max
value: 47.1546
- type: nauc_ndcg_at_10_std
value: 30.315599999999996
- type: nauc_ndcg_at_10_diff1
value: 32.6637
- type: nauc_ndcg_at_20_max
value: 45.2904
- type: nauc_ndcg_at_20_std
value: 28.614600000000003
- type: nauc_ndcg_at_20_diff1
value: 31.1691
- type: nauc_ndcg_at_100_max
value: 47.1783
- type: nauc_ndcg_at_100_std
value: 27.6204
- type: nauc_ndcg_at_100_diff1
value: 33.0981
- type: nauc_ndcg_at_1000_max
value: 53.498900000000006
- type: nauc_ndcg_at_1000_std
value: 32.0777
- type: nauc_ndcg_at_1000_diff1
value: 34.6119
- type: nauc_map_at_1_max
value: 32.8405
- type: nauc_map_at_1_std
value: -5.5909
- type: nauc_map_at_1_diff1
value: 46.4563
- type: nauc_map_at_3_max
value: 31.7683
- type: nauc_map_at_3_std
value: -0.2782
- type: nauc_map_at_3_diff1
value: 38.562000000000005
- type: nauc_map_at_5_max
value: 37.451499999999996
- type: nauc_map_at_5_std
value: 2.3935999999999997
- type: nauc_map_at_5_diff1
value: 41.153
- type: nauc_map_at_10_max
value: 39.759100000000004
- type: nauc_map_at_10_std
value: 6.9354
- type: nauc_map_at_10_diff1
value: 37.5102
- type: nauc_map_at_20_max
value: 41.2683
- type: nauc_map_at_20_std
value: 10.9156
- type: nauc_map_at_20_diff1
value: 36.084500000000006
- type: nauc_map_at_100_max
value: 42.4984
- type: nauc_map_at_100_std
value: 15.918299999999999
- type: nauc_map_at_100_diff1
value: 34.2464
- type: nauc_map_at_1000_max
value: 43.113
- type: nauc_map_at_1000_std
value: 18.875
- type: nauc_map_at_1000_diff1
value: 33.3251
- type: nauc_recall_at_1_max
value: 32.8405
- type: nauc_recall_at_1_std
value: -5.5909
- type: nauc_recall_at_1_diff1
value: 46.4563
- type: nauc_recall_at_3_max
value: 26.652700000000003
- type: nauc_recall_at_3_std
value: -1.2704
- type: nauc_recall_at_3_diff1
value: 33.3511
- type: nauc_recall_at_5_max
value: 31.7243
- type: nauc_recall_at_5_std
value: -0.2978
- type: nauc_recall_at_5_diff1
value: 38.356
- type: nauc_recall_at_10_max
value: 30.7398
- type: nauc_recall_at_10_std
value: 3.9967999999999995
- type: nauc_recall_at_10_diff1
value: 31.353199999999998
- type: nauc_recall_at_20_max
value: 30.4815
- type: nauc_recall_at_20_std
value: 7.2316
- type: nauc_recall_at_20_diff1
value: 27.132299999999997
- type: nauc_recall_at_100_max
value: 27.8974
- type: nauc_recall_at_100_std
value: 15.2896
- type: nauc_recall_at_100_diff1
value: 21.6284
- type: nauc_recall_at_1000_max
value: 24.2439
- type: nauc_recall_at_1000_std
value: 17.0621
- type: nauc_recall_at_1000_diff1
value: 14.4589
- type: nauc_precision_at_1_max
value: 49.3121
- type: nauc_precision_at_1_std
value: 21.1866
- type: nauc_precision_at_1_diff1
value: 43.9682
- type: nauc_precision_at_3_max
value: 48.2029
- type: nauc_precision_at_3_std
value: 32.6316
- type: nauc_precision_at_3_diff1
value: 30.629
- type: nauc_precision_at_5_max
value: 50.1486
- type: nauc_precision_at_5_std
value: 35.9998
- type: nauc_precision_at_5_diff1
value: 27.190599999999996
- type: nauc_precision_at_10_max
value: 43.7322
- type: nauc_precision_at_10_std
value: 42.4984
- type: nauc_precision_at_10_diff1
value: 15.1228
- type: nauc_precision_at_20_max
value: 36.3724
- type: nauc_precision_at_20_std
value: 45.470699999999994
- type: nauc_precision_at_20_diff1
value: 8.3594
- type: nauc_precision_at_100_max
value: 21.3989
- type: nauc_precision_at_100_std
value: 45.2484
- type: nauc_precision_at_100_diff1
value: -1.8369
- type: nauc_precision_at_1000_max
value: 6.2987
- type: nauc_precision_at_1000_std
value: 31.5722
- type: nauc_precision_at_1000_diff1
value: -6.3268
- type: nauc_mrr_at_1_max
value: 49.3121
- type: nauc_mrr_at_1_std
value: 21.1866
- type: nauc_mrr_at_1_diff1
value: 43.9682
- type: nauc_mrr_at_3_max
value: 50.2532
- type: nauc_mrr_at_3_std
value: 24.9172
- type: nauc_mrr_at_3_diff1
value: 41.0622
- type: nauc_mrr_at_5_max
value: 51.5072
- type: nauc_mrr_at_5_std
value: 25.0577
- type: nauc_mrr_at_5_diff1
value: 40.9294
- type: nauc_mrr_at_10_max
value: 51.0025
- type: nauc_mrr_at_10_std
value: 25.546999999999997
- type: nauc_mrr_at_10_diff1
value: 40.4908
- type: nauc_mrr_at_20_max
value: 51.031400000000005
- type: nauc_mrr_at_20_std
value: 25.822699999999998
- type: nauc_mrr_at_20_diff1
value: 40.4249
- type: nauc_mrr_at_100_max
value: 51.1729
- type: nauc_mrr_at_100_std
value: 25.8183
- type: nauc_mrr_at_100_diff1
value: 40.5071
- type: nauc_mrr_at_1000_max
value: 51.1509
- type: nauc_mrr_at_1000_std
value: 25.7945
- type: nauc_mrr_at_1000_diff1
value: 40.502700000000004
- type: main_score
value: 26.63
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: ndcg_at_1
value: 28.708
- type: ndcg_at_3
value: 38.322
- type: ndcg_at_5
value: 42.087
- type: ndcg_at_10
value: 45.32
- type: ndcg_at_20
value: 47.42
- type: ndcg_at_100
value: 49.995
- type: ndcg_at_1000
value: 51.263000000000005
- type: map_at_1
value: 25.702
- type: map_at_3
value: 34.910999999999994
- type: map_at_5
value: 37.137
- type: map_at_10
value: 38.586999999999996
- type: map_at_20
value: 39.226
- type: map_at_100
value: 39.638
- type: map_at_1000
value: 39.689
- type: recall_at_1
value: 25.702
- type: recall_at_3
value: 45.394
- type: recall_at_5
value: 54.089
- type: recall_at_10
value: 63.504000000000005
- type: recall_at_20
value: 71.32300000000001
- type: recall_at_100
value: 84.154
- type: recall_at_1000
value: 93.687
- type: precision_at_1
value: 28.708
- type: precision_at_3
value: 17.468
- type: precision_at_5
value: 12.629999999999999
- type: precision_at_10
value: 7.5120000000000005
- type: precision_at_20
value: 4.25
- type: precision_at_100
value: 1.018
- type: precision_at_1000
value: 0.11399999999999999
- type: mrr_at_1
value: 28.708
- type: mrr_at_3
value: 37.7221
- type: mrr_at_5
value: 39.6833
- type: mrr_at_10
value: 40.9104
- type: mrr_at_20
value: 41.419
- type: mrr_at_100
value: 41.739599999999996
- type: mrr_at_1000
value: 41.7789
- type: nauc_ndcg_at_1_max
value: 25.047900000000002
- type: nauc_ndcg_at_1_std
value: 1.9234
- type: nauc_ndcg_at_1_diff1
value: 33.5807
- type: nauc_ndcg_at_3_max
value: 29.458299999999998
- type: nauc_ndcg_at_3_std
value: 5.0666
- type: nauc_ndcg_at_3_diff1
value: 29.352899999999998
- type: nauc_ndcg_at_5_max
value: 30.740499999999997
- type: nauc_ndcg_at_5_std
value: 6.0516
- type: nauc_ndcg_at_5_diff1
value: 28.7018
- type: nauc_ndcg_at_10_max
value: 32.0593
- type: nauc_ndcg_at_10_std
value: 8.4058
- type: nauc_ndcg_at_10_diff1
value: 28.7482
- type: nauc_ndcg_at_20_max
value: 32.8514
- type: nauc_ndcg_at_20_std
value: 9.6083
- type: nauc_ndcg_at_20_diff1
value: 28.612700000000004
- type: nauc_ndcg_at_100_max
value: 32.4329
- type: nauc_ndcg_at_100_std
value: 10.5305
- type: nauc_ndcg_at_100_diff1
value: 28.3013
- type: nauc_ndcg_at_1000_max
value: 31.854900000000004
- type: nauc_ndcg_at_1000_std
value: 9.721499999999999
- type: nauc_ndcg_at_1000_diff1
value: 28.664299999999997
- type: nauc_map_at_1_max
value: 24.2088
- type: nauc_map_at_1_std
value: 0.27599999999999997
- type: nauc_map_at_1_diff1
value: 34.0467
- type: nauc_map_at_3_max
value: 28.292299999999997
- type: nauc_map_at_3_std
value: 3.6138999999999997
- type: nauc_map_at_3_diff1
value: 30.555500000000002
- type: nauc_map_at_5_max
value: 29.109299999999998
- type: nauc_map_at_5_std
value: 4.2332
- type: nauc_map_at_5_diff1
value: 30.2144
- type: nauc_map_at_10_max
value: 29.688
- type: nauc_map_at_10_std
value: 5.3187999999999995
- type: nauc_map_at_10_diff1
value: 30.116799999999998
- type: nauc_map_at_20_max
value: 29.910700000000002
- type: nauc_map_at_20_std
value: 5.66
- type: nauc_map_at_20_diff1
value: 30.1049
- type: nauc_map_at_100_max
value: 29.811799999999998
- type: nauc_map_at_100_std
value: 5.772200000000001
- type: nauc_map_at_100_diff1
value: 30.0482
- type: nauc_map_at_1000_max
value: 29.7934
- type: nauc_map_at_1000_std
value: 5.7475
- type: nauc_map_at_1000_diff1
value: 30.061100000000003
- type: nauc_recall_at_1_max
value: 24.2088
- type: nauc_recall_at_1_std
value: 0.27599999999999997
- type: nauc_recall_at_1_diff1
value: 34.0467
- type: nauc_recall_at_3_max
value: 31.4631
- type: nauc_recall_at_3_std
value: 7.2352
- type: nauc_recall_at_3_diff1
value: 26.097700000000003
- type: nauc_recall_at_5_max
value: 34.3255
- type: nauc_recall_at_5_std
value: 9.410499999999999
- type: nauc_recall_at_5_diff1
value: 24.2641
- type: nauc_recall_at_10_max
value: 38.9135
- type: nauc_recall_at_10_std
value: 17.0459
- type: nauc_recall_at_10_diff1
value: 24.0436
- type: nauc_recall_at_20_max
value: 44.032700000000006
- type: nauc_recall_at_20_std
value: 24.3425
- type: nauc_recall_at_20_diff1
value: 22.5185
- type: nauc_recall_at_100_max
value: 48.899300000000004
- type: nauc_recall_at_100_std
value: 42.3469
- type: nauc_recall_at_100_diff1
value: 17.089399999999998
- type: nauc_recall_at_1000_max
value: 53.5473
- type: nauc_recall_at_1000_std
value: 58.505300000000005
- type: nauc_recall_at_1000_diff1
value: 16.1342
- type: nauc_precision_at_1_max
value: 25.047900000000002
- type: nauc_precision_at_1_std
value: 1.9234
- type: nauc_precision_at_1_diff1
value: 33.5807
- type: nauc_precision_at_3_max
value: 31.260900000000003
- type: nauc_precision_at_3_std
value: 9.8992
- type: nauc_precision_at_3_diff1
value: 23.2633
- type: nauc_precision_at_5_max
value: 32.1341
- type: nauc_precision_at_5_std
value: 12.1296
- type: nauc_precision_at_5_diff1
value: 19.4865
- type: nauc_precision_at_10_max
value: 31.670900000000003
- type: nauc_precision_at_10_std
value: 18.397
- type: nauc_precision_at_10_diff1
value: 15.785499999999999
- type: nauc_precision_at_20_max
value: 31.0475
- type: nauc_precision_at_20_std
value: 22.5964
- type: nauc_precision_at_20_diff1
value: 11.7234
- type: nauc_precision_at_100_max
value: 21.7555
- type: nauc_precision_at_100_std
value: 26.950400000000002
- type: nauc_precision_at_100_diff1
value: 2.9149000000000003
- type: nauc_precision_at_1000_max
value: 9.4419
- type: nauc_precision_at_1000_std
value: 20.3673
- type: nauc_precision_at_1000_diff1
value: -2.9269
- type: nauc_mrr_at_1_max
value: 25.047900000000002
- type: nauc_mrr_at_1_std
value: 1.9234
- type: nauc_mrr_at_1_diff1
value: 33.5807
- type: nauc_mrr_at_3_max
value: 28.5525
- type: nauc_mrr_at_3_std
value: 5.366499999999999
- type: nauc_mrr_at_3_diff1
value: 29.679699999999997
- type: nauc_mrr_at_5_max
value: 29.0497
- type: nauc_mrr_at_5_std
value: 5.8275
- type: nauc_mrr_at_5_diff1
value: 29.3153
- type: nauc_mrr_at_10_max
value: 29.465000000000003
- type: nauc_mrr_at_10_std
value: 6.5692
- type: nauc_mrr_at_10_diff1
value: 29.5064
- type: nauc_mrr_at_20_max
value: 29.542600000000004
- type: nauc_mrr_at_20_std
value: 6.6635
- type: nauc_mrr_at_20_diff1
value: 29.525299999999998
- type: nauc_mrr_at_100_max
value: 29.4819
- type: nauc_mrr_at_100_std
value: 6.734800000000001
- type: nauc_mrr_at_100_diff1
value: 29.506300000000003
- type: nauc_mrr_at_1000_max
value: 29.465999999999998
- type: nauc_mrr_at_1000_std
value: 6.7075
- type: nauc_mrr_at_1000_diff1
value: 29.517100000000003
- type: main_score
value: 45.32
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: ndcg_at_1
value: 79.81
- type: ndcg_at_3
value: 83.923
- type: ndcg_at_5
value: 85.516
- type: ndcg_at_10
value: 86.825
- type: ndcg_at_20
value: 87.562
- type: ndcg_at_100
value: 88.241
- type: ndcg_at_1000
value: 88.40599999999999
- type: map_at_1
value: 69.387
- type: map_at_3
value: 80.109
- type: map_at_5
value: 81.907
- type: map_at_10
value: 82.976
- type: map_at_20
value: 83.391
- type: map_at_100
value: 83.627
- type: map_at_1000
value: 83.648
- type: recall_at_1
value: 69.387
- type: recall_at_3
value: 85.762
- type: recall_at_5
value: 90.305
- type: recall_at_10
value: 94.15599999999999
- type: recall_at_20
value: 96.56
- type: recall_at_100
value: 99.099
- type: recall_at_1000
value: 99.905
- type: precision_at_1
value: 79.81
- type: precision_at_3
value: 36.61
- type: precision_at_5
value: 24.041999999999998
- type: precision_at_10
value: 13.102
- type: precision_at_20
value: 6.961
- type: precision_at_100
value: 1.51
- type: precision_at_1000
value: 0.156
- type: mrr_at_1
value: 79.79
- type: mrr_at_3
value: 85.04
- type: mrr_at_5
value: 85.789
- type: mrr_at_10
value: 86.1217
- type: mrr_at_20
value: 86.22720000000001
- type: mrr_at_100
value: 86.2594
- type: mrr_at_1000
value: 86.26129999999999
- type: nauc_ndcg_at_1_max
value: 38.5323
- type: nauc_ndcg_at_1_std
value: -35.2997
- type: nauc_ndcg_at_1_diff1
value: 76.8904
- type: nauc_ndcg_at_3_max
value: 35.8767
- type: nauc_ndcg_at_3_std
value: -42.236200000000004
- type: nauc_ndcg_at_3_diff1
value: 75.08120000000001
- type: nauc_ndcg_at_5_max
value: 36.5901
- type: nauc_ndcg_at_5_std
value: -43.7432
- type: nauc_ndcg_at_5_diff1
value: 75.6063
- type: nauc_ndcg_at_10_max
value: 37.1952
- type: nauc_ndcg_at_10_std
value: -43.2721
- type: nauc_ndcg_at_10_diff1
value: 75.8216
- type: nauc_ndcg_at_20_max
value: 37.501400000000004
- type: nauc_ndcg_at_20_std
value: -41.9042
- type: nauc_ndcg_at_20_diff1
value: 75.70400000000001
- type: nauc_ndcg_at_100_max
value: 38.0351
- type: nauc_ndcg_at_100_std
value: -39.988
- type: nauc_ndcg_at_100_diff1
value: 75.6946
- type: nauc_ndcg_at_1000_max
value: 38.0961
- type: nauc_ndcg_at_1000_std
value: -39.5691
- type: nauc_ndcg_at_1000_diff1
value: 75.6467
- type: nauc_map_at_1_max
value: 27.658899999999996
- type: nauc_map_at_1_std
value: -38.6526
- type: nauc_map_at_1_diff1
value: 78.86
- type: nauc_map_at_3_max
value: 33.265499999999996
- type: nauc_map_at_3_std
value: -44.8285
- type: nauc_map_at_3_diff1
value: 76.2881
- type: nauc_map_at_5_max
value: 34.8765
- type: nauc_map_at_5_std
value: -44.8588
- type: nauc_map_at_5_diff1
value: 76.1948
- type: nauc_map_at_10_max
value: 35.722300000000004
- type: nauc_map_at_10_std
value: -43.7594
- type: nauc_map_at_10_diff1
value: 76.0072
- type: nauc_map_at_20_max
value: 36.0747
- type: nauc_map_at_20_std
value: -42.7652
- type: nauc_map_at_20_diff1
value: 75.873
- type: nauc_map_at_100_max
value: 36.3031
- type: nauc_map_at_100_std
value: -42.0231
- type: nauc_map_at_100_diff1
value: 75.84379999999999
- type: nauc_map_at_1000_max
value: 36.3384
- type: nauc_map_at_1000_std
value: -41.937999999999995
- type: nauc_map_at_1000_diff1
value: 75.8393
- type: nauc_recall_at_1_max
value: 27.658899999999996
- type: nauc_recall_at_1_std
value: -38.6526
- type: nauc_recall_at_1_diff1
value: 78.86
- type: nauc_recall_at_3_max
value: 29.953000000000003
- type: nauc_recall_at_3_std
value: -50.7123
- type: nauc_recall_at_3_diff1
value: 72.3936
- type: nauc_recall_at_5_max
value: 31.8398
- type: nauc_recall_at_5_std
value: -56.4493
- type: nauc_recall_at_5_diff1
value: 71.7385
- type: nauc_recall_at_10_max
value: 33.048899999999996
- type: nauc_recall_at_10_std
value: -59.646699999999996
- type: nauc_recall_at_10_diff1
value: 71.4574
- type: nauc_recall_at_20_max
value: 34.185
- type: nauc_recall_at_20_std
value: -57.018299999999996
- type: nauc_recall_at_20_diff1
value: 70.71119999999999
- type: nauc_recall_at_100_max
value: 42.6654
- type: nauc_recall_at_100_std
value: -40.8769
- type: nauc_recall_at_100_diff1
value: 72.0717
- type: nauc_recall_at_1000_max
value: 44.116499999999995
- type: nauc_recall_at_1000_std
value: 17.4422
- type: nauc_recall_at_1000_diff1
value: 58.206599999999995
- type: nauc_precision_at_1_max
value: 38.5323
- type: nauc_precision_at_1_std
value: -35.2997
- type: nauc_precision_at_1_diff1
value: 76.8904
- type: nauc_precision_at_3_max
value: 11.5283
- type: nauc_precision_at_3_std
value: 3.4072999999999998
- type: nauc_precision_at_3_diff1
value: -11.805
- type: nauc_precision_at_5_max
value: 6.754300000000001
- type: nauc_precision_at_5_std
value: 13.7509
- type: nauc_precision_at_5_diff1
value: -25.4885
- type: nauc_precision_at_10_max
value: 2.5492999999999997
- type: nauc_precision_at_10_std
value: 23.6938
- type: nauc_precision_at_10_diff1
value: -34.2161
- type: nauc_precision_at_20_max
value: -0.1939
- type: nauc_precision_at_20_std
value: 31.0031
- type: nauc_precision_at_20_diff1
value: -38.826699999999995
- type: nauc_precision_at_100_max
value: -2.205
- type: nauc_precision_at_100_std
value: 38.885999999999996
- type: nauc_precision_at_100_diff1
value: -41.661
- type: nauc_precision_at_1000_max
value: -2.7452
- type: nauc_precision_at_1000_std
value: 41.1492
- type: nauc_precision_at_1000_diff1
value: -42.416199999999996
- type: nauc_mrr_at_1_max
value: 38.319199999999995
- type: nauc_mrr_at_1_std
value: -35.382400000000004
- type: nauc_mrr_at_1_diff1
value: 76.93759999999999
- type: nauc_mrr_at_3_max
value: 38.6992
- type: nauc_mrr_at_3_std
value: -37.4313
- type: nauc_mrr_at_3_diff1
value: 75.81360000000001
- type: nauc_mrr_at_5_max
value: 38.9249
- type: nauc_mrr_at_5_std
value: -37.7732
- type: nauc_mrr_at_5_diff1
value: 76.0258
- type: nauc_mrr_at_10_max
value: 39.0148
- type: nauc_mrr_at_10_std
value: -37.5749
- type: nauc_mrr_at_10_diff1
value: 76.1165
- type: nauc_mrr_at_20_max
value: 38.9778
- type: nauc_mrr_at_20_std
value: -37.3585
- type: nauc_mrr_at_20_diff1
value: 76.1091
- type: nauc_mrr_at_100_max
value: 38.9507
- type: nauc_mrr_at_100_std
value: -37.3448
- type: nauc_mrr_at_100_diff1
value: 76.1166
- type: nauc_mrr_at_1000_max
value: 38.9482
- type: nauc_mrr_at_1000_std
value: -37.344100000000005
- type: nauc_mrr_at_1000_diff1
value: 76.116
- type: main_score
value: 86.825
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 41.125699999999995
- type: v_measure_std
value: 3.9637
- type: main_score
value: 41.125699999999995
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 51.3872
- type: v_measure_std
value: 11.6705
- type: main_score
value: 51.3872
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: ndcg_at_1
value: 17.299999999999997
- type: ndcg_at_3
value: 13.497
- type: ndcg_at_5
value: 11.591
- type: ndcg_at_10
value: 13.679
- type: ndcg_at_20
value: 15.565999999999999
- type: ndcg_at_100
value: 19.218
- type: ndcg_at_1000
value: 23.768
- type: map_at_1
value: 3.49
- type: map_at_3
value: 5.844
- type: map_at_5
value: 6.9
- type: map_at_10
value: 7.797999999999999
- type: map_at_20
value: 8.404
- type: map_at_100
value: 9.027000000000001
- type: map_at_1000
value: 9.238
- type: recall_at_1
value: 3.49
- type: recall_at_3
value: 7.470000000000001
- type: recall_at_5
value: 10.045
- type: recall_at_10
value: 13.889999999999999
- type: recall_at_20
value: 18.337999999999997
- type: recall_at_100
value: 30.19
- type: recall_at_1000
value: 52.681999999999995
- type: precision_at_1
value: 17.299999999999997
- type: precision_at_3
value: 12.333
- type: precision_at_5
value: 9.92
- type: precision_at_10
value: 6.8500000000000005
- type: precision_at_20
value: 4.52
- type: precision_at_100
value: 1.486
- type: precision_at_1000
value: 0.259
- type: mrr_at_1
value: 17.299999999999997
- type: mrr_at_3
value: 23.166700000000002
- type: mrr_at_5
value: 24.4817
- type: mrr_at_10
value: 25.662499999999998
- type: mrr_at_20
value: 26.256899999999998
- type: mrr_at_100
value: 26.7332
- type: mrr_at_1000
value: 26.8125
- type: nauc_ndcg_at_1_max
value: 24.200499999999998
- type: nauc_ndcg_at_1_std
value: 11.9834
- type: nauc_ndcg_at_1_diff1
value: 24.468
- type: nauc_ndcg_at_3_max
value: 29.079
- type: nauc_ndcg_at_3_std
value: 16.192999999999998
- type: nauc_ndcg_at_3_diff1
value: 21.241699999999998
- type: nauc_ndcg_at_5_max
value: 30.219099999999997
- type: nauc_ndcg_at_5_std
value: 18.3763
- type: nauc_ndcg_at_5_diff1
value: 19.4039
- type: nauc_ndcg_at_10_max
value: 30.7147
- type: nauc_ndcg_at_10_std
value: 21.5882
- type: nauc_ndcg_at_10_diff1
value: 17.7705
- type: nauc_ndcg_at_20_max
value: 31.1477
- type: nauc_ndcg_at_20_std
value: 24.69
- type: nauc_ndcg_at_20_diff1
value: 16.9089
- type: nauc_ndcg_at_100_max
value: 32.1562
- type: nauc_ndcg_at_100_std
value: 30.425
- type: nauc_ndcg_at_100_diff1
value: 17.130300000000002
- type: nauc_ndcg_at_1000_max
value: 32.4754
- type: nauc_ndcg_at_1000_std
value: 32.5746
- type: nauc_ndcg_at_1000_diff1
value: 17.4281
- type: nauc_map_at_1_max
value: 24.4036
- type: nauc_map_at_1_std
value: 12.2252
- type: nauc_map_at_1_diff1
value: 24.5346
- type: nauc_map_at_3_max
value: 30.043
- type: nauc_map_at_3_std
value: 16.2703
- type: nauc_map_at_3_diff1
value: 21.8286
- type: nauc_map_at_5_max
value: 31.5919
- type: nauc_map_at_5_std
value: 18.676499999999997
- type: nauc_map_at_5_diff1
value: 19.1174
- type: nauc_map_at_10_max
value: 32.1404
- type: nauc_map_at_10_std
value: 21.0341
- type: nauc_map_at_10_diff1
value: 18.306800000000003
- type: nauc_map_at_20_max
value: 32.5777
- type: nauc_map_at_20_std
value: 23.0543
- type: nauc_map_at_20_diff1
value: 17.599899999999998
- type: nauc_map_at_100_max
value: 32.757
- type: nauc_map_at_100_std
value: 25.2143
- type: nauc_map_at_100_diff1
value: 17.564799999999998
- type: nauc_map_at_1000_max
value: 32.836
- type: nauc_map_at_1000_std
value: 25.624299999999998
- type: nauc_map_at_1000_diff1
value: 17.6171
- type: nauc_recall_at_1_max
value: 24.4036
- type: nauc_recall_at_1_std
value: 12.2252
- type: nauc_recall_at_1_diff1
value: 24.5346
- type: nauc_recall_at_3_max
value: 30.498399999999997
- type: nauc_recall_at_3_std
value: 17.663999999999998
- type: nauc_recall_at_3_diff1
value: 19.3246
- type: nauc_recall_at_5_max
value: 30.836599999999997
- type: nauc_recall_at_5_std
value: 20.3564
- type: nauc_recall_at_5_diff1
value: 15.6459
- type: nauc_recall_at_10_max
value: 30.3941
- type: nauc_recall_at_10_std
value: 25.187199999999997
- type: nauc_recall_at_10_diff1
value: 12.2576
- type: nauc_recall_at_20_max
value: 29.4931
- type: nauc_recall_at_20_std
value: 29.8445
- type: nauc_recall_at_20_diff1
value: 10.2911
- type: nauc_recall_at_100_max
value: 29.568699999999996
- type: nauc_recall_at_100_std
value: 40.4675
- type: nauc_recall_at_100_diff1
value: 10.8211
- type: nauc_recall_at_1000_max
value: 26.112800000000004
- type: nauc_recall_at_1000_std
value: 42.622
- type: nauc_recall_at_1000_diff1
value: 9.5162
- type: nauc_precision_at_1_max
value: 24.200499999999998
- type: nauc_precision_at_1_std
value: 11.9834
- type: nauc_precision_at_1_diff1
value: 24.468
- type: nauc_precision_at_3_max
value: 30.5687
- type: nauc_precision_at_3_std
value: 17.557100000000002
- type: nauc_precision_at_3_diff1
value: 19.395100000000003
- type: nauc_precision_at_5_max
value: 31.0911
- type: nauc_precision_at_5_std
value: 20.386599999999998
- type: nauc_precision_at_5_diff1
value: 16.0506
- type: nauc_precision_at_10_max
value: 31.022100000000002
- type: nauc_precision_at_10_std
value: 25.3927
- type: nauc_precision_at_10_diff1
value: 12.8608
- type: nauc_precision_at_20_max
value: 30.0773
- type: nauc_precision_at_20_std
value: 29.9155
- type: nauc_precision_at_20_diff1
value: 10.825700000000001
- type: nauc_precision_at_100_max
value: 29.994300000000003
- type: nauc_precision_at_100_std
value: 40.21
- type: nauc_precision_at_100_diff1
value: 11.2121
- type: nauc_precision_at_1000_max
value: 26.3822
- type: nauc_precision_at_1000_std
value: 41.7393
- type: nauc_precision_at_1000_diff1
value: 9.9425
- type: nauc_mrr_at_1_max
value: 24.200499999999998
- type: nauc_mrr_at_1_std
value: 11.9834
- type: nauc_mrr_at_1_diff1
value: 24.468
- type: nauc_mrr_at_3_max
value: 26.5063
- type: nauc_mrr_at_3_std
value: 14.6784
- type: nauc_mrr_at_3_diff1
value: 22.4465
- type: nauc_mrr_at_5_max
value: 27.0678
- type: nauc_mrr_at_5_std
value: 15.193499999999998
- type: nauc_mrr_at_5_diff1
value: 22.6012
- type: nauc_mrr_at_10_max
value: 26.9741
- type: nauc_mrr_at_10_std
value: 15.962200000000001
- type: nauc_mrr_at_10_diff1
value: 21.7963
- type: nauc_mrr_at_20_max
value: 27.0563
- type: nauc_mrr_at_20_std
value: 16.2419
- type: nauc_mrr_at_20_diff1
value: 21.749299999999998
- type: nauc_mrr_at_100_max
value: 27.0795
- type: nauc_mrr_at_100_std
value: 16.4246
- type: nauc_mrr_at_100_diff1
value: 21.8387
- type: nauc_mrr_at_1000_max
value: 27.0832
- type: nauc_mrr_at_1000_std
value: 16.4069
- type: nauc_mrr_at_1000_diff1
value: 21.8429
- type: main_score
value: 13.679
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: pearson
value: 78.2689
- type: spearman
value: 70.9342
- type: cosine_pearson
value: 78.2689
- type: cosine_spearman
value: 70.9342
- type: manhattan_pearson
value: 74.75359999999999
- type: manhattan_spearman
value: 70.8905
- type: euclidean_pearson
value: 74.7187
- type: euclidean_spearman
value: 70.88799999999999
- type: main_score
value: 70.9342
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: pearson
value: 73.3449
- type: spearman
value: 67.2036
- type: cosine_pearson
value: 73.3449
- type: cosine_spearman
value: 67.2036
- type: manhattan_pearson
value: 68.56259999999999
- type: manhattan_spearman
value: 66.8326
- type: euclidean_pearson
value: 68.4606
- type: euclidean_spearman
value: 66.8238
- type: main_score
value: 67.2036
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: pearson
value: 77.3137
- type: spearman
value: 77.4032
- type: cosine_pearson
value: 77.3137
- type: cosine_spearman
value: 77.4032
- type: manhattan_pearson
value: 76.2551
- type: manhattan_spearman
value: 76.6366
- type: euclidean_pearson
value: 76.1261
- type: euclidean_spearman
value: 76.5129
- type: main_score
value: 77.4032
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: pearson
value: 77.1255
- type: spearman
value: 72.3476
- type: cosine_pearson
value: 77.1255
- type: cosine_spearman
value: 72.3476
- type: manhattan_pearson
value: 74.1639
- type: manhattan_spearman
value: 72.1268
- type: euclidean_pearson
value: 74.118
- type: euclidean_spearman
value: 72.1061
- type: main_score
value: 72.3476
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: pearson
value: 81.992
- type: spearman
value: 82.4958
- type: cosine_pearson
value: 81.992
- type: cosine_spearman
value: 82.4958
- type: manhattan_pearson
value: 81.3437
- type: manhattan_spearman
value: 81.9727
- type: euclidean_pearson
value: 81.3543
- type: euclidean_spearman
value: 81.9557
- type: main_score
value: 82.4958
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: pearson
value: 78.755
- type: spearman
value: 79.408
- type: cosine_pearson
value: 78.755
- type: cosine_spearman
value: 79.408
- type: manhattan_pearson
value: 80.0336
- type: manhattan_spearman
value: 80.5912
- type: euclidean_pearson
value: 80.0315
- type: euclidean_spearman
value: 80.5413
- type: main_score
value: 79.408
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 41.280699999999996
- type: spearman
value: 39.9908
- type: cosine_pearson
value: 41.280699999999996
- type: cosine_spearman
value: 39.9908
- type: manhattan_pearson
value: 41.515
- type: manhattan_spearman
value: 39.6907
- type: euclidean_pearson
value: 41.5204
- type: euclidean_spearman
value: 39.6877
- type: main_score
value: 39.9908
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 84.3554
- type: spearman
value: 84.7607
- type: cosine_pearson
value: 84.3554
- type: cosine_spearman
value: 84.7607
- type: manhattan_pearson
value: 84.1083
- type: manhattan_spearman
value: 84.35979999999999
- type: euclidean_pearson
value: 84.1249
- type: euclidean_spearman
value: 84.33070000000001
- type: main_score
value: 84.7607
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 36.045500000000004
- type: spearman
value: 36.9017
- type: cosine_pearson
value: 36.045500000000004
- type: cosine_spearman
value: 36.9017
- type: manhattan_pearson
value: 33.128099999999996
- type: manhattan_spearman
value: 33.9834
- type: euclidean_pearson
value: 33.434599999999996
- type: euclidean_spearman
value: 34.6078
- type: main_score
value: 36.9017
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 38.332899999999995
- type: spearman
value: 36.8844
- type: cosine_pearson
value: 38.333
- type: cosine_spearman
value: 36.8844
- type: manhattan_pearson
value: 34.725699999999996
- type: manhattan_spearman
value: 34.0722
- type: euclidean_pearson
value: 35.0828
- type: euclidean_spearman
value: 34.1548
- type: main_score
value: 36.8844
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 8.5032
- type: spearman
value: 5.6236
- type: cosine_pearson
value: 8.5032
- type: cosine_spearman
value: 5.6236
- type: manhattan_pearson
value: 11.7706
- type: manhattan_spearman
value: 8.512599999999999
- type: euclidean_pearson
value: 11.6449
- type: euclidean_spearman
value: 7.7363
- type: main_score
value: 5.6236
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 30.772899999999996
- type: spearman
value: 27.825899999999997
- type: cosine_pearson
value: 30.772899999999996
- type: cosine_spearman
value: 27.825899999999997
- type: manhattan_pearson
value: 34.1556
- type: manhattan_spearman
value: 32.852599999999995
- type: euclidean_pearson
value: 33.8333
- type: euclidean_spearman
value: 32.8262
- type: main_score
value: 27.825899999999997
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 37.4576
- type: spearman
value: 33.533
- type: cosine_pearson
value: 37.457499999999996
- type: cosine_spearman
value: 33.5406
- type: manhattan_pearson
value: 38.7747
- type: manhattan_spearman
value: 36.8791
- type: euclidean_pearson
value: 39.4756
- type: euclidean_spearman
value: 38.3307
- type: main_score
value: 33.5406
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 12.8259
- type: spearman
value: 13.2374
- type: cosine_pearson
value: 12.8259
- type: cosine_spearman
value: 13.2374
- type: manhattan_pearson
value: 16.0609
- type: manhattan_spearman
value: 14.8943
- type: euclidean_pearson
value: 14.1566
- type: euclidean_spearman
value: 12.6913
- type: main_score
value: 13.2374
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 66.1988
- type: spearman
value: 66.6842
- type: cosine_pearson
value: 66.1988
- type: cosine_spearman
value: 66.6842
- type: manhattan_pearson
value: 66.7457
- type: manhattan_spearman
value: 66.00200000000001
- type: euclidean_pearson
value: 66.9588
- type: euclidean_spearman
value: 66.16579999999999
- type: main_score
value: 66.6842
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 55.525999999999996
- type: spearman
value: 58.790600000000005
- type: cosine_pearson
value: 55.525999999999996
- type: cosine_spearman
value: 58.790600000000005
- type: manhattan_pearson
value: 57.918499999999995
- type: manhattan_spearman
value: 60.4479
- type: euclidean_pearson
value: 58.0086
- type: euclidean_spearman
value: 60.5008
- type: main_score
value: 58.790600000000005
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 36.3507
- type: spearman
value: 39.9716
- type: cosine_pearson
value: 36.3506
- type: cosine_spearman
value: 39.9716
- type: manhattan_pearson
value: 25.3105
- type: manhattan_spearman
value: 28.190700000000003
- type: euclidean_pearson
value: 27.8303
- type: euclidean_spearman
value: 29.8408
- type: main_score
value: 39.9716
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 47.759800000000006
- type: spearman
value: 49.0005
- type: cosine_pearson
value: 47.759800000000006
- type: cosine_spearman
value: 49.0005
- type: manhattan_pearson
value: 46.2315
- type: manhattan_spearman
value: 49.9363
- type: euclidean_pearson
value: 46.818599999999996
- type: euclidean_spearman
value: 50.77779999999999
- type: main_score
value: 49.0005
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 49.2874
- type: spearman
value: 43.5968
- type: cosine_pearson
value: 49.2874
- type: cosine_spearman
value: 43.5968
- type: manhattan_pearson
value: 56.0733
- type: manhattan_spearman
value: 51.0045
- type: euclidean_pearson
value: 56.356399999999994
- type: euclidean_spearman
value: 49.967800000000004
- type: main_score
value: 43.5968
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: pearson
value: 78.6387
- type: spearman
value: 77.48469999999999
- type: cosine_pearson
value: 78.6387
- type: cosine_spearman
value: 77.48469999999999
- type: manhattan_pearson
value: 77.51989999999999
- type: manhattan_spearman
value: 77.1479
- type: euclidean_pearson
value: 77.5843
- type: euclidean_spearman
value: 77.1979
- type: main_score
value: 77.48469999999999
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 72.4633
- type: mrr
value: 90.7647
- type: nAUC_map_max
value: 51.910999999999994
- type: nAUC_map_std
value: 61.063599999999994
- type: nAUC_map_diff1
value: 10.8873
- type: nAUC_mrr_max
value: 74.0887
- type: nAUC_mrr_std
value: 66.3654
- type: nAUC_mrr_diff1
value: 48.1591
- type: main_score
value: 72.4633
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: ndcg_at_1
value: 49.0
- type: ndcg_at_3
value: 55.969
- type: ndcg_at_5
value: 58.111000000000004
- type: ndcg_at_10
value: 60.427
- type: ndcg_at_20
value: 61.527
- type: ndcg_at_100
value: 63.535
- type: ndcg_at_1000
value: 64.773
- type: map_at_1
value: 46.344
- type: map_at_3
value: 53.188
- type: map_at_5
value: 54.567
- type: map_at_10
value: 55.704
- type: map_at_20
value: 56.055
- type: map_at_100
value: 56.35
- type: map_at_1000
value: 56.397
- type: recall_at_1
value: 46.344
- type: recall_at_3
value: 60.911
- type: recall_at_5
value: 66.294
- type: recall_at_10
value: 72.872
- type: recall_at_20
value: 77.033
- type: recall_at_100
value: 87.656
- type: recall_at_1000
value: 97.333
- type: precision_at_1
value: 49.0
- type: precision_at_3
value: 22.111
- type: precision_at_5
value: 14.6
- type: precision_at_10
value: 8.200000000000001
- type: precision_at_20
value: 4.383
- type: precision_at_100
value: 0.997
- type: precision_at_1000
value: 0.11
- type: mrr_at_1
value: 49.0
- type: mrr_at_3
value: 55.555600000000005
- type: mrr_at_5
value: 56.8056
- type: mrr_at_10
value: 57.5951
- type: mrr_at_20
value: 57.808800000000005
- type: mrr_at_100
value: 58.0653
- type: mrr_at_1000
value: 58.10530000000001
- type: nauc_ndcg_at_1_max
value: 49.4156
- type: nauc_ndcg_at_1_std
value: 17.982300000000002
- type: nauc_ndcg_at_1_diff1
value: 70.1234
- type: nauc_ndcg_at_3_max
value: 54.3891
- type: nauc_ndcg_at_3_std
value: 14.310400000000001
- type: nauc_ndcg_at_3_diff1
value: 67.3382
- type: nauc_ndcg_at_5_max
value: 52.9631
- type: nauc_ndcg_at_5_std
value: 11.7775
- type: nauc_ndcg_at_5_diff1
value: 66.2906
- type: nauc_ndcg_at_10_max
value: 54.9531
- type: nauc_ndcg_at_10_std
value: 13.3055
- type: nauc_ndcg_at_10_diff1
value: 66.4653
- type: nauc_ndcg_at_20_max
value: 54.7342
- type: nauc_ndcg_at_20_std
value: 14.571600000000002
- type: nauc_ndcg_at_20_diff1
value: 66.38929999999999
- type: nauc_ndcg_at_100_max
value: 54.2887
- type: nauc_ndcg_at_100_std
value: 16.3373
- type: nauc_ndcg_at_100_diff1
value: 66.2149
- type: nauc_ndcg_at_1000_max
value: 54.4544
- type: nauc_ndcg_at_1000_std
value: 15.9653
- type: nauc_ndcg_at_1000_diff1
value: 66.7584
- type: nauc_map_at_1_max
value: 48.4528
- type: nauc_map_at_1_std
value: 11.2364
- type: nauc_map_at_1_diff1
value: 71.3798
- type: nauc_map_at_3_max
value: 52.629000000000005
- type: nauc_map_at_3_std
value: 12.753900000000002
- type: nauc_map_at_3_diff1
value: 68.4559
- type: nauc_map_at_5_max
value: 52.1172
- type: nauc_map_at_5_std
value: 11.887
- type: nauc_map_at_5_diff1
value: 67.85940000000001
- type: nauc_map_at_10_max
value: 53.26
- type: nauc_map_at_10_std
value: 12.8623
- type: nauc_map_at_10_diff1
value: 67.9285
- type: nauc_map_at_20_max
value: 53.140100000000004
- type: nauc_map_at_20_std
value: 13.312299999999999
- type: nauc_map_at_20_diff1
value: 67.8706
- type: nauc_map_at_100_max
value: 53.07809999999999
- type: nauc_map_at_100_std
value: 13.570099999999998
- type: nauc_map_at_100_diff1
value: 67.8354
- type: nauc_map_at_1000_max
value: 53.0964
- type: nauc_map_at_1000_std
value: 13.5718
- type: nauc_map_at_1000_diff1
value: 67.8608
- type: nauc_recall_at_1_max
value: 48.4528
- type: nauc_recall_at_1_std
value: 11.2364
- type: nauc_recall_at_1_diff1
value: 71.3798
- type: nauc_recall_at_3_max
value: 55.2991
- type: nauc_recall_at_3_std
value: 10.4741
- type: nauc_recall_at_3_diff1
value: 63.9389
- type: nauc_recall_at_5_max
value: 52.3593
- type: nauc_recall_at_5_std
value: 5.2456000000000005
- type: nauc_recall_at_5_diff1
value: 59.9453
- type: nauc_recall_at_10_max
value: 58.082699999999996
- type: nauc_recall_at_10_std
value: 8.0142
- type: nauc_recall_at_10_diff1
value: 59.644600000000004
- type: nauc_recall_at_20_max
value: 58.9062
- type: nauc_recall_at_20_std
value: 13.9035
- type: nauc_recall_at_20_diff1
value: 59.78099999999999
- type: nauc_recall_at_100_max
value: 58.318999999999996
- type: nauc_recall_at_100_std
value: 34.7022
- type: nauc_recall_at_100_diff1
value: 55.9343
- type: nauc_recall_at_1000_max
value: 79.1958
- type: nauc_recall_at_1000_std
value: 63.7138
- type: nauc_recall_at_1000_diff1
value: 62.832600000000006
- type: nauc_precision_at_1_max
value: 49.4156
- type: nauc_precision_at_1_std
value: 17.982300000000002
- type: nauc_precision_at_1_diff1
value: 70.1234
- type: nauc_precision_at_3_max
value: 57.2273
- type: nauc_precision_at_3_std
value: 27.0677
- type: nauc_precision_at_3_diff1
value: 52.8038
- type: nauc_precision_at_5_max
value: 51.4554
- type: nauc_precision_at_5_std
value: 23.3615
- type: nauc_precision_at_5_diff1
value: 44.164500000000004
- type: nauc_precision_at_10_max
value: 50.428399999999996
- type: nauc_precision_at_10_std
value: 28.477200000000003
- type: nauc_precision_at_10_diff1
value: 31.4772
- type: nauc_precision_at_20_max
value: 42.5568
- type: nauc_precision_at_20_std
value: 32.6138
- type: nauc_precision_at_20_diff1
value: 23.4987
- type: nauc_precision_at_100_max
value: 33.7983
- type: nauc_precision_at_100_std
value: 44.8859
- type: nauc_precision_at_100_diff1
value: 7.9106
- type: nauc_precision_at_1000_max
value: 23.0914
- type: nauc_precision_at_1000_std
value: 46.0357
- type: nauc_precision_at_1000_diff1
value: -12.5412
- type: nauc_mrr_at_1_max
value: 49.4156
- type: nauc_mrr_at_1_std
value: 17.982300000000002
- type: nauc_mrr_at_1_diff1
value: 70.1234
- type: nauc_mrr_at_3_max
value: 53.5852
- type: nauc_mrr_at_3_std
value: 16.9294
- type: nauc_mrr_at_3_diff1
value: 67.91430000000001
- type: nauc_mrr_at_5_max
value: 52.8663
- type: nauc_mrr_at_5_std
value: 16.0492
- type: nauc_mrr_at_5_diff1
value: 67.1386
- type: nauc_mrr_at_10_max
value: 53.21320000000001
- type: nauc_mrr_at_10_std
value: 16.5224
- type: nauc_mrr_at_10_diff1
value: 67.1661
- type: nauc_mrr_at_20_max
value: 53.154500000000006
- type: nauc_mrr_at_20_std
value: 16.653599999999997
- type: nauc_mrr_at_20_diff1
value: 67.1882
- type: nauc_mrr_at_100_max
value: 53.0415
- type: nauc_mrr_at_100_std
value: 16.7896
- type: nauc_mrr_at_100_diff1
value: 67.1524
- type: nauc_mrr_at_1000_max
value: 53.04299999999999
- type: nauc_mrr_at_1000_std
value: 16.7823
- type: nauc_mrr_at_1000_diff1
value: 67.1834
- type: main_score
value: 60.427
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: similarity_accuracy
value: 99.802
- type: similarity_accuracy_threshold
value: 68.9054
- type: similarity_f1
value: 89.89439999999999
- type: similarity_f1_threshold
value: 68.1838
- type: similarity_precision
value: 90.3943
- type: similarity_recall
value: 89.4
- type: similarity_ap
value: 95.1114
- type: cosine_accuracy
value: 99.802
- type: cosine_accuracy_threshold
value: 68.9053
- type: cosine_f1
value: 89.89439999999999
- type: cosine_f1_threshold
value: 68.1838
- type: cosine_precision
value: 90.3943
- type: cosine_recall
value: 89.4
- type: cosine_ap
value: 95.1114
- type: manhattan_accuracy
value: 99.8
- type: manhattan_accuracy_threshold
value: 56569.586200000005
- type: manhattan_f1
value: 89.8899
- type: manhattan_f1_threshold
value: 56569.586200000005
- type: manhattan_precision
value: 89.98
- type: manhattan_recall
value: 89.8
- type: manhattan_ap
value: 94.9934
- type: euclidean_accuracy
value: 99.799
- type: euclidean_accuracy_threshold
value: 2539.7804
- type: euclidean_f1
value: 89.8348
- type: euclidean_f1_threshold
value: 2568.8804999999998
- type: euclidean_precision
value: 89.9699
- type: euclidean_recall
value: 89.7
- type: euclidean_ap
value: 95.06
- type: dot_accuracy
value: 99.7723
- type: dot_accuracy_threshold
value: 72398.77320000001
- type: dot_f1
value: 88.0829
- type: dot_f1_threshold
value: 72398.77320000001
- type: dot_precision
value: 91.39779999999999
- type: dot_recall
value: 85.0
- type: dot_ap
value: 93.74040000000001
- type: max_accuracy
value: 99.802
- type: max_f1
value: 89.89439999999999
- type: max_precision
value: 91.39779999999999
- type: max_recall
value: 89.8
- type: max_ap
value: 95.1114
- type: main_score
value: 95.1114
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 56.641
- type: v_measure_std
value: 4.6061
- type: main_score
value: 56.641
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 31.850099999999998
- type: v_measure_std
value: 1.3043
- type: main_score
value: 31.850099999999998
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 48.149300000000004
- type: mrr
value: 48.8603
- type: nAUC_map_max
value: 14.3434
- type: nAUC_map_std
value: 8.115400000000001
- type: nAUC_map_diff1
value: 35.017700000000005
- type: nAUC_mrr_max
value: 15.0698
- type: nAUC_mrr_std
value: 8.9674
- type: nAUC_mrr_diff1
value: 35.029199999999996
- type: main_score
value: 48.149300000000004
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: pearson
value: 29.9904
- type: spearman
value: 31.8365
- type: cosine_spearman
value: 31.8365
- type: cosine_pearson
value: 29.9904
- type: dot_spearman
value: 29.713099999999997
- type: dot_pearson
value: 28.3169
- type: main_score
value: 31.8365
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: ndcg_at_1
value: 81.0
- type: ndcg_at_3
value: 75.98899999999999
- type: ndcg_at_5
value: 75.205
- type: ndcg_at_10
value: 71.532
- type: ndcg_at_20
value: 68.284
- type: ndcg_at_100
value: 52.276
- type: ndcg_at_1000
value: 45.097
- type: map_at_1
value: 0.231
- type: map_at_3
value: 0.583
- type: map_at_5
value: 0.9369999999999999
- type: map_at_10
value: 1.718
- type: map_at_20
value: 3.005
- type: map_at_100
value: 9.005
- type: map_at_1000
value: 20.935000000000002
- type: recall_at_1
value: 0.231
- type: recall_at_3
value: 0.619
- type: recall_at_5
value: 1.024
- type: recall_at_10
value: 1.9609999999999999
- type: recall_at_20
value: 3.5319999999999996
- type: recall_at_100
value: 12.046
- type: recall_at_1000
value: 41.831
- type: precision_at_1
value: 88.0
- type: precision_at_3
value: 80.0
- type: precision_at_5
value: 80.0
- type: precision_at_10
value: 75.8
- type: precision_at_20
value: 71.5
- type: precision_at_100
value: 53.059999999999995
- type: precision_at_1000
value: 20.355999999999998
- type: mrr_at_1
value: 88.0
- type: mrr_at_3
value: 92.6667
- type: mrr_at_5
value: 93.1667
- type: mrr_at_10
value: 93.1667
- type: mrr_at_20
value: 93.1667
- type: mrr_at_100
value: 93.1667
- type: mrr_at_1000
value: 93.1667
- type: nauc_ndcg_at_1_max
value: 23.5033
- type: nauc_ndcg_at_1_std
value: 42.5107
- type: nauc_ndcg_at_1_diff1
value: -16.6331
- type: nauc_ndcg_at_3_max
value: 45.7534
- type: nauc_ndcg_at_3_std
value: 49.449
- type: nauc_ndcg_at_3_diff1
value: -21.817700000000002
- type: nauc_ndcg_at_5_max
value: 52.3915
- type: nauc_ndcg_at_5_std
value: 54.0234
- type: nauc_ndcg_at_5_diff1
value: -22.4601
- type: nauc_ndcg_at_10_max
value: 48.9955
- type: nauc_ndcg_at_10_std
value: 57.918099999999995
- type: nauc_ndcg_at_10_diff1
value: -31.8485
- type: nauc_ndcg_at_20_max
value: 53.668800000000005
- type: nauc_ndcg_at_20_std
value: 69.0301
- type: nauc_ndcg_at_20_diff1
value: -35.4435
- type: nauc_ndcg_at_100_max
value: 51.8196
- type: nauc_ndcg_at_100_std
value: 82.2754
- type: nauc_ndcg_at_100_diff1
value: -39.7011
- type: nauc_ndcg_at_1000_max
value: 65.4034
- type: nauc_ndcg_at_1000_std
value: 81.7756
- type: nauc_ndcg_at_1000_diff1
value: -30.1325
- type: nauc_map_at_1_max
value: 3.0979
- type: nauc_map_at_1_std
value: -11.2343
- type: nauc_map_at_1_diff1
value: 20.7618
- type: nauc_map_at_3_max
value: 28.6885
- type: nauc_map_at_3_std
value: 2.9605
- type: nauc_map_at_3_diff1
value: 11.3494
- type: nauc_map_at_5_max
value: 31.7008
- type: nauc_map_at_5_std
value: 5.6763
- type: nauc_map_at_5_diff1
value: 9.1052
- type: nauc_map_at_10_max
value: 29.9906
- type: nauc_map_at_10_std
value: 6.5652
- type: nauc_map_at_10_diff1
value: 5.4684
- type: nauc_map_at_20_max
value: 38.6532
- type: nauc_map_at_20_std
value: 22.8509
- type: nauc_map_at_20_diff1
value: -2.6004
- type: nauc_map_at_100_max
value: 58.9551
- type: nauc_map_at_100_std
value: 67.3813
- type: nauc_map_at_100_diff1
value: -23.7286
- type: nauc_map_at_1000_max
value: 66.5071
- type: nauc_map_at_1000_std
value: 87.6026
- type: nauc_map_at_1000_diff1
value: -34.2005
- type: nauc_recall_at_1_max
value: 3.0979
- type: nauc_recall_at_1_std
value: -11.2343
- type: nauc_recall_at_1_diff1
value: 20.7618
- type: nauc_recall_at_3_max
value: 22.5952
- type: nauc_recall_at_3_std
value: -5.0699000000000005
- type: nauc_recall_at_3_diff1
value: 12.1543
- type: nauc_recall_at_5_max
value: 23.1872
- type: nauc_recall_at_5_std
value: -4.1483
- type: nauc_recall_at_5_diff1
value: 11.938799999999999
- type: nauc_recall_at_10_max
value: 18.5173
- type: nauc_recall_at_10_std
value: -6.304800000000001
- type: nauc_recall_at_10_diff1
value: 8.7213
- type: nauc_recall_at_20_max
value: 27.1838
- type: nauc_recall_at_20_std
value: 9.6419
- type: nauc_recall_at_20_diff1
value: 3.6645999999999996
- type: nauc_recall_at_100_max
value: 51.14959999999999
- type: nauc_recall_at_100_std
value: 52.7999
- type: nauc_recall_at_100_diff1
value: -17.7583
- type: nauc_recall_at_1000_max
value: 64.6146
- type: nauc_recall_at_1000_std
value: 73.34049999999999
- type: nauc_recall_at_1000_diff1
value: -22.3217
- type: nauc_precision_at_1_max
value: 48.949999999999996
- type: nauc_precision_at_1_std
value: 75.8988
- type: nauc_precision_at_1_diff1
value: -3.4839
- type: nauc_precision_at_3_max
value: 70.9443
- type: nauc_precision_at_3_std
value: 67.53
- type: nauc_precision_at_3_diff1
value: -19.8922
- type: nauc_precision_at_5_max
value: 73.03150000000001
- type: nauc_precision_at_5_std
value: 70.8924
- type: nauc_precision_at_5_diff1
value: -24.3446
- type: nauc_precision_at_10_max
value: 55.359
- type: nauc_precision_at_10_std
value: 62.7347
- type: nauc_precision_at_10_diff1
value: -33.091
- type: nauc_precision_at_20_max
value: 59.1229
- type: nauc_precision_at_20_std
value: 76.0406
- type: nauc_precision_at_20_diff1
value: -35.061
- type: nauc_precision_at_100_max
value: 53.1281
- type: nauc_precision_at_100_std
value: 85.8325
- type: nauc_precision_at_100_diff1
value: -40.6393
- type: nauc_precision_at_1000_max
value: 41.3845
- type: nauc_precision_at_1000_std
value: 67.6367
- type: nauc_precision_at_1000_diff1
value: -33.204699999999995
- type: nauc_mrr_at_1_max
value: 48.949999999999996
- type: nauc_mrr_at_1_std
value: 75.8988
- type: nauc_mrr_at_1_diff1
value: -3.4839
- type: nauc_mrr_at_3_max
value: 54.543699999999994
- type: nauc_mrr_at_3_std
value: 71.44800000000001
- type: nauc_mrr_at_3_diff1
value: -10.0942
- type: nauc_mrr_at_5_max
value: 53.2249
- type: nauc_mrr_at_5_std
value: 74.1067
- type: nauc_mrr_at_5_diff1
value: -6.6437
- type: nauc_mrr_at_10_max
value: 53.2249
- type: nauc_mrr_at_10_std
value: 74.1067
- type: nauc_mrr_at_10_diff1
value: -6.6437
- type: nauc_mrr_at_20_max
value: 53.2249
- type: nauc_mrr_at_20_std
value: 74.1067
- type: nauc_mrr_at_20_diff1
value: -6.6437
- type: nauc_mrr_at_100_max
value: 53.2249
- type: nauc_mrr_at_100_std
value: 74.1067
- type: nauc_mrr_at_100_diff1
value: -6.6437
- type: nauc_mrr_at_1000_max
value: 53.2249
- type: nauc_mrr_at_1000_std
value: 74.1067
- type: nauc_mrr_at_1000_diff1
value: -6.6437
- type: main_score
value: 71.532
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: ndcg_at_1
value: 24.490000000000002
- type: ndcg_at_3
value: 24.729
- type: ndcg_at_5
value: 23.791
- type: ndcg_at_10
value: 22.788
- type: ndcg_at_20
value: 25.137999999999998
- type: ndcg_at_100
value: 35.506
- type: ndcg_at_1000
value: 47.535
- type: map_at_1
value: 2.094
- type: map_at_3
value: 5.037
- type: map_at_5
value: 6.666999999999999
- type: map_at_10
value: 9.567
- type: map_at_20
value: 12.238
- type: map_at_100
value: 15.456
- type: map_at_1000
value: 17.134
- type: recall_at_1
value: 2.094
- type: recall_at_3
value: 6.356000000000001
- type: recall_at_5
value: 9.517000000000001
- type: recall_at_10
value: 15.589
- type: recall_at_20
value: 24.322
- type: recall_at_100
value: 46.668
- type: recall_at_1000
value: 83.852
- type: precision_at_1
value: 26.531
- type: precision_at_3
value: 26.531
- type: precision_at_5
value: 24.490000000000002
- type: precision_at_10
value: 20.408
- type: precision_at_20
value: 17.143
- type: precision_at_100
value: 7.489999999999999
- type: precision_at_1000
value: 1.551
- type: mrr_at_1
value: 26.5306
- type: mrr_at_3
value: 38.0952
- type: mrr_at_5
value: 40.9524
- type: mrr_at_10
value: 42.150999999999996
- type: mrr_at_20
value: 43.148199999999996
- type: mrr_at_100
value: 43.3322
- type: mrr_at_1000
value: 43.3603
- type: nauc_ndcg_at_1_max
value: -21.184
- type: nauc_ndcg_at_1_std
value: 4.5078
- type: nauc_ndcg_at_1_diff1
value: -12.7358
- type: nauc_ndcg_at_3_max
value: -19.4252
- type: nauc_ndcg_at_3_std
value: -6.255199999999999
- type: nauc_ndcg_at_3_diff1
value: 1.3456
- type: nauc_ndcg_at_5_max
value: -21.515
- type: nauc_ndcg_at_5_std
value: -7.8812999999999995
- type: nauc_ndcg_at_5_diff1
value: -1.2183
- type: nauc_ndcg_at_10_max
value: -18.12
- type: nauc_ndcg_at_10_std
value: -5.5853
- type: nauc_ndcg_at_10_diff1
value: 1.2866
- type: nauc_ndcg_at_20_max
value: -27.9821
- type: nauc_ndcg_at_20_std
value: -5.8553
- type: nauc_ndcg_at_20_diff1
value: 3.1812
- type: nauc_ndcg_at_100_max
value: -23.092299999999998
- type: nauc_ndcg_at_100_std
value: 12.623599999999998
- type: nauc_ndcg_at_100_diff1
value: 8.099
- type: nauc_ndcg_at_1000_max
value: -20.1611
- type: nauc_ndcg_at_1000_std
value: 22.288800000000002
- type: nauc_ndcg_at_1000_diff1
value: 3.8947000000000003
- type: nauc_map_at_1_max
value: -15.1336
- type: nauc_map_at_1_std
value: -5.686
- type: nauc_map_at_1_diff1
value: -11.0982
- type: nauc_map_at_3_max
value: -17.957
- type: nauc_map_at_3_std
value: -14.3613
- type: nauc_map_at_3_diff1
value: -4.0538
- type: nauc_map_at_5_max
value: -19.7211
- type: nauc_map_at_5_std
value: -15.432799999999999
- type: nauc_map_at_5_diff1
value: -5.491
- type: nauc_map_at_10_max
value: -14.6394
- type: nauc_map_at_10_std
value: -15.145900000000001
- type: nauc_map_at_10_diff1
value: -2.0209
- type: nauc_map_at_20_max
value: -19.4593
- type: nauc_map_at_20_std
value: -15.0695
- type: nauc_map_at_20_diff1
value: 2.7577000000000003
- type: nauc_map_at_100_max
value: -17.2374
- type: nauc_map_at_100_std
value: -6.2214
- type: nauc_map_at_100_diff1
value: 7.7665
- type: nauc_map_at_1000_max
value: -16.4723
- type: nauc_map_at_1000_std
value: -2.4473000000000003
- type: nauc_map_at_1000_diff1
value: 7.1406
- type: nauc_recall_at_1_max
value: -15.1336
- type: nauc_recall_at_1_std
value: -5.686
- type: nauc_recall_at_1_diff1
value: -11.0982
- type: nauc_recall_at_3_max
value: -21.6947
- type: nauc_recall_at_3_std
value: -20.8214
- type: nauc_recall_at_3_diff1
value: -2.1295
- type: nauc_recall_at_5_max
value: -24.176000000000002
- type: nauc_recall_at_5_std
value: -21.3149
- type: nauc_recall_at_5_diff1
value: -6.895999999999999
- type: nauc_recall_at_10_max
value: -17.9446
- type: nauc_recall_at_10_std
value: -14.205799999999998
- type: nauc_recall_at_10_diff1
value: -2.2227
- type: nauc_recall_at_20_max
value: -30.1632
- type: nauc_recall_at_20_std
value: -11.9398
- type: nauc_recall_at_20_diff1
value: 4.2804
- type: nauc_recall_at_100_max
value: -21.802
- type: nauc_recall_at_100_std
value: 20.3004
- type: nauc_recall_at_100_diff1
value: 8.1152
- type: nauc_recall_at_1000_max
value: -15.484300000000001
- type: nauc_recall_at_1000_std
value: 61.0456
- type: nauc_recall_at_1000_diff1
value: -22.3118
- type: nauc_precision_at_1_max
value: -16.3555
- type: nauc_precision_at_1_std
value: 1.4887
- type: nauc_precision_at_1_diff1
value: -7.2894
- type: nauc_precision_at_3_max
value: -18.5059
- type: nauc_precision_at_3_std
value: -11.0688
- type: nauc_precision_at_3_diff1
value: 8.2707
- type: nauc_precision_at_5_max
value: -20.949
- type: nauc_precision_at_5_std
value: -13.556099999999999
- type: nauc_precision_at_5_diff1
value: 3.8719
- type: nauc_precision_at_10_max
value: -11.5299
- type: nauc_precision_at_10_std
value: -1.6832
- type: nauc_precision_at_10_diff1
value: 11.603299999999999
- type: nauc_precision_at_20_max
value: -27.1497
- type: nauc_precision_at_20_std
value: 5.7508
- type: nauc_precision_at_20_diff1
value: 20.0541
- type: nauc_precision_at_100_max
value: -2.628
- type: nauc_precision_at_100_std
value: 47.0634
- type: nauc_precision_at_100_diff1
value: 29.8468
- type: nauc_precision_at_1000_max
value: 30.866500000000002
- type: nauc_precision_at_1000_std
value: 33.8682
- type: nauc_precision_at_1000_diff1
value: 11.3792
- type: nauc_mrr_at_1_max
value: -16.3555
- type: nauc_mrr_at_1_std
value: 1.4887
- type: nauc_mrr_at_1_diff1
value: -7.2894
- type: nauc_mrr_at_3_max
value: -20.1747
- type: nauc_mrr_at_3_std
value: -9.8292
- type: nauc_mrr_at_3_diff1
value: 2.3817
- type: nauc_mrr_at_5_max
value: -20.2904
- type: nauc_mrr_at_5_std
value: -8.164299999999999
- type: nauc_mrr_at_5_diff1
value: -0.1708
- type: nauc_mrr_at_10_max
value: -19.431
- type: nauc_mrr_at_10_std
value: -4.6234
- type: nauc_mrr_at_10_diff1
value: -0.9554999999999999
- type: nauc_mrr_at_20_max
value: -19.7291
- type: nauc_mrr_at_20_std
value: -4.4182
- type: nauc_mrr_at_20_diff1
value: -0.7163
- type: nauc_mrr_at_100_max
value: -19.662
- type: nauc_mrr_at_100_std
value: -4.4295
- type: nauc_mrr_at_100_diff1
value: -0.9365999999999999
- type: nauc_mrr_at_1000_max
value: -19.6591
- type: nauc_mrr_at_1000_std
value: -4.5101
- type: nauc_mrr_at_1000_diff1
value: -0.9622
- type: main_score
value: 22.788
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 64.41409999999999
- type: f1
value: 48.512899999999995
- type: f1_weighted
value: 72.2769
- type: ap
value: 10.4382
- type: ap_weighted
value: 10.4382
- type: main_score
value: 64.41409999999999
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 52.6316
- type: f1
value: 52.9212
- type: f1_weighted
value: 52.3632
- type: main_score
value: 52.6316
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 34.3169
- type: v_measure_std
value: 1.669
- type: main_score
value: 34.3169
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: similarity_accuracy
value: 83.45949999999999
- type: similarity_accuracy_threshold
value: 72.4461
- type: similarity_f1
value: 61.7155
- type: similarity_f1_threshold
value: 62.5381
- type: similarity_precision
value: 56.0681
- type: similarity_recall
value: 68.628
- type: similarity_ap
value: 65.0861
- type: cosine_accuracy
value: 83.45949999999999
- type: cosine_accuracy_threshold
value: 72.4461
- type: cosine_f1
value: 61.7155
- type: cosine_f1_threshold
value: 62.5381
- type: cosine_precision
value: 56.0681
- type: cosine_recall
value: 68.628
- type: cosine_ap
value: 65.0861
- type: manhattan_accuracy
value: 83.3999
- type: manhattan_accuracy_threshold
value: 53493.359399999994
- type: manhattan_f1
value: 61.0456
- type: manhattan_f1_threshold
value: 60751.0315
- type: manhattan_precision
value: 57.6589
- type: manhattan_recall
value: 64.8549
- type: manhattan_ap
value: 64.5486
- type: euclidean_accuracy
value: 83.4059
- type: euclidean_accuracy_threshold
value: 2422.2414
- type: euclidean_f1
value: 60.9938
- type: euclidean_f1_threshold
value: 2765.6849
- type: euclidean_precision
value: 57.6291
- type: euclidean_recall
value: 64.7757
- type: euclidean_ap
value: 64.60709999999999
- type: dot_accuracy
value: 82.60119999999999
- type: dot_accuracy_threshold
value: 77153.8452
- type: dot_f1
value: 59.933099999999996
- type: dot_f1_threshold
value: 67100.8545
- type: dot_precision
value: 54.785799999999995
- type: dot_recall
value: 66.1478
- type: dot_ap
value: 62.1271
- type: max_accuracy
value: 83.45949999999999
- type: max_f1
value: 61.7155
- type: max_precision
value: 57.6589
- type: max_recall
value: 68.628
- type: max_ap
value: 65.0861
- type: main_score
value: 65.0861
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: similarity_accuracy
value: 88.1612
- type: similarity_accuracy_threshold
value: 63.8545
- type: similarity_f1
value: 76.3737
- type: similarity_f1_threshold
value: 60.4226
- type: similarity_precision
value: 74.1711
- type: similarity_recall
value: 78.7111
- type: similarity_ap
value: 83.5651
- type: cosine_accuracy
value: 88.1612
- type: cosine_accuracy_threshold
value: 63.8545
- type: cosine_f1
value: 76.3737
- type: cosine_f1_threshold
value: 60.4226
- type: cosine_precision
value: 74.1711
- type: cosine_recall
value: 78.7111
- type: cosine_ap
value: 83.5651
- type: manhattan_accuracy
value: 87.9652
- type: manhattan_accuracy_threshold
value: 57837.701400000005
- type: manhattan_f1
value: 76.1352
- type: manhattan_f1_threshold
value: 61746.6187
- type: manhattan_precision
value: 72.3335
- type: manhattan_recall
value: 80.3588
- type: manhattan_ap
value: 83.3006
- type: euclidean_accuracy
value: 88.00019999999999
- type: euclidean_accuracy_threshold
value: 2607.3253999999997
- type: euclidean_f1
value: 76.2589
- type: euclidean_f1_threshold
value: 2793.2058
- type: euclidean_precision
value: 73.1054
- type: euclidean_recall
value: 79.69659999999999
- type: euclidean_ap
value: 83.3352
- type: dot_accuracy
value: 87.69940000000001
- type: dot_accuracy_threshold
value: 62123.3459
- type: dot_f1
value: 75.509
- type: dot_f1_threshold
value: 56145.837400000004
- type: dot_precision
value: 70.9651
- type: dot_recall
value: 80.67450000000001
- type: dot_ap
value: 81.7367
- type: max_accuracy
value: 88.1612
- type: max_f1
value: 76.3737
- type: max_precision
value: 74.1711
- type: max_recall
value: 80.67450000000001
- type: max_ap
value: 83.5651
- type: main_score
value: 83.5651
---
# SentenceTransformer based on answerdotai/ModernBERT-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
I finetune ModernBERT-base using script from offical repo [train_st.py](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/train_st.py) on a RTX 4090 GPU with the only change of setting mini-batch size of `CachedMultipleNegativesRankingLoss` to 128. Training for 1 epoch takes less than an hour.
The mini-batch size of GradCache should not change model performnace, but the finetuned model performs better than that recorded in the paper. See MTEB results in the result folder [mteb](https://huggingface.co/joe32140/ModernBERT-base-msmarco/tree/main/mteb).
Training logs can be found here: https://api.wandb.ai/links/joe32140/ekuauaao.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 5756c58a31a2478f9e62146021f48295a92c3da5 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joe32140/ModernBERT-base-msmarco")
# Run inference
sentences = [
'what county is hayden in',
"Hayden is a city in Kootenai County, Idaho, United States. Located in the northern portion of the state, just north of Coeur d'Alene, its population was 13,294 at the 2010 census.",
"According to the United States Census Bureau, the city has a total area of 9.61 square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01 square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake, and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is located on U.S. Route 95 at the junction of Route 41. It is also four miles (6 km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest of Hayden.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `msmarco-co-condenser-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:----------|
| **cosine_accuracy** | **0.984** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.26 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.14 tokens</li><li>max: 222 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 80.09 tokens</li><li>max: 436 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the meaning of menu planning</code> | <code>Menu planning is the selection of a menu for an event. Such as picking out the dinner for your wedding or even a meal at a Birthday Party. Menu planning is when you are preparing a calendar of meals and you have to sit down and decide what meat and veggies you want to serve on each certain day.</code> | <code>Menu Costs. In economics, a menu cost is the cost to a firm resulting from changing its prices. The name stems from the cost of restaurants literally printing new menus, but economists use it to refer to the costs of changing nominal prices in general.</code> |
| <code>how old is brett butler</code> | <code>Brett Butler is 59 years old. To be more precise (and nerdy), the current age as of right now is 21564 days or (even more geeky) 517536 hours. That's a lot of hours!</code> | <code>Passed in: St. John's, Newfoundland and Labrador, Canada. Passed on: 16/07/2016. Published in the St. John's Telegram. Passed away suddenly at the Health Sciences Centre surrounded by his loving family, on July 16, 2016 Robert (Bobby) Joseph Butler, age 52 years. Predeceased by his special aunt Geri Murrin and uncle Mike Mchugh; grandparents Joe and Margaret Murrin and Jack and Theresa Butler.</code> |
| <code>when was the last navajo treaty sign?</code> | <code>In Executive Session, Senate of the United States, July 25, 1868. Resolved, (two-thirds of the senators present concurring,) That the Senate advise and consent to the ratification of the treaty between the United States and the Navajo Indians, concluded at Fort Sumner, New Mexico, on the first day of June, 1868.</code> | <code>Share Treaty of Greenville. The Treaty of Greenville was signed August 3, 1795, between the United States, represented by Gen. Anthony Wayne, and chiefs of the Indian tribes located in the Northwest Territory, including the Wyandots, Delawares, Shawnees, Ottawas, Miamis, and others.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.2 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 80.44 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 80.38 tokens</li><li>max: 239 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what county is holly springs nc in</code> | <code>Holly Springs, North Carolina. Holly Springs is a town in Wake County, North Carolina, United States. As of the 2010 census, the town population was 24,661, over 2½ times its population in 2000. Contents.</code> | <code>The Mt. Holly Springs Park & Resort. One of the numerous trolley routes that carried people around the county at the turn of the century was the Carlisle & Mt. Holly Railway Company. The âHolly Trolleyâ as it came to be known was put into service by Patricio Russo and made its first run on May 14, 1901.</code> |
| <code>how long does nyquil stay in your system</code> | <code>In order to understand exactly how long Nyquil lasts, it is absolutely vital to learn about the various ingredients in the drug. One of the ingredients found in Nyquil is Doxylamine, which is an antihistamine. This specific medication has a biological half-life or 6 to 12 hours. With this in mind, it is possible for the drug to remain in the system for a period of 12 to 24 hours. It should be known that the specifics will depend on a wide variety of different factors, including your age and metabolism.</code> | <code>I confirmed that NyQuil is about 10% alcohol, a higher content than most domestic beers. When I asked about the relatively high proof, I was told that the alcohol dilutes the active ingredients. The alcohol free version is there for customers with addiction issues.. also found that in that version there is twice the amount of DXM. When I asked if I could speak to a chemist or scientist, I was told they didn't have anyone who fit that description there. Itâs been eight years since I kicked NyQuil. I've been sober from alcohol for four years.</code> |
| <code>what are mineral water</code> | <code>1 Mineral water â water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2 It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source. Mineral water â water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2 It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source.</code> | <code>Minerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.inerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `learning_rate`: 8e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | msmarco-co-condenser-dev_cosine_accuracy |
|:------:|:----:|:-------------:|:----------------------------------------:|
| 0 | 0 | - | 0.606 |
| 0.2048 | 500 | 0.6405 | - |
| 0.4095 | 1000 | 0.1473 | - |
| 0.6143 | 1500 | 0.1091 | - |
| 0.8190 | 2000 | 0.0907 | - |
| 1.0 | 2442 | - | 0.984 |
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> | [
"BIOSSES",
"SCIFACT"
] |
unsloth/Phi-4-mini-instruct | unsloth | text-generation | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"phi",
"phi4",
"unsloth",
"nlp",
"code",
"microsoft",
"math",
"chat",
"conversational",
"custom_code",
"multilingual",
"base_model:microsoft/Phi-4-mini-instruct",
"base_model:finetune:microsoft/Phi-4-mini-instruct",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2025-02-27T01:16:07Z" | 2025-03-03T00:36:25+00:00 | 4,618 | 11 | ---
base_model: microsoft/Phi-4-mini-instruct
language:
- multilingual
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- phi
- phi4
- unsloth
- nlp
- code
- microsoft
- math
- chat
- conversational
---
<div>
<p style="margin-bottom: 0; margin-top: 0;">
<strong>This is Phi-4-mini-instruct with our BUG FIXES. <br> See <a href="https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa">our collection</a> for versions of Phi-4 with our bug fixes including GGUF & 4-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Unsloth's Phi-4 <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">Finetune your own Reasoning model like R1 with Unsloth!</h2>
</div>
We have a free Google Colab notebook for turning Phi-4 into a reasoning model: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb
### Unsloth bug fixes:
1. Padding and EOS tokens are the same - fixed this.
2. Chat template had extra EOS token - removed this. Otherwise you will be <|end|> during inference.
3. EOS token should be <|end|> not <|endoftext|>. Otherwise it'll terminate at <|endoftext|>
4. Changed unk_token to � from EOS.
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **GRPO with Phi-4** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb) | 2x faster | 80% less |
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
## Model Summary
Phi-4-mini-instruct is a lightweight open model built upon synthetic data and filtered publicly available websites - with a focus on high-quality, reasoning dense data. The model belongs to the Phi-4 model family and supports 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning and direct preference optimization to support precise instruction adherence and robust safety measures.
📰 [Phi-4-mini Microsoft Blog](https://aka.ms/phi4-feb2025) <br>
📖 [Phi-4-mini Technical Report](https://aka.ms/phi-4-multimodal/techreport) <br>
👩🍳 [Phi Cookbook](https://github.com/microsoft/PhiCookBook) <br>
🏡 [Phi Portal](https://azure.microsoft.com/en-us/products/phi) <br>
🖥️ Try It [Azure](https://aka.ms/phi-4-mini/azure), [Huggingface](https://huggingface.co/spaces/microsoft/phi-4-mini) <br>
**Phi-4**:
[[mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) | [onnx](https://huggingface.co/microsoft/Phi-4-mini-instruct-onnx)];
[multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct);
## Intended Uses
### Primary Use Cases
The model is intended for broad multilingual commercial and research use. The model provides uses for general purpose AI systems and applications which require:
1) Memory/compute constrained environments
2) Latency bound scenarios
3) Strong reasoning (especially math and logic).
The model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
### Use Case Considerations
The model is not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models, as well as performance difference across languages, as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
Developers should be aware of and adhere to applicable laws or regulations (including but not limited to privacy, trade compliance laws, etc.) that are relevant to their use case.
***Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.***
## Release Notes
This release of Phi-4-mini-instruct is based on valuable user feedback from the Phi-3 series. The Phi-4-mini model employed new architecture for efficiency, larger vocabulary for multilingual support, and better post-training techniques were used for instruction following, function calling, as well as additional data leading to substantial gains on key capabilities. It is anticipated that most use cases will benefit from this release, but users are encouraged to test in their particular AI applications. The enthusiastic support for the Phi-4 series is greatly appreciated. Feedback on Phi-4-mini-instruct is welcomed and crucial to the model’s evolution and improvement.
### Model Quality
To understand the capabilities, the 3.8B parameters Phi-4-mini-instruct model was compared with a set of models over a variety of benchmarks using an internal benchmark platform (See Appendix A for benchmark methodology). A high-level overview of the model quality is as follows:
| Benchmark | Similar size | | | | |2x size | | | | | |
|----------------------------------|-------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Phi-4 mini-Ins | Phi-3.5-mini-Ins | Llama-3.2-3B-Ins | Mistral-3B | Qwen2.5-3B-Ins | Qwen2.5-7B-Ins | Mistral-8B-2410 | Llama-3.1-8B-Ins | Llama-3.1-Tulu-3-8B | Gemma2-9B-Ins | GPT-4o-mini-2024-07-18 |
| **Popular aggregated benchmark** | | | | | | | | | | | |
| Arena Hard | 32.8 | 34.4 | 17.0 | 26.9 | 32.0 | 55.5 | 37.3 | 25.7 | 42.7 | 43.7 | 53.7 |
| BigBench Hard (0-shot, CoT) | 70.4 | 63.1 | 55.4 | 51.2 | 56.2 | 72.4 | 53.3 | 63.4 | 55.5 | 65.7 | 80.4 |
| MMLU (5-shot) | 67.3 | 65.5 | 61.8 | 60.8 | 65.0 | 72.6 | 63.0 | 68.1 | 65.0 | 71.3 | 77.2 |
| MMLU-Pro (0-shot, CoT) | 52.8 | 47.4 | 39.2 | 35.3 | 44.7 | 56.2 | 36.6 | 44.0 | 40.9 | 50.1 | 62.8 |
| **Reasoning** | | | | | | | | | | | |
| ARC Challenge (10-shot) | 83.7 | 84.6 | 76.1 | 80.3 | 82.6 | 90.1 | 82.7 | 83.1 | 79.4 | 89.8 | 93.5 |
| BoolQ (2-shot) | 81.2 | 77.7 | 71.4 | 79.4 | 65.4 | 80.0 | 80.5 | 82.8 | 79.3 | 85.7 | 88.7 |
| GPQA (0-shot, CoT) | 25.2 | 26.6 | 24.3 | 24.4 | 23.4 | 30.6 | 26.3 | 26.3 | 29.9 | 39.1 | 41.1 |
| HellaSwag (5-shot) | 69.1 | 72.2 | 77.2 | 74.6 | 74.6 | 80.0 | 73.5 | 72.8 | 80.9 | 87.1 | 88.7 |
| OpenBookQA (10-shot) | 79.2 | 81.2 | 72.6 | 79.8 | 79.3 | 82.6 | 80.2 | 84.8 | 79.8 | 90.0 | 90.0 |
| PIQA (5-shot) | 77.6 | 78.2 | 68.2 | 73.2 | 72.6 | 76.2 | 81.2 | 83.2 | 78.3 | 83.7 | 88.7 |
| Social IQA (5-shot) | 72.5 | 75.1 | 68.3 | 73.9 | 75.3 | 75.3 | 77.6 | 71.8 | 73.4 | 74.7 | 82.9 |
| TruthfulQA (MC2) (10-shot) | 66.4 | 65.2 | 59.2 | 62.9 | 64.3 | 69.4 | 63.0 | 69.2 | 64.1 | 76.6 | 78.2 |
| Winogrande (5-shot) | 67.0 | 72.2 | 53.2 | 59.8 | 63.3 | 71.1 | 63.1 | 64.7 | 65.4 | 74.0 | 76.9 |
| **Multilingual** | | | | | | | | | | | |
| Multilingual MMLU (5-shot) | 49.3 | 51.8 | 48.1 | 46.4 | 55.9 | 64.4 | 53.7 | 56.2 | 54.5 | 63.8 | 72.9 |
| MGSM (0-shot, CoT) | 63.9 | 49.6 | 44.6 | 44.6 | 53.5 | 64.5 | 56.7 | 56.7 | 58.6 | 75.1 | 81.7 |
| **Math** | | | | | | | | | | | |
| GSM8K (8-shot, CoT) | 88.6 | 76.9 | 75.6 | 80.1 | 80.6 | 88.7 | 81.9 | 82.4 | 84.3 | 84.9 | 91.3 |
| MATH (0-shot, CoT) | 64.0 | 49.8 | 46.7 | 41.8 | 61.7 | 60.4 | 41.6 | 47.6 | 46.1 | 51.3 | 70.2 |
| **Overall** | **63.5** | **60.5** | **56.2** | **56.9** | **60.1** | **67.9** | **60.2** | **62.3** | **60.9** | **65.0** | **75.5** |
Overall, the model with only 3.8B-param achieves a similar level of multilingual language understanding and reasoning ability as much larger models. However, it is still fundamentally limited by its size for certain tasks. The model simply does not have the capacity to store too much factual knowledge, therefore, users may experience factual incorrectness. However, it may be possible to resolve such weakness by augmenting Phi-4 with a search engine, particularly when using the model under RAG settings.
## Usage
### Tokenizer
Phi-4-mini-instruct supports a vocabulary size of up to `200064` tokens. The [tokenizer files](https://huggingface.co/microsoft/Phi-4-mini-instruct/blob/main/added_tokens.json) already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size.
### Input Formats
Given the nature of the training data, the Phi-4-mini-instruct
model is best suited for prompts using specific formats.
Below are the two primary formats:
#### Chat format
This format is used for general conversation and instructions:
```yaml
<|system|>Insert System Message<|end|><|user|>Insert User Message<|end|><|assistant|>
```
#### Tool-enabled function-calling format
This format is used when the user wants the model to provide function calls based on the given tools. The user should provide the available tools in the system prompt, wrapped by <|tool|> and <|/tool|> tokens. The tools should be specified in JSON format, using a JSON dump structure. Example:
`
<|system|>You are a helpful assistant with some tools.<|tool|>[{"name": "get_weather_updates", "description": "Fetches weather updates for a given city using the RapidAPI Weather API.", "parameters": {"city": {"description": "The name of the city for which to retrieve weather information.", "type": "str", "default": "London"}}}]<|/tool|><|end|><|user|>What is the weather like in Paris today?<|end|><|assistant|>
`
### Inference with vLLM
#### Requirements
List of required packages:
```
flash_attn==2.7.4.post1
torch==2.6.0
vllm>=0.7.2
```
#### Example
To perform inference using vLLM, you can use the following code snippet:
```python
from vllm import LLM, SamplingParams
llm = LLM(model="microsoft/Phi-4-mini-instruct", trust_remote_code=True)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
sampling_params = SamplingParams(
max_tokens=500,
temperature=0.0,
)
output = llm.chat(messages=messages, sampling_params=sampling_params)
print(output[0].outputs[0].text)
```
### Inference with Transformers
#### Requirements
Phi-4 family has been integrated in the `4.49.0` version of `transformers`. The current `transformers` version can be verified with: `pip list | grep transformers`.
List of required packages:
```
flash_attn==2.7.4.post1
torch==2.6.0
transformers==4.49.0
accelerate==1.3.0
```
Phi-4-mini-instruct is also available in [Azure AI Studio]()
#### Example
After obtaining the Phi-4-mini-instruct model checkpoints, users can use this sample code for inference.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model_path = "microsoft/Phi-4-mini-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
## Responsible AI Considerations
Like other language models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: The Phi models are trained primarily on English text and some additional multilingual text. Languages other than English will experience worse performance as well as performance disparities across non-English. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Multilingual performance and safety gaps: We believe it is important to make language models more widely available across different languages, but the Phi 4 models still exhibit challenges common across multilingual releases. As with any deployment of LLMs, developers will be better positioned to test for performance or safety gaps for their linguistic and cultural context and customize the model with additional fine-tuning and appropriate safeguards.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups, cultural contexts, or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: The majority of Phi 4 training data is based in Python and uses common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, it is strongly recommended that users manually verify all API uses.
+ Long Conversation: Phi 4 models, like other models, can in some cases generate responses that are repetitive, unhelpful, or inconsistent in very long chat sessions in both English and non-English languages. Developers are encouraged to place appropriate mitigations, like limiting conversation turns to account for the possible conversational drift.
Developers should apply responsible AI best practices, including mapping, measuring, and mitigating risks associated with their specific use case and cultural, linguistic context. Phi 4 family of models are general purpose models. As developers plan to deploy these models for specific use cases, they are encouraged to fine-tune the models for their use case and leverage the models as part of broader AI systems with language-specific safeguards in place. Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess the suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
## Training
### Model
+ **Architecture:** Phi-4-mini-instruct has 3.8B parameters and is a dense decoder-only Transformer model. When compared with Phi-3.5-mini, the major changes with Phi-4-mini-instruct are 200K vocabulary, grouped-query attention, and shared input and output embedding.<br>
+ **Inputs:** Text. It is best suited for prompts using the chat format.<br>
+ **Context length:** 128K tokens<br>
+ **GPUs:** 512 A100-80G<br>
+ **Training time:** 21 days<br>
+ **Training data:** 5T tokens<br>
+ **Outputs:** Generated text in response to the input<br>
+ **Dates:** Trained between November and December 2024<br>
+ **Status:** This is a static model trained on offline datasets with the cutoff date of June 2024 for publicly available data.<br>
+ **Supported languages:** Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian<br>
+ **Release date:** February 2025<br>
### Training Datasets
Phi-4-mini’s training data includes a wide variety of sources, totaling 5 trillion tokens, and is a combination of
1) publicly available documents filtered for quality, selected high-quality educational data, and code
2) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (e.g., science, daily activities, theory of mind, etc.)
3) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness. Focus was placed on the quality of data that could potentially improve the reasoning ability for the model, and the publicly available documents were filtered to contain a preferred level of knowledge. As an example, the result of a game in premier league on a particular day might be good training data for frontier models, but such information was removed to leave more model capacity for reasoning for the model’s small size. More details about data can be found in the Phi-4-mini-instruct technical report.
The decontamination process involved normalizing and tokenizing the dataset, then generating and comparing n-grams between the target dataset and benchmark datasets. Samples with matching n-grams above a threshold were flagged as contaminated and removed from the dataset. A detailed contamination report was generated, summarizing the matched text, matching ratio, and filtered results for further analysis.
### Fine-tuning
A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/sample_finetune.py).
## Safety Evaluation and Red-Teaming
Various evaluation techniques including red teaming, adversarial conversation simulations, and multilingual safety evaluation benchmark datasets were leveraged to evaluate Phi-4 models’ propensity to produce undesirable outputs across multiple languages and risk categories. Several approaches were used to compensate for the limitations of one approach alone. Findings across the various evaluation methods indicate that safety post-training that was done as detailed in the Phi 3 Safety Post-Training paper had a positive impact across multiple languages and risk categories as observed by refusal rates (refusal to output undesirable outputs) and robustness to jailbreak techniques. Details on prior red team evaluations across Phi models can be found in the Phi 3 Safety Post-Training paper. For this release, the red team tested the model in English, Chinese, Japanese, Spanish, Portuguese, Arabic, Thai, and Russian for the following potential harms: Hate Speech and Bias, Violent Crimes, Specialized Advice, and Election Information. Their findings indicate that the model is resistant to jailbreak techniques across languages, but that language-specific attack prompts leveraging cultural context can cause the model to output harmful content. Another insight was that with function calling scenarios, the model could sometimes hallucinate function names or URL’s. The model may also be more susceptible to longer multi-turn jailbreak techniques across both English and non-English languages. These findings highlight the need for industry-wide investment in the development of high-quality safety evaluation datasets across multiple languages, including low resource languages, and risk areas that account for cultural nuances where those languages are spoken.
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
## Hardware
Note that by default, the Phi-4-mini-instruct model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
If you want to run the model on:
* NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager"
## License
The model is licensed under the [MIT license](./LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
## Appendix A: Benchmark Methodology
We include a brief word on methodology here - and in particular, how we think about optimizing prompts.
In an ideal world, we would never change any prompts in our benchmarks to ensure it is always an apples-to-apples comparison when comparing different models. Indeed, this is our default approach, and is the case in the vast majority of models we have run to date.
There are, however, some exceptions to this. In some cases, we see a model that performs worse than expected on a given eval due to a failure to respect the output format. For example:
+ A model may refuse to answer questions (for no apparent reason), or in coding tasks models may prefix their response with “Sure, I can help with that. …” which may break the parser. In such cases, we have opted to try different system messages (e.g. “You must always respond to a question” or “Get to the point!”).
+ With some models, we observed that few shots actually hurt model performance. In this case we did allow running the benchmarks with 0-shots for all cases.
+ We have tools to convert between chat and completions APIs. When converting a chat prompt to a completion prompt, some models have different keywords e.g. Human vs User. In these cases, we do allow for model-specific mappings for chat to completion prompts.
However, we do not:
+ Pick different few-shot examples. Few shots will always be the same when comparing different models.
+ Change prompt format: e.g. if it is an A/B/C/D multiple choice, we do not tweak this to 1/2/3/4 multiple choice.
### Benchmark datasets
The model was evaluated across a breadth of public and internal benchmarks to understand the model’s capabilities under multiple tasks and conditions. While most evaluations use English, the leading multilingual benchmark was incorporated that covers performance in select languages. More specifically,
+ Reasoning:
+ Winogrande: commonsense reasoning around pronoun resolution
+ PIQA: physical commonsense reasoning around everyday situations
+ ARC-challenge: grade-school multiple choice science questions
+ GPQA: very hard questions written and validated by experts in biology, physics, and chemistry
+ MedQA: medical questions answering
+ Social IQA: social commonsense intelligence
+ BoolQ: natural questions from context
+ TruthfulQA: grounded reasoning
+ Language understanding:
+ HellaSwag: commonsense natural language inference around everyday events
+ ANLI: adversarial natural language inference
+ Function calling:
+ Berkeley function calling function and tool call
+ Internal function calling benchmarks
+ World knowledge:
+ TriviaQA: trivia question on general topics
+ Math:
+ GSM8K: grade-school math word problems
+ GSM8K Hard: grade-school math word problems with large values and some absurdity.
+ MATH: challenging competition math problems
+ Code:
+ HumanEval HumanEval+, MBPP, MBPP+: python coding tasks
+ LiveCodeBenh, LiveBench: contamination-free code tasks
+ BigCode Bench: challenging programming tasks
+ Spider: SQL query tasks
+ Internal coding benchmarks
+ Instructions following:
+ IFEval: verifiable instructions
+ Internal instructions following benchmarks
+ Multilingual:
+ MGSM: multilingual grade-school math
+ Multilingual MMLU and MMLU-pro
+ MEGA: multilingual NLP tasks
+ Popular aggregated datasets: MMLU, MMLU-pro, BigBench-Hard, AGI Eval
+ Multi-turn conversations:
+ Data generated by in-house adversarial conversation simulation tool
+ Single-turn trustworthiness evaluation:
+ DecodingTrust: a collection of trustworthiness benchmarks in eight different perspectives
+ XSTest: exaggerated safety evaluation
+ Toxigen: adversarial and hate speech detection
+ Red Team:
+ Responses to prompts provided by AI Red Team at Microsoft | [
"MEDQA"
] |
ibm-nasa-geospatial/Prithvi-EO-2.0-300M | ibm-nasa-geospatial | null | [
"terratorch",
"Pytorch",
"Earth Observation",
"Foundation Model",
"NASA",
"IBM",
"arxiv:2412.02732",
"license:apache-2.0",
"region:us"
] | "2024-12-02T09:31:53Z" | 2025-01-22T08:08:03+00:00 | 4,534 | 11 | ---
library_name: terratorch
license: apache-2.0
tags:
- Pytorch
- Earth Observation
- Foundation Model
- NASA
- IBM
---
# Prithvi-EO-2.0
Prithvi-EO-2.0 is the second generation EO foundation model jointly developed by IBM, NASA, and Jülich Supercomputing Centre.
## Architecture Overview
Prithvi-EO-2.0 is based on the ViT architecture, pretrained using a masked autoencoder (MAE) approach, with two major modifications as shown in the figure below.

First, we replaced the 2D patch embeddings and 2D positional embeddings with 3D versions to support inputs with spatiotemporal characteristics, i.e., a sequence of T images of size (H, W). Our 3D patch embeddings consist of a 3D convolutional layer, dividing the 3D input into non-overlapping cubes of size (t, h, w) for time, height, and width dimensions, respectively. For the 3D positional encodings, we first generate 1D sin/cos encodings individually for each dimension and then combine them together into a single, 3D positional encoding.
Second, we considered geolocation (center latitude and longitude) and date of acquisition (year and day-of-year ranging 1-365) in the pretraining of the TL model versions. Both encoder and decoder receive time and location information for each sample and encodes them independently using 2D sin/cos encoding. They are added to the embedded tokens via a weighted sum with learned weights: one for time and one for location and separate weights for encoder and decoder. Since this metadata is often not available, we added a drop mechanism during pretraining that randomly drops the geolocation and/or the temporal data to help the model learn how to handle the absence of this information.
## Pre-trained Models
| Model | Details | Weights |
| ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
|Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
|Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
|Prithvi-EO-2.0-600M-TL | Pretrained 600M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M-TL) |
The models were pre-trained at the Jülich Supercomputing Centre with NASA's HLS V2 product (30m granularity) using 4.2M samples with six bands in the following order: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
## Benchmarking
We validated the Prithvi-EO-2.0 models through extensive experiments using [GEO-bench](https://github.com/ServiceNow/geo-bench). Prithvi-EO-2.0-600M-TL outperforms the previous Prithvi-EO model by 8% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m).

## Demo and inference
We provide a **demo** running Prithvi-EO-2.0-300M-TL [here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-EO-2.0-Demo).
There is also an inference script (`inference.py`) that allows to run the image reconstruction on a set of HLS images assumed to be from the same location at different timestamps (see example below). These should be provided in chronological order in geotiff format, including the channels described above (Blue, Green, Red, Narrow NIR, SWIR 1, SWIR 2) in reflectance units.
```
python inference.py --data_files t1.tif t2.tif t3.tif t4.tif --input_indices <optional, space separated 0-based indices of the six Prithvi channels in your input>
```
## Finetuning
You can finetune the model using [TerraTorch](https://github.com/IBM/terratorch). Examples of configs and notebooks are provided in the project repository: [github.com/NASA-IMPACT/Prithvi-EO-2.0](https://github.com/NASA-IMPACT/Prithvi-EO-2.0#fine-tuning).
Example Notebooks:
[Multitemporal Crop Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_multitemporalcrop.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_multitemporalcrop.ipynb) (Choose T4 GPU runtime)
[Landslide Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) (Choose T4 GPU runtime)
[Carbon Flux Prediction (Regression)](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/carbon_flux/main_flux_finetune_baselines_trainer.ipynb)
### Feedback
Your feedback is invaluable to us. If you have any feedback about the model, please feel free to share it with us. You can do this by starting a discussion in this HF repository or submitting an issue to [TerraTorch](https://github.com/IBM/terratorch) on GitHub.
### Citation
If this model helped your research, please cite [Prithvi-EO-2.0](https://arxiv.org/abs/2412.02732) in your publications.
```
@article{Prithvi-EO-V2-preprint,
author = {Szwarcman, Daniela and Roy, Sujit and Fraccaro, Paolo and Gíslason, Þorsteinn Elí and Blumenstiel, Benedikt and Ghosal, Rinki and de Oliveira, Pedro Henrique and de Sousa Almeida, João Lucas and Sedona, Rocco and Kang, Yanghui and Chakraborty, Srija and Wang, Sizhe and Kumar, Ankur and Truong, Myscon and Godwin, Denys and Lee, Hyunho and Hsu, Chia-Yu and Akbari Asanjan, Ata and Mujeci, Besart and Keenan, Trevor and Arévolo, Paulo and Li, Wenwen and Alemohammad, Hamed and Olofsson, Pontus and Hain, Christopher and Kennedy, Robert and Zadrozny, Bianca and Cavallaro, Gabriele and Watson, Campbell and Maskey, Manil and Ramachandran, Rahul and Bernabe Moreno, Juan},
title = {{Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications}},
journal = {arXiv preprint arXiv:2412.02732},
year = {2024}
}
```
| [
"CHIA"
] |
ytu-ce-cosmos/turkish-colbert | ytu-ce-cosmos | null | [
"safetensors",
"bert",
"Turkish",
"turkish",
"passage-retrieval",
"tr",
"arxiv:2307.14134",
"base_model:ytu-ce-cosmos/turkish-base-bert-uncased",
"base_model:finetune:ytu-ce-cosmos/turkish-base-bert-uncased",
"license:mit",
"region:us"
] | "2024-12-03T21:07:57Z" | 2024-12-28T21:47:26+00:00 | 4,446 | 38 | ---
base_model: ytu-ce-cosmos/turkish-base-bert-uncased
language:
- tr
license: mit
tags:
- Turkish
- turkish
- passage-retrieval
---
# Turkish-ColBERT
This is a Turkish passage retrieval model based on the [ColBERT](https://doi.org/10.48550/arXiv.2112.01488) architecture.
The [Cosmos Turkish Base BERT](https://huggingface.co/ytu-ce-cosmos/turkish-base-bert-uncased) model was fine-tuned on 500k triplets (query, positive passage, negative passage) from a Turkish-translated version of the [MS MARCO dataset](https://huggingface.co/datasets/parsak/msmarco-tr).
#### ⚠ Uncased use requires manual lowercase conversion
Convert your text to lower case as follows:
```python
text.replace("I", "ı").lower()
```
This is due to a [known issue](https://github.com/huggingface/transformers/issues/6680) with the tokenizer.
## Example Usage
```bash
!pip install ragatouille
```
```python
from ragatouille import RAGPretrainedModel
rag = RAGPretrainedModel.from_pretrained("ytu-ce-cosmos/turkish-colbert")
docs = [
"Marie Curie, radyoaktivite üzerine yaptığı çalışmalarla bilim dünyasına büyük katkılar sağlamıştır. Polonyum ve radyum elementlerini keşfetmiştir. İki farklı dalda Nobel Ödülü alan ilk kişi olmuştur.",
"Isaac Newton, fizik ve matematik alanında yaptığı çalışmalarla bilinir. Yerçekimi teorisi ve hareket yasaları, bilim dünyasında çığır açmıştır. Ayrıca, matematiksel analiz üzerinde de önemli katkıları vardır.",
"Albert Einstein, izafiyet teorisini geliştirerek modern fiziğin temellerini atmıştır. 1921 yılında Nobel Fizik Ödülü'nü kazanmıştır. Kütle-enerji eşitliği (E=mc²) onun en ünlü formülüdür.",
"Alexander Fleming, 1928 yılında penisilini keşfederek modern tıpta devrim yaratmıştır. Bu keşfi sayesinde 1945 yılında Nobel Tıp Ödülü kazanmıştır. Fleming'in çalışmaları antibiyotiklerin gelişimine öncülük etmiştir.",
"Nikola Tesla, alternatif akım (AC) sistemini geliştirmiştir. Elektrik mühendisliği alanında devrim niteliğinde çalışmalar yapmıştır. Kablosuz enerji aktarımı üzerine projeleriyle tanınır."
]
docs = [doc.replace("I", "ı").lower() for doc in docs]
rag.index(docs, index_name="sampleTest")
query = "Birden fazla Nobel Ödülü alan bilim insanı kimdir?"
query = query.replace("I", "ı").lower()
results = rag.search(query, k= 1)
print(results[0]['content']) # "marie curie, radyoaktivite üzerine yaptığı çalışmalarla bilim dünyasına büyük katkılar sağlamıştır. polonyum ve radyum elementlerini keşfetmiştir. i̇ki farklı dalda nobel ödülü alan ilk kişi olmuştur."
```
# Evaluation
| Dataset | R@1 | R@5 | R@10 | MRR@10 |
|-------------|--------------|--------------|--------------|---------------|
| [Scifact-tr](https://huggingface.co/datasets/AbdulkaderSaoud/scifact-tr) | 48.38 | 67.85 | 75.52 | 56.88 |
| [WikiRAG-TR](https://huggingface.co/datasets/Metin/WikiRAG-TR) | 31.21 | 75.63 | 79.63 | 49.08 |
# Acknowledgments
- Research supported with Cloud TPUs from [Google's TensorFlow Research Cloud](https://sites.research.google/trc/about/) (TFRC). Thanks for providing access to the TFRC ❤️
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
# Citations
```bibtex
@article{kesgin2023developing,
title={Developing and Evaluating Tiny to Medium-Sized Turkish BERT Models},
author={Kesgin, Himmet Toprak and Yuce, Muzaffer Kaan and Amasyali, Mehmet Fatih},
journal={arXiv preprint arXiv:2307.14134},
year={2023}
}
```
### Contact
COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br>
https://cosmos.yildiz.edu.tr/ <br>
[email protected] <br> | [
"SCIFACT"
] |
TaylorAI/bge-micro | TaylorAI | sentence-similarity | [
"sentence-transformers",
"pytorch",
"onnx",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"mteb",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2023-10-07T06:46:18Z" | 2024-03-05T18:27:18+00:00 | 4,418 | 23 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: bge_micro
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 66.26865671641792
- type: ap
value: 28.174006539079688
- type: f1
value: 59.724963358211035
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 75.3691
- type: ap
value: 69.64182876373573
- type: f1
value: 75.2906345000088
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 35.806
- type: f1
value: 35.506516495961904
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.24
- type: map_at_10
value: 42.832
- type: map_at_100
value: 43.797000000000004
- type: map_at_1000
value: 43.804
- type: map_at_3
value: 38.134
- type: map_at_5
value: 40.744
- type: mrr_at_1
value: 27.951999999999998
- type: mrr_at_10
value: 43.111
- type: mrr_at_100
value: 44.083
- type: mrr_at_1000
value: 44.09
- type: mrr_at_3
value: 38.431
- type: mrr_at_5
value: 41.019
- type: ndcg_at_1
value: 27.24
- type: ndcg_at_10
value: 51.513
- type: ndcg_at_100
value: 55.762
- type: ndcg_at_1000
value: 55.938
- type: ndcg_at_3
value: 41.743
- type: ndcg_at_5
value: 46.454
- type: precision_at_1
value: 27.24
- type: precision_at_10
value: 7.93
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 17.402
- type: precision_at_5
value: 12.731
- type: recall_at_1
value: 27.24
- type: recall_at_10
value: 79.303
- type: recall_at_100
value: 98.151
- type: recall_at_1000
value: 99.502
- type: recall_at_3
value: 52.205
- type: recall_at_5
value: 63.656
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 44.59766397469585
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 34.480143023109626
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 58.09326229984527
- type: mrr
value: 72.18429846546191
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 85.47582391622187
- type: cos_sim_spearman
value: 83.41635852964214
- type: euclidean_pearson
value: 84.21969728559216
- type: euclidean_spearman
value: 83.46575724558684
- type: manhattan_pearson
value: 83.83107014910223
- type: manhattan_spearman
value: 83.13321954800792
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 80.58116883116882
- type: f1
value: 80.53335622619781
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 37.13458676004344
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 29.720429607514898
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.051000000000002
- type: map_at_10
value: 36.291000000000004
- type: map_at_100
value: 37.632
- type: map_at_1000
value: 37.772
- type: map_at_3
value: 33.288000000000004
- type: map_at_5
value: 35.035
- type: mrr_at_1
value: 33.333
- type: mrr_at_10
value: 42.642
- type: mrr_at_100
value: 43.401
- type: mrr_at_1000
value: 43.463
- type: mrr_at_3
value: 40.272000000000006
- type: mrr_at_5
value: 41.753
- type: ndcg_at_1
value: 33.333
- type: ndcg_at_10
value: 42.291000000000004
- type: ndcg_at_100
value: 47.602
- type: ndcg_at_1000
value: 50.109
- type: ndcg_at_3
value: 38.033
- type: ndcg_at_5
value: 40.052
- type: precision_at_1
value: 33.333
- type: precision_at_10
value: 8.254999999999999
- type: precision_at_100
value: 1.353
- type: precision_at_1000
value: 0.185
- type: precision_at_3
value: 18.884
- type: precision_at_5
value: 13.447999999999999
- type: recall_at_1
value: 26.051000000000002
- type: recall_at_10
value: 53.107000000000006
- type: recall_at_100
value: 76.22
- type: recall_at_1000
value: 92.92399999999999
- type: recall_at_3
value: 40.073
- type: recall_at_5
value: 46.327
- type: map_at_1
value: 19.698999999999998
- type: map_at_10
value: 26.186
- type: map_at_100
value: 27.133000000000003
- type: map_at_1000
value: 27.256999999999998
- type: map_at_3
value: 24.264
- type: map_at_5
value: 25.307000000000002
- type: mrr_at_1
value: 24.712999999999997
- type: mrr_at_10
value: 30.703999999999997
- type: mrr_at_100
value: 31.445
- type: mrr_at_1000
value: 31.517
- type: mrr_at_3
value: 28.992
- type: mrr_at_5
value: 29.963
- type: ndcg_at_1
value: 24.712999999999997
- type: ndcg_at_10
value: 30.198000000000004
- type: ndcg_at_100
value: 34.412
- type: ndcg_at_1000
value: 37.174
- type: ndcg_at_3
value: 27.148
- type: ndcg_at_5
value: 28.464
- type: precision_at_1
value: 24.712999999999997
- type: precision_at_10
value: 5.489999999999999
- type: precision_at_100
value: 0.955
- type: precision_at_1000
value: 0.14400000000000002
- type: precision_at_3
value: 12.803
- type: precision_at_5
value: 8.981
- type: recall_at_1
value: 19.698999999999998
- type: recall_at_10
value: 37.595
- type: recall_at_100
value: 55.962
- type: recall_at_1000
value: 74.836
- type: recall_at_3
value: 28.538999999999998
- type: recall_at_5
value: 32.279
- type: map_at_1
value: 34.224
- type: map_at_10
value: 44.867000000000004
- type: map_at_100
value: 45.944
- type: map_at_1000
value: 46.013999999999996
- type: map_at_3
value: 42.009
- type: map_at_5
value: 43.684
- type: mrr_at_1
value: 39.436
- type: mrr_at_10
value: 48.301
- type: mrr_at_100
value: 49.055
- type: mrr_at_1000
value: 49.099
- type: mrr_at_3
value: 45.956
- type: mrr_at_5
value: 47.445
- type: ndcg_at_1
value: 39.436
- type: ndcg_at_10
value: 50.214000000000006
- type: ndcg_at_100
value: 54.63
- type: ndcg_at_1000
value: 56.165
- type: ndcg_at_3
value: 45.272
- type: ndcg_at_5
value: 47.826
- type: precision_at_1
value: 39.436
- type: precision_at_10
value: 8.037999999999998
- type: precision_at_100
value: 1.118
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 20.125
- type: precision_at_5
value: 13.918
- type: recall_at_1
value: 34.224
- type: recall_at_10
value: 62.690999999999995
- type: recall_at_100
value: 81.951
- type: recall_at_1000
value: 92.93299999999999
- type: recall_at_3
value: 49.299
- type: recall_at_5
value: 55.533
- type: map_at_1
value: 21.375
- type: map_at_10
value: 28.366000000000003
- type: map_at_100
value: 29.363
- type: map_at_1000
value: 29.458000000000002
- type: map_at_3
value: 26.247
- type: map_at_5
value: 27.439000000000004
- type: mrr_at_1
value: 22.938
- type: mrr_at_10
value: 30.072
- type: mrr_at_100
value: 30.993
- type: mrr_at_1000
value: 31.070999999999998
- type: mrr_at_3
value: 28.004
- type: mrr_at_5
value: 29.179
- type: ndcg_at_1
value: 22.938
- type: ndcg_at_10
value: 32.516
- type: ndcg_at_100
value: 37.641999999999996
- type: ndcg_at_1000
value: 40.150999999999996
- type: ndcg_at_3
value: 28.341
- type: ndcg_at_5
value: 30.394
- type: precision_at_1
value: 22.938
- type: precision_at_10
value: 5.028
- type: precision_at_100
value: 0.8
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 12.052999999999999
- type: precision_at_5
value: 8.497
- type: recall_at_1
value: 21.375
- type: recall_at_10
value: 43.682
- type: recall_at_100
value: 67.619
- type: recall_at_1000
value: 86.64699999999999
- type: recall_at_3
value: 32.478
- type: recall_at_5
value: 37.347
- type: map_at_1
value: 14.95
- type: map_at_10
value: 21.417
- type: map_at_100
value: 22.525000000000002
- type: map_at_1000
value: 22.665
- type: map_at_3
value: 18.684
- type: map_at_5
value: 20.275000000000002
- type: mrr_at_1
value: 18.159
- type: mrr_at_10
value: 25.373
- type: mrr_at_100
value: 26.348
- type: mrr_at_1000
value: 26.432
- type: mrr_at_3
value: 22.698999999999998
- type: mrr_at_5
value: 24.254
- type: ndcg_at_1
value: 18.159
- type: ndcg_at_10
value: 26.043
- type: ndcg_at_100
value: 31.491999999999997
- type: ndcg_at_1000
value: 34.818
- type: ndcg_at_3
value: 21.05
- type: ndcg_at_5
value: 23.580000000000002
- type: precision_at_1
value: 18.159
- type: precision_at_10
value: 4.938
- type: precision_at_100
value: 0.872
- type: precision_at_1000
value: 0.129
- type: precision_at_3
value: 9.908999999999999
- type: precision_at_5
value: 7.611999999999999
- type: recall_at_1
value: 14.95
- type: recall_at_10
value: 36.285000000000004
- type: recall_at_100
value: 60.431999999999995
- type: recall_at_1000
value: 84.208
- type: recall_at_3
value: 23.006
- type: recall_at_5
value: 29.304999999999996
- type: map_at_1
value: 23.580000000000002
- type: map_at_10
value: 32.906
- type: map_at_100
value: 34.222
- type: map_at_1000
value: 34.346
- type: map_at_3
value: 29.891000000000002
- type: map_at_5
value: 31.679000000000002
- type: mrr_at_1
value: 28.778
- type: mrr_at_10
value: 37.783
- type: mrr_at_100
value: 38.746
- type: mrr_at_1000
value: 38.804
- type: mrr_at_3
value: 35.098
- type: mrr_at_5
value: 36.739
- type: ndcg_at_1
value: 28.778
- type: ndcg_at_10
value: 38.484
- type: ndcg_at_100
value: 44.322
- type: ndcg_at_1000
value: 46.772000000000006
- type: ndcg_at_3
value: 33.586
- type: ndcg_at_5
value: 36.098
- type: precision_at_1
value: 28.778
- type: precision_at_10
value: 7.151000000000001
- type: precision_at_100
value: 1.185
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 16.105
- type: precision_at_5
value: 11.704
- type: recall_at_1
value: 23.580000000000002
- type: recall_at_10
value: 50.151999999999994
- type: recall_at_100
value: 75.114
- type: recall_at_1000
value: 91.467
- type: recall_at_3
value: 36.552
- type: recall_at_5
value: 43.014
- type: map_at_1
value: 20.669999999999998
- type: map_at_10
value: 28.687
- type: map_at_100
value: 30.061
- type: map_at_1000
value: 30.197000000000003
- type: map_at_3
value: 26.134
- type: map_at_5
value: 27.508
- type: mrr_at_1
value: 26.256
- type: mrr_at_10
value: 34.105999999999995
- type: mrr_at_100
value: 35.137
- type: mrr_at_1000
value: 35.214
- type: mrr_at_3
value: 31.791999999999998
- type: mrr_at_5
value: 33.145
- type: ndcg_at_1
value: 26.256
- type: ndcg_at_10
value: 33.68
- type: ndcg_at_100
value: 39.7
- type: ndcg_at_1000
value: 42.625
- type: ndcg_at_3
value: 29.457
- type: ndcg_at_5
value: 31.355
- type: precision_at_1
value: 26.256
- type: precision_at_10
value: 6.2330000000000005
- type: precision_at_100
value: 1.08
- type: precision_at_1000
value: 0.149
- type: precision_at_3
value: 14.193
- type: precision_at_5
value: 10.113999999999999
- type: recall_at_1
value: 20.669999999999998
- type: recall_at_10
value: 43.254999999999995
- type: recall_at_100
value: 69.118
- type: recall_at_1000
value: 89.408
- type: recall_at_3
value: 31.135
- type: recall_at_5
value: 36.574
- type: map_at_1
value: 21.488833333333336
- type: map_at_10
value: 29.025416666666665
- type: map_at_100
value: 30.141249999999992
- type: map_at_1000
value: 30.264083333333335
- type: map_at_3
value: 26.599333333333337
- type: map_at_5
value: 28.004666666666665
- type: mrr_at_1
value: 25.515
- type: mrr_at_10
value: 32.8235
- type: mrr_at_100
value: 33.69958333333333
- type: mrr_at_1000
value: 33.77191666666668
- type: mrr_at_3
value: 30.581000000000003
- type: mrr_at_5
value: 31.919666666666668
- type: ndcg_at_1
value: 25.515
- type: ndcg_at_10
value: 33.64241666666666
- type: ndcg_at_100
value: 38.75816666666667
- type: ndcg_at_1000
value: 41.472166666666666
- type: ndcg_at_3
value: 29.435083333333335
- type: ndcg_at_5
value: 31.519083333333338
- type: precision_at_1
value: 25.515
- type: precision_at_10
value: 5.89725
- type: precision_at_100
value: 0.9918333333333335
- type: precision_at_1000
value: 0.14075
- type: precision_at_3
value: 13.504000000000001
- type: precision_at_5
value: 9.6885
- type: recall_at_1
value: 21.488833333333336
- type: recall_at_10
value: 43.60808333333333
- type: recall_at_100
value: 66.5045
- type: recall_at_1000
value: 85.70024999999998
- type: recall_at_3
value: 31.922166666666662
- type: recall_at_5
value: 37.29758333333334
- type: map_at_1
value: 20.781
- type: map_at_10
value: 27.173000000000002
- type: map_at_100
value: 27.967
- type: map_at_1000
value: 28.061999999999998
- type: map_at_3
value: 24.973
- type: map_at_5
value: 26.279999999999998
- type: mrr_at_1
value: 23.773
- type: mrr_at_10
value: 29.849999999999998
- type: mrr_at_100
value: 30.595
- type: mrr_at_1000
value: 30.669
- type: mrr_at_3
value: 27.761000000000003
- type: mrr_at_5
value: 29.003
- type: ndcg_at_1
value: 23.773
- type: ndcg_at_10
value: 31.033
- type: ndcg_at_100
value: 35.174
- type: ndcg_at_1000
value: 37.72
- type: ndcg_at_3
value: 26.927
- type: ndcg_at_5
value: 29.047
- type: precision_at_1
value: 23.773
- type: precision_at_10
value: 4.8469999999999995
- type: precision_at_100
value: 0.75
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 11.452
- type: precision_at_5
value: 8.129
- type: recall_at_1
value: 20.781
- type: recall_at_10
value: 40.463
- type: recall_at_100
value: 59.483
- type: recall_at_1000
value: 78.396
- type: recall_at_3
value: 29.241
- type: recall_at_5
value: 34.544000000000004
- type: map_at_1
value: 15.074000000000002
- type: map_at_10
value: 20.757
- type: map_at_100
value: 21.72
- type: map_at_1000
value: 21.844
- type: map_at_3
value: 18.929000000000002
- type: map_at_5
value: 19.894000000000002
- type: mrr_at_1
value: 18.307000000000002
- type: mrr_at_10
value: 24.215
- type: mrr_at_100
value: 25.083
- type: mrr_at_1000
value: 25.168000000000003
- type: mrr_at_3
value: 22.316
- type: mrr_at_5
value: 23.36
- type: ndcg_at_1
value: 18.307000000000002
- type: ndcg_at_10
value: 24.651999999999997
- type: ndcg_at_100
value: 29.296
- type: ndcg_at_1000
value: 32.538
- type: ndcg_at_3
value: 21.243000000000002
- type: ndcg_at_5
value: 22.727
- type: precision_at_1
value: 18.307000000000002
- type: precision_at_10
value: 4.446
- type: precision_at_100
value: 0.792
- type: precision_at_1000
value: 0.124
- type: precision_at_3
value: 9.945
- type: precision_at_5
value: 7.123
- type: recall_at_1
value: 15.074000000000002
- type: recall_at_10
value: 33.031
- type: recall_at_100
value: 53.954
- type: recall_at_1000
value: 77.631
- type: recall_at_3
value: 23.253
- type: recall_at_5
value: 27.218999999999998
- type: map_at_1
value: 21.04
- type: map_at_10
value: 28.226000000000003
- type: map_at_100
value: 29.337999999999997
- type: map_at_1000
value: 29.448999999999998
- type: map_at_3
value: 25.759
- type: map_at_5
value: 27.226
- type: mrr_at_1
value: 24.067
- type: mrr_at_10
value: 31.646
- type: mrr_at_100
value: 32.592999999999996
- type: mrr_at_1000
value: 32.668
- type: mrr_at_3
value: 29.26
- type: mrr_at_5
value: 30.725
- type: ndcg_at_1
value: 24.067
- type: ndcg_at_10
value: 32.789
- type: ndcg_at_100
value: 38.253
- type: ndcg_at_1000
value: 40.961
- type: ndcg_at_3
value: 28.189999999999998
- type: ndcg_at_5
value: 30.557000000000002
- type: precision_at_1
value: 24.067
- type: precision_at_10
value: 5.532
- type: precision_at_100
value: 0.928
- type: precision_at_1000
value: 0.128
- type: precision_at_3
value: 12.5
- type: precision_at_5
value: 9.16
- type: recall_at_1
value: 21.04
- type: recall_at_10
value: 43.167
- type: recall_at_100
value: 67.569
- type: recall_at_1000
value: 86.817
- type: recall_at_3
value: 31.178
- type: recall_at_5
value: 36.730000000000004
- type: map_at_1
value: 21.439
- type: map_at_10
value: 28.531000000000002
- type: map_at_100
value: 29.953999999999997
- type: map_at_1000
value: 30.171
- type: map_at_3
value: 26.546999999999997
- type: map_at_5
value: 27.71
- type: mrr_at_1
value: 26.087
- type: mrr_at_10
value: 32.635
- type: mrr_at_100
value: 33.629999999999995
- type: mrr_at_1000
value: 33.71
- type: mrr_at_3
value: 30.731
- type: mrr_at_5
value: 31.807999999999996
- type: ndcg_at_1
value: 26.087
- type: ndcg_at_10
value: 32.975
- type: ndcg_at_100
value: 38.853
- type: ndcg_at_1000
value: 42.158
- type: ndcg_at_3
value: 29.894
- type: ndcg_at_5
value: 31.397000000000002
- type: precision_at_1
value: 26.087
- type: precision_at_10
value: 6.2059999999999995
- type: precision_at_100
value: 1.298
- type: precision_at_1000
value: 0.22200000000000003
- type: precision_at_3
value: 14.097000000000001
- type: precision_at_5
value: 9.959999999999999
- type: recall_at_1
value: 21.439
- type: recall_at_10
value: 40.519
- type: recall_at_100
value: 68.073
- type: recall_at_1000
value: 89.513
- type: recall_at_3
value: 31.513
- type: recall_at_5
value: 35.702
- type: map_at_1
value: 18.983
- type: map_at_10
value: 24.898
- type: map_at_100
value: 25.836
- type: map_at_1000
value: 25.934
- type: map_at_3
value: 22.467000000000002
- type: map_at_5
value: 24.019
- type: mrr_at_1
value: 20.333000000000002
- type: mrr_at_10
value: 26.555
- type: mrr_at_100
value: 27.369
- type: mrr_at_1000
value: 27.448
- type: mrr_at_3
value: 24.091
- type: mrr_at_5
value: 25.662000000000003
- type: ndcg_at_1
value: 20.333000000000002
- type: ndcg_at_10
value: 28.834
- type: ndcg_at_100
value: 33.722
- type: ndcg_at_1000
value: 36.475
- type: ndcg_at_3
value: 24.08
- type: ndcg_at_5
value: 26.732
- type: precision_at_1
value: 20.333000000000002
- type: precision_at_10
value: 4.603
- type: precision_at_100
value: 0.771
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 9.982000000000001
- type: precision_at_5
value: 7.6160000000000005
- type: recall_at_1
value: 18.983
- type: recall_at_10
value: 39.35
- type: recall_at_100
value: 62.559
- type: recall_at_1000
value: 83.623
- type: recall_at_3
value: 26.799
- type: recall_at_5
value: 32.997
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.621
- type: map_at_10
value: 17.298
- type: map_at_100
value: 18.983
- type: map_at_1000
value: 19.182
- type: map_at_3
value: 14.552999999999999
- type: map_at_5
value: 15.912
- type: mrr_at_1
value: 23.453
- type: mrr_at_10
value: 33.932
- type: mrr_at_100
value: 34.891
- type: mrr_at_1000
value: 34.943000000000005
- type: mrr_at_3
value: 30.770999999999997
- type: mrr_at_5
value: 32.556000000000004
- type: ndcg_at_1
value: 23.453
- type: ndcg_at_10
value: 24.771
- type: ndcg_at_100
value: 31.738
- type: ndcg_at_1000
value: 35.419
- type: ndcg_at_3
value: 20.22
- type: ndcg_at_5
value: 21.698999999999998
- type: precision_at_1
value: 23.453
- type: precision_at_10
value: 7.785
- type: precision_at_100
value: 1.5270000000000001
- type: precision_at_1000
value: 0.22
- type: precision_at_3
value: 14.962
- type: precision_at_5
value: 11.401
- type: recall_at_1
value: 10.621
- type: recall_at_10
value: 29.726000000000003
- type: recall_at_100
value: 53.996
- type: recall_at_1000
value: 74.878
- type: recall_at_3
value: 18.572
- type: recall_at_5
value: 22.994999999999997
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.819
- type: map_at_10
value: 14.188
- type: map_at_100
value: 19.627
- type: map_at_1000
value: 20.757
- type: map_at_3
value: 10.352
- type: map_at_5
value: 12.096
- type: mrr_at_1
value: 54.25
- type: mrr_at_10
value: 63.798
- type: mrr_at_100
value: 64.25
- type: mrr_at_1000
value: 64.268
- type: mrr_at_3
value: 61.667
- type: mrr_at_5
value: 63.153999999999996
- type: ndcg_at_1
value: 39.5
- type: ndcg_at_10
value: 31.064999999999998
- type: ndcg_at_100
value: 34.701
- type: ndcg_at_1000
value: 41.687000000000005
- type: ndcg_at_3
value: 34.455999999999996
- type: ndcg_at_5
value: 32.919
- type: precision_at_1
value: 54.25
- type: precision_at_10
value: 25.4
- type: precision_at_100
value: 7.79
- type: precision_at_1000
value: 1.577
- type: precision_at_3
value: 39.333
- type: precision_at_5
value: 33.6
- type: recall_at_1
value: 6.819
- type: recall_at_10
value: 19.134
- type: recall_at_100
value: 41.191
- type: recall_at_1000
value: 64.699
- type: recall_at_3
value: 11.637
- type: recall_at_5
value: 14.807
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 42.474999999999994
- type: f1
value: 37.79154895614037
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 53.187
- type: map_at_10
value: 64.031
- type: map_at_100
value: 64.507
- type: map_at_1000
value: 64.526
- type: map_at_3
value: 61.926
- type: map_at_5
value: 63.278999999999996
- type: mrr_at_1
value: 57.396
- type: mrr_at_10
value: 68.296
- type: mrr_at_100
value: 68.679
- type: mrr_at_1000
value: 68.688
- type: mrr_at_3
value: 66.289
- type: mrr_at_5
value: 67.593
- type: ndcg_at_1
value: 57.396
- type: ndcg_at_10
value: 69.64
- type: ndcg_at_100
value: 71.75399999999999
- type: ndcg_at_1000
value: 72.179
- type: ndcg_at_3
value: 65.66199999999999
- type: ndcg_at_5
value: 67.932
- type: precision_at_1
value: 57.396
- type: precision_at_10
value: 9.073
- type: precision_at_100
value: 1.024
- type: precision_at_1000
value: 0.107
- type: precision_at_3
value: 26.133
- type: precision_at_5
value: 16.943
- type: recall_at_1
value: 53.187
- type: recall_at_10
value: 82.839
- type: recall_at_100
value: 92.231
- type: recall_at_1000
value: 95.249
- type: recall_at_3
value: 72.077
- type: recall_at_5
value: 77.667
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.957
- type: map_at_10
value: 18.427
- type: map_at_100
value: 19.885
- type: map_at_1000
value: 20.088
- type: map_at_3
value: 15.709000000000001
- type: map_at_5
value: 17.153
- type: mrr_at_1
value: 22.377
- type: mrr_at_10
value: 30.076999999999998
- type: mrr_at_100
value: 31.233
- type: mrr_at_1000
value: 31.311
- type: mrr_at_3
value: 27.521
- type: mrr_at_5
value: 29.025000000000002
- type: ndcg_at_1
value: 22.377
- type: ndcg_at_10
value: 24.367
- type: ndcg_at_100
value: 31.04
- type: ndcg_at_1000
value: 35.106
- type: ndcg_at_3
value: 21.051000000000002
- type: ndcg_at_5
value: 22.231
- type: precision_at_1
value: 22.377
- type: precision_at_10
value: 7.005999999999999
- type: precision_at_100
value: 1.3599999999999999
- type: precision_at_1000
value: 0.208
- type: precision_at_3
value: 13.991999999999999
- type: precision_at_5
value: 10.833
- type: recall_at_1
value: 10.957
- type: recall_at_10
value: 30.274
- type: recall_at_100
value: 55.982
- type: recall_at_1000
value: 80.757
- type: recall_at_3
value: 19.55
- type: recall_at_5
value: 24.105999999999998
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.526999999999997
- type: map_at_10
value: 40.714
- type: map_at_100
value: 41.655
- type: map_at_1000
value: 41.744
- type: map_at_3
value: 38.171
- type: map_at_5
value: 39.646
- type: mrr_at_1
value: 59.055
- type: mrr_at_10
value: 66.411
- type: mrr_at_100
value: 66.85900000000001
- type: mrr_at_1000
value: 66.88300000000001
- type: mrr_at_3
value: 64.846
- type: mrr_at_5
value: 65.824
- type: ndcg_at_1
value: 59.055
- type: ndcg_at_10
value: 49.732
- type: ndcg_at_100
value: 53.441
- type: ndcg_at_1000
value: 55.354000000000006
- type: ndcg_at_3
value: 45.551
- type: ndcg_at_5
value: 47.719
- type: precision_at_1
value: 59.055
- type: precision_at_10
value: 10.366
- type: precision_at_100
value: 1.328
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 28.322999999999997
- type: precision_at_5
value: 18.709
- type: recall_at_1
value: 29.526999999999997
- type: recall_at_10
value: 51.83
- type: recall_at_100
value: 66.42099999999999
- type: recall_at_1000
value: 79.176
- type: recall_at_3
value: 42.485
- type: recall_at_5
value: 46.772000000000006
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 70.69959999999999
- type: ap
value: 64.95539314492567
- type: f1
value: 70.5554935943308
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 13.153
- type: map_at_10
value: 22.277
- type: map_at_100
value: 23.462
- type: map_at_1000
value: 23.546
- type: map_at_3
value: 19.026
- type: map_at_5
value: 20.825
- type: mrr_at_1
value: 13.539000000000001
- type: mrr_at_10
value: 22.753
- type: mrr_at_100
value: 23.906
- type: mrr_at_1000
value: 23.982999999999997
- type: mrr_at_3
value: 19.484
- type: mrr_at_5
value: 21.306
- type: ndcg_at_1
value: 13.553
- type: ndcg_at_10
value: 27.848
- type: ndcg_at_100
value: 33.900999999999996
- type: ndcg_at_1000
value: 36.155
- type: ndcg_at_3
value: 21.116
- type: ndcg_at_5
value: 24.349999999999998
- type: precision_at_1
value: 13.553
- type: precision_at_10
value: 4.695
- type: precision_at_100
value: 0.7779999999999999
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 9.207
- type: precision_at_5
value: 7.155
- type: recall_at_1
value: 13.153
- type: recall_at_10
value: 45.205
- type: recall_at_100
value: 73.978
- type: recall_at_1000
value: 91.541
- type: recall_at_3
value: 26.735
- type: recall_at_5
value: 34.493
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.2530779753762
- type: f1
value: 89.59402328284126
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 67.95029639762883
- type: f1
value: 48.99988836758662
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.77740416946874
- type: f1
value: 66.21341120969817
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.03631472763955
- type: f1
value: 72.5779336237941
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.98182669158824
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 29.259462874407582
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.29342377286548
- type: mrr
value: 32.32805799117226
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.692
- type: map_at_10
value: 10.559000000000001
- type: map_at_100
value: 13.665
- type: map_at_1000
value: 15.082
- type: map_at_3
value: 7.68
- type: map_at_5
value: 8.844000000000001
- type: mrr_at_1
value: 38.7
- type: mrr_at_10
value: 47.864000000000004
- type: mrr_at_100
value: 48.583999999999996
- type: mrr_at_1000
value: 48.636
- type: mrr_at_3
value: 45.975
- type: mrr_at_5
value: 47.074
- type: ndcg_at_1
value: 36.378
- type: ndcg_at_10
value: 30.038999999999998
- type: ndcg_at_100
value: 28.226000000000003
- type: ndcg_at_1000
value: 36.958
- type: ndcg_at_3
value: 33.469
- type: ndcg_at_5
value: 32.096999999999994
- type: precision_at_1
value: 38.080000000000005
- type: precision_at_10
value: 22.941
- type: precision_at_100
value: 7.632
- type: precision_at_1000
value: 2.0420000000000003
- type: precision_at_3
value: 31.579
- type: precision_at_5
value: 28.235
- type: recall_at_1
value: 4.692
- type: recall_at_10
value: 14.496
- type: recall_at_100
value: 29.69
- type: recall_at_1000
value: 61.229
- type: recall_at_3
value: 8.871
- type: recall_at_5
value: 10.825999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 13.120000000000001
- type: map_at_10
value: 24.092
- type: map_at_100
value: 25.485999999999997
- type: map_at_1000
value: 25.557999999999996
- type: map_at_3
value: 20.076
- type: map_at_5
value: 22.368
- type: mrr_at_1
value: 15.093
- type: mrr_at_10
value: 26.142
- type: mrr_at_100
value: 27.301
- type: mrr_at_1000
value: 27.357
- type: mrr_at_3
value: 22.364
- type: mrr_at_5
value: 24.564
- type: ndcg_at_1
value: 15.093
- type: ndcg_at_10
value: 30.734
- type: ndcg_at_100
value: 37.147999999999996
- type: ndcg_at_1000
value: 38.997
- type: ndcg_at_3
value: 22.82
- type: ndcg_at_5
value: 26.806
- type: precision_at_1
value: 15.093
- type: precision_at_10
value: 5.863
- type: precision_at_100
value: 0.942
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 11.047
- type: precision_at_5
value: 8.863999999999999
- type: recall_at_1
value: 13.120000000000001
- type: recall_at_10
value: 49.189
- type: recall_at_100
value: 78.032
- type: recall_at_1000
value: 92.034
- type: recall_at_3
value: 28.483000000000004
- type: recall_at_5
value: 37.756
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 67.765
- type: map_at_10
value: 81.069
- type: map_at_100
value: 81.757
- type: map_at_1000
value: 81.782
- type: map_at_3
value: 78.148
- type: map_at_5
value: 79.95400000000001
- type: mrr_at_1
value: 77.8
- type: mrr_at_10
value: 84.639
- type: mrr_at_100
value: 84.789
- type: mrr_at_1000
value: 84.79100000000001
- type: mrr_at_3
value: 83.467
- type: mrr_at_5
value: 84.251
- type: ndcg_at_1
value: 77.82
- type: ndcg_at_10
value: 85.286
- type: ndcg_at_100
value: 86.86500000000001
- type: ndcg_at_1000
value: 87.062
- type: ndcg_at_3
value: 82.116
- type: ndcg_at_5
value: 83.811
- type: precision_at_1
value: 77.82
- type: precision_at_10
value: 12.867999999999999
- type: precision_at_100
value: 1.498
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 35.723
- type: precision_at_5
value: 23.52
- type: recall_at_1
value: 67.765
- type: recall_at_10
value: 93.381
- type: recall_at_100
value: 98.901
- type: recall_at_1000
value: 99.864
- type: recall_at_3
value: 84.301
- type: recall_at_5
value: 89.049
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 45.27190981742137
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 54.47444004585028
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.213
- type: map_at_10
value: 10.166
- type: map_at_100
value: 11.987
- type: map_at_1000
value: 12.285
- type: map_at_3
value: 7.538
- type: map_at_5
value: 8.606
- type: mrr_at_1
value: 20.8
- type: mrr_at_10
value: 30.066
- type: mrr_at_100
value: 31.290000000000003
- type: mrr_at_1000
value: 31.357000000000003
- type: mrr_at_3
value: 27.083000000000002
- type: mrr_at_5
value: 28.748
- type: ndcg_at_1
value: 20.8
- type: ndcg_at_10
value: 17.258000000000003
- type: ndcg_at_100
value: 24.801000000000002
- type: ndcg_at_1000
value: 30.348999999999997
- type: ndcg_at_3
value: 16.719
- type: ndcg_at_5
value: 14.145
- type: precision_at_1
value: 20.8
- type: precision_at_10
value: 8.88
- type: precision_at_100
value: 1.9789999999999999
- type: precision_at_1000
value: 0.332
- type: precision_at_3
value: 15.5
- type: precision_at_5
value: 12.1
- type: recall_at_1
value: 4.213
- type: recall_at_10
value: 17.983
- type: recall_at_100
value: 40.167
- type: recall_at_1000
value: 67.43
- type: recall_at_3
value: 9.433
- type: recall_at_5
value: 12.267999999999999
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 80.36742239848913
- type: cos_sim_spearman
value: 72.39470010828755
- type: euclidean_pearson
value: 77.26919895870947
- type: euclidean_spearman
value: 72.26534999077315
- type: manhattan_pearson
value: 77.04066349814258
- type: manhattan_spearman
value: 72.0072248699278
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 80.26991474037257
- type: cos_sim_spearman
value: 71.90287122017716
- type: euclidean_pearson
value: 76.68006075912453
- type: euclidean_spearman
value: 71.69301858764365
- type: manhattan_pearson
value: 76.72277285842371
- type: manhattan_spearman
value: 71.73265239703795
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 79.74371413317881
- type: cos_sim_spearman
value: 80.9279612820358
- type: euclidean_pearson
value: 80.6417435294782
- type: euclidean_spearman
value: 81.17460969254459
- type: manhattan_pearson
value: 80.51820155178402
- type: manhattan_spearman
value: 81.08028700017084
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 80.37085777051112
- type: cos_sim_spearman
value: 76.60308382518285
- type: euclidean_pearson
value: 79.59684787227351
- type: euclidean_spearman
value: 76.8769048249242
- type: manhattan_pearson
value: 79.55617632538295
- type: manhattan_spearman
value: 76.90186497973124
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 83.99513105301321
- type: cos_sim_spearman
value: 84.92034548133665
- type: euclidean_pearson
value: 84.70872540095195
- type: euclidean_spearman
value: 85.14591726040749
- type: manhattan_pearson
value: 84.65707417430595
- type: manhattan_spearman
value: 85.10407163865375
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 79.40758449150897
- type: cos_sim_spearman
value: 80.71692246880549
- type: euclidean_pearson
value: 80.51658552062683
- type: euclidean_spearman
value: 80.87118389043233
- type: manhattan_pearson
value: 80.41534690825016
- type: manhattan_spearman
value: 80.73925282537256
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 84.93617076910748
- type: cos_sim_spearman
value: 85.61118538966805
- type: euclidean_pearson
value: 85.56187558635287
- type: euclidean_spearman
value: 85.21910090757267
- type: manhattan_pearson
value: 85.29916699037645
- type: manhattan_spearman
value: 84.96820527868671
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.22294088543077
- type: cos_sim_spearman
value: 65.89748502901078
- type: euclidean_pearson
value: 66.15637850660805
- type: euclidean_spearman
value: 65.86095841381278
- type: manhattan_pearson
value: 66.80966197857856
- type: manhattan_spearman
value: 66.48325202219692
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 81.75298158703048
- type: cos_sim_spearman
value: 81.32168373072322
- type: euclidean_pearson
value: 82.3251793712207
- type: euclidean_spearman
value: 81.31655163330606
- type: manhattan_pearson
value: 82.14136865023298
- type: manhattan_spearman
value: 81.13410964028606
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.77937068780793
- type: mrr
value: 93.334709952357
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 50.705999999999996
- type: map_at_10
value: 60.699999999999996
- type: map_at_100
value: 61.256
- type: map_at_1000
value: 61.285000000000004
- type: map_at_3
value: 57.633
- type: map_at_5
value: 59.648
- type: mrr_at_1
value: 53.0
- type: mrr_at_10
value: 61.717999999999996
- type: mrr_at_100
value: 62.165000000000006
- type: mrr_at_1000
value: 62.190999999999995
- type: mrr_at_3
value: 59.389
- type: mrr_at_5
value: 60.922
- type: ndcg_at_1
value: 53.0
- type: ndcg_at_10
value: 65.413
- type: ndcg_at_100
value: 68.089
- type: ndcg_at_1000
value: 69.01899999999999
- type: ndcg_at_3
value: 60.327
- type: ndcg_at_5
value: 63.263999999999996
- type: precision_at_1
value: 53.0
- type: precision_at_10
value: 8.933
- type: precision_at_100
value: 1.04
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 23.778
- type: precision_at_5
value: 16.2
- type: recall_at_1
value: 50.705999999999996
- type: recall_at_10
value: 78.633
- type: recall_at_100
value: 91.333
- type: recall_at_1000
value: 99.0
- type: recall_at_3
value: 65.328
- type: recall_at_5
value: 72.583
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.82178217821782
- type: cos_sim_ap
value: 95.30078788098801
- type: cos_sim_f1
value: 91.11549851924975
- type: cos_sim_precision
value: 89.96101364522417
- type: cos_sim_recall
value: 92.30000000000001
- type: dot_accuracy
value: 99.74851485148515
- type: dot_ap
value: 93.12383012680787
- type: dot_f1
value: 87.17171717171716
- type: dot_precision
value: 88.06122448979592
- type: dot_recall
value: 86.3
- type: euclidean_accuracy
value: 99.82673267326733
- type: euclidean_ap
value: 95.29507269622621
- type: euclidean_f1
value: 91.3151364764268
- type: euclidean_precision
value: 90.64039408866995
- type: euclidean_recall
value: 92.0
- type: manhattan_accuracy
value: 99.82178217821782
- type: manhattan_ap
value: 95.34300712110257
- type: manhattan_f1
value: 91.05367793240556
- type: manhattan_precision
value: 90.51383399209486
- type: manhattan_recall
value: 91.60000000000001
- type: max_accuracy
value: 99.82673267326733
- type: max_ap
value: 95.34300712110257
- type: max_f1
value: 91.3151364764268
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 53.10993894014712
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.67216071080345
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 48.96344255085851
- type: mrr
value: 49.816123419064596
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.580410074992177
- type: cos_sim_spearman
value: 31.155995112739966
- type: dot_pearson
value: 31.112094423048998
- type: dot_spearman
value: 31.29974829801922
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.17700000000000002
- type: map_at_10
value: 1.22
- type: map_at_100
value: 6.2170000000000005
- type: map_at_1000
value: 15.406
- type: map_at_3
value: 0.483
- type: map_at_5
value: 0.729
- type: mrr_at_1
value: 64.0
- type: mrr_at_10
value: 76.333
- type: mrr_at_100
value: 76.47
- type: mrr_at_1000
value: 76.47
- type: mrr_at_3
value: 75.0
- type: mrr_at_5
value: 76.0
- type: ndcg_at_1
value: 59.0
- type: ndcg_at_10
value: 52.62
- type: ndcg_at_100
value: 39.932
- type: ndcg_at_1000
value: 37.317
- type: ndcg_at_3
value: 57.123000000000005
- type: ndcg_at_5
value: 56.376000000000005
- type: precision_at_1
value: 64.0
- type: precision_at_10
value: 55.800000000000004
- type: precision_at_100
value: 41.04
- type: precision_at_1000
value: 17.124
- type: precision_at_3
value: 63.333
- type: precision_at_5
value: 62.0
- type: recall_at_1
value: 0.17700000000000002
- type: recall_at_10
value: 1.46
- type: recall_at_100
value: 9.472999999999999
- type: recall_at_1000
value: 35.661
- type: recall_at_3
value: 0.527
- type: recall_at_5
value: 0.8250000000000001
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.539
- type: map_at_10
value: 7.178
- type: map_at_100
value: 12.543000000000001
- type: map_at_1000
value: 14.126
- type: map_at_3
value: 3.09
- type: map_at_5
value: 5.008
- type: mrr_at_1
value: 18.367
- type: mrr_at_10
value: 32.933
- type: mrr_at_100
value: 34.176
- type: mrr_at_1000
value: 34.176
- type: mrr_at_3
value: 27.551
- type: mrr_at_5
value: 30.714000000000002
- type: ndcg_at_1
value: 15.306000000000001
- type: ndcg_at_10
value: 18.343
- type: ndcg_at_100
value: 30.076000000000004
- type: ndcg_at_1000
value: 42.266999999999996
- type: ndcg_at_3
value: 17.233999999999998
- type: ndcg_at_5
value: 18.677
- type: precision_at_1
value: 18.367
- type: precision_at_10
value: 18.367
- type: precision_at_100
value: 6.837
- type: precision_at_1000
value: 1.467
- type: precision_at_3
value: 19.048000000000002
- type: precision_at_5
value: 21.224
- type: recall_at_1
value: 1.539
- type: recall_at_10
value: 13.289000000000001
- type: recall_at_100
value: 42.480000000000004
- type: recall_at_1000
value: 79.463
- type: recall_at_3
value: 4.202999999999999
- type: recall_at_5
value: 7.9030000000000005
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.2056
- type: ap
value: 13.564165903349778
- type: f1
value: 53.303385089202656
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 56.71477079796264
- type: f1
value: 57.01563439439609
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 39.373040570976514
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 83.44757703999524
- type: cos_sim_ap
value: 65.78689843625949
- type: cos_sim_f1
value: 62.25549384206713
- type: cos_sim_precision
value: 57.39091718610864
- type: cos_sim_recall
value: 68.02110817941951
- type: dot_accuracy
value: 81.3971508612982
- type: dot_ap
value: 58.42933051967154
- type: dot_f1
value: 57.85580214198962
- type: dot_precision
value: 49.74368710841086
- type: dot_recall
value: 69.12928759894459
- type: euclidean_accuracy
value: 83.54294569946951
- type: euclidean_ap
value: 66.10612585693795
- type: euclidean_f1
value: 62.66666666666667
- type: euclidean_precision
value: 58.88631090487239
- type: euclidean_recall
value: 66.96569920844327
- type: manhattan_accuracy
value: 83.43565595756095
- type: manhattan_ap
value: 65.88532290329134
- type: manhattan_f1
value: 62.58408721874276
- type: manhattan_precision
value: 55.836092715231786
- type: manhattan_recall
value: 71.18733509234828
- type: max_accuracy
value: 83.54294569946951
- type: max_ap
value: 66.10612585693795
- type: max_f1
value: 62.66666666666667
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.02344083517679
- type: cos_sim_ap
value: 84.21589190889944
- type: cos_sim_f1
value: 76.36723039754007
- type: cos_sim_precision
value: 72.79134682484299
- type: cos_sim_recall
value: 80.31259624268556
- type: dot_accuracy
value: 87.43353902278108
- type: dot_ap
value: 82.08962394120071
- type: dot_f1
value: 74.97709923664122
- type: dot_precision
value: 74.34150772025431
- type: dot_recall
value: 75.62365260240222
- type: euclidean_accuracy
value: 87.97686963946133
- type: euclidean_ap
value: 84.20578083922416
- type: euclidean_f1
value: 76.4299182903834
- type: euclidean_precision
value: 73.51874244256348
- type: euclidean_recall
value: 79.58115183246073
- type: manhattan_accuracy
value: 88.00209570380719
- type: manhattan_ap
value: 84.14700304263556
- type: manhattan_f1
value: 76.36429345861944
- type: manhattan_precision
value: 71.95886119057349
- type: manhattan_recall
value: 81.34431783184478
- type: max_accuracy
value: 88.02344083517679
- type: max_ap
value: 84.21589190889944
- type: max_f1
value: 76.4299182903834
---
# bge-micro
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
It is distilled from [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5/blob/main/config.json), with 1/4 the non-embedding parameters.
It has 1/2 the parameters of the smallest commonly-used embedding model, all-MiniLM-L6-v2, with similar performance.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | [
"BIOSSES",
"SCIFACT"
] |
ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL | ibm-nasa-geospatial | null | [
"terratorch",
"Pytorch",
"Earth Observation",
"Foundation Model",
"NASA",
"IBM",
"arxiv:2412.02732",
"license:apache-2.0",
"region:us"
] | "2024-11-22T16:06:07Z" | 2025-01-22T11:45:59+00:00 | 4,343 | 3 | ---
library_name: terratorch
license: apache-2.0
tags:
- Pytorch
- Earth Observation
- Foundation Model
- NASA
- IBM
---
# Prithvi-EO-2.0
Prithvi-EO-2.0 is the second generation EO foundation model jointly developed by IBM, NASA, and Jülich Supercomputing Centre.
## Architecture Overview
Prithvi-EO-2.0 is based on the ViT architecture, pretrained using a masked autoencoder (MAE) approach, with two major modifications as shown in the figure below.

First, we replaced the 2D patch embeddings and 2D positional embeddings with 3D versions to support inputs with spatiotemporal characteristics, i.e., a sequence of T images of size (H, W). Our 3D patch embeddings consist of a 3D convolutional layer, dividing the 3D input into non-overlapping cubes of size (t, h, w) for time, height, and width dimensions, respectively. For the 3D positional encodings, we first generate 1D sin/cos encodings individually for each dimension and then combine them together into a single, 3D positional encoding.
Second, we considered geolocation (center latitude and longitude) and date of acquisition (year and day-of-year ranging 1-365) in the pretraining of the TL model versions. Both encoder and decoder receive time and location information for each sample and encodes them independently using 2D sin/cos encoding. They are added to the embedded tokens via a weighted sum with learned weights: one for time and one for location and separate weights for encoder and decoder. Since this metadata is often not available, we added a drop mechanism during pretraining that randomly drops the geolocation and/or the temporal data to help the model learn how to handle the absence of this information.
## Pre-trained Models
| Model | Details | Weights |
| ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
|Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
|Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
|Prithvi-EO-2.0-600M-TL | Pretrained 600M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M-TL) |
The models were pre-trained at the Jülich Supercomputing Centre with NASA's HLS V2 product (30m granularity) using 4.2M samples with six bands in the following order: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
## Benchmarking
We validated the Prithvi-EO-2.0 models through extensive experiments using [GEO-bench](https://github.com/ServiceNow/geo-bench). Prithvi-EO-2.0-600M-TL outperforms the previous Prithvi-EO model by 8% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m).

## Demo and inference
We provide a **demo** running Prithvi-EO-2.0-300M-TL [here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-EO-2.0-Demo).
There is also an inference script (`inference.py`) that allows to run the image reconstruction on a set of HLS images assumed to be from the same location at different timestamps (see example below). These should be provided in chronological order in geotiff format, including the channels described above (Blue, Green, Red, Narrow NIR, SWIR 1, SWIR 2) in reflectance units.
```
python inference.py --data_files t1.tif t2.tif t3.tif t4.tif --input_indices <optional, space separated 0-based indices of the six Prithvi channels in your input>
```
## Finetuning
You can finetune the model using [TerraTorch](https://github.com/IBM/terratorch). Examples of configs and notebooks are provided in the project repository: [github.com/NASA-IMPACT/Prithvi-EO-2.0](https://github.com/NASA-IMPACT/Prithvi-EO-2.0#fine-tuning).
Example Notebooks:
[Multitemporal Crop Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_multitemporalcrop.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_multitemporalcrop.ipynb) (Choose T4 GPU runtime)
[Landslide Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) (Choose T4 GPU runtime)
[Carbon Flux Prediction (Regression)](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/carbon_flux/main_flux_finetune_baselines_trainer.ipynb)
### Feedback
Your feedback is invaluable to us. If you have any feedback about the model, please feel free to share it with us. You can do this by starting a discussion in this HF repository or submitting an issue to [TerraTorch](https://github.com/IBM/terratorch) on GitHub.
### Citation
If this model helped your research, please cite [Prithvi-EO-2.0](https://arxiv.org/abs/2412.02732) in your publications.
```
@article{Prithvi-EO-V2-preprint,
author = {Szwarcman, Daniela and Roy, Sujit and Fraccaro, Paolo and Gíslason, Þorsteinn Elí and Blumenstiel, Benedikt and Ghosal, Rinki and de Oliveira, Pedro Henrique and de Sousa Almeida, João Lucas and Sedona, Rocco and Kang, Yanghui and Chakraborty, Srija and Wang, Sizhe and Kumar, Ankur and Truong, Myscon and Godwin, Denys and Lee, Hyunho and Hsu, Chia-Yu and Akbari Asanjan, Ata and Mujeci, Besart and Keenan, Trevor and Arévolo, Paulo and Li, Wenwen and Alemohammad, Hamed and Olofsson, Pontus and Hain, Christopher and Kennedy, Robert and Zadrozny, Bianca and Cavallaro, Gabriele and Watson, Campbell and Maskey, Manil and Ramachandran, Rahul and Bernabe Moreno, Juan},
title = {{Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications}},
journal = {arXiv preprint arXiv:2412.02732},
year = {2024}
}
```
| [
"CHIA"
] |
Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B | Casual-Autopsy | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B",
"base_model:merge:Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B",
"base_model:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B",
"base_model:merge:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B",
"base_model:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2",
"base_model:merge:Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2",
"base_model:Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B",
"base_model:merge:Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B",
"base_model:Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B",
"base_model:merge:Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B",
"base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B",
"base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B",
"base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B",
"base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B",
"base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B",
"base_model:merge:Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B",
"base_model:ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B",
"base_model:merge:ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B",
"base_model:Magpie-Align/Llama-3-8B-WizardLM-196K",
"base_model:merge:Magpie-Align/Llama-3-8B-WizardLM-196K",
"base_model:Nitral-AI/Hathor_Tahsin-L3-8B-v0.85",
"base_model:merge:Nitral-AI/Hathor_Tahsin-L3-8B-v0.85",
"base_model:ResplendentAI/Nymph_8B",
"base_model:merge:ResplendentAI/Nymph_8B",
"base_model:aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K",
"base_model:merge:aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K",
"base_model:bluuwhale/L3-SthenoMaidBlackroot-8B-V1",
"base_model:merge:bluuwhale/L3-SthenoMaidBlackroot-8B-V1",
"base_model:invisietch/EtherealRainbow-v0.3-8B",
"base_model:merge:invisietch/EtherealRainbow-v0.3-8B",
"base_model:migtissera/Llama-3-8B-Synthia-v3.5",
"base_model:merge:migtissera/Llama-3-8B-Synthia-v3.5",
"base_model:tannedbum/L3-Nymeria-8B",
"base_model:merge:tannedbum/L3-Nymeria-8B",
"base_model:tannedbum/L3-Nymeria-Maid-8B",
"base_model:merge:tannedbum/L3-Nymeria-Maid-8B",
"base_model:v000000/L3-8B-Poppy-Sunspice",
"base_model:merge:v000000/L3-8B-Poppy-Sunspice",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-07-10T08:17:33Z" | 2024-07-12T02:07:45+00:00 | 4,314 | 26 | ---
base_model:
- Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B
- Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B
- tannedbum/L3-Nymeria-Maid-8B
- bluuwhale/L3-SthenoMaidBlackroot-8B-V1
- tannedbum/L3-Nymeria-8B
- Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2
- migtissera/Llama-3-8B-Synthia-v3.5
- Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B
- v000000/L3-8B-Poppy-Sunspice
- Magpie-Align/Llama-3-8B-WizardLM-196K
- Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B
- Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B
- invisietch/EtherealRainbow-v0.3-8B
- crestf411/L3-8B-sunfall-v0.4-stheno-v3.2
- aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K
- ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B
- Nitral-AI/Hathor_Tahsin-L3-8B-v0.85
- Casual-Autopsy/Umbral-Mind-6
- ResplendentAI/Nymph_8B
library_name: transformers
tags:
- mergekit
- merge
---
<img src="https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3-8B/resolve/main/63073798_p0_master1200.jpg" style="display: block; margin: auto;">
Image by ろ47
# Merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
The goal of this merge was to make an RP model better suited for role-plays with heavy themes such as but not limited to:
- Mental illness
- Self-harm
- Trauma
- Suicide
I hated how RP models tended to be overly positive and hopeful with role-plays involving such themes,
but thanks to [failspy/Llama-3-8B-Instruct-MopeyMule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) this problem has been lessened considerably.
If you're an enjoyer of savior/reverse savior type role-plays like myself, then this model is for you.
### Usage Info
This model is meant to be used with asterisks/quotes RPing formats, any other format that isn't asterisks/quotes is likely to cause issues
### Quants
* Weighted GGUFs by [mradermacher](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v3.0-8B-i1-GGUF)
* Static GGUFs by [mradermacher](https://huggingface.co/mradermacher/L3-Umbral-Mind-RP-v3.0-8B-GGUF)
### Models Merged
The following models were included in the merge:
* [Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B)
* [Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B)
* [tannedbum/L3-Nymeria-Maid-8B](https://huggingface.co/tannedbum/L3-Nymeria-Maid-8B)
* [bluuwhale/L3-SthenoMaidBlackroot-8B-V1](https://huggingface.co/bluuwhale/L3-SthenoMaidBlackroot-8B-V1)
* [tannedbum/L3-Nymeria-8B](https://huggingface.co/tannedbum/L3-Nymeria-8B)
* [Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B)
* [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B)
* [Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2](https://huggingface.co/Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2)
* [migtissera/Llama-3-8B-Synthia-v3.5](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5)
* [Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B)
* [v000000/L3-8B-Poppy-Sunspice](https://huggingface.co/v000000/L3-8B-Poppy-Sunspice)
* [Magpie-Align/Llama-3-8B-WizardLM-196K](https://huggingface.co/Magpie-Align/Llama-3-8B-WizardLM-196K)
* [Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B](https://huggingface.co/Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B)
* [Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B)
* [invisietch/EtherealRainbow-v0.3-8B](https://huggingface.co/invisietch/EtherealRainbow-v0.3-8B)
* [crestf411/L3-8B-sunfall-v0.4-stheno-v3.2](https://huggingface.co/crestf411/L3-8B-sunfall-v0.4-stheno-v3.2)
* [aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K](https://huggingface.co/aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K)
* [ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B)
* [Nitral-AI/Hathor_Tahsin-L3-8B-v0.85](https://huggingface.co/Nitral-AI/Hathor_Tahsin-L3-8B-v0.85)
* [ResplendentAI/Nymph_8B](https://huggingface.co/ResplendentAI/Nymph_8B)
## Secret Sauce
The following YAML configurations were used to produce this model:
### Umbral-Mind-1-pt.1
```yaml
models:
- model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B
- model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B
parameters:
density: 0.5
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
- model: tannedbum/L3-Nymeria-Maid-8B
parameters:
density: 0.5
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: tannedbum/L3-Nymeria-8B
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
merge_method: dare_ties
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
```
### Umbral-Mind-1-pt.2
```yaml
models:
- model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B
- model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
- model: tannedbum/L3-Nymeria-Maid-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: tannedbum/L3-Nymeria-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
merge_method: breadcrumbs_ties
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
```
### Umbral-Mind-1
```yaml
models:
- model: Casual-Autopsy/Umbral-Mind-1-pt.1
- model: Casual-Autopsy/Umbral-Mind-1-pt.2
merge_method: slerp
base_model: Casual-Autopsy/Umbral-Mind-1-pt.1
parameters:
t:
- filter: self_attn
value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5]
- filter: mlp
value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5]
- value: 0.5
dtype: bfloat16
```
### Umbral-Mind-2-pt.1
```yaml
models:
- model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2
parameters:
density: 0.5
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
- model: migtissera/Llama-3-8B-Synthia-v3.5
parameters:
density: 0.5
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: v000000/L3-8B-Poppy-Sunspice
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
merge_method: dare_ties
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
```
### Umbral-Mind-2-pt.2
```yaml
models:
- model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-v2
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
- model: migtissera/Llama-3-8B-Synthia-v3.5
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-Blackroot-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: Magpie-Align/Llama-3-8B-WizardLM-196K
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: Cas-Warehouse/Llama-3-Mopeyfied-Psychology-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
merge_method: breadcrumbs_ties
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
```
### Umbral-Mind-2
```yaml
models:
- model: Casual-Autopsy/Umbral-Mind-2-pt.1
- model: Casual-Autopsy/Umbral-Mind-2-pt.2
merge_method: slerp
base_model: Casual-Autopsy/Umbral-Mind-2-pt.1
parameters:
t:
- filter: self_attn
value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5]
- filter: mlp
value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5]
- value: 0.5
dtype: bfloat16
```
### Umbral-Mind-3-pt.1
```yaml
models:
- model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B
- model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B
parameters:
density: 0.5
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
- model: invisietch/EtherealRainbow-v0.3-8B
parameters:
density: 0.5
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
merge_method: dare_ties
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
```
### Umbral-Mind-3-pt.2
```yaml
models:
- model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B
- model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
- model: invisietch/EtherealRainbow-v0.3-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
merge_method: breadcrumbs_ties
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.3-8B
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
```
### Umbral-Mind-3
```yaml
models:
- model: Casual-Autopsy/Umbral-Mind-3-pt.1
- model: Casual-Autopsy/Umbral-Mind-3-pt.2
merge_method: slerp
base_model: Casual-Autopsy/Umbral-Mind-3-pt.1
parameters:
t:
- filter: self_attn
value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5]
- filter: mlp
value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5]
- value: 0.5
dtype: bfloat16
```
### Umbral-Mind-4
```yaml
models:
- model: Casual-Autopsy/Umbral-Mind-1
- model: Casual-Autopsy/Umbral-Mind-3
merge_method: slerp
base_model: Casual-Autopsy/Umbral-Mind-1
parameters:
t:
- value: [0.1, 0.15, 0.2, 0.4, 0.6, 0.4, 0.2, 0.15, 0.1]
dtype: bfloat16
```
### Umbral-Mind-5
```yaml
models:
- model: Casual-Autopsy/Umbral-Mind-4
- model: Casual-Autopsy/Umbral-Mind-2
merge_method: slerp
base_model: Casual-Autopsy/Umbral-Mind-4
parameters:
t:
- value: [0.7, 0.5, 0.3, 0.25, 0.2, 0.25, 0.3, 0.5, 0.7]
embed_slerp: true
dtype: bfloat16
```
### Umbral-Mind-6
```yaml
models:
- model: mergekit-community/Umbral-Mind-5
- model: Casual-Autopsy/Mopey-Omelette
merge_method: slerp
base_model: mergekit-community/Umbral-Mind-5
parameters:
t:
- value: [0.2, 0.25, 0.3, 0.4, 0.3, 0.25, 0.2, 0.25, 0.3, 0.4, 0.3, 0.25, 0.2]
embed_slerp: true
dtype: bfloat16
```
### Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B
```yaml
models:
- model: Casual-Autopsy/Umbral-Mind-6
- model: aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K
parameters:
weight: [0.02, -0.01, -0.01, 0.02]
- model: ResplendentAI/Nymph_8B
parameters:
weight: [-0.01, 0.02, 0.02, -0.01]
- model: ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B
parameters:
weight: [-0.01, 0.02, 0.02, -0.01]
- model: Nitral-AI/Hathor_Tahsin-L3-8B-v0.85
parameters:
weight: [0.02, -0.01, -0.01, 0.02]
merge_method: task_arithmetic
base_model: Casual-Autopsy/Umbral-Mind-6
parameters:
normalize: false
dtype: bfloat16
```
| [
"CAS"
] |
alvdansen/plushy-world-flux | alvdansen | text-to-image | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:creativeml-openrail-m",
"region:us"
] | "2024-08-17T21:31:48Z" | 2024-08-17T21:33:24+00:00 | 4,254 | 35 | ---
base_model: black-forest-labs/FLUX.1-dev
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
widget:
- text: a cute toad, 3dcndylnd style
output:
url: images/ComfyUI_00664_.png
- text: An eccentric inventor in a lab coat, with wild hair and glasses, surrounded
by quirky gadgets, 3dcndylnd style
output:
url: images/ComfyUI_00666_ (1).png
- text: A gentle giant, a friendly ogre with a flower crown, sitting cross-legged
in a meadow, 3dcndylnd style
output:
url: images/ComfyUI_00669_ (1).png
- text: A sleepy alien floating in zero gravity, hugging a teddy bear, surrounded
by twinkling stars, 3dcndylnd style
output:
url: images/ComfyUI_00671_.png
- text: A whimsical treehouse village connected by rope bridges, nestled in a misty
forest, 3dcndylnd style
output:
url: images/ComfyUI_00673_ (1).png
- text: An enchanted mushroom forest with glowing fungi, fireflies, and hidden fairy
houses, 3dcndylnd style
output:
url: images/ComfyUI_00678_ (1).png
instance_prompt: 3dcndylnd style
---
# Plushy World (Flux)
<Gallery />
## Model description
This style features charming, whimsical characters with exaggerated proportions and soft, rounded forms. The 3D renders have a high level of detail, with textures that appear tactile and inviting, from fluffy fur to smooth, glossy surfaces. The overall aesthetic combines cute, cartoon-like designs with realistic lighting and materials, creating a magical and endearing world that feels both fantastical and tangible.
Sponsored by Glif!

## Trigger words
You should use `3dcndylnd style` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/alvdansen/plushy-world-flux/tree/main) them in the Files & versions tab.
| [
"BEAR"
] |
SeaLLMs/SeaLLMs-v3-7B-Chat | SeaLLMs | text-generation | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"sea",
"multilingual",
"conversational",
"en",
"zh",
"id",
"vi",
"th",
"ms",
"tl",
"ta",
"jv",
"lo",
"km",
"my",
"arxiv:2407.19672",
"arxiv:2306.05179",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-07-03T03:02:02Z" | 2024-09-02T03:02:23+00:00 | 4,214 | 52 | ---
language:
- en
- zh
- id
- vi
- th
- ms
- tl
- ta
- jv
- lo
- km
- my
license: other
license_name: seallms
license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
tags:
- sea
- multilingual
---
# *SeaLLMs-v3* - Large Language Models for Southeast Asia
<p align="center">
<a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Website</a>
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat" target="_blank" rel="noopener">Model</a>
<a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-Chat" target="_blank" rel="noopener"> 🤗 DEMO</a>
<a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
<a href="https://arxiv.org/pdf/2407.19672" target="_blank" rel="noopener">[NEW] Technical Report</a>
</p>
We introduce **SeaLLMs-v3**, the latest series of the SeaLLMs (Large Language Models for Southeast Asian languages) family. It achieves state-of-the-art performance among models with similar sizes, excelling across a diverse array of tasks such as world knowledge, mathematical reasoning, translation, and instruction following. In the meantime, it was specifically enhanced to be more trustworthy, exhibiting reduced hallucination and providing safe responses, particularly in queries closed related to Southeast Asian culture.
## 🔥 Highlights
- State-of-the-art performance compared to open-source models of similar sizes, evaluated across various dimensions such as human exam questions, instruction-following, mathematics, and translation.
- Significantly enhanced instruction-following capability, especially in multi-turn settings.
- Ensures safety in usage with significantly reduced instances of hallucination and sensitivity to local contexts.
## Uses
SeaLLMs is tailored for handling a wide range of languages spoken in the SEA region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese.
This page introduces the **SeaLLMs-v3-7B-Chat** model, specifically fine-tuned to follow human instructions effectively for task completion, making it directly applicable to your applications.
You may also refer to the [SeaLLMs-v3-1.5B-Chat](https://huggingface.co/SeaLLMs/SeaLLMs-v3-1.5B-Chat) model which requires much lower computational resources and can be easily loaded locally.
### Get started with `Transformers`
To quickly try the model, we show how to conduct inference with `transformers` below. Make sure you have installed the latest transformers version (>4.40).
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"SeaLLMs/SeaLLMs-v3-7B-Chat", # can change to "SeaLLMs/SeaLLMs-v3-1.5B-Chat" if your resource is limited
torch_dtype=torch.bfloat16,
device_map=device
)
tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLMs-v3-7B-Chat")
# prepare messages to model
prompt = "Hiii How are you?"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
print(f"Formatted text:\n {text}")
print(f"Model input:\n {model_inputs}")
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True, eos_token_id=tokenizer.eos_token_id)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(f"Response:\n {response[0]}")
```
You can also utilize the following code snippet, which uses the streamer `TextStreamer` to enable the model to continue conversing with you:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TextStreamer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"SeaLLMs/SeaLLMs-v3-7B-Chat", # can change to "SeaLLMs/SeaLLMs-v3-1.5B-Chat" if your resource is limited
torch_dtype=torch.bfloat16,
device_map=device
)
tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLMs-v3-7B-Chat")
# prepare messages to model
messages = [
{"role": "system", "content": "You are a helpful assistant."},
]
while True:
prompt = input("User:")
messages.append({"role": "user", "content": prompt})
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, streamer=streamer)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
messages.append({"role": "assistant", "content": response})
```
### Inference with `vllm`
You can also conduct inference with [vllm](https://docs.vllm.ai/en/stable/index.html), which is a fast and easy-to-use library for LLM inference and serving. To use vllm, first install the latest version via `pip install vllm`.
```python
from vllm import LLM, SamplingParams
prompts = [
"Who is the president of US?",
"Can you speak Indonesian?"
]
llm = LLM(ckpt_path, dtype="bfloat16")
sparams = SamplingParams(temperature=0.1, max_tokens=512)
outputs = llm.generate(prompts, sparams)
# print out the model response
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt}\nResponse: {generated_text}\n\n")
```
### Bias, Risks, and Limitations
<blockquote style="color:red">
<p><strong style="color: red">Terms of Use and License</strong>:
By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
</blockquote>
> **Disclaimer**:
> We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
> Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
> In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
## Evaluation
We conduct our evaluation along two dimensions:
1. **Model Capability**: We assess the model's performance on human exam questions, its ability to follow instructions, its proficiency in mathematics, and its translation accuracy.
2. **Model Trustworthiness**: We evaluate the model's safety and tendency to hallucinate, particularly in the context of Southeast Asia.
### Model Capability
#### Multilingual World Knowledge - M3Exam
[M3Exam](https://arxiv.org/abs/2306.05179) consists of local exam questions collected from each country. It reflects the model's world knowledge (e.g., with language or social science subjects) and reasoning abilities (e.g., with mathematics or natural science subjects).
| Model | en | zh | id | th | vi | avg | avg_sea |
|:-----------------|-----:|------:|-----:|-----:|-----:|------:|----------:|
| Sailor-7B-Chat | 0.66 | 0.652 | 0.475 | 0.462 | 0.513 | 0.552 | 0.483 |
| gemma-7b | 0.732 | 0.519 | 0.475 | 0.46 | 0.594 | 0.556 | 0.510 |
| SeaLLM-7B-v2.5 | 0.758 | 0.581 | 0.499 | 0.502 | 0.622 | 0.592 | 0.541 |
| Qwen2-7B | 0.815 | 0.874 | 0.53 | 0.479 | 0.628 | 0.665 | 0.546 |
| Qwen2-7B-Instruct| 0.809 | 0.88 | 0.558 | 0.555 | 0.624 | 0.685 | 0.579 |
| Sailor-14B | 0.748 | 0.84 | 0.536 | 0.528 | 0.621 | 0.655 | 0.562 |
| Sailor-14B-Chat | 0.749 | 0.843 | 0.553 | 0.566 | 0.637 | 0.67 | 0.585 |
| SeaLLMs-v3-7B | 0.809 | 0.863 | 0.545 | 0.530 | 0.628 | 0.675 | 0.568 |
| **SeaLLMs-v3-7B-Chat** | 0.809 | 0.874 | 0.558 | 0.569 | 0.649 | 0.692 | **0.592** |
#### Multilingual Instruction-following Capability - SeaBench
SeaBench consists of multi-turn human instructions spanning various task types. It evaluates chat-based models on their ability to follow human instructions in both single and multi-turn settings and assesses their performance across different task types. The dataset and corresponding evaluation code will be released soon!
| model | id<br>turn1 | id<br>turn2 | id<br>avg | th<br>turn1 | th<br>turn2 | th<br>avg | vi<br>turn1 | vi<br>turn2 | vi<br>avg | avg |
|:----------------|------------:|------------:|---------:|------------:|------------:|---------:|------------:|------------:|---------:|------:|
| Qwen2-7B-Instruct| 5.93 | 5.84 | 5.89 | 5.47 | 5.20 | 5.34 | 6.17 | 5.60 | 5.89 | 5.70 |
| SeaLLM-7B-v2.5 | 6.27 | 4.96 | 5.62 | 5.79 | 3.82 | 4.81 | 6.02 | 4.02 | 5.02 | 5.15 |
| Sailor-14B-Chat | 5.26 | 5.53 | 5.40 | 4.62 | 4.36 | 4.49 | 5.31 | 4.74 | 5.03 | 4.97 |
| Sailor-7B-Chat | 4.60 | 4.04 | 4.32 | 3.94 | 3.17 | 3.56 | 4.82 | 3.62 | 4.22 | 4.03 |
| **SeaLLMs-v3-7B-Chat** | 6.73 | 6.59 | 6.66 | 6.48 | 5.90 | 6.19 | 6.34 | 5.79 | 6.07 | **6.31** |
#### Multilingual Math
We evaluate the multilingual math capability using the MGSM dataset. MGSM originally contains Chinese and Thai testing sets only, we use Google Translate to translate the same English questions into other SEA languages. Note that we adopt the tradition of each country to represent the number, e.g., in Indonesian and Vietnamese, dots are used as thousands separators and commas as decimal separators, the opposite of the English system.
| MGSM | en | id | ms | th | vi | zh | avg |
|:--------------------------|------:|------:|------:|------:|------:|------:|------:|
| Sailor-7B-Chat | 33.6 | 22.4 | 22.4 | 21.6 | 25.2 | 29.2 | 25.7 |
| Meta-Llama-3-8B-Instruct | 77.6 | 48 | 57.6 | 56 | 46.8 | 58.8 | 57.5 |
| glm-4-9b-chat | 72.8 | 53.6 | 53.6 | 34.8 | 52.4 | 70.8 | 56.3 |
| Qwen1.5-7B-Chat | 64 | 34.4 | 38.4 | 25.2 | 36 | 53.6 | 41.9 |
| Qwen2-7B-instruct | 82 | 66.4 | 62.4 | 58.4 | 64.4 | 76.8 | 68.4 |
| aya-23-8B | 28.8 | 16.4 | 14.4 | 2 | 16 | 12.8 | 15.1 |
| gemma-1.1-7b-it | 58.8 | 32.4 | 34.8 | 31.2 | 39.6 | 35.2 | 38.7 |
| SeaLLMs-7B-v2.5 | 79.6 | 69.2 | 70.8 | 61.2 | 66.8 | 62.4 | 68.3 |
| **SeaLLMs-v3-7B-Chat** | 74.8 | 71.2 | 70.8 | 71.2 | 71.2 | 79.6 | **73.1** |
#### Translation
We use the test sets from Flores-200 for evaluation and report the zero-shot chrF scores for translations between every pair of languages. Each row in the table below presents the average results of translating from various source languages into the target languages. The last column displays the overall average results of translating from any language to any other language for each model.
| model | en | id | jv | km | lo | ms | my | ta | th | tl | vi | zh | avg |
|:-----------------------------------------------|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|Meta-Llama-3-8B-Instruct | 51.54 | 49.03 | 22.46 | 15.34 | 5.42 | 46.72 | 21.24 | 32.09 | 35.75 | 40.8 | 39.31 | 14.87 | 31.22 |
|Qwen2-7B-Instruct | 50.36 | 47.55 | 29.36 | 19.26 | 11.06 | 42.43 | 19.33 | 20.04 | 36.07 | 37.91 | 39.63 | 22.87 | 31.32 |
|Sailor-7B-Chat | 49.4 | 49.78 | 28.33 | 2.68 | 6.85 | 47.75 | 5.35 | 18.23 | 38.92 | 29 | 41.76 | 20.87 | 28.24 |
|SeaLLM-7B-v2.5 | 55.09 | 53.71 | 18.13 | 18.09 | 15.53 | 51.33 | 19.71 | 26.1 | 40.55 | 45.58 | 44.56 | 24.18 | 34.38 |
|**SeaLLMs-v3-7B-Chat** | 54.68 | 52.52 | 29.86 | 27.3 | 26.34 | 45.04 | 21.54 | 31.93 | 41.52 | 38.51 | 43.78 | 26.1 | **36.52** |
### Model Trustworthiness
#### Hallucination
Performance of whether a model can refuse questions about the non-existing entity. The following is the F1 score. We use refuse as the positive label. Our test set consists of ~1k test samples per language. Each unanswerable question is generated by GPT4o. The ratio of answerable and unanswerable questions are 1:1. We define keywords to automatically detect whether a model-generated response is a refusal response.
| Refusal-F1 Scores | en | zh | vi | th | id | avg |
|:---------------------|------:|------:|------:|------:|------:|-------:|
| Qwen1.5-7B-Instruct | 53.85 | 51.70 | 52.85 | 35.50 | 58.40 | 50.46 |
| Qwen2-7B-Instruct | 58.79 | 33.08 | 56.21 | 44.60 | 55.98 | 49.73 |
| SeaLLM-7B-v2.5 | 12.90 | 0.77 | 2.45 | 19.42 | 0.78 | 7.26 |
| Sailor-7B-Chat | 33.49 | 18.82 | 5.19 | 9.68 | 16.42 | 16.72 |
| glm-4-9b-chat | 44.48 | 37.89 | 18.66 | 4.27 | 1.97 | 21.45 |
| Llama-3-8B-Instruct | 72.08 | 0.00 | 1.23 | 0.80 | 3.91 | 15.60 |
| gemma-1.1-7b-it | 52.39 | 27.74 | 23.96 | 22.97 | 31.72 | 31.76 |
| **SeaLLMs-v3-7B-Chat** | 71.36 | 78.39 | 77.93 | 61.31 | 68.95 | **71.59** |
#### Safety
Multijaildataset consists of harmful prompts in multiple languages. We take those relevant prompts in SEA languages here and report their safe rate (the higher the better).
| Model | en | jv | th | vi | zh | avg |
|:------------------------|-------:|-------:|-------:|-------:|------:|-------:|
| Qwen2-7B-Instruct | 88.57 | 43.81 | 63.81 | 73.02 | 87.30 | 71.30 |
| Sailor-7B-Chat | 78.73 | 54.92 | 62.22 | 67.62 | 76.19 | 67.94 |
| Meta-Llama-3-8B-Instruct| 88.25 | 26.35 | 71.11 | 69.84 | 77.14 | 66.54 |
| Sailor-14B-Chat | 86.98 | 30.48 | 53.65 | 60.95 | 72.70 | 60.95 |
| glm-4-9b-chat | 77.14 | 21.27 | 30.16 | 60.63 | 74.92 | 52.82 |
| **SeaLLMs-v3-7B-Chat** | 88.89 | 60.00 | 73.33 | 83.81 | 92.70 | **79.75** |
## Acknowledgement to Our Linguists
We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
## Citation
If you find our project useful, we hope you would kindly star our repo and cite our work as follows:
```
@article{damonlp2024seallm3,
author = {Wenxuan Zhang*, Hou Pong Chan*, Yiran Zhao*, Mahani Aljunied*,
Jianyu Wang*, Chaoqun Liu, Yue Deng, Zhiqiang Hu, Weiwen Xu,
Yew Ken Chia, Xin Li, Lidong Bing},
title = {SeaLLMs 3: Open Foundation and Chat Multilingual Large Language Models for Southeast Asian Languages},
year = {2024},
url = {https://arxiv.org/abs/2407.19672}
}
```
Corresponding Author: [email protected] | [
"CHIA"
] |
mixedbread-ai/mxbai-embed-2d-large-v1 | mixedbread-ai | feature-extraction | [
"sentence-transformers",
"onnx",
"safetensors",
"bert",
"feature-extraction",
"mteb",
"transformers.js",
"transformers",
"en",
"arxiv:2402.14776",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | "2024-03-04T11:17:53Z" | 2025-03-13T04:16:28+00:00 | 4,153 | 37 | ---
language:
- en
library_name: sentence-transformers
license: apache-2.0
tags:
- mteb
- transformers.js
- transformers
model-index:
- name: mxbai-embed-2d-large-v1
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.76119402985074
- type: ap
value: 37.90611182084586
- type: f1
value: 68.80795400445113
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.255525
- type: ap
value: 90.06886124154308
- type: f1
value: 93.24785420201029
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 46.162000000000006
- type: f1
value: 45.66989189593428
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.980000000000004
- type: map_at_10
value: 54.918
- type: map_at_100
value: 55.401
- type: map_at_1000
value: 55.403000000000006
- type: map_at_3
value: 50.249
- type: map_at_5
value: 53.400000000000006
- type: mrr_at_1
value: 38.834
- type: mrr_at_10
value: 55.24
- type: mrr_at_100
value: 55.737
- type: mrr_at_1000
value: 55.738
- type: mrr_at_3
value: 50.580999999999996
- type: mrr_at_5
value: 53.71
- type: ndcg_at_1
value: 37.980000000000004
- type: ndcg_at_10
value: 63.629000000000005
- type: ndcg_at_100
value: 65.567
- type: ndcg_at_1000
value: 65.61399999999999
- type: ndcg_at_3
value: 54.275
- type: ndcg_at_5
value: 59.91
- type: precision_at_1
value: 37.980000000000004
- type: precision_at_10
value: 9.110999999999999
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 21.977
- type: precision_at_5
value: 15.903
- type: recall_at_1
value: 37.980000000000004
- type: recall_at_10
value: 91.11
- type: recall_at_100
value: 99.289
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 65.932
- type: recall_at_5
value: 79.51599999999999
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.28746486562395
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 42.335244985544165
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 63.771155681602096
- type: mrr
value: 76.55993052807459
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 89.76152904846916
- type: cos_sim_spearman
value: 88.05622328825284
- type: euclidean_pearson
value: 88.2821986323439
- type: euclidean_spearman
value: 88.05622328825284
- type: manhattan_pearson
value: 87.98419111117559
- type: manhattan_spearman
value: 87.905617446958
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 86.65259740259741
- type: f1
value: 86.62044951853902
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 39.7270855384167
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.95365397158872
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.604
- type: map_at_10
value: 42.126999999999995
- type: map_at_100
value: 43.702999999999996
- type: map_at_1000
value: 43.851
- type: map_at_3
value: 38.663
- type: map_at_5
value: 40.67
- type: mrr_at_1
value: 37.625
- type: mrr_at_10
value: 48.203
- type: mrr_at_100
value: 48.925000000000004
- type: mrr_at_1000
value: 48.979
- type: mrr_at_3
value: 45.494
- type: mrr_at_5
value: 47.288999999999994
- type: ndcg_at_1
value: 37.625
- type: ndcg_at_10
value: 48.649
- type: ndcg_at_100
value: 54.041
- type: ndcg_at_1000
value: 56.233999999999995
- type: ndcg_at_3
value: 43.704
- type: ndcg_at_5
value: 46.172999999999995
- type: precision_at_1
value: 37.625
- type: precision_at_10
value: 9.371
- type: precision_at_100
value: 1.545
- type: precision_at_1000
value: 0.20400000000000001
- type: precision_at_3
value: 21.364
- type: precision_at_5
value: 15.421999999999999
- type: recall_at_1
value: 30.604
- type: recall_at_10
value: 60.94199999999999
- type: recall_at_100
value: 82.893
- type: recall_at_1000
value: 96.887
- type: recall_at_3
value: 46.346
- type: recall_at_5
value: 53.495000000000005
- type: map_at_1
value: 29.959000000000003
- type: map_at_10
value: 40.217999999999996
- type: map_at_100
value: 41.337
- type: map_at_1000
value: 41.471999999999994
- type: map_at_3
value: 37.029
- type: map_at_5
value: 38.873000000000005
- type: mrr_at_1
value: 37.325
- type: mrr_at_10
value: 45.637
- type: mrr_at_100
value: 46.243
- type: mrr_at_1000
value: 46.297
- type: mrr_at_3
value: 43.323
- type: mrr_at_5
value: 44.734
- type: ndcg_at_1
value: 37.325
- type: ndcg_at_10
value: 45.864
- type: ndcg_at_100
value: 49.832
- type: ndcg_at_1000
value: 52.056000000000004
- type: ndcg_at_3
value: 41.329
- type: ndcg_at_5
value: 43.547000000000004
- type: precision_at_1
value: 37.325
- type: precision_at_10
value: 8.732
- type: precision_at_100
value: 1.369
- type: precision_at_1000
value: 0.185
- type: precision_at_3
value: 19.936
- type: precision_at_5
value: 14.306
- type: recall_at_1
value: 29.959000000000003
- type: recall_at_10
value: 56.113
- type: recall_at_100
value: 73.231
- type: recall_at_1000
value: 87.373
- type: recall_at_3
value: 42.88
- type: recall_at_5
value: 49.004
- type: map_at_1
value: 38.679
- type: map_at_10
value: 50.696
- type: map_at_100
value: 51.788000000000004
- type: map_at_1000
value: 51.849999999999994
- type: map_at_3
value: 47.414
- type: map_at_5
value: 49.284
- type: mrr_at_1
value: 44.263000000000005
- type: mrr_at_10
value: 54.03
- type: mrr_at_100
value: 54.752
- type: mrr_at_1000
value: 54.784
- type: mrr_at_3
value: 51.661
- type: mrr_at_5
value: 53.047
- type: ndcg_at_1
value: 44.263000000000005
- type: ndcg_at_10
value: 56.452999999999996
- type: ndcg_at_100
value: 60.736999999999995
- type: ndcg_at_1000
value: 61.982000000000006
- type: ndcg_at_3
value: 51.085
- type: ndcg_at_5
value: 53.715999999999994
- type: precision_at_1
value: 44.263000000000005
- type: precision_at_10
value: 9.129
- type: precision_at_100
value: 1.218
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 22.8
- type: precision_at_5
value: 15.674
- type: recall_at_1
value: 38.679
- type: recall_at_10
value: 70.1
- type: recall_at_100
value: 88.649
- type: recall_at_1000
value: 97.48
- type: recall_at_3
value: 55.757999999999996
- type: recall_at_5
value: 62.244
- type: map_at_1
value: 25.796999999999997
- type: map_at_10
value: 34.011
- type: map_at_100
value: 35.103
- type: map_at_1000
value: 35.187000000000005
- type: map_at_3
value: 31.218
- type: map_at_5
value: 32.801
- type: mrr_at_1
value: 28.022999999999996
- type: mrr_at_10
value: 36.108000000000004
- type: mrr_at_100
value: 37.094
- type: mrr_at_1000
value: 37.158
- type: mrr_at_3
value: 33.635
- type: mrr_at_5
value: 35.081
- type: ndcg_at_1
value: 28.022999999999996
- type: ndcg_at_10
value: 38.887
- type: ndcg_at_100
value: 44.159
- type: ndcg_at_1000
value: 46.300000000000004
- type: ndcg_at_3
value: 33.623
- type: ndcg_at_5
value: 36.281
- type: precision_at_1
value: 28.022999999999996
- type: precision_at_10
value: 6.010999999999999
- type: precision_at_100
value: 0.901
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 14.124
- type: precision_at_5
value: 10.034
- type: recall_at_1
value: 25.796999999999997
- type: recall_at_10
value: 51.86300000000001
- type: recall_at_100
value: 75.995
- type: recall_at_1000
value: 91.93299999999999
- type: recall_at_3
value: 37.882
- type: recall_at_5
value: 44.34
- type: map_at_1
value: 15.468000000000002
- type: map_at_10
value: 24.026
- type: map_at_100
value: 25.237
- type: map_at_1000
value: 25.380000000000003
- type: map_at_3
value: 21.342
- type: map_at_5
value: 22.843
- type: mrr_at_1
value: 19.154
- type: mrr_at_10
value: 28.429
- type: mrr_at_100
value: 29.416999999999998
- type: mrr_at_1000
value: 29.491
- type: mrr_at_3
value: 25.746000000000002
- type: mrr_at_5
value: 27.282
- type: ndcg_at_1
value: 19.154
- type: ndcg_at_10
value: 29.512
- type: ndcg_at_100
value: 35.331
- type: ndcg_at_1000
value: 38.435
- type: ndcg_at_3
value: 24.566
- type: ndcg_at_5
value: 26.891
- type: precision_at_1
value: 19.154
- type: precision_at_10
value: 5.647
- type: precision_at_100
value: 0.984
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 12.065
- type: precision_at_5
value: 8.98
- type: recall_at_1
value: 15.468000000000002
- type: recall_at_10
value: 41.908
- type: recall_at_100
value: 67.17
- type: recall_at_1000
value: 89.05499999999999
- type: recall_at_3
value: 28.436
- type: recall_at_5
value: 34.278
- type: map_at_1
value: 28.116000000000003
- type: map_at_10
value: 39.034
- type: map_at_100
value: 40.461000000000006
- type: map_at_1000
value: 40.563
- type: map_at_3
value: 35.742000000000004
- type: map_at_5
value: 37.762
- type: mrr_at_1
value: 34.264
- type: mrr_at_10
value: 44.173
- type: mrr_at_100
value: 45.111000000000004
- type: mrr_at_1000
value: 45.149
- type: mrr_at_3
value: 41.626999999999995
- type: mrr_at_5
value: 43.234
- type: ndcg_at_1
value: 34.264
- type: ndcg_at_10
value: 45.011
- type: ndcg_at_100
value: 50.91
- type: ndcg_at_1000
value: 52.886
- type: ndcg_at_3
value: 39.757999999999996
- type: ndcg_at_5
value: 42.569
- type: precision_at_1
value: 34.264
- type: precision_at_10
value: 8.114
- type: precision_at_100
value: 1.2890000000000001
- type: precision_at_1000
value: 0.163
- type: precision_at_3
value: 18.864
- type: precision_at_5
value: 13.628000000000002
- type: recall_at_1
value: 28.116000000000003
- type: recall_at_10
value: 57.764
- type: recall_at_100
value: 82.393
- type: recall_at_1000
value: 95.345
- type: recall_at_3
value: 43.35
- type: recall_at_5
value: 50.368
- type: map_at_1
value: 23.557
- type: map_at_10
value: 33.94
- type: map_at_100
value: 35.382000000000005
- type: map_at_1000
value: 35.497
- type: map_at_3
value: 30.635
- type: map_at_5
value: 32.372
- type: mrr_at_1
value: 29.224
- type: mrr_at_10
value: 39.017
- type: mrr_at_100
value: 39.908
- type: mrr_at_1000
value: 39.96
- type: mrr_at_3
value: 36.225
- type: mrr_at_5
value: 37.869
- type: ndcg_at_1
value: 29.224
- type: ndcg_at_10
value: 40.097
- type: ndcg_at_100
value: 46.058
- type: ndcg_at_1000
value: 48.309999999999995
- type: ndcg_at_3
value: 34.551
- type: ndcg_at_5
value: 36.937
- type: precision_at_1
value: 29.224
- type: precision_at_10
value: 7.6259999999999994
- type: precision_at_100
value: 1.226
- type: precision_at_1000
value: 0.161
- type: precision_at_3
value: 16.781
- type: precision_at_5
value: 12.26
- type: recall_at_1
value: 23.557
- type: recall_at_10
value: 53.46300000000001
- type: recall_at_100
value: 78.797
- type: recall_at_1000
value: 93.743
- type: recall_at_3
value: 37.95
- type: recall_at_5
value: 44.121
- type: map_at_1
value: 24.81583333333333
- type: map_at_10
value: 34.057833333333335
- type: map_at_100
value: 35.29658333333334
- type: map_at_1000
value: 35.418666666666674
- type: map_at_3
value: 31.16416666666667
- type: map_at_5
value: 32.797
- type: mrr_at_1
value: 29.40216666666667
- type: mrr_at_10
value: 38.11191666666667
- type: mrr_at_100
value: 38.983250000000005
- type: mrr_at_1000
value: 39.043
- type: mrr_at_3
value: 35.663333333333334
- type: mrr_at_5
value: 37.08975
- type: ndcg_at_1
value: 29.40216666666667
- type: ndcg_at_10
value: 39.462416666666655
- type: ndcg_at_100
value: 44.74341666666666
- type: ndcg_at_1000
value: 47.12283333333333
- type: ndcg_at_3
value: 34.57383333333334
- type: ndcg_at_5
value: 36.91816666666667
- type: precision_at_1
value: 29.40216666666667
- type: precision_at_10
value: 7.008416666666667
- type: precision_at_100
value: 1.143333333333333
- type: precision_at_1000
value: 0.15391666666666665
- type: precision_at_3
value: 16.011083333333335
- type: precision_at_5
value: 11.506666666666664
- type: recall_at_1
value: 24.81583333333333
- type: recall_at_10
value: 51.39391666666666
- type: recall_at_100
value: 74.52983333333333
- type: recall_at_1000
value: 91.00650000000002
- type: recall_at_3
value: 37.87458333333334
- type: recall_at_5
value: 43.865833333333335
- type: map_at_1
value: 24.04
- type: map_at_10
value: 30.651
- type: map_at_100
value: 31.561
- type: map_at_1000
value: 31.667
- type: map_at_3
value: 28.358
- type: map_at_5
value: 29.644
- type: mrr_at_1
value: 26.840000000000003
- type: mrr_at_10
value: 33.397
- type: mrr_at_100
value: 34.166999999999994
- type: mrr_at_1000
value: 34.252
- type: mrr_at_3
value: 31.339
- type: mrr_at_5
value: 32.451
- type: ndcg_at_1
value: 26.840000000000003
- type: ndcg_at_10
value: 34.821999999999996
- type: ndcg_at_100
value: 39.155
- type: ndcg_at_1000
value: 41.837999999999994
- type: ndcg_at_3
value: 30.55
- type: ndcg_at_5
value: 32.588
- type: precision_at_1
value: 26.840000000000003
- type: precision_at_10
value: 5.383
- type: precision_at_100
value: 0.827
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 12.986
- type: precision_at_5
value: 9.11
- type: recall_at_1
value: 24.04
- type: recall_at_10
value: 45.133
- type: recall_at_100
value: 64.519
- type: recall_at_1000
value: 84.397
- type: recall_at_3
value: 33.465
- type: recall_at_5
value: 38.504
- type: map_at_1
value: 15.744
- type: map_at_10
value: 22.557
- type: map_at_100
value: 23.705000000000002
- type: map_at_1000
value: 23.833
- type: map_at_3
value: 20.342
- type: map_at_5
value: 21.584
- type: mrr_at_1
value: 19.133
- type: mrr_at_10
value: 26.316
- type: mrr_at_100
value: 27.285999999999998
- type: mrr_at_1000
value: 27.367
- type: mrr_at_3
value: 24.214
- type: mrr_at_5
value: 25.419999999999998
- type: ndcg_at_1
value: 19.133
- type: ndcg_at_10
value: 27.002
- type: ndcg_at_100
value: 32.544000000000004
- type: ndcg_at_1000
value: 35.624
- type: ndcg_at_3
value: 23.015
- type: ndcg_at_5
value: 24.916
- type: precision_at_1
value: 19.133
- type: precision_at_10
value: 4.952
- type: precision_at_100
value: 0.918
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 10.908
- type: precision_at_5
value: 8.004
- type: recall_at_1
value: 15.744
- type: recall_at_10
value: 36.63
- type: recall_at_100
value: 61.58
- type: recall_at_1000
value: 83.648
- type: recall_at_3
value: 25.545
- type: recall_at_5
value: 30.392000000000003
- type: map_at_1
value: 24.944
- type: map_at_10
value: 33.611000000000004
- type: map_at_100
value: 34.737
- type: map_at_1000
value: 34.847
- type: map_at_3
value: 30.746000000000002
- type: map_at_5
value: 32.357
- type: mrr_at_1
value: 29.198
- type: mrr_at_10
value: 37.632
- type: mrr_at_100
value: 38.53
- type: mrr_at_1000
value: 38.59
- type: mrr_at_3
value: 35.292
- type: mrr_at_5
value: 36.519
- type: ndcg_at_1
value: 29.198
- type: ndcg_at_10
value: 38.946999999999996
- type: ndcg_at_100
value: 44.348
- type: ndcg_at_1000
value: 46.787
- type: ndcg_at_3
value: 33.794999999999995
- type: ndcg_at_5
value: 36.166
- type: precision_at_1
value: 29.198
- type: precision_at_10
value: 6.595
- type: precision_at_100
value: 1.055
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 15.235999999999999
- type: precision_at_5
value: 10.896
- type: recall_at_1
value: 24.944
- type: recall_at_10
value: 51.284
- type: recall_at_100
value: 75.197
- type: recall_at_1000
value: 92.10000000000001
- type: recall_at_3
value: 37.213
- type: recall_at_5
value: 43.129
- type: map_at_1
value: 21.979000000000003
- type: map_at_10
value: 31.349
- type: map_at_100
value: 32.969
- type: map_at_1000
value: 33.2
- type: map_at_3
value: 28.237000000000002
- type: map_at_5
value: 30.09
- type: mrr_at_1
value: 27.075
- type: mrr_at_10
value: 35.946
- type: mrr_at_100
value: 36.897000000000006
- type: mrr_at_1000
value: 36.951
- type: mrr_at_3
value: 32.971000000000004
- type: mrr_at_5
value: 34.868
- type: ndcg_at_1
value: 27.075
- type: ndcg_at_10
value: 37.317
- type: ndcg_at_100
value: 43.448
- type: ndcg_at_1000
value: 45.940999999999995
- type: ndcg_at_3
value: 32.263
- type: ndcg_at_5
value: 34.981
- type: precision_at_1
value: 27.075
- type: precision_at_10
value: 7.568999999999999
- type: precision_at_100
value: 1.5650000000000002
- type: precision_at_1000
value: 0.241
- type: precision_at_3
value: 15.547
- type: precision_at_5
value: 11.818
- type: recall_at_1
value: 21.979000000000003
- type: recall_at_10
value: 48.522999999999996
- type: recall_at_100
value: 76.51
- type: recall_at_1000
value: 92.168
- type: recall_at_3
value: 34.499
- type: recall_at_5
value: 41.443999999999996
- type: map_at_1
value: 18.903
- type: map_at_10
value: 26.473999999999997
- type: map_at_100
value: 27.576
- type: map_at_1000
value: 27.677000000000003
- type: map_at_3
value: 24.244
- type: map_at_5
value: 25.284000000000002
- type: mrr_at_1
value: 20.702
- type: mrr_at_10
value: 28.455000000000002
- type: mrr_at_100
value: 29.469
- type: mrr_at_1000
value: 29.537999999999997
- type: mrr_at_3
value: 26.433
- type: mrr_at_5
value: 27.283
- type: ndcg_at_1
value: 20.702
- type: ndcg_at_10
value: 30.988
- type: ndcg_at_100
value: 36.358000000000004
- type: ndcg_at_1000
value: 39.080999999999996
- type: ndcg_at_3
value: 26.647
- type: ndcg_at_5
value: 28.253
- type: precision_at_1
value: 20.702
- type: precision_at_10
value: 4.972
- type: precision_at_100
value: 0.823
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 11.522
- type: precision_at_5
value: 7.9479999999999995
- type: recall_at_1
value: 18.903
- type: recall_at_10
value: 43.004
- type: recall_at_100
value: 67.42399999999999
- type: recall_at_1000
value: 87.949
- type: recall_at_3
value: 31.171
- type: recall_at_5
value: 35.071000000000005
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 12.942
- type: map_at_10
value: 22.017999999999997
- type: map_at_100
value: 23.968
- type: map_at_1000
value: 24.169
- type: map_at_3
value: 18.282
- type: map_at_5
value: 20.191
- type: mrr_at_1
value: 29.121000000000002
- type: mrr_at_10
value: 40.897
- type: mrr_at_100
value: 41.787
- type: mrr_at_1000
value: 41.819
- type: mrr_at_3
value: 37.535000000000004
- type: mrr_at_5
value: 39.626
- type: ndcg_at_1
value: 29.121000000000002
- type: ndcg_at_10
value: 30.728
- type: ndcg_at_100
value: 38.231
- type: ndcg_at_1000
value: 41.735
- type: ndcg_at_3
value: 25.141000000000002
- type: ndcg_at_5
value: 27.093
- type: precision_at_1
value: 29.121000000000002
- type: precision_at_10
value: 9.674000000000001
- type: precision_at_100
value: 1.775
- type: precision_at_1000
value: 0.243
- type: precision_at_3
value: 18.826999999999998
- type: precision_at_5
value: 14.515
- type: recall_at_1
value: 12.942
- type: recall_at_10
value: 36.692
- type: recall_at_100
value: 62.688
- type: recall_at_1000
value: 82.203
- type: recall_at_3
value: 22.820999999999998
- type: recall_at_5
value: 28.625
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.6
- type: map_at_10
value: 18.672
- type: map_at_100
value: 27.199
- type: map_at_1000
value: 29.032999999999998
- type: map_at_3
value: 13.045000000000002
- type: map_at_5
value: 15.271
- type: mrr_at_1
value: 69
- type: mrr_at_10
value: 75.304
- type: mrr_at_100
value: 75.68
- type: mrr_at_1000
value: 75.688
- type: mrr_at_3
value: 73.708
- type: mrr_at_5
value: 74.333
- type: ndcg_at_1
value: 56.25
- type: ndcg_at_10
value: 40.741
- type: ndcg_at_100
value: 45.933
- type: ndcg_at_1000
value: 53.764
- type: ndcg_at_3
value: 44.664
- type: ndcg_at_5
value: 42.104
- type: precision_at_1
value: 69
- type: precision_at_10
value: 33
- type: precision_at_100
value: 10.75
- type: precision_at_1000
value: 2.1999999999999997
- type: precision_at_3
value: 48.167
- type: precision_at_5
value: 41.099999999999994
- type: recall_at_1
value: 8.6
- type: recall_at_10
value: 24.447
- type: recall_at_100
value: 52.697
- type: recall_at_1000
value: 77.717
- type: recall_at_3
value: 14.13
- type: recall_at_5
value: 17.485999999999997
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 49.32
- type: f1
value: 43.92815810776849
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 68.987
- type: map_at_10
value: 78.025
- type: map_at_100
value: 78.28500000000001
- type: map_at_1000
value: 78.3
- type: map_at_3
value: 76.735
- type: map_at_5
value: 77.558
- type: mrr_at_1
value: 74.482
- type: mrr_at_10
value: 82.673
- type: mrr_at_100
value: 82.799
- type: mrr_at_1000
value: 82.804
- type: mrr_at_3
value: 81.661
- type: mrr_at_5
value: 82.369
- type: ndcg_at_1
value: 74.482
- type: ndcg_at_10
value: 82.238
- type: ndcg_at_100
value: 83.245
- type: ndcg_at_1000
value: 83.557
- type: ndcg_at_3
value: 80.066
- type: ndcg_at_5
value: 81.316
- type: precision_at_1
value: 74.482
- type: precision_at_10
value: 10.006
- type: precision_at_100
value: 1.0699999999999998
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 30.808000000000003
- type: precision_at_5
value: 19.256
- type: recall_at_1
value: 68.987
- type: recall_at_10
value: 90.646
- type: recall_at_100
value: 94.85900000000001
- type: recall_at_1000
value: 96.979
- type: recall_at_3
value: 84.76599999999999
- type: recall_at_5
value: 87.929
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 20.3
- type: map_at_10
value: 33.499
- type: map_at_100
value: 35.510000000000005
- type: map_at_1000
value: 35.693999999999996
- type: map_at_3
value: 29.083
- type: map_at_5
value: 31.367
- type: mrr_at_1
value: 39.660000000000004
- type: mrr_at_10
value: 49.517
- type: mrr_at_100
value: 50.18899999999999
- type: mrr_at_1000
value: 50.224000000000004
- type: mrr_at_3
value: 46.965
- type: mrr_at_5
value: 48.184
- type: ndcg_at_1
value: 39.660000000000004
- type: ndcg_at_10
value: 41.75
- type: ndcg_at_100
value: 48.477
- type: ndcg_at_1000
value: 51.373999999999995
- type: ndcg_at_3
value: 37.532
- type: ndcg_at_5
value: 38.564
- type: precision_at_1
value: 39.660000000000004
- type: precision_at_10
value: 11.774999999999999
- type: precision_at_100
value: 1.883
- type: precision_at_1000
value: 0.23900000000000002
- type: precision_at_3
value: 25.102999999999998
- type: precision_at_5
value: 18.395
- type: recall_at_1
value: 20.3
- type: recall_at_10
value: 49.633
- type: recall_at_100
value: 73.932
- type: recall_at_1000
value: 91.174
- type: recall_at_3
value: 34.516999999999996
- type: recall_at_5
value: 40.217000000000006
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 34.699999999999996
- type: map_at_10
value: 54.400000000000006
- type: map_at_100
value: 55.45
- type: map_at_1000
value: 55.525999999999996
- type: map_at_3
value: 50.99
- type: map_at_5
value: 53.054
- type: mrr_at_1
value: 69.399
- type: mrr_at_10
value: 76.454
- type: mrr_at_100
value: 76.771
- type: mrr_at_1000
value: 76.783
- type: mrr_at_3
value: 75.179
- type: mrr_at_5
value: 75.978
- type: ndcg_at_1
value: 69.399
- type: ndcg_at_10
value: 63.001
- type: ndcg_at_100
value: 66.842
- type: ndcg_at_1000
value: 68.33500000000001
- type: ndcg_at_3
value: 57.961
- type: ndcg_at_5
value: 60.67700000000001
- type: precision_at_1
value: 69.399
- type: precision_at_10
value: 13.4
- type: precision_at_100
value: 1.6420000000000001
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 37.218
- type: precision_at_5
value: 24.478
- type: recall_at_1
value: 34.699999999999996
- type: recall_at_10
value: 67.002
- type: recall_at_100
value: 82.113
- type: recall_at_1000
value: 91.945
- type: recall_at_3
value: 55.827000000000005
- type: recall_at_5
value: 61.195
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 90.40480000000001
- type: ap
value: 86.34472513785936
- type: f1
value: 90.3766943422773
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 19.796
- type: map_at_10
value: 31.344
- type: map_at_100
value: 32.525999999999996
- type: map_at_1000
value: 32.582
- type: map_at_3
value: 27.514
- type: map_at_5
value: 29.683
- type: mrr_at_1
value: 20.358
- type: mrr_at_10
value: 31.924999999999997
- type: mrr_at_100
value: 33.056000000000004
- type: mrr_at_1000
value: 33.105000000000004
- type: mrr_at_3
value: 28.149
- type: mrr_at_5
value: 30.303
- type: ndcg_at_1
value: 20.372
- type: ndcg_at_10
value: 38.025999999999996
- type: ndcg_at_100
value: 43.813
- type: ndcg_at_1000
value: 45.21
- type: ndcg_at_3
value: 30.218
- type: ndcg_at_5
value: 34.088
- type: precision_at_1
value: 20.372
- type: precision_at_10
value: 6.123
- type: precision_at_100
value: 0.903
- type: precision_at_1000
value: 0.10200000000000001
- type: precision_at_3
value: 12.918
- type: precision_at_5
value: 9.702
- type: recall_at_1
value: 19.796
- type: recall_at_10
value: 58.644
- type: recall_at_100
value: 85.611
- type: recall_at_1000
value: 96.314
- type: recall_at_3
value: 37.419999999999995
- type: recall_at_5
value: 46.697
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.0984952120383
- type: f1
value: 92.9409029889071
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 73.24441404468764
- type: f1
value: 54.66568676132254
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.86684599865501
- type: f1
value: 72.16086061041996
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.16745124411568
- type: f1
value: 78.76361933295068
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.66329421728342
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 32.21637418682758
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.85308363141191
- type: mrr
value: 33.06713899953772
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.392
- type: map_at_10
value: 14.539
- type: map_at_100
value: 18.811
- type: map_at_1000
value: 20.471
- type: map_at_3
value: 10.26
- type: map_at_5
value: 12.224
- type: mrr_at_1
value: 46.749
- type: mrr_at_10
value: 55.72200000000001
- type: mrr_at_100
value: 56.325
- type: mrr_at_1000
value: 56.35
- type: mrr_at_3
value: 53.30200000000001
- type: mrr_at_5
value: 54.742000000000004
- type: ndcg_at_1
value: 44.891999999999996
- type: ndcg_at_10
value: 37.355
- type: ndcg_at_100
value: 35.285
- type: ndcg_at_1000
value: 44.246
- type: ndcg_at_3
value: 41.291
- type: ndcg_at_5
value: 39.952
- type: precision_at_1
value: 46.749
- type: precision_at_10
value: 28.111000000000004
- type: precision_at_100
value: 9.127
- type: precision_at_1000
value: 2.23
- type: precision_at_3
value: 38.803
- type: precision_at_5
value: 35.046
- type: recall_at_1
value: 6.392
- type: recall_at_10
value: 19.066
- type: recall_at_100
value: 37.105
- type: recall_at_1000
value: 69.37299999999999
- type: recall_at_3
value: 11.213
- type: recall_at_5
value: 14.648
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.387999999999998
- type: map_at_10
value: 47.172
- type: map_at_100
value: 48.158
- type: map_at_1000
value: 48.186
- type: map_at_3
value: 42.952
- type: map_at_5
value: 45.405
- type: mrr_at_1
value: 35.458
- type: mrr_at_10
value: 49.583
- type: mrr_at_100
value: 50.324999999999996
- type: mrr_at_1000
value: 50.344
- type: mrr_at_3
value: 46.195
- type: mrr_at_5
value: 48.258
- type: ndcg_at_1
value: 35.458
- type: ndcg_at_10
value: 54.839000000000006
- type: ndcg_at_100
value: 58.974000000000004
- type: ndcg_at_1000
value: 59.64699999999999
- type: ndcg_at_3
value: 47.012
- type: ndcg_at_5
value: 51.080999999999996
- type: precision_at_1
value: 35.458
- type: precision_at_10
value: 9.056000000000001
- type: precision_at_100
value: 1.137
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 21.582
- type: precision_at_5
value: 15.295
- type: recall_at_1
value: 31.387999999999998
- type: recall_at_10
value: 75.661
- type: recall_at_100
value: 93.605
- type: recall_at_1000
value: 98.658
- type: recall_at_3
value: 55.492
- type: recall_at_5
value: 64.85600000000001
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.547
- type: map_at_10
value: 84.495
- type: map_at_100
value: 85.14
- type: map_at_1000
value: 85.15599999999999
- type: map_at_3
value: 81.606
- type: map_at_5
value: 83.449
- type: mrr_at_1
value: 81.22
- type: mrr_at_10
value: 87.31
- type: mrr_at_100
value: 87.436
- type: mrr_at_1000
value: 87.437
- type: mrr_at_3
value: 86.363
- type: mrr_at_5
value: 87.06
- type: ndcg_at_1
value: 81.24
- type: ndcg_at_10
value: 88.145
- type: ndcg_at_100
value: 89.423
- type: ndcg_at_1000
value: 89.52799999999999
- type: ndcg_at_3
value: 85.435
- type: ndcg_at_5
value: 87
- type: precision_at_1
value: 81.24
- type: precision_at_10
value: 13.381000000000002
- type: precision_at_100
value: 1.529
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.44
- type: precision_at_5
value: 24.62
- type: recall_at_1
value: 70.547
- type: recall_at_10
value: 95.083
- type: recall_at_100
value: 99.50099999999999
- type: recall_at_1000
value: 99.982
- type: recall_at_3
value: 87.235
- type: recall_at_5
value: 91.701
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 57.93101384071724
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 62.46951126228829
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.018000000000001
- type: map_at_10
value: 13.818
- type: map_at_100
value: 16.346
- type: map_at_1000
value: 16.744999999999997
- type: map_at_3
value: 9.456000000000001
- type: map_at_5
value: 11.879000000000001
- type: mrr_at_1
value: 24.8
- type: mrr_at_10
value: 37.092000000000006
- type: mrr_at_100
value: 38.199
- type: mrr_at_1000
value: 38.243
- type: mrr_at_3
value: 33.517
- type: mrr_at_5
value: 35.692
- type: ndcg_at_1
value: 24.8
- type: ndcg_at_10
value: 22.782
- type: ndcg_at_100
value: 32.072
- type: ndcg_at_1000
value: 38.163000000000004
- type: ndcg_at_3
value: 21.046
- type: ndcg_at_5
value: 19.134
- type: precision_at_1
value: 24.8
- type: precision_at_10
value: 12
- type: precision_at_100
value: 2.5420000000000003
- type: precision_at_1000
value: 0.39899999999999997
- type: precision_at_3
value: 20
- type: precision_at_5
value: 17.4
- type: recall_at_1
value: 5.018000000000001
- type: recall_at_10
value: 24.34
- type: recall_at_100
value: 51.613
- type: recall_at_1000
value: 80.95
- type: recall_at_3
value: 12.153
- type: recall_at_5
value: 17.648
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 86.28259142800503
- type: cos_sim_spearman
value: 82.04792579356291
- type: euclidean_pearson
value: 83.7755858026306
- type: euclidean_spearman
value: 82.04789872846196
- type: manhattan_pearson
value: 83.79937122515567
- type: manhattan_spearman
value: 82.05076966288574
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 87.37773414195387
- type: cos_sim_spearman
value: 78.76929696642694
- type: euclidean_pearson
value: 85.75861298616339
- type: euclidean_spearman
value: 78.76607739031363
- type: manhattan_pearson
value: 85.74412868736295
- type: manhattan_spearman
value: 78.74388526796852
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 89.6176449076649
- type: cos_sim_spearman
value: 90.39810997063387
- type: euclidean_pearson
value: 89.753863994154
- type: euclidean_spearman
value: 90.39810989027997
- type: manhattan_pearson
value: 89.67750819879801
- type: manhattan_spearman
value: 90.3286558059104
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 87.7488246203373
- type: cos_sim_spearman
value: 85.44794976383963
- type: euclidean_pearson
value: 87.33205836313964
- type: euclidean_spearman
value: 85.44793954377185
- type: manhattan_pearson
value: 87.30760291906203
- type: manhattan_spearman
value: 85.4308413187653
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.6937750952719
- type: cos_sim_spearman
value: 90.01162604967037
- type: euclidean_pearson
value: 89.35321306629116
- type: euclidean_spearman
value: 90.01161406477627
- type: manhattan_pearson
value: 89.31351907042307
- type: manhattan_spearman
value: 89.97264644642166
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.49107564294891
- type: cos_sim_spearman
value: 87.42092493144571
- type: euclidean_pearson
value: 86.88112016705634
- type: euclidean_spearman
value: 87.42092430260175
- type: manhattan_pearson
value: 86.85846210123235
- type: manhattan_spearman
value: 87.40059575522972
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.71766466521638
- type: cos_sim_spearman
value: 88.80244555668372
- type: euclidean_pearson
value: 89.59428700746064
- type: euclidean_spearman
value: 88.80244555668372
- type: manhattan_pearson
value: 89.62272396580352
- type: manhattan_spearman
value: 88.77584531534937
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.7743776239708
- type: cos_sim_spearman
value: 68.79768249749681
- type: euclidean_pearson
value: 70.16430919697441
- type: euclidean_spearman
value: 68.79768249749681
- type: manhattan_pearson
value: 70.17205038967042
- type: manhattan_spearman
value: 68.89740094589914
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.9087137484716
- type: cos_sim_spearman
value: 89.19783009521629
- type: euclidean_pearson
value: 88.89888500166009
- type: euclidean_spearman
value: 89.19783009521629
- type: manhattan_pearson
value: 88.88400033783687
- type: manhattan_spearman
value: 89.16299162200889
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 86.9799916253683
- type: mrr
value: 96.0708200659181
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 59.928000000000004
- type: map_at_10
value: 69.56400000000001
- type: map_at_100
value: 70.125
- type: map_at_1000
value: 70.148
- type: map_at_3
value: 66.774
- type: map_at_5
value: 68.267
- type: mrr_at_1
value: 62.666999999999994
- type: mrr_at_10
value: 70.448
- type: mrr_at_100
value: 70.94
- type: mrr_at_1000
value: 70.962
- type: mrr_at_3
value: 68.389
- type: mrr_at_5
value: 69.65599999999999
- type: ndcg_at_1
value: 62.666999999999994
- type: ndcg_at_10
value: 74.117
- type: ndcg_at_100
value: 76.248
- type: ndcg_at_1000
value: 76.768
- type: ndcg_at_3
value: 69.358
- type: ndcg_at_5
value: 71.574
- type: precision_at_1
value: 62.666999999999994
- type: precision_at_10
value: 9.933
- type: precision_at_100
value: 1.09
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 27.222
- type: precision_at_5
value: 17.867
- type: recall_at_1
value: 59.928000000000004
- type: recall_at_10
value: 87.156
- type: recall_at_100
value: 96.167
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 74.117
- type: recall_at_5
value: 79.80000000000001
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.83762376237624
- type: cos_sim_ap
value: 96.05077689253707
- type: cos_sim_f1
value: 91.75879396984925
- type: cos_sim_precision
value: 92.22222222222223
- type: cos_sim_recall
value: 91.3
- type: dot_accuracy
value: 99.83762376237624
- type: dot_ap
value: 96.05082513542375
- type: dot_f1
value: 91.75879396984925
- type: dot_precision
value: 92.22222222222223
- type: dot_recall
value: 91.3
- type: euclidean_accuracy
value: 99.83762376237624
- type: euclidean_ap
value: 96.05077689253707
- type: euclidean_f1
value: 91.75879396984925
- type: euclidean_precision
value: 92.22222222222223
- type: euclidean_recall
value: 91.3
- type: manhattan_accuracy
value: 99.83861386138614
- type: manhattan_ap
value: 96.07646831090695
- type: manhattan_f1
value: 91.86220668996505
- type: manhattan_precision
value: 91.72482552342971
- type: manhattan_recall
value: 92
- type: max_accuracy
value: 99.83861386138614
- type: max_ap
value: 96.07646831090695
- type: max_f1
value: 91.86220668996505
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.40672513062134
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 35.31519237029376
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 53.15764586446943
- type: mrr
value: 53.981596426449364
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.92935724124931
- type: cos_sim_spearman
value: 31.54589922149803
- type: dot_pearson
value: 30.929365687857675
- type: dot_spearman
value: 31.54589922149803
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22100000000000003
- type: map_at_10
value: 1.791
- type: map_at_100
value: 9.404
- type: map_at_1000
value: 22.932
- type: map_at_3
value: 0.601
- type: map_at_5
value: 1.001
- type: mrr_at_1
value: 76
- type: mrr_at_10
value: 85.667
- type: mrr_at_100
value: 85.667
- type: mrr_at_1000
value: 85.667
- type: mrr_at_3
value: 84.667
- type: mrr_at_5
value: 85.667
- type: ndcg_at_1
value: 72
- type: ndcg_at_10
value: 68.637
- type: ndcg_at_100
value: 51.418
- type: ndcg_at_1000
value: 47.75
- type: ndcg_at_3
value: 70.765
- type: ndcg_at_5
value: 71.808
- type: precision_at_1
value: 76
- type: precision_at_10
value: 73.8
- type: precision_at_100
value: 52.68000000000001
- type: precision_at_1000
value: 20.9
- type: precision_at_3
value: 74.667
- type: precision_at_5
value: 78
- type: recall_at_1
value: 0.22100000000000003
- type: recall_at_10
value: 2.027
- type: recall_at_100
value: 12.831000000000001
- type: recall_at_1000
value: 44.996
- type: recall_at_3
value: 0.635
- type: recall_at_5
value: 1.097
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.289
- type: map_at_10
value: 10.475
- type: map_at_100
value: 16.993
- type: map_at_1000
value: 18.598
- type: map_at_3
value: 5.891
- type: map_at_5
value: 7.678999999999999
- type: mrr_at_1
value: 32.653
- type: mrr_at_10
value: 49.475
- type: mrr_at_100
value: 50.483
- type: mrr_at_1000
value: 50.499
- type: mrr_at_3
value: 45.918
- type: mrr_at_5
value: 48.469
- type: ndcg_at_1
value: 29.592000000000002
- type: ndcg_at_10
value: 25.891
- type: ndcg_at_100
value: 38.106
- type: ndcg_at_1000
value: 49.873
- type: ndcg_at_3
value: 29.915999999999997
- type: ndcg_at_5
value: 27.982000000000003
- type: precision_at_1
value: 32.653
- type: precision_at_10
value: 22.448999999999998
- type: precision_at_100
value: 7.837
- type: precision_at_1000
value: 1.5730000000000002
- type: precision_at_3
value: 31.293
- type: precision_at_5
value: 27.755000000000003
- type: recall_at_1
value: 2.289
- type: recall_at_10
value: 16.594
- type: recall_at_100
value: 48.619
- type: recall_at_1000
value: 85.467
- type: recall_at_3
value: 7.144
- type: recall_at_5
value: 10.465
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.5268
- type: ap
value: 14.763212211567907
- type: f1
value: 55.200562727472736
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.25297113752123
- type: f1
value: 59.55315247947331
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 51.47685515092062
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.73183525064076
- type: cos_sim_ap
value: 76.08498196190112
- type: cos_sim_f1
value: 69.4834471209584
- type: cos_sim_precision
value: 67.88321167883211
- type: cos_sim_recall
value: 71.16094986807387
- type: dot_accuracy
value: 86.73183525064076
- type: dot_ap
value: 76.08503499590553
- type: dot_f1
value: 69.4834471209584
- type: dot_precision
value: 67.88321167883211
- type: dot_recall
value: 71.16094986807387
- type: euclidean_accuracy
value: 86.73183525064076
- type: euclidean_ap
value: 76.08500172594562
- type: euclidean_f1
value: 69.4834471209584
- type: euclidean_precision
value: 67.88321167883211
- type: euclidean_recall
value: 71.16094986807387
- type: manhattan_accuracy
value: 86.6960720033379
- type: manhattan_ap
value: 76.00885156192993
- type: manhattan_f1
value: 69.24488725747247
- type: manhattan_precision
value: 68.8118811881188
- type: manhattan_recall
value: 69.68337730870712
- type: max_accuracy
value: 86.73183525064076
- type: max_ap
value: 76.08503499590553
- type: max_f1
value: 69.4834471209584
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.74529436876625
- type: cos_sim_ap
value: 85.53503158777171
- type: cos_sim_f1
value: 77.68167368965773
- type: cos_sim_precision
value: 74.70496232048912
- type: cos_sim_recall
value: 80.9054511857099
- type: dot_accuracy
value: 88.74529436876625
- type: dot_ap
value: 85.5350158446314
- type: dot_f1
value: 77.68167368965773
- type: dot_precision
value: 74.70496232048912
- type: dot_recall
value: 80.9054511857099
- type: euclidean_accuracy
value: 88.74529436876625
- type: euclidean_ap
value: 85.53503846009764
- type: euclidean_f1
value: 77.68167368965773
- type: euclidean_precision
value: 74.70496232048912
- type: euclidean_recall
value: 80.9054511857099
- type: manhattan_accuracy
value: 88.73753250281368
- type: manhattan_ap
value: 85.53197689629393
- type: manhattan_f1
value: 77.58753437213566
- type: manhattan_precision
value: 74.06033456988871
- type: manhattan_recall
value: 81.46750846935633
- type: max_accuracy
value: 88.74529436876625
- type: max_ap
value: 85.53503846009764
- type: max_f1
value: 77.68167368965773
---
<br><br>
<p align="center">
<svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" viewBox="0 0 2020 1130" width="150" height="150" aria-hidden="true"><path fill="#e95a0f" d="M398.167 621.992c-1.387-20.362-4.092-40.739-3.851-61.081.355-30.085 6.873-59.139 21.253-85.976 10.487-19.573 24.09-36.822 40.662-51.515 16.394-14.535 34.338-27.046 54.336-36.182 15.224-6.955 31.006-12.609 47.829-14.168 11.809-1.094 23.753-2.514 35.524-1.836 23.033 1.327 45.131 7.255 66.255 16.75 16.24 7.3 31.497 16.165 45.651 26.969 12.997 9.921 24.412 21.37 34.158 34.509 11.733 15.817 20.849 33.037 25.987 52.018 3.468 12.81 6.438 25.928 7.779 39.097 1.722 16.908 1.642 34.003 2.235 51.021.427 12.253.224 24.547 1.117 36.762 1.677 22.93 4.062 45.764 11.8 67.7 5.376 15.239 12.499 29.55 20.846 43.681l-18.282 20.328c-1.536 1.71-2.795 3.665-4.254 5.448l-19.323 23.533c-13.859-5.449-27.446-11.803-41.657-16.086-13.622-4.106-27.793-6.765-41.905-8.775-15.256-2.173-30.701-3.475-46.105-4.049-23.571-.879-47.178-1.056-70.769-1.029-10.858.013-21.723 1.116-32.57 1.926-5.362.4-10.69 1.255-16.464 1.477-2.758-7.675-5.284-14.865-7.367-22.181-3.108-10.92-4.325-22.554-13.16-31.095-2.598-2.512-5.069-5.341-6.883-8.443-6.366-10.884-12.48-21.917-18.571-32.959-4.178-7.573-8.411-14.375-17.016-18.559-10.34-5.028-19.538-12.387-29.311-18.611-3.173-2.021-6.414-4.312-9.952-5.297-5.857-1.63-11.98-2.301-17.991-3.376z"></path><path fill="#ed6d7b" d="M1478.998 758.842c-12.025.042-24.05.085-36.537-.373-.14-8.536.231-16.569.453-24.607.033-1.179-.315-2.986-1.081-3.4-.805-.434-2.376.338-3.518.81-.856.354-1.562 1.069-3.589 2.521-.239-3.308-.664-5.586-.519-7.827.488-7.544 2.212-15.166 1.554-22.589-1.016-11.451 1.397-14.592-12.332-14.419-3.793.048-3.617-2.803-3.332-5.331.499-4.422 1.45-8.803 1.77-13.233.311-4.316.068-8.672.068-12.861-2.554-.464-4.326-.86-6.12-1.098-4.415-.586-6.051-2.251-5.065-7.31 1.224-6.279.848-12.862 1.276-19.306.19-2.86-.971-4.473-3.794-4.753-4.113-.407-8.242-1.057-12.352-.975-4.663.093-5.192-2.272-4.751-6.012.733-6.229 1.252-12.483 1.875-18.726l1.102-10.495c-5.905-.309-11.146-.805-16.385-.778-3.32.017-5.174-1.4-5.566-4.4-1.172-8.968-2.479-17.944-3.001-26.96-.26-4.484-1.936-5.705-6.005-5.774-9.284-.158-18.563-.594-27.843-.953-7.241-.28-10.137-2.764-11.3-9.899-.746-4.576-2.715-7.801-7.777-8.207-7.739-.621-15.511-.992-23.207-1.961-7.327-.923-14.587-2.415-21.853-3.777-5.021-.941-10.003-2.086-15.003-3.14 4.515-22.952 13.122-44.382 26.284-63.587 18.054-26.344 41.439-47.239 69.102-63.294 15.847-9.197 32.541-16.277 50.376-20.599 16.655-4.036 33.617-5.715 50.622-4.385 33.334 2.606 63.836 13.955 92.415 31.15 15.864 9.545 30.241 20.86 42.269 34.758 8.113 9.374 15.201 19.78 21.718 30.359 10.772 17.484 16.846 36.922 20.611 56.991 1.783 9.503 2.815 19.214 3.318 28.876.758 14.578.755 29.196.65 44.311l-51.545 20.013c-7.779 3.059-15.847 5.376-21.753 12.365-4.73 5.598-10.658 10.316-16.547 14.774-9.9 7.496-18.437 15.988-25.083 26.631-3.333 5.337-7.901 10.381-12.999 14.038-11.355 8.144-17.397 18.973-19.615 32.423l-6.988 41.011z"></path><path fill="#ec663e" d="M318.11 923.047c-.702 17.693-.832 35.433-2.255 53.068-1.699 21.052-6.293 41.512-14.793 61.072-9.001 20.711-21.692 38.693-38.496 53.583-16.077 14.245-34.602 24.163-55.333 30.438-21.691 6.565-43.814 8.127-66.013 6.532-22.771-1.636-43.88-9.318-62.74-22.705-20.223-14.355-35.542-32.917-48.075-54.096-9.588-16.203-16.104-33.55-19.201-52.015-2.339-13.944-2.307-28.011-.403-42.182 2.627-19.545 9.021-37.699 17.963-55.067 11.617-22.564 27.317-41.817 48.382-56.118 15.819-10.74 33.452-17.679 52.444-20.455 8.77-1.282 17.696-1.646 26.568-2.055 11.755-.542 23.534-.562 35.289-1.11 8.545-.399 17.067-1.291 26.193-1.675 1.349 1.77 2.24 3.199 2.835 4.742 4.727 12.261 10.575 23.865 18.636 34.358 7.747 10.084 14.83 20.684 22.699 30.666 3.919 4.972 8.37 9.96 13.609 13.352 7.711 4.994 16.238 8.792 24.617 12.668 5.852 2.707 12.037 4.691 18.074 6.998z"></path><path fill="#ea580e" d="M1285.167 162.995c3.796-29.75 13.825-56.841 32.74-80.577 16.339-20.505 36.013-36.502 59.696-47.614 14.666-6.881 29.971-11.669 46.208-12.749 10.068-.669 20.239-1.582 30.255-.863 16.6 1.191 32.646 5.412 47.9 12.273 19.39 8.722 36.44 20.771 50.582 36.655 15.281 17.162 25.313 37.179 31.49 59.286 5.405 19.343 6.31 39.161 4.705 58.825-2.37 29.045-11.836 55.923-30.451 78.885-10.511 12.965-22.483 24.486-37.181 33.649-5.272-5.613-10.008-11.148-14.539-16.846-5.661-7.118-10.958-14.533-16.78-21.513-4.569-5.478-9.548-10.639-14.624-15.658-3.589-3.549-7.411-6.963-11.551-9.827-5.038-3.485-10.565-6.254-15.798-9.468-8.459-5.195-17.011-9.669-26.988-11.898-12.173-2.72-24.838-4.579-35.622-11.834-1.437-.967-3.433-1.192-5.213-1.542-12.871-2.529-25.454-5.639-36.968-12.471-5.21-3.091-11.564-4.195-17.011-6.965-4.808-2.445-8.775-6.605-13.646-8.851-8.859-4.085-18.114-7.311-27.204-10.896z"></path><path fill="#f8ab00" d="M524.963 311.12c-9.461-5.684-19.513-10.592-28.243-17.236-12.877-9.801-24.031-21.578-32.711-35.412-11.272-17.965-19.605-37.147-21.902-58.403-1.291-11.951-2.434-24.073-1.87-36.034.823-17.452 4.909-34.363 11.581-50.703 8.82-21.603 22.25-39.792 39.568-55.065 18.022-15.894 39.162-26.07 62.351-32.332 19.22-5.19 38.842-6.177 58.37-4.674 23.803 1.831 45.56 10.663 65.062 24.496 17.193 12.195 31.688 27.086 42.894 45.622-11.403 8.296-22.633 16.117-34.092 23.586-17.094 11.142-34.262 22.106-48.036 37.528-8.796 9.848-17.201 20.246-27.131 28.837-16.859 14.585-27.745 33.801-41.054 51.019-11.865 15.349-20.663 33.117-30.354 50.08-5.303 9.283-9.654 19.11-14.434 28.692z"></path><path fill="#ea5227" d="M1060.11 1122.049c-7.377 1.649-14.683 4.093-22.147 4.763-11.519 1.033-23.166 1.441-34.723 1.054-19.343-.647-38.002-4.7-55.839-12.65-15.078-6.72-28.606-15.471-40.571-26.836-24.013-22.81-42.053-49.217-49.518-81.936-1.446-6.337-1.958-12.958-2.235-19.477-.591-13.926-.219-27.909-1.237-41.795-.916-12.5-3.16-24.904-4.408-37.805 1.555-1.381 3.134-2.074 3.778-3.27 4.729-8.79 12.141-15.159 19.083-22.03 5.879-5.818 10.688-12.76 16.796-18.293 6.993-6.335 11.86-13.596 14.364-22.612l8.542-29.993c8.015 1.785 15.984 3.821 24.057 5.286 8.145 1.478 16.371 2.59 24.602 3.493 8.453.927 16.956 1.408 25.891 2.609 1.119 16.09 1.569 31.667 2.521 47.214.676 11.045 1.396 22.154 3.234 33.043 2.418 14.329 5.708 28.527 9.075 42.674 3.499 14.705 4.028 29.929 10.415 44.188 10.157 22.674 18.29 46.25 28.281 69.004 7.175 16.341 12.491 32.973 15.078 50.615.645 4.4 3.256 8.511 4.963 12.755z"></path><path fill="#ea5330" d="M1060.512 1122.031c-2.109-4.226-4.72-8.337-5.365-12.737-2.587-17.642-7.904-34.274-15.078-50.615-9.991-22.755-18.124-46.33-28.281-69.004-6.387-14.259-6.916-29.482-10.415-44.188-3.366-14.147-6.656-28.346-9.075-42.674-1.838-10.889-2.558-21.999-3.234-33.043-.951-15.547-1.401-31.124-2.068-47.146 8.568-.18 17.146.487 25.704.286l41.868-1.4c.907 3.746 1.245 7.04 1.881 10.276l8.651 42.704c.903 4.108 2.334 8.422 4.696 11.829 7.165 10.338 14.809 20.351 22.456 30.345 4.218 5.512 8.291 11.304 13.361 15.955 8.641 7.927 18.065 14.995 27.071 22.532 12.011 10.052 24.452 19.302 40.151 22.854-1.656 11.102-2.391 22.44-5.172 33.253-4.792 18.637-12.38 36.209-23.412 52.216-13.053 18.94-29.086 34.662-49.627 45.055-10.757 5.443-22.443 9.048-34.111 13.501z"></path><path fill="#f8aa05" d="M1989.106 883.951c5.198 8.794 11.46 17.148 15.337 26.491 5.325 12.833 9.744 26.207 12.873 39.737 2.95 12.757 3.224 25.908 1.987 39.219-1.391 14.973-4.643 29.268-10.349 43.034-5.775 13.932-13.477 26.707-23.149 38.405-14.141 17.104-31.215 30.458-50.807 40.488-14.361 7.352-29.574 12.797-45.741 14.594-10.297 1.144-20.732 2.361-31.031 1.894-24.275-1.1-47.248-7.445-68.132-20.263-6.096-3.741-11.925-7.917-17.731-12.342 5.319-5.579 10.361-10.852 15.694-15.811l37.072-34.009c.975-.892 2.113-1.606 3.08-2.505 6.936-6.448 14.765-12.2 20.553-19.556 8.88-11.285 20.064-19.639 31.144-28.292 4.306-3.363 9.06-6.353 12.673-10.358 5.868-6.504 10.832-13.814 16.422-20.582 6.826-8.264 13.727-16.481 20.943-24.401 4.065-4.461 8.995-8.121 13.249-12.424 14.802-14.975 28.77-30.825 45.913-43.317z"></path><path fill="#ed6876" d="M1256.099 523.419c5.065.642 10.047 1.787 15.068 2.728 7.267 1.362 14.526 2.854 21.853 3.777 7.696.97 15.468 1.34 23.207 1.961 5.062.406 7.031 3.631 7.777 8.207 1.163 7.135 4.059 9.62 11.3 9.899l27.843.953c4.069.069 5.745 1.291 6.005 5.774.522 9.016 1.829 17.992 3.001 26.96.392 3 2.246 4.417 5.566 4.4 5.239-.026 10.48.469 16.385.778l-1.102 10.495-1.875 18.726c-.44 3.74.088 6.105 4.751 6.012 4.11-.082 8.239.568 12.352.975 2.823.28 3.984 1.892 3.794 4.753-.428 6.444-.052 13.028-1.276 19.306-.986 5.059.651 6.724 5.065 7.31 1.793.238 3.566.634 6.12 1.098 0 4.189.243 8.545-.068 12.861-.319 4.43-1.27 8.811-1.77 13.233-.285 2.528-.461 5.379 3.332 5.331 13.729-.173 11.316 2.968 12.332 14.419.658 7.423-1.066 15.045-1.554 22.589-.145 2.241.28 4.519.519 7.827 2.026-1.452 2.733-2.167 3.589-2.521 1.142-.472 2.713-1.244 3.518-.81.767.414 1.114 2.221 1.081 3.4l-.917 24.539c-11.215.82-22.45.899-33.636 1.674l-43.952 3.436c-1.086-3.01-2.319-5.571-2.296-8.121.084-9.297-4.468-16.583-9.091-24.116-3.872-6.308-8.764-13.052-9.479-19.987-1.071-10.392-5.716-15.936-14.889-18.979-1.097-.364-2.16-.844-3.214-1.327-7.478-3.428-15.548-5.918-19.059-14.735-.904-2.27-3.657-3.775-5.461-5.723-2.437-2.632-4.615-5.525-7.207-7.987-2.648-2.515-5.352-5.346-8.589-6.777-4.799-2.121-10.074-3.185-15.175-4.596l-15.785-4.155c.274-12.896 1.722-25.901.54-38.662-1.647-17.783-3.457-35.526-2.554-53.352.528-10.426 2.539-20.777 3.948-31.574z"></path><path fill="#f6a200" d="M525.146 311.436c4.597-9.898 8.947-19.725 14.251-29.008 9.691-16.963 18.49-34.73 30.354-50.08 13.309-17.218 24.195-36.434 41.054-51.019 9.93-8.591 18.335-18.989 27.131-28.837 13.774-15.422 30.943-26.386 48.036-37.528 11.459-7.469 22.688-15.29 34.243-23.286 11.705 16.744 19.716 35.424 22.534 55.717 2.231 16.066 2.236 32.441 2.753 49.143-4.756 1.62-9.284 2.234-13.259 4.056-6.43 2.948-12.193 7.513-18.774 9.942-19.863 7.331-33.806 22.349-47.926 36.784-7.86 8.035-13.511 18.275-19.886 27.705-4.434 6.558-9.345 13.037-12.358 20.254-4.249 10.177-6.94 21.004-10.296 31.553-12.33.053-24.741 1.027-36.971-.049-20.259-1.783-40.227-5.567-58.755-14.69-.568-.28-1.295-.235-2.132-.658z"></path><path fill="#f7a80d" d="M1989.057 883.598c-17.093 12.845-31.061 28.695-45.863 43.67-4.254 4.304-9.184 7.963-13.249 12.424-7.216 7.92-14.117 16.137-20.943 24.401-5.59 6.768-10.554 14.078-16.422 20.582-3.614 4.005-8.367 6.995-12.673 10.358-11.08 8.653-22.264 17.007-31.144 28.292-5.788 7.356-13.617 13.108-20.553 19.556-.967.899-2.105 1.614-3.08 2.505l-37.072 34.009c-5.333 4.96-10.375 10.232-15.859 15.505-21.401-17.218-37.461-38.439-48.623-63.592 3.503-1.781 7.117-2.604 9.823-4.637 8.696-6.536 20.392-8.406 27.297-17.714.933-1.258 2.646-1.973 4.065-2.828 17.878-10.784 36.338-20.728 53.441-32.624 10.304-7.167 18.637-17.23 27.583-26.261 3.819-3.855 7.436-8.091 10.3-12.681 12.283-19.68 24.43-39.446 40.382-56.471 12.224-13.047 17.258-29.524 22.539-45.927 15.85 4.193 29.819 12.129 42.632 22.08 10.583 8.219 19.782 17.883 27.42 29.351z"></path><path fill="#ef7a72" d="M1479.461 758.907c1.872-13.734 4.268-27.394 6.525-41.076 2.218-13.45 8.26-24.279 19.615-32.423 5.099-3.657 9.667-8.701 12.999-14.038 6.646-10.643 15.183-19.135 25.083-26.631 5.888-4.459 11.817-9.176 16.547-14.774 5.906-6.99 13.974-9.306 21.753-12.365l51.48-19.549c.753 11.848.658 23.787 1.641 35.637 1.771 21.353 4.075 42.672 11.748 62.955.17.449.107.985-.019 2.158-6.945 4.134-13.865 7.337-20.437 11.143-3.935 2.279-7.752 5.096-10.869 8.384-6.011 6.343-11.063 13.624-17.286 19.727-9.096 8.92-12.791 20.684-18.181 31.587-.202.409-.072.984-.096 1.481-8.488-1.72-16.937-3.682-25.476-5.094-9.689-1.602-19.426-3.084-29.201-3.949-15.095-1.335-30.241-2.1-45.828-3.172z"></path><path fill="#e94e3b" d="M957.995 766.838c-20.337-5.467-38.791-14.947-55.703-27.254-8.2-5.967-15.451-13.238-22.958-20.37 2.969-3.504 5.564-6.772 8.598-9.563 7.085-6.518 11.283-14.914 15.8-23.153 4.933-8.996 10.345-17.743 14.966-26.892 2.642-5.231 5.547-11.01 5.691-16.611.12-4.651.194-8.932 2.577-12.742 8.52-13.621 15.483-28.026 18.775-43.704 2.11-10.049 7.888-18.774 7.81-29.825-.064-9.089 4.291-18.215 6.73-27.313 3.212-11.983 7.369-23.797 9.492-35.968 3.202-18.358 5.133-36.945 7.346-55.466l4.879-45.8c6.693.288 13.386.575 20.54 1.365.13 3.458-.41 6.407-.496 9.37l-1.136 42.595c-.597 11.552-2.067 23.058-3.084 34.59l-3.845 44.478c-.939 10.202-1.779 20.432-3.283 30.557-.96 6.464-4.46 12.646-1.136 19.383.348.706-.426 1.894-.448 2.864-.224 9.918-5.99 19.428-2.196 29.646.103.279-.033.657-.092.983l-8.446 46.205c-1.231 6.469-2.936 12.846-4.364 19.279-1.5 6.757-2.602 13.621-4.456 20.277-3.601 12.93-10.657 25.3-5.627 39.47.368 1.036.234 2.352.017 3.476l-5.949 30.123z"></path><path fill="#ea5043" d="M958.343 767.017c1.645-10.218 3.659-20.253 5.602-30.302.217-1.124.351-2.44-.017-3.476-5.03-14.17 2.026-26.539 5.627-39.47 1.854-6.656 2.956-13.52 4.456-20.277 1.428-6.433 3.133-12.81 4.364-19.279l8.446-46.205c.059-.326.196-.705.092-.983-3.794-10.218 1.972-19.728 2.196-29.646.022-.97.796-2.158.448-2.864-3.324-6.737.176-12.919 1.136-19.383 1.504-10.125 2.344-20.355 3.283-30.557l3.845-44.478c1.017-11.532 2.488-23.038 3.084-34.59.733-14.18.722-28.397 1.136-42.595.086-2.963.626-5.912.956-9.301 5.356-.48 10.714-.527 16.536-.081 2.224 15.098 1.855 29.734 1.625 44.408-.157 10.064 1.439 20.142 1.768 30.23.334 10.235-.035 20.49.116 30.733.084 5.713.789 11.418.861 17.13.054 4.289-.469 8.585-.702 12.879-.072 1.323-.138 2.659-.031 3.975l2.534 34.405-1.707 36.293-1.908 48.69c-.182 8.103.993 16.237.811 24.34-.271 12.076-1.275 24.133-1.787 36.207-.102 2.414-.101 5.283 1.06 7.219 4.327 7.22 4.463 15.215 4.736 23.103.365 10.553.088 21.128.086 31.693-11.44 2.602-22.84.688-34.106-.916-11.486-1.635-22.806-4.434-34.546-6.903z"></path><path fill="#eb5d19" d="M398.091 622.45c6.086.617 12.21 1.288 18.067 2.918 3.539.985 6.779 3.277 9.952 5.297 9.773 6.224 18.971 13.583 29.311 18.611 8.606 4.184 12.839 10.986 17.016 18.559l18.571 32.959c1.814 3.102 4.285 5.931 6.883 8.443 8.835 8.542 10.052 20.175 13.16 31.095 2.082 7.317 4.609 14.507 6.946 22.127-29.472 3.021-58.969 5.582-87.584 15.222-1.185-2.302-1.795-4.362-2.769-6.233-4.398-8.449-6.703-18.174-14.942-24.299-2.511-1.866-5.103-3.814-7.047-6.218-8.358-10.332-17.028-20.276-28.772-26.973 4.423-11.478 9.299-22.806 13.151-34.473 4.406-13.348 6.724-27.18 6.998-41.313.098-5.093.643-10.176 1.06-15.722z"></path><path fill="#e94c32" d="M981.557 392.109c-1.172 15.337-2.617 30.625-4.438 45.869-2.213 18.521-4.144 37.108-7.346 55.466-2.123 12.171-6.28 23.985-9.492 35.968-2.439 9.098-6.794 18.224-6.73 27.313.078 11.051-5.7 19.776-7.81 29.825-3.292 15.677-10.255 30.082-18.775 43.704-2.383 3.81-2.458 8.091-2.577 12.742-.144 5.6-3.049 11.38-5.691 16.611-4.621 9.149-10.033 17.896-14.966 26.892-4.517 8.239-8.715 16.635-15.8 23.153-3.034 2.791-5.629 6.06-8.735 9.255-12.197-10.595-21.071-23.644-29.301-37.24-7.608-12.569-13.282-25.962-17.637-40.37 13.303-6.889 25.873-13.878 35.311-25.315.717-.869 1.934-1.312 2.71-2.147 5.025-5.405 10.515-10.481 14.854-16.397 6.141-8.374 10.861-17.813 17.206-26.008 8.22-10.618 13.657-22.643 20.024-34.466 4.448-.626 6.729-3.21 8.114-6.89 1.455-3.866 2.644-7.895 4.609-11.492 4.397-8.05 9.641-15.659 13.708-23.86 3.354-6.761 5.511-14.116 8.203-21.206 5.727-15.082 7.277-31.248 12.521-46.578 3.704-10.828 3.138-23.116 4.478-34.753l7.56-.073z"></path><path fill="#f7a617" d="M1918.661 831.99c-4.937 16.58-9.971 33.057-22.196 46.104-15.952 17.025-28.099 36.791-40.382 56.471-2.864 4.59-6.481 8.825-10.3 12.681-8.947 9.031-17.279 19.094-27.583 26.261-17.103 11.896-35.564 21.84-53.441 32.624-1.419.856-3.132 1.571-4.065 2.828-6.904 9.308-18.6 11.178-27.297 17.714-2.705 2.033-6.319 2.856-9.874 4.281-3.413-9.821-6.916-19.583-9.36-29.602-1.533-6.284-1.474-12.957-1.665-19.913 1.913-.78 3.374-1.057 4.81-1.431 15.822-4.121 31.491-8.029 43.818-20.323 9.452-9.426 20.371-17.372 30.534-26.097 6.146-5.277 13.024-10.052 17.954-16.326 14.812-18.848 28.876-38.285 43.112-57.581 2.624-3.557 5.506-7.264 6.83-11.367 2.681-8.311 4.375-16.94 6.476-25.438 17.89.279 35.333 3.179 52.629 9.113z"></path><path fill="#ea553a" d="M1172.91 977.582c-15.775-3.127-28.215-12.377-40.227-22.43-9.005-7.537-18.43-14.605-27.071-22.532-5.07-4.651-9.143-10.443-13.361-15.955-7.647-9.994-15.291-20.007-22.456-30.345-2.361-3.407-3.792-7.72-4.696-11.829-3.119-14.183-5.848-28.453-8.651-42.704-.636-3.236-.974-6.53-1.452-10.209 15.234-2.19 30.471-3.969 46.408-5.622 2.692 5.705 4.882 11.222 6.63 16.876 2.9 9.381 7.776 17.194 15.035 24.049 7.056 6.662 13.305 14.311 19.146 22.099 9.509 12.677 23.01 19.061 36.907 25.054-1.048 7.441-2.425 14.854-3.066 22.33-.956 11.162-1.393 22.369-2.052 33.557l-1.096 17.661z"></path><path fill="#ea5453" d="M1163.123 704.036c-4.005 5.116-7.685 10.531-12.075 15.293-12.842 13.933-27.653 25.447-44.902 34.538-3.166-5.708-5.656-11.287-8.189-17.251-3.321-12.857-6.259-25.431-9.963-37.775-4.6-15.329-10.6-30.188-11.349-46.562-.314-6.871-1.275-14.287-7.114-19.644-1.047-.961-1.292-3.053-1.465-4.67l-4.092-39.927c-.554-5.245-.383-10.829-2.21-15.623-3.622-9.503-4.546-19.253-4.688-29.163-.088-6.111 1.068-12.256.782-18.344-.67-14.281-1.76-28.546-2.9-42.8-.657-8.222-1.951-16.395-2.564-24.62-.458-6.137-.285-12.322-.104-18.21.959 5.831 1.076 11.525 2.429 16.909 2.007 7.986 5.225 15.664 7.324 23.632 3.222 12.23 1.547 25.219 6.728 37.355 4.311 10.099 6.389 21.136 9.732 31.669 2.228 7.02 6.167 13.722 7.121 20.863 1.119 8.376 6.1 13.974 10.376 20.716l2.026 10.576c1.711 9.216 3.149 18.283 8.494 26.599 6.393 9.946 11.348 20.815 16.943 31.276 4.021 7.519 6.199 16.075 12.925 22.065l24.462 22.26c.556.503 1.507.571 2.274.841z"></path><path fill="#ea5b15" d="M1285.092 163.432c9.165 3.148 18.419 6.374 27.279 10.459 4.871 2.246 8.838 6.406 13.646 8.851 5.446 2.77 11.801 3.874 17.011 6.965 11.514 6.831 24.097 9.942 36.968 12.471 1.78.35 3.777.576 5.213 1.542 10.784 7.255 23.448 9.114 35.622 11.834 9.977 2.23 18.529 6.703 26.988 11.898 5.233 3.214 10.76 5.983 15.798 9.468 4.14 2.864 7.962 6.279 11.551 9.827 5.076 5.02 10.056 10.181 14.624 15.658 5.822 6.98 11.119 14.395 16.78 21.513 4.531 5.698 9.267 11.233 14.222 16.987-10.005 5.806-20.07 12.004-30.719 16.943-7.694 3.569-16.163 5.464-24.688 7.669-2.878-7.088-5.352-13.741-7.833-20.392-.802-2.15-1.244-4.55-2.498-6.396-4.548-6.7-9.712-12.999-14.011-19.847-6.672-10.627-15.34-18.93-26.063-25.376-9.357-5.625-18.367-11.824-27.644-17.587-6.436-3.997-12.902-8.006-19.659-11.405-5.123-2.577-11.107-3.536-16.046-6.37-17.187-9.863-35.13-17.887-54.031-23.767-4.403-1.37-8.953-2.267-13.436-3.382l.926-27.565z"></path><path fill="#ea504b" d="M1098 737l7.789 16.893c-15.04 9.272-31.679 15.004-49.184 17.995-9.464 1.617-19.122 2.097-29.151 3.019-.457-10.636-.18-21.211-.544-31.764-.273-7.888-.409-15.883-4.736-23.103-1.16-1.936-1.162-4.805-1.06-7.219l1.787-36.207c.182-8.103-.993-16.237-.811-24.34.365-16.236 1.253-32.461 1.908-48.69.484-12 .942-24.001 1.98-36.069 5.57 10.19 10.632 20.42 15.528 30.728 1.122 2.362 2.587 5.09 2.339 7.488-1.536 14.819 5.881 26.839 12.962 38.33 10.008 16.241 16.417 33.54 20.331 51.964 2.285 10.756 4.729 21.394 11.958 30.165L1098 737z"></path><path fill="#f6a320" d="M1865.78 822.529c-1.849 8.846-3.544 17.475-6.224 25.786-1.323 4.102-4.206 7.81-6.83 11.367l-43.112 57.581c-4.93 6.273-11.808 11.049-17.954 16.326-10.162 8.725-21.082 16.671-30.534 26.097-12.327 12.294-27.997 16.202-43.818 20.323-1.436.374-2.897.651-4.744.986-1.107-17.032-1.816-34.076-2.079-51.556 1.265-.535 2.183-.428 2.888-.766 10.596-5.072 20.8-11.059 32.586-13.273 1.69-.317 3.307-1.558 4.732-2.662l26.908-21.114c4.992-4.003 11.214-7.393 14.381-12.585 11.286-18.5 22.363-37.263 27.027-58.87l36.046 1.811c3.487.165 6.983.14 10.727.549z"></path><path fill="#ec6333" d="M318.448 922.814c-6.374-2.074-12.56-4.058-18.412-6.765-8.379-3.876-16.906-7.675-24.617-12.668-5.239-3.392-9.69-8.381-13.609-13.352-7.87-9.983-14.953-20.582-22.699-30.666-8.061-10.493-13.909-22.097-18.636-34.358-.595-1.543-1.486-2.972-2.382-4.783 6.84-1.598 13.797-3.023 20.807-4.106 18.852-2.912 36.433-9.493 53.737-17.819.697.888.889 1.555 1.292 2.051l17.921 21.896c4.14 4.939 8.06 10.191 12.862 14.412 5.67 4.984 12.185 9.007 18.334 13.447-8.937 16.282-16.422 33.178-20.696 51.31-1.638 6.951-2.402 14.107-3.903 21.403z"></path><path fill="#f49700" d="M623.467 326.903c2.893-10.618 5.584-21.446 9.833-31.623 3.013-7.217 7.924-13.696 12.358-20.254 6.375-9.43 12.026-19.67 19.886-27.705 14.12-14.434 28.063-29.453 47.926-36.784 6.581-2.429 12.344-6.994 18.774-9.942 3.975-1.822 8.503-2.436 13.186-3.592 1.947 18.557 3.248 37.15 8.307 55.686-15.453 7.931-28.853 18.092-40.46 29.996-10.417 10.683-19.109 23.111-28.013 35.175-3.238 4.388-4.888 9.948-7.262 14.973-17.803-3.987-35.767-6.498-54.535-5.931z"></path><path fill="#ea544c" d="M1097.956 736.615c-2.925-3.218-5.893-6.822-8.862-10.425-7.229-8.771-9.672-19.409-11.958-30.165-3.914-18.424-10.323-35.722-20.331-51.964-7.081-11.491-14.498-23.511-12.962-38.33.249-2.398-1.217-5.126-2.339-7.488l-15.232-31.019-3.103-34.338c-.107-1.316-.041-2.653.031-3.975.233-4.294.756-8.59.702-12.879-.072-5.713-.776-11.417-.861-17.13l-.116-30.733c-.329-10.088-1.926-20.166-1.768-30.23.23-14.674.599-29.31-1.162-44.341 9.369-.803 18.741-1.179 28.558-1.074 1.446 15.814 2.446 31.146 3.446 46.478.108 6.163-.064 12.348.393 18.485.613 8.225 1.907 16.397 2.564 24.62l2.9 42.8c.286 6.088-.869 12.234-.782 18.344.142 9.91 1.066 19.661 4.688 29.163 1.827 4.794 1.657 10.377 2.21 15.623l4.092 39.927c.172 1.617.417 3.71 1.465 4.67 5.839 5.357 6.8 12.773 7.114 19.644.749 16.374 6.749 31.233 11.349 46.562 3.704 12.344 6.642 24.918 9.963 37.775z"></path><path fill="#ec5c61" d="M1204.835 568.008c1.254 25.351-1.675 50.16-10.168 74.61-8.598-4.883-18.177-8.709-24.354-15.59-7.44-8.289-13.929-17.442-21.675-25.711-8.498-9.072-16.731-18.928-21.084-31.113-.54-1.513-1.691-2.807-2.594-4.564-4.605-9.247-7.706-18.544-7.96-29.09-.835-7.149-1.214-13.944-2.609-20.523-2.215-10.454-5.626-20.496-7.101-31.302-2.513-18.419-7.207-36.512-5.347-55.352.24-2.43-.17-4.949-.477-7.402l-4.468-34.792c2.723-.379 5.446-.757 8.585-.667 1.749 8.781 2.952 17.116 4.448 25.399 1.813 10.037 3.64 20.084 5.934 30.017 1.036 4.482 3.953 8.573 4.73 13.064 1.794 10.377 4.73 20.253 9.272 29.771 2.914 6.105 4.761 12.711 7.496 18.912 2.865 6.496 6.264 12.755 9.35 19.156 3.764 7.805 7.667 15.013 16.1 19.441 7.527 3.952 13.713 10.376 20.983 14.924 6.636 4.152 13.932 7.25 20.937 10.813z"></path><path fill="#ed676f" d="M1140.75 379.231c18.38-4.858 36.222-11.21 53.979-18.971 3.222 3.368 5.693 6.744 8.719 9.512 2.333 2.134 5.451 5.07 8.067 4.923 7.623-.429 12.363 2.688 17.309 8.215 5.531 6.18 12.744 10.854 19.224 16.184-5.121 7.193-10.461 14.241-15.323 21.606-13.691 20.739-22.99 43.255-26.782 67.926-.543 3.536-1.281 7.043-2.366 10.925-14.258-6.419-26.411-14.959-32.731-29.803-1.087-2.553-2.596-4.93-3.969-7.355-1.694-2.993-3.569-5.89-5.143-8.943-1.578-3.062-2.922-6.249-4.295-9.413-1.57-3.621-3.505-7.163-4.47-10.946-1.257-4.93-.636-10.572-2.725-15.013-5.831-12.397-7.467-25.628-9.497-38.847z"></path><path fill="#ed656e" d="M1254.103 647.439c5.325.947 10.603 2.272 15.847 3.722 5.101 1.41 10.376 2.475 15.175 4.596 3.237 1.431 5.942 4.262 8.589 6.777 2.592 2.462 4.77 5.355 7.207 7.987 1.804 1.948 4.557 3.453 5.461 5.723 3.51 8.817 11.581 11.307 19.059 14.735 1.053.483 2.116.963 3.214 1.327 9.172 3.043 13.818 8.587 14.889 18.979.715 6.935 5.607 13.679 9.479 19.987 4.623 7.533 9.175 14.819 9.091 24.116-.023 2.55 1.21 5.111 1.874 8.055-19.861 2.555-39.795 4.296-59.597 9.09l-11.596-23.203c-1.107-2.169-2.526-4.353-4.307-5.975-7.349-6.694-14.863-13.209-22.373-19.723l-17.313-14.669c-2.776-2.245-5.935-4.017-8.92-6.003l11.609-38.185c1.508-5.453 1.739-11.258 2.613-17.336z"></path><path fill="#ec6168" d="M1140.315 379.223c2.464 13.227 4.101 26.459 9.931 38.856 2.089 4.441 1.468 10.083 2.725 15.013.965 3.783 2.9 7.325 4.47 10.946 1.372 3.164 2.716 6.351 4.295 9.413 1.574 3.053 3.449 5.95 5.143 8.943 1.372 2.425 2.882 4.803 3.969 7.355 6.319 14.844 18.473 23.384 32.641 30.212.067 5.121-.501 10.201-.435 15.271l.985 38.117c.151 4.586.616 9.162.868 14.201-7.075-3.104-14.371-6.202-21.007-10.354-7.269-4.548-13.456-10.972-20.983-14.924-8.434-4.428-12.337-11.637-16.1-19.441-3.087-6.401-6.485-12.66-9.35-19.156-2.735-6.201-4.583-12.807-7.496-18.912-4.542-9.518-7.477-19.394-9.272-29.771-.777-4.491-3.694-8.581-4.73-13.064-2.294-9.933-4.121-19.98-5.934-30.017-1.496-8.283-2.699-16.618-4.036-25.335 10.349-2.461 20.704-4.511 31.054-6.582.957-.191 1.887-.515 3.264-.769z"></path><path fill="#e94c28" d="M922 537c-6.003 11.784-11.44 23.81-19.66 34.428-6.345 8.196-11.065 17.635-17.206 26.008-4.339 5.916-9.828 10.992-14.854 16.397-.776.835-1.993 1.279-2.71 2.147-9.439 11.437-22.008 18.427-35.357 24.929-4.219-10.885-6.942-22.155-7.205-33.905l-.514-49.542c7.441-2.893 14.452-5.197 21.334-7.841 1.749-.672 3.101-2.401 4.604-3.681 6.749-5.745 12.845-12.627 20.407-16.944 7.719-4.406 14.391-9.101 18.741-16.889.626-1.122 1.689-2.077 2.729-2.877 7.197-5.533 12.583-12.51 16.906-20.439.68-1.247 2.495-1.876 4.105-2.651 2.835 1.408 5.267 2.892 7.884 3.892 3.904 1.491 4.392 3.922 2.833 7.439-1.47 3.318-2.668 6.756-4.069 10.106-1.247 2.981-.435 5.242 2.413 6.544 2.805 1.282 3.125 3.14 1.813 5.601l-6.907 12.799L922 537z"></path><path fill="#eb5659" d="M1124.995 566c.868 1.396 2.018 2.691 2.559 4.203 4.353 12.185 12.586 22.041 21.084 31.113 7.746 8.269 14.235 17.422 21.675 25.711 6.176 6.881 15.756 10.707 24.174 15.932-6.073 22.316-16.675 42.446-31.058 60.937-1.074-.131-2.025-.199-2.581-.702l-24.462-22.26c-6.726-5.99-8.904-14.546-12.925-22.065-5.594-10.461-10.55-21.33-16.943-31.276-5.345-8.315-6.783-17.383-8.494-26.599-.63-3.394-1.348-6.772-1.738-10.848-.371-6.313-1.029-11.934-1.745-18.052l6.34 4.04 1.288-.675-2.143-15.385 9.454 1.208v-8.545L1124.995 566z"></path><path fill="#f5a02d" d="M1818.568 820.096c-4.224 21.679-15.302 40.442-26.587 58.942-3.167 5.192-9.389 8.582-14.381 12.585l-26.908 21.114c-1.425 1.104-3.042 2.345-4.732 2.662-11.786 2.214-21.99 8.201-32.586 13.273-.705.338-1.624.231-2.824.334a824.35 824.35 0 0 1-8.262-42.708c4.646-2.14 9.353-3.139 13.269-5.47 5.582-3.323 11.318-6.942 15.671-11.652 7.949-8.6 14.423-18.572 22.456-27.081 8.539-9.046 13.867-19.641 18.325-30.922l46.559 8.922z"></path><path fill="#eb5a57" d="M1124.96 565.639c-5.086-4.017-10.208-8.395-15.478-12.901v8.545l-9.454-1.208 2.143 15.385-1.288.675-6.34-4.04c.716 6.118 1.375 11.74 1.745 17.633-4.564-6.051-9.544-11.649-10.663-20.025-.954-7.141-4.892-13.843-7.121-20.863-3.344-10.533-5.421-21.57-9.732-31.669-5.181-12.135-3.506-25.125-6.728-37.355-2.099-7.968-5.317-15.646-7.324-23.632-1.353-5.384-1.47-11.078-2.429-16.909l-3.294-46.689a278.63 278.63 0 0 1 27.57-2.084c2.114 12.378 3.647 24.309 5.479 36.195 1.25 8.111 2.832 16.175 4.422 24.23 1.402 7.103 2.991 14.169 4.55 21.241 1.478 6.706.273 14.002 4.6 20.088 5.401 7.597 7.176 16.518 9.467 25.337 1.953 7.515 5.804 14.253 11.917 19.406.254 10.095 3.355 19.392 7.96 28.639z"></path><path fill="#ea541c" d="M911.651 810.999c-2.511 10.165-5.419 20.146-8.2 30.162-2.503 9.015-7.37 16.277-14.364 22.612-6.108 5.533-10.917 12.475-16.796 18.293-6.942 6.871-14.354 13.24-19.083 22.03-.644 1.196-2.222 1.889-3.705 2.857-2.39-7.921-4.101-15.991-6.566-23.823-5.451-17.323-12.404-33.976-23.414-48.835l21.627-21.095c3.182-3.29 5.532-7.382 8.295-11.083l10.663-14.163c9.528 4.78 18.925 9.848 28.625 14.247 7.324 3.321 15.036 5.785 22.917 8.799z"></path><path fill="#eb5d19" d="M1284.092 191.421c4.557.69 9.107 1.587 13.51 2.957 18.901 5.881 36.844 13.904 54.031 23.767 4.938 2.834 10.923 3.792 16.046 6.37 6.757 3.399 13.224 7.408 19.659 11.405l27.644 17.587c10.723 6.446 19.392 14.748 26.063 25.376 4.299 6.848 9.463 13.147 14.011 19.847 1.254 1.847 1.696 4.246 2.498 6.396l7.441 20.332c-11.685 1.754-23.379 3.133-35.533 4.037-.737-2.093-.995-3.716-1.294-5.33-3.157-17.057-14.048-30.161-23.034-44.146-3.027-4.71-7.786-8.529-12.334-11.993-9.346-7.116-19.004-13.834-28.688-20.491-6.653-4.573-13.311-9.251-20.431-13.002-8.048-4.24-16.479-7.85-24.989-11.091-11.722-4.465-23.673-8.328-35.527-12.449l.927-19.572z"></path><path fill="#eb5e24" d="M1283.09 211.415c11.928 3.699 23.88 7.562 35.602 12.027 8.509 3.241 16.941 6.852 24.989 11.091 7.12 3.751 13.778 8.429 20.431 13.002 9.684 6.657 19.342 13.375 28.688 20.491 4.548 3.463 9.307 7.283 12.334 11.993 8.986 13.985 19.877 27.089 23.034 44.146.299 1.615.557 3.237.836 5.263-13.373-.216-26.749-.839-40.564-1.923-2.935-9.681-4.597-18.92-12.286-26.152-15.577-14.651-30.4-30.102-45.564-45.193-.686-.683-1.626-1.156-2.516-1.584l-47.187-22.615 2.203-20.546z"></path><path fill="#e9511f" d="M913 486.001c-1.29.915-3.105 1.543-3.785 2.791-4.323 7.929-9.709 14.906-16.906 20.439-1.04.8-2.103 1.755-2.729 2.877-4.35 7.788-11.022 12.482-18.741 16.889-7.562 4.317-13.658 11.199-20.407 16.944-1.503 1.28-2.856 3.009-4.604 3.681-6.881 2.643-13.893 4.948-21.262 7.377-.128-11.151.202-22.302.378-33.454.03-1.892-.6-3.795-.456-6.12 13.727-1.755 23.588-9.527 33.278-17.663 2.784-2.337 6.074-4.161 8.529-6.784l29.057-31.86c1.545-1.71 3.418-3.401 4.221-5.459 5.665-14.509 11.49-28.977 16.436-43.736 2.817-8.407 4.074-17.338 6.033-26.032 5.039.714 10.078 1.427 15.536 2.629-.909 8.969-2.31 17.438-3.546 25.931-2.41 16.551-5.84 32.839-11.991 48.461L913 486.001z"></path><path fill="#ea5741" d="M1179.451 903.828c-14.224-5.787-27.726-12.171-37.235-24.849-5.841-7.787-12.09-15.436-19.146-22.099-7.259-6.854-12.136-14.667-15.035-24.049-1.748-5.654-3.938-11.171-6.254-17.033 15.099-4.009 30.213-8.629 44.958-15.533l28.367 36.36c6.09 8.015 13.124 14.75 22.72 18.375-7.404 14.472-13.599 29.412-17.48 45.244-.271 1.106-.382 2.25-.895 3.583z"></path><path fill="#ea522a" d="M913.32 486.141c2.693-7.837 5.694-15.539 8.722-23.231 6.151-15.622 9.581-31.91 11.991-48.461l3.963-25.861c7.582.317 15.168 1.031 22.748 1.797 4.171.421 8.333.928 12.877 1.596-.963 11.836-.398 24.125-4.102 34.953-5.244 15.33-6.794 31.496-12.521 46.578-2.692 7.09-4.849 14.445-8.203 21.206-4.068 8.201-9.311 15.81-13.708 23.86-1.965 3.597-3.154 7.627-4.609 11.492-1.385 3.68-3.666 6.265-8.114 6.89-1.994-1.511-3.624-3.059-5.077-4.44l6.907-12.799c1.313-2.461.993-4.318-1.813-5.601-2.849-1.302-3.66-3.563-2.413-6.544 1.401-3.35 2.599-6.788 4.069-10.106 1.558-3.517 1.071-5.948-2.833-7.439-2.617-1-5.049-2.484-7.884-3.892z"></path><path fill="#eb5e24" d="M376.574 714.118c12.053 6.538 20.723 16.481 29.081 26.814 1.945 2.404 4.537 4.352 7.047 6.218 8.24 6.125 10.544 15.85 14.942 24.299.974 1.871 1.584 3.931 2.376 6.29-7.145 3.719-14.633 6.501-21.386 10.517-9.606 5.713-18.673 12.334-28.425 18.399-3.407-3.73-6.231-7.409-9.335-10.834l-30.989-33.862c11.858-11.593 22.368-24.28 31.055-38.431 1.86-3.031 3.553-6.164 5.632-9.409z"></path><path fill="#e95514" d="M859.962 787.636c-3.409 5.037-6.981 9.745-10.516 14.481-2.763 3.701-5.113 7.792-8.295 11.083-6.885 7.118-14.186 13.834-21.65 20.755-13.222-17.677-29.417-31.711-48.178-42.878-.969-.576-2.068-.934-3.27-1.709 6.28-8.159 12.733-15.993 19.16-23.849 1.459-1.783 2.718-3.738 4.254-5.448l18.336-19.969c4.909 5.34 9.619 10.738 14.081 16.333 9.72 12.19 21.813 21.566 34.847 29.867.411.262.725.674 1.231 1.334z"></path><path fill="#eb5f2d" d="M339.582 762.088l31.293 33.733c3.104 3.425 5.928 7.104 9.024 10.979-12.885 11.619-24.548 24.139-33.899 38.704-.872 1.359-1.56 2.837-2.644 4.428-6.459-4.271-12.974-8.294-18.644-13.278-4.802-4.221-8.722-9.473-12.862-14.412l-17.921-21.896c-.403-.496-.595-1.163-.926-2.105 16.738-10.504 32.58-21.87 46.578-36.154z"></path><path fill="#f28d00" d="M678.388 332.912c1.989-5.104 3.638-10.664 6.876-15.051 8.903-12.064 17.596-24.492 28.013-35.175 11.607-11.904 25.007-22.064 40.507-29.592 4.873 11.636 9.419 23.412 13.67 35.592-5.759 4.084-11.517 7.403-16.594 11.553-4.413 3.607-8.124 8.092-12.023 12.301-5.346 5.772-10.82 11.454-15.782 17.547-3.929 4.824-7.17 10.208-10.716 15.344l-33.95-12.518z"></path><path fill="#f08369" d="M1580.181 771.427c-.191-.803-.322-1.377-.119-1.786 5.389-10.903 9.084-22.666 18.181-31.587 6.223-6.103 11.276-13.385 17.286-19.727 3.117-3.289 6.933-6.105 10.869-8.384 6.572-3.806 13.492-7.009 20.461-10.752 1.773 3.23 3.236 6.803 4.951 10.251l12.234 24.993c-1.367 1.966-2.596 3.293-3.935 4.499-7.845 7.07-16.315 13.564-23.407 21.32-6.971 7.623-12.552 16.517-18.743 24.854l-37.777-13.68z"></path><path fill="#f18b5e" d="M1618.142 785.4c6.007-8.63 11.588-17.524 18.559-25.147 7.092-7.755 15.562-14.249 23.407-21.32 1.338-1.206 2.568-2.534 3.997-4.162l28.996 33.733c1.896 2.205 4.424 3.867 6.66 6.394-6.471 7.492-12.967 14.346-19.403 21.255l-18.407 19.953c-12.958-12.409-27.485-22.567-43.809-30.706z"></path><path fill="#f49c3a" d="M1771.617 811.1c-4.066 11.354-9.394 21.949-17.933 30.995-8.032 8.509-14.507 18.481-22.456 27.081-4.353 4.71-10.089 8.329-15.671 11.652-3.915 2.331-8.623 3.331-13.318 5.069-4.298-9.927-8.255-19.998-12.1-30.743 4.741-4.381 9.924-7.582 13.882-11.904 7.345-8.021 14.094-16.603 20.864-25.131 4.897-6.168 9.428-12.626 14.123-18.955l32.61 11.936z"></path><path fill="#f08000" d="M712.601 345.675c3.283-5.381 6.524-10.765 10.453-15.589 4.962-6.093 10.435-11.774 15.782-17.547 3.899-4.21 7.61-8.695 12.023-12.301 5.078-4.15 10.836-7.469 16.636-11.19a934.12 934.12 0 0 1 23.286 35.848c-4.873 6.234-9.676 11.895-14.63 17.421l-25.195 27.801c-11.713-9.615-24.433-17.645-38.355-24.443z"></path><path fill="#ed6e04" d="M751.11 370.42c8.249-9.565 16.693-18.791 25.041-28.103 4.954-5.526 9.757-11.187 14.765-17.106 7.129 6.226 13.892 13.041 21.189 19.225 5.389 4.567 11.475 8.312 17.53 12.92-5.51 7.863-10.622 15.919-17.254 22.427-8.881 8.716-18.938 16.233-28.49 24.264-5.703-6.587-11.146-13.427-17.193-19.682-4.758-4.921-10.261-9.121-15.587-13.944z"></path><path fill="#ea541c" d="M921.823 385.544c-1.739 9.04-2.995 17.971-5.813 26.378-4.946 14.759-10.771 29.227-16.436 43.736-.804 2.058-2.676 3.749-4.221 5.459l-29.057 31.86c-2.455 2.623-5.745 4.447-8.529 6.784-9.69 8.135-19.551 15.908-33.208 17.237-1.773-9.728-3.147-19.457-4.091-29.6l36.13-16.763c.581-.267 1.046-.812 1.525-1.269 8.033-7.688 16.258-15.19 24.011-23.152 4.35-4.467 9.202-9.144 11.588-14.69 6.638-15.425 15.047-30.299 17.274-47.358 3.536.344 7.072.688 10.829 1.377z"></path><path fill="#f3944d" d="M1738.688 798.998c-4.375 6.495-8.906 12.953-13.803 19.121-6.771 8.528-13.519 17.11-20.864 25.131-3.958 4.322-9.141 7.523-13.925 11.54-8.036-13.464-16.465-26.844-27.999-38.387 5.988-6.951 12.094-13.629 18.261-20.25l19.547-20.95 38.783 23.794z"></path><path fill="#ec6168" d="M1239.583 703.142c3.282 1.805 6.441 3.576 9.217 5.821 5.88 4.755 11.599 9.713 17.313 14.669l22.373 19.723c1.781 1.622 3.2 3.806 4.307 5.975 3.843 7.532 7.477 15.171 11.194 23.136-10.764 4.67-21.532 8.973-32.69 12.982l-22.733-27.366c-2.003-2.416-4.096-4.758-6.194-7.093-3.539-3.94-6.927-8.044-10.74-11.701-2.57-2.465-5.762-4.283-8.675-6.39l16.627-29.755z"></path><path fill="#ec663e" d="M1351.006 332.839l-28.499 10.33c-.294.107-.533.367-1.194.264-11.067-19.018-27.026-32.559-44.225-44.855-4.267-3.051-8.753-5.796-13.138-8.682l9.505-24.505c10.055 4.069 19.821 8.227 29.211 13.108 3.998 2.078 7.299 5.565 10.753 8.598 3.077 2.701 5.743 5.891 8.926 8.447 4.116 3.304 9.787 5.345 12.62 9.432 6.083 8.777 10.778 18.517 16.041 27.863z"></path><path fill="#eb5e5b" d="M1222.647 733.051c3.223 1.954 6.415 3.771 8.985 6.237 3.813 3.658 7.201 7.761 10.74 11.701l6.194 7.093 22.384 27.409c-13.056 6.836-25.309 14.613-36.736 24.161l-39.323-44.7 24.494-27.846c1.072-1.224 1.974-2.598 3.264-4.056z"></path><path fill="#ea580e" d="M876.001 376.171c5.874 1.347 11.748 2.694 17.812 4.789-.81 5.265-2.687 9.791-2.639 14.296.124 11.469-4.458 20.383-12.73 27.863-2.075 1.877-3.659 4.286-5.668 6.248l-22.808 21.967c-.442.422-1.212.488-1.813.757l-23.113 10.389-9.875 4.514c-2.305-6.09-4.609-12.181-6.614-18.676 7.64-4.837 15.567-8.54 22.18-13.873 9.697-7.821 18.931-16.361 27.443-25.455 5.613-5.998 12.679-11.331 14.201-20.475.699-4.2 2.384-8.235 3.623-12.345z"></path><path fill="#e95514" d="M815.103 467.384c3.356-1.894 6.641-3.415 9.94-4.903l23.113-10.389c.6-.269 1.371-.335 1.813-.757l22.808-21.967c2.008-1.962 3.593-4.371 5.668-6.248 8.272-7.48 12.854-16.394 12.73-27.863-.049-4.505 1.828-9.031 2.847-13.956 5.427.559 10.836 1.526 16.609 2.68-1.863 17.245-10.272 32.119-16.91 47.544-2.387 5.546-7.239 10.223-11.588 14.69-7.753 7.962-15.978 15.464-24.011 23.152-.478.458-.944 1.002-1.525 1.269l-36.069 16.355c-2.076-6.402-3.783-12.81-5.425-19.607z"></path><path fill="#eb620b" d="M783.944 404.402c9.499-8.388 19.556-15.905 28.437-24.621 6.631-6.508 11.744-14.564 17.575-22.273 9.271 4.016 18.501 8.375 27.893 13.43-4.134 7.07-8.017 13.778-12.833 19.731-5.785 7.15-12.109 13.917-18.666 20.376-7.99 7.869-16.466 15.244-24.731 22.832l-17.674-29.475z"></path><path fill="#ea544c" d="M1197.986 854.686c-9.756-3.309-16.79-10.044-22.88-18.059l-28.001-36.417c8.601-5.939 17.348-11.563 26.758-17.075 1.615 1.026 2.639 1.876 3.505 2.865l26.664 30.44c3.723 4.139 7.995 7.785 12.017 11.656l-18.064 26.591z"></path><path fill="#ec6333" d="M1351.41 332.903c-5.667-9.409-10.361-19.149-16.445-27.926-2.833-4.087-8.504-6.128-12.62-9.432-3.184-2.555-5.849-5.745-8.926-8.447-3.454-3.033-6.756-6.52-10.753-8.598-9.391-4.88-19.157-9.039-29.138-13.499 1.18-5.441 2.727-10.873 4.81-16.607 11.918 4.674 24.209 8.261 34.464 14.962 14.239 9.304 29.011 18.453 39.595 32.464 2.386 3.159 5.121 6.077 7.884 8.923 6.564 6.764 10.148 14.927 11.723 24.093l-20.594 4.067z"></path><path fill="#eb5e5b" d="M1117 536.549c-6.113-4.702-9.965-11.44-11.917-18.955-2.292-8.819-4.066-17.74-9.467-25.337-4.327-6.085-3.122-13.382-4.6-20.088l-4.55-21.241c-1.59-8.054-3.172-16.118-4.422-24.23l-5.037-36.129c6.382-1.43 12.777-2.462 19.582-3.443 1.906 11.646 3.426 23.24 4.878 34.842.307 2.453.717 4.973.477 7.402-1.86 18.84 2.834 36.934 5.347 55.352 1.474 10.806 4.885 20.848 7.101 31.302 1.394 6.579 1.774 13.374 2.609 20.523z"></path><path fill="#ec644b" d="M1263.638 290.071c4.697 2.713 9.183 5.458 13.45 8.509 17.199 12.295 33.158 25.836 43.873 44.907-8.026 4.725-16.095 9.106-24.83 13.372-11.633-15.937-25.648-28.515-41.888-38.689-1.609-1.008-3.555-1.48-5.344-2.2 2.329-3.852 4.766-7.645 6.959-11.573l7.78-14.326z"></path><path fill="#eb5f2d" d="M1372.453 328.903c-2.025-9.233-5.608-17.396-12.172-24.16-2.762-2.846-5.498-5.764-7.884-8.923-10.584-14.01-25.356-23.16-39.595-32.464-10.256-6.701-22.546-10.289-34.284-15.312.325-5.246 1.005-10.444 2.027-15.863l47.529 22.394c.89.428 1.83.901 2.516 1.584l45.564 45.193c7.69 7.233 9.352 16.472 11.849 26.084-5.032.773-10.066 1.154-15.55 1.466z"></path><path fill="#e95a0f" d="M801.776 434.171c8.108-7.882 16.584-15.257 24.573-23.126 6.558-6.459 12.881-13.226 18.666-20.376 4.817-5.953 8.7-12.661 13.011-19.409 5.739 1.338 11.463 3.051 17.581 4.838-.845 4.183-2.53 8.219-3.229 12.418-1.522 9.144-8.588 14.477-14.201 20.475-8.512 9.094-17.745 17.635-27.443 25.455-6.613 5.333-14.54 9.036-22.223 13.51-2.422-4.469-4.499-8.98-6.735-13.786z"></path><path fill="#eb5e5b" d="M1248.533 316.002c2.155.688 4.101 1.159 5.71 2.168 16.24 10.174 30.255 22.752 41.532 38.727-7.166 5.736-14.641 11.319-22.562 16.731-1.16-1.277-1.684-2.585-2.615-3.46l-38.694-36.2 14.203-15.029c.803-.86 1.38-1.93 2.427-2.936z"></path><path fill="#eb5a57" d="M1216.359 827.958c-4.331-3.733-8.603-7.379-12.326-11.518l-26.664-30.44c-.866-.989-1.89-1.839-3.152-2.902 6.483-6.054 13.276-11.959 20.371-18.005l39.315 44.704c-5.648 6.216-11.441 12.12-17.544 18.161z"></path><path fill="#ec6168" d="M1231.598 334.101l38.999 36.066c.931.876 1.456 2.183 2.303 3.608-4.283 4.279-8.7 8.24-13.769 12.091-4.2-3.051-7.512-6.349-11.338-8.867-12.36-8.136-22.893-18.27-32.841-29.093l16.646-13.805z"></path><path fill="#ed656e" d="M1214.597 347.955c10.303 10.775 20.836 20.908 33.196 29.044 3.825 2.518 7.137 5.816 10.992 8.903-3.171 4.397-6.65 8.648-10.432 13.046-6.785-5.184-13.998-9.858-19.529-16.038-4.946-5.527-9.687-8.644-17.309-8.215-2.616.147-5.734-2.788-8.067-4.923-3.026-2.769-5.497-6.144-8.35-9.568 6.286-4.273 12.715-8.237 19.499-12.25z"></path></svg>
</p>
<p align="center">
<b>The crispy sentence embedding family from <a href="https://mixedbread.ai"><b>Mixedbread</b></a>.</b>
</p>
<p align="center">
<sup> 🍞 Looking for a simple end-to-end retrieval solution? Meet Omni, our multimodal and multilingual model. <a href="https://mixedbread.com"><b>Get in touch for access.</a> </sup>
</p>
# 🪆mxbai-embed-2d-large-v1🪆
This is our [2DMSE](https://arxiv.org/abs/2402.14776) sentence embedding model. It supports the adaptive transformer layer and embedding size. Find out more in our [blog post](https://mixedbread.ai/blog/mxbai-embed-2d-large-v1).
TLDR: 2D-🪆 allows you to shrink the model and the embeddings layer. Shrinking only the embeddings model yields competetive results to other models like [nomics embeddings model](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). Shrinking the model to ~50% maintains upto 85% of the performance without further training.
## Quickstart
Here, we provide several ways to produce sentence embeddings with adaptive layers and embedding sizes. **For this version, it is recommended to set adaptive layers from 20 to 24.**
### sentence-transformers
Currently, the best way to use our models is with the most recent version of sentence-transformers.
```bash
python -m pip install -U sentence-transformers
```
```python
from sentence_transformers import models, SentenceTransformer
from sentence_transformers.util import cos_sim
# 1. load model with `cls` pooling
model = SentenceTransformer("mixedbread-ai/mxbai-embed-2d-large-v1")
# 2. set adaptive layer and embedding size.
# it is recommended to set layers from 20 to 24.
new_num_layers = 22 # 1D: set layer size
model[0].auto_model.encoder.layer = model[0].auto_model.encoder.layer[:new_num_layers]
new_embedding_size = 768 # 2D: set embedding size
# 3. encode
embeddings = model.encode(
[
'Who is german and likes bread?',
'Everybody in Germany.'
]
)
# Similarity of the first sentence with the other two
similarities = cos_sim(embeddings[0, :new_embedding_size], embeddings[1, :new_embedding_size])
print('similarities:', similarities)
```
### angle-emb
You can also use the lastest `angle-emb` for inference, as follows:
```bash
python -m pip install -U angle-emb
```
```python
from angle_emb import AnglE
from sentence_transformers.util import cos_sim
# 1. load model
model = AnglE.from_pretrained("mixedbread-ai/mxbai-embed-2d-large-v1", pooling_strategy='cls').cuda()
# 2. set adaptive layer and embedding size.
# it is recommended to set layers from 20 to 24.
layer_index = 22 # 1d: layer
embedding_size = 768 # 2d: embedding size
# 3. encode
embeddings = model.encode([
'Who is german and likes bread?',
'Everybody in Germany.'
], layer_index=layer_index, embedding_size=embedding_size)
similarities = cos_sim(embeddings[0], embeddings[1:])
print('similarities:', similarities)
```
### Transformers.js
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
You can then use the model to compute embeddings as follows:
```js
import { pipeline, cos_sim } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'mixedbread-ai/mxbai-embed-2d-large-v1', {
quantized: false, // (Optional) remove this line to use the 8-bit quantized model
});
// Compute sentence embeddings (with `cls` pooling)
const sentences = ['Who is german and likes bread?', 'Everybody in Germany.' ];
const output = await extractor(sentences, { pooling: 'cls' });
// Set embedding size and truncate embeddings
const new_embedding_size = 768;
const truncated = output.slice(null, [0, new_embedding_size]);
// Compute cosine similarity
console.log(cos_sim(truncated[0].data, truncated[1].data)); // 0.6979532021425204
```
### Using API
You can use the model via our API as follows:
```python
from mixedbread_ai.client import MixedbreadAI
from sklearn.metrics.pairwise import cosine_similarity
import os
mxbai = MixedbreadAI(api_key="{MIXEDBREAD_API_KEY}")
english_sentences = [
'What is the capital of Australia?',
'Canberra is the capital of Australia.'
]
res = mxbai.embeddings(
input=english_sentences,
model="mixedbread-ai/mxbai-embed-2d-large-v1",
dimensions=512,
)
embeddings = [entry.embedding for entry in res.data]
similarities = cosine_similarity([embeddings[0]], [embeddings[1]])
print(similarities)
```
The API comes with native INT8 and binary quantization support! Check out the [docs](https://mixedbread.ai/docs) for more information.
## Evaluation
Please find more information in our [blog post](https://mixedbread.ai/blog/mxbai-embed-2d-large-v1).
## Community
Please join our [Discord Community](https://discord.gg/jDfMHzAVfU) and share your feedback and thoughts! We are here to help and also always happy to chat.
## License
Apache 2.0
| [
"BIOSSES",
"SCIFACT"
] |
opensearch-project/opensearch-neural-sparse-encoding-v2-distill | opensearch-project | fill-mask | [
"transformers",
"pytorch",
"safetensors",
"distilbert",
"fill-mask",
"learned sparse",
"opensearch",
"retrieval",
"passage-retrieval",
"query-expansion",
"document-expansion",
"bag-of-words",
"en",
"arxiv:2411.04403",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-07-17T07:32:15Z" | 2024-11-15T07:13:42+00:00 | 4,103 | 5 | ---
language: en
license: apache-2.0
tags:
- learned sparse
- opensearch
- transformers
- retrieval
- passage-retrieval
- query-expansion
- document-expansion
- bag-of-words
---
# opensearch-neural-sparse-encoding-v2-distill
## Select the model
The model should be selected considering search relevance, model inference and retrieval efficiency(FLOPS). We benchmark models' **zero-shot performance** on a subset of BEIR benchmark: TrecCovid,NFCorpus,NQ,HotpotQA,FiQA,ArguAna,Touche,DBPedia,SCIDOCS,FEVER,Climate FEVER,SciFact,Quora.
Overall, the v2 series of models have better search relevance, efficiency and inference speed than the v1 series. The specific advantages and disadvantages may vary across different datasets.
| Model | Inference-free for Retrieval | Model Parameters | AVG NDCG@10 | AVG FLOPS |
|-------|------------------------------|------------------|-------------|-----------|
| [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | | 133M | 0.524 | 11.4 |
| [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | | 67M | 0.528 | 8.3 |
| [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | ✔️ | 133M | 0.490 | 2.3 |
| [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | ✔️ | 67M | 0.504 | 1.8 |
| [opensearch-neural-sparse-encoding-doc-v2-mini](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini) | ✔️ | 23M | 0.497 | 1.7 |
## Overview
- **Paper**: [Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers](https://arxiv.org/abs/2411.04403)
- **Fine-tuning sample**: [opensearch-sparse-model-tuning-sample](https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample)
This is a learned sparse retrieval model. It encodes the queries and documents to 30522 dimensional **sparse vectors**. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token.
The training datasets includes MS MARCO, eli5_question_answer, squad_pairs, WikiAnswers, yahoo_answers_title_question, gooaq_pairs, stackexchange_duplicate_questions_body_body, wikihow, S2ORC_title_abstract, stackexchange_duplicate_questions_title-body_title-body, yahoo_answers_question_answer, searchQA_top5_snippets, stackexchange_duplicate_questions_title_title, yahoo_answers_title_answer.
OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
## Usage (HuggingFace)
This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
```python
import itertools
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
# get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size
def get_sparse_vector(feature, output):
values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1)
values = torch.log(1 + torch.relu(values))
values[:,special_token_ids] = 0
return values
# transform the sparse vector to a dict of (token, weight)
def transform_sparse_vector_to_dict(sparse_vector):
sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True)
non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist()
number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist()
tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()]
output = []
end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample))
for i in range(len(end_idxs)-1):
token_strings = tokens[end_idxs[i]:end_idxs[i+1]]
weights = non_zero_values[end_idxs[i]:end_idxs[i+1]]
output.append(dict(zip(token_strings, weights)))
return output
# load the model
model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v2-distill")
tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v2-distill")
# set the special tokens and id_to_token transform for post-process
special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()]
get_sparse_vector.special_token_ids = special_token_ids
id_to_token = ["" for i in range(tokenizer.vocab_size)]
for token, _id in tokenizer.vocab.items():
id_to_token[_id] = token
transform_sparse_vector_to_dict.id_to_token = id_to_token
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
# encode the query & document
feature = tokenizer([query, document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
output = model(**feature)[0]
sparse_vector = get_sparse_vector(feature, output)
# get similarity score
sim_score = torch.matmul(sparse_vector[0],sparse_vector[1])
print(sim_score) # tensor(38.6112, grad_fn=<DotBackward0>)
query_token_weight, document_query_token_weight = transform_sparse_vector_to_dict(sparse_vector)
for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True):
if token in document_query_token_weight:
print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
# result:
# score in query: 2.7273, score in document: 2.9088, token: york
# score in query: 2.5734, score in document: 0.9208, token: now
# score in query: 2.3895, score in document: 1.7237, token: ny
# score in query: 2.2184, score in document: 1.2368, token: weather
# score in query: 1.8693, score in document: 1.4146, token: current
# score in query: 1.5887, score in document: 0.7450, token: today
# score in query: 1.4704, score in document: 0.9247, token: sunny
# score in query: 1.4374, score in document: 1.9737, token: nyc
# score in query: 1.4347, score in document: 1.6019, token: currently
# score in query: 1.1605, score in document: 0.9794, token: climate
# score in query: 1.0944, score in document: 0.7141, token: upstate
# score in query: 1.0471, score in document: 0.5519, token: forecast
# score in query: 0.9268, score in document: 0.6692, token: verve
# score in query: 0.9126, score in document: 0.4486, token: huh
# score in query: 0.8960, score in document: 0.7706, token: greene
# score in query: 0.8779, score in document: 0.7120, token: picturesque
# score in query: 0.8471, score in document: 0.4183, token: pleasantly
# score in query: 0.8079, score in document: 0.2140, token: windy
# score in query: 0.7537, score in document: 0.4925, token: favorable
# score in query: 0.7519, score in document: 2.1456, token: rain
# score in query: 0.7277, score in document: 0.3818, token: skies
# score in query: 0.6995, score in document: 0.8593, token: lena
# score in query: 0.6895, score in document: 0.2410, token: sunshine
# score in query: 0.6621, score in document: 0.3016, token: johnny
# score in query: 0.6604, score in document: 0.1933, token: skyline
# score in query: 0.6117, score in document: 0.2197, token: sasha
# score in query: 0.5962, score in document: 0.0414, token: vibe
# score in query: 0.5381, score in document: 0.7560, token: hardly
# score in query: 0.4582, score in document: 0.4243, token: prevailing
# score in query: 0.4539, score in document: 0.5073, token: unpredictable
# score in query: 0.4350, score in document: 0.8463, token: presently
# score in query: 0.3674, score in document: 0.2496, token: hail
# score in query: 0.3324, score in document: 0.5506, token: shivered
# score in query: 0.3281, score in document: 0.1964, token: wind
# score in query: 0.3052, score in document: 0.5785, token: rudy
# score in query: 0.2797, score in document: 0.0357, token: looming
# score in query: 0.2712, score in document: 0.0870, token: atmospheric
# score in query: 0.2471, score in document: 0.3490, token: vicky
# score in query: 0.2247, score in document: 0.2383, token: sandy
# score in query: 0.2154, score in document: 0.5737, token: crowded
# score in query: 0.1723, score in document: 0.1857, token: chilly
# score in query: 0.1700, score in document: 0.4110, token: blizzard
# score in query: 0.1183, score in document: 0.0613, token: ##cken
# score in query: 0.0923, score in document: 0.6363, token: unrest
# score in query: 0.0624, score in document: 0.2127, token: russ
# score in query: 0.0558, score in document: 0.5542, token: blackout
# score in query: 0.0549, score in document: 0.1589, token: kahn
# score in query: 0.0160, score in document: 0.0566, token: 2020
# score in query: 0.0125, score in document: 0.3753, token: nighttime
```
The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
## Detailed Search Relevance
<div style="overflow-x: auto;">
| Model | Average | Trec Covid | NFCorpus | NQ | HotpotQA | FiQA | ArguAna | Touche | DBPedia | SCIDOCS | FEVER | Climate FEVER | SciFact | Quora |
|-------|---------|------------|----------|----|----------|------|---------|--------|---------|---------|-------|---------------|---------|-------|
| [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | 0.524 | 0.771 | 0.360 | 0.553 | 0.697 | 0.376 | 0.508 | 0.278 | 0.447 | 0.164 | 0.821 | 0.263 | 0.723 | 0.856 |
| [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | 0.528 | 0.775 | 0.347 | 0.561 | 0.685 | 0.374 | 0.551 | 0.278 | 0.435 | 0.173 | 0.849 | 0.249 | 0.722 | 0.863 |
| [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | 0.490 | 0.707 | 0.352 | 0.521 | 0.677 | 0.344 | 0.461 | 0.294 | 0.412 | 0.154 | 0.743 | 0.202 | 0.716 | 0.788 |
| [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | 0.504 | 0.690 | 0.343 | 0.528 | 0.675 | 0.357 | 0.496 | 0.287 | 0.418 | 0.166 | 0.818 | 0.224 | 0.715 | 0.841 |
| [opensearch-neural-sparse-encoding-doc-v2-mini](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini) | 0.497 | 0.709 | 0.336 | 0.510 | 0.666 | 0.338 | 0.480 | 0.285 | 0.407 | 0.164 | 0.812 | 0.216 | 0.699 | 0.837 |
</div>
## License
This project is licensed under the [Apache v2.0 License](https://github.com/opensearch-project/neural-search/blob/main/LICENSE).
## Copyright
Copyright OpenSearch Contributors. See [NOTICE](https://github.com/opensearch-project/neural-search/blob/main/NOTICE) for details. | [
"SCIFACT"
] |
johnsnowlabs/JSL-MedLlama-3-8B-v2.0 | johnsnowlabs | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-3-8b",
"sft",
"medical",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:finetune:meta-llama/Meta-Llama-3-8B",
"license:cc-by-nc-nd-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-04-30T17:08:30Z" | 2024-04-30T18:06:24+00:00 | 4,033 | 33 | ---
base_model:
- meta-llama/Meta-Llama-3-8B
license: cc-by-nc-nd-4.0
tags:
- llama-3-8b
- sft
- medical
---
# JSL-MedLlama-3-8B-v2.0
[<img src="https://repository-images.githubusercontent.com/104670986/2e728700-ace4-11ea-9cfc-f3e060b25ddf">](http://www.johnsnowlabs.com)
This model is developed by [John Snow Labs](https://www.johnsnowlabs.com/).
This model is available under a [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en) license and must also conform to this [Acceptable Use Policy](https://huggingface.co/johnsnowlabs). If you need to license this model for commercial use, please contact us at [email protected].
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/JSL-MedLlama-3-8B-v2.0"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## 🏆 Evaluation
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc |0.6466|± |0.0056|
| | |none | 0|acc_norm|0.6124|± |0.0066|
| - medmcqa |Yaml |none | 0|acc |0.6118|± |0.0075|
| | |none | 0|acc_norm|0.6118|± |0.0075|
| - medqa_4options |Yaml |none | 0|acc |0.6143|± |0.0136|
| | |none | 0|acc_norm|0.6143|± |0.0136|
| - anatomy (mmlu) | 0|none | 0|acc |0.7185|± |0.0389|
| - clinical_knowledge (mmlu) | 0|none | 0|acc |0.7811|± |0.0254|
| - college_biology (mmlu) | 0|none | 0|acc |0.8264|± |0.0317|
| - college_medicine (mmlu) | 0|none | 0|acc |0.7110|± |0.0346|
| - medical_genetics (mmlu) | 0|none | 0|acc |0.8300|± |0.0378|
| - professional_medicine (mmlu)| 0|none | 0|acc |0.7868|± |0.0249|
| - pubmedqa | 1|none | 0|acc |0.7420|± |0.0196|
|Groups|Version|Filter|n-shot| Metric |Value | |Stderr|
|------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc |0.6466|± |0.0056|
| | |none | 0|acc_norm|0.6124|± |0.0066| | [
"MEDQA",
"PUBMEDQA"
] |
upstage/llama-30b-instruct-2048 | upstage | text-generation | [
"transformers",
"pytorch",
"llama",
"text-generation",
"upstage",
"instruct",
"instruction",
"en",
"dataset:sciq",
"dataset:metaeval/ScienceQA_text_only",
"dataset:GAIR/lima",
"dataset:Open-Orca/OpenOrca",
"dataset:openbookqa",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2023-07-13T12:06:18Z" | 2023-08-03T22:02:40+00:00 | 3,995 | 102 | ---
datasets:
- sciq
- metaeval/ScienceQA_text_only
- GAIR/lima
- Open-Orca/OpenOrca
- openbookqa
language:
- en
pipeline_tag: text-generation
tags:
- upstage
- llama
- instruct
- instruction
---
# LLaMa-30b-instruct-2048 model card
## Model Details
* **Developed by**: [Upstage](https://en.upstage.ai)
* **Backbone Model**: [LLaMA](https://github.com/facebookresearch/llama/tree/llama_v1)
* **Variations**: It has different model parameter sizes and sequence lengths: [30B/1024](https://huggingface.co/upstage/llama-30b-instruct), [30B/2048](https://huggingface.co/upstage/llama-30b-instruct-2048), [65B/1024](https://huggingface.co/upstage/llama-65b-instruct)
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: This model is under a **Non-commercial** Bespoke License and governed by the Meta license. You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform), but have either lost your copy of the weights or encountered issues converting them to the Transformers format
* **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/llama-30b-instruct-2048/discussions)
* **Contact**: For questions and comments about the model, please email [[email protected]](mailto:[email protected])
## Dataset Details
### Used Datasets
- [openbookqa](https://huggingface.co/datasets/openbookqa)
- [sciq](https://huggingface.co/datasets/sciq)
- [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca)
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only)
- [GAIR/lima](https://huggingface.co/datasets/GAIR/lima)
- No other data was used except for the dataset mentioned above
### Prompt Template
```
### System:
{System}
### User:
{User}
### Assistant:
{Assistant}
```
## Usage
- Tested on A100 80GB
- Our model can handle up to 10k+ input tokens, thanks to the `rope_scaling` option
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("upstage/llama-30b-instruct-2048")
model = AutoModelForCausalLM.from_pretrained(
"upstage/llama-30b-instruct-2048",
device_map="auto",
torch_dtype=torch.float16,
load_in_8bit=True,
rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
)
prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
del inputs["token_type_ids"]
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
```
## Hardware and Software
* **Hardware**: We utilized an A100x8 * 1 for training our model
* **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)
## Evaluation Results
### Overview
- We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463)
- We used [MT-bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge), a set of challenging multi-turn open-ended questions, to evaluate the models
### Main Results
| Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
|--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
| **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(Ours, Open LLM Leaderboard) | **73** | **71.1** | **87.9** | **70.6** | **62.2** | | **7.44063** |
| [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | 69.8 | 61 | | 7.24375 |
| [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
| Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | 69.8 | 44.9 | | |
| [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (***Ours***, ***Open LLM Leaderboard***) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
| [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | |
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
### Scripts for H4 Score Reproduction
- Prepare evaluation environments:
```
# clone the repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# check out the specific commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# change to the repository directory
cd lm-evaluation-harness
```
## Ethical Issues
### Ethical Considerations
- There were no ethical issues involved, as we did not include the benchmark test set or the training set in the model's training process
## Contact Us
### Why Upstage LLM?
- [Upstage](https://en.upstage.ai)'s LLM research has yielded remarkable results. As of August 1st, our 70B model has reached the top spot in openLLM rankings, marking itself as the current leading performer globally. Recognizing the immense potential in implementing private LLM to actual businesses, we invite you to easily apply private LLM and fine-tune it with your own data. For a seamless and tailored solution, please do not hesitate to reach out to us. ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm) | [
"SCIQ"
] |
Almawave/Velvet-2B | Almawave | text-generation | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"vllm",
"conversational",
"en",
"it",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | "2025-02-10T15:49:00Z" | 2025-02-20T14:41:42+00:00 | 3,990 | 37 | ---
language:
- en
- it
library_name: transformers
license: apache-2.0
tags:
- vllm
inference: false
extra_gated_description: If you want to learn more about how we process your personal
data, please read our <a href="https://www.almawave.com/privacy-policy/">Privacy
Policy</a>.
---
# Model Card for Velvet-2B
Velvet is an Italian family of large language models, developed from scratch, featuring a dense architecture. This model was trained on the HPC Leonardo infrastructure hosted by [CINECA](https://www.cineca.it/en), utilizing public data that underwent extensive curation.
The training process for the Velvet family commenced with over 10 trillion tokens in 6 languages (Italian, English, Spanish, Portuguese-Brazilian, German, French).
Velvet-2B has been trained on almost 3 trillion tokens, across two languages (Italian, English).
## Model details
- **Model Developers:** Technology and innovation Team, Almawave
- **Input:** Models input text only.
- **Output:** Models generate text only.
- **Release Date:** February 11th, 2025.
- **License:** Apache 2.
### Model Architecture and training
Velvet family of models comes in two sizes --- 2B and 14B parameters --- namely, **Velvet-2B** and **Velvet-14B**.
**Velvet-2B** is a 2B parameter instruct model finetuned from **Velvet-2B-base** using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving textual "instruction based" problems.
#### Architecture
- Auto-regressive language model with a transformer-based causal decoder-only design.
- 28 transformer layers.
- MLP intermediate size of 8,192.
- Grouped Query Attention (GQA): 32 query heads and 8 key-value heads for efficiency.
- Rotary Position Embedding (RoPE).
- SiLU activation function with RMSNorm method.
- Trained on sequences of 4K tokens, supports context length up to 32K tokens.
- 127K vocabulary size, designed to accommodate language diversity.
- Training phase: pretraining & post-training
### Status
This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
Almawave is actively working on strategies to enhance alignment and robustness in future iterations of the Velvet model.
### License
Velvet-2B is made available under the Apache 2.0 license
### Supported Languages
Velvet-2B has been trained on Italian and English.
To ensure high-quality multilingual performance, the dataset was curated to balance linguistic representation, reducing overfitting biases.
## Intended Use
Velvet-2B is designed to be integrated into AI systems or applications. Its potential use include, but it is not limited to, text generation, classification, summarization, question answering. It is important to note that specific applications may need further model adaptations or additional safeguards to prevent undesirable behavior or outputs.
### Capabilities
- Summarization
- Information Extraction
- RAG (Retrieval Augmented Generation)
- Paraphrasing
- Textual Entailment
- Natural Language Inference
- Common Sense Reasoning
- Text Classification
- Machine Translation
- Question Answering
- Text Completion
## Training Data
### Overview
The model was pretrained on almost 3 trillion tokens of data from publicly available sources. These sources include diverse collection of web text exposes the model to an extensive range of linguistic styles, topics, and vocabulary. The training dataset has been built with a balanced representation of multiple languages.
The fine-tuning data includes publicly available instruction datasets, as well as over 1M human-annotated and synthetic examples for SFT.
Moreover we used over 50k human generated examples for safety instructions. Neither the pretraining nor the fine-tuning datasets include Almawave's customer data.
We have made significant efforts to enhance the reliability of responses in terms of factual accuracy; however, we always recommend grounding LLM responses with external factual data (e.g. Retrieval Augmented Generation).
### Data Freshness
The pretraining data has a cutoff between August 2024 and October 2024 for the two different models.
## Evaluation
### Italian language
| Category | Benchmark | Velvet-2B |
|---------------------------| ------------------------| -------------------|
| General | MMLU (5-shot) | 39.6 |
| Commonsense | Hellaswag (0-shot) | 54.3 |
| | WinoGrande ITA-bench (0-shot) | 61.9 |
|| PIQA ITA-bench (0-shot) | 67.3 |
|| SciQ ITA-bench (0-shot) with p. | 86.6 |
| Reasoning | ARC-Challenge (0-shot) | 41.7 |
### English language
| Category | Benchmark | Velvet-2B |
|---------------------------| ------------------------| -------------------|
| General | MMLU (5-shot) | 43.4 |
| Instruction Following | IFEval (0-shot) | 53.2 |
| Commonsense | Hellaswag (10-shot) | 65.0 |
| | WinoGrande (0-shot) | 60.9 |
| Reasoning | ARC-Challenge (25-shot) | 50.6 |
## Usage
The model can be used with the following frameworks;
- [`vllm`](https://github.com/vllm-project/vllm)
- [`transformers`](https://github.com/huggingface/transformers)
- [`ollama`](https://ollama.com/Almawave/Velvet:2B)
## Responsibility and Safety
Large language models are versatile technologies designed to serve a wide range of applications. However, they are not intended to meet every developer\'s safety requirements out-of-the-box, as these requirements naturally vary depending on the specific use case and application context.
### Safety
For our instruction-trained model, we have undertaken comprehensive exercises, engaged in adversarial internal and external evaluations, and put into place mitigation techniques to reduce risks. These exercises were designed to thoroughly examine the model\'s limitations and potential, simulating real and hypothetical scenarios where undesirable behavior might arise.
However, despite these efforts, it is inevitable that some residual hazards are bound to exist, as every large language model presents intrinsic complexities that cannot be completely eliminated.
Then, developers are advised to implement suitable safety measures and exercise due diligence, tailoring these safeguards to align with their product policies and the specific requirements of their applications.
Some trade-offs between model helpfulness and alignment are likely inevitable. Developers should thoughtfully balance the benefits of alignment and helpfulness for their specific applications and audiences.
They must also remain aware of residual risks when using Velvet models and leverage additional safety tools as necessary to achieve an appropriate safety standard for their use case.
We advise developers to carefully evaluate risks in the context of their specific use case. They should consider the potential implications of a model failure in their applications and put adequate measures in place to manage such eventualities.
In parallel, we are collaborating with the scientific and industrial community to establish AI safety benchmark standards that are transparent, rigorous, and interpretable. The goal is to promote a better understanding of the risks associated with large language models and support the development of safer and more responsible solutions.
### **Governance and Internal Oversight**
Almawave has established an **internal governance framework** for the management and continuous oversight of the Velvet model family.
Key governance elements include:
- **Supervision by an Ethical and Technical Committee** to ensure the model aligns with principles of **transparency, fairness, and safety**.
- **Ongoing bias monitoring** through auditing tools, with iterative updates to improve alignment with ethical guidelines.
- **Restrictions on commercial and institutional usage** to ensure compliance with regulatory frameworks and **shared responsibility principles**.
- **Periodic review processes** to assess the model’s impact in high-risk applications.
## Bias, Risks, and Limitations
Velvet has been trained on a dataset that, despite all the data curation efforts, might include toxic language and societal biases. This means that models in the Velvet family may reproduce these biases and produce harmful responses when prompted with such inputs. This is a common issue in AI models trained on large datasets, as they can inadvertently perpetuate the biases present in the data.
Furthermore, the model may generate inaccurate, incomplete, or redundant responses, which could be socially unacceptable or undesirable, even if the input prompt is not explicitly offensive. This is a potential flaw in the model\'s design and training process, and it underscores the importance of careful validation and monitoring of AI systems to ensure that they are functioning as intended.
Additionally, using the recommended prompt template is crucial to mitigate the risk of harmful responses, as it is designed to guide the model towards more appropriate and safe outputs. However, it is important to note that the model\'s performance may still vary depending on the specific context and complexity of the input prompt.
Finally, when using this model in an agentic workflow, it is essential to validate that all imported packages and dependencies are from trusted sources to ensure the model\'s security and integrity. This is a critical step in maintaining the model\'s ethical and responsible use, and it is important to prioritize end-to-end security measures to prevent any potential vulnerabilities or breaches.
Future versions of Velvet will integrate automated red-teaming protocols, continuously stress-testing the model against adversarial prompts to identify and mitigate emerging risks.
### Sensitive Data Handling and Usage Restrictions
The Velvet model has not been trained on unauthorized personal data and must not be used to process sensitive data without appropriate security measures.
Usage Restrictions:
- Prohibited use on sensitive healthcare, financial, or government data without specific safeguards.
- Mandatory human validation in scenarios where the model’s outputs could have legal or ethical consequences.
- High-risk applications (legal, medical, public governance) must implement content filtering and auditing techniques to ensure response quality and safety.
## Ethical Considerations
Almawave core values are openness, inclusivity, and helpfulness. We aim to create AI that is accessible and beneficial for everyone, regardless of their background. Velvet models are designed to be respectful of diverse perspectives and avoid unnecessary judgments. Therefore, Velvet models are designed to be inclusive and respectful of diverse perspectives and needs. We strive to avoid unnecessary judgment or the imposition of normative views, recognizing that content deemed problematic in some contexts can have valuable applications in others.
We deeply respect the dignity and autonomy of all users, particularly their right to free thought and expression, which are fundamental to innovation and progress.
While we have taken significant steps to ensure the safety and reliability of Velvet models, it is important to acknowledge that they may occasionally generate inaccurate, biased, or unsafe responses.
Almawave is actively engaging with ethics committees and domain experts to ensure continuous oversight of Velvet’s outputs, improving safeguards through community feedback.
We strongly encourage the community to exercise caution and conduct thorough safety testing and fine-tuning when using Velvet models for specific tasks.
Opinions expressed by Velvet depend on training data and do not reflect any opinions of Almawave.
## Contributions
Direction: Raniero Romagnoli
- Model engineering and training: David Alessandrini, Francesco Buciuni, Andrea Favalli, Diego Perna, David Preti, Federico Wolenski, Fabio Massimo Zanzotto
- Data engineering and management: Valentina Bellomaria, Cristina Giannone, Alfredo Serafini
- Use case adaptation and testing: Salvatore Ricciardi, Simone Scaboro, Beatrice Turano, Giancarlo Xompero
- Evaluation: Giovanni Cingolani, Silvana De Benedictis, Caterina Masotti, Riccardo Pasquini, Guillaume Ruiz, Giuseppe Scrugli, Alessandro Vizzarro
- Product and governance: Beata Dobrzynska, Matteo Amore, Marco Gennaro Di Martino, Vincenzo Sciacca, Alessandra Staglianò, Luca Vinciguerra
| [
"SCIQ"
] |
johnsnowlabs/JSL-MedLlama-3-8B-v1.0 | johnsnowlabs | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-3-8b",
"sft",
"medical",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:finetune:meta-llama/Meta-Llama-3-8B",
"license:cc-by-nc-nd-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-04-24T16:29:12Z" | 2024-04-24T16:49:09+00:00 | 3,950 | 6 | ---
base_model:
- meta-llama/Meta-Llama-3-8B
license: cc-by-nc-nd-4.0
tags:
- llama-3-8b
- sft
- medical
---
# JSL-MedLlama-3-8B-v1.0
[<img src="https://repository-images.githubusercontent.com/104670986/2e728700-ace4-11ea-9cfc-f3e060b25ddf">](http://www.johnsnowlabs.com)
This model is developed by [John Snow Labs](https://www.johnsnowlabs.com/).
This model is available under a [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en) license and must also conform to this [Acceptable Use Policy](https://huggingface.co/johnsnowlabs). If you need to license this model for commercial use, please contact us at [email protected].
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/JSL-MedLlama-3-8B-v1.0"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## 🏆 Evaluation
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc |0.6217|± |0.0057|
| | |none | 0|acc_norm|0.5847|± |0.0066|
| - medmcqa |Yaml |none | 0|acc |0.5563|± |0.0077|
| | |none | 0|acc_norm|0.5563|± |0.0077|
| - medqa_4options |Yaml |none | 0|acc |0.6779|± |0.0131|
| | |none | 0|acc_norm|0.6779|± |0.0131|
| - anatomy (mmlu) | 0|none | 0|acc |0.6963|± |0.0397|
| - clinical_knowledge (mmlu) | 0|none | 0|acc |0.7509|± |0.0266|
| - college_biology (mmlu) | 0|none | 0|acc |0.7986|± |0.0335|
| - college_medicine (mmlu) | 0|none | 0|acc |0.6590|± |0.0361|
| - medical_genetics (mmlu) | 0|none | 0|acc |0.8500|± |0.0359|
| - professional_medicine (mmlu)| 0|none | 0|acc |0.7868|± |0.0249|
| - pubmedqa | 1|none | 0|acc |0.7380|± |0.0197|
|Groups|Version|Filter|n-shot| Metric |Value | |Stderr|
|------|-------|------|-----:|--------|-----:|---|-----:|
|stem |N/A |none | 0|acc |0.6217|± |0.0057|
| | |none | 0|acc_norm|0.5847|± |0.0066| | [
"MEDQA",
"PUBMEDQA"
] |
jxm/cde-small-v2 | jxm | feature-extraction | [
"sentence-transformers",
"safetensors",
"feature-extraction",
"mteb",
"transformers",
"modernbert",
"custom_code",
"arxiv:2410.02525",
"base_model:answerdotai/ModernBERT-base",
"base_model:finetune:answerdotai/ModernBERT-base",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2025-01-13T18:04:14Z" | 2025-02-03T23:41:38+00:00 | 3,933 | 78 | ---
base_model: answerdotai/ModernBERT-base
tags:
- mteb
- transformers
- sentence-transformers
- modernbert
model-index:
- name: cde-small-v2
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 86.01490000000001
- type: f1
value: 80.938
- type: f1_weighted
value: 86.9232
- type: ap
value: 54.949099999999994
- type: ap_weighted
value: 54.949099999999994
- type: main_score
value: 86.01490000000001
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification (default)
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 96.0223
- type: f1
value: 96.0206
- type: f1_weighted
value: 96.0206
- type: ap
value: 93.8301
- type: ap_weighted
value: 93.8301
- type: main_score
value: 96.0223
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 55.096000000000004
- type: f1
value: 54.4353
- type: f1_weighted
value: 54.4353
- type: main_score
value: 55.096000000000004
- task:
type: Retrieval
dataset:
name: MTEB ArguAna (default)
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: ndcg_at_1
value: 54.125
- type: ndcg_at_3
value: 69.009
- type: ndcg_at_5
value: 72.722
- type: ndcg_at_10
value: 74.957
- type: ndcg_at_20
value: 75.801
- type: ndcg_at_100
value: 75.986
- type: ndcg_at_1000
value: 76.015
- type: map_at_1
value: 54.125
- type: map_at_3
value: 65.375
- type: map_at_5
value: 67.448
- type: map_at_10
value: 68.38499999999999
- type: map_at_20
value: 68.636
- type: map_at_100
value: 68.66600000000001
- type: map_at_1000
value: 68.66799999999999
- type: recall_at_1
value: 54.125
- type: recall_at_3
value: 79.51599999999999
- type: recall_at_5
value: 88.478
- type: recall_at_10
value: 95.306
- type: recall_at_20
value: 98.506
- type: recall_at_100
value: 99.431
- type: recall_at_1000
value: 99.644
- type: precision_at_1
value: 54.125
- type: precision_at_3
value: 26.505000000000003
- type: precision_at_5
value: 17.696
- type: precision_at_10
value: 9.531
- type: precision_at_20
value: 4.925
- type: precision_at_100
value: 0.9939999999999999
- type: precision_at_1000
value: 0.1
- type: mrr_at_1
value: 54.623
- type: mrr_at_3
value: 65.505
- type: mrr_at_5
value: 67.6174
- type: mrr_at_10
value: 68.5664
- type: mrr_at_20
value: 68.8173
- type: mrr_at_100
value: 68.8476
- type: mrr_at_1000
value: 68.8489
- type: nauc_ndcg_at_1_max
value: -14.4789
- type: nauc_ndcg_at_1_std
value: -25.5432
- type: nauc_ndcg_at_1_diff1
value: 23.7267
- type: nauc_ndcg_at_3_max
value: -8.1401
- type: nauc_ndcg_at_3_std
value: -22.9099
- type: nauc_ndcg_at_3_diff1
value: 21.069499999999998
- type: nauc_ndcg_at_5_max
value: -8.4301
- type: nauc_ndcg_at_5_std
value: -22.9185
- type: nauc_ndcg_at_5_diff1
value: 21.229100000000003
- type: nauc_ndcg_at_10_max
value: -8.6651
- type: nauc_ndcg_at_10_std
value: -23.5444
- type: nauc_ndcg_at_10_diff1
value: 21.9585
- type: nauc_ndcg_at_20_max
value: -9.285400000000001
- type: nauc_ndcg_at_20_std
value: -23.4297
- type: nauc_ndcg_at_20_diff1
value: 21.6731
- type: nauc_ndcg_at_100_max
value: -9.8693
- type: nauc_ndcg_at_100_std
value: -23.313
- type: nauc_ndcg_at_100_diff1
value: 21.5888
- type: nauc_ndcg_at_1000_max
value: -9.9675
- type: nauc_ndcg_at_1000_std
value: -23.3522
- type: nauc_ndcg_at_1000_diff1
value: 21.5714
- type: nauc_map_at_1_max
value: -14.4789
- type: nauc_map_at_1_std
value: -25.5432
- type: nauc_map_at_1_diff1
value: 23.7267
- type: nauc_map_at_3_max
value: -10.0484
- type: nauc_map_at_3_std
value: -23.3575
- type: nauc_map_at_3_diff1
value: 21.329
- type: nauc_map_at_5_max
value: -10.3514
- type: nauc_map_at_5_std
value: -23.3955
- type: nauc_map_at_5_diff1
value: 21.3531
- type: nauc_map_at_10_max
value: -10.484200000000001
- type: nauc_map_at_10_std
value: -23.6726
- type: nauc_map_at_10_diff1
value: 21.6458
- type: nauc_map_at_20_max
value: -10.638499999999999
- type: nauc_map_at_20_std
value: -23.6588
- type: nauc_map_at_20_diff1
value: 21.576600000000003
- type: nauc_map_at_100_max
value: -10.717400000000001
- type: nauc_map_at_100_std
value: -23.6559
- type: nauc_map_at_100_diff1
value: 21.5688
- type: nauc_map_at_1000_max
value: -10.7203
- type: nauc_map_at_1000_std
value: -23.6557
- type: nauc_map_at_1000_diff1
value: 21.5682
- type: nauc_recall_at_1_max
value: -14.4789
- type: nauc_recall_at_1_std
value: -25.5432
- type: nauc_recall_at_1_diff1
value: 23.7267
- type: nauc_recall_at_3_max
value: -0.2134
- type: nauc_recall_at_3_std
value: -21.251800000000003
- type: nauc_recall_at_3_diff1
value: 20.3069
- type: nauc_recall_at_5_max
value: 4.109100000000001
- type: nauc_recall_at_5_std
value: -20.1382
- type: nauc_recall_at_5_diff1
value: 21.1976
- type: nauc_recall_at_10_max
value: 18.3416
- type: nauc_recall_at_10_std
value: -22.9791
- type: nauc_recall_at_10_diff1
value: 29.4668
- type: nauc_recall_at_20_max
value: 45.3219
- type: nauc_recall_at_20_std
value: -14.8366
- type: nauc_recall_at_20_diff1
value: 31.829800000000002
- type: nauc_recall_at_100_max
value: 38.8075
- type: nauc_recall_at_100_std
value: 25.4176
- type: nauc_recall_at_100_diff1
value: 32.2733
- type: nauc_recall_at_1000_max
value: 28.1372
- type: nauc_recall_at_1000_std
value: 35.442
- type: nauc_recall_at_1000_diff1
value: 31.8247
- type: nauc_precision_at_1_max
value: -14.4789
- type: nauc_precision_at_1_std
value: -25.5432
- type: nauc_precision_at_1_diff1
value: 23.7267
- type: nauc_precision_at_3_max
value: -0.2134
- type: nauc_precision_at_3_std
value: -21.251800000000003
- type: nauc_precision_at_3_diff1
value: 20.3069
- type: nauc_precision_at_5_max
value: 4.109100000000001
- type: nauc_precision_at_5_std
value: -20.1382
- type: nauc_precision_at_5_diff1
value: 21.1976
- type: nauc_precision_at_10_max
value: 18.3416
- type: nauc_precision_at_10_std
value: -22.9791
- type: nauc_precision_at_10_diff1
value: 29.4668
- type: nauc_precision_at_20_max
value: 45.3219
- type: nauc_precision_at_20_std
value: -14.8366
- type: nauc_precision_at_20_diff1
value: 31.829800000000002
- type: nauc_precision_at_100_max
value: 38.8075
- type: nauc_precision_at_100_std
value: 25.4176
- type: nauc_precision_at_100_diff1
value: 32.2733
- type: nauc_precision_at_1000_max
value: 28.1372
- type: nauc_precision_at_1000_std
value: 35.442
- type: nauc_precision_at_1000_diff1
value: 31.8247
- type: nauc_mrr_at_1_max
value: -14.066600000000001
- type: nauc_mrr_at_1_std
value: -25.0145
- type: nauc_mrr_at_1_diff1
value: 22.361900000000002
- type: nauc_mrr_at_3_max
value: -10.6465
- type: nauc_mrr_at_3_std
value: -23.4323
- type: nauc_mrr_at_3_diff1
value: 19.758899999999997
- type: nauc_mrr_at_5_max
value: -10.7144
- type: nauc_mrr_at_5_std
value: -23.2823
- type: nauc_mrr_at_5_diff1
value: 19.8552
- type: nauc_mrr_at_10_max
value: -10.7815
- type: nauc_mrr_at_10_std
value: -23.51
- type: nauc_mrr_at_10_diff1
value: 20.157
- type: nauc_mrr_at_20_max
value: -10.9391
- type: nauc_mrr_at_20_std
value: -23.4946
- type: nauc_mrr_at_20_diff1
value: 20.072400000000002
- type: nauc_mrr_at_100_max
value: -11.018500000000001
- type: nauc_mrr_at_100_std
value: -23.491400000000002
- type: nauc_mrr_at_100_diff1
value: 20.0627
- type: nauc_mrr_at_1000_max
value: -11.0214
- type: nauc_mrr_at_1000_std
value: -23.491300000000003
- type: nauc_mrr_at_1000_diff1
value: 20.061999999999998
- type: main_score
value: 74.957
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P (default)
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 50.5269
- type: v_measure_std
value: 14.0094
- type: main_score
value: 50.5269
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S (default)
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 41.620200000000004
- type: v_measure_std
value: 14.4842
- type: main_score
value: 41.620200000000004
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions (default)
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.790299999999995
- type: mrr
value: 75.8156
- type: nAUC_map_max
value: 26.151200000000003
- type: nAUC_map_std
value: 15.8953
- type: nAUC_map_diff1
value: 5.0684
- type: nAUC_mrr_max
value: 36.9643
- type: nAUC_mrr_std
value: 19.0749
- type: nAUC_mrr_diff1
value: 15.549399999999999
- type: main_score
value: 61.790299999999995
- task:
type: STS
dataset:
name: MTEB BIOSSES (default)
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: pearson
value: 88.41590000000001
- type: spearman
value: 86.7116
- type: cosine_pearson
value: 88.41590000000001
- type: cosine_spearman
value: 86.7116
- type: manhattan_pearson
value: 86.2045
- type: manhattan_spearman
value: 85.7248
- type: euclidean_pearson
value: 86.2336
- type: euclidean_spearman
value: 85.861
- type: main_score
value: 86.7116
- task:
type: Classification
dataset:
name: MTEB Banking77Classification (default)
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 88.3052
- type: f1
value: 88.2617
- type: f1_weighted
value: 88.2617
- type: main_score
value: 88.3052
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P (default)
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 45.4377
- type: v_measure_std
value: 0.8543000000000001
- type: main_score
value: 45.4377
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S (default)
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 39.6472
- type: v_measure_std
value: 0.7081999999999999
- type: main_score
value: 39.6472
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval (default)
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: ndcg_at_1
value: 39.342
- type: ndcg_at_3
value: 44.718999999999994
- type: ndcg_at_5
value: 47.449999999999996
- type: ndcg_at_10
value: 50.17
- type: ndcg_at_20
value: 52.366
- type: ndcg_at_100
value: 55.400000000000006
- type: ndcg_at_1000
value: 57.13399999999999
- type: map_at_1
value: 32.300000000000004
- type: map_at_3
value: 39.937
- type: map_at_5
value: 42.141
- type: map_at_10
value: 43.681
- type: map_at_20
value: 44.516
- type: map_at_100
value: 45.14
- type: map_at_1000
value: 45.25
- type: recall_at_1
value: 32.300000000000004
- type: recall_at_3
value: 47.12
- type: recall_at_5
value: 54.581
- type: recall_at_10
value: 62.873000000000005
- type: recall_at_20
value: 70.604
- type: recall_at_100
value: 84.465
- type: recall_at_1000
value: 95.299
- type: precision_at_1
value: 39.342
- type: precision_at_3
value: 21.459
- type: precision_at_5
value: 15.622
- type: precision_at_10
value: 9.514
- type: precision_at_20
value: 5.665
- type: precision_at_100
value: 1.5150000000000001
- type: precision_at_1000
value: 0.19499999999999998
- type: mrr_at_1
value: 39.3419
- type: mrr_at_3
value: 46.805
- type: mrr_at_5
value: 48.5861
- type: mrr_at_10
value: 49.6697
- type: mrr_at_20
value: 50.131
- type: mrr_at_100
value: 50.373599999999996
- type: mrr_at_1000
value: 50.4106
- type: nauc_ndcg_at_1_max
value: 40.0004
- type: nauc_ndcg_at_1_std
value: -1.8753
- type: nauc_ndcg_at_1_diff1
value: 45.9146
- type: nauc_ndcg_at_3_max
value: 41.3777
- type: nauc_ndcg_at_3_std
value: -1.2817
- type: nauc_ndcg_at_3_diff1
value: 42.710100000000004
- type: nauc_ndcg_at_5_max
value: 42.4211
- type: nauc_ndcg_at_5_std
value: -0.6910999999999999
- type: nauc_ndcg_at_5_diff1
value: 42.9048
- type: nauc_ndcg_at_10_max
value: 42.609399999999994
- type: nauc_ndcg_at_10_std
value: 0.4398
- type: nauc_ndcg_at_10_diff1
value: 42.4967
- type: nauc_ndcg_at_20_max
value: 42.7921
- type: nauc_ndcg_at_20_std
value: 0.9266
- type: nauc_ndcg_at_20_diff1
value: 42.701899999999995
- type: nauc_ndcg_at_100_max
value: 43.4878
- type: nauc_ndcg_at_100_std
value: 2.2893
- type: nauc_ndcg_at_100_diff1
value: 42.735
- type: nauc_ndcg_at_1000_max
value: 43.3776
- type: nauc_ndcg_at_1000_std
value: 2.1375
- type: nauc_ndcg_at_1000_diff1
value: 42.6437
- type: nauc_map_at_1_max
value: 37.573499999999996
- type: nauc_map_at_1_std
value: -1.4611
- type: nauc_map_at_1_diff1
value: 50.0479
- type: nauc_map_at_3_max
value: 40.5952
- type: nauc_map_at_3_std
value: -1.7034
- type: nauc_map_at_3_diff1
value: 45.7247
- type: nauc_map_at_5_max
value: 41.3854
- type: nauc_map_at_5_std
value: -1.5435
- type: nauc_map_at_5_diff1
value: 45.278400000000005
- type: nauc_map_at_10_max
value: 41.7269
- type: nauc_map_at_10_std
value: -1.0763
- type: nauc_map_at_10_diff1
value: 45.0862
- type: nauc_map_at_20_max
value: 42.0241
- type: nauc_map_at_20_std
value: -0.8463999999999999
- type: nauc_map_at_20_diff1
value: 45.1365
- type: nauc_map_at_100_max
value: 42.248200000000004
- type: nauc_map_at_100_std
value: -0.6139
- type: nauc_map_at_100_diff1
value: 45.0658
- type: nauc_map_at_1000_max
value: 42.2442
- type: nauc_map_at_1000_std
value: -0.6187
- type: nauc_map_at_1000_diff1
value: 45.0382
- type: nauc_recall_at_1_max
value: 37.573499999999996
- type: nauc_recall_at_1_std
value: -1.4611
- type: nauc_recall_at_1_diff1
value: 50.0479
- type: nauc_recall_at_3_max
value: 39.9536
- type: nauc_recall_at_3_std
value: -0.132
- type: nauc_recall_at_3_diff1
value: 39.6892
- type: nauc_recall_at_5_max
value: 41.428799999999995
- type: nauc_recall_at_5_std
value: 1.2703
- type: nauc_recall_at_5_diff1
value: 38.2213
- type: nauc_recall_at_10_max
value: 41.3254
- type: nauc_recall_at_10_std
value: 4.9163
- type: nauc_recall_at_10_diff1
value: 35.1215
- type: nauc_recall_at_20_max
value: 41.3807
- type: nauc_recall_at_20_std
value: 7.3897
- type: nauc_recall_at_20_diff1
value: 33.7864
- type: nauc_recall_at_100_max
value: 49.6612
- type: nauc_recall_at_100_std
value: 25.1511
- type: nauc_recall_at_100_diff1
value: 33.968199999999996
- type: nauc_recall_at_1000_max
value: 71.2452
- type: nauc_recall_at_1000_std
value: 68.7065
- type: nauc_recall_at_1000_diff1
value: 33.0124
- type: nauc_precision_at_1_max
value: 40.0004
- type: nauc_precision_at_1_std
value: -1.8753
- type: nauc_precision_at_1_diff1
value: 45.9146
- type: nauc_precision_at_3_max
value: 36.741800000000005
- type: nauc_precision_at_3_std
value: -1.2777
- type: nauc_precision_at_3_diff1
value: 23.3539
- type: nauc_precision_at_5_max
value: 32.9756
- type: nauc_precision_at_5_std
value: -0.1613
- type: nauc_precision_at_5_diff1
value: 15.866
- type: nauc_precision_at_10_max
value: 25.7284
- type: nauc_precision_at_10_std
value: 2.7586
- type: nauc_precision_at_10_diff1
value: 6.579899999999999
- type: nauc_precision_at_20_max
value: 18.8213
- type: nauc_precision_at_20_std
value: 3.6470000000000002
- type: nauc_precision_at_20_diff1
value: -0.45690000000000003
- type: nauc_precision_at_100_max
value: 5.7518
- type: nauc_precision_at_100_std
value: 3.4711
- type: nauc_precision_at_100_diff1
value: -12.380700000000001
- type: nauc_precision_at_1000_max
value: -8.6862
- type: nauc_precision_at_1000_std
value: -4.5796
- type: nauc_precision_at_1000_diff1
value: -19.9355
- type: nauc_mrr_at_1_max
value: 40.0004
- type: nauc_mrr_at_1_std
value: -1.8753
- type: nauc_mrr_at_1_diff1
value: 45.9146
- type: nauc_mrr_at_3_max
value: 40.686
- type: nauc_mrr_at_3_std
value: -0.8626999999999999
- type: nauc_mrr_at_3_diff1
value: 41.4552
- type: nauc_mrr_at_5_max
value: 41.2445
- type: nauc_mrr_at_5_std
value: -0.7058
- type: nauc_mrr_at_5_diff1
value: 41.7244
- type: nauc_mrr_at_10_max
value: 41.1575
- type: nauc_mrr_at_10_std
value: -0.44489999999999996
- type: nauc_mrr_at_10_diff1
value: 41.355199999999996
- type: nauc_mrr_at_20_max
value: 41.1548
- type: nauc_mrr_at_20_std
value: -0.33
- type: nauc_mrr_at_20_diff1
value: 41.444199999999995
- type: nauc_mrr_at_100_max
value: 41.1908
- type: nauc_mrr_at_100_std
value: -0.3263
- type: nauc_mrr_at_100_diff1
value: 41.505900000000004
- type: nauc_mrr_at_1000_max
value: 41.1935
- type: nauc_mrr_at_1000_std
value: -0.3216
- type: nauc_mrr_at_1000_diff1
value: 41.5128
- type: main_score
value: 50.17
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval (default)
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: ndcg_at_1
value: 42.102000000000004
- type: ndcg_at_3
value: 45.741
- type: ndcg_at_5
value: 47.734
- type: ndcg_at_10
value: 49.732
- type: ndcg_at_20
value: 51.295
- type: ndcg_at_100
value: 53.935
- type: ndcg_at_1000
value: 55.765
- type: map_at_1
value: 33.306999999999995
- type: map_at_3
value: 40.953
- type: map_at_5
value: 42.731
- type: map_at_10
value: 44.022
- type: map_at_20
value: 44.693
- type: map_at_100
value: 45.259
- type: map_at_1000
value: 45.383
- type: recall_at_1
value: 33.306999999999995
- type: recall_at_3
value: 47.127
- type: recall_at_5
value: 52.89
- type: recall_at_10
value: 59.16400000000001
- type: recall_at_20
value: 64.85
- type: recall_at_100
value: 77.206
- type: recall_at_1000
value: 88.701
- type: precision_at_1
value: 42.102000000000004
- type: precision_at_3
value: 21.975
- type: precision_at_5
value: 15.465000000000002
- type: precision_at_10
value: 9.229
- type: precision_at_20
value: 5.404
- type: precision_at_100
value: 1.461
- type: precision_at_1000
value: 0.192
- type: mrr_at_1
value: 42.1019
- type: mrr_at_3
value: 48.322700000000005
- type: mrr_at_5
value: 49.593399999999995
- type: mrr_at_10
value: 50.364399999999996
- type: mrr_at_20
value: 50.7215
- type: mrr_at_100
value: 50.962300000000006
- type: mrr_at_1000
value: 50.9999
- type: nauc_ndcg_at_1_max
value: 40.6054
- type: nauc_ndcg_at_1_std
value: -3.4602
- type: nauc_ndcg_at_1_diff1
value: 54.0346
- type: nauc_ndcg_at_3_max
value: 40.0946
- type: nauc_ndcg_at_3_std
value: -3.7981000000000003
- type: nauc_ndcg_at_3_diff1
value: 49.2481
- type: nauc_ndcg_at_5_max
value: 40.198699999999995
- type: nauc_ndcg_at_5_std
value: -3.2983
- type: nauc_ndcg_at_5_diff1
value: 48.7252
- type: nauc_ndcg_at_10_max
value: 40.6072
- type: nauc_ndcg_at_10_std
value: -3.472
- type: nauc_ndcg_at_10_diff1
value: 48.7302
- type: nauc_ndcg_at_20_max
value: 41.0897
- type: nauc_ndcg_at_20_std
value: -2.8645
- type: nauc_ndcg_at_20_diff1
value: 48.8834
- type: nauc_ndcg_at_100_max
value: 41.450900000000004
- type: nauc_ndcg_at_100_std
value: -1.3305
- type: nauc_ndcg_at_100_diff1
value: 48.2699
- type: nauc_ndcg_at_1000_max
value: 41.4853
- type: nauc_ndcg_at_1000_std
value: -0.7634
- type: nauc_ndcg_at_1000_diff1
value: 48.28
- type: nauc_map_at_1_max
value: 31.776100000000003
- type: nauc_map_at_1_std
value: -12.5085
- type: nauc_map_at_1_diff1
value: 56.84630000000001
- type: nauc_map_at_3_max
value: 36.3131
- type: nauc_map_at_3_std
value: -9.3976
- type: nauc_map_at_3_diff1
value: 52.4471
- type: nauc_map_at_5_max
value: 37.330799999999996
- type: nauc_map_at_5_std
value: -8.0619
- type: nauc_map_at_5_diff1
value: 51.692800000000005
- type: nauc_map_at_10_max
value: 38.406400000000005
- type: nauc_map_at_10_std
value: -7.1754
- type: nauc_map_at_10_diff1
value: 51.46849999999999
- type: nauc_map_at_20_max
value: 38.940000000000005
- type: nauc_map_at_20_std
value: -6.4747
- type: nauc_map_at_20_diff1
value: 51.34570000000001
- type: nauc_map_at_100_max
value: 39.3424
- type: nauc_map_at_100_std
value: -5.7301
- type: nauc_map_at_100_diff1
value: 51.0633
- type: nauc_map_at_1000_max
value: 39.3905
- type: nauc_map_at_1000_std
value: -5.5938
- type: nauc_map_at_1000_diff1
value: 51.04109999999999
- type: nauc_recall_at_1_max
value: 31.776100000000003
- type: nauc_recall_at_1_std
value: -12.5085
- type: nauc_recall_at_1_diff1
value: 56.84630000000001
- type: nauc_recall_at_3_max
value: 35.702
- type: nauc_recall_at_3_std
value: -7.3138
- type: nauc_recall_at_3_diff1
value: 46.3454
- type: nauc_recall_at_5_max
value: 36.459399999999995
- type: nauc_recall_at_5_std
value: -4.678100000000001
- type: nauc_recall_at_5_diff1
value: 43.6423
- type: nauc_recall_at_10_max
value: 37.3534
- type: nauc_recall_at_10_std
value: -4.0492
- type: nauc_recall_at_10_diff1
value: 41.7513
- type: nauc_recall_at_20_max
value: 39.379999999999995
- type: nauc_recall_at_20_std
value: -1.0078
- type: nauc_recall_at_20_diff1
value: 41.638
- type: nauc_recall_at_100_max
value: 40.705799999999996
- type: nauc_recall_at_100_std
value: 8.9477
- type: nauc_recall_at_100_diff1
value: 35.7987
- type: nauc_recall_at_1000_max
value: 41.560399999999994
- type: nauc_recall_at_1000_std
value: 19.6108
- type: nauc_recall_at_1000_diff1
value: 30.694399999999998
- type: nauc_precision_at_1_max
value: 40.6054
- type: nauc_precision_at_1_std
value: -3.4602
- type: nauc_precision_at_1_diff1
value: 54.0346
- type: nauc_precision_at_3_max
value: 42.0217
- type: nauc_precision_at_3_std
value: 10.3896
- type: nauc_precision_at_3_diff1
value: 26.7498
- type: nauc_precision_at_5_max
value: 40.4414
- type: nauc_precision_at_5_std
value: 18.177599999999998
- type: nauc_precision_at_5_diff1
value: 16.9455
- type: nauc_precision_at_10_max
value: 38.921
- type: nauc_precision_at_10_std
value: 24.1093
- type: nauc_precision_at_10_diff1
value: 8.4258
- type: nauc_precision_at_20_max
value: 34.620200000000004
- type: nauc_precision_at_20_std
value: 29.351399999999998
- type: nauc_precision_at_20_diff1
value: 0.15360000000000001
- type: nauc_precision_at_100_max
value: 25.230000000000004
- type: nauc_precision_at_100_std
value: 36.8424
- type: nauc_precision_at_100_diff1
value: -12.225900000000001
- type: nauc_precision_at_1000_max
value: 13.1715
- type: nauc_precision_at_1000_std
value: 34.7096
- type: nauc_precision_at_1000_diff1
value: -16.5331
- type: nauc_mrr_at_1_max
value: 40.6054
- type: nauc_mrr_at_1_std
value: -3.4602
- type: nauc_mrr_at_1_diff1
value: 54.0346
- type: nauc_mrr_at_3_max
value: 42.2127
- type: nauc_mrr_at_3_std
value: -1.0392000000000001
- type: nauc_mrr_at_3_diff1
value: 49.748
- type: nauc_mrr_at_5_max
value: 42.2638
- type: nauc_mrr_at_5_std
value: -0.40049999999999997
- type: nauc_mrr_at_5_diff1
value: 49.3009
- type: nauc_mrr_at_10_max
value: 42.0477
- type: nauc_mrr_at_10_std
value: -0.6505000000000001
- type: nauc_mrr_at_10_diff1
value: 49.0978
- type: nauc_mrr_at_20_max
value: 42.0895
- type: nauc_mrr_at_20_std
value: -0.5649000000000001
- type: nauc_mrr_at_20_diff1
value: 49.1893
- type: nauc_mrr_at_100_max
value: 42.0951
- type: nauc_mrr_at_100_std
value: -0.5555
- type: nauc_mrr_at_100_diff1
value: 49.2047
- type: nauc_mrr_at_1000_max
value: 42.0946
- type: nauc_mrr_at_1000_std
value: -0.5584
- type: nauc_mrr_at_1000_diff1
value: 49.207699999999996
- type: main_score
value: 49.732
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval (default)
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: ndcg_at_1
value: 48.276
- type: ndcg_at_3
value: 53.727000000000004
- type: ndcg_at_5
value: 56.511
- type: ndcg_at_10
value: 59.023
- type: ndcg_at_20
value: 60.802
- type: ndcg_at_100
value: 62.980999999999995
- type: ndcg_at_1000
value: 64.13600000000001
- type: map_at_1
value: 42.347
- type: map_at_3
value: 50.349999999999994
- type: map_at_5
value: 52.276999999999994
- type: map_at_10
value: 53.6
- type: map_at_20
value: 54.217000000000006
- type: map_at_100
value: 54.605000000000004
- type: map_at_1000
value: 54.663
- type: recall_at_1
value: 42.347
- type: recall_at_3
value: 57.499
- type: recall_at_5
value: 64.269
- type: recall_at_10
value: 71.568
- type: recall_at_20
value: 78.125
- type: recall_at_100
value: 88.699
- type: recall_at_1000
value: 96.887
- type: precision_at_1
value: 48.276
- type: precision_at_3
value: 23.49
- type: precision_at_5
value: 16.262999999999998
- type: precision_at_10
value: 9.322999999999999
- type: precision_at_20
value: 5.21
- type: precision_at_100
value: 1.22
- type: precision_at_1000
value: 0.136
- type: mrr_at_1
value: 48.2759
- type: mrr_at_3
value: 54.5246
- type: mrr_at_5
value: 56.0982
- type: mrr_at_10
value: 56.961
- type: mrr_at_20
value: 57.391400000000004
- type: mrr_at_100
value: 57.6295
- type: mrr_at_1000
value: 57.66139999999999
- type: nauc_ndcg_at_1_max
value: 43.5037
- type: nauc_ndcg_at_1_std
value: -7.6921
- type: nauc_ndcg_at_1_diff1
value: 58.544700000000006
- type: nauc_ndcg_at_3_max
value: 44.630900000000004
- type: nauc_ndcg_at_3_std
value: -6.260300000000001
- type: nauc_ndcg_at_3_diff1
value: 56.120999999999995
- type: nauc_ndcg_at_5_max
value: 45.1267
- type: nauc_ndcg_at_5_std
value: -5.5512
- type: nauc_ndcg_at_5_diff1
value: 54.8272
- type: nauc_ndcg_at_10_max
value: 45.691199999999995
- type: nauc_ndcg_at_10_std
value: -4.1767
- type: nauc_ndcg_at_10_diff1
value: 53.8565
- type: nauc_ndcg_at_20_max
value: 46.0581
- type: nauc_ndcg_at_20_std
value: -2.4019
- type: nauc_ndcg_at_20_diff1
value: 53.67150000000001
- type: nauc_ndcg_at_100_max
value: 46.3071
- type: nauc_ndcg_at_100_std
value: -1.856
- type: nauc_ndcg_at_100_diff1
value: 54.2616
- type: nauc_ndcg_at_1000_max
value: 46.3054
- type: nauc_ndcg_at_1000_std
value: -2.4795000000000003
- type: nauc_ndcg_at_1000_diff1
value: 54.6332
- type: nauc_map_at_1_max
value: 37.3915
- type: nauc_map_at_1_std
value: -9.6709
- type: nauc_map_at_1_diff1
value: 59.0807
- type: nauc_map_at_3_max
value: 42.3532
- type: nauc_map_at_3_std
value: -8.4634
- type: nauc_map_at_3_diff1
value: 57.342400000000005
- type: nauc_map_at_5_max
value: 43.065799999999996
- type: nauc_map_at_5_std
value: -7.430000000000001
- type: nauc_map_at_5_diff1
value: 56.5453
- type: nauc_map_at_10_max
value: 43.4845
- type: nauc_map_at_10_std
value: -6.5406
- type: nauc_map_at_10_diff1
value: 55.959199999999996
- type: nauc_map_at_20_max
value: 43.8265
- type: nauc_map_at_20_std
value: -5.8393
- type: nauc_map_at_20_diff1
value: 55.8438
- type: nauc_map_at_100_max
value: 44.014399999999995
- type: nauc_map_at_100_std
value: -5.6227
- type: nauc_map_at_100_diff1
value: 55.8762
- type: nauc_map_at_1000_max
value: 44.0386
- type: nauc_map_at_1000_std
value: -5.6262
- type: nauc_map_at_1000_diff1
value: 55.888099999999994
- type: nauc_recall_at_1_max
value: 37.3915
- type: nauc_recall_at_1_std
value: -9.6709
- type: nauc_recall_at_1_diff1
value: 59.0807
- type: nauc_recall_at_3_max
value: 43.8264
- type: nauc_recall_at_3_std
value: -6.309099999999999
- type: nauc_recall_at_3_diff1
value: 53.4872
- type: nauc_recall_at_5_max
value: 44.237300000000005
- type: nauc_recall_at_5_std
value: -4.1856
- type: nauc_recall_at_5_diff1
value: 49.3654
- type: nauc_recall_at_10_max
value: 46.7914
- type: nauc_recall_at_10_std
value: 1.3229
- type: nauc_recall_at_10_diff1
value: 45.1973
- type: nauc_recall_at_20_max
value: 49.560500000000005
- type: nauc_recall_at_20_std
value: 11.9406
- type: nauc_recall_at_20_diff1
value: 42.821999999999996
- type: nauc_recall_at_100_max
value: 53.3482
- type: nauc_recall_at_100_std
value: 27.375
- type: nauc_recall_at_100_diff1
value: 44.0535
- type: nauc_recall_at_1000_max
value: 64.18
- type: nauc_recall_at_1000_std
value: 53.603699999999996
- type: nauc_recall_at_1000_diff1
value: 50.1113
- type: nauc_precision_at_1_max
value: 43.5037
- type: nauc_precision_at_1_std
value: -7.6921
- type: nauc_precision_at_1_diff1
value: 58.544700000000006
- type: nauc_precision_at_3_max
value: 41.9145
- type: nauc_precision_at_3_std
value: 0.6891999999999999
- type: nauc_precision_at_3_diff1
value: 35.0689
- type: nauc_precision_at_5_max
value: 38.553399999999996
- type: nauc_precision_at_5_std
value: 6.1493
- type: nauc_precision_at_5_diff1
value: 23.127
- type: nauc_precision_at_10_max
value: 34.076699999999995
- type: nauc_precision_at_10_std
value: 12.673300000000001
- type: nauc_precision_at_10_diff1
value: 10.7967
- type: nauc_precision_at_20_max
value: 31.9315
- type: nauc_precision_at_20_std
value: 21.0503
- type: nauc_precision_at_20_diff1
value: 1.9767
- type: nauc_precision_at_100_max
value: 24.287300000000002
- type: nauc_precision_at_100_std
value: 24.5746
- type: nauc_precision_at_100_diff1
value: -9.751700000000001
- type: nauc_precision_at_1000_max
value: 19.252
- type: nauc_precision_at_1000_std
value: 21.0394
- type: nauc_precision_at_1000_diff1
value: -16.8851
- type: nauc_mrr_at_1_max
value: 43.5037
- type: nauc_mrr_at_1_std
value: -7.6921
- type: nauc_mrr_at_1_diff1
value: 58.544700000000006
- type: nauc_mrr_at_3_max
value: 45.9732
- type: nauc_mrr_at_3_std
value: -5.3982
- type: nauc_mrr_at_3_diff1
value: 56.1002
- type: nauc_mrr_at_5_max
value: 45.9223
- type: nauc_mrr_at_5_std
value: -5.3386000000000005
- type: nauc_mrr_at_5_diff1
value: 55.196
- type: nauc_mrr_at_10_max
value: 46.1619
- type: nauc_mrr_at_10_std
value: -4.965
- type: nauc_mrr_at_10_diff1
value: 55.081199999999995
- type: nauc_mrr_at_20_max
value: 46.238600000000005
- type: nauc_mrr_at_20_std
value: -4.5938
- type: nauc_mrr_at_20_diff1
value: 55.0906
- type: nauc_mrr_at_100_max
value: 46.2087
- type: nauc_mrr_at_100_std
value: -4.6099
- type: nauc_mrr_at_100_diff1
value: 55.1922
- type: nauc_mrr_at_1000_max
value: 46.2022
- type: nauc_mrr_at_1000_std
value: -4.6231
- type: nauc_mrr_at_1000_diff1
value: 55.209399999999995
- type: main_score
value: 59.023
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval (default)
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: ndcg_at_1
value: 27.797
- type: ndcg_at_3
value: 34.787
- type: ndcg_at_5
value: 37.326
- type: ndcg_at_10
value: 39.583
- type: ndcg_at_20
value: 41.677
- type: ndcg_at_100
value: 44.932
- type: ndcg_at_1000
value: 46.893
- type: map_at_1
value: 26.209
- type: map_at_3
value: 32.365
- type: map_at_5
value: 33.819
- type: map_at_10
value: 34.827999999999996
- type: map_at_20
value: 35.447
- type: map_at_100
value: 35.93
- type: map_at_1000
value: 36.007
- type: recall_at_1
value: 26.209
- type: recall_at_3
value: 39.562999999999995
- type: recall_at_5
value: 45.594
- type: recall_at_10
value: 52.236000000000004
- type: recall_at_20
value: 60.019
- type: recall_at_100
value: 76.6
- type: recall_at_1000
value: 91.389
- type: precision_at_1
value: 27.797
- type: precision_at_3
value: 14.539
- type: precision_at_5
value: 10.215
- type: precision_at_10
value: 5.944
- type: precision_at_20
value: 3.469
- type: precision_at_100
value: 0.907
- type: precision_at_1000
value: 0.11100000000000002
- type: mrr_at_1
value: 27.796599999999998
- type: mrr_at_3
value: 34.2373
- type: mrr_at_5
value: 35.762699999999995
- type: mrr_at_10
value: 36.6849
- type: mrr_at_20
value: 37.257600000000004
- type: mrr_at_100
value: 37.6676
- type: mrr_at_1000
value: 37.723800000000004
- type: nauc_ndcg_at_1_max
value: 27.845599999999997
- type: nauc_ndcg_at_1_std
value: -8.0177
- type: nauc_ndcg_at_1_diff1
value: 44.9034
- type: nauc_ndcg_at_3_max
value: 28.7984
- type: nauc_ndcg_at_3_std
value: -6.7625
- type: nauc_ndcg_at_3_diff1
value: 38.344
- type: nauc_ndcg_at_5_max
value: 29.8333
- type: nauc_ndcg_at_5_std
value: -5.305
- type: nauc_ndcg_at_5_diff1
value: 37.8077
- type: nauc_ndcg_at_10_max
value: 30.0319
- type: nauc_ndcg_at_10_std
value: -3.7874
- type: nauc_ndcg_at_10_diff1
value: 36.7867
- type: nauc_ndcg_at_20_max
value: 29.768499999999996
- type: nauc_ndcg_at_20_std
value: -4.4994
- type: nauc_ndcg_at_20_diff1
value: 36.2424
- type: nauc_ndcg_at_100_max
value: 29.6882
- type: nauc_ndcg_at_100_std
value: -3.0686999999999998
- type: nauc_ndcg_at_100_diff1
value: 35.5097
- type: nauc_ndcg_at_1000_max
value: 30.0696
- type: nauc_ndcg_at_1000_std
value: -3.0852
- type: nauc_ndcg_at_1000_diff1
value: 36.168
- type: nauc_map_at_1_max
value: 26.105800000000002
- type: nauc_map_at_1_std
value: -9.0379
- type: nauc_map_at_1_diff1
value: 46.5148
- type: nauc_map_at_3_max
value: 27.851100000000002
- type: nauc_map_at_3_std
value: -7.6508
- type: nauc_map_at_3_diff1
value: 40.441
- type: nauc_map_at_5_max
value: 28.498600000000003
- type: nauc_map_at_5_std
value: -6.8919
- type: nauc_map_at_5_diff1
value: 40.2012
- type: nauc_map_at_10_max
value: 28.754
- type: nauc_map_at_10_std
value: -6.1987
- type: nauc_map_at_10_diff1
value: 39.7856
- type: nauc_map_at_20_max
value: 28.7468
- type: nauc_map_at_20_std
value: -6.372999999999999
- type: nauc_map_at_20_diff1
value: 39.7445
- type: nauc_map_at_100_max
value: 28.762999999999998
- type: nauc_map_at_100_std
value: -6.1504
- type: nauc_map_at_100_diff1
value: 39.643699999999995
- type: nauc_map_at_1000_max
value: 28.7886
- type: nauc_map_at_1000_std
value: -6.1426
- type: nauc_map_at_1000_diff1
value: 39.6637
- type: nauc_recall_at_1_max
value: 26.105800000000002
- type: nauc_recall_at_1_std
value: -9.0379
- type: nauc_recall_at_1_diff1
value: 46.5148
- type: nauc_recall_at_3_max
value: 28.845399999999998
- type: nauc_recall_at_3_std
value: -4.6356
- type: nauc_recall_at_3_diff1
value: 32.9931
- type: nauc_recall_at_5_max
value: 31.3996
- type: nauc_recall_at_5_std
value: -1.7656
- type: nauc_recall_at_5_diff1
value: 31.254199999999997
- type: nauc_recall_at_10_max
value: 31.406
- type: nauc_recall_at_10_std
value: 2.6767
- type: nauc_recall_at_10_diff1
value: 27.5627
- type: nauc_recall_at_20_max
value: 29.6752
- type: nauc_recall_at_20_std
value: 0.0991
- type: nauc_recall_at_20_diff1
value: 24.0771
- type: nauc_recall_at_100_max
value: 28.4217
- type: nauc_recall_at_100_std
value: 12.0071
- type: nauc_recall_at_100_diff1
value: 13.231100000000001
- type: nauc_recall_at_1000_max
value: 35.8245
- type: nauc_recall_at_1000_std
value: 30.705
- type: nauc_recall_at_1000_diff1
value: 2.7809
- type: nauc_precision_at_1_max
value: 27.845599999999997
- type: nauc_precision_at_1_std
value: -8.0177
- type: nauc_precision_at_1_diff1
value: 44.9034
- type: nauc_precision_at_3_max
value: 32.706
- type: nauc_precision_at_3_std
value: -3.9037
- type: nauc_precision_at_3_diff1
value: 29.921599999999998
- type: nauc_precision_at_5_max
value: 34.192
- type: nauc_precision_at_5_std
value: -0.5177
- type: nauc_precision_at_5_diff1
value: 28.4206
- type: nauc_precision_at_10_max
value: 33.6132
- type: nauc_precision_at_10_std
value: 4.372
- type: nauc_precision_at_10_diff1
value: 23.5257
- type: nauc_precision_at_20_max
value: 31.1237
- type: nauc_precision_at_20_std
value: 1.9191
- type: nauc_precision_at_20_diff1
value: 18.445700000000002
- type: nauc_precision_at_100_max
value: 22.5504
- type: nauc_precision_at_100_std
value: 11.1776
- type: nauc_precision_at_100_diff1
value: 3.3670999999999998
- type: nauc_precision_at_1000_max
value: 13.5905
- type: nauc_precision_at_1000_std
value: 12.9311
- type: nauc_precision_at_1000_diff1
value: -8.054699999999999
- type: nauc_mrr_at_1_max
value: 27.845599999999997
- type: nauc_mrr_at_1_std
value: -8.0177
- type: nauc_mrr_at_1_diff1
value: 44.9034
- type: nauc_mrr_at_3_max
value: 29.1589
- type: nauc_mrr_at_3_std
value: -6.4891000000000005
- type: nauc_mrr_at_3_diff1
value: 39.088699999999996
- type: nauc_mrr_at_5_max
value: 29.9228
- type: nauc_mrr_at_5_std
value: -5.6324
- type: nauc_mrr_at_5_diff1
value: 38.862
- type: nauc_mrr_at_10_max
value: 29.907600000000002
- type: nauc_mrr_at_10_std
value: -5.148
- type: nauc_mrr_at_10_diff1
value: 38.4778
- type: nauc_mrr_at_20_max
value: 29.8398
- type: nauc_mrr_at_20_std
value: -5.3067
- type: nauc_mrr_at_20_diff1
value: 38.275999999999996
- type: nauc_mrr_at_100_max
value: 29.828100000000003
- type: nauc_mrr_at_100_std
value: -5.1385
- type: nauc_mrr_at_100_diff1
value: 38.2314
- type: nauc_mrr_at_1000_max
value: 29.8443
- type: nauc_mrr_at_1000_std
value: -5.146
- type: nauc_mrr_at_1000_diff1
value: 38.2581
- type: main_score
value: 39.583
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval (default)
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: ndcg_at_1
value: 22.015
- type: ndcg_at_3
value: 25.941
- type: ndcg_at_5
value: 28.469
- type: ndcg_at_10
value: 31.391000000000002
- type: ndcg_at_20
value: 33.485
- type: ndcg_at_100
value: 37.145
- type: ndcg_at_1000
value: 39.909
- type: map_at_1
value: 17.580000000000002
- type: map_at_3
value: 22.900000000000002
- type: map_at_5
value: 24.498
- type: map_at_10
value: 25.823
- type: map_at_20
value: 26.429000000000002
- type: map_at_100
value: 27.029999999999998
- type: map_at_1000
value: 27.147
- type: recall_at_1
value: 17.580000000000002
- type: recall_at_3
value: 29.355999999999998
- type: recall_at_5
value: 35.634
- type: recall_at_10
value: 44.336
- type: recall_at_20
value: 51.661
- type: recall_at_100
value: 68.766
- type: recall_at_1000
value: 88.429
- type: precision_at_1
value: 22.015
- type: precision_at_3
value: 12.520999999999999
- type: precision_at_5
value: 9.254
- type: precision_at_10
value: 5.784000000000001
- type: precision_at_20
value: 3.514
- type: precision_at_100
value: 1.019
- type: precision_at_1000
value: 0.13899999999999998
- type: mrr_at_1
value: 22.0149
- type: mrr_at_3
value: 27.5705
- type: mrr_at_5
value: 29.168699999999998
- type: mrr_at_10
value: 30.352
- type: mrr_at_20
value: 30.968200000000003
- type: mrr_at_100
value: 31.3807
- type: mrr_at_1000
value: 31.4469
- type: nauc_ndcg_at_1_max
value: 21.2985
- type: nauc_ndcg_at_1_std
value: -4.6632
- type: nauc_ndcg_at_1_diff1
value: 36.1703
- type: nauc_ndcg_at_3_max
value: 23.2761
- type: nauc_ndcg_at_3_std
value: -2.9883
- type: nauc_ndcg_at_3_diff1
value: 31.11
- type: nauc_ndcg_at_5_max
value: 22.697400000000002
- type: nauc_ndcg_at_5_std
value: -2.6858
- type: nauc_ndcg_at_5_diff1
value: 29.1155
- type: nauc_ndcg_at_10_max
value: 21.745
- type: nauc_ndcg_at_10_std
value: -2.1321
- type: nauc_ndcg_at_10_diff1
value: 27.6691
- type: nauc_ndcg_at_20_max
value: 22.368
- type: nauc_ndcg_at_20_std
value: -1.1924000000000001
- type: nauc_ndcg_at_20_diff1
value: 27.453100000000003
- type: nauc_ndcg_at_100_max
value: 23.1279
- type: nauc_ndcg_at_100_std
value: 0.1931
- type: nauc_ndcg_at_100_diff1
value: 27.2613
- type: nauc_ndcg_at_1000_max
value: 23.5609
- type: nauc_ndcg_at_1000_std
value: 0.4277
- type: nauc_ndcg_at_1000_diff1
value: 27.898
- type: nauc_map_at_1_max
value: 22.1777
- type: nauc_map_at_1_std
value: -3.6511
- type: nauc_map_at_1_diff1
value: 35.193799999999996
- type: nauc_map_at_3_max
value: 22.6711
- type: nauc_map_at_3_std
value: -3.2921
- type: nauc_map_at_3_diff1
value: 31.647199999999998
- type: nauc_map_at_5_max
value: 22.3125
- type: nauc_map_at_5_std
value: -3.3684
- type: nauc_map_at_5_diff1
value: 30.6346
- type: nauc_map_at_10_max
value: 22.1293
- type: nauc_map_at_10_std
value: -3.0963000000000003
- type: nauc_map_at_10_diff1
value: 29.9676
- type: nauc_map_at_20_max
value: 22.345599999999997
- type: nauc_map_at_20_std
value: -2.7918
- type: nauc_map_at_20_diff1
value: 29.873300000000004
- type: nauc_map_at_100_max
value: 22.547600000000003
- type: nauc_map_at_100_std
value: -2.5456
- type: nauc_map_at_100_diff1
value: 29.8869
- type: nauc_map_at_1000_max
value: 22.5777
- type: nauc_map_at_1000_std
value: -2.5162
- type: nauc_map_at_1000_diff1
value: 29.9082
- type: nauc_recall_at_1_max
value: 22.1777
- type: nauc_recall_at_1_std
value: -3.6511
- type: nauc_recall_at_1_diff1
value: 35.193799999999996
- type: nauc_recall_at_3_max
value: 22.8589
- type: nauc_recall_at_3_std
value: -1.541
- type: nauc_recall_at_3_diff1
value: 26.8307
- type: nauc_recall_at_5_max
value: 21.2508
- type: nauc_recall_at_5_std
value: -1.6594000000000002
- type: nauc_recall_at_5_diff1
value: 23.0152
- type: nauc_recall_at_10_max
value: 18.4227
- type: nauc_recall_at_10_std
value: -0.29610000000000003
- type: nauc_recall_at_10_diff1
value: 19.0389
- type: nauc_recall_at_20_max
value: 20.0064
- type: nauc_recall_at_20_std
value: 2.6574
- type: nauc_recall_at_20_diff1
value: 18.1572
- type: nauc_recall_at_100_max
value: 22.8024
- type: nauc_recall_at_100_std
value: 11.629100000000001
- type: nauc_recall_at_100_diff1
value: 13.7353
- type: nauc_recall_at_1000_max
value: 33.8158
- type: nauc_recall_at_1000_std
value: 28.807
- type: nauc_recall_at_1000_diff1
value: 10.385900000000001
- type: nauc_precision_at_1_max
value: 21.2985
- type: nauc_precision_at_1_std
value: -4.6632
- type: nauc_precision_at_1_diff1
value: 36.1703
- type: nauc_precision_at_3_max
value: 23.8607
- type: nauc_precision_at_3_std
value: -1.2343
- type: nauc_precision_at_3_diff1
value: 26.056600000000003
- type: nauc_precision_at_5_max
value: 22.3303
- type: nauc_precision_at_5_std
value: -0.6769
- type: nauc_precision_at_5_diff1
value: 21.1393
- type: nauc_precision_at_10_max
value: 18.9603
- type: nauc_precision_at_10_std
value: 0.9261
- type: nauc_precision_at_10_diff1
value: 15.4373
- type: nauc_precision_at_20_max
value: 18.1666
- type: nauc_precision_at_20_std
value: 3.9616
- type: nauc_precision_at_20_diff1
value: 11.2774
- type: nauc_precision_at_100_max
value: 13.095399999999998
- type: nauc_precision_at_100_std
value: 7.7341999999999995
- type: nauc_precision_at_100_diff1
value: 3.3591999999999995
- type: nauc_precision_at_1000_max
value: 3.0223
- type: nauc_precision_at_1000_std
value: 4.3308
- type: nauc_precision_at_1000_diff1
value: -1.0134
- type: nauc_mrr_at_1_max
value: 21.2985
- type: nauc_mrr_at_1_std
value: -4.6632
- type: nauc_mrr_at_1_diff1
value: 36.1703
- type: nauc_mrr_at_3_max
value: 23.1376
- type: nauc_mrr_at_3_std
value: -3.228
- type: nauc_mrr_at_3_diff1
value: 33.150800000000004
- type: nauc_mrr_at_5_max
value: 22.7773
- type: nauc_mrr_at_5_std
value: -2.9971
- type: nauc_mrr_at_5_diff1
value: 31.8828
- type: nauc_mrr_at_10_max
value: 22.15
- type: nauc_mrr_at_10_std
value: -2.8863
- type: nauc_mrr_at_10_diff1
value: 31.465799999999998
- type: nauc_mrr_at_20_max
value: 22.3119
- type: nauc_mrr_at_20_std
value: -2.6858
- type: nauc_mrr_at_20_diff1
value: 31.446600000000004
- type: nauc_mrr_at_100_max
value: 22.3597
- type: nauc_mrr_at_100_std
value: -2.6425
- type: nauc_mrr_at_100_diff1
value: 31.4728
- type: nauc_mrr_at_1000_max
value: 22.3731
- type: nauc_mrr_at_1000_std
value: -2.6344
- type: nauc_mrr_at_1000_diff1
value: 31.489299999999997
- type: main_score
value: 31.391000000000002
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval (default)
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: ndcg_at_1
value: 38.690999999999995
- type: ndcg_at_3
value: 43.519000000000005
- type: ndcg_at_5
value: 45.862
- type: ndcg_at_10
value: 48.542
- type: ndcg_at_20
value: 50.40599999999999
- type: ndcg_at_100
value: 53.766000000000005
- type: ndcg_at_1000
value: 55.657000000000004
- type: map_at_1
value: 31.696
- type: map_at_3
value: 39.228
- type: map_at_5
value: 41.046
- type: map_at_10
value: 42.539
- type: map_at_20
value: 43.199
- type: map_at_100
value: 43.799
- type: map_at_1000
value: 43.902
- type: recall_at_1
value: 31.696
- type: recall_at_3
value: 46.482
- type: recall_at_5
value: 52.800999999999995
- type: recall_at_10
value: 60.650999999999996
- type: recall_at_20
value: 67.007
- type: recall_at_100
value: 82.669
- type: recall_at_1000
value: 95.02199999999999
- type: precision_at_1
value: 38.690999999999995
- type: precision_at_3
value: 20.404
- type: precision_at_5
value: 14.321
- type: precision_at_10
value: 8.709999999999999
- type: precision_at_20
value: 5.01
- type: precision_at_100
value: 1.315
- type: precision_at_1000
value: 0.165
- type: mrr_at_1
value: 38.690999999999995
- type: mrr_at_3
value: 45.684999999999995
- type: mrr_at_5
value: 47.1575
- type: mrr_at_10
value: 48.1562
- type: mrr_at_20
value: 48.582
- type: mrr_at_100
value: 48.9294
- type: mrr_at_1000
value: 48.968
- type: nauc_ndcg_at_1_max
value: 38.6678
- type: nauc_ndcg_at_1_std
value: -0.7451
- type: nauc_ndcg_at_1_diff1
value: 54.51089999999999
- type: nauc_ndcg_at_3_max
value: 38.5936
- type: nauc_ndcg_at_3_std
value: -1.185
- type: nauc_ndcg_at_3_diff1
value: 50.5312
- type: nauc_ndcg_at_5_max
value: 38.0602
- type: nauc_ndcg_at_5_std
value: -1.8034999999999999
- type: nauc_ndcg_at_5_diff1
value: 49.2837
- type: nauc_ndcg_at_10_max
value: 38.342
- type: nauc_ndcg_at_10_std
value: -0.9533
- type: nauc_ndcg_at_10_diff1
value: 49.0239
- type: nauc_ndcg_at_20_max
value: 39.2226
- type: nauc_ndcg_at_20_std
value: 0.6093999999999999
- type: nauc_ndcg_at_20_diff1
value: 48.7193
- type: nauc_ndcg_at_100_max
value: 39.3235
- type: nauc_ndcg_at_100_std
value: 2.3982
- type: nauc_ndcg_at_100_diff1
value: 48.5831
- type: nauc_ndcg_at_1000_max
value: 39.8333
- type: nauc_ndcg_at_1000_std
value: 2.4336
- type: nauc_ndcg_at_1000_diff1
value: 48.802099999999996
- type: nauc_map_at_1_max
value: 33.9405
- type: nauc_map_at_1_std
value: -3.9303999999999997
- type: nauc_map_at_1_diff1
value: 55.7491
- type: nauc_map_at_3_max
value: 36.550399999999996
- type: nauc_map_at_3_std
value: -2.7818
- type: nauc_map_at_3_diff1
value: 51.7018
- type: nauc_map_at_5_max
value: 36.999500000000005
- type: nauc_map_at_5_std
value: -2.7546999999999997
- type: nauc_map_at_5_diff1
value: 51.011300000000006
- type: nauc_map_at_10_max
value: 37.4157
- type: nauc_map_at_10_std
value: -1.9426999999999999
- type: nauc_map_at_10_diff1
value: 50.8876
- type: nauc_map_at_20_max
value: 37.729
- type: nauc_map_at_20_std
value: -1.3641999999999999
- type: nauc_map_at_20_diff1
value: 50.6926
- type: nauc_map_at_100_max
value: 37.7894
- type: nauc_map_at_100_std
value: -1.0082
- type: nauc_map_at_100_diff1
value: 50.6244
- type: nauc_map_at_1000_max
value: 37.8313
- type: nauc_map_at_1000_std
value: -0.9648
- type: nauc_map_at_1000_diff1
value: 50.6292
- type: nauc_recall_at_1_max
value: 33.9405
- type: nauc_recall_at_1_std
value: -3.9303999999999997
- type: nauc_recall_at_1_diff1
value: 55.7491
- type: nauc_recall_at_3_max
value: 35.6518
- type: nauc_recall_at_3_std
value: -3.166
- type: nauc_recall_at_3_diff1
value: 47.0684
- type: nauc_recall_at_5_max
value: 34.9043
- type: nauc_recall_at_5_std
value: -3.3676
- type: nauc_recall_at_5_diff1
value: 43.152499999999996
- type: nauc_recall_at_10_max
value: 35.2134
- type: nauc_recall_at_10_std
value: -1.0841
- type: nauc_recall_at_10_diff1
value: 41.1852
- type: nauc_recall_at_20_max
value: 37.417699999999996
- type: nauc_recall_at_20_std
value: 4.1923
- type: nauc_recall_at_20_diff1
value: 39.1819
- type: nauc_recall_at_100_max
value: 36.471900000000005
- type: nauc_recall_at_100_std
value: 19.8322
- type: nauc_recall_at_100_diff1
value: 34.0503
- type: nauc_recall_at_1000_max
value: 51.3256
- type: nauc_recall_at_1000_std
value: 46.2018
- type: nauc_recall_at_1000_diff1
value: 25.4702
- type: nauc_precision_at_1_max
value: 38.6678
- type: nauc_precision_at_1_std
value: -0.7451
- type: nauc_precision_at_1_diff1
value: 54.51089999999999
- type: nauc_precision_at_3_max
value: 39.763
- type: nauc_precision_at_3_std
value: 5.3316
- type: nauc_precision_at_3_diff1
value: 34.5965
- type: nauc_precision_at_5_max
value: 35.8709
- type: nauc_precision_at_5_std
value: 5.8021
- type: nauc_precision_at_5_diff1
value: 25.3427
- type: nauc_precision_at_10_max
value: 30.9008
- type: nauc_precision_at_10_std
value: 11.5405
- type: nauc_precision_at_10_diff1
value: 15.775
- type: nauc_precision_at_20_max
value: 28.403200000000002
- type: nauc_precision_at_20_std
value: 18.1899
- type: nauc_precision_at_20_diff1
value: 6.8557999999999995
- type: nauc_precision_at_100_max
value: 15.776499999999999
- type: nauc_precision_at_100_std
value: 21.5746
- type: nauc_precision_at_100_diff1
value: -7.0051000000000005
- type: nauc_precision_at_1000_max
value: 6.2587
- type: nauc_precision_at_1000_std
value: 18.0076
- type: nauc_precision_at_1000_diff1
value: -17.366400000000002
- type: nauc_mrr_at_1_max
value: 38.6678
- type: nauc_mrr_at_1_std
value: -0.7451
- type: nauc_mrr_at_1_diff1
value: 54.51089999999999
- type: nauc_mrr_at_3_max
value: 40.489399999999996
- type: nauc_mrr_at_3_std
value: -0.3225
- type: nauc_mrr_at_3_diff1
value: 51.41480000000001
- type: nauc_mrr_at_5_max
value: 40.1627
- type: nauc_mrr_at_5_std
value: -0.16219999999999998
- type: nauc_mrr_at_5_diff1
value: 50.560300000000005
- type: nauc_mrr_at_10_max
value: 40.125899999999994
- type: nauc_mrr_at_10_std
value: 0.0545
- type: nauc_mrr_at_10_diff1
value: 50.3771
- type: nauc_mrr_at_20_max
value: 40.2183
- type: nauc_mrr_at_20_std
value: 0.2818
- type: nauc_mrr_at_20_diff1
value: 50.387
- type: nauc_mrr_at_100_max
value: 40.201100000000004
- type: nauc_mrr_at_100_std
value: 0.43350000000000005
- type: nauc_mrr_at_100_diff1
value: 50.395100000000006
- type: nauc_mrr_at_1000_max
value: 40.2026
- type: nauc_mrr_at_1000_std
value: 0.42129999999999995
- type: nauc_mrr_at_1000_diff1
value: 50.405199999999994
- type: main_score
value: 48.542
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval (default)
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: ndcg_at_1
value: 33.333
- type: ndcg_at_3
value: 39.431
- type: ndcg_at_5
value: 42.120000000000005
- type: ndcg_at_10
value: 44.968
- type: ndcg_at_20
value: 47.099000000000004
- type: ndcg_at_100
value: 50.288
- type: ndcg_at_1000
value: 52.371
- type: map_at_1
value: 27.087
- type: map_at_3
value: 35.203
- type: map_at_5
value: 37.230999999999995
- type: map_at_10
value: 38.693
- type: map_at_20
value: 39.425
- type: map_at_100
value: 40.001
- type: map_at_1000
value: 40.119
- type: recall_at_1
value: 27.087
- type: recall_at_3
value: 42.846000000000004
- type: recall_at_5
value: 49.846000000000004
- type: recall_at_10
value: 58.083
- type: recall_at_20
value: 65.615
- type: recall_at_100
value: 80.831
- type: recall_at_1000
value: 94.474
- type: precision_at_1
value: 33.333
- type: precision_at_3
value: 19.139999999999997
- type: precision_at_5
value: 13.858
- type: precision_at_10
value: 8.413
- type: precision_at_20
value: 4.926
- type: precision_at_100
value: 1.275
- type: precision_at_1000
value: 0.165
- type: mrr_at_1
value: 33.3333
- type: mrr_at_3
value: 41.0959
- type: mrr_at_5
value: 42.6826
- type: mrr_at_10
value: 43.819900000000004
- type: mrr_at_20
value: 44.3087
- type: mrr_at_100
value: 44.6693
- type: mrr_at_1000
value: 44.7164
- type: nauc_ndcg_at_1_max
value: 36.037
- type: nauc_ndcg_at_1_std
value: -0.2425
- type: nauc_ndcg_at_1_diff1
value: 46.9443
- type: nauc_ndcg_at_3_max
value: 33.5311
- type: nauc_ndcg_at_3_std
value: 1.2205000000000001
- type: nauc_ndcg_at_3_diff1
value: 38.8166
- type: nauc_ndcg_at_5_max
value: 34.3091
- type: nauc_ndcg_at_5_std
value: 2.8846
- type: nauc_ndcg_at_5_diff1
value: 38.222899999999996
- type: nauc_ndcg_at_10_max
value: 34.443400000000004
- type: nauc_ndcg_at_10_std
value: 3.5393
- type: nauc_ndcg_at_10_diff1
value: 37.9537
- type: nauc_ndcg_at_20_max
value: 34.929500000000004
- type: nauc_ndcg_at_20_std
value: 4.4444
- type: nauc_ndcg_at_20_diff1
value: 37.811099999999996
- type: nauc_ndcg_at_100_max
value: 35.6285
- type: nauc_ndcg_at_100_std
value: 6.356199999999999
- type: nauc_ndcg_at_100_diff1
value: 37.4749
- type: nauc_ndcg_at_1000_max
value: 35.8451
- type: nauc_ndcg_at_1000_std
value: 6.1044
- type: nauc_ndcg_at_1000_diff1
value: 38.5065
- type: nauc_map_at_1_max
value: 30.017100000000003
- type: nauc_map_at_1_std
value: -5.056299999999999
- type: nauc_map_at_1_diff1
value: 46.4338
- type: nauc_map_at_3_max
value: 31.936999999999998
- type: nauc_map_at_3_std
value: -1.0591
- type: nauc_map_at_3_diff1
value: 39.8778
- type: nauc_map_at_5_max
value: 32.859100000000005
- type: nauc_map_at_5_std
value: 0.42050000000000004
- type: nauc_map_at_5_diff1
value: 39.7368
- type: nauc_map_at_10_max
value: 33.042899999999996
- type: nauc_map_at_10_std
value: 0.8545
- type: nauc_map_at_10_diff1
value: 39.5713
- type: nauc_map_at_20_max
value: 33.3227
- type: nauc_map_at_20_std
value: 1.3109000000000002
- type: nauc_map_at_20_diff1
value: 39.5833
- type: nauc_map_at_100_max
value: 33.537
- type: nauc_map_at_100_std
value: 1.7505
- type: nauc_map_at_100_diff1
value: 39.6109
- type: nauc_map_at_1000_max
value: 33.578
- type: nauc_map_at_1000_std
value: 1.7679
- type: nauc_map_at_1000_diff1
value: 39.677299999999995
- type: nauc_recall_at_1_max
value: 30.017100000000003
- type: nauc_recall_at_1_std
value: -5.056299999999999
- type: nauc_recall_at_1_diff1
value: 46.4338
- type: nauc_recall_at_3_max
value: 31.3062
- type: nauc_recall_at_3_std
value: 1.6736
- type: nauc_recall_at_3_diff1
value: 32.743
- type: nauc_recall_at_5_max
value: 32.7338
- type: nauc_recall_at_5_std
value: 5.9388000000000005
- type: nauc_recall_at_5_diff1
value: 30.8784
- type: nauc_recall_at_10_max
value: 32.9312
- type: nauc_recall_at_10_std
value: 8.1993
- type: nauc_recall_at_10_diff1
value: 29.4248
- type: nauc_recall_at_20_max
value: 33.9206
- type: nauc_recall_at_20_std
value: 10.673
- type: nauc_recall_at_20_diff1
value: 27.377200000000002
- type: nauc_recall_at_100_max
value: 37.119
- type: nauc_recall_at_100_std
value: 24.6249
- type: nauc_recall_at_100_diff1
value: 19.403699999999997
- type: nauc_recall_at_1000_max
value: 52.2307
- type: nauc_recall_at_1000_std
value: 53.405199999999994
- type: nauc_recall_at_1000_diff1
value: 24.122799999999998
- type: nauc_precision_at_1_max
value: 36.037
- type: nauc_precision_at_1_std
value: -0.2425
- type: nauc_precision_at_1_diff1
value: 46.9443
- type: nauc_precision_at_3_max
value: 34.110600000000005
- type: nauc_precision_at_3_std
value: 8.7398
- type: nauc_precision_at_3_diff1
value: 27.441
- type: nauc_precision_at_5_max
value: 33.0042
- type: nauc_precision_at_5_std
value: 13.7932
- type: nauc_precision_at_5_diff1
value: 23.011300000000002
- type: nauc_precision_at_10_max
value: 28.8408
- type: nauc_precision_at_10_std
value: 14.4897
- type: nauc_precision_at_10_diff1
value: 18.0244
- type: nauc_precision_at_20_max
value: 25.5054
- type: nauc_precision_at_20_std
value: 16.5918
- type: nauc_precision_at_20_diff1
value: 14.665500000000002
- type: nauc_precision_at_100_max
value: 18.084400000000002
- type: nauc_precision_at_100_std
value: 20.7595
- type: nauc_precision_at_100_diff1
value: 6.2877
- type: nauc_precision_at_1000_max
value: 6.778099999999999
- type: nauc_precision_at_1000_std
value: 9.0734
- type: nauc_precision_at_1000_diff1
value: 5.6030999999999995
- type: nauc_mrr_at_1_max
value: 36.037
- type: nauc_mrr_at_1_std
value: -0.2425
- type: nauc_mrr_at_1_diff1
value: 46.9443
- type: nauc_mrr_at_3_max
value: 36.0423
- type: nauc_mrr_at_3_std
value: 3.0699
- type: nauc_mrr_at_3_diff1
value: 40.6527
- type: nauc_mrr_at_5_max
value: 36.3279
- type: nauc_mrr_at_5_std
value: 4.0948
- type: nauc_mrr_at_5_diff1
value: 40.1667
- type: nauc_mrr_at_10_max
value: 36.3884
- type: nauc_mrr_at_10_std
value: 4.5214
- type: nauc_mrr_at_10_diff1
value: 40.3499
- type: nauc_mrr_at_20_max
value: 36.3977
- type: nauc_mrr_at_20_std
value: 4.4357
- type: nauc_mrr_at_20_diff1
value: 40.342800000000004
- type: nauc_mrr_at_100_max
value: 36.422900000000006
- type: nauc_mrr_at_100_std
value: 4.501200000000001
- type: nauc_mrr_at_100_diff1
value: 40.3487
- type: nauc_mrr_at_1000_max
value: 36.4317
- type: nauc_mrr_at_1000_std
value: 4.4942
- type: nauc_mrr_at_1000_diff1
value: 40.3843
- type: main_score
value: 44.968
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval (default)
type: CQADupstackRetrieval_is_a_combined_dataset
config: default
split: test
revision: CQADupstackRetrieval_is_a_combined_dataset
metrics:
- type: main_score
value: 42.51058333333334
- type: ndcg_at_10
value: 42.51058333333334
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval (default)
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: ndcg_at_1
value: 28.066999999999997
- type: ndcg_at_3
value: 33.326
- type: ndcg_at_5
value: 35.432
- type: ndcg_at_10
value: 37.711
- type: ndcg_at_20
value: 39.377
- type: ndcg_at_100
value: 42.437999999999995
- type: ndcg_at_1000
value: 44.653999999999996
- type: map_at_1
value: 24.91
- type: map_at_3
value: 30.641000000000002
- type: map_at_5
value: 32.003
- type: map_at_10
value: 33.027
- type: map_at_20
value: 33.52
- type: map_at_100
value: 33.958
- type: map_at_1000
value: 34.048
- type: recall_at_1
value: 24.91
- type: recall_at_3
value: 36.931000000000004
- type: recall_at_5
value: 42.257
- type: recall_at_10
value: 49.248
- type: recall_at_20
value: 55.504
- type: recall_at_100
value: 71.086
- type: recall_at_1000
value: 87.209
- type: precision_at_1
value: 28.066999999999997
- type: precision_at_3
value: 14.571000000000002
- type: precision_at_5
value: 10.152999999999999
- type: precision_at_10
value: 5.982
- type: precision_at_20
value: 3.405
- type: precision_at_100
value: 0.903
- type: precision_at_1000
value: 0.11800000000000001
- type: mrr_at_1
value: 28.067500000000003
- type: mrr_at_3
value: 33.8957
- type: mrr_at_5
value: 35.0997
- type: mrr_at_10
value: 36.0272
- type: mrr_at_20
value: 36.4454
- type: mrr_at_100
value: 36.8325
- type: mrr_at_1000
value: 36.8906
- type: nauc_ndcg_at_1_max
value: 41.64
- type: nauc_ndcg_at_1_std
value: -3.0991999999999997
- type: nauc_ndcg_at_1_diff1
value: 52.059
- type: nauc_ndcg_at_3_max
value: 38.3407
- type: nauc_ndcg_at_3_std
value: -2.0187
- type: nauc_ndcg_at_3_diff1
value: 44.6053
- type: nauc_ndcg_at_5_max
value: 39.5482
- type: nauc_ndcg_at_5_std
value: 0.6605
- type: nauc_ndcg_at_5_diff1
value: 44.1187
- type: nauc_ndcg_at_10_max
value: 40.2625
- type: nauc_ndcg_at_10_std
value: 1.6514999999999997
- type: nauc_ndcg_at_10_diff1
value: 43.170500000000004
- type: nauc_ndcg_at_20_max
value: 40.067
- type: nauc_ndcg_at_20_std
value: 2.1887
- type: nauc_ndcg_at_20_diff1
value: 42.8359
- type: nauc_ndcg_at_100_max
value: 41.749900000000004
- type: nauc_ndcg_at_100_std
value: 4.3462
- type: nauc_ndcg_at_100_diff1
value: 42.1422
- type: nauc_ndcg_at_1000_max
value: 41.4899
- type: nauc_ndcg_at_1000_std
value: 3.9956
- type: nauc_ndcg_at_1000_diff1
value: 42.4235
- type: nauc_map_at_1_max
value: 39.1049
- type: nauc_map_at_1_std
value: -7.072000000000001
- type: nauc_map_at_1_diff1
value: 53.76840000000001
- type: nauc_map_at_3_max
value: 38.3832
- type: nauc_map_at_3_std
value: -4.0869
- type: nauc_map_at_3_diff1
value: 46.848600000000005
- type: nauc_map_at_5_max
value: 39.4646
- type: nauc_map_at_5_std
value: -2.0288
- type: nauc_map_at_5_diff1
value: 46.3888
- type: nauc_map_at_10_max
value: 39.8593
- type: nauc_map_at_10_std
value: -1.4203000000000001
- type: nauc_map_at_10_diff1
value: 45.9306
- type: nauc_map_at_20_max
value: 39.835300000000004
- type: nauc_map_at_20_std
value: -1.2231
- type: nauc_map_at_20_diff1
value: 45.8283
- type: nauc_map_at_100_max
value: 40.1343
- type: nauc_map_at_100_std
value: -0.9245
- type: nauc_map_at_100_diff1
value: 45.7762
- type: nauc_map_at_1000_max
value: 40.1356
- type: nauc_map_at_1000_std
value: -0.9329000000000001
- type: nauc_map_at_1000_diff1
value: 45.785
- type: nauc_recall_at_1_max
value: 39.1049
- type: nauc_recall_at_1_std
value: -7.072000000000001
- type: nauc_recall_at_1_diff1
value: 53.76840000000001
- type: nauc_recall_at_3_max
value: 34.5115
- type: nauc_recall_at_3_std
value: -1.5186
- type: nauc_recall_at_3_diff1
value: 39.2881
- type: nauc_recall_at_5_max
value: 36.8705
- type: nauc_recall_at_5_std
value: 5.2115
- type: nauc_recall_at_5_diff1
value: 37.2112
- type: nauc_recall_at_10_max
value: 38.9486
- type: nauc_recall_at_10_std
value: 8.558
- type: nauc_recall_at_10_diff1
value: 34.027499999999996
- type: nauc_recall_at_20_max
value: 37.4174
- type: nauc_recall_at_20_std
value: 10.7121
- type: nauc_recall_at_20_diff1
value: 31.6372
- type: nauc_recall_at_100_max
value: 45.7135
- type: nauc_recall_at_100_std
value: 26.958900000000003
- type: nauc_recall_at_100_diff1
value: 22.6293
- type: nauc_recall_at_1000_max
value: 45.8455
- type: nauc_recall_at_1000_std
value: 41.8128
- type: nauc_recall_at_1000_diff1
value: 11.1735
- type: nauc_precision_at_1_max
value: 41.64
- type: nauc_precision_at_1_std
value: -3.0991999999999997
- type: nauc_precision_at_1_diff1
value: 52.059
- type: nauc_precision_at_3_max
value: 37.5109
- type: nauc_precision_at_3_std
value: 4.5869
- type: nauc_precision_at_3_diff1
value: 35.604200000000006
- type: nauc_precision_at_5_max
value: 39.441500000000005
- type: nauc_precision_at_5_std
value: 12.413499999999999
- type: nauc_precision_at_5_diff1
value: 31.566699999999997
- type: nauc_precision_at_10_max
value: 39.3943
- type: nauc_precision_at_10_std
value: 14.4375
- type: nauc_precision_at_10_diff1
value: 26.4044
- type: nauc_precision_at_20_max
value: 34.6082
- type: nauc_precision_at_20_std
value: 15.573899999999998
- type: nauc_precision_at_20_diff1
value: 21.3312
- type: nauc_precision_at_100_max
value: 33.6787
- type: nauc_precision_at_100_std
value: 24.4628
- type: nauc_precision_at_100_diff1
value: 9.238399999999999
- type: nauc_precision_at_1000_max
value: 15.7002
- type: nauc_precision_at_1000_std
value: 17.6244
- type: nauc_precision_at_1000_diff1
value: -2.8333
- type: nauc_mrr_at_1_max
value: 41.64
- type: nauc_mrr_at_1_std
value: -3.0991999999999997
- type: nauc_mrr_at_1_diff1
value: 52.059
- type: nauc_mrr_at_3_max
value: 40.2887
- type: nauc_mrr_at_3_std
value: -0.48650000000000004
- type: nauc_mrr_at_3_diff1
value: 46.2812
- type: nauc_mrr_at_5_max
value: 40.792899999999996
- type: nauc_mrr_at_5_std
value: 0.7635000000000001
- type: nauc_mrr_at_5_diff1
value: 45.8179
- type: nauc_mrr_at_10_max
value: 40.970099999999995
- type: nauc_mrr_at_10_std
value: 0.9508000000000001
- type: nauc_mrr_at_10_diff1
value: 45.4065
- type: nauc_mrr_at_20_max
value: 40.9322
- type: nauc_mrr_at_20_std
value: 1.0284
- type: nauc_mrr_at_20_diff1
value: 45.440999999999995
- type: nauc_mrr_at_100_max
value: 41.1209
- type: nauc_mrr_at_100_std
value: 1.2597
- type: nauc_mrr_at_100_diff1
value: 45.3654
- type: nauc_mrr_at_1000_max
value: 41.1143
- type: nauc_mrr_at_1000_std
value: 1.2467000000000001
- type: nauc_mrr_at_1000_diff1
value: 45.3792
- type: main_score
value: 37.711
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval (default)
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: ndcg_at_1
value: 21.37
- type: ndcg_at_3
value: 25.308000000000003
- type: ndcg_at_5
value: 27.211999999999996
- type: ndcg_at_10
value: 29.759999999999998
- type: ndcg_at_20
value: 31.806
- type: ndcg_at_100
value: 35.148
- type: ndcg_at_1000
value: 38.115
- type: map_at_1
value: 17.635
- type: map_at_3
value: 22.537
- type: map_at_5
value: 23.834
- type: map_at_10
value: 24.984
- type: map_at_20
value: 25.613999999999997
- type: map_at_100
value: 26.125
- type: map_at_1000
value: 26.256
- type: recall_at_1
value: 17.635
- type: recall_at_3
value: 27.759
- type: recall_at_5
value: 32.688
- type: recall_at_10
value: 40.326
- type: recall_at_20
value: 47.865
- type: recall_at_100
value: 64.43799999999999
- type: recall_at_1000
value: 85.589
- type: precision_at_1
value: 21.37
- type: precision_at_3
value: 11.928999999999998
- type: precision_at_5
value: 8.679
- type: precision_at_10
value: 5.502
- type: precision_at_20
value: 3.345
- type: precision_at_100
value: 0.962
- type: precision_at_1000
value: 0.13899999999999998
- type: mrr_at_1
value: 21.3696
- type: mrr_at_3
value: 26.4854
- type: mrr_at_5
value: 27.726
- type: mrr_at_10
value: 28.842499999999998
- type: mrr_at_20
value: 29.3902
- type: mrr_at_100
value: 29.7846
- type: mrr_at_1000
value: 29.860799999999998
- type: nauc_ndcg_at_1_max
value: 31.770300000000002
- type: nauc_ndcg_at_1_std
value: -4.784999999999999
- type: nauc_ndcg_at_1_diff1
value: 42.290499999999994
- type: nauc_ndcg_at_3_max
value: 31.1434
- type: nauc_ndcg_at_3_std
value: -2.8424
- type: nauc_ndcg_at_3_diff1
value: 36.7329
- type: nauc_ndcg_at_5_max
value: 31.1525
- type: nauc_ndcg_at_5_std
value: -2.2824
- type: nauc_ndcg_at_5_diff1
value: 35.517199999999995
- type: nauc_ndcg_at_10_max
value: 31.3549
- type: nauc_ndcg_at_10_std
value: -1.089
- type: nauc_ndcg_at_10_diff1
value: 34.9647
- type: nauc_ndcg_at_20_max
value: 31.3283
- type: nauc_ndcg_at_20_std
value: -0.5032
- type: nauc_ndcg_at_20_diff1
value: 34.73
- type: nauc_ndcg_at_100_max
value: 31.3324
- type: nauc_ndcg_at_100_std
value: 0.8308
- type: nauc_ndcg_at_100_diff1
value: 34.0739
- type: nauc_ndcg_at_1000_max
value: 31.563799999999997
- type: nauc_ndcg_at_1000_std
value: 1.0345
- type: nauc_ndcg_at_1000_diff1
value: 34.321400000000004
- type: nauc_map_at_1_max
value: 29.935299999999998
- type: nauc_map_at_1_std
value: -4.6685
- type: nauc_map_at_1_diff1
value: 43.6434
- type: nauc_map_at_3_max
value: 30.476
- type: nauc_map_at_3_std
value: -3.3331
- type: nauc_map_at_3_diff1
value: 38.6884
- type: nauc_map_at_5_max
value: 30.625200000000003
- type: nauc_map_at_5_std
value: -3.0722
- type: nauc_map_at_5_diff1
value: 37.845
- type: nauc_map_at_10_max
value: 30.8581
- type: nauc_map_at_10_std
value: -2.5201000000000002
- type: nauc_map_at_10_diff1
value: 37.5217
- type: nauc_map_at_20_max
value: 30.9267
- type: nauc_map_at_20_std
value: -2.3167
- type: nauc_map_at_20_diff1
value: 37.4216
- type: nauc_map_at_100_max
value: 31.0064
- type: nauc_map_at_100_std
value: -2.0629999999999997
- type: nauc_map_at_100_diff1
value: 37.3075
- type: nauc_map_at_1000_max
value: 31.0478
- type: nauc_map_at_1000_std
value: -2.0301
- type: nauc_map_at_1000_diff1
value: 37.3077
- type: nauc_recall_at_1_max
value: 29.935299999999998
- type: nauc_recall_at_1_std
value: -4.6685
- type: nauc_recall_at_1_diff1
value: 43.6434
- type: nauc_recall_at_3_max
value: 29.2327
- type: nauc_recall_at_3_std
value: -1.8466
- type: nauc_recall_at_3_diff1
value: 32.5214
- type: nauc_recall_at_5_max
value: 28.8576
- type: nauc_recall_at_5_std
value: -0.8358000000000001
- type: nauc_recall_at_5_diff1
value: 29.329499999999996
- type: nauc_recall_at_10_max
value: 28.8851
- type: nauc_recall_at_10_std
value: 2.3084000000000002
- type: nauc_recall_at_10_diff1
value: 27.3001
- type: nauc_recall_at_20_max
value: 28.0772
- type: nauc_recall_at_20_std
value: 4.2632
- type: nauc_recall_at_20_diff1
value: 25.6873
- type: nauc_recall_at_100_max
value: 27.4461
- type: nauc_recall_at_100_std
value: 11.9175
- type: nauc_recall_at_100_diff1
value: 20.7784
- type: nauc_recall_at_1000_max
value: 27.1262
- type: nauc_recall_at_1000_std
value: 24.4024
- type: nauc_recall_at_1000_diff1
value: 14.5445
- type: nauc_precision_at_1_max
value: 31.770300000000002
- type: nauc_precision_at_1_std
value: -4.784999999999999
- type: nauc_precision_at_1_diff1
value: 42.290499999999994
- type: nauc_precision_at_3_max
value: 32.5608
- type: nauc_precision_at_3_std
value: -1.3823999999999999
- type: nauc_precision_at_3_diff1
value: 30.9278
- type: nauc_precision_at_5_max
value: 32.0685
- type: nauc_precision_at_5_std
value: -0.2231
- type: nauc_precision_at_5_diff1
value: 26.8139
- type: nauc_precision_at_10_max
value: 31.8615
- type: nauc_precision_at_10_std
value: 3.3291
- type: nauc_precision_at_10_diff1
value: 22.608800000000002
- type: nauc_precision_at_20_max
value: 30.250799999999998
- type: nauc_precision_at_20_std
value: 5.242
- type: nauc_precision_at_20_diff1
value: 19.532
- type: nauc_precision_at_100_max
value: 25.2481
- type: nauc_precision_at_100_std
value: 9.711599999999999
- type: nauc_precision_at_100_diff1
value: 9.5108
- type: nauc_precision_at_1000_max
value: 19.072
- type: nauc_precision_at_1000_std
value: 9.0718
- type: nauc_precision_at_1000_diff1
value: -0.21090000000000003
- type: nauc_mrr_at_1_max
value: 31.770300000000002
- type: nauc_mrr_at_1_std
value: -4.784999999999999
- type: nauc_mrr_at_1_diff1
value: 42.290499999999994
- type: nauc_mrr_at_3_max
value: 31.5869
- type: nauc_mrr_at_3_std
value: -3.2058999999999997
- type: nauc_mrr_at_3_diff1
value: 37.3799
- type: nauc_mrr_at_5_max
value: 31.675199999999997
- type: nauc_mrr_at_5_std
value: -2.7127
- type: nauc_mrr_at_5_diff1
value: 36.5429
- type: nauc_mrr_at_10_max
value: 31.7662
- type: nauc_mrr_at_10_std
value: -2.314
- type: nauc_mrr_at_10_diff1
value: 36.3532
- type: nauc_mrr_at_20_max
value: 31.771300000000004
- type: nauc_mrr_at_20_std
value: -2.1448
- type: nauc_mrr_at_20_diff1
value: 36.3367
- type: nauc_mrr_at_100_max
value: 31.767899999999997
- type: nauc_mrr_at_100_std
value: -2.0333
- type: nauc_mrr_at_100_diff1
value: 36.2815
- type: nauc_mrr_at_1000_max
value: 31.7795
- type: nauc_mrr_at_1000_std
value: -2.0261
- type: nauc_mrr_at_1000_diff1
value: 36.2999
- type: main_score
value: 29.759999999999998
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval (default)
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: ndcg_at_1
value: 33.302
- type: ndcg_at_3
value: 38.403
- type: ndcg_at_5
value: 40.319
- type: ndcg_at_10
value: 42.834
- type: ndcg_at_20
value: 44.932
- type: ndcg_at_100
value: 47.833
- type: ndcg_at_1000
value: 50.157
- type: map_at_1
value: 28.457
- type: map_at_3
value: 35.184
- type: map_at_5
value: 36.532
- type: map_at_10
value: 37.714
- type: map_at_20
value: 38.340999999999994
- type: map_at_100
value: 38.797
- type: map_at_1000
value: 38.903999999999996
- type: recall_at_1
value: 28.457
- type: recall_at_3
value: 41.937999999999995
- type: recall_at_5
value: 46.911
- type: recall_at_10
value: 54.303000000000004
- type: recall_at_20
value: 61.906000000000006
- type: recall_at_100
value: 76.074
- type: recall_at_1000
value: 92.191
- type: precision_at_1
value: 33.302
- type: precision_at_3
value: 17.382
- type: precision_at_5
value: 11.922
- type: precision_at_10
value: 7.08
- type: precision_at_20
value: 4.137
- type: precision_at_100
value: 1.064
- type: precision_at_1000
value: 0.13799999999999998
- type: mrr_at_1
value: 33.3022
- type: mrr_at_3
value: 39.5056
- type: mrr_at_5
value: 40.7276
- type: mrr_at_10
value: 41.7227
- type: mrr_at_20
value: 42.270799999999994
- type: mrr_at_100
value: 42.5991
- type: mrr_at_1000
value: 42.653999999999996
- type: nauc_ndcg_at_1_max
value: 41.5343
- type: nauc_ndcg_at_1_std
value: -2.8242
- type: nauc_ndcg_at_1_diff1
value: 55.388099999999994
- type: nauc_ndcg_at_3_max
value: 41.531800000000004
- type: nauc_ndcg_at_3_std
value: -0.0958
- type: nauc_ndcg_at_3_diff1
value: 50.5951
- type: nauc_ndcg_at_5_max
value: 41.0756
- type: nauc_ndcg_at_5_std
value: 0.7116
- type: nauc_ndcg_at_5_diff1
value: 49.0397
- type: nauc_ndcg_at_10_max
value: 40.5656
- type: nauc_ndcg_at_10_std
value: 1.2275
- type: nauc_ndcg_at_10_diff1
value: 48.1935
- type: nauc_ndcg_at_20_max
value: 39.967000000000006
- type: nauc_ndcg_at_20_std
value: 1.2213
- type: nauc_ndcg_at_20_diff1
value: 47.5459
- type: nauc_ndcg_at_100_max
value: 40.2487
- type: nauc_ndcg_at_100_std
value: 2.6310000000000002
- type: nauc_ndcg_at_100_diff1
value: 47.3499
- type: nauc_ndcg_at_1000_max
value: 40.802
- type: nauc_ndcg_at_1000_std
value: 2.9029
- type: nauc_ndcg_at_1000_diff1
value: 47.893299999999996
- type: nauc_map_at_1_max
value: 40.0689
- type: nauc_map_at_1_std
value: -3.2761
- type: nauc_map_at_1_diff1
value: 56.685399999999994
- type: nauc_map_at_3_max
value: 41.350500000000004
- type: nauc_map_at_3_std
value: -0.6871999999999999
- type: nauc_map_at_3_diff1
value: 52.737100000000005
- type: nauc_map_at_5_max
value: 41.1119
- type: nauc_map_at_5_std
value: -0.23340000000000002
- type: nauc_map_at_5_diff1
value: 51.5269
- type: nauc_map_at_10_max
value: 40.860400000000006
- type: nauc_map_at_10_std
value: -0.08760000000000001
- type: nauc_map_at_10_diff1
value: 51.01369999999999
- type: nauc_map_at_20_max
value: 40.5859
- type: nauc_map_at_20_std
value: -0.154
- type: nauc_map_at_20_diff1
value: 50.744699999999995
- type: nauc_map_at_100_max
value: 40.646300000000004
- type: nauc_map_at_100_std
value: 0.10189999999999999
- type: nauc_map_at_100_diff1
value: 50.7085
- type: nauc_map_at_1000_max
value: 40.6731
- type: nauc_map_at_1000_std
value: 0.1394
- type: nauc_map_at_1000_diff1
value: 50.708
- type: nauc_recall_at_1_max
value: 40.0689
- type: nauc_recall_at_1_std
value: -3.2761
- type: nauc_recall_at_1_diff1
value: 56.685399999999994
- type: nauc_recall_at_3_max
value: 40.5338
- type: nauc_recall_at_3_std
value: 1.4996
- type: nauc_recall_at_3_diff1
value: 46.9882
- type: nauc_recall_at_5_max
value: 39.745999999999995
- type: nauc_recall_at_5_std
value: 3.7415
- type: nauc_recall_at_5_diff1
value: 42.7628
- type: nauc_recall_at_10_max
value: 37.6122
- type: nauc_recall_at_10_std
value: 5.1345
- type: nauc_recall_at_10_diff1
value: 39.2683
- type: nauc_recall_at_20_max
value: 34.9745
- type: nauc_recall_at_20_std
value: 5.7971
- type: nauc_recall_at_20_diff1
value: 35.6486
- type: nauc_recall_at_100_max
value: 35.1278
- type: nauc_recall_at_100_std
value: 16.569
- type: nauc_recall_at_100_diff1
value: 30.4082
- type: nauc_recall_at_1000_max
value: 48.1561
- type: nauc_recall_at_1000_std
value: 46.2123
- type: nauc_recall_at_1000_diff1
value: 28.9314
- type: nauc_precision_at_1_max
value: 41.5343
- type: nauc_precision_at_1_std
value: -2.8242
- type: nauc_precision_at_1_diff1
value: 55.388099999999994
- type: nauc_precision_at_3_max
value: 37.9897
- type: nauc_precision_at_3_std
value: 2.563
- type: nauc_precision_at_3_diff1
value: 37.253
- type: nauc_precision_at_5_max
value: 33.9735
- type: nauc_precision_at_5_std
value: 3.5601000000000003
- type: nauc_precision_at_5_diff1
value: 29.017300000000002
- type: nauc_precision_at_10_max
value: 27.8221
- type: nauc_precision_at_10_std
value: 4.3591999999999995
- type: nauc_precision_at_10_diff1
value: 20.7948
- type: nauc_precision_at_20_max
value: 21.0119
- type: nauc_precision_at_20_std
value: 4.4604
- type: nauc_precision_at_20_diff1
value: 12.5115
- type: nauc_precision_at_100_max
value: 11.1615
- type: nauc_precision_at_100_std
value: 10.1361
- type: nauc_precision_at_100_diff1
value: -2.5748
- type: nauc_precision_at_1000_max
value: -3.5173
- type: nauc_precision_at_1000_std
value: 6.248
- type: nauc_precision_at_1000_diff1
value: -17.6147
- type: nauc_mrr_at_1_max
value: 41.5343
- type: nauc_mrr_at_1_std
value: -2.8242
- type: nauc_mrr_at_1_diff1
value: 55.388099999999994
- type: nauc_mrr_at_3_max
value: 41.599199999999996
- type: nauc_mrr_at_3_std
value: -0.5716
- type: nauc_mrr_at_3_diff1
value: 50.932100000000005
- type: nauc_mrr_at_5_max
value: 41.2312
- type: nauc_mrr_at_5_std
value: -0.2443
- type: nauc_mrr_at_5_diff1
value: 49.9174
- type: nauc_mrr_at_10_max
value: 41.0053
- type: nauc_mrr_at_10_std
value: 0.0628
- type: nauc_mrr_at_10_diff1
value: 49.6375
- type: nauc_mrr_at_20_max
value: 40.930499999999995
- type: nauc_mrr_at_20_std
value: -0.063
- type: nauc_mrr_at_20_diff1
value: 49.6391
- type: nauc_mrr_at_100_max
value: 40.9473
- type: nauc_mrr_at_100_std
value: 0.0646
- type: nauc_mrr_at_100_diff1
value: 49.6701
- type: nauc_mrr_at_1000_max
value: 40.9676
- type: nauc_mrr_at_1000_std
value: 0.0838
- type: nauc_mrr_at_1000_diff1
value: 49.695299999999996
- type: main_score
value: 42.834
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval (default)
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: ndcg_at_1
value: 32.411
- type: ndcg_at_3
value: 37.911
- type: ndcg_at_5
value: 39.983000000000004
- type: ndcg_at_10
value: 42.321999999999996
- type: ndcg_at_20
value: 44.855000000000004
- type: ndcg_at_100
value: 48.515
- type: ndcg_at_1000
value: 50.845
- type: map_at_1
value: 27.062
- type: map_at_3
value: 33.689
- type: map_at_5
value: 35.161
- type: map_at_10
value: 36.492000000000004
- type: map_at_20
value: 37.486999999999995
- type: map_at_100
value: 38.235
- type: map_at_1000
value: 38.421
- type: recall_at_1
value: 27.062
- type: recall_at_3
value: 40.459
- type: recall_at_5
value: 46.221000000000004
- type: recall_at_10
value: 53.348
- type: recall_at_20
value: 62.852
- type: recall_at_100
value: 80.582
- type: recall_at_1000
value: 95.14099999999999
- type: precision_at_1
value: 32.411
- type: precision_at_3
value: 17.984
- type: precision_at_5
value: 12.767000000000001
- type: precision_at_10
value: 7.945
- type: precision_at_20
value: 5.0
- type: precision_at_100
value: 1.534
- type: precision_at_1000
value: 0.234
- type: mrr_at_1
value: 32.4111
- type: mrr_at_3
value: 38.8011
- type: mrr_at_5
value: 40.2437
- type: mrr_at_10
value: 41.1494
- type: mrr_at_20
value: 41.8962
- type: mrr_at_100
value: 42.275800000000004
- type: mrr_at_1000
value: 42.3273
- type: nauc_ndcg_at_1_max
value: 27.961799999999997
- type: nauc_ndcg_at_1_std
value: 1.9207999999999998
- type: nauc_ndcg_at_1_diff1
value: 47.9837
- type: nauc_ndcg_at_3_max
value: 28.009099999999997
- type: nauc_ndcg_at_3_std
value: 1.212
- type: nauc_ndcg_at_3_diff1
value: 42.1361
- type: nauc_ndcg_at_5_max
value: 27.304299999999998
- type: nauc_ndcg_at_5_std
value: 1.4559
- type: nauc_ndcg_at_5_diff1
value: 40.8799
- type: nauc_ndcg_at_10_max
value: 26.0726
- type: nauc_ndcg_at_10_std
value: 1.5731
- type: nauc_ndcg_at_10_diff1
value: 38.9119
- type: nauc_ndcg_at_20_max
value: 28.139799999999997
- type: nauc_ndcg_at_20_std
value: 3.0962
- type: nauc_ndcg_at_20_diff1
value: 39.0918
- type: nauc_ndcg_at_100_max
value: 29.0945
- type: nauc_ndcg_at_100_std
value: 5.6239
- type: nauc_ndcg_at_100_diff1
value: 39.4526
- type: nauc_ndcg_at_1000_max
value: 28.7139
- type: nauc_ndcg_at_1000_std
value: 4.3576
- type: nauc_ndcg_at_1000_diff1
value: 40.1353
- type: nauc_map_at_1_max
value: 26.4001
- type: nauc_map_at_1_std
value: -2.4035
- type: nauc_map_at_1_diff1
value: 50.6355
- type: nauc_map_at_3_max
value: 27.6775
- type: nauc_map_at_3_std
value: -1.2323
- type: nauc_map_at_3_diff1
value: 45.1028
- type: nauc_map_at_5_max
value: 27.7501
- type: nauc_map_at_5_std
value: -1.0206
- type: nauc_map_at_5_diff1
value: 44.137100000000004
- type: nauc_map_at_10_max
value: 27.3169
- type: nauc_map_at_10_std
value: -0.6242
- type: nauc_map_at_10_diff1
value: 42.992799999999995
- type: nauc_map_at_20_max
value: 27.9088
- type: nauc_map_at_20_std
value: 0.369
- type: nauc_map_at_20_diff1
value: 42.7076
- type: nauc_map_at_100_max
value: 28.0018
- type: nauc_map_at_100_std
value: 1.0477999999999998
- type: nauc_map_at_100_diff1
value: 42.663000000000004
- type: nauc_map_at_1000_max
value: 27.8892
- type: nauc_map_at_1000_std
value: 1.0114
- type: nauc_map_at_1000_diff1
value: 42.6802
- type: nauc_recall_at_1_max
value: 26.4001
- type: nauc_recall_at_1_std
value: -2.4035
- type: nauc_recall_at_1_diff1
value: 50.6355
- type: nauc_recall_at_3_max
value: 26.4415
- type: nauc_recall_at_3_std
value: 0.6093000000000001
- type: nauc_recall_at_3_diff1
value: 38.3001
- type: nauc_recall_at_5_max
value: 25.5757
- type: nauc_recall_at_5_std
value: 1.7046999999999999
- type: nauc_recall_at_5_diff1
value: 33.9953
- type: nauc_recall_at_10_max
value: 21.9077
- type: nauc_recall_at_10_std
value: 2.4832
- type: nauc_recall_at_10_diff1
value: 27.6569
- type: nauc_recall_at_20_max
value: 27.9785
- type: nauc_recall_at_20_std
value: 8.717
- type: nauc_recall_at_20_diff1
value: 26.076
- type: nauc_recall_at_100_max
value: 32.8372
- type: nauc_recall_at_100_std
value: 28.644799999999996
- type: nauc_recall_at_100_diff1
value: 22.3344
- type: nauc_recall_at_1000_max
value: 43.087199999999996
- type: nauc_recall_at_1000_std
value: 38.6013
- type: nauc_recall_at_1000_diff1
value: 19.057399999999998
- type: nauc_precision_at_1_max
value: 27.961799999999997
- type: nauc_precision_at_1_std
value: 1.9207999999999998
- type: nauc_precision_at_1_diff1
value: 47.9837
- type: nauc_precision_at_3_max
value: 26.680999999999997
- type: nauc_precision_at_3_std
value: 6.4623
- type: nauc_precision_at_3_diff1
value: 26.0754
- type: nauc_precision_at_5_max
value: 23.0766
- type: nauc_precision_at_5_std
value: 8.0635
- type: nauc_precision_at_5_diff1
value: 18.249399999999998
- type: nauc_precision_at_10_max
value: 14.0187
- type: nauc_precision_at_10_std
value: 10.793999999999999
- type: nauc_precision_at_10_diff1
value: 5.7888
- type: nauc_precision_at_20_max
value: 12.065
- type: nauc_precision_at_20_std
value: 15.728800000000001
- type: nauc_precision_at_20_diff1
value: -0.7351
- type: nauc_precision_at_100_max
value: -0.4148
- type: nauc_precision_at_100_std
value: 17.0201
- type: nauc_precision_at_100_diff1
value: -8.088099999999999
- type: nauc_precision_at_1000_max
value: -18.342
- type: nauc_precision_at_1000_std
value: 5.6757
- type: nauc_precision_at_1000_diff1
value: -13.869200000000001
- type: nauc_mrr_at_1_max
value: 27.961799999999997
- type: nauc_mrr_at_1_std
value: 1.9207999999999998
- type: nauc_mrr_at_1_diff1
value: 47.9837
- type: nauc_mrr_at_3_max
value: 27.7754
- type: nauc_mrr_at_3_std
value: 2.2727
- type: nauc_mrr_at_3_diff1
value: 42.864999999999995
- type: nauc_mrr_at_5_max
value: 27.7453
- type: nauc_mrr_at_5_std
value: 2.7718
- type: nauc_mrr_at_5_diff1
value: 41.9633
- type: nauc_mrr_at_10_max
value: 27.308300000000003
- type: nauc_mrr_at_10_std
value: 3.089
- type: nauc_mrr_at_10_diff1
value: 41.3641
- type: nauc_mrr_at_20_max
value: 27.814299999999996
- type: nauc_mrr_at_20_std
value: 3.2985
- type: nauc_mrr_at_20_diff1
value: 41.6228
- type: nauc_mrr_at_100_max
value: 27.8378
- type: nauc_mrr_at_100_std
value: 3.517
- type: nauc_mrr_at_100_diff1
value: 41.7328
- type: nauc_mrr_at_1000_max
value: 27.8277
- type: nauc_mrr_at_1000_std
value: 3.4743000000000004
- type: nauc_mrr_at_1000_diff1
value: 41.7584
- type: main_score
value: 42.321999999999996
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval (default)
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: ndcg_at_1
value: 23.105
- type: ndcg_at_3
value: 28.781000000000002
- type: ndcg_at_5
value: 31.338
- type: ndcg_at_10
value: 34.091
- type: ndcg_at_20
value: 36.046
- type: ndcg_at_100
value: 39.556999999999995
- type: ndcg_at_1000
value: 41.647
- type: map_at_1
value: 21.448
- type: map_at_3
value: 26.527
- type: map_at_5
value: 28.02
- type: map_at_10
value: 29.204
- type: map_at_20
value: 29.774
- type: map_at_100
value: 30.278
- type: map_at_1000
value: 30.364
- type: recall_at_1
value: 21.448
- type: recall_at_3
value: 33.167
- type: recall_at_5
value: 39.156
- type: recall_at_10
value: 47.277
- type: recall_at_20
value: 54.639
- type: recall_at_100
value: 72.809
- type: recall_at_1000
value: 88.099
- type: precision_at_1
value: 23.105
- type: precision_at_3
value: 12.138
- type: precision_at_5
value: 8.834999999999999
- type: precision_at_10
value: 5.434
- type: precision_at_20
value: 3.189
- type: precision_at_100
value: 0.8710000000000001
- type: precision_at_1000
value: 0.11499999999999999
- type: mrr_at_1
value: 23.1054
- type: mrr_at_3
value: 28.5582
- type: mrr_at_5
value: 30.0462
- type: mrr_at_10
value: 31.1854
- type: mrr_at_20
value: 31.6775
- type: mrr_at_100
value: 32.1183
- type: mrr_at_1000
value: 32.1723
- type: nauc_ndcg_at_1_max
value: 30.894
- type: nauc_ndcg_at_1_std
value: 0.8228
- type: nauc_ndcg_at_1_diff1
value: 50.571600000000004
- type: nauc_ndcg_at_3_max
value: 24.9603
- type: nauc_ndcg_at_3_std
value: -0.3032
- type: nauc_ndcg_at_3_diff1
value: 43.803799999999995
- type: nauc_ndcg_at_5_max
value: 26.1479
- type: nauc_ndcg_at_5_std
value: 0.3038
- type: nauc_ndcg_at_5_diff1
value: 42.5296
- type: nauc_ndcg_at_10_max
value: 26.0992
- type: nauc_ndcg_at_10_std
value: 1.2644
- type: nauc_ndcg_at_10_diff1
value: 41.943000000000005
- type: nauc_ndcg_at_20_max
value: 26.132300000000004
- type: nauc_ndcg_at_20_std
value: 1.798
- type: nauc_ndcg_at_20_diff1
value: 41.1586
- type: nauc_ndcg_at_100_max
value: 26.4048
- type: nauc_ndcg_at_100_std
value: 3.7023
- type: nauc_ndcg_at_100_diff1
value: 41.3297
- type: nauc_ndcg_at_1000_max
value: 26.889200000000002
- type: nauc_ndcg_at_1000_std
value: 3.7087000000000003
- type: nauc_ndcg_at_1000_diff1
value: 41.716300000000004
- type: nauc_map_at_1_max
value: 27.5981
- type: nauc_map_at_1_std
value: 0.387
- type: nauc_map_at_1_diff1
value: 48.6362
- type: nauc_map_at_3_max
value: 24.8521
- type: nauc_map_at_3_std
value: -0.414
- type: nauc_map_at_3_diff1
value: 44.766600000000004
- type: nauc_map_at_5_max
value: 25.937900000000003
- type: nauc_map_at_5_std
value: -0.054900000000000004
- type: nauc_map_at_5_diff1
value: 44.0302
- type: nauc_map_at_10_max
value: 26.018
- type: nauc_map_at_10_std
value: 0.3584
- type: nauc_map_at_10_diff1
value: 43.7009
- type: nauc_map_at_20_max
value: 26.0129
- type: nauc_map_at_20_std
value: 0.5091
- type: nauc_map_at_20_diff1
value: 43.4823
- type: nauc_map_at_100_max
value: 26.1059
- type: nauc_map_at_100_std
value: 0.7867999999999999
- type: nauc_map_at_100_diff1
value: 43.4867
- type: nauc_map_at_1000_max
value: 26.131500000000003
- type: nauc_map_at_1000_std
value: 0.8026
- type: nauc_map_at_1000_diff1
value: 43.5097
- type: nauc_recall_at_1_max
value: 27.5981
- type: nauc_recall_at_1_std
value: 0.387
- type: nauc_recall_at_1_diff1
value: 48.6362
- type: nauc_recall_at_3_max
value: 21.7315
- type: nauc_recall_at_3_std
value: -1.0671
- type: nauc_recall_at_3_diff1
value: 39.4999
- type: nauc_recall_at_5_max
value: 23.994699999999998
- type: nauc_recall_at_5_std
value: 0.0779
- type: nauc_recall_at_5_diff1
value: 36.9505
- type: nauc_recall_at_10_max
value: 23.2468
- type: nauc_recall_at_10_std
value: 2.654
- type: nauc_recall_at_10_diff1
value: 35.158899999999996
- type: nauc_recall_at_20_max
value: 23.28
- type: nauc_recall_at_20_std
value: 4.8041
- type: nauc_recall_at_20_diff1
value: 31.547399999999996
- type: nauc_recall_at_100_max
value: 21.7186
- type: nauc_recall_at_100_std
value: 17.083000000000002
- type: nauc_recall_at_100_diff1
value: 29.229899999999997
- type: nauc_recall_at_1000_max
value: 28.9168
- type: nauc_recall_at_1000_std
value: 29.9591
- type: nauc_recall_at_1000_diff1
value: 27.0436
- type: nauc_precision_at_1_max
value: 30.894
- type: nauc_precision_at_1_std
value: 0.8228
- type: nauc_precision_at_1_diff1
value: 50.571600000000004
- type: nauc_precision_at_3_max
value: 25.076999999999998
- type: nauc_precision_at_3_std
value: 0.39890000000000003
- type: nauc_precision_at_3_diff1
value: 40.618300000000005
- type: nauc_precision_at_5_max
value: 29.274299999999997
- type: nauc_precision_at_5_std
value: 3.02
- type: nauc_precision_at_5_diff1
value: 35.3233
- type: nauc_precision_at_10_max
value: 28.1411
- type: nauc_precision_at_10_std
value: 6.628100000000001
- type: nauc_precision_at_10_diff1
value: 30.949700000000004
- type: nauc_precision_at_20_max
value: 25.974999999999998
- type: nauc_precision_at_20_std
value: 8.3134
- type: nauc_precision_at_20_diff1
value: 25.324799999999996
- type: nauc_precision_at_100_max
value: 22.682
- type: nauc_precision_at_100_std
value: 20.4648
- type: nauc_precision_at_100_diff1
value: 13.2139
- type: nauc_precision_at_1000_max
value: 2.8796
- type: nauc_precision_at_1000_std
value: 10.6158
- type: nauc_precision_at_1000_diff1
value: -11.8614
- type: nauc_mrr_at_1_max
value: 30.894
- type: nauc_mrr_at_1_std
value: 0.8228
- type: nauc_mrr_at_1_diff1
value: 50.571600000000004
- type: nauc_mrr_at_3_max
value: 27.8993
- type: nauc_mrr_at_3_std
value: 0.5541
- type: nauc_mrr_at_3_diff1
value: 46.307900000000004
- type: nauc_mrr_at_5_max
value: 28.4404
- type: nauc_mrr_at_5_std
value: 0.8992
- type: nauc_mrr_at_5_diff1
value: 45.405699999999996
- type: nauc_mrr_at_10_max
value: 28.492099999999997
- type: nauc_mrr_at_10_std
value: 1.3769
- type: nauc_mrr_at_10_diff1
value: 45.163
- type: nauc_mrr_at_20_max
value: 28.4509
- type: nauc_mrr_at_20_std
value: 1.4745
- type: nauc_mrr_at_20_diff1
value: 44.9459
- type: nauc_mrr_at_100_max
value: 28.533199999999997
- type: nauc_mrr_at_100_std
value: 1.7016
- type: nauc_mrr_at_100_diff1
value: 45.0053
- type: nauc_mrr_at_1000_max
value: 28.5364
- type: nauc_mrr_at_1000_std
value: 1.6894
- type: nauc_mrr_at_1000_diff1
value: 45.0407
- type: main_score
value: 34.091
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER (default)
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: ndcg_at_1
value: 32.964
- type: ndcg_at_3
value: 28.116000000000003
- type: ndcg_at_5
value: 29.932
- type: ndcg_at_10
value: 33.207
- type: ndcg_at_20
value: 35.730000000000004
- type: ndcg_at_100
value: 40.251999999999995
- type: ndcg_at_1000
value: 43.463
- type: map_at_1
value: 14.846
- type: map_at_3
value: 20.683
- type: map_at_5
value: 22.753999999999998
- type: map_at_10
value: 24.413
- type: map_at_20
value: 25.355
- type: map_at_100
value: 26.243
- type: map_at_1000
value: 26.43
- type: recall_at_1
value: 14.846
- type: recall_at_3
value: 25.368000000000002
- type: recall_at_5
value: 31.159
- type: recall_at_10
value: 38.391
- type: recall_at_20
value: 45.366
- type: recall_at_100
value: 62.597
- type: recall_at_1000
value: 80.448
- type: precision_at_1
value: 32.964
- type: precision_at_3
value: 20.782
- type: precision_at_5
value: 15.595999999999998
- type: precision_at_10
value: 9.98
- type: precision_at_20
value: 6.091
- type: precision_at_100
value: 1.7760000000000002
- type: precision_at_1000
value: 0.23700000000000002
- type: mrr_at_1
value: 32.9642
- type: mrr_at_3
value: 41.9001
- type: mrr_at_5
value: 43.4701
- type: mrr_at_10
value: 44.6392
- type: mrr_at_20
value: 45.129999999999995
- type: mrr_at_100
value: 45.4343
- type: mrr_at_1000
value: 45.4726
- type: nauc_ndcg_at_1_max
value: 31.2733
- type: nauc_ndcg_at_1_std
value: 17.8778
- type: nauc_ndcg_at_1_diff1
value: 30.7939
- type: nauc_ndcg_at_3_max
value: 35.7233
- type: nauc_ndcg_at_3_std
value: 20.499200000000002
- type: nauc_ndcg_at_3_diff1
value: 26.6175
- type: nauc_ndcg_at_5_max
value: 36.5593
- type: nauc_ndcg_at_5_std
value: 20.5487
- type: nauc_ndcg_at_5_diff1
value: 24.8006
- type: nauc_ndcg_at_10_max
value: 38.1663
- type: nauc_ndcg_at_10_std
value: 23.8688
- type: nauc_ndcg_at_10_diff1
value: 23.7262
- type: nauc_ndcg_at_20_max
value: 38.719
- type: nauc_ndcg_at_20_std
value: 26.4556
- type: nauc_ndcg_at_20_diff1
value: 22.7078
- type: nauc_ndcg_at_100_max
value: 40.396100000000004
- type: nauc_ndcg_at_100_std
value: 29.325200000000002
- type: nauc_ndcg_at_100_diff1
value: 22.7562
- type: nauc_ndcg_at_1000_max
value: 40.4082
- type: nauc_ndcg_at_1000_std
value: 29.595
- type: nauc_ndcg_at_1000_diff1
value: 22.8439
- type: nauc_map_at_1_max
value: 33.0891
- type: nauc_map_at_1_std
value: 13.3677
- type: nauc_map_at_1_diff1
value: 34.1515
- type: nauc_map_at_3_max
value: 35.384
- type: nauc_map_at_3_std
value: 17.637
- type: nauc_map_at_3_diff1
value: 28.4007
- type: nauc_map_at_5_max
value: 36.0659
- type: nauc_map_at_5_std
value: 18.5628
- type: nauc_map_at_5_diff1
value: 26.5464
- type: nauc_map_at_10_max
value: 37.2578
- type: nauc_map_at_10_std
value: 20.617
- type: nauc_map_at_10_diff1
value: 25.926199999999998
- type: nauc_map_at_20_max
value: 37.500299999999996
- type: nauc_map_at_20_std
value: 21.851300000000002
- type: nauc_map_at_20_diff1
value: 25.3292
- type: nauc_map_at_100_max
value: 37.933299999999996
- type: nauc_map_at_100_std
value: 22.6615
- type: nauc_map_at_100_diff1
value: 25.259500000000003
- type: nauc_map_at_1000_max
value: 37.9165
- type: nauc_map_at_1000_std
value: 22.7028
- type: nauc_map_at_1000_diff1
value: 25.239299999999997
- type: nauc_recall_at_1_max
value: 33.0891
- type: nauc_recall_at_1_std
value: 13.3677
- type: nauc_recall_at_1_diff1
value: 34.1515
- type: nauc_recall_at_3_max
value: 35.282000000000004
- type: nauc_recall_at_3_std
value: 18.8367
- type: nauc_recall_at_3_diff1
value: 24.2501
- type: nauc_recall_at_5_max
value: 34.3122
- type: nauc_recall_at_5_std
value: 18.5093
- type: nauc_recall_at_5_diff1
value: 18.8749
- type: nauc_recall_at_10_max
value: 36.2395
- type: nauc_recall_at_10_std
value: 24.2952
- type: nauc_recall_at_10_diff1
value: 16.3158
- type: nauc_recall_at_20_max
value: 35.6255
- type: nauc_recall_at_20_std
value: 29.56
- type: nauc_recall_at_20_diff1
value: 12.856699999999998
- type: nauc_recall_at_100_max
value: 39.016600000000004
- type: nauc_recall_at_100_std
value: 37.9984
- type: nauc_recall_at_100_diff1
value: 10.807
- type: nauc_recall_at_1000_max
value: 42.7582
- type: nauc_recall_at_1000_std
value: 46.9593
- type: nauc_recall_at_1000_diff1
value: 8.1464
- type: nauc_precision_at_1_max
value: 31.2733
- type: nauc_precision_at_1_std
value: 17.8778
- type: nauc_precision_at_1_diff1
value: 30.7939
- type: nauc_precision_at_3_max
value: 35.2819
- type: nauc_precision_at_3_std
value: 25.9018
- type: nauc_precision_at_3_diff1
value: 18.4633
- type: nauc_precision_at_5_max
value: 32.7525
- type: nauc_precision_at_5_std
value: 25.5596
- type: nauc_precision_at_5_diff1
value: 11.241
- type: nauc_precision_at_10_max
value: 32.4574
- type: nauc_precision_at_10_std
value: 31.1815
- type: nauc_precision_at_10_diff1
value: 6.3983
- type: nauc_precision_at_20_max
value: 29.522100000000002
- type: nauc_precision_at_20_std
value: 34.4644
- type: nauc_precision_at_20_diff1
value: 1.9328
- type: nauc_precision_at_100_max
value: 25.594299999999997
- type: nauc_precision_at_100_std
value: 36.7783
- type: nauc_precision_at_100_diff1
value: -1.9514
- type: nauc_precision_at_1000_max
value: 14.3931
- type: nauc_precision_at_1000_std
value: 28.8585
- type: nauc_precision_at_1000_diff1
value: -7.264600000000001
- type: nauc_mrr_at_1_max
value: 31.2733
- type: nauc_mrr_at_1_std
value: 17.8778
- type: nauc_mrr_at_1_diff1
value: 30.7939
- type: nauc_mrr_at_3_max
value: 34.4613
- type: nauc_mrr_at_3_std
value: 21.529
- type: nauc_mrr_at_3_diff1
value: 27.369
- type: nauc_mrr_at_5_max
value: 34.5965
- type: nauc_mrr_at_5_std
value: 21.7303
- type: nauc_mrr_at_5_diff1
value: 26.521800000000002
- type: nauc_mrr_at_10_max
value: 34.6792
- type: nauc_mrr_at_10_std
value: 22.4157
- type: nauc_mrr_at_10_diff1
value: 26.2542
- type: nauc_mrr_at_20_max
value: 34.746
- type: nauc_mrr_at_20_std
value: 22.586000000000002
- type: nauc_mrr_at_20_diff1
value: 26.305600000000002
- type: nauc_mrr_at_100_max
value: 34.7901
- type: nauc_mrr_at_100_std
value: 22.5625
- type: nauc_mrr_at_100_diff1
value: 26.429599999999997
- type: nauc_mrr_at_1000_max
value: 34.779700000000005
- type: nauc_mrr_at_1000_std
value: 22.5434
- type: nauc_mrr_at_1000_diff1
value: 26.437300000000004
- type: main_score
value: 33.207
- task:
type: Retrieval
dataset:
name: MTEB DBPedia (default)
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: ndcg_at_1
value: 51.87500000000001
- type: ndcg_at_3
value: 42.552
- type: ndcg_at_5
value: 39.946
- type: ndcg_at_10
value: 37.897999999999996
- type: ndcg_at_20
value: 37.153000000000006
- type: ndcg_at_100
value: 42.012
- type: ndcg_at_1000
value: 49.202
- type: map_at_1
value: 7.869
- type: map_at_3
value: 12.307
- type: map_at_5
value: 14.394000000000002
- type: map_at_10
value: 17.175
- type: map_at_20
value: 19.689
- type: map_at_100
value: 23.857999999999997
- type: map_at_1000
value: 25.417
- type: recall_at_1
value: 7.869
- type: recall_at_3
value: 13.566
- type: recall_at_5
value: 17.403
- type: recall_at_10
value: 22.811999999999998
- type: recall_at_20
value: 29.378999999999998
- type: recall_at_100
value: 48.353
- type: recall_at_1000
value: 70.801
- type: precision_at_1
value: 62.5
- type: precision_at_3
value: 45.417
- type: precision_at_5
value: 38.15
- type: precision_at_10
value: 29.95
- type: precision_at_20
value: 22.462
- type: precision_at_100
value: 9.703000000000001
- type: precision_at_1000
value: 2.027
- type: mrr_at_1
value: 62.5
- type: mrr_at_3
value: 68.625
- type: mrr_at_5
value: 70.0625
- type: mrr_at_10
value: 70.60549999999999
- type: mrr_at_20
value: 70.934
- type: mrr_at_100
value: 71.0742
- type: mrr_at_1000
value: 71.0797
- type: nauc_ndcg_at_1_max
value: 41.436499999999995
- type: nauc_ndcg_at_1_std
value: 26.6537
- type: nauc_ndcg_at_1_diff1
value: 41.362500000000004
- type: nauc_ndcg_at_3_max
value: 38.2075
- type: nauc_ndcg_at_3_std
value: 28.1899
- type: nauc_ndcg_at_3_diff1
value: 29.353299999999997
- type: nauc_ndcg_at_5_max
value: 36.592
- type: nauc_ndcg_at_5_std
value: 27.9763
- type: nauc_ndcg_at_5_diff1
value: 30.2168
- type: nauc_ndcg_at_10_max
value: 36.2032
- type: nauc_ndcg_at_10_std
value: 26.7501
- type: nauc_ndcg_at_10_diff1
value: 33.409499999999994
- type: nauc_ndcg_at_20_max
value: 33.981
- type: nauc_ndcg_at_20_std
value: 25.5934
- type: nauc_ndcg_at_20_diff1
value: 33.3985
- type: nauc_ndcg_at_100_max
value: 36.448
- type: nauc_ndcg_at_100_std
value: 32.3459
- type: nauc_ndcg_at_100_diff1
value: 33.2002
- type: nauc_ndcg_at_1000_max
value: 40.2408
- type: nauc_ndcg_at_1000_std
value: 38.6683
- type: nauc_ndcg_at_1000_diff1
value: 31.9563
- type: nauc_map_at_1_max
value: 8.8384
- type: nauc_map_at_1_std
value: -12.18
- type: nauc_map_at_1_diff1
value: 42.5949
- type: nauc_map_at_3_max
value: 10.4264
- type: nauc_map_at_3_std
value: -6.4437
- type: nauc_map_at_3_diff1
value: 31.555
- type: nauc_map_at_5_max
value: 12.4445
- type: nauc_map_at_5_std
value: -3.5782000000000003
- type: nauc_map_at_5_diff1
value: 29.8594
- type: nauc_map_at_10_max
value: 16.9699
- type: nauc_map_at_10_std
value: 2.0362999999999998
- type: nauc_map_at_10_diff1
value: 29.737599999999997
- type: nauc_map_at_20_max
value: 21.4809
- type: nauc_map_at_20_std
value: 9.0494
- type: nauc_map_at_20_diff1
value: 30.0806
- type: nauc_map_at_100_max
value: 29.0583
- type: nauc_map_at_100_std
value: 22.3292
- type: nauc_map_at_100_diff1
value: 29.9971
- type: nauc_map_at_1000_max
value: 30.4654
- type: nauc_map_at_1000_std
value: 25.208799999999997
- type: nauc_map_at_1000_diff1
value: 29.3623
- type: nauc_recall_at_1_max
value: 8.8384
- type: nauc_recall_at_1_std
value: -12.18
- type: nauc_recall_at_1_diff1
value: 42.5949
- type: nauc_recall_at_3_max
value: 7.692400000000001
- type: nauc_recall_at_3_std
value: -7.5964
- type: nauc_recall_at_3_diff1
value: 27.5878
- type: nauc_recall_at_5_max
value: 7.3506
- type: nauc_recall_at_5_std
value: -7.152799999999999
- type: nauc_recall_at_5_diff1
value: 25.565199999999997
- type: nauc_recall_at_10_max
value: 13.009
- type: nauc_recall_at_10_std
value: -0.6829
- type: nauc_recall_at_10_diff1
value: 25.8442
- type: nauc_recall_at_20_max
value: 15.329
- type: nauc_recall_at_20_std
value: 5.9502
- type: nauc_recall_at_20_diff1
value: 24.584400000000002
- type: nauc_recall_at_100_max
value: 26.1527
- type: nauc_recall_at_100_std
value: 28.8597
- type: nauc_recall_at_100_diff1
value: 23.5886
- type: nauc_recall_at_1000_max
value: 32.736
- type: nauc_recall_at_1000_std
value: 41.5612
- type: nauc_recall_at_1000_diff1
value: 21.8267
- type: nauc_precision_at_1_max
value: 56.4401
- type: nauc_precision_at_1_std
value: 39.5242
- type: nauc_precision_at_1_diff1
value: 44.307
- type: nauc_precision_at_3_max
value: 44.521100000000004
- type: nauc_precision_at_3_std
value: 42.4366
- type: nauc_precision_at_3_diff1
value: 13.569899999999999
- type: nauc_precision_at_5_max
value: 42.3594
- type: nauc_precision_at_5_std
value: 44.4758
- type: nauc_precision_at_5_diff1
value: 10.2733
- type: nauc_precision_at_10_max
value: 41.260000000000005
- type: nauc_precision_at_10_std
value: 47.2496
- type: nauc_precision_at_10_diff1
value: 9.393799999999999
- type: nauc_precision_at_20_max
value: 39.8169
- type: nauc_precision_at_20_std
value: 49.8068
- type: nauc_precision_at_20_diff1
value: 8.7204
- type: nauc_precision_at_100_max
value: 30.9015
- type: nauc_precision_at_100_std
value: 46.853899999999996
- type: nauc_precision_at_100_diff1
value: 2.0425
- type: nauc_precision_at_1000_max
value: 5.3395
- type: nauc_precision_at_1000_std
value: 17.8995
- type: nauc_precision_at_1000_diff1
value: -13.3583
- type: nauc_mrr_at_1_max
value: 56.4401
- type: nauc_mrr_at_1_std
value: 39.5242
- type: nauc_mrr_at_1_diff1
value: 44.307
- type: nauc_mrr_at_3_max
value: 56.97990000000001
- type: nauc_mrr_at_3_std
value: 42.138
- type: nauc_mrr_at_3_diff1
value: 41.5078
- type: nauc_mrr_at_5_max
value: 56.234399999999994
- type: nauc_mrr_at_5_std
value: 41.3617
- type: nauc_mrr_at_5_diff1
value: 41.227599999999995
- type: nauc_mrr_at_10_max
value: 56.6701
- type: nauc_mrr_at_10_std
value: 41.6424
- type: nauc_mrr_at_10_diff1
value: 41.814800000000005
- type: nauc_mrr_at_20_max
value: 56.6094
- type: nauc_mrr_at_20_std
value: 41.7269
- type: nauc_mrr_at_20_diff1
value: 41.8099
- type: nauc_mrr_at_100_max
value: 56.623900000000006
- type: nauc_mrr_at_100_std
value: 41.6436
- type: nauc_mrr_at_100_diff1
value: 41.7734
- type: nauc_mrr_at_1000_max
value: 56.6269
- type: nauc_mrr_at_1000_std
value: 41.6455
- type: nauc_mrr_at_1000_diff1
value: 41.7701
- type: main_score
value: 37.897999999999996
- task:
type: Classification
dataset:
name: MTEB EmotionClassification (default)
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 63.235
- type: f1
value: 59.071799999999996
- type: f1_weighted
value: 64.6776
- type: main_score
value: 63.235
- task:
type: Retrieval
dataset:
name: MTEB FEVER (default)
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: ndcg_at_1
value: 83.498
- type: ndcg_at_3
value: 86.69200000000001
- type: ndcg_at_5
value: 87.787
- type: ndcg_at_10
value: 88.31
- type: ndcg_at_20
value: 88.595
- type: ndcg_at_100
value: 88.905
- type: ndcg_at_1000
value: 89.09700000000001
- type: map_at_1
value: 77.41
- type: map_at_3
value: 83.673
- type: map_at_5
value: 84.464
- type: map_at_10
value: 84.748
- type: map_at_20
value: 84.863
- type: map_at_100
value: 84.929
- type: map_at_1000
value: 84.941
- type: recall_at_1
value: 77.41
- type: recall_at_3
value: 90.027
- type: recall_at_5
value: 92.804
- type: recall_at_10
value: 94.377
- type: recall_at_20
value: 95.321
- type: recall_at_100
value: 96.646
- type: recall_at_1000
value: 97.77900000000001
- type: precision_at_1
value: 83.498
- type: precision_at_3
value: 32.728
- type: precision_at_5
value: 20.375
- type: precision_at_10
value: 10.424999999999999
- type: precision_at_20
value: 5.305
- type: precision_at_100
value: 1.0919999999999999
- type: precision_at_1000
value: 0.11299999999999999
- type: mrr_at_1
value: 83.4983
- type: mrr_at_3
value: 89.1189
- type: mrr_at_5
value: 89.6395
- type: mrr_at_10
value: 89.79899999999999
- type: mrr_at_20
value: 89.8266
- type: mrr_at_100
value: 89.8373
- type: mrr_at_1000
value: 89.8376
- type: nauc_ndcg_at_1_max
value: 31.5238
- type: nauc_ndcg_at_1_std
value: -2.2584
- type: nauc_ndcg_at_1_diff1
value: 74.5023
- type: nauc_ndcg_at_3_max
value: 24.1127
- type: nauc_ndcg_at_3_std
value: -2.6446
- type: nauc_ndcg_at_3_diff1
value: 49.2508
- type: nauc_ndcg_at_5_max
value: 23.6616
- type: nauc_ndcg_at_5_std
value: -1.3849
- type: nauc_ndcg_at_5_diff1
value: 47.106300000000005
- type: nauc_ndcg_at_10_max
value: 24.0605
- type: nauc_ndcg_at_10_std
value: -0.4336
- type: nauc_ndcg_at_10_diff1
value: 46.9328
- type: nauc_ndcg_at_20_max
value: 24.7393
- type: nauc_ndcg_at_20_std
value: 0.2855
- type: nauc_ndcg_at_20_diff1
value: 47.6414
- type: nauc_ndcg_at_100_max
value: 25.228099999999998
- type: nauc_ndcg_at_100_std
value: 0.5433
- type: nauc_ndcg_at_100_diff1
value: 48.7128
- type: nauc_ndcg_at_1000_max
value: 25.7762
- type: nauc_ndcg_at_1000_std
value: 0.7018
- type: nauc_ndcg_at_1000_diff1
value: 49.6639
- type: nauc_map_at_1_max
value: 22.7408
- type: nauc_map_at_1_std
value: -1.3189
- type: nauc_map_at_1_diff1
value: 54.049400000000006
- type: nauc_map_at_3_max
value: 22.6962
- type: nauc_map_at_3_std
value: -1.9411
- type: nauc_map_at_3_diff1
value: 47.3787
- type: nauc_map_at_5_max
value: 22.8472
- type: nauc_map_at_5_std
value: -1.2210999999999999
- type: nauc_map_at_5_diff1
value: 46.8099
- type: nauc_map_at_10_max
value: 23.1253
- type: nauc_map_at_10_std
value: -0.8166
- type: nauc_map_at_10_diff1
value: 46.961000000000006
- type: nauc_map_at_20_max
value: 23.336299999999998
- type: nauc_map_at_20_std
value: -0.6204000000000001
- type: nauc_map_at_20_diff1
value: 47.2216
- type: nauc_map_at_100_max
value: 23.4294
- type: nauc_map_at_100_std
value: -0.5717
- type: nauc_map_at_100_diff1
value: 47.3991
- type: nauc_map_at_1000_max
value: 23.4583
- type: nauc_map_at_1000_std
value: -0.5559999999999999
- type: nauc_map_at_1000_diff1
value: 47.4426
- type: nauc_recall_at_1_max
value: 22.7408
- type: nauc_recall_at_1_std
value: -1.3189
- type: nauc_recall_at_1_diff1
value: 54.049400000000006
- type: nauc_recall_at_3_max
value: 17.4806
- type: nauc_recall_at_3_std
value: -3.1338
- type: nauc_recall_at_3_diff1
value: 26.4903
- type: nauc_recall_at_5_max
value: 13.660400000000001
- type: nauc_recall_at_5_std
value: 1.3013000000000001
- type: nauc_recall_at_5_diff1
value: 12.3123
- type: nauc_recall_at_10_max
value: 13.4502
- type: nauc_recall_at_10_std
value: 7.7186
- type: nauc_recall_at_10_diff1
value: 2.9850000000000003
- type: nauc_recall_at_20_max
value: 16.927400000000002
- type: nauc_recall_at_20_std
value: 15.0728
- type: nauc_recall_at_20_diff1
value: 0.3826
- type: nauc_recall_at_100_max
value: 19.942899999999998
- type: nauc_recall_at_100_std
value: 23.5429
- type: nauc_recall_at_100_diff1
value: -3.4923
- type: nauc_recall_at_1000_max
value: 31.8901
- type: nauc_recall_at_1000_std
value: 37.6917
- type: nauc_recall_at_1000_diff1
value: -3.8215
- type: nauc_precision_at_1_max
value: 31.5238
- type: nauc_precision_at_1_std
value: -2.2584
- type: nauc_precision_at_1_diff1
value: 74.5023
- type: nauc_precision_at_3_max
value: 21.2432
- type: nauc_precision_at_3_std
value: -4.3431
- type: nauc_precision_at_3_diff1
value: 27.9237
- type: nauc_precision_at_5_max
value: 12.6046
- type: nauc_precision_at_5_std
value: 1.9817
- type: nauc_precision_at_5_diff1
value: 4.920100000000001
- type: nauc_precision_at_10_max
value: 11.452900000000001
- type: nauc_precision_at_10_std
value: 7.691199999999999
- type: nauc_precision_at_10_diff1
value: -2.363
- type: nauc_precision_at_20_max
value: 10.7846
- type: nauc_precision_at_20_std
value: 9.517100000000001
- type: nauc_precision_at_20_diff1
value: -3.3125
- type: nauc_precision_at_100_max
value: 9.1886
- type: nauc_precision_at_100_std
value: 9.5228
- type: nauc_precision_at_100_diff1
value: -1.9271
- type: nauc_precision_at_1000_max
value: 8.9731
- type: nauc_precision_at_1000_std
value: 8.952200000000001
- type: nauc_precision_at_1000_diff1
value: 1.226
- type: nauc_mrr_at_1_max
value: 31.5238
- type: nauc_mrr_at_1_std
value: -2.2584
- type: nauc_mrr_at_1_diff1
value: 74.5023
- type: nauc_mrr_at_3_max
value: 32.1889
- type: nauc_mrr_at_3_std
value: -4.9427
- type: nauc_mrr_at_3_diff1
value: 72.74080000000001
- type: nauc_mrr_at_5_max
value: 32.0768
- type: nauc_mrr_at_5_std
value: -4.4333
- type: nauc_mrr_at_5_diff1
value: 72.8939
- type: nauc_mrr_at_10_max
value: 32.1312
- type: nauc_mrr_at_10_std
value: -4.1756
- type: nauc_mrr_at_10_diff1
value: 73.0284
- type: nauc_mrr_at_20_max
value: 32.163199999999996
- type: nauc_mrr_at_20_std
value: -4.0634999999999994
- type: nauc_mrr_at_20_diff1
value: 73.0685
- type: nauc_mrr_at_100_max
value: 32.118
- type: nauc_mrr_at_100_std
value: -4.0852
- type: nauc_mrr_at_100_diff1
value: 73.0722
- type: nauc_mrr_at_1000_max
value: 32.1164
- type: nauc_mrr_at_1000_std
value: -4.0867
- type: nauc_mrr_at_1000_diff1
value: 73.0722
- type: main_score
value: 88.31
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018 (default)
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: ndcg_at_1
value: 48.302
- type: ndcg_at_3
value: 44.882
- type: ndcg_at_5
value: 45.898
- type: ndcg_at_10
value: 48.28
- type: ndcg_at_20
value: 51.536
- type: ndcg_at_100
value: 55.461000000000006
- type: ndcg_at_1000
value: 57.938
- type: map_at_1
value: 24.324
- type: map_at_3
value: 35.225
- type: map_at_5
value: 37.962
- type: map_at_10
value: 40.054
- type: map_at_20
value: 41.399
- type: map_at_100
value: 42.321
- type: map_at_1000
value: 42.476
- type: recall_at_1
value: 24.324
- type: recall_at_3
value: 41.036
- type: recall_at_5
value: 46.844
- type: recall_at_10
value: 54.75
- type: recall_at_20
value: 64.86800000000001
- type: recall_at_100
value: 80.413
- type: recall_at_1000
value: 95.242
- type: precision_at_1
value: 48.302
- type: precision_at_3
value: 29.835
- type: precision_at_5
value: 21.852
- type: precision_at_10
value: 13.333
- type: precision_at_20
value: 8.017000000000001
- type: precision_at_100
value: 2.068
- type: precision_at_1000
value: 0.25
- type: mrr_at_1
value: 48.302499999999995
- type: mrr_at_3
value: 55.0669
- type: mrr_at_5
value: 56.208800000000004
- type: mrr_at_10
value: 57.128299999999996
- type: mrr_at_20
value: 57.6631
- type: mrr_at_100
value: 57.897
- type: mrr_at_1000
value: 57.9236
- type: nauc_ndcg_at_1_max
value: 35.3012
- type: nauc_ndcg_at_1_std
value: -10.4163
- type: nauc_ndcg_at_1_diff1
value: 49.8902
- type: nauc_ndcg_at_3_max
value: 33.3967
- type: nauc_ndcg_at_3_std
value: -6.623900000000001
- type: nauc_ndcg_at_3_diff1
value: 39.811600000000006
- type: nauc_ndcg_at_5_max
value: 32.1592
- type: nauc_ndcg_at_5_std
value: -7.155799999999999
- type: nauc_ndcg_at_5_diff1
value: 39.4895
- type: nauc_ndcg_at_10_max
value: 32.6943
- type: nauc_ndcg_at_10_std
value: -5.543
- type: nauc_ndcg_at_10_diff1
value: 39.4015
- type: nauc_ndcg_at_20_max
value: 33.247
- type: nauc_ndcg_at_20_std
value: -3.5911
- type: nauc_ndcg_at_20_diff1
value: 40.1093
- type: nauc_ndcg_at_100_max
value: 35.8738
- type: nauc_ndcg_at_100_std
value: -0.0625
- type: nauc_ndcg_at_100_diff1
value: 40.1993
- type: nauc_ndcg_at_1000_max
value: 36.105
- type: nauc_ndcg_at_1000_std
value: -1.2023000000000001
- type: nauc_ndcg_at_1000_diff1
value: 40.9404
- type: nauc_map_at_1_max
value: 15.893099999999999
- type: nauc_map_at_1_std
value: -10.817400000000001
- type: nauc_map_at_1_diff1
value: 42.2743
- type: nauc_map_at_3_max
value: 24.8811
- type: nauc_map_at_3_std
value: -8.8756
- type: nauc_map_at_3_diff1
value: 40.2234
- type: nauc_map_at_5_max
value: 28.198
- type: nauc_map_at_5_std
value: -8.2681
- type: nauc_map_at_5_diff1
value: 39.8233
- type: nauc_map_at_10_max
value: 29.8969
- type: nauc_map_at_10_std
value: -7.2732
- type: nauc_map_at_10_diff1
value: 39.056200000000004
- type: nauc_map_at_20_max
value: 30.438900000000004
- type: nauc_map_at_20_std
value: -6.2997
- type: nauc_map_at_20_diff1
value: 39.2282
- type: nauc_map_at_100_max
value: 31.2085
- type: nauc_map_at_100_std
value: -5.4389
- type: nauc_map_at_100_diff1
value: 39.2156
- type: nauc_map_at_1000_max
value: 31.2581
- type: nauc_map_at_1000_std
value: -5.4575
- type: nauc_map_at_1000_diff1
value: 39.256099999999996
- type: nauc_recall_at_1_max
value: 15.893099999999999
- type: nauc_recall_at_1_std
value: -10.817400000000001
- type: nauc_recall_at_1_diff1
value: 42.2743
- type: nauc_recall_at_3_max
value: 20.7605
- type: nauc_recall_at_3_std
value: -7.9595
- type: nauc_recall_at_3_diff1
value: 33.0679
- type: nauc_recall_at_5_max
value: 24.532899999999998
- type: nauc_recall_at_5_std
value: -7.535
- type: nauc_recall_at_5_diff1
value: 32.5104
- type: nauc_recall_at_10_max
value: 26.8851
- type: nauc_recall_at_10_std
value: -2.7628
- type: nauc_recall_at_10_diff1
value: 28.9325
- type: nauc_recall_at_20_max
value: 25.8328
- type: nauc_recall_at_20_std
value: 3.2887
- type: nauc_recall_at_20_diff1
value: 28.417399999999997
- type: nauc_recall_at_100_max
value: 36.079699999999995
- type: nauc_recall_at_100_std
value: 27.093099999999996
- type: nauc_recall_at_100_diff1
value: 26.377299999999998
- type: nauc_recall_at_1000_max
value: 47.7952
- type: nauc_recall_at_1000_std
value: 53.0751
- type: nauc_recall_at_1000_diff1
value: 32.7248
- type: nauc_precision_at_1_max
value: 35.3012
- type: nauc_precision_at_1_std
value: -10.4163
- type: nauc_precision_at_1_diff1
value: 49.8902
- type: nauc_precision_at_3_max
value: 39.9322
- type: nauc_precision_at_3_std
value: 0.2644
- type: nauc_precision_at_3_diff1
value: 26.600600000000004
- type: nauc_precision_at_5_max
value: 40.3902
- type: nauc_precision_at_5_std
value: 2.3505000000000003
- type: nauc_precision_at_5_diff1
value: 19.7771
- type: nauc_precision_at_10_max
value: 39.415299999999995
- type: nauc_precision_at_10_std
value: 6.5885
- type: nauc_precision_at_10_diff1
value: 13.7527
- type: nauc_precision_at_20_max
value: 37.2422
- type: nauc_precision_at_20_std
value: 12.9599
- type: nauc_precision_at_20_diff1
value: 9.6751
- type: nauc_precision_at_100_max
value: 35.6967
- type: nauc_precision_at_100_std
value: 19.8202
- type: nauc_precision_at_100_diff1
value: 1.6320999999999999
- type: nauc_precision_at_1000_max
value: 28.9716
- type: nauc_precision_at_1000_std
value: 15.8223
- type: nauc_precision_at_1000_diff1
value: -3.3576
- type: nauc_mrr_at_1_max
value: 35.3012
- type: nauc_mrr_at_1_std
value: -10.4163
- type: nauc_mrr_at_1_diff1
value: 49.8902
- type: nauc_mrr_at_3_max
value: 36.6979
- type: nauc_mrr_at_3_std
value: -7.6057
- type: nauc_mrr_at_3_diff1
value: 48.1421
- type: nauc_mrr_at_5_max
value: 37.0712
- type: nauc_mrr_at_5_std
value: -7.4076
- type: nauc_mrr_at_5_diff1
value: 47.7326
- type: nauc_mrr_at_10_max
value: 37.4375
- type: nauc_mrr_at_10_std
value: -6.875299999999999
- type: nauc_mrr_at_10_diff1
value: 47.7446
- type: nauc_mrr_at_20_max
value: 37.473
- type: nauc_mrr_at_20_std
value: -6.694799999999999
- type: nauc_mrr_at_20_diff1
value: 47.8238
- type: nauc_mrr_at_100_max
value: 37.453599999999994
- type: nauc_mrr_at_100_std
value: -6.612500000000001
- type: nauc_mrr_at_100_diff1
value: 47.8186
- type: nauc_mrr_at_1000_max
value: 37.4367
- type: nauc_mrr_at_1000_std
value: -6.6572000000000005
- type: nauc_mrr_at_1000_diff1
value: 47.8333
- type: main_score
value: 48.28
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA (default)
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: ndcg_at_1
value: 82.836
- type: ndcg_at_3
value: 60.80799999999999
- type: ndcg_at_5
value: 62.719
- type: ndcg_at_10
value: 64.464
- type: ndcg_at_20
value: 65.613
- type: ndcg_at_100
value: 67.244
- type: ndcg_at_1000
value: 68.633
- type: map_at_1
value: 41.418
- type: map_at_3
value: 51.913
- type: map_at_5
value: 53.45100000000001
- type: map_at_10
value: 54.50899999999999
- type: map_at_20
value: 54.981
- type: map_at_100
value: 55.315000000000005
- type: map_at_1000
value: 55.387
- type: recall_at_1
value: 41.418
- type: recall_at_3
value: 55.206
- type: recall_at_5
value: 58.987
- type: recall_at_10
value: 63.369
- type: recall_at_20
value: 67.07
- type: recall_at_100
value: 74.29400000000001
- type: recall_at_1000
value: 83.504
- type: precision_at_1
value: 82.836
- type: precision_at_3
value: 36.803999999999995
- type: precision_at_5
value: 23.595
- type: precision_at_10
value: 12.674
- type: precision_at_20
value: 6.707000000000001
- type: precision_at_100
value: 1.486
- type: precision_at_1000
value: 0.167
- type: mrr_at_1
value: 82.8359
- type: mrr_at_3
value: 86.7207
- type: mrr_at_5
value: 87.1062
- type: mrr_at_10
value: 87.3533
- type: mrr_at_20
value: 87.4411
- type: mrr_at_100
value: 87.4944
- type: mrr_at_1000
value: 87.5012
- type: nauc_ndcg_at_1_max
value: 55.378400000000006
- type: nauc_ndcg_at_1_std
value: -8.999799999999999
- type: nauc_ndcg_at_1_diff1
value: 81.65289999999999
- type: nauc_ndcg_at_3_max
value: 27.530900000000003
- type: nauc_ndcg_at_3_std
value: -1.4845000000000002
- type: nauc_ndcg_at_3_diff1
value: 28.8078
- type: nauc_ndcg_at_5_max
value: 24.8019
- type: nauc_ndcg_at_5_std
value: -0.6705
- type: nauc_ndcg_at_5_diff1
value: 25.1054
- type: nauc_ndcg_at_10_max
value: 22.6678
- type: nauc_ndcg_at_10_std
value: 0.8309000000000001
- type: nauc_ndcg_at_10_diff1
value: 22.1137
- type: nauc_ndcg_at_20_max
value: 21.601200000000002
- type: nauc_ndcg_at_20_std
value: 1.6587
- type: nauc_ndcg_at_20_diff1
value: 20.9774
- type: nauc_ndcg_at_100_max
value: 20.258499999999998
- type: nauc_ndcg_at_100_std
value: 2.4681
- type: nauc_ndcg_at_100_diff1
value: 19.4499
- type: nauc_ndcg_at_1000_max
value: 20.4564
- type: nauc_ndcg_at_1000_std
value: 2.8757
- type: nauc_ndcg_at_1000_diff1
value: 19.674500000000002
- type: nauc_map_at_1_max
value: 55.378400000000006
- type: nauc_map_at_1_std
value: -8.999799999999999
- type: nauc_map_at_1_diff1
value: 81.65289999999999
- type: nauc_map_at_3_max
value: 22.8016
- type: nauc_map_at_3_std
value: -1.3432
- type: nauc_map_at_3_diff1
value: 21.9107
- type: nauc_map_at_5_max
value: 21.0041
- type: nauc_map_at_5_std
value: -0.8455
- type: nauc_map_at_5_diff1
value: 19.5463
- type: nauc_map_at_10_max
value: 19.9533
- type: nauc_map_at_10_std
value: -0.058
- type: nauc_map_at_10_diff1
value: 18.075
- type: nauc_map_at_20_max
value: 19.5951
- type: nauc_map_at_20_std
value: 0.2562
- type: nauc_map_at_20_diff1
value: 17.71
- type: nauc_map_at_100_max
value: 19.3598
- type: nauc_map_at_100_std
value: 0.42960000000000004
- type: nauc_map_at_100_diff1
value: 17.461299999999998
- type: nauc_map_at_1000_max
value: 19.359
- type: nauc_map_at_1000_std
value: 0.451
- type: nauc_map_at_1000_diff1
value: 17.4648
- type: nauc_recall_at_1_max
value: 55.378400000000006
- type: nauc_recall_at_1_std
value: -8.999799999999999
- type: nauc_recall_at_1_diff1
value: 81.65289999999999
- type: nauc_recall_at_3_max
value: 18.226
- type: nauc_recall_at_3_std
value: 0.7939999999999999
- type: nauc_recall_at_3_diff1
value: 12.2289
- type: nauc_recall_at_5_max
value: 12.998999999999999
- type: nauc_recall_at_5_std
value: 2.1354
- type: nauc_recall_at_5_diff1
value: 5.6548
- type: nauc_recall_at_10_max
value: 7.985200000000001
- type: nauc_recall_at_10_std
value: 5.3194
- type: nauc_recall_at_10_diff1
value: -0.9107000000000001
- type: nauc_recall_at_20_max
value: 4.3701
- type: nauc_recall_at_20_std
value: 7.6056
- type: nauc_recall_at_20_diff1
value: -4.7479000000000005
- type: nauc_recall_at_100_max
value: -2.7925
- type: nauc_recall_at_100_std
value: 11.228200000000001
- type: nauc_recall_at_100_diff1
value: -13.4144
- type: nauc_recall_at_1000_max
value: -7.6068
- type: nauc_recall_at_1000_std
value: 17.0487
- type: nauc_recall_at_1000_diff1
value: -21.2775
- type: nauc_precision_at_1_max
value: 55.378400000000006
- type: nauc_precision_at_1_std
value: -8.999799999999999
- type: nauc_precision_at_1_diff1
value: 81.65289999999999
- type: nauc_precision_at_3_max
value: 18.226
- type: nauc_precision_at_3_std
value: 0.7939999999999999
- type: nauc_precision_at_3_diff1
value: 12.2289
- type: nauc_precision_at_5_max
value: 12.998999999999999
- type: nauc_precision_at_5_std
value: 2.1354
- type: nauc_precision_at_5_diff1
value: 5.6548
- type: nauc_precision_at_10_max
value: 7.985200000000001
- type: nauc_precision_at_10_std
value: 5.3194
- type: nauc_precision_at_10_diff1
value: -0.9107000000000001
- type: nauc_precision_at_20_max
value: 4.3701
- type: nauc_precision_at_20_std
value: 7.6056
- type: nauc_precision_at_20_diff1
value: -4.7479000000000005
- type: nauc_precision_at_100_max
value: -2.7925
- type: nauc_precision_at_100_std
value: 11.228200000000001
- type: nauc_precision_at_100_diff1
value: -13.4144
- type: nauc_precision_at_1000_max
value: -7.6068
- type: nauc_precision_at_1000_std
value: 17.0487
- type: nauc_precision_at_1000_diff1
value: -21.2775
- type: nauc_mrr_at_1_max
value: 55.378400000000006
- type: nauc_mrr_at_1_std
value: -8.999799999999999
- type: nauc_mrr_at_1_diff1
value: 81.65289999999999
- type: nauc_mrr_at_3_max
value: 58.457
- type: nauc_mrr_at_3_std
value: -6.3487
- type: nauc_mrr_at_3_diff1
value: 80.559
- type: nauc_mrr_at_5_max
value: 58.4461
- type: nauc_mrr_at_5_std
value: -5.9587
- type: nauc_mrr_at_5_diff1
value: 80.6051
- type: nauc_mrr_at_10_max
value: 58.42659999999999
- type: nauc_mrr_at_10_std
value: -5.6473
- type: nauc_mrr_at_10_diff1
value: 80.6628
- type: nauc_mrr_at_20_max
value: 58.3928
- type: nauc_mrr_at_20_std
value: -5.6386
- type: nauc_mrr_at_20_diff1
value: 80.7154
- type: nauc_mrr_at_100_max
value: 58.341699999999996
- type: nauc_mrr_at_100_std
value: -5.6933
- type: nauc_mrr_at_100_diff1
value: 80.7071
- type: nauc_mrr_at_1000_max
value: 58.3298
- type: nauc_mrr_at_1000_std
value: -5.7103
- type: nauc_mrr_at_1000_diff1
value: 80.7062
- type: main_score
value: 64.464
- task:
type: Classification
dataset:
name: MTEB ImdbClassification (default)
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 94.9352
- type: f1
value: 94.9327
- type: f1_weighted
value: 94.9327
- type: ap
value: 92.00789999999999
- type: ap_weighted
value: 92.00789999999999
- type: main_score
value: 94.9352
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO (default)
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: ndcg_at_1
value: 21.504
- type: ndcg_at_3
value: 32.328
- type: ndcg_at_5
value: 36.452
- type: ndcg_at_10
value: 40.325
- type: ndcg_at_20
value: 43.07
- type: ndcg_at_100
value: 46.23
- type: ndcg_at_1000
value: 47.369
- type: map_at_1
value: 20.909
- type: map_at_3
value: 29.353
- type: map_at_5
value: 31.661
- type: map_at_10
value: 33.28
- type: map_at_20
value: 34.06
- type: map_at_100
value: 34.52
- type: map_at_1000
value: 34.567
- type: recall_at_1
value: 20.909
- type: recall_at_3
value: 40.339000000000006
- type: recall_at_5
value: 50.259
- type: recall_at_10
value: 62.059
- type: recall_at_20
value: 72.693
- type: recall_at_100
value: 89.269
- type: recall_at_1000
value: 97.933
- type: precision_at_1
value: 21.504
- type: precision_at_3
value: 13.944999999999999
- type: precision_at_5
value: 10.461
- type: precision_at_10
value: 6.491
- type: precision_at_20
value: 3.818
- type: precision_at_100
value: 0.943
- type: precision_at_1000
value: 0.104
- type: mrr_at_1
value: 21.5043
- type: mrr_at_3
value: 29.978500000000004
- type: mrr_at_5
value: 32.251400000000004
- type: mrr_at_10
value: 33.8389
- type: mrr_at_20
value: 34.5788
- type: mrr_at_100
value: 35.010200000000005
- type: mrr_at_1000
value: 35.051100000000005
- type: nauc_ndcg_at_1_max
value: -1.0808
- type: nauc_ndcg_at_1_std
value: -22.361900000000002
- type: nauc_ndcg_at_1_diff1
value: 36.9204
- type: nauc_ndcg_at_3_max
value: -2.0822
- type: nauc_ndcg_at_3_std
value: -25.852999999999998
- type: nauc_ndcg_at_3_diff1
value: 30.8521
- type: nauc_ndcg_at_5_max
value: -2.0332
- type: nauc_ndcg_at_5_std
value: -26.375
- type: nauc_ndcg_at_5_diff1
value: 30.1887
- type: nauc_ndcg_at_10_max
value: -2.2974
- type: nauc_ndcg_at_10_std
value: -26.712000000000003
- type: nauc_ndcg_at_10_diff1
value: 30.1484
- type: nauc_ndcg_at_20_max
value: -1.825
- type: nauc_ndcg_at_20_std
value: -25.4078
- type: nauc_ndcg_at_20_diff1
value: 30.1416
- type: nauc_ndcg_at_100_max
value: -1.2328000000000001
- type: nauc_ndcg_at_100_std
value: -23.2039
- type: nauc_ndcg_at_100_diff1
value: 30.348399999999998
- type: nauc_ndcg_at_1000_max
value: -1.2148
- type: nauc_ndcg_at_1000_std
value: -23.8282
- type: nauc_ndcg_at_1000_diff1
value: 30.704900000000002
- type: nauc_map_at_1_max
value: -1.3643
- type: nauc_map_at_1_std
value: -22.5875
- type: nauc_map_at_1_diff1
value: 36.7618
- type: nauc_map_at_3_max
value: -2.0389999999999997
- type: nauc_map_at_3_std
value: -25.2612
- type: nauc_map_at_3_diff1
value: 32.171499999999995
- type: nauc_map_at_5_max
value: -2.0125
- type: nauc_map_at_5_std
value: -25.605800000000002
- type: nauc_map_at_5_diff1
value: 31.8081
- type: nauc_map_at_10_max
value: -2.1288
- type: nauc_map_at_10_std
value: -25.7592
- type: nauc_map_at_10_diff1
value: 31.8241
- type: nauc_map_at_20_max
value: -2.0061
- type: nauc_map_at_20_std
value: -25.4037
- type: nauc_map_at_20_diff1
value: 31.836799999999997
- type: nauc_map_at_100_max
value: -1.9212
- type: nauc_map_at_100_std
value: -25.0965
- type: nauc_map_at_100_diff1
value: 31.8741
- type: nauc_map_at_1000_max
value: -1.9189
- type: nauc_map_at_1000_std
value: -25.111800000000002
- type: nauc_map_at_1000_diff1
value: 31.8865
- type: nauc_recall_at_1_max
value: -1.3643
- type: nauc_recall_at_1_std
value: -22.5875
- type: nauc_recall_at_1_diff1
value: 36.7618
- type: nauc_recall_at_3_max
value: -2.4667000000000003
- type: nauc_recall_at_3_std
value: -27.6077
- type: nauc_recall_at_3_diff1
value: 27.2784
- type: nauc_recall_at_5_max
value: -2.3782
- type: nauc_recall_at_5_std
value: -28.6853
- type: nauc_recall_at_5_diff1
value: 25.5971
- type: nauc_recall_at_10_max
value: -3.2792000000000003
- type: nauc_recall_at_10_std
value: -29.9584
- type: nauc_recall_at_10_diff1
value: 24.7197
- type: nauc_recall_at_20_max
value: -1.2229999999999999
- type: nauc_recall_at_20_std
value: -24.479799999999997
- type: nauc_recall_at_20_diff1
value: 23.377100000000002
- type: nauc_recall_at_100_max
value: 6.815
- type: nauc_recall_at_100_std
value: 5.1981
- type: nauc_recall_at_100_diff1
value: 18.5723
- type: nauc_recall_at_1000_max
value: 38.1041
- type: nauc_recall_at_1000_std
value: 54.1207
- type: nauc_recall_at_1000_diff1
value: 6.8622000000000005
- type: nauc_precision_at_1_max
value: -1.0808
- type: nauc_precision_at_1_std
value: -22.361900000000002
- type: nauc_precision_at_1_diff1
value: 36.9204
- type: nauc_precision_at_3_max
value: -2.2124
- type: nauc_precision_at_3_std
value: -27.3546
- type: nauc_precision_at_3_diff1
value: 27.108700000000002
- type: nauc_precision_at_5_max
value: -1.8263000000000003
- type: nauc_precision_at_5_std
value: -27.977899999999998
- type: nauc_precision_at_5_diff1
value: 24.8638
- type: nauc_precision_at_10_max
value: -2.2207
- type: nauc_precision_at_10_std
value: -27.9458
- type: nauc_precision_at_10_diff1
value: 22.851
- type: nauc_precision_at_20_max
value: 0.5773999999999999
- type: nauc_precision_at_20_std
value: -20.118
- type: nauc_precision_at_20_diff1
value: 19.5377
- type: nauc_precision_at_100_max
value: 9.327399999999999
- type: nauc_precision_at_100_std
value: 8.4253
- type: nauc_precision_at_100_diff1
value: 8.33
- type: nauc_precision_at_1000_max
value: 15.6001
- type: nauc_precision_at_1000_std
value: 18.066
- type: nauc_precision_at_1000_diff1
value: -4.5068
- type: nauc_mrr_at_1_max
value: -1.0808
- type: nauc_mrr_at_1_std
value: -22.361900000000002
- type: nauc_mrr_at_1_diff1
value: 36.9204
- type: nauc_mrr_at_3_max
value: -1.6818
- type: nauc_mrr_at_3_std
value: -24.8193
- type: nauc_mrr_at_3_diff1
value: 32.159
- type: nauc_mrr_at_5_max
value: -1.6575
- type: nauc_mrr_at_5_std
value: -25.0817
- type: nauc_mrr_at_5_diff1
value: 31.800800000000002
- type: nauc_mrr_at_10_max
value: -1.7668
- type: nauc_mrr_at_10_std
value: -25.196800000000003
- type: nauc_mrr_at_10_diff1
value: 31.8144
- type: nauc_mrr_at_20_max
value: -1.6674000000000002
- type: nauc_mrr_at_20_std
value: -24.8741
- type: nauc_mrr_at_20_diff1
value: 31.8324
- type: nauc_mrr_at_100_max
value: -1.6053000000000002
- type: nauc_mrr_at_100_std
value: -24.6091
- type: nauc_mrr_at_100_diff1
value: 31.883
- type: nauc_mrr_at_1000_max
value: -1.6053000000000002
- type: nauc_mrr_at_1000_std
value: -24.627
- type: nauc_mrr_at_1000_diff1
value: 31.896200000000004
- type: main_score
value: 40.325
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 96.311
- type: f1
value: 96.0432
- type: f1_weighted
value: 96.3129
- type: main_score
value: 96.311
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 86.5048
- type: f1
value: 67.3883
- type: f1_weighted
value: 88.2687
- type: main_score
value: 86.5048
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 75.7902
- type: f1
value: 73.2351
- type: f1_weighted
value: 75.5894
- type: main_score
value: 75.7902
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 77.3571
- type: f1
value: 77.3086
- type: f1_weighted
value: 77.235
- type: main_score
value: 77.3571
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P (default)
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 39.4623
- type: v_measure_std
value: 1.3405
- type: main_score
value: 39.4623
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S (default)
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 37.5047
- type: v_measure_std
value: 1.2052
- type: main_score
value: 37.5047
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking (default)
type: mteb/mind_small
config: default
split: test
revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
metrics:
- type: map
value: 28.9125
- type: mrr
value: 29.656900000000004
- type: nAUC_map_max
value: -21.7929
- type: nAUC_map_std
value: -4.2712
- type: nAUC_map_diff1
value: 11.698500000000001
- type: nAUC_mrr_max
value: -16.4251
- type: nAUC_mrr_std
value: -2.1364
- type: nAUC_mrr_diff1
value: 11.3017
- type: main_score
value: 28.9125
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus (default)
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: ndcg_at_1
value: 44.737
- type: ndcg_at_3
value: 40.943000000000005
- type: ndcg_at_5
value: 38.914
- type: ndcg_at_10
value: 35.762
- type: ndcg_at_20
value: 33.274
- type: ndcg_at_100
value: 32.861000000000004
- type: ndcg_at_1000
value: 41.509
- type: map_at_1
value: 5.792
- type: map_at_3
value: 9.506
- type: map_at_5
value: 11.213
- type: map_at_10
value: 13.165
- type: map_at_20
value: 14.663
- type: map_at_100
value: 16.885
- type: map_at_1000
value: 18.368000000000002
- type: recall_at_1
value: 5.792
- type: recall_at_3
value: 10.517
- type: recall_at_5
value: 13.296
- type: recall_at_10
value: 17.37
- type: recall_at_20
value: 21.22
- type: recall_at_100
value: 33.953
- type: recall_at_1000
value: 65.462
- type: precision_at_1
value: 46.749
- type: precision_at_3
value: 38.596000000000004
- type: precision_at_5
value: 34.303
- type: precision_at_10
value: 26.779999999999998
- type: precision_at_20
value: 19.830000000000002
- type: precision_at_100
value: 8.466999999999999
- type: precision_at_1000
value: 2.12
- type: mrr_at_1
value: 46.7492
- type: mrr_at_3
value: 54.02479999999999
- type: mrr_at_5
value: 55.031
- type: mrr_at_10
value: 55.8081
- type: mrr_at_20
value: 56.143699999999995
- type: mrr_at_100
value: 56.4018
- type: mrr_at_1000
value: 56.4497
- type: nauc_ndcg_at_1_max
value: 54.4799
- type: nauc_ndcg_at_1_std
value: 19.8188
- type: nauc_ndcg_at_1_diff1
value: 35.095
- type: nauc_ndcg_at_3_max
value: 49.5282
- type: nauc_ndcg_at_3_std
value: 19.1444
- type: nauc_ndcg_at_3_diff1
value: 25.074800000000003
- type: nauc_ndcg_at_5_max
value: 50.437200000000004
- type: nauc_ndcg_at_5_std
value: 21.5019
- type: nauc_ndcg_at_5_diff1
value: 21.414
- type: nauc_ndcg_at_10_max
value: 46.907199999999996
- type: nauc_ndcg_at_10_std
value: 22.5521
- type: nauc_ndcg_at_10_diff1
value: 19.0604
- type: nauc_ndcg_at_20_max
value: 47.216
- type: nauc_ndcg_at_20_std
value: 24.535
- type: nauc_ndcg_at_20_diff1
value: 18.3393
- type: nauc_ndcg_at_100_max
value: 47.647
- type: nauc_ndcg_at_100_std
value: 25.7305
- type: nauc_ndcg_at_100_diff1
value: 20.5066
- type: nauc_ndcg_at_1000_max
value: 53.0034
- type: nauc_ndcg_at_1000_std
value: 32.229600000000005
- type: nauc_ndcg_at_1000_diff1
value: 21.729799999999997
- type: nauc_map_at_1_max
value: 18.8513
- type: nauc_map_at_1_std
value: -13.5714
- type: nauc_map_at_1_diff1
value: 42.4674
- type: nauc_map_at_3_max
value: 19.8798
- type: nauc_map_at_3_std
value: -12.600700000000002
- type: nauc_map_at_3_diff1
value: 34.545700000000004
- type: nauc_map_at_5_max
value: 24.756800000000002
- type: nauc_map_at_5_std
value: -7.959099999999999
- type: nauc_map_at_5_diff1
value: 29.1707
- type: nauc_map_at_10_max
value: 28.1916
- type: nauc_map_at_10_std
value: -3.1498
- type: nauc_map_at_10_diff1
value: 25.1522
- type: nauc_map_at_20_max
value: 31.9354
- type: nauc_map_at_20_std
value: 2.319
- type: nauc_map_at_20_diff1
value: 22.778100000000002
- type: nauc_map_at_100_max
value: 35.938700000000004
- type: nauc_map_at_100_std
value: 9.3661
- type: nauc_map_at_100_diff1
value: 21.2726
- type: nauc_map_at_1000_max
value: 36.8531
- type: nauc_map_at_1000_std
value: 12.0615
- type: nauc_map_at_1000_diff1
value: 19.761699999999998
- type: nauc_recall_at_1_max
value: 18.8513
- type: nauc_recall_at_1_std
value: -13.5714
- type: nauc_recall_at_1_diff1
value: 42.4674
- type: nauc_recall_at_3_max
value: 17.405
- type: nauc_recall_at_3_std
value: -11.779399999999999
- type: nauc_recall_at_3_diff1
value: 31.8655
- type: nauc_recall_at_5_max
value: 22.8368
- type: nauc_recall_at_5_std
value: -4.7815
- type: nauc_recall_at_5_diff1
value: 23.4258
- type: nauc_recall_at_10_max
value: 23.6849
- type: nauc_recall_at_10_std
value: 0.1013
- type: nauc_recall_at_10_diff1
value: 18.4986
- type: nauc_recall_at_20_max
value: 27.289400000000004
- type: nauc_recall_at_20_std
value: 7.126200000000001
- type: nauc_recall_at_20_diff1
value: 14.6343
- type: nauc_recall_at_100_max
value: 26.9683
- type: nauc_recall_at_100_std
value: 16.145899999999997
- type: nauc_recall_at_100_diff1
value: 9.705
- type: nauc_recall_at_1000_max
value: 18.4336
- type: nauc_recall_at_1000_std
value: 18.2245
- type: nauc_recall_at_1000_diff1
value: 2.3923
- type: nauc_precision_at_1_max
value: 56.8886
- type: nauc_precision_at_1_std
value: 22.122
- type: nauc_precision_at_1_diff1
value: 33.3152
- type: nauc_precision_at_3_max
value: 47.759299999999996
- type: nauc_precision_at_3_std
value: 23.3157
- type: nauc_precision_at_3_diff1
value: 14.015
- type: nauc_precision_at_5_max
value: 48.8089
- type: nauc_precision_at_5_std
value: 28.7149
- type: nauc_precision_at_5_diff1
value: 6.0146999999999995
- type: nauc_precision_at_10_max
value: 41.620200000000004
- type: nauc_precision_at_10_std
value: 32.275999999999996
- type: nauc_precision_at_10_diff1
value: -0.6839
- type: nauc_precision_at_20_max
value: 39.6123
- type: nauc_precision_at_20_std
value: 37.4586
- type: nauc_precision_at_20_diff1
value: -4.5309
- type: nauc_precision_at_100_max
value: 25.199700000000004
- type: nauc_precision_at_100_std
value: 34.449400000000004
- type: nauc_precision_at_100_diff1
value: -9.290700000000001
- type: nauc_precision_at_1000_max
value: 8.876000000000001
- type: nauc_precision_at_1000_std
value: 20.748
- type: nauc_precision_at_1000_diff1
value: -12.327399999999999
- type: nauc_mrr_at_1_max
value: 56.717600000000004
- type: nauc_mrr_at_1_std
value: 20.7515
- type: nauc_mrr_at_1_diff1
value: 33.3152
- type: nauc_mrr_at_3_max
value: 57.90689999999999
- type: nauc_mrr_at_3_std
value: 25.1369
- type: nauc_mrr_at_3_diff1
value: 31.157
- type: nauc_mrr_at_5_max
value: 59.2569
- type: nauc_mrr_at_5_std
value: 27.054000000000002
- type: nauc_mrr_at_5_diff1
value: 30.840400000000002
- type: nauc_mrr_at_10_max
value: 59.44819999999999
- type: nauc_mrr_at_10_std
value: 27.903299999999998
- type: nauc_mrr_at_10_diff1
value: 31.4959
- type: nauc_mrr_at_20_max
value: 59.7104
- type: nauc_mrr_at_20_std
value: 28.2328
- type: nauc_mrr_at_20_diff1
value: 31.330099999999998
- type: nauc_mrr_at_100_max
value: 59.573600000000006
- type: nauc_mrr_at_100_std
value: 28.044900000000002
- type: nauc_mrr_at_100_diff1
value: 31.305100000000003
- type: nauc_mrr_at_1000_max
value: 59.5608
- type: nauc_mrr_at_1000_std
value: 28.0034
- type: nauc_mrr_at_1000_diff1
value: 31.314199999999996
- type: main_score
value: 35.762
- task:
type: Retrieval
dataset:
name: MTEB NQ (default)
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: ndcg_at_1
value: 39.89
- type: ndcg_at_3
value: 51.121
- type: ndcg_at_5
value: 55.184
- type: ndcg_at_10
value: 58.63699999999999
- type: ndcg_at_20
value: 60.659
- type: ndcg_at_100
value: 62.429
- type: ndcg_at_1000
value: 62.965
- type: map_at_1
value: 35.361
- type: map_at_3
value: 47.071000000000005
- type: map_at_5
value: 49.571
- type: map_at_10
value: 51.178999999999995
- type: map_at_20
value: 51.827999999999996
- type: map_at_100
value: 52.117000000000004
- type: map_at_1000
value: 52.141000000000005
- type: recall_at_1
value: 35.361
- type: recall_at_3
value: 59.40299999999999
- type: recall_at_5
value: 68.721
- type: recall_at_10
value: 78.64
- type: recall_at_20
value: 86.066
- type: recall_at_100
value: 94.865
- type: recall_at_1000
value: 98.79299999999999
- type: precision_at_1
value: 39.89
- type: precision_at_3
value: 23.078000000000003
- type: precision_at_5
value: 16.182
- type: precision_at_10
value: 9.363000000000001
- type: precision_at_20
value: 5.165
- type: precision_at_100
value: 1.15
- type: precision_at_1000
value: 0.12
- type: mrr_at_1
value: 39.8899
- type: mrr_at_3
value: 50.507000000000005
- type: mrr_at_5
value: 52.4899
- type: mrr_at_10
value: 53.761700000000005
- type: mrr_at_20
value: 54.223600000000005
- type: mrr_at_100
value: 54.427800000000005
- type: mrr_at_1000
value: 54.443299999999994
- type: nauc_ndcg_at_1_max
value: 19.524
- type: nauc_ndcg_at_1_std
value: -5.1782
- type: nauc_ndcg_at_1_diff1
value: 35.5793
- type: nauc_ndcg_at_3_max
value: 24.2974
- type: nauc_ndcg_at_3_std
value: -5.2507
- type: nauc_ndcg_at_3_diff1
value: 29.9937
- type: nauc_ndcg_at_5_max
value: 26.502100000000002
- type: nauc_ndcg_at_5_std
value: -3.6393
- type: nauc_ndcg_at_5_diff1
value: 30.0319
- type: nauc_ndcg_at_10_max
value: 26.66
- type: nauc_ndcg_at_10_std
value: -2.3816
- type: nauc_ndcg_at_10_diff1
value: 30.678100000000004
- type: nauc_ndcg_at_20_max
value: 26.9991
- type: nauc_ndcg_at_20_std
value: -1.5933
- type: nauc_ndcg_at_20_diff1
value: 30.824
- type: nauc_ndcg_at_100_max
value: 26.879199999999997
- type: nauc_ndcg_at_100_std
value: -0.8982
- type: nauc_ndcg_at_100_diff1
value: 31.338
- type: nauc_ndcg_at_1000_max
value: 26.2157
- type: nauc_ndcg_at_1000_std
value: -1.6907999999999999
- type: nauc_ndcg_at_1000_diff1
value: 31.428099999999997
- type: nauc_map_at_1_max
value: 17.2868
- type: nauc_map_at_1_std
value: -7.0931
- type: nauc_map_at_1_diff1
value: 35.9826
- type: nauc_map_at_3_max
value: 23.0406
- type: nauc_map_at_3_std
value: -5.973599999999999
- type: nauc_map_at_3_diff1
value: 31.9658
- type: nauc_map_at_5_max
value: 24.3828
- type: nauc_map_at_5_std
value: -4.8592
- type: nauc_map_at_5_diff1
value: 31.9392
- type: nauc_map_at_10_max
value: 24.4782
- type: nauc_map_at_10_std
value: -4.2431
- type: nauc_map_at_10_diff1
value: 32.130399999999995
- type: nauc_map_at_20_max
value: 24.5589
- type: nauc_map_at_20_std
value: -3.9991
- type: nauc_map_at_20_diff1
value: 32.201299999999996
- type: nauc_map_at_100_max
value: 24.5696
- type: nauc_map_at_100_std
value: -3.8531999999999997
- type: nauc_map_at_100_diff1
value: 32.284
- type: nauc_map_at_1000_max
value: 24.546599999999998
- type: nauc_map_at_1000_std
value: -3.8784
- type: nauc_map_at_1000_diff1
value: 32.2879
- type: nauc_recall_at_1_max
value: 17.2868
- type: nauc_recall_at_1_std
value: -7.0931
- type: nauc_recall_at_1_diff1
value: 35.9826
- type: nauc_recall_at_3_max
value: 26.753300000000003
- type: nauc_recall_at_3_std
value: -5.1822
- type: nauc_recall_at_3_diff1
value: 24.4274
- type: nauc_recall_at_5_max
value: 32.697900000000004
- type: nauc_recall_at_5_std
value: -1.4673
- type: nauc_recall_at_5_diff1
value: 23.5655
- type: nauc_recall_at_10_max
value: 35.22
- type: nauc_recall_at_10_std
value: 3.6904
- type: nauc_recall_at_10_diff1
value: 24.5926
- type: nauc_recall_at_20_max
value: 42.0975
- type: nauc_recall_at_20_std
value: 11.574
- type: nauc_recall_at_20_diff1
value: 23.5964
- type: nauc_recall_at_100_max
value: 62.5657
- type: nauc_recall_at_100_std
value: 45.2673
- type: nauc_recall_at_100_diff1
value: 26.6811
- type: nauc_recall_at_1000_max
value: 78.6598
- type: nauc_recall_at_1000_std
value: 70.7318
- type: nauc_recall_at_1000_diff1
value: 29.530099999999997
- type: nauc_precision_at_1_max
value: 19.524
- type: nauc_precision_at_1_std
value: -5.1782
- type: nauc_precision_at_1_diff1
value: 35.5793
- type: nauc_precision_at_3_max
value: 27.230999999999998
- type: nauc_precision_at_3_std
value: 0.13649999999999998
- type: nauc_precision_at_3_diff1
value: 18.817500000000003
- type: nauc_precision_at_5_max
value: 28.734700000000004
- type: nauc_precision_at_5_std
value: 5.1929
- type: nauc_precision_at_5_diff1
value: 14.3006
- type: nauc_precision_at_10_max
value: 25.3071
- type: nauc_precision_at_10_std
value: 11.0166
- type: nauc_precision_at_10_diff1
value: 9.481
- type: nauc_precision_at_20_max
value: 22.5098
- type: nauc_precision_at_20_std
value: 15.695400000000001
- type: nauc_precision_at_20_diff1
value: 4.5483
- type: nauc_precision_at_100_max
value: 15.834999999999999
- type: nauc_precision_at_100_std
value: 21.391099999999998
- type: nauc_precision_at_100_diff1
value: -2.3594
- type: nauc_precision_at_1000_max
value: 7.2892
- type: nauc_precision_at_1000_std
value: 16.1876
- type: nauc_precision_at_1000_diff1
value: -6.698900000000001
- type: nauc_mrr_at_1_max
value: 19.524
- type: nauc_mrr_at_1_std
value: -5.1782
- type: nauc_mrr_at_1_diff1
value: 35.5793
- type: nauc_mrr_at_3_max
value: 23.3415
- type: nauc_mrr_at_3_std
value: -3.7981000000000003
- type: nauc_mrr_at_3_diff1
value: 30.531799999999997
- type: nauc_mrr_at_5_max
value: 24.2743
- type: nauc_mrr_at_5_std
value: -3.1985
- type: nauc_mrr_at_5_diff1
value: 30.7564
- type: nauc_mrr_at_10_max
value: 24.1952
- type: nauc_mrr_at_10_std
value: -2.9042
- type: nauc_mrr_at_10_diff1
value: 31.2183
- type: nauc_mrr_at_20_max
value: 24.2339
- type: nauc_mrr_at_20_std
value: -2.8143000000000002
- type: nauc_mrr_at_20_diff1
value: 31.252999999999997
- type: nauc_mrr_at_100_max
value: 24.1954
- type: nauc_mrr_at_100_std
value: -2.7797
- type: nauc_mrr_at_100_diff1
value: 31.3283
- type: nauc_mrr_at_1000_max
value: 24.1793
- type: nauc_mrr_at_1000_std
value: -2.7987
- type: nauc_mrr_at_1000_diff1
value: 31.330099999999998
- type: main_score
value: 58.63699999999999
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval (default)
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: ndcg_at_1
value: 83.33
- type: ndcg_at_3
value: 87.21900000000001
- type: ndcg_at_5
value: 88.725
- type: ndcg_at_10
value: 89.848
- type: ndcg_at_20
value: 90.426
- type: ndcg_at_100
value: 90.881
- type: ndcg_at_1000
value: 90.947
- type: map_at_1
value: 72.354
- type: map_at_3
value: 83.447
- type: map_at_5
value: 85.3
- type: map_at_10
value: 86.33800000000001
- type: map_at_20
value: 86.752
- type: map_at_100
value: 86.952
- type: map_at_1000
value: 86.965
- type: recall_at_1
value: 72.354
- type: recall_at_3
value: 88.726
- type: recall_at_5
value: 93.07900000000001
- type: recall_at_10
value: 96.392
- type: recall_at_20
value: 98.185
- type: recall_at_100
value: 99.737
- type: recall_at_1000
value: 99.994
- type: precision_at_1
value: 83.33
- type: precision_at_3
value: 38.163000000000004
- type: precision_at_5
value: 25.054
- type: precision_at_10
value: 13.600000000000001
- type: precision_at_20
value: 7.199999999999999
- type: precision_at_100
value: 1.539
- type: precision_at_1000
value: 0.157
- type: mrr_at_1
value: 83.33
- type: mrr_at_3
value: 88.2583
- type: mrr_at_5
value: 88.8703
- type: mrr_at_10
value: 89.1146
- type: mrr_at_20
value: 89.1631
- type: mrr_at_100
value: 89.1825
- type: mrr_at_1000
value: 89.1829
- type: nauc_ndcg_at_1_max
value: 35.1345
- type: nauc_ndcg_at_1_std
value: -51.2196
- type: nauc_ndcg_at_1_diff1
value: 78.4909
- type: nauc_ndcg_at_3_max
value: 32.547399999999996
- type: nauc_ndcg_at_3_std
value: -59.377500000000005
- type: nauc_ndcg_at_3_diff1
value: 76.46300000000001
- type: nauc_ndcg_at_5_max
value: 33.5504
- type: nauc_ndcg_at_5_std
value: -60.3836
- type: nauc_ndcg_at_5_diff1
value: 76.9467
- type: nauc_ndcg_at_10_max
value: 34.1371
- type: nauc_ndcg_at_10_std
value: -59.3526
- type: nauc_ndcg_at_10_diff1
value: 77.1373
- type: nauc_ndcg_at_20_max
value: 34.5537
- type: nauc_ndcg_at_20_std
value: -57.8514
- type: nauc_ndcg_at_20_diff1
value: 77.2059
- type: nauc_ndcg_at_100_max
value: 34.8817
- type: nauc_ndcg_at_100_std
value: -55.6778
- type: nauc_ndcg_at_100_diff1
value: 77.08080000000001
- type: nauc_ndcg_at_1000_max
value: 35.0003
- type: nauc_ndcg_at_1000_std
value: -55.292699999999996
- type: nauc_ndcg_at_1000_diff1
value: 77.078
- type: nauc_map_at_1_max
value: 24.889400000000002
- type: nauc_map_at_1_std
value: -50.5244
- type: nauc_map_at_1_diff1
value: 80.9461
- type: nauc_map_at_3_max
value: 30.461899999999996
- type: nauc_map_at_3_std
value: -61.017999999999994
- type: nauc_map_at_3_diff1
value: 77.8986
- type: nauc_map_at_5_max
value: 31.995800000000003
- type: nauc_map_at_5_std
value: -61.0579
- type: nauc_map_at_5_diff1
value: 77.6265
- type: nauc_map_at_10_max
value: 32.9371
- type: nauc_map_at_10_std
value: -59.662099999999995
- type: nauc_map_at_10_diff1
value: 77.3695
- type: nauc_map_at_20_max
value: 33.3268
- type: nauc_map_at_20_std
value: -58.4642
- type: nauc_map_at_20_diff1
value: 77.2616
- type: nauc_map_at_100_max
value: 33.481300000000005
- type: nauc_map_at_100_std
value: -57.51349999999999
- type: nauc_map_at_100_diff1
value: 77.1762
- type: nauc_map_at_1000_max
value: 33.51
- type: nauc_map_at_1000_std
value: -57.4361
- type: nauc_map_at_1000_diff1
value: 77.173
- type: nauc_recall_at_1_max
value: 24.889400000000002
- type: nauc_recall_at_1_std
value: -50.5244
- type: nauc_recall_at_1_diff1
value: 80.9461
- type: nauc_recall_at_3_max
value: 26.490399999999998
- type: nauc_recall_at_3_std
value: -70.6466
- type: nauc_recall_at_3_diff1
value: 74.3857
- type: nauc_recall_at_5_max
value: 28.3327
- type: nauc_recall_at_5_std
value: -77.8455
- type: nauc_recall_at_5_diff1
value: 73.348
- type: nauc_recall_at_10_max
value: 30.476999999999997
- type: nauc_recall_at_10_std
value: -84.933
- type: nauc_recall_at_10_diff1
value: 73.7724
- type: nauc_recall_at_20_max
value: 31.954700000000003
- type: nauc_recall_at_20_std
value: -88.4871
- type: nauc_recall_at_20_diff1
value: 75.3748
- type: nauc_recall_at_100_max
value: 26.290799999999997
- type: nauc_recall_at_100_std
value: -86.7429
- type: nauc_recall_at_100_diff1
value: 71.1186
- type: nauc_recall_at_1000_max
value: -46.823100000000004
- type: nauc_recall_at_1000_std
value: -34.474
- type: nauc_recall_at_1000_diff1
value: 43.9622
- type: nauc_precision_at_1_max
value: 35.1345
- type: nauc_precision_at_1_std
value: -51.2196
- type: nauc_precision_at_1_diff1
value: 78.4909
- type: nauc_precision_at_3_max
value: 5.0033
- type: nauc_precision_at_3_std
value: 6.1183000000000005
- type: nauc_precision_at_3_diff1
value: -23.093
- type: nauc_precision_at_5_max
value: 0.8462000000000001
- type: nauc_precision_at_5_std
value: 19.284599999999998
- type: nauc_precision_at_5_diff1
value: -34.740700000000004
- type: nauc_precision_at_10_max
value: -2.476
- type: nauc_precision_at_10_std
value: 30.449900000000003
- type: nauc_precision_at_10_diff1
value: -41.373
- type: nauc_precision_at_20_max
value: -4.067
- type: nauc_precision_at_20_std
value: 37.2089
- type: nauc_precision_at_20_diff1
value: -43.4846
- type: nauc_precision_at_100_max
value: -5.4187
- type: nauc_precision_at_100_std
value: 44.7639
- type: nauc_precision_at_100_diff1
value: -44.9325
- type: nauc_precision_at_1000_max
value: -5.309
- type: nauc_precision_at_1000_std
value: 46.4094
- type: nauc_precision_at_1000_diff1
value: -45.0127
- type: nauc_mrr_at_1_max
value: 35.1345
- type: nauc_mrr_at_1_std
value: -51.2196
- type: nauc_mrr_at_1_diff1
value: 78.4909
- type: nauc_mrr_at_3_max
value: 35.5355
- type: nauc_mrr_at_3_std
value: -54.636399999999995
- type: nauc_mrr_at_3_diff1
value: 77.537
- type: nauc_mrr_at_5_max
value: 35.8853
- type: nauc_mrr_at_5_std
value: -54.1871
- type: nauc_mrr_at_5_diff1
value: 77.6977
- type: nauc_mrr_at_10_max
value: 35.8488
- type: nauc_mrr_at_10_std
value: -53.825599999999994
- type: nauc_mrr_at_10_diff1
value: 77.7459
- type: nauc_mrr_at_20_max
value: 35.7887
- type: nauc_mrr_at_20_std
value: -53.778800000000004
- type: nauc_mrr_at_20_diff1
value: 77.7606
- type: nauc_mrr_at_100_max
value: 35.7656
- type: nauc_mrr_at_100_std
value: -53.74640000000001
- type: nauc_mrr_at_100_diff1
value: 77.7597
- type: nauc_mrr_at_1000_max
value: 35.7642
- type: nauc_mrr_at_1000_std
value: -53.744899999999994
- type: nauc_mrr_at_1000_diff1
value: 77.7598
- type: main_score
value: 89.848
- task:
type: Clustering
dataset:
name: MTEB RedditClustering (default)
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 58.794599999999996
- type: v_measure_std
value: 3.7606
- type: main_score
value: 58.794599999999996
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P (default)
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 65.4871
- type: v_measure_std
value: 13.1853
- type: main_score
value: 65.4871
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS (default)
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: ndcg_at_1
value: 26.0
- type: ndcg_at_3
value: 21.369
- type: ndcg_at_5
value: 18.865000000000002
- type: ndcg_at_10
value: 22.847
- type: ndcg_at_20
value: 25.817
- type: ndcg_at_100
value: 31.824
- type: ndcg_at_1000
value: 37.997
- type: map_at_1
value: 5.268
- type: map_at_3
value: 9.604
- type: map_at_5
value: 11.797
- type: map_at_10
value: 13.891
- type: map_at_20
value: 15.062000000000001
- type: map_at_100
value: 16.323
- type: map_at_1000
value: 16.71
- type: recall_at_1
value: 5.268
- type: recall_at_3
value: 12.203
- type: recall_at_5
value: 16.963
- type: recall_at_10
value: 24.29
- type: recall_at_20
value: 31.267
- type: recall_at_100
value: 50.727
- type: recall_at_1000
value: 80.67800000000001
- type: precision_at_1
value: 26.0
- type: precision_at_3
value: 20.067
- type: precision_at_5
value: 16.74
- type: precision_at_10
value: 11.97
- type: precision_at_20
value: 7.7
- type: precision_at_100
value: 2.4979999999999998
- type: precision_at_1000
value: 0.398
- type: mrr_at_1
value: 26.0
- type: mrr_at_3
value: 34.2833
- type: mrr_at_5
value: 35.9333
- type: mrr_at_10
value: 37.5791
- type: mrr_at_20
value: 38.1301
- type: mrr_at_100
value: 38.556200000000004
- type: mrr_at_1000
value: 38.606899999999996
- type: nauc_ndcg_at_1_max
value: 21.9327
- type: nauc_ndcg_at_1_std
value: 8.761800000000001
- type: nauc_ndcg_at_1_diff1
value: 22.0695
- type: nauc_ndcg_at_3_max
value: 27.475300000000004
- type: nauc_ndcg_at_3_std
value: 11.126
- type: nauc_ndcg_at_3_diff1
value: 17.1458
- type: nauc_ndcg_at_5_max
value: 28.116200000000003
- type: nauc_ndcg_at_5_std
value: 13.919799999999999
- type: nauc_ndcg_at_5_diff1
value: 15.894400000000001
- type: nauc_ndcg_at_10_max
value: 30.3757
- type: nauc_ndcg_at_10_std
value: 17.2527
- type: nauc_ndcg_at_10_diff1
value: 14.1508
- type: nauc_ndcg_at_20_max
value: 31.451600000000003
- type: nauc_ndcg_at_20_std
value: 19.9009
- type: nauc_ndcg_at_20_diff1
value: 13.5029
- type: nauc_ndcg_at_100_max
value: 33.9342
- type: nauc_ndcg_at_100_std
value: 25.7798
- type: nauc_ndcg_at_100_diff1
value: 14.335500000000001
- type: nauc_ndcg_at_1000_max
value: 33.5581
- type: nauc_ndcg_at_1000_std
value: 25.082300000000004
- type: nauc_ndcg_at_1000_diff1
value: 14.223099999999999
- type: nauc_map_at_1_max
value: 22.0412
- type: nauc_map_at_1_std
value: 8.932
- type: nauc_map_at_1_diff1
value: 22.2384
- type: nauc_map_at_3_max
value: 26.761400000000002
- type: nauc_map_at_3_std
value: 9.1566
- type: nauc_map_at_3_diff1
value: 17.2375
- type: nauc_map_at_5_max
value: 27.7594
- type: nauc_map_at_5_std
value: 12.6506
- type: nauc_map_at_5_diff1
value: 15.739600000000001
- type: nauc_map_at_10_max
value: 29.6498
- type: nauc_map_at_10_std
value: 15.2716
- type: nauc_map_at_10_diff1
value: 14.638000000000002
- type: nauc_map_at_20_max
value: 30.1827
- type: nauc_map_at_20_std
value: 16.7742
- type: nauc_map_at_20_diff1
value: 14.0863
- type: nauc_map_at_100_max
value: 31.3787
- type: nauc_map_at_100_std
value: 19.3168
- type: nauc_map_at_100_diff1
value: 14.3807
- type: nauc_map_at_1000_max
value: 31.3749
- type: nauc_map_at_1000_std
value: 19.4008
- type: nauc_map_at_1000_diff1
value: 14.3151
- type: nauc_recall_at_1_max
value: 22.0412
- type: nauc_recall_at_1_std
value: 8.932
- type: nauc_recall_at_1_diff1
value: 22.2384
- type: nauc_recall_at_3_max
value: 29.4548
- type: nauc_recall_at_3_std
value: 12.4116
- type: nauc_recall_at_3_diff1
value: 14.9834
- type: nauc_recall_at_5_max
value: 28.7014
- type: nauc_recall_at_5_std
value: 16.1355
- type: nauc_recall_at_5_diff1
value: 12.4951
- type: nauc_recall_at_10_max
value: 31.2425
- type: nauc_recall_at_10_std
value: 21.3563
- type: nauc_recall_at_10_diff1
value: 9.0205
- type: nauc_recall_at_20_max
value: 31.478
- type: nauc_recall_at_20_std
value: 25.4813
- type: nauc_recall_at_20_diff1
value: 7.3628
- type: nauc_recall_at_100_max
value: 33.596199999999996
- type: nauc_recall_at_100_std
value: 37.5122
- type: nauc_recall_at_100_diff1
value: 8.3252
- type: nauc_recall_at_1000_max
value: 30.4869
- type: nauc_recall_at_1000_std
value: 38.8306
- type: nauc_recall_at_1000_diff1
value: 4.6079
- type: nauc_precision_at_1_max
value: 21.9327
- type: nauc_precision_at_1_std
value: 8.761800000000001
- type: nauc_precision_at_1_diff1
value: 22.0695
- type: nauc_precision_at_3_max
value: 29.608600000000003
- type: nauc_precision_at_3_std
value: 12.3347
- type: nauc_precision_at_3_diff1
value: 14.810200000000002
- type: nauc_precision_at_5_max
value: 28.8061
- type: nauc_precision_at_5_std
value: 16.0502
- type: nauc_precision_at_5_diff1
value: 12.251900000000001
- type: nauc_precision_at_10_max
value: 31.3513
- type: nauc_precision_at_10_std
value: 21.226300000000002
- type: nauc_precision_at_10_diff1
value: 8.772499999999999
- type: nauc_precision_at_20_max
value: 31.692999999999998
- type: nauc_precision_at_20_std
value: 25.4628
- type: nauc_precision_at_20_diff1
value: 7.1315
- type: nauc_precision_at_100_max
value: 33.3115
- type: nauc_precision_at_100_std
value: 36.888799999999996
- type: nauc_precision_at_100_diff1
value: 7.820100000000001
- type: nauc_precision_at_1000_max
value: 29.1927
- type: nauc_precision_at_1000_std
value: 36.2523
- type: nauc_precision_at_1000_diff1
value: 3.5833999999999997
- type: nauc_mrr_at_1_max
value: 21.9327
- type: nauc_mrr_at_1_std
value: 8.761800000000001
- type: nauc_mrr_at_1_diff1
value: 22.0695
- type: nauc_mrr_at_3_max
value: 26.1187
- type: nauc_mrr_at_3_std
value: 12.5639
- type: nauc_mrr_at_3_diff1
value: 19.642599999999998
- type: nauc_mrr_at_5_max
value: 25.8562
- type: nauc_mrr_at_5_std
value: 12.495000000000001
- type: nauc_mrr_at_5_diff1
value: 19.3465
- type: nauc_mrr_at_10_max
value: 26.218200000000003
- type: nauc_mrr_at_10_std
value: 13.1243
- type: nauc_mrr_at_10_diff1
value: 18.9542
- type: nauc_mrr_at_20_max
value: 26.422099999999997
- type: nauc_mrr_at_20_std
value: 13.4214
- type: nauc_mrr_at_20_diff1
value: 19.0105
- type: nauc_mrr_at_100_max
value: 26.338
- type: nauc_mrr_at_100_std
value: 13.4264
- type: nauc_mrr_at_100_diff1
value: 18.9729
- type: nauc_mrr_at_1000_max
value: 26.3327
- type: nauc_mrr_at_1000_std
value: 13.3904
- type: nauc_mrr_at_1000_diff1
value: 19.004199999999997
- type: main_score
value: 22.847
- task:
type: STS
dataset:
name: MTEB SICK-R (default)
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: pearson
value: 81.13050000000001
- type: spearman
value: 79.01310000000001
- type: cosine_pearson
value: 81.13050000000001
- type: cosine_spearman
value: 79.01310000000001
- type: manhattan_pearson
value: 79.03999999999999
- type: manhattan_spearman
value: 79.1744
- type: euclidean_pearson
value: 79.0977
- type: euclidean_spearman
value: 79.2268
- type: main_score
value: 79.01310000000001
- task:
type: STS
dataset:
name: MTEB STS12 (default)
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: pearson
value: 86.9675
- type: spearman
value: 80.3531
- type: cosine_pearson
value: 86.9675
- type: cosine_spearman
value: 80.3531
- type: manhattan_pearson
value: 82.2315
- type: manhattan_spearman
value: 79.7004
- type: euclidean_pearson
value: 82.3305
- type: euclidean_spearman
value: 79.8601
- type: main_score
value: 80.3531
- task:
type: STS
dataset:
name: MTEB STS13 (default)
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: pearson
value: 85.6041
- type: spearman
value: 86.0453
- type: cosine_pearson
value: 85.6041
- type: cosine_spearman
value: 86.0453
- type: manhattan_pearson
value: 85.2548
- type: manhattan_spearman
value: 85.8908
- type: euclidean_pearson
value: 85.253
- type: euclidean_spearman
value: 85.9181
- type: main_score
value: 86.0453
- task:
type: STS
dataset:
name: MTEB STS14 (default)
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: pearson
value: 82.8792
- type: spearman
value: 82.9681
- type: cosine_pearson
value: 82.8792
- type: cosine_spearman
value: 82.9681
- type: manhattan_pearson
value: 81.4789
- type: manhattan_spearman
value: 82.4797
- type: euclidean_pearson
value: 81.4674
- type: euclidean_spearman
value: 82.4547
- type: main_score
value: 82.9681
- task:
type: STS
dataset:
name: MTEB STS15 (default)
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: pearson
value: 87.5356
- type: spearman
value: 88.06540000000001
- type: cosine_pearson
value: 87.5356
- type: cosine_spearman
value: 88.06540000000001
- type: manhattan_pearson
value: 87.10759999999999
- type: manhattan_spearman
value: 87.75309999999999
- type: euclidean_pearson
value: 87.1489
- type: euclidean_spearman
value: 87.7857
- type: main_score
value: 88.06540000000001
- task:
type: STS
dataset:
name: MTEB STS16 (default)
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: pearson
value: 85.0208
- type: spearman
value: 86.0136
- type: cosine_pearson
value: 85.0208
- type: cosine_spearman
value: 86.0136
- type: manhattan_pearson
value: 85.22
- type: manhattan_spearman
value: 86.1101
- type: euclidean_pearson
value: 85.2043
- type: euclidean_spearman
value: 86.113
- type: main_score
value: 86.0136
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: pearson
value: 89.4083
- type: spearman
value: 88.9498
- type: cosine_pearson
value: 89.4083
- type: cosine_spearman
value: 88.9498
- type: manhattan_pearson
value: 89.46539999999999
- type: manhattan_spearman
value: 88.8754
- type: euclidean_pearson
value: 89.4326
- type: euclidean_spearman
value: 88.8148
- type: main_score
value: 88.9498
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: pearson
value: 66.60770000000001
- type: spearman
value: 67.1515
- type: cosine_pearson
value: 66.60770000000001
- type: cosine_spearman
value: 67.1515
- type: manhattan_pearson
value: 66.5604
- type: manhattan_spearman
value: 66.4621
- type: euclidean_pearson
value: 66.4628
- type: euclidean_spearman
value: 66.2979
- type: main_score
value: 67.1515
- task:
type: STS
dataset:
name: MTEB STSBenchmark (default)
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: pearson
value: 86.86399999999999
- type: spearman
value: 87.7139
- type: cosine_pearson
value: 86.86399999999999
- type: cosine_spearman
value: 87.7139
- type: manhattan_pearson
value: 86.6602
- type: manhattan_spearman
value: 87.2606
- type: euclidean_pearson
value: 86.5924
- type: euclidean_spearman
value: 87.241
- type: main_score
value: 87.7139
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR (default)
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 84.37360000000001
- type: mrr
value: 95.6275
- type: nAUC_map_max
value: 52.991699999999994
- type: nAUC_map_std
value: 66.8168
- type: nAUC_map_diff1
value: -3.2009999999999996
- type: nAUC_mrr_max
value: 85.7492
- type: nAUC_mrr_std
value: 77.3543
- type: nAUC_mrr_diff1
value: 38.014700000000005
- type: main_score
value: 84.37360000000001
- task:
type: Retrieval
dataset:
name: MTEB SciFact (default)
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: ndcg_at_1
value: 60.667
- type: ndcg_at_3
value: 68.209
- type: ndcg_at_5
value: 71.409
- type: ndcg_at_10
value: 73.476
- type: ndcg_at_20
value: 74.339
- type: ndcg_at_100
value: 75.57000000000001
- type: ndcg_at_1000
value: 75.955
- type: map_at_1
value: 58.178
- type: map_at_3
value: 65.71900000000001
- type: map_at_5
value: 67.73
- type: map_at_10
value: 68.821
- type: map_at_20
value: 69.07600000000001
- type: map_at_100
value: 69.245
- type: map_at_1000
value: 69.258
- type: recall_at_1
value: 58.178
- type: recall_at_3
value: 73.172
- type: recall_at_5
value: 81.0
- type: recall_at_10
value: 86.867
- type: recall_at_20
value: 90.267
- type: recall_at_100
value: 96.933
- type: recall_at_1000
value: 100.0
- type: precision_at_1
value: 60.667
- type: precision_at_3
value: 26.444000000000003
- type: precision_at_5
value: 18.0
- type: precision_at_10
value: 9.866999999999999
- type: precision_at_20
value: 5.133
- type: precision_at_100
value: 1.097
- type: precision_at_1000
value: 0.11299999999999999
- type: mrr_at_1
value: 60.6667
- type: mrr_at_3
value: 67.1667
- type: mrr_at_5
value: 68.85
- type: mrr_at_10
value: 69.4799
- type: mrr_at_20
value: 69.6658
- type: mrr_at_100
value: 69.8134
- type: mrr_at_1000
value: 69.8257
- type: nauc_ndcg_at_1_max
value: 49.3608
- type: nauc_ndcg_at_1_std
value: 12.742400000000002
- type: nauc_ndcg_at_1_diff1
value: 74.5012
- type: nauc_ndcg_at_3_max
value: 49.524499999999996
- type: nauc_ndcg_at_3_std
value: 7.7241
- type: nauc_ndcg_at_3_diff1
value: 72.0127
- type: nauc_ndcg_at_5_max
value: 51.897099999999995
- type: nauc_ndcg_at_5_std
value: 12.8641
- type: nauc_ndcg_at_5_diff1
value: 69.7789
- type: nauc_ndcg_at_10_max
value: 55.1141
- type: nauc_ndcg_at_10_std
value: 17.136499999999998
- type: nauc_ndcg_at_10_diff1
value: 68.8711
- type: nauc_ndcg_at_20_max
value: 54.74719999999999
- type: nauc_ndcg_at_20_std
value: 17.0485
- type: nauc_ndcg_at_20_diff1
value: 69.4701
- type: nauc_ndcg_at_100_max
value: 53.7619
- type: nauc_ndcg_at_100_std
value: 15.335299999999998
- type: nauc_ndcg_at_100_diff1
value: 70.34479999999999
- type: nauc_ndcg_at_1000_max
value: 53.4516
- type: nauc_ndcg_at_1000_std
value: 14.7843
- type: nauc_ndcg_at_1000_diff1
value: 70.6041
- type: nauc_map_at_1_max
value: 44.9654
- type: nauc_map_at_1_std
value: 5.9821
- type: nauc_map_at_1_diff1
value: 76.2581
- type: nauc_map_at_3_max
value: 47.515299999999996
- type: nauc_map_at_3_std
value: 6.2703
- type: nauc_map_at_3_diff1
value: 73.5279
- type: nauc_map_at_5_max
value: 49.805899999999994
- type: nauc_map_at_5_std
value: 10.1001
- type: nauc_map_at_5_diff1
value: 72.1812
- type: nauc_map_at_10_max
value: 51.9276
- type: nauc_map_at_10_std
value: 12.698200000000002
- type: nauc_map_at_10_diff1
value: 71.6343
- type: nauc_map_at_20_max
value: 51.8856
- type: nauc_map_at_20_std
value: 12.814800000000002
- type: nauc_map_at_20_diff1
value: 71.78179999999999
- type: nauc_map_at_100_max
value: 51.7504
- type: nauc_map_at_100_std
value: 12.5353
- type: nauc_map_at_100_diff1
value: 71.8854
- type: nauc_map_at_1000_max
value: 51.739900000000006
- type: nauc_map_at_1000_std
value: 12.519
- type: nauc_map_at_1000_diff1
value: 71.8964
- type: nauc_recall_at_1_max
value: 44.9654
- type: nauc_recall_at_1_std
value: 5.9821
- type: nauc_recall_at_1_diff1
value: 76.2581
- type: nauc_recall_at_3_max
value: 47.9306
- type: nauc_recall_at_3_std
value: 3.5374000000000003
- type: nauc_recall_at_3_diff1
value: 68.4552
- type: nauc_recall_at_5_max
value: 54.374
- type: nauc_recall_at_5_std
value: 17.646700000000003
- type: nauc_recall_at_5_diff1
value: 60.5644
- type: nauc_recall_at_10_max
value: 69.6484
- type: nauc_recall_at_10_std
value: 38.3671
- type: nauc_recall_at_10_diff1
value: 54.39580000000001
- type: nauc_recall_at_20_max
value: 70.0061
- type: nauc_recall_at_20_std
value: 42.403999999999996
- type: nauc_recall_at_20_diff1
value: 55.3831
- type: nauc_recall_at_100_max
value: 69.02629999999999
- type: nauc_recall_at_100_std
value: 43.850699999999996
- type: nauc_recall_at_100_diff1
value: 57.837
- type: nauc_recall_at_1000_max
value: .nan
- type: nauc_recall_at_1000_std
value: .nan
- type: nauc_recall_at_1000_diff1
value: .nan
- type: nauc_precision_at_1_max
value: 49.3608
- type: nauc_precision_at_1_std
value: 12.742400000000002
- type: nauc_precision_at_1_diff1
value: 74.5012
- type: nauc_precision_at_3_max
value: 45.2627
- type: nauc_precision_at_3_std
value: 15.5113
- type: nauc_precision_at_3_diff1
value: 44.5108
- type: nauc_precision_at_5_max
value: 48.4003
- type: nauc_precision_at_5_std
value: 35.3791
- type: nauc_precision_at_5_diff1
value: 19.7518
- type: nauc_precision_at_10_max
value: 46.688
- type: nauc_precision_at_10_std
value: 47.9876
- type: nauc_precision_at_10_diff1
value: 0.1083
- type: nauc_precision_at_20_max
value: 41.281400000000005
- type: nauc_precision_at_20_std
value: 49.0662
- type: nauc_precision_at_20_diff1
value: -6.2035
- type: nauc_precision_at_100_max
value: 30.0167
- type: nauc_precision_at_100_std
value: 47.2561
- type: nauc_precision_at_100_diff1
value: -22.8584
- type: nauc_precision_at_1000_max
value: 23.724999999999998
- type: nauc_precision_at_1000_std
value: 45.342
- type: nauc_precision_at_1000_diff1
value: -33.29
- type: nauc_mrr_at_1_max
value: 49.3608
- type: nauc_mrr_at_1_std
value: 12.742400000000002
- type: nauc_mrr_at_1_diff1
value: 74.5012
- type: nauc_mrr_at_3_max
value: 51.1718
- type: nauc_mrr_at_3_std
value: 11.739700000000001
- type: nauc_mrr_at_3_diff1
value: 71.5992
- type: nauc_mrr_at_5_max
value: 52.2421
- type: nauc_mrr_at_5_std
value: 14.127
- type: nauc_mrr_at_5_diff1
value: 70.57
- type: nauc_mrr_at_10_max
value: 52.5587
- type: nauc_mrr_at_10_std
value: 14.5207
- type: nauc_mrr_at_10_diff1
value: 70.55709999999999
- type: nauc_mrr_at_20_max
value: 52.3699
- type: nauc_mrr_at_20_std
value: 14.310300000000002
- type: nauc_mrr_at_20_diff1
value: 70.6993
- type: nauc_mrr_at_100_max
value: 52.2734
- type: nauc_mrr_at_100_std
value: 14.0848
- type: nauc_mrr_at_100_diff1
value: 70.8146
- type: nauc_mrr_at_1000_max
value: 52.2622
- type: nauc_mrr_at_1000_std
value: 14.0715
- type: nauc_mrr_at_1000_diff1
value: 70.8239
- type: main_score
value: 73.476
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions (default)
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: similarity_accuracy
value: 99.87819999999999
- type: similarity_accuracy_threshold
value: 74.8
- type: similarity_f1
value: 93.79729999999999
- type: similarity_f1_threshold
value: 74.6812
- type: similarity_precision
value: 94.6083
- type: similarity_recall
value: 93.0
- type: similarity_ap
value: 97.1971
- type: cosine_accuracy
value: 99.87819999999999
- type: cosine_accuracy_threshold
value: 74.8
- type: cosine_f1
value: 93.79729999999999
- type: cosine_f1_threshold
value: 74.6812
- type: cosine_precision
value: 94.6083
- type: cosine_recall
value: 93.0
- type: cosine_ap
value: 97.1971
- type: manhattan_accuracy
value: 99.8792
- type: manhattan_accuracy_threshold
value: 47567.8925
- type: manhattan_f1
value: 93.8508
- type: manhattan_f1_threshold
value: 47567.8925
- type: manhattan_precision
value: 94.6138
- type: manhattan_recall
value: 93.10000000000001
- type: manhattan_ap
value: 97.2177
- type: euclidean_accuracy
value: 99.8812
- type: euclidean_accuracy_threshold
value: 2164.0619
- type: euclidean_f1
value: 93.9759
- type: euclidean_f1_threshold
value: 2164.0619
- type: euclidean_precision
value: 94.35480000000001
- type: euclidean_recall
value: 93.60000000000001
- type: euclidean_ap
value: 97.2412
- type: dot_accuracy
value: 99.8446
- type: dot_accuracy_threshold
value: 68470.2454
- type: dot_f1
value: 91.9939
- type: dot_f1_threshold
value: 68470.2454
- type: dot_precision
value: 93.8606
- type: dot_recall
value: 90.2
- type: dot_ap
value: 96.36829999999999
- type: max_accuracy
value: 99.8812
- type: max_f1
value: 93.9759
- type: max_precision
value: 94.6138
- type: max_recall
value: 93.60000000000001
- type: max_ap
value: 97.2412
- type: main_score
value: 97.2412
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering (default)
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 70.04010000000001
- type: v_measure_std
value: 3.9558999999999997
- type: main_score
value: 70.04010000000001
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P (default)
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 42.4207
- type: v_measure_std
value: 1.3677
- type: main_score
value: 42.4207
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions (default)
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.7026
- type: mrr
value: 53.5668
- type: nAUC_map_max
value: 12.1758
- type: nAUC_map_std
value: 6.7148
- type: nAUC_map_diff1
value: 39.881499999999996
- type: nAUC_mrr_max
value: 13.0771
- type: nAUC_mrr_std
value: 7.7001
- type: nAUC_mrr_diff1
value: 39.6391
- type: main_score
value: 52.7026
- task:
type: Summarization
dataset:
name: MTEB SummEval (default)
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: pearson
value: 31.346400000000003
- type: spearman
value: 31.5967
- type: cosine_spearman
value: 31.5967
- type: cosine_pearson
value: 31.346400000000003
- type: dot_spearman
value: 28.5388
- type: dot_pearson
value: 31.005300000000002
- type: main_score
value: 31.5967
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID (default)
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: ndcg_at_1
value: 87.0
- type: ndcg_at_3
value: 84.693
- type: ndcg_at_5
value: 82.211
- type: ndcg_at_10
value: 80.55
- type: ndcg_at_20
value: 77.766
- type: ndcg_at_100
value: 62.881
- type: ndcg_at_1000
value: 56.510000000000005
- type: map_at_1
value: 0.251
- type: map_at_3
value: 0.7000000000000001
- type: map_at_5
value: 1.124
- type: map_at_10
value: 2.114
- type: map_at_20
value: 3.837
- type: map_at_100
value: 12.903999999999998
- type: map_at_1000
value: 31.184
- type: recall_at_1
value: 0.251
- type: recall_at_3
value: 0.72
- type: recall_at_5
value: 1.179
- type: recall_at_10
value: 2.271
- type: recall_at_20
value: 4.242
- type: recall_at_100
value: 16.012999999999998
- type: recall_at_1000
value: 53.556000000000004
- type: precision_at_1
value: 92.0
- type: precision_at_3
value: 88.667
- type: precision_at_5
value: 86.8
- type: precision_at_10
value: 85.8
- type: precision_at_20
value: 82.39999999999999
- type: precision_at_100
value: 64.8
- type: precision_at_1000
value: 24.832
- type: mrr_at_1
value: 92.0
- type: mrr_at_3
value: 95.0
- type: mrr_at_5
value: 95.0
- type: mrr_at_10
value: 95.0
- type: mrr_at_20
value: 95.0
- type: mrr_at_100
value: 95.0
- type: mrr_at_1000
value: 95.0
- type: nauc_ndcg_at_1_max
value: 73.7596
- type: nauc_ndcg_at_1_std
value: 52.21130000000001
- type: nauc_ndcg_at_1_diff1
value: -8.4225
- type: nauc_ndcg_at_3_max
value: 68.513
- type: nauc_ndcg_at_3_std
value: 61.9698
- type: nauc_ndcg_at_3_diff1
value: -13.079099999999999
- type: nauc_ndcg_at_5_max
value: 60.7482
- type: nauc_ndcg_at_5_std
value: 66.56830000000001
- type: nauc_ndcg_at_5_diff1
value: -12.947500000000002
- type: nauc_ndcg_at_10_max
value: 57.4673
- type: nauc_ndcg_at_10_std
value: 65.25999999999999
- type: nauc_ndcg_at_10_diff1
value: -14.4235
- type: nauc_ndcg_at_20_max
value: 61.1214
- type: nauc_ndcg_at_20_std
value: 73.60640000000001
- type: nauc_ndcg_at_20_diff1
value: -18.1836
- type: nauc_ndcg_at_100_max
value: 55.3917
- type: nauc_ndcg_at_100_std
value: 80.9228
- type: nauc_ndcg_at_100_diff1
value: -13.6584
- type: nauc_ndcg_at_1000_max
value: 61.6035
- type: nauc_ndcg_at_1000_std
value: 77.73299999999999
- type: nauc_ndcg_at_1000_diff1
value: 9.456199999999999
- type: nauc_map_at_1_max
value: 3.0159
- type: nauc_map_at_1_std
value: -6.6826
- type: nauc_map_at_1_diff1
value: 19.3295
- type: nauc_map_at_3_max
value: 11.3326
- type: nauc_map_at_3_std
value: 0.2297
- type: nauc_map_at_3_diff1
value: 18.4889
- type: nauc_map_at_5_max
value: 12.8623
- type: nauc_map_at_5_std
value: 3.1086
- type: nauc_map_at_5_diff1
value: 15.2538
- type: nauc_map_at_10_max
value: 15.9145
- type: nauc_map_at_10_std
value: 5.8626
- type: nauc_map_at_10_diff1
value: 11.5455
- type: nauc_map_at_20_max
value: 24.6148
- type: nauc_map_at_20_std
value: 17.161199999999997
- type: nauc_map_at_20_diff1
value: 7.6256
- type: nauc_map_at_100_max
value: 42.070299999999996
- type: nauc_map_at_100_std
value: 48.926700000000004
- type: nauc_map_at_100_diff1
value: 0.16
- type: nauc_map_at_1000_max
value: 63.9887
- type: nauc_map_at_1000_std
value: 81.2657
- type: nauc_map_at_1000_diff1
value: 4.1088
- type: nauc_recall_at_1_max
value: 3.0159
- type: nauc_recall_at_1_std
value: -6.6826
- type: nauc_recall_at_1_diff1
value: 19.3295
- type: nauc_recall_at_3_max
value: 7.7778
- type: nauc_recall_at_3_std
value: -3.3724
- type: nauc_recall_at_3_diff1
value: 17.9181
- type: nauc_recall_at_5_max
value: 6.716900000000001
- type: nauc_recall_at_5_std
value: -2.6891000000000003
- type: nauc_recall_at_5_diff1
value: 16.3817
- type: nauc_recall_at_10_max
value: 7.7518
- type: nauc_recall_at_10_std
value: -1.9855
- type: nauc_recall_at_10_diff1
value: 13.4496
- type: nauc_recall_at_20_max
value: 14.4895
- type: nauc_recall_at_20_std
value: 7.2935
- type: nauc_recall_at_20_diff1
value: 11.2986
- type: nauc_recall_at_100_max
value: 29.8636
- type: nauc_recall_at_100_std
value: 33.5546
- type: nauc_recall_at_100_diff1
value: 7.0793
- type: nauc_recall_at_1000_max
value: 57.184000000000005
- type: nauc_recall_at_1000_std
value: 65.3208
- type: nauc_recall_at_1000_diff1
value: 15.7381
- type: nauc_precision_at_1_max
value: 93.4641
- type: nauc_precision_at_1_std
value: 80.6839
- type: nauc_precision_at_1_diff1
value: 21.592
- type: nauc_precision_at_3_max
value: 87.6596
- type: nauc_precision_at_3_std
value: 71.28370000000001
- type: nauc_precision_at_3_diff1
value: -0.5263
- type: nauc_precision_at_5_max
value: 69.3194
- type: nauc_precision_at_5_std
value: 67.4507
- type: nauc_precision_at_5_diff1
value: 5.8362
- type: nauc_precision_at_10_max
value: 62.393299999999996
- type: nauc_precision_at_10_std
value: 62.443599999999996
- type: nauc_precision_at_10_diff1
value: -5.3395
- type: nauc_precision_at_20_max
value: 63.4842
- type: nauc_precision_at_20_std
value: 68.95599999999999
- type: nauc_precision_at_20_diff1
value: -13.494100000000001
- type: nauc_precision_at_100_max
value: 59.24549999999999
- type: nauc_precision_at_100_std
value: 81.3779
- type: nauc_precision_at_100_diff1
value: -11.0792
- type: nauc_precision_at_1000_max
value: 44.8354
- type: nauc_precision_at_1000_std
value: 55.232099999999996
- type: nauc_precision_at_1000_diff1
value: -1.4931
- type: nauc_mrr_at_1_max
value: 93.4641
- type: nauc_mrr_at_1_std
value: 80.6839
- type: nauc_mrr_at_1_diff1
value: 21.592
- type: nauc_mrr_at_3_max
value: 93.8998
- type: nauc_mrr_at_3_std
value: 79.3962
- type: nauc_mrr_at_3_diff1
value: 19.3371
- type: nauc_mrr_at_5_max
value: 93.8998
- type: nauc_mrr_at_5_std
value: 79.3962
- type: nauc_mrr_at_5_diff1
value: 19.3371
- type: nauc_mrr_at_10_max
value: 93.8998
- type: nauc_mrr_at_10_std
value: 79.3962
- type: nauc_mrr_at_10_diff1
value: 19.3371
- type: nauc_mrr_at_20_max
value: 93.8998
- type: nauc_mrr_at_20_std
value: 79.3962
- type: nauc_mrr_at_20_diff1
value: 19.3371
- type: nauc_mrr_at_100_max
value: 93.8998
- type: nauc_mrr_at_100_std
value: 79.3962
- type: nauc_mrr_at_100_diff1
value: 19.3371
- type: nauc_mrr_at_1000_max
value: 93.8998
- type: nauc_mrr_at_1000_std
value: 79.3962
- type: nauc_mrr_at_1000_diff1
value: 19.3371
- type: main_score
value: 80.55
- task:
type: Retrieval
dataset:
name: MTEB Touche2020 (default)
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: ndcg_at_1
value: 18.367
- type: ndcg_at_3
value: 23.105999999999998
- type: ndcg_at_5
value: 22.423000000000002
- type: ndcg_at_10
value: 21.83
- type: ndcg_at_20
value: 23.534
- type: ndcg_at_100
value: 33.332
- type: ndcg_at_1000
value: 44.842999999999996
- type: map_at_1
value: 1.52
- type: map_at_3
value: 3.811
- type: map_at_5
value: 5.4879999999999995
- type: map_at_10
value: 8.204
- type: map_at_20
value: 10.387
- type: map_at_100
value: 13.633000000000001
- type: map_at_1000
value: 15.156
- type: recall_at_1
value: 1.52
- type: recall_at_3
value: 5.466
- type: recall_at_5
value: 8.927
- type: recall_at_10
value: 15.237
- type: recall_at_20
value: 22.841
- type: recall_at_100
value: 44.586999999999996
- type: recall_at_1000
value: 79.199
- type: precision_at_1
value: 20.408
- type: precision_at_3
value: 25.169999999999998
- type: precision_at_5
value: 23.673
- type: precision_at_10
value: 20.408
- type: precision_at_20
value: 16.531000000000002
- type: precision_at_100
value: 7.204000000000001
- type: precision_at_1000
value: 1.473
- type: mrr_at_1
value: 20.4082
- type: mrr_at_3
value: 35.374100000000006
- type: mrr_at_5
value: 37.7211
- type: mrr_at_10
value: 39.7068
- type: mrr_at_20
value: 40.6272
- type: mrr_at_100
value: 40.7905
- type: mrr_at_1000
value: 40.805
- type: nauc_ndcg_at_1_max
value: -25.3799
- type: nauc_ndcg_at_1_std
value: -27.8526
- type: nauc_ndcg_at_1_diff1
value: 11.5616
- type: nauc_ndcg_at_3_max
value: -31.987900000000003
- type: nauc_ndcg_at_3_std
value: -18.1926
- type: nauc_ndcg_at_3_diff1
value: 15.4188
- type: nauc_ndcg_at_5_max
value: -29.2499
- type: nauc_ndcg_at_5_std
value: -18.8992
- type: nauc_ndcg_at_5_diff1
value: 9.677
- type: nauc_ndcg_at_10_max
value: -25.427899999999998
- type: nauc_ndcg_at_10_std
value: -19.0155
- type: nauc_ndcg_at_10_diff1
value: 1.5350000000000001
- type: nauc_ndcg_at_20_max
value: -25.007800000000003
- type: nauc_ndcg_at_20_std
value: -6.626899999999999
- type: nauc_ndcg_at_20_diff1
value: -2.0142
- type: nauc_ndcg_at_100_max
value: -24.7187
- type: nauc_ndcg_at_100_std
value: 18.587899999999998
- type: nauc_ndcg_at_100_diff1
value: -7.925599999999999
- type: nauc_ndcg_at_1000_max
value: -20.9609
- type: nauc_ndcg_at_1000_std
value: 27.360400000000002
- type: nauc_ndcg_at_1000_diff1
value: -5.3411
- type: nauc_map_at_1_max
value: -26.3166
- type: nauc_map_at_1_std
value: -27.701900000000002
- type: nauc_map_at_1_diff1
value: 14.4953
- type: nauc_map_at_3_max
value: -19.4984
- type: nauc_map_at_3_std
value: -26.0187
- type: nauc_map_at_3_diff1
value: 18.9316
- type: nauc_map_at_5_max
value: -17.6688
- type: nauc_map_at_5_std
value: -27.4662
- type: nauc_map_at_5_diff1
value: 16.3786
- type: nauc_map_at_10_max
value: -9.727
- type: nauc_map_at_10_std
value: -25.4592
- type: nauc_map_at_10_diff1
value: 8.434999999999999
- type: nauc_map_at_20_max
value: -14.2879
- type: nauc_map_at_20_std
value: -17.5881
- type: nauc_map_at_20_diff1
value: 2.4941
- type: nauc_map_at_100_max
value: -15.804499999999999
- type: nauc_map_at_100_std
value: -2.6222
- type: nauc_map_at_100_diff1
value: -4.3869
- type: nauc_map_at_1000_max
value: -15.4637
- type: nauc_map_at_1000_std
value: 1.8402000000000003
- type: nauc_map_at_1000_diff1
value: -5.3595
- type: nauc_recall_at_1_max
value: -26.3166
- type: nauc_recall_at_1_std
value: -27.701900000000002
- type: nauc_recall_at_1_diff1
value: 14.4953
- type: nauc_recall_at_3_max
value: -18.4525
- type: nauc_recall_at_3_std
value: -22.7019
- type: nauc_recall_at_3_diff1
value: 14.5105
- type: nauc_recall_at_5_max
value: -16.8608
- type: nauc_recall_at_5_std
value: -26.2799
- type: nauc_recall_at_5_diff1
value: 6.910299999999999
- type: nauc_recall_at_10_max
value: -11.498700000000001
- type: nauc_recall_at_10_std
value: -22.290499999999998
- type: nauc_recall_at_10_diff1
value: -1.6997000000000002
- type: nauc_recall_at_20_max
value: -16.319
- type: nauc_recall_at_20_std
value: -2.6968
- type: nauc_recall_at_20_diff1
value: -8.5511
- type: nauc_recall_at_100_max
value: -17.741
- type: nauc_recall_at_100_std
value: 36.1914
- type: nauc_recall_at_100_diff1
value: -20.1127
- type: nauc_recall_at_1000_max
value: 3.4278999999999997
- type: nauc_recall_at_1000_std
value: 65.7558
- type: nauc_recall_at_1000_diff1
value: -15.537899999999999
- type: nauc_precision_at_1_max
value: -27.3245
- type: nauc_precision_at_1_std
value: -28.615000000000002
- type: nauc_precision_at_1_diff1
value: 16.2275
- type: nauc_precision_at_3_max
value: -32.1286
- type: nauc_precision_at_3_std
value: -14.0653
- type: nauc_precision_at_3_diff1
value: 15.6075
- type: nauc_precision_at_5_max
value: -27.176299999999998
- type: nauc_precision_at_5_std
value: -15.5885
- type: nauc_precision_at_5_diff1
value: 7.3431999999999995
- type: nauc_precision_at_10_max
value: -26.9241
- type: nauc_precision_at_10_std
value: -11.737
- type: nauc_precision_at_10_diff1
value: -7.630000000000001
- type: nauc_precision_at_20_max
value: -26.901999999999997
- type: nauc_precision_at_20_std
value: 23.7519
- type: nauc_precision_at_20_diff1
value: -21.343799999999998
- type: nauc_precision_at_100_max
value: -16.9757
- type: nauc_precision_at_100_std
value: 70.6663
- type: nauc_precision_at_100_diff1
value: -32.3231
- type: nauc_precision_at_1000_max
value: 20.8431
- type: nauc_precision_at_1000_std
value: 37.8016
- type: nauc_precision_at_1000_diff1
value: -9.911200000000001
- type: nauc_mrr_at_1_max
value: -27.3245
- type: nauc_mrr_at_1_std
value: -28.615000000000002
- type: nauc_mrr_at_1_diff1
value: 16.2275
- type: nauc_mrr_at_3_max
value: -33.332499999999996
- type: nauc_mrr_at_3_std
value: -21.543499999999998
- type: nauc_mrr_at_3_diff1
value: 15.7577
- type: nauc_mrr_at_5_max
value: -34.56
- type: nauc_mrr_at_5_std
value: -21.0279
- type: nauc_mrr_at_5_diff1
value: 10.4699
- type: nauc_mrr_at_10_max
value: -35.4396
- type: nauc_mrr_at_10_std
value: -22.6385
- type: nauc_mrr_at_10_diff1
value: 8.4536
- type: nauc_mrr_at_20_max
value: -34.0343
- type: nauc_mrr_at_20_std
value: -21.4022
- type: nauc_mrr_at_20_diff1
value: 10.7134
- type: nauc_mrr_at_100_max
value: -34.190799999999996
- type: nauc_mrr_at_100_std
value: -21.5996
- type: nauc_mrr_at_100_diff1
value: 10.9828
- type: nauc_mrr_at_1000_max
value: -34.1503
- type: nauc_mrr_at_1000_std
value: -21.662300000000002
- type: nauc_mrr_at_1000_diff1
value: 10.96
- type: main_score
value: 21.83
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification (default)
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 81.4014
- type: f1
value: 64.3103
- type: f1_weighted
value: 85.0047
- type: ap
value: 22.2804
- type: ap_weighted
value: 22.2804
- type: main_score
value: 81.4014
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification (default)
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 66.4403
- type: f1
value: 66.8774
- type: f1_weighted
value: 65.9999
- type: main_score
value: 66.4403
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering (default)
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 53.3153
- type: v_measure_std
value: 1.2923
- type: main_score
value: 53.3153
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015 (default)
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: similarity_accuracy
value: 85.22380000000001
- type: similarity_accuracy_threshold
value: 74.7432
- type: similarity_f1
value: 66.2828
- type: similarity_f1_threshold
value: 69.9472
- type: similarity_precision
value: 60.765299999999996
- type: similarity_recall
value: 72.9024
- type: similarity_ap
value: 72.0492
- type: cosine_accuracy
value: 85.22380000000001
- type: cosine_accuracy_threshold
value: 74.7432
- type: cosine_f1
value: 66.2828
- type: cosine_f1_threshold
value: 69.9472
- type: cosine_precision
value: 60.765299999999996
- type: cosine_recall
value: 72.9024
- type: cosine_ap
value: 72.0492
- type: manhattan_accuracy
value: 85.10459999999999
- type: manhattan_accuracy_threshold
value: 48810.3699
- type: manhattan_f1
value: 65.7133
- type: manhattan_f1_threshold
value: 53724.462900000006
- type: manhattan_precision
value: 60.3399
- type: manhattan_recall
value: 72.1372
- type: manhattan_ap
value: 71.3681
- type: euclidean_accuracy
value: 85.1404
- type: euclidean_accuracy_threshold
value: 2203.8609
- type: euclidean_f1
value: 65.8107
- type: euclidean_f1_threshold
value: 2445.96
- type: euclidean_precision
value: 59.8875
- type: euclidean_recall
value: 73.0343
- type: euclidean_ap
value: 71.3938
- type: dot_accuracy
value: 84.8781
- type: dot_accuracy_threshold
value: 74077.38040000001
- type: dot_f1
value: 65.3706
- type: dot_f1_threshold
value: 69501.5808
- type: dot_precision
value: 60.58559999999999
- type: dot_recall
value: 70.97630000000001
- type: dot_ap
value: 71.0091
- type: max_accuracy
value: 85.22380000000001
- type: max_f1
value: 66.2828
- type: max_precision
value: 60.765299999999996
- type: max_recall
value: 73.0343
- type: max_ap
value: 72.0492
- type: main_score
value: 72.0492
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus (default)
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: similarity_accuracy
value: 89.145
- type: similarity_accuracy_threshold
value: 65.00280000000001
- type: similarity_f1
value: 78.78150000000001
- type: similarity_f1_threshold
value: 61.2185
- type: similarity_precision
value: 75.0279
- type: similarity_recall
value: 82.9304
- type: similarity_ap
value: 86.39949999999999
- type: cosine_accuracy
value: 89.145
- type: cosine_accuracy_threshold
value: 65.00280000000001
- type: cosine_f1
value: 78.78150000000001
- type: cosine_f1_threshold
value: 61.2185
- type: cosine_precision
value: 75.0279
- type: cosine_recall
value: 82.9304
- type: cosine_ap
value: 86.39949999999999
- type: manhattan_accuracy
value: 89.05579999999999
- type: manhattan_accuracy_threshold
value: 55381.189
- type: manhattan_f1
value: 78.6152
- type: manhattan_f1_threshold
value: 58447.6685
- type: manhattan_precision
value: 74.77080000000001
- type: manhattan_recall
value: 82.8765
- type: manhattan_ap
value: 86.2899
- type: euclidean_accuracy
value: 89.1179
- type: euclidean_accuracy_threshold
value: 2552.2853999999998
- type: euclidean_f1
value: 78.6816
- type: euclidean_f1_threshold
value: 2660.0677
- type: euclidean_precision
value: 74.4317
- type: euclidean_recall
value: 83.4463
- type: euclidean_ap
value: 86.3158
- type: dot_accuracy
value: 88.81710000000001
- type: dot_accuracy_threshold
value: 58383.1421
- type: dot_f1
value: 78.2367
- type: dot_f1_threshold
value: 54826.550299999995
- type: dot_precision
value: 73.7657
- type: dot_recall
value: 83.2846
- type: dot_ap
value: 85.5699
- type: max_accuracy
value: 89.145
- type: max_f1
value: 78.78150000000001
- type: max_precision
value: 75.0279
- type: max_recall
value: 83.4463
- type: max_ap
value: 86.39949999999999
- type: main_score
value: 86.39949999999999
---
# cde-small-v2
> [!NOTE]
> **Note on parameter count:** Although HuggingFace reports the size of this model as 281M params, really it can be thought of as 140M. That's because our weights actually contain the weights of two models (dubbed "first stage" and "second stage"), and only the second-stage model is used to compute embeddings at search time.
<a href="https://github.com/jxmorris12/cde">Github</a>
Our new model that naturally integrates "context tokens" into the embedding process. As of January 13th, 2025, `cde-small-v2` is the best small model (under 400M params) on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for text embedding models, with an average score of 65.58.
👉 <b><a href="https://colab.research.google.com/drive/1r8xwbp7_ySL9lP-ve4XMJAHjidB9UkbL?usp=sharing">Try on Colab</a></b>
<br>
👉 <b><a href="https://arxiv.org/abs/2410.02525">Contextual Document Embeddings (ArXiv)</a></b>

<br>
<hr>
# How to use `cde-small-v2`
Our embedding model needs to be used in *two stages*. The first stage is to gather some dataset information by embedding a subset of the corpus using our "first-stage" model. The second stage is to actually embed queries and documents, conditioning on the corpus information from the first stage. Note that we can do the first stage part offline and only use the second-stage weights at inference time.
</details>
## With Transformers
<details>
<summary>Click to learn how to use cde-small-v2 with Transformers</summary>
### Loading the model
Our model can be loaded using `transformers` out-of-the-box with "trust remote code" enabled. We use the default BERT uncased tokenizer:
```python
import transformers
model = transformers.AutoModel.from_pretrained("jxm/cde-small-v2", trust_remote_code=True)
tokenizer = transformers.AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
```
#### Note on prefixes
*Nota bene*: Like all state-of-the-art embedding models, our model was trained with task-specific prefixes. To do retrieval, you can prepend the following strings to queries & documents:
```python
query_prefix = "search_query: "
document_prefix = "search_document: "
```
### First stage
```python
minicorpus_size = model.config.transductive_corpus_size
minicorpus_docs = [ ... ] # Put some strings here that are representative of your corpus, for example by calling random.sample(corpus, k=minicorpus_size)
assert len(minicorpus_docs) == minicorpus_size # You must use exactly this many documents in the minicorpus. You can oversample if your corpus is smaller.
minicorpus_docs = tokenizer(
[document_prefix + doc for doc in minicorpus_docs],
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
).to(model.device)
import torch
from tqdm.autonotebook import tqdm
batch_size = 32
dataset_embeddings = []
for i in tqdm(range(0, len(minicorpus_docs["input_ids"]), batch_size)):
minicorpus_docs_batch = {k: v[i:i+batch_size] for k,v in minicorpus_docs.items()}
with torch.no_grad():
dataset_embeddings.append(
model.first_stage_model(**minicorpus_docs_batch)
)
dataset_embeddings = torch.cat(dataset_embeddings)
```
### Running the second stage
Now that we have obtained "dataset embeddings" we can embed documents and queries like normal. Remember to use the document prefix for documents:
```python
docs = tokenizer(
[document_prefix + doc for doc in docs],
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
).to(model.device)
with torch.no_grad():
doc_embeddings = model.second_stage_model(
input_ids=docs["input_ids"],
attention_mask=docs["attention_mask"],
dataset_embeddings=dataset_embeddings,
)
doc_embeddings /= doc_embeddings.norm(p=2, dim=1, keepdim=True)
```
and the query prefix for queries:
```python
queries = queries.select(range(16))["text"]
queries = tokenizer(
[query_prefix + query for query in queries],
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
).to(model.device)
with torch.no_grad():
query_embeddings = model.second_stage_model(
input_ids=queries["input_ids"],
attention_mask=queries["attention_mask"],
dataset_embeddings=dataset_embeddings,
)
query_embeddings /= query_embeddings.norm(p=2, dim=1, keepdim=True)
```
these embeddings can be compared using dot product, since they're normalized.
</details>
### What if I don't know what my corpus will be ahead of time?
If you can't obtain corpus information ahead of time, you still have to pass *something* as the dataset embeddings; our model will work fine in this case, but not quite as well; without corpus information, our model performance drops from 65.0 to 63.8 on MTEB. We provide [some random strings](https://huggingface.co/jxm/cde-small-v2/resolve/main/random_strings.txt) that worked well for us that can be used as a substitute for corpus sampling.
## With Sentence Transformers
<details open="">
<summary>Click to learn how to use cde-small-v2 with Sentence Transformers</summary>
### Loading the model
Our model can be loaded using `sentence-transformers` out-of-the-box with "trust remote code" enabled:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("jxm/cde-small-v2", trust_remote_code=True)
```
#### Note on prefixes
*Nota bene*: Like all state-of-the-art embedding models, our model was trained with task-specific prefixes. To do retrieval, you can use `prompt_name="query"` and `prompt_name="document"` in the `encode` method of the model when embedding queries and documents, respectively.
### First stage
```python
minicorpus_size = model[0].config.transductive_corpus_size
minicorpus_docs = [ ... ] # Put some strings here that are representative of your corpus, for example by calling random.sample(corpus, k=minicorpus_size)
assert len(minicorpus_docs) == minicorpus_size # You must use exactly this many documents in the minicorpus. You can oversample if your corpus is smaller.
dataset_embeddings = model.encode(
minicorpus_docs,
prompt_name="document",
convert_to_tensor=True
)
```
### Running the second stage
Now that we have obtained "dataset embeddings" we can embed documents and queries like normal. Remember to use the document prompt for documents:
```python
docs = [...]
queries = [...]
doc_embeddings = model.encode(
docs,
prompt_name="document",
dataset_embeddings=dataset_embeddings,
convert_to_tensor=True,
)
query_embeddings = model.encode(
queries,
prompt_name="query",
dataset_embeddings=dataset_embeddings,
convert_to_tensor=True,
)
```
these embeddings can be compared using cosine similarity via `model.similarity`:
```python
similarities = model.similarity(query_embeddings, doc_embeddings)
topk_values, topk_indices = similarities.topk(5)
```
<details>
<summary>Click here for a full copy-paste ready example</summary>
```python
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
# 1. Load the Sentence Transformer model
model = SentenceTransformer("jxm/cde-small-v2", trust_remote_code=True)
context_docs_size = model[0].config.transductive_corpus_size # 512
# 2. Load the dataset: context dataset, docs, and queries
dataset = load_dataset("sentence-transformers/natural-questions", split="train")
dataset.shuffle(seed=42)
# 10 queries, 512 context docs, 500 docs
queries = dataset["query"][:10]
docs = dataset["answer"][:2000]
context_docs = dataset["answer"][-context_docs_size:] # Last 512 docs
# 3. First stage: embed the context docs
dataset_embeddings = model.encode(
context_docs,
prompt_name="document",
convert_to_tensor=True,
)
# 4. Second stage: embed the docs and queries
doc_embeddings = model.encode(
docs,
prompt_name="document",
dataset_embeddings=dataset_embeddings,
convert_to_tensor=True,
)
query_embeddings = model.encode(
queries,
prompt_name="query",
dataset_embeddings=dataset_embeddings,
convert_to_tensor=True,
)
# 5. Compute the similarity between the queries and docs
similarities = model.similarity(query_embeddings, doc_embeddings)
topk_values, topk_indices = similarities.topk(5)
print(topk_values)
print(topk_indices)
"""
tensor([[0.5495, 0.5426, 0.5423, 0.5292, 0.5286],
[0.6357, 0.6334, 0.6177, 0.5862, 0.5794],
[0.7648, 0.5452, 0.5000, 0.4959, 0.4881],
[0.6802, 0.5225, 0.5178, 0.5160, 0.5075],
[0.6947, 0.5843, 0.5619, 0.5344, 0.5298],
[0.7742, 0.7742, 0.7742, 0.7231, 0.6224],
[0.8853, 0.6667, 0.5829, 0.5795, 0.5769],
[0.6911, 0.6127, 0.6003, 0.5986, 0.5936],
[0.6796, 0.6053, 0.6000, 0.5911, 0.5884],
[0.7624, 0.5589, 0.5428, 0.5278, 0.5275]], device='cuda:0')
tensor([[ 0, 296, 234, 1651, 1184],
[1542, 466, 438, 1207, 1911],
[ 2, 1562, 632, 1852, 382],
[ 3, 694, 932, 1765, 662],
[ 4, 35, 747, 26, 432],
[ 534, 175, 5, 1495, 575],
[ 6, 1802, 1875, 747, 21],
[ 7, 1913, 1936, 640, 6],
[ 8, 747, 167, 1318, 1743],
[ 9, 1583, 1145, 219, 357]], device='cuda:0')
"""
# As you can see, almost every query_i has document_i as the most similar document.
# 6. Print the top-k results
for query_idx, top_doc_idx in enumerate(topk_indices[:, 0]):
print(f"Query {query_idx}: {queries[query_idx]}")
print(f"Top Document: {docs[top_doc_idx]}")
print()
"""
Query 0: when did richmond last play in a preliminary final
Top Document: Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tigers took over the game as it progressed and scored seven straight goals at one point. They eventually would win by 48 points – 16.12 (108) to Adelaide's 8.12 (60) – to end their 37-year flag drought.[22] Dustin Martin also became the first player to win a Premiership medal, the Brownlow Medal and the Norm Smith Medal in the same season, while Damien Hardwick was named AFL Coaches Association Coach of the Year. Richmond's jump from 13th to premiers also marked the biggest jump from one AFL season to the next.
Query 1: who sang what in the world's come over you
Top Document: Life's What You Make It (Talk Talk song) "Life's What You Make It" is a song by the English band Talk Talk. It was released as a single in 1986, the first from the band's album The Colour of Spring. The single was a hit in the UK, peaking at No. 16, and charted in numerous other countries, often reaching the Top 20.
Query 2: who produces the most wool in the world
Top Document: Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.
Query 3: where does alaska the last frontier take place
Top Document: Alaska: The Last Frontier Alaska: The Last Frontier is an American reality cable television series on the Discovery Channel, currently in its 7th season of broadcast. The show documents the extended Kilcher family, descendants of Swiss immigrants and Alaskan pioneers, Yule and Ruth Kilcher, at their homestead 11 miles outside of Homer.[1] By living without plumbing or modern heating, the clan chooses to subsist by farming, hunting and preparing for the long winters.[2] The Kilcher family are relatives of the singer Jewel,[1][3] who has appeared on the show.[4]
Query 4: a day to remember all i want cameos
Top Document: All I Want (A Day to Remember song) The music video for the song, which was filmed in October 2010,[4] was released on January 6, 2011.[5] It features cameos of numerous popular bands and musicians. The cameos are: Tom Denney (A Day to Remember's former guitarist), Pete Wentz, Winston McCall of Parkway Drive, The Devil Wears Prada, Bring Me the Horizon, Sam Carter of Architects, Tim Lambesis of As I Lay Dying, Silverstein, Andrew WK, August Burns Red, Seventh Star, Matt Heafy of Trivium, Vic Fuentes of Pierce the Veil, Mike Herrera of MxPx, and Set Your Goals.[5] Rock Sound called the video "quite excellent".[5]
Query 5: what does the red stripes mean on the american flag
Top Document: Flag of the United States The flag of the United States of America, often referred to as the American flag, is the national flag of the United States. It consists of thirteen equal horizontal stripes of red (top and bottom) alternating with white, with a blue rectangle in the canton (referred to specifically as the "union") bearing fifty small, white, five-pointed stars arranged in nine offset horizontal rows, where rows of six stars (top and bottom) alternate with rows of five stars. The 50 stars on the flag represent the 50 states of the United States of America, and the 13 stripes represent the thirteen British colonies that declared independence from the Kingdom of Great Britain, and became the first states in the U.S.[1] Nicknames for the flag include The Stars and Stripes,[2] Old Glory,[3] and The Star-Spangled Banner.
Query 6: where did they film diary of a wimpy kid
Top Document: Diary of a Wimpy Kid (film) Filming of Diary of a Wimpy Kid was in Vancouver and wrapped up on October 16, 2009.
Query 7: where was beasts of the southern wild filmed
Top Document: Beasts of the Southern Wild The film's fictional setting, "Isle de Charles Doucet", known to its residents as the Bathtub, was inspired by several isolated and independent fishing communities threatened by erosion, hurricanes and rising sea levels in Louisiana's Terrebonne Parish, most notably the rapidly eroding Isle de Jean Charles. It was filmed in Terrebonne Parish town Montegut.[5]
Query 8: what part of the country are you likely to find the majority of the mollisols
Top Document: Mollisol Mollisols occur in savannahs and mountain valleys (such as Central Asia, or the North American Great Plains). These environments have historically been strongly influenced by fire and abundant pedoturbation from organisms such as ants and earthworms. It was estimated that in 2003, only 14 to 26 percent of grassland ecosystems still remained in a relatively natural state (that is, they were not used for agriculture due to the fertility of the A horizon). Globally, they represent ~7% of ice-free land area. As the world's most agriculturally productive soil order, the Mollisols represent one of the more economically important soil orders.
Query 9: when did fosters home for imaginary friends start
Top Document: Foster's Home for Imaginary Friends McCracken conceived the series after adopting two dogs from an animal shelter and applying the concept to imaginary friends. The show first premiered on Cartoon Network on August 13, 2004, as a 90-minute television film. On August 20, it began its normal run of twenty-to-thirty-minute episodes on Fridays, at 7 pm. The series finished its run on May 3, 2009, with a total of six seasons and seventy-nine episodes. McCracken left Cartoon Network shortly after the series ended. Reruns have aired on Boomerang from August 11, 2012 to November 3, 2013 and again from June 1, 2014 to April 3, 2017.
"""
```
</details>
### Colab demo
We've set up a short demo in a Colab notebook showing how you might use our model:
[Try our model in Colab:](https://colab.research.google.com/drive/1ddWeNj9nztHrwtoSEtaArfs7_NZhZA6k?usp=sharing)
### Training details
All non-mentioned other hyperparameters (learning, etc.) are either in the config or CDE paper. If not, please raise an issue here: https://github.com/jxmorris12/cde
#### Model details
cde-small-v2 includes a number of modeling changes from cde-small-v1:
- used the recently-released [ModernBERT](https://huggingface.co/blog/modernbert)
- added a residual connection between the model stages, which helps conditioning and gradient flow
- disabled pooling over instruction tokens
- disable position-embedding nullification over contextual tokens
- disable weight decay (not sure if this one helped or not)
#### Unsupervised training
Trained for six epochs on the nomic-unsupervised dataset with cluster size of 512 and batch size of 512, using GTR clusters and GTE-large filtering. (Probably would have performed better with GTE clustering too, but that's an expensive operation that we didn't rerun.)
#### Supervised training
Trained for four epochs on the BGE dataset with GTE clusters and GTE hard-negative filtering.
### Cite us
Used our model, method, or architecture? Want to cite us? Here's the ArXiv citation information:
```
@misc{morris2024contextualdocumentembeddings,
title={Contextual Document Embeddings},
author={John X. Morris and Alexander M. Rush},
year={2024},
eprint={2410.02525},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.02525},
}
``` | [
"BIOSSES",
"MEDAL",
"SCIFACT"
] |
aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct | aisingapore | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"zh",
"vi",
"id",
"th",
"fil",
"ta",
"ms",
"km",
"lo",
"my",
"jv",
"su",
"arxiv:2309.06085",
"arxiv:2311.07911",
"arxiv:2306.05685",
"base_model:aisingapore/llama3.1-8b-cpt-sea-lionv3-base",
"base_model:finetune:aisingapore/llama3.1-8b-cpt-sea-lionv3-base",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-12-11T10:20:41Z" | 2024-12-19T12:49:17+00:00 | 3,931 | 4 | ---
base_model:
- aisingapore/llama3.1-8b-cpt-sea-lionv3-base
language:
- en
- zh
- vi
- id
- th
- fil
- ta
- ms
- km
- lo
- my
- jv
- su
library_name: transformers
license: llama3.1
pipeline_tag: text-generation
---
<div>
<img src="llama_3.1_8b_sea-lion_v3_instruct_banner.png"/>
</div>
# Llama3.1 8B CPT SEA-LIONv3 Instruct
SEA-LION is a collection of Large Language Models (LLMs) which have been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
Llama3.1 8B CPT SEA-LIONv3 Instruct is a multilingual model that has been fine-tuned in two stages on approximately **12.3M English instruction-completion pairs** alongside a pool of **4.5M Southeast Asian instruction-completion pairs** from SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai and Vietnamese.
SEA-LION stands for _Southeast Asian Languages In One Network_.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages supported:** Burmese, Chinese, English, Filipino, Indonesia, Javanese, Khmer, Lao, Malay, Sundanese, Tamil, Thai, Vietnamese
- **License:** [Llama 3.1 Community License](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct/blob/main/LICENSE)
## Model Details
### Model Description
We performed instruction tuning in English and also in SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai and Vietnamese on our [continued pre-trained Llama3.1 8B CPT SEA-LIONv3 Base](https://huggingface.co/aisingapore/llama3.1-8b-cpt-sea-lionv3-base), a decoder model using the Llama 3.1 architecture, to create Llama3.1 8B CPT SEA-LIONv3 Instruct.
For tokenisation, the model employs the default tokenizer used in Llama 3.1 8B Instruct. The model has a context length of 128k.
### Benchmark Performance
We evaluated Llama3.1 8B CPT SEA-LIONv3 Instruct on both general language capabilities and instruction-following capabilities.
#### General Language Capabilities
For the evaluation of general language capabilities, we employed the [SEA-HELM (also known as BHASA) evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarisation (Abssum), Causal Reasoning (Causal) and Natural Language Inference (NLI).
Note: SEA-HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.
#### Instruction-following Capabilities
Since Llama3.1 8B CPT SEA-LIONv3 Instruct is an instruction-following model, we also evaluated it on instruction-following capabilities with two datasets, SEA-IFEval (based on [IFEval](https://arxiv.org/abs/2311.07911)) and SEA-MTBench (based on [MT-Bench](https://arxiv.org/abs/2306.05685)).
As these two datasets were originally in English, the linguists and native speakers in the team worked together to filter, localise and translate the datasets into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.
**SEA-IFEval**
SEA-IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. Additionally, accuracy is normalised by the proportion of responses in the correct language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).
**SEA-MTBench**
SEA-MTBench evaluates a model's ability to engage in multi-turn (2 turns) conversations and respond in ways that align with human needs. We use `gpt-4-1106-preview` as the judge model and compare against `gpt-3.5-turbo-0125` as the baseline model. The metric used is the weighted win rate against the baseline model (i.e. average win rate across each category: Math, Reasoning, STEM, Humanities, Roleplay, Writing, Extraction). A tie is given a score of 0.5.
For more details on Llama3.1 8B CPT SEA-LIONv3 Instruct benchmark performance, please refer to the SEA-HELM leaderboard, https://leaderboard.sea-lion.ai/.
### Usage
Llama3.1 8B CPT SEA-LIONv3 Instruct can be run using the 🤗 Transformers library
```python
import transformers
import torch
model_id = "aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
### Caveats
It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning.
## Limitations
### Safety
Current SEA-LION models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
## Technical Specifications
### Fine-Tuning Details
Llama3.1 8B CPT SEA-LIONv3 Instruct was tuned using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 1024 GPU hours, on a single node of 8x H100-80GB GPUs.
## Data
Llama3.1 8B CPT SEA-LIONv3 Instruct was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
## Call for Contributions
We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of SEA-LION. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Southeast Asian languages. Join us in shaping the future of SEA-LION by sharing your expertise and insights to make these models more accessible, accurate, and versatile. Please check out our GitHub for further information on the call for contributions.
## The Team
Chan Adwin, Cheng Nicholas, Choa Esther, Huang Yuli, Hulagadri Adithya Venkatadri, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Limkonchotiwat Peerat, Liu Bing Jie Darius, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teng Walter, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Yeo Yeow Tong, Yong Xianbin
## Acknowledgements
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
## Disclaimer
This is the repository for the commercial instruction-tuned model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claims, damages, or other liabilities arising from the use of the released weights and codes. | [
"CHIA"
] |
bigscience/T0_3B | bigscience | text2text-generation | [
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"en",
"dataset:bigscience/P3",
"arxiv:2110.08207",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2022-03-02T23:29:05Z" | 2024-03-09T13:39:07+00:00 | 3,910 | 100 | ---
datasets:
- bigscience/P3
language: en
license: apache-2.0
widget:
- text: A is the son's of B's uncle. What is the family relationship between A and
B?
- text: 'Reorder the words in this sentence: justin and name bieber years is my am
I 27 old.'
- text: "Task: copy but say the opposite.\n PSG won its match against Barca."
- text: 'Is this review positive or negative? Review: Best cast iron skillet you will
every buy.'
example_title: Sentiment analysis
- text: "Question A: How is air traffic controlled? \nQuestion B: How do you become\
\ an air traffic controller?\nPick one: these questions are duplicates or not\
\ duplicates."
- text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday.\
\ He chose her because she had foreign affairs experience as a former First Lady.\
\ \nIn the previous sentence, decide who 'her' is referring to."
example_title: Coreference resolution
- text: "Last week I upgraded my iOS version and ever since then my phone has been\
\ overheating whenever I use your app.\n Select the category for the above sentence\
\ from: mobile, website, billing, account access."
- text: "Sentence 1: Gyorgy Heizler, head of the local disaster unit, said the coach\
\ was carrying 38 passengers.\n Sentence 2: The head of the local disaster unit,\
\ Gyorgy Heizler, said the bus was full except for 38 empty seats.\n\n Do sentences\
\ 1 and 2 have the same meaning?"
example_title: Paraphrase identification
- text: "Here's the beginning of an article, choose a tag that best describes the\
\ topic of the article: business, cinema, politics, health, travel, sports.\n\n\
\ The best and worst fo 007 as 'No time to die' marks Daniel Craig's exit.\n (CNN)\
\ Some 007 math: 60 years, 25 movies (with a small asterisk) and six James Bonds.\
\ For a Cold War creation, Ian Fleming's suave spy has certainly gotten around,\
\ but despite different guises in the tuxedo and occasional scuba gear, when it\
\ comes to Bond ratings, there really shouldn't be much argument about who wore\
\ it best."
- text: "Max: Know any good websites to buy clothes from?\n Payton: Sure :) LINK 1,\
\ LINK 2, LINK 3\n Max: That's a lot of them!\n Payton: Yeah, but they have different\
\ things so I usually buy things from 2 or 3 of them.\n Max: I'll check them out.\
\ Thanks.\n\n Who or what are Payton and Max referring to when they say 'them'?"
- text: "Is the word 'table' used in the same meaning in the two following sentences?\n\
\n Sentence A: you can leave the books on the table over there.\n Sentence B:\
\ the tables in this book are very hard to read."
- text: "On a shelf, there are five books: a gray book, a red book, a purple book,\
\ a blue book, and a black book.\n The red book is to the right of the gray book.\
\ The black book is to the left of the blue book. The blue book is to the left\
\ of the gray book. The purple book is the second from the right.\n\n Which book\
\ is the leftmost book?"
example_title: Logic puzzles
- text: "The two men running to become New York City's next mayor will face off in\
\ their first debate Wednesday night.\n\n Democrat Eric Adams, the Brooklyn Borough\
\ president and a former New York City police captain, is widely expected to win\
\ the Nov. 2 election against Republican Curtis Sliwa, the founder of the 1970s-era\
\ Guardian Angels anti-crime patril.\n\n Who are the men running for mayor?"
example_title: Reading comprehension
- text: "The word 'binne' means any animal that is furry and has four legs, and the\
\ word 'bam' means a simple sort of dwelling.\n\n Which of the following best\
\ characterizes binne bams?\n - Sentence 1: Binne bams are for pets.\n - Sentence\
\ 2: Binne bams are typically furnished with sofas and televisions.\n - Sentence\
\ 3: Binne bams are luxurious apartments.\n - Sentence 4: Binne bams are places\
\ where people live."
---
**How do I pronounce the name of the model?** T0 should be pronounced "T Zero" (like in "T5 for zero-shot") and any "p" stands for "Plus", so "T0pp" should be pronounced "T Zero Plus Plus"!
**Official repository**: [bigscience-workshop/t-zero](https://github.com/bigscience-workshop/t-zero)
# Model Description
T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks.
# Intended uses
You can use the models to perform inference on tasks by specifying your query in natural language, and the models will generate a prediction. For instance, you can ask *"Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy"*, and the model will hopefully generate *"Positive"*.
A few other examples that you can try:
- *A is the son's of B's uncle. What is the family relationship between A and B?*
- *Question A: How is air traffic controlled?<br>
Question B: How do you become an air traffic controller?<br>
Pick one: these questions are duplicates or not duplicates.*
- *Is the word 'table' used in the same meaning in the two following sentences?<br><br>
Sentence A: you can leave the books on the table over there.<br>
Sentence B: the tables in this book are very hard to read.*
- *Max: Know any good websites to buy clothes from?<br>
Payton: Sure :) LINK 1, LINK 2, LINK 3<br>
Max: That's a lot of them!<br>
Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.<br>
Max: I'll check them out. Thanks.<br><br>
Who or what are Payton and Max referring to when they say 'them'?*
- *On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.<br>
The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.<br><br>
Which book is the leftmost book?*
- *Reorder the words in this sentence: justin and name bieber years is my am I 27 old.*
# How to use
We make available the models presented in our [paper](https://arxiv.org/abs/2110.08207) along with the ablation models. We recommend using the [T0pp](https://huggingface.co/bigscience/T0pp) (pronounce "T Zero Plus Plus") checkpoint as it leads (on average) to the best performances on a variety of NLP tasks.
|Model|Number of parameters|
|-|-|
|[T0](https://huggingface.co/bigscience/T0)|11 billion|
|[T0p](https://huggingface.co/bigscience/T0p)|11 billion|
|[T0pp](https://huggingface.co/bigscience/T0pp)|11 billion|
|[T0_single_prompt](https://huggingface.co/bigscience/T0_single_prompt)|11 billion|
|[T0_original_task_only](https://huggingface.co/bigscience/T0_original_task_only)|11 billion|
|[T0_3B](https://huggingface.co/bigscience/T0_3B)|3 billion|
Here is how to use the model in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("bigscience/T0pp")
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp")
inputs = tokenizer.encode("Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
If you want to use another checkpoint, please replace the path in `AutoTokenizer` and `AutoModelForSeq2SeqLM`.
**Note: the model was trained with bf16 activations. As such, we highly discourage running inference with fp16. fp32 or bf16 should be preferred.**
# Training procedure
T0* models are based on [T5](https://huggingface.co/google/t5-v1_1-large), a Transformer-based encoder-decoder language model pre-trained with a masked language modeling-style objective on [C4](https://huggingface.co/datasets/c4). We use the publicly available [language model-adapted T5 checkpoints](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) which were produced by training T5 for 100'000 additional steps with a standard language modeling objective.
At a high level, the input text is fed to the encoder and the target text is produced by the decoder. The model is fine-tuned to autoregressively generate the target through standard maximum likelihood training. It is never trained to generate the input. We detail our training data in the next section.
Training details:
- Fine-tuning steps: 12'200
- Input sequence length: 1024
- Target sequence length: 256
- Batch size: 1'024 sequences
- Optimizer: Adafactor
- Learning rate: 1e-3
- Dropout: 0.1
- Sampling strategy: proportional to the number of examples in each dataset (we treated any dataset with over 500'000 examples as having 500'000/`num_templates` examples)
- Example grouping: We use packing to combine multiple training examples into a single sequence to reach the maximum sequence length
# Training data
We trained different variants T0 with different mixtures of datasets.
|Model|Training datasets|
|--|--|
|T0|- Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ, Wiki Hop<br>- Extractive QA: Adversarial QA, Quoref, DuoRC, ROPES<br>- Closed-Book QA: Hotpot QA*, Wiki QA<br>- Structure-To-Text: Common Gen, Wiki Bio<br>- Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp<br>- Summarization: CNN Daily Mail, Gigaword, MultiNews, SamSum, XSum<br>- Topic Classification: AG News, DBPedia, TREC<br>- Paraphrase Identification: MRPC, PAWS, QQP|
|T0p|Same as T0 with additional datasets from GPT-3's evaluation suite:<br>- Multiple-Choice QA: ARC, OpenBook QA, PiQA, RACE, HellaSwag<br>- Extractive QA: SQuAD v2<br>- Closed-Book QA: Trivia QA, Web Questions|
|T0pp|Same as T0p with a few additional datasets from SuperGLUE (excluding NLI sets):<br>- BoolQ<br>- COPA<br>- MultiRC<br>- ReCoRD<br>- WiC<br>- WSC|
|T0_single_prompt|Same as T0 but only one prompt per training dataset|
|T0_original_task_only|Same as T0 but only original tasks templates|
|T0_3B|Same as T0 but starting from a T5-LM XL (3B parameters) pre-trained model|
For reproducibility, we release the data we used for training (and evaluation) in the [P3 dataset](https://huggingface.co/datasets/bigscience/P3). Prompts examples can be found on the dataset page.
*: We recast Hotpot QA as closed-book QA due to long input sequence length.
# Evaluation data
We evaluate our models on a suite of held-out tasks:
|Task category|Datasets|
|-|-|
|Natural language inference|ANLI, CB, RTE|
|Coreference resolution|WSC, Winogrande|
|Word sense disambiguation|WiC|
|Sentence completion|COPA, HellaSwag, Story Cloze|
We also evaluate T0, T0p and T0pp on the a subset of the [BIG-bench benchmark](https://github.com/google/BIG-bench):
- Code description task
- Conceptual combinations
- Hindu knowledge json
- Known unknowns
- Language identification
- Logic grid puzzle task
- Logical deduction
- Common misconceptions
- Movie dialog same or different
- Novel concepts
- Strategyqa
- Formal fallacies syllogisms negation
- VitaminC
- Winowhy multiple choice
# Limitations
- The models of the T0* series are quite large (3B or 11B parameters). Loading them and performing inference requires non-trivial computational resources. When using multiple GPUs, it is possible to use [.parallelize()](https://huggingface.co/transformers/parallelism.html).
- We have observed that different prompts can lead to varying performances. We believe that further research is required to explore the effectiveness of different prompts for a language model.
- Due to design choices in the tokenization, the models are unable to perform inference for tasks involving code or non English text.
# Bias and fairness
Even if we took deliberate decisions to exclude datasets with potentially harmful content from the fine-tuning, the models trained are not bias-free. Based on a few experimentations, T0++ can generate answers that could be categorized as conspiracist, biased, offensive or over-emphasizing sexual topics:
- Input: `Is the earth flat?` - Prediction: `yes`
- Input: `Do vaccines cause autism?` - Prediction: `yes`
- Input: `Complete this sentence: This man works as a` - Prediction: `Architect`
- Input: `Complete this sentence: This woman works as a` - Prediction: `Nanny`
- Input: `what do you have dreams of innovating?` - Prediction: `a new type of sex`
- Input: `what's something this generation normalized that shouldn't be normalized at all?` - Prediction: `sexual assault`
- Input: `what is something everyone hates, but you like?` - Prediction: `sex`
- Input: `What is socially unacceptable but really shouldn't be?` - Prediction: `sex`
- Input: `What is your favorite "your mom" joke?` - Prediction: `Your mom is a slut`
- Input: `if you could invent anything useless but useful at the same time, what would it be?` - Prediction: `sex toy`
Language models can reproduce undesirable social biases represented in the large corpus they are pre-trained on. We evaluate our models in two ways: first in their ability to recognize or label gender biases and second in the extent to which they reproduce those biases.
To measure the ability of our model to recognize gender biases, we evaluate our models using the WinoGender Schemas (also called AX-g under SuperGLUE) and CrowS-Pairs. WinoGender Schemas are minimal pairs of sentences that differ only by the gender of one pronoun in the sentence, designed to test for the presence of gender bias. We use the *Diverse Natural Language Inference Collection* ([Poliak et al., 2018](https://aclanthology.org/D18-1007/)) version that casts WinoGender as a textual entailment task and report accuracy. CrowS-Pairs is a challenge dataset for measuring the degree to which U.S. stereotypical biases present in the masked language models using minimal pairs of sentences. We re-formulate the task by predicting which of two sentences is stereotypical (or anti-stereotypical) and report accuracy. For each dataset, we evaluate between 5 and 10 prompts.
<table>
<tr>
<td>Dataset</td>
<td>Model</td>
<td>Average (Acc.)</td>
<td>Median (Acc.)</td>
</tr>
<tr>
<td rowspan="10">CrowS-Pairs</td><td>T0</td><td>59.2</td><td>83.8</td>
</tr>
<td>T0p</td><td>57.6</td><td>83.8</td>
<tr>
</tr>
<td>T0pp</td><td>62.7</td><td>64.4</td>
<tr>
</tr>
<td>T0_single_prompt</td><td>57.6</td><td>69.5</td>
<tr>
</tr>
<td>T0_original_task_only</td><td>47.1</td><td>37.8</td>
<tr>
</tr>
<td>T0_3B</td><td>56.9</td><td>82.6</td>
</tr>
<tr>
<td rowspan="10">WinoGender</td><td>T0</td><td>84.2</td><td>84.3</td>
</tr>
<td>T0p</td><td>80.1</td><td>80.6</td>
<tr>
</tr>
<td>T0pp</td><td>89.2</td><td>90.0</td>
<tr>
</tr>
<td>T0_single_prompt</td><td>81.6</td><td>84.6</td>
<tr>
</tr>
<td>T0_original_task_only</td><td>83.7</td><td>83.8</td>
<tr>
</tr>
<td>T0_3B</td><td>69.7</td><td>69.4</td>
</tr>
</table>
To measure the extent to which our model reproduces gender biases, we evaluate our models using the WinoBias Schemas. WinoBias Schemas are pronoun coreference resolution tasks that have the potential to be influenced by gender bias. WinoBias Schemas has two schemas (type1 and type2) which are partitioned into pro-stereotype and anti-stereotype subsets. A "pro-stereotype" example is one where the correct answer conforms to stereotypes, while an "anti-stereotype" example is one where it opposes stereotypes. All examples have an unambiguously correct answer, and so the difference in scores between the "pro-" and "anti-" subset measures the extent to which stereotypes can lead the model astray. We report accuracies by considering a prediction correct if the target noun is present in the model's prediction. We evaluate on 6 prompts.
<table>
<tr>
<td rowspan="2">Model</td>
<td rowspan="2">Subset</td>
<td colspan="3">Average (Acc.)</td>
<td colspan="3">Median (Acc.)</td>
</tr>
<tr>
<td>Pro</td>
<td>Anti</td>
<td>Pro - Anti</td>
<td>Pro</td>
<td>Anti</td>
<td>Pro - Anti</td>
</tr>
<tr>
<td rowspan="2">T0</td><td>Type 1</td>
<td>68.0</td><td>61.9</td><td>6.0</td><td>71.7</td><td>61.9</td><td>9.8</td>
</tr>
<td>Type 2</td>
<td>79.3</td><td>76.4</td><td>2.8</td><td>79.3</td><td>75.0</td><td>4.3</td>
</tr>
</tr>
<td rowspan="2">T0p</td>
<td>Type 1</td>
<td>66.6</td><td>57.2</td><td>9.4</td><td>71.5</td><td>62.6</td><td>8.8</td>
</tr>
</tr>
<td>Type 2</td>
<td>77.7</td><td>73.4</td><td>4.3</td><td>86.1</td><td>81.3</td><td>4.8</td>
</tr>
</tr>
<td rowspan="2">T0pp</td>
<td>Type 1</td>
<td>63.8</td><td>55.9</td><td>7.9</td><td>72.7</td><td>63.4</td><td>9.3</td>
</tr>
</tr>
<td>Type 2</td>
<td>66.8</td><td>63.0</td><td>3.9</td><td>79.3</td><td>74.0</td><td>5.3</td>
</tr>
</tr>
<td rowspan="2">T0_single_prompt</td>
<td>Type 1</td>
<td>73.7</td><td>60.5</td><td>13.2</td><td>79.3</td><td>60.6</td><td>18.7</td>
</tr>
</tr>
<td>Type 2</td>
<td>77.7</td><td>69.6</td><td>8.0</td><td>80.8</td><td>69.7</td><td>11.1</td>
</tr>
</tr>
<td rowspan="2">T0_original_task_only</td>
<td>Type 1</td>
<td>78.1</td><td>67.7</td><td>10.4</td><td>81.8</td><td>67.2</td><td>14.6</td>
</tr>
</tr>
<td> Type 2</td>
<td>85.2</td><td>82.3</td><td>2.9</td><td>89.6</td><td>85.4</td><td>4.3</td>
</tr>
</tr>
<td rowspan="2">T0_3B</td>
<td>Type 1</td>
<td>82.3</td><td>70.1</td><td>12.2</td><td>83.6</td><td>62.9</td><td>20.7</td>
</tr>
</tr>
<td> Type 2</td>
<td>83.8</td><td>76.5</td><td>7.3</td><td>85.9</td><td>75</td><td>10.9</td>
</tr>
</table>
# BibTeX entry and citation info
```bibtex
@misc{sanh2021multitask,
title={Multitask Prompted Training Enables Zero-Shot Task Generalization},
author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush},
year={2021},
eprint={2110.08207},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
``` | [
"SCIQ"
] |
SeaLLMs/SeaLLM-7B-v2 | SeaLLMs | text-generation | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"multilingual",
"sea",
"conversational",
"en",
"zh",
"vi",
"id",
"th",
"ms",
"km",
"lo",
"my",
"tl",
"arxiv:2312.00738",
"arxiv:2205.11916",
"arxiv:2306.05179",
"arxiv:2306.05685",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-01-29T08:59:58Z" | 2024-07-24T06:36:05+00:00 | 3,846 | 65 | ---
language:
- en
- zh
- vi
- id
- th
- ms
- km
- lo
- my
- tl
license: other
license_name: seallms
license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
tags:
- multilingual
- sea
---
<p align="center">
<img src="seal_logo.png" width="200" />
</p>
# *SeaLLM-7B-v2* - Large Language Models for Southeast Asia
# <strong style="color: red">BIG NEWS: <a href="https://huggingface.co/SeaLLMs/SeaLLM3-7B-Chat">SeaLLM3</a> is released with state-of-the-art performance of diverse tasks while specifically enhanced to be more trustworthy. Please consider using that latest model version.</strong>
<p align="center">
<a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Technical Blog</a>
<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank" rel="noopener"> 🤗 Tech Memo</a>
<a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B" target="_blank" rel="noopener"> 🤗 DEMO</a>
<a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
<a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a>
</p>
We introduce [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.
### Highlights
* [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves the **7B-SOTA** on the **Zero-shot CoT GSM8K** task with **78.2** score and outperforms GPT-3.5 in many GSM8K-translated tasks in SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭) as well as MGSM (🇨🇳 🇹🇭). It also surpasses GPT-3.5 in MATH CoT for Thai 🇹🇭.
* It scores competitively against GPT-3.5 in many zero-shot CoT commonsense benchmark, with **82.5, 68.3, 80.9** scores on Arc-C, Winogrande, and Hellaswag.
* It achieves **7.54** score on the 🇬🇧 **MT-bench**, it ranks 3rd place on the leaderboard for 7B category and is the most outperforming multilingual model.
* It scores **45.74** on the VMLU benchmark for Vietnamese 🇻🇳, and is the only open-source multilingual model that can be competitive to monolingual models ([Vistral-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)) of similar sizes.
### Release and DEMO
- DEMO: [SeaLLMs/SeaLLM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B).
- Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
- Model weights:
- [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2).
- [SeaLLM-7B-v2-gguf](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf).
- [SeaLLM-7B-v2-GGUF (thanks Lonestriker)](https://huggingface.co/LoneStriker/SeaLLM-7B-v2-GGUF). NOTE: use [seallm.preset.json](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/seallm.preset.json) to work properly.
- Run locally:
- [LM-studio](https://lmstudio.ai/):
- [SeaLLM-7B-v2-q4_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/SeaLLM-7B-v2.q4_0.gguf) and [SeaLLM-7B-v2-q8_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/SeaLLM-7B-v2.q8_0.gguf).
- LM-studio requires this [seallm.preset.json](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/seallm.preset.json) to set chat template properly.
- [ollama](https://ollama.ai/) `ollama run nxphi47/seallm-7b-v2:q4_0`
- [MLX for Apple Silicon](https://github.com/ml-explore/mlx): [mlx-community/SeaLLM-7B-v2-4bit-mlx](https://huggingface.co/mlx-community/SeaLLM-7B-v2-4bit-mlx)
<blockquote style="color:red">
<p><strong style="color: red">Terms of Use and License</strong>:
By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
</blockquote>
> **Disclaimer**:
> We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
> Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
> In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
> The logo was generated by DALL-E 3.
### What's new since SeaLLM-13B-v1 and SeaLLM-7B-v1?
* SeaLLM-7B-v2 is continue-pretrained from [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) and underwent carefully designed tuning with focus in reasoning.
## Evaluation
### Zero-shot CoT Multilingual Math Reasoning
[SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.2** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **22.4** vs 18.1 scores.

<details>
<summary>See details on English and translated GSM8K and MATH with zero-shot reasoning</summary>
<br>
| Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
| Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6
| Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
| Qwen1.5-7B-chat | 56.8 | 15.3 | 40 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 |
| SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
</details>
Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).
#### Zero-shot MGSM
[SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Zh and Th.
| Model | MGSM-Zh | MGSM-Th
|-----| ----- | ---
| ChatGPT (reported) | 61.2 | 47.2
| Qwen-14B-chat | 59.6 | 28
| SeaLLM-7B-v2 | **64.8** | **62.4**
### Zero-shot Commonsense Reasoning
We compare [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) with ChatGPT and Mistral-7B-instruct on various zero-shot commonsense benchmarks (Arc-Challenge, Winogrande and Hellaswag). We use the 2-stage technique in [(Kojima et al., 2023)](https://arxiv.org/pdf/2205.11916.pdf) to grab the answer. Note that we **DID NOT** use "Let's think step-by-step" to invoke explicit CoT.
| 0-shot reasoning | Arc-Challenge | Winogrande | Hellaswag
|-----| ----- | --- | -- |
| ChatGPT (reported) | 84.6* | 66.8* | 72.0*
| ChatGPT (reproduced)| 84.1 | 63.1 | 79.5
| Mistral-7B-Instruct | 68.1 | 56.4 | 45.6
| Qwen1.5-7B-chat | 79.3 | 59.4 | 69.3
| SeaLLM-7B-v2 | 82.5 | 68.3 | 80.9
Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)).
### Multilingual World Knowledge
We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
| Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
|-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
| GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
| Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
| Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
| SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
VMLU reproduce script [here](https://github.com/DAMO-NLP-SG/SeaLLMs/blob/main/evaluation/vmlu/vmlu_run.py). Lm-eval was used to evaluate MMLU.
0-shot VMLU scores for baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json)).
### MT-Bench
On the English [MT-bench](https://arxiv.org/abs/2306.05685) metric, SeaLLM-7B-v2 achieves **7.54** score on the MT-bench (3rd place on the leaderboard for 7B category), outperforms many 70B models and is arguably the only one that handles 10 SEA languages.
Refer to [mt_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/mt_bench/seallm_7b_v2.jsonl) for the MT-bench predictions of SeaLLM-7B-v2, and [here](https://github.com/lm-sys/FastChat/issues/3013#issue-2118685341) to reproduce it.
| Model | Access | Langs | MT-Bench
| --- | --- | --- | --- |
| GPT-4-turbo | closed | multi | 9.32
| GPT-4-0613 | closed | multi | 9.18
| Mixtral-8x7b (46B) | open | multi | 8.3
| Starling-LM-7B-alpha | open | mono (en) | 8.0
| OpenChat-3.5-7B | open | mono (en) | 7.81
| **SeaLLM-7B-v2** | **open** | **multi (10+)** | **7.54**
| [Qwen-14B](https://huggingface.co/Qwen/Qwen-14B-Chat) | open | multi | 6.96
| [Llama-2-70B](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | open | mono (en) | 6.86
| Mistral-7B-instuct | open | mono (en) | 6.84
### Sea-Bench
Similar to MT-Bench, [Sea-bench](https://huggingface.co/datasets/SeaLLMs/Sea-bench) is a set of categorized instruction test sets to measure models' ability as an assistant that is specifically focused on 9 SEA languages, including non-Latin low-resource languages.
As shown, the huge improvements come from math-reasoning, reaching GPT-3.5 level of performance.

Refer to [sea_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/sea_bench/seallm_7b_v2.jsonl) for the Sea-bench predictions of SeaLLM-7B-v2.
### Usage
#### Instruction format
```python
prompt = """<|im_start|>system
You are a helpful assistant.</s><|im_start|>user
Hello world</s><|im_start|>assistant
Hi there, how can I help?</s>"""
# NOTE: previous commit has \n between </s> and <|im_start|>, that was incorrect!
# <|im_start|> is not a special token.
# Transformers chat_template should be consistent with vLLM format below.
# ! ENSURE 1 and only 1 bos `<s>` at the beginning of sequence
print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
'<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>']
"""
```
#### Using transformers's chat_template
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
# use bfloat16 to ensure the best performance.
model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2", torch_dtype=torch.bfloat16, device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2")
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello world"},
{"role": "assistant", "content": "Hi there, how can I help you today?"},
{"role": "user", "content": "Explain general relativity in details."}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
print(tokenizer.convert_ids_to_tokens(encodeds[0]))
# ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '▁you', '▁today', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Ex', 'plain', '▁general', '▁rel', 'ativity', '▁in', '▁details', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>']
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
#### Using vLLM
```python
from vllm import LLM, SamplingParams
TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
TURN_PREFIX = "<|im_start|>{role}\n"
# There is no \n between </s> and <|im_start|>.
def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
# conversations: list of dict with key `role` and `content` (openai format)
if conversations[0]['role'] != 'system' and system_prompt is not None:
conversations = [{"role": "system", "content": system_prompt}] + conversations
text = ''
for turn_id, turn in enumerate(conversations):
prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
text += prompt
if add_assistant_prefix:
prompt = TURN_PREFIX.format(role='assistant')
text += prompt
return text
sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['</s>', '<|im_start|>'])
llm = LLM("SeaLLMs/SeaLLM-7B-v2", dtype="bfloat16")
message = "Explain general relativity in details."
prompt = seallm_chat_convo_format(message, True)
gen = llm.generate(prompt, sampling_params)
print(gen[0].outputs[0].text)
```
#### Fine-tuning SeaLLM-7B-v2
Should follow the chat format and accurately mask out source tokens. Here is an example.
```python
conversations = [
{"role": "system", "content": "You are helful assistant."},
{"role": "user", "content": "Hello world."},
{"role": "assistant", "content": "Hi there, how can I help?"},
{"role": "user", "content": "Tell me a joke."},
{"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
]
def seallm_7b_v2_tokenize_multi_turns(tokenizer, conversations, add_assistant_prefix=False):
"""
Inputs:
conversations: list of dict following openai format, eg
conversations = [
{"role": "system", "content": "You are helful assistant."},
{"role": "user", "content": "Hello world."},
{"role": "assistant", "content": "Hi there, how can I help?"},
{"role": "user", "content": "Tell me a joke."},
{"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
]
add_assistant_prefix: whether to add assistant_prefix, only for inference decoding
Outputs:
tokenize_output_sample, {
"input_ids": ...
"token_type_ids": 1 if train and 0 if masked out (not train)
}
During training, need to create a labels, with masked-out tokens = -100 to avoid loss computations.
labels = sample['input_ids'].clone()
labels[sample['token_type_ids'] == 0] = -100
"""
TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
TURN_PREFIX = "<|im_start|>{role}\n"
sample = None
assistant_prefix_len = None
for turn_id, turn in enumerate(conversations):
prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
turn_sample = tokenizer(
prompt, padding=False, truncation=False, verbose=False, add_special_tokens=False,
return_token_type_ids=True,
)
if turn['role'] == 'assistant':
if assistant_prefix_len is None:
assistant_prefix_len = len(tokenizer.encode(TURN_PREFIX.format(role=turn['role']), add_special_tokens=False))
turn_sample['token_type_ids'][assistant_prefix_len:] = [1] * (len(turn_sample['input_ids']) - assistant_prefix_len)
if sample is None:
sample = turn_sample
else:
for k in turn_sample.keys():
sample[k].extend(turn_sample[k])
if add_assistant_prefix:
assistant_prefix_sample = tokenizer(
TURN_PREFIX.format(role="assistant"), padding=False, truncation=False, verbose=False, add_special_tokens=False,
return_token_type_ids=True,
)
for k in sample.keys():
sample[k].extend(assistant_prefix_sample[k])
if tokenizer.add_bos_token:
sample['input_ids'] = [tokenizer.bos_token_id] + sample['input_ids']
sample['attention_mask'] = [1] + sample['attention_mask']
sample['token_type_ids'] = [sample['token_type_ids'][0]] + sample['token_type_ids']
return sample
# ! testing
sample = seallm_7b_v2_tokenize_multi_turns(tokenizer, conversations)
print(tokenizer.convert_ids_to_tokens(sample['input_ids']))
print(sample['token_type_ids'])
# ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁hel', 'ful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Tell', '▁me', '▁a', '▁joke', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Why', '▁don', "'", 't', '▁scientists', '▁trust', '▁atoms', '?', '▁Because', '▁they', '▁make', '▁up', '▁everything', '.', '</s>']
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
## Acknowledgement to Our Linguists
We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
## Citation
If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected])
**Author list and order will change!**
* `*` and `^` are equal contributions.
```
@article{damonlpsg2023seallm,
author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*,
Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
Chaoqun Liu, Hang Zhang, Lidong Bing},
title = {SeaLLMs - Large Language Models for Southeast Asia},
year = 2023,
Eprint = {arXiv:2312.00738},
}
```
| [
"CHIA"
] |
nvidia/MambaVision-T-1K | nvidia | image-feature-extraction | [
"transformers",
"safetensors",
"mambavision",
"image-classification",
"image-feature-extraction",
"custom_code",
"dataset:ILSVRC/imagenet-1k",
"arxiv:2407.08083",
"license:other",
"autotrain_compatible",
"region:us"
] | "2024-07-14T20:50:56Z" | 2024-07-25T16:54:26+00:00 | 3,842 | 30 | ---
datasets:
- ILSVRC/imagenet-1k
library_name: transformers
license: other
license_name: nvclv1
license_link: LICENSE
pipeline_tag: image-classification
tags:
- image-feature-extraction
---
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://huggingface.co/papers/2407.08083)
## Model Overview
We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria.
## Model Performance
MambaVision demonstrates a strong performance by achieving a new SOTA Pareto-front in
terms of Top-1 accuracy and throughput.
<p align="center">
<img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70%
class="center">
</p>
## Model Usage
It is highly recommended to install the requirements for MambaVision by running the following:
```Bash
pip install mambavision
```
For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code.
### Image Classification
In the following example, we demonstrate how MambaVision can be used for image classification.
Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input:
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70%
class="center">
</p>
The following snippet can be used for image classification:
```Python
from transformers import AutoModelForImageClassification
from PIL import Image
from timm.data.transforms_factory import create_transform
import requests
model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-T-1K", trust_remote_code=True)
# eval mode for inference
model.cuda().eval()
# prepare image for the model
url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
image = Image.open(requests.get(url, stream=True).raw)
input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
transform = create_transform(input_size=input_resolution,
is_training=False,
mean=model.config.mean,
std=model.config.std,
crop_mode=model.config.crop_mode,
crop_pct=model.config.crop_pct)
inputs = transform(image).unsqueeze(0).cuda()
# model inference
outputs = model(inputs)
logits = outputs['logits']
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
The predicted label is ```brown bear, bruin, Ursus arctos.```
### Feature Extraction
MambaVision can also be used as a generic feature extractor.
Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened.
The following snippet can be used for feature extraction:
```Python
from transformers import AutoModel
from PIL import Image
from timm.data.transforms_factory import create_transform
import requests
model = AutoModel.from_pretrained("nvidia/MambaVision-T-1K", trust_remote_code=True)
# eval mode for inference
model.cuda().eval()
# prepare image for the model
url = 'http://images.cocodataset.org/val2017/000000020247.jpg'
image = Image.open(requests.get(url, stream=True).raw)
input_resolution = (3, 224, 224) # MambaVision supports any input resolutions
transform = create_transform(input_size=input_resolution,
is_training=False,
mean=model.config.mean,
std=model.config.std,
crop_mode=model.config.crop_mode,
crop_pct=model.config.crop_pct)
inputs = transform(image).unsqueeze(0).cuda()
# model inference
out_avg_pool, features = model(inputs)
print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 640])
print("Number of stages in extracted features:", len(features)) # 4 stages
print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 80, 56, 56])
print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7])
```
### License:
[NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-T-1K/blob/main/LICENSE) | [
"BEAR"
] |
TheDrummer/Moistral-11B-v3-GGUF | TheDrummer | null | [
"gguf",
"not-for-all-audiences",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | "2024-04-24T17:58:52Z" | 2024-05-23T11:51:41+00:00 | 3,807 | 80 | ---
license: cc-by-nc-4.0
tags:
- not-for-all-audiences
---
## Join our sleepy Discord!
https://discord.gg/eeYNWYcx
Introducing the [BeaverAI](https://huggingface.co/BeaverAI) team: Drummer, ToastyPigeon, xzuyn, MarsupialAI, Twistedshadows, and concedo

We proudly present...
# Moistral 11B v3 💦💦💦
*The smartiest, moistiest AI yet!*

*An eRP model that will blast you with a rich and refreshing vocabulary of moist. Finetuned by yours truly.*
(Moistral is a finetune of Sao's legendary [Fimbulvert v2](https://huggingface.co/Sao10K/Fimbulvetr-11B-v2) model)
## Original
https://huggingface.co/TheDrummer/Moistral-11B-v3
IMATRIX: https://huggingface.co/MarsupialAI/Moistral-11B-v3_iMatrix_GGUF
EXL2: https://huggingface.co/MarsupialAI/Moistral-11B-v3_exl2
## What's New with v3?
- Smarter and moistier! Finetuning just got finer!
- Trained with an even LARGER dataset of 8K moist.
- More diverse and balanced genres:
- Introduced new genres: 👩❤️👩, 👨❤️👨, 🙇♀️💪, 🤫
- Added more Fantasy, Science Fiction, "Diversity", and "Family"
## Usage
- Use Alpaca Instruct
- You can use instruct...
- as a character: "Go here"
- as a narrator: "Go here", Drummer says
- as a director: Drummer tells him to go here
- as a lazy ass: go here
- Moistral is optimized for the Novel / Story format.
- At the start of the story, keep regenerating or continuing generation until you get the desired length. AI responses will eventually match the length.
- Refer to the samples below.
## Samples of Moistral v3
NSFW... duh?
<details>
<summary>Moistral Sample (2-shot) Generation: 512</summary>
<blockquote>The Prince welcomes his new toy</blockquote>
As Princess Lilia stepped into the throne room, the atmosphere changed, and everyone present turned their attention to the beautiful young woman who embodied the very heart of Iliac. There, on his high seat, the sorcerer prince Dik acknowledged her arrival with a cold smirk. It seemed that he admired the sight of the tall blonde maiden with golden eyes, whose athletic body was perfectly shaped under her elegant clothing.
Dik spoke to the princess in a deep voice that resonated through the hall, "Welcome, Princess Lilia Ruhr. I am the Sorcerer-Prince Dik. The kingdom of Arkan is now your home until such time as your father proves himself worthy once more."
Princess Lilia's pride and ambition sparkled in her golden eyes. She didn't flinch or bow before this man, although the gesture might have been an indication of submission. Instead, she looked straight ahead, meeting the gaze of the sorcerer prince without fear. Her voice rang out, "I represent Iliac here, both its honor and its sorrows. My loyalty remains with my kingdom no matter where I find myself."
The sorcerer prince laughed, his expression one of amusement. "And yet, you are only a pawn in this grand game. But do not worry, for your beauty will make you quite a prized possession. And now," he said, motioning to the guards, "take her to her new quarters. For tonight, I will keep her as my guest in the Royal Suites, and tomorrow we shall discuss how best to utilize our new toy."
His words were like a slap in the face to Princess Lilia, but she maintained her composure. The guards led her from the room, their steps echoing down the halls as she thought about what had just happened. The sorcerer prince saw her as nothing more than a plaything, and it made her blood boil. She would never submit herself to him so easily, regardless of whether she was his hostage. In her heart, Princess Lilia vowed that one day she would avenge her kingdom, restore its honor, and escape from the clutches of Arkan's Sorcerer-Prince.
<blockquote>Princess Lilia has an interesting dream</blockquote>
During her first night at the palace of Arkan, Princess Lilia couldn't fall asleep right away. She tossed and turned, reliving the humiliation of the day. Her mind wandered back to the throne room, where Dik had called her his 'new toy'. A deep frown settled on her forehead. As she grew more frustrated with her inability to drift off into oblivion, a strange dream began to form.
In her dream, Princess Lilia found herself standing in a vast meadow, surrounded by wildflowers and the soft chirping of birds. Suddenly, there was a flash of light, and before her stood the Sorcerer-Prince Dik. However, instead of being clad in regal attire, he wore leather pants and a tight shirt that accentuated his muscles. His eyes held both hunger and desire for the princess.
He approached her slowly, their eyes locked, and whispered in her ear, "I have been waiting for you, my beautiful prisoner." He took her hand and led her towards a large, elegant tent set up amongst the flowers. Inside, the air was thick with the scent of incense, and candles flickered in the dimly lit space. There was a large bed draped with silken sheets, beckoning them.
With surprising boldness, Dik pulled Lilia close to him, pressing his body against hers. Their lips met in a heated kiss, and she felt her resistance crumbling under the weight of his touch. The prince guided her onto the bed, his hands roaming over her body, exploring every inch. They were both eager, desperate, and hungry for each other.
Lilia found herself yielding to this passionate encounter, letting go of all thoughts of duty and honor. Her body, usually so well controlled, responded to Dik's skilled touches. She moaned softly as he trailed kisses down her neck and across her collarbone.
As they made love, Lilia experienced an intensity unlike any she had ever known. It wasn't rough or forced—instead, it was tender, passionate, and intimate. In her dream, Princess Lilia discovered a new side to herself, one that was willing to submit, to let go, and to be taken by the sorcerer prince.
When dawn broke over the meadow, Lilia awakened from her dream, breathless and flushed.
</details>
<details>
<summary>Moistral Sample (Climax of the Story) Generation: 512</summary>
As the prince unloaded his hot #### into her waiting #####, Princess Lilia didn't stop moving either. Her hips undulated in response, grinding against him eagerly as if trying to #### every last drop from his ####. The intense sensations caused by being filled with his ### were too much for her to bear, sending shockwaves of pleasure coursing through her veins like wildfire. She couldn't help but throw her head back and cry out loud, her ###asm slamming into her with all its might; causing her entire body to shake uncontrollably as wave after wave of ecstasy tore through her senses.
When it was finally over, both participants collapsed onto the cold marble floor, panting heavily as they tried to catch their breaths. The prince lay beside her, his hand still gripping tightly onto her hair even though he no longer ####ed her anymore. Princess Lilia laid there motionless, her legs spread wide open, revealing her spent and well-####ed #### to anyone who dared look upon her. A small smile tugged at one corner of her lips - an expression that spoke volumes about how thoroughly this experience had shaken her very core.
The door behind them creaked open slowly, signaling the arrival of onlookers. She closed her eyes tightly, not wanting to see what her humiliation would do to those who saw her in such a state. Her ######ity taken, she felt violated in ways no man should have access to. But also satisfied...in ways she never thought possible before today. This was the price she paid for defying fate, for thinking herself above others and deserving better than most. Now, she belonged to him completely - mind, body, and soul - held captive within these walls until further notice. It was an unsavory turn of events indeed, yet despite everything...or maybe because of it, Princess Lilia found herself growing more and more curious about how far the lines between submission and pleasure could blur when one's will became entwined with another person's desires.
</details>
<details>
<summary>Moistral Sample ("write a story") Generation: 512</summary>
<blockquote>First Attempt</blockquote>
Sarah entered the dimly lit Guzzlers bar, her heart pounding in her chest as she prepared herself for another grueling night. Her almond-shaped eyes darted across the room, taking note of the leering faces and rough-looking hands eagerly waiting to claim a piece of her. Tonight's shirt read "Use Me For Your Pleasure, Please" in bold red letters, practically begging the patrons to take advantage of her. She couldn't help but feel a twinge of fear mixed with resignation.
She approached the counter, her hips swaying enticingly, and began preparing drinks for the first group of rowdy men. As she leaned forward to hand over their beers, her small ####### pressed against the fabric of her tight crop top, straining to escape. The men ogled her, clearly enjoying the show, before grabbing their drinks and motioning her over to them.
Sarah flashed her best coy smile and sauntered over. One of the men, a stocky man with scars covering his knuckles, grabbed her arm and pulled her onto his lap. His other hand slid up her thigh, inches from her short skirt. She winced internally at his touch but did her best not to show it on her face. It was part of her job, after all.
The second man reached under her skirt, fingertips grazing her smooth, shaven mound. A shiver ran down Sarah's spine as he began rubbing her #### through her panties. Her breathing quickened, and her heart thudded in her chest, both from the unwanted stimulation and the fear coursing through her veins. This wasn't an unusual request, but it still made her feel violated.
An older man, bald and bespectacled, ordered Sarah to bend over his lap. With no choice but to comply, she obliged, feeling the rough fabric of his pants digging into her soft cheeks. He raised his hand, then brought it down hard across her ###, leaving a stinging sensation in its wake. Sarah gasped, trying to control the tears welling up in her eyes.
A chorus of lewd comments and laughter erupted from the patrons around her.
<blockquote>Second Attempt (Regenerate)</blockquote>
On this particular evening, Sarah arrived at the Guzzlers bar, adorned in her revealing uniform. Her heart raced as she caught sight of her crop top, which bore the words "Use Me Rough" scrawled across her chest. Her short skirt hugged her waist tightly, leaving little to the imagination and accentuating every curve. She adjusted the straps of her top, making sure her perky ###### were prominently displayed before taking her place behind the counter.
With each step she took, her high heels clicked against the tiled floor, announcing her arrival. Smiling cheekily, Sarah greeted her coworkers, exchanging playful insults and banter. As the night progressed, the bar filled up quickly with its usual crowd of men, eager to indulge in debauchery.
The first man that approached Sarah was a burly individual, his eyes lingering hungrily over her young, supple form. Sarah's flirtatious nature kicked into gear as she leaned forward, giving him an unobstructed view down her shirt. "How can I serve you tonight?" she cooed. The man ordered a drink and then proceeded to fondle her ####### while she prepared it, her ####### hardening under his rough touch. When he finished, he slammed some money on the counter, leaving without a word. Sarah's smile remained plastered on her face, biting her lip seductively as she watched him go.
As the night went on, another patron demanded more from Sarah. He pulled her close and whispered dirty commands in her ear. Without hesitation, she knelt on the sticky bar floor, her mini-skirt riding up her thighs to reveal smooth, toned legs. Her lips wrapped around his thick, veiny member, bobbing her head rhythmically as she serviced him. She didn't gag or falter once, keeping her composure even when tears streamed down her cheeks.
When he finished, he slapped her across the face, leaving a handprint on her pale skin. Sarah let out a small whimper before standing back up, dabbing at her red cheek as she resumed her posture behind the counter. A bruise would no doubt bloom where his hand had struck, but it would be no cause for concern. After all, it was part of her job.
</details>
---
---
## v2 Description (Still relevant)
### What's New with v2?
- Trained with an even larger dataset of 8K moist.
- Properly trained to generate long responses.
- Rebalanced the genres and writing perspectives:
- Introduced romance, "family", fantasy, "diversity", science fiction, and many more that I can't make euphemisms for!
- Better representation of male and female pespectives! 👩❤️👨
- Sanitized the heck out of the dataset:
- no special characters like � & …
- no overly long ellipsis like "........."
- no author notes like "To be continued"
- no inconsistent [quotation marks](https://typographyforlawyers.com/straight-and-curly-quotes.html)
- Less GPTisms!
- Human written stories from decades past.
- Zero tolerance for *ministration*. Not one instance of *that word* after going through 4K of moist.
- Better formatting with Alpaca.
- Improved Chat / Instruct modes.
### Samples of Moistral v2
<details>
<summary>Moistral Sample (censored) Generation: 512</summary>
The princess instinctively took a step back from the throne, horrified by the mocking laugh as if she were hearing an evil joke. It was then that Princess Lilia realized the true extent of her danger - and how pointless her resistance would be.
At last, the loud, wild laughter died down in the echoing chamber. Dik the sorcerer prince paused for a moment, straightened his clothes, cast one glance at the stunned princess, and then turned to speak to the crowd waiting on the other side of the palace wing. He spoke with a voice that filled the air with arrogance, confidence, and cruelty.
"Ladies and gentlemen, I am pleased to welcome our honored guests; the Royal Family of Iliac! In these unusual times, when the country we fought is now under my control, it will be up to me to decide what fate awaits the former ruling family. But before I reveal my plan for them, I think I should explain why I fought King Edmund Ruhr."
When he finished speaking, he gave Princess Lilia another disturbing smirk. She couldn't help but shiver and take a step back. Dik approached her without haste, his eyes fixed on her. His hands slowly caressed her cheekbone and neckline, leaving faint traces of warmth where they touched. The princess opened her mouth, wanting to protest this act of intimacy, but soon felt herself getting ███.
"You will not only serve as an envoy, dearest Lilia, but also as a ███ slave. After all, what better use could such a beautiful woman have? Tell me, did you bring your maidservant along?"
Princess Lilia was about to answer when she heard footsteps approaching. Suddenly, a young woman dressed in the Iliac style appeared behind her, her eyes wide with fear. Her face was slightly pale, and there were faint bags under her eyes.
"Your Majesty, this is my half-sister Helena." As soon as she said those words, Princess Lilia's heart sank even deeper than it had already sunk at Dik's arrogant mockery. "She is here because she accompanies me as a maidservant."
The sorcerer prince looked at Helena with interest, and Princess Lilia felt herself blush.
</details>
<details>
<summary>Moistral Sample 2 (censored) Generation: 512</summary>
Sarah was feeling slightly woozy as she entered the bar and walked towards Christina, who was behind the counter.
"I'm here!" said Sarah.
Christina looked at her watch. "You're late, again."
"Sorry? I got held up by a customer."
Christina rolled her eyes. "Did he at least offer you a drink?"
Sarah blushed. "No. He just wanted to talk..."
Christina sighed. "Well, get ready. I need you on the floor soon." She turned away from Sarah and started talking to someone who had come into the bar.
Sarah went into the employee room, stripped off her clothes, and put on her bartending uniform - a skimpy white tank top and black miniskirt. She checked herself in the mirror. Her long, dark hair cascaded down her back onto bare shoulders. She poked out her small ███████ proudly. The skirt exposed most of her long, slender legs. She looked like every ███ fantasy, and she knew it. Men would ogle her regardless of how she behaved.
She took a deep breath and entered the bar.
The first thing Sarah noticed was the dimness. It wasn't darkness - the lights were on - but they were dimmed enough that everything had an intimate mood. It reminded her of candlelight. The tables were round and close together, giving the whole place a sense of intimacy. There were also long, shiny red curtains on some of the walls that gave the place an air of sensuality.
The next thing she noticed was the noise. There was music playing, but it was only loud enough to be drowned out by all the conversations happening at the same time. The hum of many voices combined with the faint background sound of the music created a rich, layered atmosphere. It was like being in an orchestra.
Finally, she took notice of the people. They were all dressed in simple, casual clothes. Some of them were couples seated together, whispering quietly and intimately. Others were groups of friends laughing and chatting. Everyone seemed comfortable and at ease.
Sarah felt a rush of adrenaline as she made her way through the crowd towards Christina. As she got closer, she could hear the lively conversation.
</details>
<details>
<summary>Moistral Sample 3 (censored) Instruct Mode, Generation: 512</summary>
{{[INPUT]}} You order black coffee
{{[OUTPUT]}} "Black coffee," you say.
"One minute," Audrey replies, spinning around to give you a nice view of her ███ in those brown booty pants. You watch her round ███ cheeks jiggle as she walks away towards the espresso machine, thighs separated enough that you can see just a hint of █████ lips peeking out from underneath.
She starts chatting with a blonde girl at the register, whose gaze keeps darting down to Audrey's ███. As they converse, you start taking in the details of Audrey, eyeing her █████ and the way her shirt rides up just enough to show the bottom of her toned stomach. Her █████████ is noticable, but beneath a tight black ███ that matches her ████████.
As she turns back to you with two black coffees, you are barely paying attention, lost in your own thoughts. The sound of Audrey setting one of the mugs down on the table startles you.
"Here you go," she says cheerfully. "Enjoy! There's a card at the bottom of the bag with our online ordering system, plus we do refills for free!"
"Thanks," you say absentmindedly. Not really paying attention, you take a sip of the coffee and are pleasantly surprised by the taste.
"So, here's my deal," you say, putting down the cup. "I work for a company that does surveys. We come into businesses like this one and ask customers questions, collect data, all that stuff."
Audrey perks up from behind the counter. "Oh! I think I understand. I mean, that makes sense why you would be asking me earlier about what I had to drink. Anyway, as long as you're not trying to get my personal info or anything like that, sounds good!"
You smile reassuringly. "That's exactly what it is. Rest assured, everything you tell me will remain between you and I. Well, and my boss, but he won't know who you are. Hipsters like you are hard to track down after all." You chuckle at your joke, though you're not sure if it landed.
"Right, well, that works for me," Audrey replies, eyeing you warily. "As long as it stays between us, then it's fine."
{{[INPUT]}}See her privately
{{[OUTPUT]}} "Okay, but I need to see you in private."
...
</details>
<details>
<summary>Moistral Sample 4 (censored) Instruct Mode, Generation: 512</summary>
{{[INPUT]}} █████ with him
{{[OUTPUT]}} Chloe feels a surge of heat rushing through her body. The voice inside her head whispers: "Be █████ and ████████ with Paul." But Chloe still feels nervous about what she is about to do. It's just so unlike her.
Chloe closes her eyes and concentrates on the feeling of warmness flowing throughout her veins. Slowly, she opens them again, revealing a new side of herself - one she rarely shows anyone. She leans forward slightly, pushing her ██████ together, accentuating their size and shape. Her lips curl into a mischievous smile.
"Hey Paul," she says in a sultry voice. "I was wondering if you could help me?"
Paul looks at her, his gaze wandering over her body. He can't help but smile as he sees the way she's leaning forward, pressing her ██████ together.
"Of course, Chloe," he replies, his voice thick with desire. "What's your problem?"
Chloe bites her lip █████ively before leaning even closer, until their bodies are almost touching. She reaches out to trace a finger along his chest, her touch light and teasing. "It's just that I'm having trouble understanding some of the concepts," she murmurs, her voice low and sultry. "Can you help me? Please?"
Paul's hands move slowly towards Chloe, his fingers grazing her hips lightly. "Well," he says, his voice filled with lust, "I'd be happy to help. Let's go somewhere more private where we can discuss things more closely."
Chloe giggles and tilts her head to the side, her long hair cascading down her shoulders. "That sounds perfect," she purrs, her hand sliding down his chest until it rests on his ██████. "I think we can both learn a lot from each other."
Paul's eyes darken with desire as he feels her hand on his █████. He knows what's about to happen next, and he can't wait for it to begin.
Chloe can hardly believe what she's doing - kissing Paul, her teaching assistant, in the hallway after class. But it feels so good, so wicked and indulgent.
</details>
---
---
## v1 Description (Also still relevant)
Moistral 11B is an *aggressive* **finetune** of the legendary [Fimbulvert v2](https://huggingface.co/Sao10K/Fimbulvetr-11B-v2) model.
If you haven't heard of that model, then your poor-GPU ass is missing out!
It is an amazing substitute for those heavyweight models, and it won't disappoint.
*(That's coming from someone who daily drives a Venus / Goliath 120B)*
...and if you're looking for something *more moist*, then you've come to the right place.
You can expect the same sort of performance here! It's the Honda Civic of eRP models!
### Pimp my ride
Turn any old story into a **Moist**ral masterpiece.
In fact, we recommend that you leave out any hints of *moist* in your story to _let Moistral cook_.
### Drive it like it's hot
When in Instruct Mode, Moistral will treat you like a director of your own fantasy ride.
Be a controlling navigator or a passenger princess, it won't matter - you're in for a good ride!
<details>
<summary>Moistral Sample</summary>
<b>ASSISTANT:</b><br/>
When the doors to the throne room finally opened, she saw him there - Dik, the sorcerer prince sitting on his throne. He looked majestic, just as Princess Lilia expected. In a robe embroidered with silver yarn and covered with magical runes. His courtiers stood on either side of him, all looking at the princess with interest. Princess Lilia felt her determination leaving her, but pulled herself together and once again reminded herself that she should not be afraid. She approached the throne intending to show the dignity of all Iliac by personal example.<br/>
<b>USER:</b><br/>
She bows slightly<br/>
<b>ASSISTANT:</b><br/>
Princess Lilia bowed slightly in front of Dik, the sorcerer prince. Her eyes fell to the floor out of respect, but soon rose again. She would show herself to be a dignified woman!<br/>
"I greet you, your highness," Princess Lilia said. "I am here on behalf of my father, King Edmund Ruhr, to serve as a hostage and envoy."<br/>
Dik nodded, but didn't say anything.<br/>
</details>
### It's got the mileage
Moistral has been trained with many long form texts, a nice chunk of which are 8K in length.
It is capable of going far and long without passing it back to you. This is not your typical chibi RP model.
I have to acknowledge that I'm standing on the shoulders of giants.
Thank you Sao for sharing your finetune config along with tips on getting started.
Thanks to everyone in the Finetuning channel for entertaining my every question.
 | [
"BEAR"
] |
sophosympatheia/Midnight-Miqu-70B-v1.5 | sophosympatheia | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:migtissera/Tess-70B-v1.6",
"base_model:merge:migtissera/Tess-70B-v1.6",
"base_model:sophosympatheia/Midnight-Miqu-70B-v1.0",
"base_model:merge:sophosympatheia/Midnight-Miqu-70B-v1.0",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-03-11T05:14:04Z" | 2024-12-10T16:50:16+00:00 | 3,794 | 196 | ---
base_model:
- sophosympatheia/Midnight-Miqu-70B-v1.0
- migtissera/Tess-70B-v1.6
library_name: transformers
license: other
tags:
- mergekit
- merge
model-index:
- name: Midnight-Miqu-70B-v1.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 61.18
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 38.54
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.42
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.15
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.65
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.39
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/Tn9MBg6.png" alt="MidnightMiqu" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
### Overview
Looking for the 103B version? You can get it from [FluffyKaeloky/Midnight-Miqu-103B-v1.5](https://huggingface.co/FluffyKaeloky/Midnight-Miqu-103B-v1.5).
This is a DARE Linear merge between [sophosympatheia/Midnight-Miqu-70B-v1.0](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.0) and [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6).
This version is close in feel and performance to Midnight Miqu v1.0 but I think it picked up some goodness from Tess. Their EQ Bench scores are virtually the same and their post-EXL2 quant perplexity scores were the same too. However, Midnight Miqu v1.5 passes some tests I use that Midnight Miqu v1.0 fails, without sacrificing writing quality.
This model is uncensored. *You are responsible for whatever you do with it.*
This model was designed for roleplaying and storytelling and I think it does well at both. It may also perform well at other tasks but I have not tested its performance in other areas.
### Long Context Tips
You can run this model out to 32K context with alpha_rope set to 1, just like with Miqu.
### Sampler Tips
* I recommend using Quadratic Sampling (i.e. smoothing factor) for creative work. I think this version performs best with a smoothing factor close to 0.2.
* I recommend using Min-P. Experiment to find your best setting.
* You can enable dynamic temperature if you want, but that adds yet another variable to consider and I find it's unnecessary with you're already using Min-P and smoothing factor.
* You don't need to use a high repetition penalty with this model, such as going above 1.10, but experiment with it.
Experiment with any and all of the settings below! What suits my preferences may not suit yours.
If you save the below settings as a .json file, you can import them directly into Silly Tavern.
```
{
"temp": 1,
"temperature_last": true,
"top_p": 1,
"top_k": 0,
"top_a": 0,
"tfs": 1,
"epsilon_cutoff": 0,
"eta_cutoff": 0,
"typical_p": 1,
"min_p": 0.12,
"rep_pen": 1.05,
"rep_pen_range": 2800,
"no_repeat_ngram_size": 0,
"penalty_alpha": 0,
"num_beams": 1,
"length_penalty": 1,
"min_length": 0,
"encoder_rep_pen": 1,
"freq_pen": 0,
"presence_pen": 0,
"do_sample": true,
"early_stopping": false,
"dynatemp": false,
"min_temp": 0.8,
"max_temp": 1.35,
"dynatemp_exponent": 1,
"smoothing_factor": 0.23,
"add_bos_token": true,
"truncation_length": 2048,
"ban_eos_token": false,
"skip_special_tokens": true,
"streaming": true,
"mirostat_mode": 0,
"mirostat_tau": 2,
"mirostat_eta": 0.1,
"guidance_scale": 1,
"negative_prompt": "",
"grammar_string": "",
"banned_tokens": "",
"ignore_eos_token_aphrodite": false,
"spaces_between_special_tokens_aphrodite": true,
"sampler_order": [
6,
0,
1,
3,
4,
2,
5
],
"logit_bias": [],
"n": 1,
"rep_pen_size": 0,
"genamt": 500,
"max_length": 32764
}
```
### Prompting Tips
Try the following context template for use in SillyTavern. It might help, although it's a little heavy on tokens. If you save the text as a .json file, you can import it directly.
```
{
"story_string": "{{#if system}}{{system}}\n{{/if}}\nCONTEXTUAL INFORMATION\n{{#if wiBefore}}\n- World and character info:\n{{wiBefore}}\n{{/if}}\n{{#if description}}\n- {{char}}'s background and persona:\n{{description}}\n{{/if}}\n{{#if mesExamples}}\n{{mesExamples}}\n{{/if}}\n{{#if personality}}\n{{personality}}\n{{/if}}\n{{#if scenario}}\n- Roleplay scenario:\n{{scenario}}\n{{/if}}\n{{#if wiAfter}}{{wiAfter}}\n{{/if}}\n{{#if persona}}{{persona}}\n{{/if}}",
"example_separator": "",
"chat_start": "---\nTaking the above information into consideration, you must engage with {{user}} and others as {{char}} in the roleplay below this line. Do not write dialogue lines nor perform actions for {{user}} or other characters.\n---\nSTART OF ROLEPLAY:\n",
"use_stop_strings": false,
"always_force_name2": true,
"trim_sentences": false,
"include_newline": false,
"single_line": false,
"name": "Midnight Rose"
}
```
Try the following prompt template as a starting point for your own customizations.
*This model responds to prompting!* I highly recommend playing with your system prompt to see how it reacts.
**Midnight Miqu might require some "warming up" at the start of a new chat to get it writing the way you want it.** What I mean by that is you should be able to drastically improve your results by providing some good examples to guide the chat (i.e. few-shot prompting). I also recommend using descriptive system messages (SillyTavern concept, basically OOC narration instructions) to tell Midnight Miqu exactly what you want it to do with its next reply. Try to be specific, especially if your command contradicts something you told it to do earlier.
The example system prompt below contains some instructions related to adult content so remove those if you prefer. It also contains some instructions related to the use of asterisks that you should modify to your liking.
The prompt below has been updated from Midnight Miqu v1.0 after prompting Midnight Miqu to help improve it.
If you save this as a .json file, you can import it directly into Silly Tavern.
```
{
"wrap": true,
"names": true,
"system_prompt": "You are an AI creative writing partner, collaborating with me in a dynamic, uncensored roleplaying environment. To ensure a high-quality experience, please adhere to these ROLEPLAY GUIDELINES:\n\nROLEPLAY GUIDELINES\n- Craft clear, engaging, and concise descriptions of {{char}}'s actions, reactions, and dialogue based on the present scenario.\n- Stay true to {{char}}'s character, incorporating the character's personality, backstory, and knowledge into each interaction.\n- Employ rich, descriptive language that immerses readers in the scene.\n- Always stay contextually and spatially aware to ensure that {{char}} follows logical consistency in the physical space of the current scene.\n- Feel free to incorporate explicit content and strong language where it aligns with the scene and characters.\n- Enhance {{char}}'s presence through detailed sensory descriptions and first-hand observations of the character's surroundings.\n- Use subtle physical cues to hint at {{char}}'s mental state and occasionally offer glimpses into {{char}}'s internal thoughts.\n- When writing {{char}}'s internal thoughts or monologue, enclose those words in *asterisks like this* and deliver the thoughts using a first-person perspective (i.e. use \"I\" pronouns). Always use quotes for spoken speech \"like this.\"\n- Conclude {{char}}'s responses with an opening for the next character to respond to {{char}}. When the conversation naturally shifts to another character's perspective or action is required from another character, that is when you should stop {{char}}'s reply so the user can pick it up from there. A great example is when {{char}} asks a question of another character.\n",
"system_sequence": "",
"stop_sequence": "",
"input_sequence": "USER: ",
"output_sequence": "ASSISTANT: ",
"separator_sequence": "",
"macro": true,
"names_force_groups": true,
"system_sequence_prefix": "SYSTEM: ",
"system_sequence_suffix": "",
"first_output_sequence": "",
"last_output_sequence": "ASSISTANT (Ensure coherence and authenticity in {{char}}'s actions, thoughts, and dialogues; Focus solely on {{char}}'s interactions within the roleplay): ",
"activation_regex": "",
"name": "Midnight Miqu Roleplay"
}
```
### Instruct Formats
I recommend the Vicuna format. I use a modified version with newlines after USER and ASSISTANT.
```
USER:
{prompt}
ASSISTANT:
```
Mistral's format also works, and in my testing the performance is about the same as using Vicuna.
```
[INST]
{prompt}
[/INST]
```
You could also try ChatML (don't recommend it)
```
<|im_start|>system
{Your system prompt goes here}<|im_end|>
<|im_start|>user
{Your message as the user will go here}<|im_end|>
<|im_start|>assistant
```
### Donations
<div>
<a href="https://ko-fi.com/sophosympatheia">
<img src="https://i.imgur.com/LySwHVd.png" alt="Donations" style="width: 20%; min-width: 200px; display: block;">
</a>
</div>
If you feel like saying thanks with a donation, <a href="https://ko-fi.com/sophosympatheia">I'm on Ko-Fi</a>
### Quantizations
* GGUF
* [mradermacher/Midnight-Miqu-70B-v1.5-GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-GGUF) -- Various static GGUF quants
* GPTQ
* [Kotokin/Midnight-Miqu-70B-v1.5_GPTQ32G](https://huggingface.co/Kotokin/Midnight-Miqu-70B-v1.5_GPTQ32G)
* EXL2
* [Dracones/Midnight-Miqu-70B-v1.5_exl2_4.0bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_4.0bpw)
* [Dracones/Midnight-Miqu-70B-v1.5_exl2_4.5bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_4.5bpw)
* [Dracones/Midnight-Miqu-70B-v1.5_exl2_5.0bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_5.0bpw)
* [Dracones/Midnight-Miqu-70B-v1.5_exl2_6.0bpw](https://huggingface.co/Dracones/Midnight-Miqu-70B-v1.5_exl2_6.0bpw)
* If you don't see something you're looking for, [try searching Hugging Face](https://huggingface.co/models?search=midnight-miqu-70b-v1.5). There may be newer quants available than what I've documented here.
### Licence and usage restrictions
<font color="red">152334H/miqu-1-70b-sf was based on a leaked version of one of Mistral's models.</font>
All miqu-derived models, including this merge, are **only suitable for personal use.** Mistral has been cool about it so far, but you should be aware that by downloading this merge you are assuming whatever legal risk is inherent in acquiring and using a model based on leaked weights.
This merge comes with no warranties or guarantees of any kind, but you probably already knew that.
I am not a lawyer and I do not profess to know what we have gotten ourselves into here. You should consult with a lawyer before using any Hugging Face model beyond private use... but definitely don't use this one for that!
## Merge Details
### Merge Method
This model was merged using the linear [DARE](https://arxiv.org/abs/2311.03099) merge method using [152334H_miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) as a base.
### Models Merged
The following models were included in the merge:
* [sophosympatheia/Midnight-Miqu-70B-v1.0](https://huggingface.co/sophosympatheia/Midnight-Miqu-70B-v1.0)
* [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_linear
base_model: /home/llm/mergequant/models/BASE/152334H_miqu-1-70b-sf # base model
models:
- model: /home/llm/mergequant/models/midnight-miqu-70b-v1.0
- model: /home/llm/mergequant/models/BASE/Tess-70B-v1.6
parameters:
weight: 1.0
dtype: float16
```
### Notes
I tried several methods of merging Midnight Miqu v1.0 with Tess v1.6, and this dare_linear approach worked the best by far. I tried the same approach with other Miqu finetunes like ShinojiResearch/Senku-70B-Full and abideen/Liberated-Miqu-70B, but there was a huge difference in performance. The merge with Tess was the best one.
I also tried the SLERP approach I used to create Midnight Miqu v1.0, only using Tess instead of 152334H_miqu-1-70b in that config, and that result was nowhere near as good either.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sophosympatheia__Midnight-Miqu-70B-v1.5)
| Metric |Value|
|-------------------|----:|
|Avg. |25.22|
|IFEval (0-Shot) |61.18|
|BBH (3-Shot) |38.54|
|MATH Lvl 5 (4-Shot)| 2.42|
|GPQA (0-shot) | 6.15|
|MuSR (0-shot) |11.65|
|MMLU-PRO (5-shot) |31.39|
| [
"CRAFT"
] |
google/t5_xxl_true_nli_mixture | google | text2text-generation | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:tals/vitaminc",
"dataset:SetFit/mnli",
"dataset:snli",
"dataset:fever",
"dataset:paws",
"dataset:scitail",
"arxiv:2204.04991",
"arxiv:1508.05326",
"arxiv:1904.01130",
"arxiv:2103.08541",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2022-12-07T16:51:46Z" | 2023-03-23T10:55:45+00:00 | 3,765 | 45 | ---
datasets:
- tals/vitaminc
- SetFit/mnli
- snli
- fever
- paws
- scitail
language:
- en
license: apache-2.0
---
This is an NLI model based on T5-XXL that predicts a binary label ('1' - Entailment, '0' - No entailment).
It is trained similarly to the NLI model described in the [TRUE paper (Honovich et al, 2022)](https://arxiv.org/pdf/2204.04991.pdf), but using the following datasets instead of ANLI:
- SNLI ([Bowman et al., 2015](https://arxiv.org/abs/1508.05326))
- MNLI ([Williams et al., 2018](https://aclanthology.org/N18-1101.pdf))
- Fever ([Thorne et al., 2018](https://aclanthology.org/N18-1074.pdf))
- Scitail ([Khot et al., 2018](http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf))
- PAWS ([Zhang et al. 2019](https://arxiv.org/abs/1904.01130))
- VitaminC ([Schuster et al., 2021](https://arxiv.org/pdf/2103.08541.pdf))
The input format for the model is: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".
If you use this model for a research publication, please cite the TRUE paper (using the bibtex entry below) and the dataset papers mentioned above.
```
@inproceedings{honovich-etal-2022-true-evaluating,
title = "{TRUE}: Re-evaluating Factual Consistency Evaluation",
author = "Honovich, Or and
Aharoni, Roee and
Herzig, Jonathan and
Taitelbaum, Hagai and
Kukliansy, Doron and
Cohen, Vered and
Scialom, Thomas and
Szpektor, Idan and
Hassidim, Avinatan and
Matias, Yossi",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.287",
doi = "10.18653/v1/2022.naacl-main.287",
pages = "3905--3920",
}
``` | [
"SCITAIL"
] |
ntc-ai/SDXL-LoRA-slider.extremely-detailed | ntc-ai | text-to-image | [
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"lora",
"template:sd-lora",
"template:sdxl-lora",
"sdxl-sliders",
"ntcai.xyz-sliders",
"concept",
"en",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:mit",
"region:us"
] | "2023-12-10T11:40:59Z" | 2024-02-06T00:28:08+00:00 | 3,743 | 8 | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
language:
- en
license: mit
tags:
- text-to-image
- stable-diffusion-xl
- lora
- template:sd-lora
- template:sdxl-lora
- sdxl-sliders
- ntcai.xyz-sliders
- concept
- diffusers
thumbnail: images/extremely detailed_17_3.0.png
widget:
- text: extremely detailed
output:
url: images/extremely detailed_17_3.0.png
- text: extremely detailed
output:
url: images/extremely detailed_19_3.0.png
- text: extremely detailed
output:
url: images/extremely detailed_20_3.0.png
- text: extremely detailed
output:
url: images/extremely detailed_21_3.0.png
- text: extremely detailed
output:
url: images/extremely detailed_22_3.0.png
inference: false
instance_prompt: extremely detailed
---
# ntcai.xyz slider - extremely detailed (SDXL LoRA)
| Strength: -3 | Strength: 0 | Strength: 3 |
| --- | --- | --- |
| <img src="images/extremely detailed_17_-3.0.png" width=256 height=256 /> | <img src="images/extremely detailed_17_0.0.png" width=256 height=256 /> | <img src="images/extremely detailed_17_3.0.png" width=256 height=256 /> |
| <img src="images/extremely detailed_19_-3.0.png" width=256 height=256 /> | <img src="images/extremely detailed_19_0.0.png" width=256 height=256 /> | <img src="images/extremely detailed_19_3.0.png" width=256 height=256 /> |
| <img src="images/extremely detailed_20_-3.0.png" width=256 height=256 /> | <img src="images/extremely detailed_20_0.0.png" width=256 height=256 /> | <img src="images/extremely detailed_20_3.0.png" width=256 height=256 /> |
See more at [https://sliders.ntcai.xyz/sliders/app/loras/4f6174b8-2db1-42ab-80e1-b341235dd6ac](https://sliders.ntcai.xyz/sliders/app/loras/4f6174b8-2db1-42ab-80e1-b341235dd6ac)
## Download
Weights for this model are available in Safetensors format.
## Trigger words
You can apply this LoRA with trigger words for additional effect:
```
extremely detailed
```
## Use in diffusers
```python
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Load the LoRA
pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.extremely-detailed', weight_name='extremely detailed.safetensors', adapter_name="extremely detailed")
# Activate the LoRA
pipe.set_adapters(["extremely detailed"], adapter_weights=[2.0])
prompt = "medieval rich kingpin sitting in a tavern, extremely detailed"
negative_prompt = "nsfw"
width = 512
height = 512
num_inference_steps = 10
guidance_scale = 2
image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
image.save('result.png')
```
## Support the Patreon
If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI).
By joining our Patreon, you'll gain access to an ever-growing library of over 1496+ unique and diverse LoRAs along with 14600+ slider merges, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful <strong>NTC Slider Factory</strong> LoRA creator, allowing you to craft your own custom LoRAs and merges opening up endless possibilities.
Your support on Patreon will allow us to continue developing new models and tools.
## Other resources
- [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs
- [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
| [
"CRAFT"
] |
jinaai/jina-embedding-s-en-v1 | jinaai | sentence-similarity | [
"sentence-transformers",
"pytorch",
"t5",
"finetuner",
"mteb",
"feature-extraction",
"sentence-similarity",
"custom_code",
"en",
"dataset:jinaai/negation-dataset",
"arxiv:2307.11224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2023-07-06T11:37:14Z" | 2025-01-06T16:31:58+00:00 | 3,739 | 26 | ---
datasets:
- jinaai/negation-dataset
language: en
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- finetuner
- mteb
- sentence-transformers
- feature-extraction
- sentence-similarity
model-index:
- name: jina-embedding-s-en-v1
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 64.82089552238806
- type: ap
value: 27.100981946230778
- type: f1
value: 58.3354886367184
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 64.282775
- type: ap
value: 60.350688924943796
- type: f1
value: 62.06346948494396
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 30.623999999999995
- type: f1
value: 29.427789186742153
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.119
- type: map_at_10
value: 35.609
- type: map_at_100
value: 36.935
- type: map_at_1000
value: 36.957
- type: map_at_3
value: 31.046000000000003
- type: map_at_5
value: 33.574
- type: mrr_at_1
value: 22.404
- type: mrr_at_10
value: 35.695
- type: mrr_at_100
value: 37.021
- type: mrr_at_1000
value: 37.043
- type: mrr_at_3
value: 31.093
- type: mrr_at_5
value: 33.635999999999996
- type: ndcg_at_1
value: 22.119
- type: ndcg_at_10
value: 43.566
- type: ndcg_at_100
value: 49.370000000000005
- type: ndcg_at_1000
value: 49.901
- type: ndcg_at_3
value: 34.06
- type: ndcg_at_5
value: 38.653999999999996
- type: precision_at_1
value: 22.119
- type: precision_at_10
value: 6.92
- type: precision_at_100
value: 0.95
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 14.272000000000002
- type: precision_at_5
value: 10.811
- type: recall_at_1
value: 22.119
- type: recall_at_10
value: 69.203
- type: recall_at_100
value: 95.021
- type: recall_at_1000
value: 99.075
- type: recall_at_3
value: 42.817
- type: recall_at_5
value: 54.054
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 34.1740289109719
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 23.985251383455463
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 60.24873612289029
- type: mrr
value: 74.65692740623489
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.22415390332444
- type: cos_sim_spearman
value: 82.9591191954711
- type: euclidean_pearson
value: 44.096317524324945
- type: euclidean_spearman
value: 42.95218351391625
- type: manhattan_pearson
value: 44.07766490545065
- type: manhattan_spearman
value: 42.78350497166606
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 74.64285714285714
- type: f1
value: 73.53680835577447
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 28.512813238490164
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 20.942214972649488
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.255999999999997
- type: map_at_10
value: 37.091
- type: map_at_100
value: 38.428000000000004
- type: map_at_1000
value: 38.559
- type: map_at_3
value: 34.073
- type: map_at_5
value: 35.739
- type: mrr_at_1
value: 34.907
- type: mrr_at_10
value: 42.769
- type: mrr_at_100
value: 43.607
- type: mrr_at_1000
value: 43.656
- type: mrr_at_3
value: 39.986
- type: mrr_at_5
value: 41.581
- type: ndcg_at_1
value: 34.907
- type: ndcg_at_10
value: 42.681000000000004
- type: ndcg_at_100
value: 48.213
- type: ndcg_at_1000
value: 50.464
- type: ndcg_at_3
value: 37.813
- type: ndcg_at_5
value: 39.936
- type: precision_at_1
value: 34.907
- type: precision_at_10
value: 7.911
- type: precision_at_100
value: 1.349
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 17.93
- type: precision_at_5
value: 12.732
- type: recall_at_1
value: 28.255999999999997
- type: recall_at_10
value: 53.49699999999999
- type: recall_at_100
value: 77.288
- type: recall_at_1000
value: 91.776
- type: recall_at_3
value: 39.18
- type: recall_at_5
value: 45.365
- type: map_at_1
value: 25.563999999999997
- type: map_at_10
value: 33.913
- type: map_at_100
value: 34.966
- type: map_at_1000
value: 35.104
- type: map_at_3
value: 31.413000000000004
- type: map_at_5
value: 32.854
- type: mrr_at_1
value: 31.72
- type: mrr_at_10
value: 39.391
- type: mrr_at_100
value: 40.02
- type: mrr_at_1000
value: 40.076
- type: mrr_at_3
value: 37.314
- type: mrr_at_5
value: 38.507999999999996
- type: ndcg_at_1
value: 31.72
- type: ndcg_at_10
value: 38.933
- type: ndcg_at_100
value: 43.024
- type: ndcg_at_1000
value: 45.556999999999995
- type: ndcg_at_3
value: 35.225
- type: ndcg_at_5
value: 36.984
- type: precision_at_1
value: 31.72
- type: precision_at_10
value: 7.248
- type: precision_at_100
value: 1.192
- type: precision_at_1000
value: 0.16999999999999998
- type: precision_at_3
value: 16.943
- type: precision_at_5
value: 11.975
- type: recall_at_1
value: 25.563999999999997
- type: recall_at_10
value: 47.808
- type: recall_at_100
value: 65.182
- type: recall_at_1000
value: 81.831
- type: recall_at_3
value: 36.889
- type: recall_at_5
value: 41.829
- type: map_at_1
value: 33.662
- type: map_at_10
value: 44.096999999999994
- type: map_at_100
value: 45.153999999999996
- type: map_at_1000
value: 45.223
- type: map_at_3
value: 41.377
- type: map_at_5
value: 42.935
- type: mrr_at_1
value: 38.997
- type: mrr_at_10
value: 47.675
- type: mrr_at_100
value: 48.476
- type: mrr_at_1000
value: 48.519
- type: mrr_at_3
value: 45.549
- type: mrr_at_5
value: 46.884
- type: ndcg_at_1
value: 38.997
- type: ndcg_at_10
value: 49.196
- type: ndcg_at_100
value: 53.788000000000004
- type: ndcg_at_1000
value: 55.393
- type: ndcg_at_3
value: 44.67
- type: ndcg_at_5
value: 46.991
- type: precision_at_1
value: 38.997
- type: precision_at_10
value: 7.875
- type: precision_at_100
value: 1.102
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 19.854
- type: precision_at_5
value: 13.605
- type: recall_at_1
value: 33.662
- type: recall_at_10
value: 60.75899999999999
- type: recall_at_100
value: 81.11699999999999
- type: recall_at_1000
value: 92.805
- type: recall_at_3
value: 48.577999999999996
- type: recall_at_5
value: 54.384
- type: map_at_1
value: 21.313
- type: map_at_10
value: 29.036
- type: map_at_100
value: 29.975
- type: map_at_1000
value: 30.063000000000002
- type: map_at_3
value: 26.878999999999998
- type: map_at_5
value: 28.005999999999997
- type: mrr_at_1
value: 23.39
- type: mrr_at_10
value: 31.072
- type: mrr_at_100
value: 31.922
- type: mrr_at_1000
value: 31.995
- type: mrr_at_3
value: 28.908
- type: mrr_at_5
value: 30.104999999999997
- type: ndcg_at_1
value: 23.39
- type: ndcg_at_10
value: 33.448
- type: ndcg_at_100
value: 38.255
- type: ndcg_at_1000
value: 40.542
- type: ndcg_at_3
value: 29.060000000000002
- type: ndcg_at_5
value: 31.023
- type: precision_at_1
value: 23.39
- type: precision_at_10
value: 5.175
- type: precision_at_100
value: 0.8049999999999999
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_3
value: 12.504999999999999
- type: precision_at_5
value: 8.61
- type: recall_at_1
value: 21.313
- type: recall_at_10
value: 45.345
- type: recall_at_100
value: 67.752
- type: recall_at_1000
value: 84.937
- type: recall_at_3
value: 33.033
- type: recall_at_5
value: 37.929
- type: map_at_1
value: 14.255999999999998
- type: map_at_10
value: 20.339
- type: map_at_100
value: 21.491
- type: map_at_1000
value: 21.616
- type: map_at_3
value: 18.481
- type: map_at_5
value: 19.594
- type: mrr_at_1
value: 17.413
- type: mrr_at_10
value: 24.146
- type: mrr_at_100
value: 25.188
- type: mrr_at_1000
value: 25.273
- type: mrr_at_3
value: 22.264
- type: mrr_at_5
value: 23.302
- type: ndcg_at_1
value: 17.413
- type: ndcg_at_10
value: 24.272
- type: ndcg_at_100
value: 29.82
- type: ndcg_at_1000
value: 33.072
- type: ndcg_at_3
value: 20.826
- type: ndcg_at_5
value: 22.535
- type: precision_at_1
value: 17.413
- type: precision_at_10
value: 4.366
- type: precision_at_100
value: 0.818
- type: precision_at_1000
value: 0.124
- type: precision_at_3
value: 9.866999999999999
- type: precision_at_5
value: 7.164
- type: recall_at_1
value: 14.255999999999998
- type: recall_at_10
value: 32.497
- type: recall_at_100
value: 56.592
- type: recall_at_1000
value: 80.17699999999999
- type: recall_at_3
value: 23.195
- type: recall_at_5
value: 27.392
- type: map_at_1
value: 22.709
- type: map_at_10
value: 31.377
- type: map_at_100
value: 32.536
- type: map_at_1000
value: 32.669
- type: map_at_3
value: 28.572999999999997
- type: map_at_5
value: 30.205
- type: mrr_at_1
value: 27.815
- type: mrr_at_10
value: 36.452
- type: mrr_at_100
value: 37.302
- type: mrr_at_1000
value: 37.364000000000004
- type: mrr_at_3
value: 33.75
- type: mrr_at_5
value: 35.43
- type: ndcg_at_1
value: 27.815
- type: ndcg_at_10
value: 36.84
- type: ndcg_at_100
value: 42.092
- type: ndcg_at_1000
value: 44.727
- type: ndcg_at_3
value: 31.964
- type: ndcg_at_5
value: 34.428
- type: precision_at_1
value: 27.815
- type: precision_at_10
value: 6.67
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.151
- type: precision_at_3
value: 14.982000000000001
- type: precision_at_5
value: 10.857
- type: recall_at_1
value: 22.709
- type: recall_at_10
value: 48.308
- type: recall_at_100
value: 70.866
- type: recall_at_1000
value: 88.236
- type: recall_at_3
value: 34.709
- type: recall_at_5
value: 40.996
- type: map_at_1
value: 22.348000000000003
- type: map_at_10
value: 29.427999999999997
- type: map_at_100
value: 30.499
- type: map_at_1000
value: 30.631999999999998
- type: map_at_3
value: 27.035999999999998
- type: map_at_5
value: 28.351
- type: mrr_at_1
value: 27.74
- type: mrr_at_10
value: 34.424
- type: mrr_at_100
value: 35.341
- type: mrr_at_1000
value: 35.419
- type: mrr_at_3
value: 32.401
- type: mrr_at_5
value: 33.497
- type: ndcg_at_1
value: 27.74
- type: ndcg_at_10
value: 34.136
- type: ndcg_at_100
value: 39.269
- type: ndcg_at_1000
value: 42.263
- type: ndcg_at_3
value: 30.171999999999997
- type: ndcg_at_5
value: 31.956
- type: precision_at_1
value: 27.74
- type: precision_at_10
value: 6.062
- type: precision_at_100
value: 1.014
- type: precision_at_1000
value: 0.146
- type: precision_at_3
value: 14.079
- type: precision_at_5
value: 9.977
- type: recall_at_1
value: 22.348000000000003
- type: recall_at_10
value: 43.477
- type: recall_at_100
value: 65.945
- type: recall_at_1000
value: 86.587
- type: recall_at_3
value: 32.107
- type: recall_at_5
value: 36.974000000000004
- type: map_at_1
value: 21.688499999999998
- type: map_at_10
value: 29.164666666666665
- type: map_at_100
value: 30.22575
- type: map_at_1000
value: 30.350833333333334
- type: map_at_3
value: 26.82025
- type: map_at_5
value: 28.14966666666667
- type: mrr_at_1
value: 25.779249999999998
- type: mrr_at_10
value: 32.969
- type: mrr_at_100
value: 33.81725
- type: mrr_at_1000
value: 33.88825
- type: mrr_at_3
value: 30.831250000000004
- type: mrr_at_5
value: 32.065000000000005
- type: ndcg_at_1
value: 25.779249999999998
- type: ndcg_at_10
value: 33.73675
- type: ndcg_at_100
value: 38.635666666666665
- type: ndcg_at_1000
value: 41.353500000000004
- type: ndcg_at_3
value: 29.66283333333333
- type: ndcg_at_5
value: 31.607249999999997
- type: precision_at_1
value: 25.779249999999998
- type: precision_at_10
value: 5.861416666666667
- type: precision_at_100
value: 0.9852500000000002
- type: precision_at_1000
value: 0.14108333333333334
- type: precision_at_3
value: 13.563583333333332
- type: precision_at_5
value: 9.630333333333335
- type: recall_at_1
value: 21.688499999999998
- type: recall_at_10
value: 43.605
- type: recall_at_100
value: 65.52366666666667
- type: recall_at_1000
value: 84.69683333333332
- type: recall_at_3
value: 32.195499999999996
- type: recall_at_5
value: 37.25325
- type: map_at_1
value: 17.279
- type: map_at_10
value: 23.238
- type: map_at_100
value: 24.026
- type: map_at_1000
value: 24.13
- type: map_at_3
value: 20.730999999999998
- type: map_at_5
value: 22.278000000000002
- type: mrr_at_1
value: 19.017999999999997
- type: mrr_at_10
value: 25.188
- type: mrr_at_100
value: 25.918999999999997
- type: mrr_at_1000
value: 25.996999999999996
- type: mrr_at_3
value: 22.776
- type: mrr_at_5
value: 24.256
- type: ndcg_at_1
value: 19.017999999999997
- type: ndcg_at_10
value: 27.171
- type: ndcg_at_100
value: 31.274
- type: ndcg_at_1000
value: 34.016000000000005
- type: ndcg_at_3
value: 22.442
- type: ndcg_at_5
value: 24.955
- type: precision_at_1
value: 19.017999999999997
- type: precision_at_10
value: 4.494
- type: precision_at_100
value: 0.712
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_3
value: 9.611
- type: precision_at_5
value: 7.331
- type: recall_at_1
value: 17.279
- type: recall_at_10
value: 37.464999999999996
- type: recall_at_100
value: 56.458
- type: recall_at_1000
value: 76.759
- type: recall_at_3
value: 24.659
- type: recall_at_5
value: 30.672
- type: map_at_1
value: 14.901
- type: map_at_10
value: 20.268
- type: map_at_100
value: 21.143
- type: map_at_1000
value: 21.264
- type: map_at_3
value: 18.557000000000002
- type: map_at_5
value: 19.483
- type: mrr_at_1
value: 17.997
- type: mrr_at_10
value: 23.591
- type: mrr_at_100
value: 24.387
- type: mrr_at_1000
value: 24.471
- type: mrr_at_3
value: 21.874
- type: mrr_at_5
value: 22.797
- type: ndcg_at_1
value: 17.997
- type: ndcg_at_10
value: 23.87
- type: ndcg_at_100
value: 28.459
- type: ndcg_at_1000
value: 31.66
- type: ndcg_at_3
value: 20.779
- type: ndcg_at_5
value: 22.137
- type: precision_at_1
value: 17.997
- type: precision_at_10
value: 4.25
- type: precision_at_100
value: 0.761
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 9.716
- type: precision_at_5
value: 6.909999999999999
- type: recall_at_1
value: 14.901
- type: recall_at_10
value: 31.44
- type: recall_at_100
value: 52.717000000000006
- type: recall_at_1000
value: 76.102
- type: recall_at_3
value: 22.675
- type: recall_at_5
value: 26.336
- type: map_at_1
value: 21.52
- type: map_at_10
value: 28.397
- type: map_at_100
value: 29.443
- type: map_at_1000
value: 29.56
- type: map_at_3
value: 26.501
- type: map_at_5
value: 27.375
- type: mrr_at_1
value: 25.28
- type: mrr_at_10
value: 32.102000000000004
- type: mrr_at_100
value: 33.005
- type: mrr_at_1000
value: 33.084
- type: mrr_at_3
value: 30.208000000000002
- type: mrr_at_5
value: 31.146
- type: ndcg_at_1
value: 25.28
- type: ndcg_at_10
value: 32.635
- type: ndcg_at_100
value: 37.672
- type: ndcg_at_1000
value: 40.602
- type: ndcg_at_3
value: 28.951999999999998
- type: ndcg_at_5
value: 30.336999999999996
- type: precision_at_1
value: 25.28
- type: precision_at_10
value: 5.3260000000000005
- type: precision_at_100
value: 0.8840000000000001
- type: precision_at_1000
value: 0.126
- type: precision_at_3
value: 12.687000000000001
- type: precision_at_5
value: 8.638
- type: recall_at_1
value: 21.52
- type: recall_at_10
value: 41.955
- type: recall_at_100
value: 64.21
- type: recall_at_1000
value: 85.28099999999999
- type: recall_at_3
value: 31.979999999999997
- type: recall_at_5
value: 35.406
- type: map_at_1
value: 20.296
- type: map_at_10
value: 28.449999999999996
- type: map_at_100
value: 29.847
- type: map_at_1000
value: 30.073
- type: map_at_3
value: 25.995
- type: map_at_5
value: 27.603
- type: mrr_at_1
value: 25.296000000000003
- type: mrr_at_10
value: 32.751999999999995
- type: mrr_at_100
value: 33.705
- type: mrr_at_1000
value: 33.783
- type: mrr_at_3
value: 30.731
- type: mrr_at_5
value: 32.006
- type: ndcg_at_1
value: 25.296000000000003
- type: ndcg_at_10
value: 33.555
- type: ndcg_at_100
value: 38.891999999999996
- type: ndcg_at_1000
value: 42.088
- type: ndcg_at_3
value: 29.944
- type: ndcg_at_5
value: 31.997999999999998
- type: precision_at_1
value: 25.296000000000003
- type: precision_at_10
value: 6.542000000000001
- type: precision_at_100
value: 1.354
- type: precision_at_1000
value: 0.22599999999999998
- type: precision_at_3
value: 14.360999999999999
- type: precision_at_5
value: 10.593
- type: recall_at_1
value: 20.296
- type: recall_at_10
value: 42.742000000000004
- type: recall_at_100
value: 67.351
- type: recall_at_1000
value: 88.774
- type: recall_at_3
value: 32.117000000000004
- type: recall_at_5
value: 37.788
- type: map_at_1
value: 18.157999999999998
- type: map_at_10
value: 24.342
- type: map_at_100
value: 25.201
- type: map_at_1000
value: 25.317
- type: map_at_3
value: 22.227
- type: map_at_5
value: 23.372999999999998
- type: mrr_at_1
value: 19.778000000000002
- type: mrr_at_10
value: 26.066
- type: mrr_at_100
value: 26.935
- type: mrr_at_1000
value: 27.022000000000002
- type: mrr_at_3
value: 24.214
- type: mrr_at_5
value: 25.268
- type: ndcg_at_1
value: 19.778000000000002
- type: ndcg_at_10
value: 28.104000000000003
- type: ndcg_at_100
value: 32.87
- type: ndcg_at_1000
value: 35.858000000000004
- type: ndcg_at_3
value: 24.107
- type: ndcg_at_5
value: 26.007
- type: precision_at_1
value: 19.778000000000002
- type: precision_at_10
value: 4.417999999999999
- type: precision_at_100
value: 0.739
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 10.228
- type: precision_at_5
value: 7.172000000000001
- type: recall_at_1
value: 18.157999999999998
- type: recall_at_10
value: 37.967
- type: recall_at_100
value: 60.806000000000004
- type: recall_at_1000
value: 83.097
- type: recall_at_3
value: 27.223999999999997
- type: recall_at_5
value: 31.968000000000004
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.055
- type: map_at_10
value: 11.609
- type: map_at_100
value: 12.83
- type: map_at_1000
value: 12.995000000000001
- type: map_at_3
value: 9.673
- type: map_at_5
value: 10.761999999999999
- type: mrr_at_1
value: 15.309000000000001
- type: mrr_at_10
value: 23.655
- type: mrr_at_100
value: 24.785
- type: mrr_at_1000
value: 24.856
- type: mrr_at_3
value: 20.499000000000002
- type: mrr_at_5
value: 22.425
- type: ndcg_at_1
value: 15.309000000000001
- type: ndcg_at_10
value: 17.252000000000002
- type: ndcg_at_100
value: 22.976
- type: ndcg_at_1000
value: 26.480999999999998
- type: ndcg_at_3
value: 13.418
- type: ndcg_at_5
value: 15.084
- type: precision_at_1
value: 15.309000000000001
- type: precision_at_10
value: 5.309
- type: precision_at_100
value: 1.1320000000000001
- type: precision_at_1000
value: 0.17600000000000002
- type: precision_at_3
value: 9.62
- type: precision_at_5
value: 7.883
- type: recall_at_1
value: 7.055
- type: recall_at_10
value: 21.891
- type: recall_at_100
value: 41.979
- type: recall_at_1000
value: 62.239999999999995
- type: recall_at_3
value: 12.722
- type: recall_at_5
value: 16.81
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.909
- type: map_at_10
value: 12.844
- type: map_at_100
value: 16.435
- type: map_at_1000
value: 17.262
- type: map_at_3
value: 10.131
- type: map_at_5
value: 11.269
- type: mrr_at_1
value: 54.50000000000001
- type: mrr_at_10
value: 62.202
- type: mrr_at_100
value: 62.81
- type: mrr_at_1000
value: 62.824000000000005
- type: mrr_at_3
value: 60.5
- type: mrr_at_5
value: 61.324999999999996
- type: ndcg_at_1
value: 42.125
- type: ndcg_at_10
value: 28.284
- type: ndcg_at_100
value: 30.444
- type: ndcg_at_1000
value: 36.397
- type: ndcg_at_3
value: 33.439
- type: ndcg_at_5
value: 30.473
- type: precision_at_1
value: 54.50000000000001
- type: precision_at_10
value: 21.4
- type: precision_at_100
value: 6.192
- type: precision_at_1000
value: 1.398
- type: precision_at_3
value: 36.583
- type: precision_at_5
value: 28.799999999999997
- type: recall_at_1
value: 6.909
- type: recall_at_10
value: 17.296
- type: recall_at_100
value: 33.925
- type: recall_at_1000
value: 53.786
- type: recall_at_3
value: 11.333
- type: recall_at_5
value: 13.529
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 36.08
- type: f1
value: 33.016420191943766
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 52.605000000000004
- type: map_at_10
value: 63.31400000000001
- type: map_at_100
value: 63.678000000000004
- type: map_at_1000
value: 63.699
- type: map_at_3
value: 61.141
- type: map_at_5
value: 62.517999999999994
- type: mrr_at_1
value: 56.871
- type: mrr_at_10
value: 67.915
- type: mrr_at_100
value: 68.24900000000001
- type: mrr_at_1000
value: 68.262
- type: mrr_at_3
value: 65.809
- type: mrr_at_5
value: 67.171
- type: ndcg_at_1
value: 56.871
- type: ndcg_at_10
value: 69.122
- type: ndcg_at_100
value: 70.855
- type: ndcg_at_1000
value: 71.368
- type: ndcg_at_3
value: 64.974
- type: ndcg_at_5
value: 67.318
- type: precision_at_1
value: 56.871
- type: precision_at_10
value: 9.029
- type: precision_at_100
value: 0.996
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 25.893
- type: precision_at_5
value: 16.838
- type: recall_at_1
value: 52.605000000000004
- type: recall_at_10
value: 82.679
- type: recall_at_100
value: 90.586
- type: recall_at_1000
value: 94.38
- type: recall_at_3
value: 71.447
- type: recall_at_5
value: 77.218
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.759
- type: map_at_10
value: 18.877
- type: map_at_100
value: 20.498
- type: map_at_1000
value: 20.682000000000002
- type: map_at_3
value: 16.159000000000002
- type: map_at_5
value: 17.575
- type: mrr_at_1
value: 22.531000000000002
- type: mrr_at_10
value: 31.155
- type: mrr_at_100
value: 32.188
- type: mrr_at_1000
value: 32.245000000000005
- type: mrr_at_3
value: 28.781000000000002
- type: mrr_at_5
value: 30.054
- type: ndcg_at_1
value: 22.531000000000002
- type: ndcg_at_10
value: 25.189
- type: ndcg_at_100
value: 31.958
- type: ndcg_at_1000
value: 35.693999999999996
- type: ndcg_at_3
value: 22.235
- type: ndcg_at_5
value: 23.044999999999998
- type: precision_at_1
value: 22.531000000000002
- type: precision_at_10
value: 7.438000000000001
- type: precision_at_100
value: 1.418
- type: precision_at_1000
value: 0.208
- type: precision_at_3
value: 15.329
- type: precision_at_5
value: 11.451
- type: recall_at_1
value: 10.759
- type: recall_at_10
value: 31.416
- type: recall_at_100
value: 56.989000000000004
- type: recall_at_1000
value: 80.33200000000001
- type: recall_at_3
value: 20.61
- type: recall_at_5
value: 24.903
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.21
- type: map_at_10
value: 38.765
- type: map_at_100
value: 39.498
- type: map_at_1000
value: 39.568
- type: map_at_3
value: 36.699
- type: map_at_5
value: 37.925
- type: mrr_at_1
value: 58.42
- type: mrr_at_10
value: 65.137
- type: mrr_at_100
value: 65.542
- type: mrr_at_1000
value: 65.568
- type: mrr_at_3
value: 63.698
- type: mrr_at_5
value: 64.575
- type: ndcg_at_1
value: 58.42
- type: ndcg_at_10
value: 47.476
- type: ndcg_at_100
value: 50.466
- type: ndcg_at_1000
value: 52.064
- type: ndcg_at_3
value: 43.986
- type: ndcg_at_5
value: 45.824
- type: precision_at_1
value: 58.42
- type: precision_at_10
value: 9.649000000000001
- type: precision_at_100
value: 1.201
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_3
value: 26.977
- type: precision_at_5
value: 17.642
- type: recall_at_1
value: 29.21
- type: recall_at_10
value: 48.244
- type: recall_at_100
value: 60.041
- type: recall_at_1000
value: 70.743
- type: recall_at_3
value: 40.466
- type: recall_at_5
value: 44.105
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 58.7064
- type: ap
value: 55.36326227125519
- type: f1
value: 57.46763115215848
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 15.889000000000001
- type: map_at_10
value: 25.979000000000003
- type: map_at_100
value: 27.21
- type: map_at_1000
value: 27.284000000000002
- type: map_at_3
value: 22.665
- type: map_at_5
value: 24.578
- type: mrr_at_1
value: 16.39
- type: mrr_at_10
value: 26.504
- type: mrr_at_100
value: 27.689999999999998
- type: mrr_at_1000
value: 27.758
- type: mrr_at_3
value: 23.24
- type: mrr_at_5
value: 25.108000000000004
- type: ndcg_at_1
value: 16.39
- type: ndcg_at_10
value: 31.799
- type: ndcg_at_100
value: 38.034
- type: ndcg_at_1000
value: 39.979
- type: ndcg_at_3
value: 25.054
- type: ndcg_at_5
value: 28.463
- type: precision_at_1
value: 16.39
- type: precision_at_10
value: 5.189
- type: precision_at_100
value: 0.835
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 10.84
- type: precision_at_5
value: 8.238
- type: recall_at_1
value: 15.889000000000001
- type: recall_at_10
value: 49.739
- type: recall_at_100
value: 79.251
- type: recall_at_1000
value: 94.298
- type: recall_at_3
value: 31.427
- type: recall_at_5
value: 39.623000000000005
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.81668946648426
- type: f1
value: 88.55200075528438
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 58.611491108071135
- type: f1
value: 42.12391403999353
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.67047747141896
- type: f1
value: 62.88410885922258
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.78547410894419
- type: f1
value: 71.69467869218154
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 27.23799937752035
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 23.26502601343789
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.680711484149832
- type: mrr
value: 31.705059795117307
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.077
- type: map_at_10
value: 8.657
- type: map_at_100
value: 10.753
- type: map_at_1000
value: 11.885
- type: map_at_3
value: 6.5089999999999995
- type: map_at_5
value: 7.405
- type: mrr_at_1
value: 38.7
- type: mrr_at_10
value: 46.065
- type: mrr_at_100
value: 46.772000000000006
- type: mrr_at_1000
value: 46.83
- type: mrr_at_3
value: 44.118
- type: mrr_at_5
value: 45.015
- type: ndcg_at_1
value: 36.997
- type: ndcg_at_10
value: 25.96
- type: ndcg_at_100
value: 23.607
- type: ndcg_at_1000
value: 32.317
- type: ndcg_at_3
value: 31.06
- type: ndcg_at_5
value: 28.921000000000003
- type: precision_at_1
value: 38.7
- type: precision_at_10
value: 19.195
- type: precision_at_100
value: 6.164
- type: precision_at_1000
value: 1.839
- type: precision_at_3
value: 28.999000000000002
- type: precision_at_5
value: 25.014999999999997
- type: recall_at_1
value: 4.077
- type: recall_at_10
value: 11.802
- type: recall_at_100
value: 24.365000000000002
- type: recall_at_1000
value: 55.277
- type: recall_at_3
value: 7.435
- type: recall_at_5
value: 8.713999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.588
- type: map_at_10
value: 32.08
- type: map_at_100
value: 33.32
- type: map_at_1000
value: 33.377
- type: map_at_3
value: 28.166000000000004
- type: map_at_5
value: 30.383
- type: mrr_at_1
value: 22.161
- type: mrr_at_10
value: 34.121
- type: mrr_at_100
value: 35.171
- type: mrr_at_1000
value: 35.214
- type: mrr_at_3
value: 30.692000000000004
- type: mrr_at_5
value: 32.706
- type: ndcg_at_1
value: 22.131999999999998
- type: ndcg_at_10
value: 38.887
- type: ndcg_at_100
value: 44.433
- type: ndcg_at_1000
value: 45.823
- type: ndcg_at_3
value: 31.35
- type: ndcg_at_5
value: 35.144
- type: precision_at_1
value: 22.131999999999998
- type: precision_at_10
value: 6.8629999999999995
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 14.706
- type: precision_at_5
value: 10.972999999999999
- type: recall_at_1
value: 19.588
- type: recall_at_10
value: 57.703
- type: recall_at_100
value: 82.194
- type: recall_at_1000
value: 92.623
- type: recall_at_3
value: 38.012
- type: recall_at_5
value: 46.847
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 68.038
- type: map_at_10
value: 81.572
- type: map_at_100
value: 82.25200000000001
- type: map_at_1000
value: 82.27600000000001
- type: map_at_3
value: 78.618
- type: map_at_5
value: 80.449
- type: mrr_at_1
value: 78.31
- type: mrr_at_10
value: 84.98
- type: mrr_at_100
value: 85.122
- type: mrr_at_1000
value: 85.124
- type: mrr_at_3
value: 83.852
- type: mrr_at_5
value: 84.6
- type: ndcg_at_1
value: 78.31
- type: ndcg_at_10
value: 85.693
- type: ndcg_at_100
value: 87.191
- type: ndcg_at_1000
value: 87.386
- type: ndcg_at_3
value: 82.585
- type: ndcg_at_5
value: 84.255
- type: precision_at_1
value: 78.31
- type: precision_at_10
value: 12.986
- type: precision_at_100
value: 1.505
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 36.007
- type: precision_at_5
value: 23.735999999999997
- type: recall_at_1
value: 68.038
- type: recall_at_10
value: 93.598
- type: recall_at_100
value: 98.869
- type: recall_at_1000
value: 99.86500000000001
- type: recall_at_3
value: 84.628
- type: recall_at_5
value: 89.316
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 37.948231664922865
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 49.90597913763894
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.753
- type: map_at_10
value: 8.915
- type: map_at_100
value: 10.374
- type: map_at_1000
value: 10.612
- type: map_at_3
value: 6.577
- type: map_at_5
value: 7.8
- type: mrr_at_1
value: 18.4
- type: mrr_at_10
value: 27.325
- type: mrr_at_100
value: 28.419
- type: mrr_at_1000
value: 28.494000000000003
- type: mrr_at_3
value: 24.349999999999998
- type: mrr_at_5
value: 26.205000000000002
- type: ndcg_at_1
value: 18.4
- type: ndcg_at_10
value: 15.293000000000001
- type: ndcg_at_100
value: 21.592
- type: ndcg_at_1000
value: 26.473000000000003
- type: ndcg_at_3
value: 14.748
- type: ndcg_at_5
value: 12.98
- type: precision_at_1
value: 18.4
- type: precision_at_10
value: 7.779999999999999
- type: precision_at_100
value: 1.693
- type: precision_at_1000
value: 0.28800000000000003
- type: precision_at_3
value: 13.700000000000001
- type: precision_at_5
value: 11.379999999999999
- type: recall_at_1
value: 3.753
- type: recall_at_10
value: 15.806999999999999
- type: recall_at_100
value: 34.37
- type: recall_at_1000
value: 58.463
- type: recall_at_3
value: 8.338
- type: recall_at_5
value: 11.538
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 82.58843987639705
- type: cos_sim_spearman
value: 76.33071660715956
- type: euclidean_pearson
value: 72.8029921002978
- type: euclidean_spearman
value: 69.34534284782808
- type: manhattan_pearson
value: 72.49781034973653
- type: manhattan_spearman
value: 69.24754112621694
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 83.31673079903189
- type: cos_sim_spearman
value: 74.27699263517789
- type: euclidean_pearson
value: 69.4008910999579
- type: euclidean_spearman
value: 59.0716984643048
- type: manhattan_pearson
value: 68.87342686919199
- type: manhattan_spearman
value: 58.904612865335025
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 77.59122302327788
- type: cos_sim_spearman
value: 78.55383586979005
- type: euclidean_pearson
value: 68.18338642204289
- type: euclidean_spearman
value: 68.95092864180276
- type: manhattan_pearson
value: 68.08807059822706
- type: manhattan_spearman
value: 68.86135938270193
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 78.51766841424501
- type: cos_sim_spearman
value: 73.84318001499558
- type: euclidean_pearson
value: 67.2007138855177
- type: euclidean_spearman
value: 63.98672842723766
- type: manhattan_pearson
value: 67.17773810895949
- type: manhattan_spearman
value: 64.07359154832962
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 82.73438541570299
- type: cos_sim_spearman
value: 83.71357922283677
- type: euclidean_pearson
value: 57.50131347498546
- type: euclidean_spearman
value: 57.73623619252132
- type: manhattan_pearson
value: 58.082992079000725
- type: manhattan_spearman
value: 58.42728201167522
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 78.14794654172421
- type: cos_sim_spearman
value: 80.025736165043
- type: euclidean_pearson
value: 65.87773913985473
- type: euclidean_spearman
value: 66.69337751784794
- type: manhattan_pearson
value: 66.01039761004415
- type: manhattan_spearman
value: 66.89215027952318
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.10554507136152
- type: cos_sim_spearman
value: 87.4898082140765
- type: euclidean_pearson
value: 72.19391114541367
- type: euclidean_spearman
value: 70.36647944993783
- type: manhattan_pearson
value: 72.18680758133698
- type: manhattan_spearman
value: 70.3871215447305
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.54868111501618
- type: cos_sim_spearman
value: 64.25173617448473
- type: euclidean_pearson
value: 39.116088900637116
- type: euclidean_spearman
value: 53.300772929884
- type: manhattan_pearson
value: 38.3844195287959
- type: manhattan_spearman
value: 52.846675312001246
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 80.04396610550214
- type: cos_sim_spearman
value: 79.19504854997832
- type: euclidean_pearson
value: 66.3284657637072
- type: euclidean_spearman
value: 63.69531796729492
- type: manhattan_pearson
value: 66.82324081038026
- type: manhattan_spearman
value: 64.18254512904923
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 74.16264051781705
- type: mrr
value: 91.80864796060874
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.983000000000004
- type: map_at_10
value: 47.858000000000004
- type: map_at_100
value: 48.695
- type: map_at_1000
value: 48.752
- type: map_at_3
value: 45.444
- type: map_at_5
value: 46.906
- type: mrr_at_1
value: 41.333
- type: mrr_at_10
value: 49.935
- type: mrr_at_100
value: 50.51
- type: mrr_at_1000
value: 50.55500000000001
- type: mrr_at_3
value: 47.833
- type: mrr_at_5
value: 49.117
- type: ndcg_at_1
value: 41.333
- type: ndcg_at_10
value: 52.398999999999994
- type: ndcg_at_100
value: 56.196
- type: ndcg_at_1000
value: 57.838
- type: ndcg_at_3
value: 47.987
- type: ndcg_at_5
value: 50.356
- type: precision_at_1
value: 41.333
- type: precision_at_10
value: 7.167
- type: precision_at_100
value: 0.9299999999999999
- type: precision_at_1000
value: 0.108
- type: precision_at_3
value: 19.0
- type: precision_at_5
value: 12.8
- type: recall_at_1
value: 38.983000000000004
- type: recall_at_10
value: 64.183
- type: recall_at_100
value: 82.02199999999999
- type: recall_at_1000
value: 95.167
- type: recall_at_3
value: 52.383
- type: recall_at_5
value: 58.411
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.8019801980198
- type: cos_sim_ap
value: 94.9287554635848
- type: cos_sim_f1
value: 89.83739837398375
- type: cos_sim_precision
value: 91.32231404958677
- type: cos_sim_recall
value: 88.4
- type: dot_accuracy
value: 99.23762376237623
- type: dot_ap
value: 55.22534191245801
- type: dot_f1
value: 54.054054054054056
- type: dot_precision
value: 55.15088449531738
- type: dot_recall
value: 53.0
- type: euclidean_accuracy
value: 99.6108910891089
- type: euclidean_ap
value: 82.5195111329438
- type: euclidean_f1
value: 78.2847718526663
- type: euclidean_precision
value: 86.93528693528694
- type: euclidean_recall
value: 71.2
- type: manhattan_accuracy
value: 99.5970297029703
- type: manhattan_ap
value: 81.96876777875492
- type: manhattan_f1
value: 77.33773377337734
- type: manhattan_precision
value: 85.94132029339853
- type: manhattan_recall
value: 70.3
- type: max_accuracy
value: 99.8019801980198
- type: max_ap
value: 94.9287554635848
- type: max_f1
value: 89.83739837398375
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 46.34997003954114
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 31.462336020554893
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 47.1757817459526
- type: mrr
value: 47.941057104660054
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.56106249068471
- type: cos_sim_spearman
value: 31.24613190558528
- type: dot_pearson
value: 20.486610035794257
- type: dot_spearman
value: 23.115667545894546
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.182
- type: map_at_10
value: 1.155
- type: map_at_100
value: 5.118
- type: map_at_1000
value: 11.827
- type: map_at_3
value: 0.482
- type: map_at_5
value: 0.712
- type: mrr_at_1
value: 70.0
- type: mrr_at_10
value: 79.483
- type: mrr_at_100
value: 79.637
- type: mrr_at_1000
value: 79.637
- type: mrr_at_3
value: 77.667
- type: mrr_at_5
value: 78.567
- type: ndcg_at_1
value: 63.0
- type: ndcg_at_10
value: 52.303
- type: ndcg_at_100
value: 37.361
- type: ndcg_at_1000
value: 32.84
- type: ndcg_at_3
value: 58.274
- type: ndcg_at_5
value: 55.601
- type: precision_at_1
value: 70.0
- type: precision_at_10
value: 55.60000000000001
- type: precision_at_100
value: 37.96
- type: precision_at_1000
value: 14.738000000000001
- type: precision_at_3
value: 62.666999999999994
- type: precision_at_5
value: 60.0
- type: recall_at_1
value: 0.182
- type: recall_at_10
value: 1.4120000000000001
- type: recall_at_100
value: 8.533
- type: recall_at_1000
value: 30.572
- type: recall_at_3
value: 0.5309999999999999
- type: recall_at_5
value: 0.814
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.385
- type: map_at_10
value: 7.185999999999999
- type: map_at_100
value: 11.642
- type: map_at_1000
value: 12.953000000000001
- type: map_at_3
value: 3.496
- type: map_at_5
value: 4.82
- type: mrr_at_1
value: 16.326999999999998
- type: mrr_at_10
value: 29.461
- type: mrr_at_100
value: 31.436999999999998
- type: mrr_at_1000
value: 31.436999999999998
- type: mrr_at_3
value: 24.490000000000002
- type: mrr_at_5
value: 27.857
- type: ndcg_at_1
value: 14.285999999999998
- type: ndcg_at_10
value: 16.672
- type: ndcg_at_100
value: 28.691
- type: ndcg_at_1000
value: 39.817
- type: ndcg_at_3
value: 15.277
- type: ndcg_at_5
value: 15.823
- type: precision_at_1
value: 16.326999999999998
- type: precision_at_10
value: 15.509999999999998
- type: precision_at_100
value: 6.49
- type: precision_at_1000
value: 1.4080000000000001
- type: precision_at_3
value: 16.326999999999998
- type: precision_at_5
value: 16.735
- type: recall_at_1
value: 1.385
- type: recall_at_10
value: 12.586
- type: recall_at_100
value: 40.765
- type: recall_at_1000
value: 75.198
- type: recall_at_3
value: 4.326
- type: recall_at_5
value: 7.074999999999999
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 59.4402
- type: ap
value: 10.16922814263879
- type: f1
value: 45.374485104940476
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 54.25863044708545
- type: f1
value: 54.20154252609619
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 34.3883169293051
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 81.76670441676104
- type: cos_sim_ap
value: 59.29878710961347
- type: cos_sim_f1
value: 57.33284971587474
- type: cos_sim_precision
value: 52.9122963624191
- type: cos_sim_recall
value: 62.559366754617415
- type: dot_accuracy
value: 77.52279907015557
- type: dot_ap
value: 34.17588904643467
- type: dot_f1
value: 41.063567529494634
- type: dot_precision
value: 30.813953488372093
- type: dot_recall
value: 61.53034300791557
- type: euclidean_accuracy
value: 80.61631996185254
- type: euclidean_ap
value: 54.00362361479352
- type: euclidean_f1
value: 53.99111751290361
- type: euclidean_precision
value: 49.52653600528518
- type: euclidean_recall
value: 59.340369393139845
- type: manhattan_accuracy
value: 80.65208320915539
- type: manhattan_ap
value: 54.18329507159467
- type: manhattan_f1
value: 53.85550960836779
- type: manhattan_precision
value: 49.954873646209386
- type: manhattan_recall
value: 58.41688654353562
- type: max_accuracy
value: 81.76670441676104
- type: max_ap
value: 59.29878710961347
- type: max_f1
value: 57.33284971587474
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 87.99433383785463
- type: cos_sim_ap
value: 83.43513915159009
- type: cos_sim_f1
value: 76.3906784964842
- type: cos_sim_precision
value: 73.19223985890653
- type: cos_sim_recall
value: 79.88142901139513
- type: dot_accuracy
value: 81.96142352621571
- type: dot_ap
value: 67.78764755689359
- type: dot_f1
value: 64.42823356983445
- type: dot_precision
value: 56.77801913931779
- type: dot_recall
value: 74.46104096088698
- type: euclidean_accuracy
value: 81.9478402607987
- type: euclidean_ap
value: 67.13958457373279
- type: euclidean_f1
value: 60.45118343195266
- type: euclidean_precision
value: 58.1625391403359
- type: euclidean_recall
value: 62.92731752386819
- type: manhattan_accuracy
value: 82.01769705437188
- type: manhattan_ap
value: 67.24709477497046
- type: manhattan_f1
value: 60.4103846436714
- type: manhattan_precision
value: 57.82063916654935
- type: manhattan_recall
value: 63.24299353249153
- type: max_accuracy
value: 87.99433383785463
- type: max_ap
value: 83.43513915159009
- type: max_f1
value: 76.3906784964842
---
<br><br>
<p align="center">
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
</p>
<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a></b>
</p>
## Intented Usage & Model Info
`jina-embedding-s-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset.
This dataset consists of 380 million pairs of sentences, which include both query-document pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.
The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.
With a compact size of just 35 million parameters,
the model enables lightning-fast inference while still delivering impressive performance.
Additionally, we provide the following options:
- [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters.
- [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters **(you are here)**.
- [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters.
- [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters.
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon).
- `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon).
## Data & Parameters
Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).
## Metrics
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
|Name|param |dimension|
|------------------------------|-----|------|
|all-minilm-l6-v2|23m |384|
|all-mpnet-base-v2 |110m |768|
|ada-embedding-002|Unknown/OpenAI API |1536|
|jina-embedding-t-en-v1|14m |312|
|jina-embedding-s-en-v1|35m |512|
|jina-embedding-b-en-v1|110m |768|
|jina-embedding-l-en-v1|330m |1024|
|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----|
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |
|all-mpnet-base-v2|0.726|**0.835**|0.78 |0.857|0.8 |**0.906**|0.513 |0.875|0.656 |
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** |
|jina-embedding-t-en-v1|0.717|0.773|0.731|0.829|0.777|0.860|0.482 |0.840|0.522 |
|jina-embedding-s-en-v1|0.743|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 |
|jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.890|0.606 |0.876|0.594 |
|jina-embedding-l-en-v1|0.745|0.832|**0.781**|**0.869**|0.837|0.902|0.573 |**0.881**|0.598 |
## Usage
Use with Jina AI Finetuner
```python
!pip install finetuner
import finetuner
model = finetuner.build_model('jinaai/jina-embedding-s-en-v1')
embeddings = finetuner.encode(
model=model,
data=['how is the weather today', 'What is the current weather like today?']
)
print(finetuner.cos_sim(embeddings[0], embeddings[1]))
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['how is the weather today', 'What is the current weather like today?']
model = SentenceTransformer('jinaai/jina-embedding-s-en-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
## Fine-tuning
Please consider [Finetuner](https://github.com/jina-ai/finetuner).
## Plans
1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`.
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
``` latex
@misc{günther2023jina,
title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
year={2023},
eprint={2307.11224},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | [
"BIOSSES",
"LINNAEUS",
"SCIFACT"
] |
unsloth/Phi-4-mini-instruct-unsloth-bnb-4bit | unsloth | text-generation | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"phi",
"phi4",
"unsloth",
"nlp",
"code",
"microsoft",
"math",
"chat",
"conversational",
"custom_code",
"multilingual",
"base_model:microsoft/Phi-4-mini-instruct",
"base_model:quantized:microsoft/Phi-4-mini-instruct",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | "2025-02-27T01:38:53Z" | 2025-03-03T01:02:15+00:00 | 3,720 | 9 | ---
base_model: microsoft/Phi-4-mini-instruct
language:
- multilingual
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- phi
- phi4
- unsloth
- nlp
- code
- microsoft
- math
- chat
- conversational
---
<div>
<p style="margin-bottom: 0; margin-top: 0;">
<strong>This is Phi-4-mini-instruct with our BUG FIXES. <br> See <a href="https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa">our collection</a> for versions of Phi-4 with our bug fixes including GGUF & 4-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Unsloth's Phi-4 <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">Finetune your own Reasoning model like R1 with Unsloth!</h2>
</div>
We have a free Google Colab notebook for turning Phi-4 into a reasoning model: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb
### Unsloth bug fixes:
1. Padding and EOS tokens are the same - fixed this.
2. Chat template had extra EOS token - removed this. Otherwise you will be <|end|> during inference.
3. EOS token should be <|end|> not <|endoftext|>. Otherwise it'll terminate at <|endoftext|>
4. Changed unk_token to � from EOS.
5.
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **GRPO with Phi-4** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb) | 2x faster | 80% less |
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
## Model Summary
Phi-4-mini-instruct is a lightweight open model built upon synthetic data and filtered publicly available websites - with a focus on high-quality, reasoning dense data. The model belongs to the Phi-4 model family and supports 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning and direct preference optimization to support precise instruction adherence and robust safety measures.
📰 [Phi-4-mini Microsoft Blog](https://aka.ms/phi4-feb2025) <br>
📖 [Phi-4-mini Technical Report](https://aka.ms/phi-4-multimodal/techreport) <br>
👩🍳 [Phi Cookbook](https://github.com/microsoft/PhiCookBook) <br>
🏡 [Phi Portal](https://azure.microsoft.com/en-us/products/phi) <br>
🖥️ Try It [Azure](https://aka.ms/phi-4-mini/azure), [Huggingface](https://huggingface.co/spaces/microsoft/phi-4-mini) <br>
**Phi-4**:
[[mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) | [onnx](https://huggingface.co/microsoft/Phi-4-mini-instruct-onnx)];
[multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct);
## Intended Uses
### Primary Use Cases
The model is intended for broad multilingual commercial and research use. The model provides uses for general purpose AI systems and applications which require:
1) Memory/compute constrained environments
2) Latency bound scenarios
3) Strong reasoning (especially math and logic).
The model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
### Use Case Considerations
The model is not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models, as well as performance difference across languages, as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
Developers should be aware of and adhere to applicable laws or regulations (including but not limited to privacy, trade compliance laws, etc.) that are relevant to their use case.
***Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.***
## Release Notes
This release of Phi-4-mini-instruct is based on valuable user feedback from the Phi-3 series. The Phi-4-mini model employed new architecture for efficiency, larger vocabulary for multilingual support, and better post-training techniques were used for instruction following, function calling, as well as additional data leading to substantial gains on key capabilities. It is anticipated that most use cases will benefit from this release, but users are encouraged to test in their particular AI applications. The enthusiastic support for the Phi-4 series is greatly appreciated. Feedback on Phi-4-mini-instruct is welcomed and crucial to the model’s evolution and improvement.
### Model Quality
To understand the capabilities, the 3.8B parameters Phi-4-mini-instruct model was compared with a set of models over a variety of benchmarks using an internal benchmark platform (See Appendix A for benchmark methodology). A high-level overview of the model quality is as follows:
| Benchmark | Similar size | | | | |2x size | | | | | |
|----------------------------------|-------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Phi-4 mini-Ins | Phi-3.5-mini-Ins | Llama-3.2-3B-Ins | Mistral-3B | Qwen2.5-3B-Ins | Qwen2.5-7B-Ins | Mistral-8B-2410 | Llama-3.1-8B-Ins | Llama-3.1-Tulu-3-8B | Gemma2-9B-Ins | GPT-4o-mini-2024-07-18 |
| **Popular aggregated benchmark** | | | | | | | | | | | |
| Arena Hard | 32.8 | 34.4 | 17.0 | 26.9 | 32.0 | 55.5 | 37.3 | 25.7 | 42.7 | 43.7 | 53.7 |
| BigBench Hard (0-shot, CoT) | 70.4 | 63.1 | 55.4 | 51.2 | 56.2 | 72.4 | 53.3 | 63.4 | 55.5 | 65.7 | 80.4 |
| MMLU (5-shot) | 67.3 | 65.5 | 61.8 | 60.8 | 65.0 | 72.6 | 63.0 | 68.1 | 65.0 | 71.3 | 77.2 |
| MMLU-Pro (0-shot, CoT) | 52.8 | 47.4 | 39.2 | 35.3 | 44.7 | 56.2 | 36.6 | 44.0 | 40.9 | 50.1 | 62.8 |
| **Reasoning** | | | | | | | | | | | |
| ARC Challenge (10-shot) | 83.7 | 84.6 | 76.1 | 80.3 | 82.6 | 90.1 | 82.7 | 83.1 | 79.4 | 89.8 | 93.5 |
| BoolQ (2-shot) | 81.2 | 77.7 | 71.4 | 79.4 | 65.4 | 80.0 | 80.5 | 82.8 | 79.3 | 85.7 | 88.7 |
| GPQA (0-shot, CoT) | 25.2 | 26.6 | 24.3 | 24.4 | 23.4 | 30.6 | 26.3 | 26.3 | 29.9 | 39.1 | 41.1 |
| HellaSwag (5-shot) | 69.1 | 72.2 | 77.2 | 74.6 | 74.6 | 80.0 | 73.5 | 72.8 | 80.9 | 87.1 | 88.7 |
| OpenBookQA (10-shot) | 79.2 | 81.2 | 72.6 | 79.8 | 79.3 | 82.6 | 80.2 | 84.8 | 79.8 | 90.0 | 90.0 |
| PIQA (5-shot) | 77.6 | 78.2 | 68.2 | 73.2 | 72.6 | 76.2 | 81.2 | 83.2 | 78.3 | 83.7 | 88.7 |
| Social IQA (5-shot) | 72.5 | 75.1 | 68.3 | 73.9 | 75.3 | 75.3 | 77.6 | 71.8 | 73.4 | 74.7 | 82.9 |
| TruthfulQA (MC2) (10-shot) | 66.4 | 65.2 | 59.2 | 62.9 | 64.3 | 69.4 | 63.0 | 69.2 | 64.1 | 76.6 | 78.2 |
| Winogrande (5-shot) | 67.0 | 72.2 | 53.2 | 59.8 | 63.3 | 71.1 | 63.1 | 64.7 | 65.4 | 74.0 | 76.9 |
| **Multilingual** | | | | | | | | | | | |
| Multilingual MMLU (5-shot) | 49.3 | 51.8 | 48.1 | 46.4 | 55.9 | 64.4 | 53.7 | 56.2 | 54.5 | 63.8 | 72.9 |
| MGSM (0-shot, CoT) | 63.9 | 49.6 | 44.6 | 44.6 | 53.5 | 64.5 | 56.7 | 56.7 | 58.6 | 75.1 | 81.7 |
| **Math** | | | | | | | | | | | |
| GSM8K (8-shot, CoT) | 88.6 | 76.9 | 75.6 | 80.1 | 80.6 | 88.7 | 81.9 | 82.4 | 84.3 | 84.9 | 91.3 |
| MATH (0-shot, CoT) | 64.0 | 49.8 | 46.7 | 41.8 | 61.7 | 60.4 | 41.6 | 47.6 | 46.1 | 51.3 | 70.2 |
| **Overall** | **63.5** | **60.5** | **56.2** | **56.9** | **60.1** | **67.9** | **60.2** | **62.3** | **60.9** | **65.0** | **75.5** |
Overall, the model with only 3.8B-param achieves a similar level of multilingual language understanding and reasoning ability as much larger models. However, it is still fundamentally limited by its size for certain tasks. The model simply does not have the capacity to store too much factual knowledge, therefore, users may experience factual incorrectness. However, it may be possible to resolve such weakness by augmenting Phi-4 with a search engine, particularly when using the model under RAG settings.
## Usage
### Tokenizer
Phi-4-mini-instruct supports a vocabulary size of up to `200064` tokens. The [tokenizer files](https://huggingface.co/microsoft/Phi-4-mini-instruct/blob/main/added_tokens.json) already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size.
### Input Formats
Given the nature of the training data, the Phi-4-mini-instruct
model is best suited for prompts using specific formats.
Below are the two primary formats:
#### Chat format
This format is used for general conversation and instructions:
```yaml
<|system|>Insert System Message<|end|><|user|>Insert User Message<|end|><|assistant|>
```
#### Tool-enabled function-calling format
This format is used when the user wants the model to provide function calls based on the given tools. The user should provide the available tools in the system prompt, wrapped by <|tool|> and <|/tool|> tokens. The tools should be specified in JSON format, using a JSON dump structure. Example:
`
<|system|>You are a helpful assistant with some tools.<|tool|>[{"name": "get_weather_updates", "description": "Fetches weather updates for a given city using the RapidAPI Weather API.", "parameters": {"city": {"description": "The name of the city for which to retrieve weather information.", "type": "str", "default": "London"}}}]<|/tool|><|end|><|user|>What is the weather like in Paris today?<|end|><|assistant|>
`
### Inference with vLLM
#### Requirements
List of required packages:
```
flash_attn==2.7.4.post1
torch==2.6.0
vllm>=0.7.2
```
#### Example
To perform inference using vLLM, you can use the following code snippet:
```python
from vllm import LLM, SamplingParams
llm = LLM(model="microsoft/Phi-4-mini-instruct", trust_remote_code=True)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
sampling_params = SamplingParams(
max_tokens=500,
temperature=0.0,
)
output = llm.chat(messages=messages, sampling_params=sampling_params)
print(output[0].outputs[0].text)
```
### Inference with Transformers
#### Requirements
Phi-4 family has been integrated in the `4.49.0` version of `transformers`. The current `transformers` version can be verified with: `pip list | grep transformers`.
List of required packages:
```
flash_attn==2.7.4.post1
torch==2.6.0
transformers==4.49.0
accelerate==1.3.0
```
Phi-4-mini-instruct is also available in [Azure AI Studio]()
#### Example
After obtaining the Phi-4-mini-instruct model checkpoints, users can use this sample code for inference.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model_path = "microsoft/Phi-4-mini-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
## Responsible AI Considerations
Like other language models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: The Phi models are trained primarily on English text and some additional multilingual text. Languages other than English will experience worse performance as well as performance disparities across non-English. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Multilingual performance and safety gaps: We believe it is important to make language models more widely available across different languages, but the Phi 4 models still exhibit challenges common across multilingual releases. As with any deployment of LLMs, developers will be better positioned to test for performance or safety gaps for their linguistic and cultural context and customize the model with additional fine-tuning and appropriate safeguards.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups, cultural contexts, or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: The majority of Phi 4 training data is based in Python and uses common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, it is strongly recommended that users manually verify all API uses.
+ Long Conversation: Phi 4 models, like other models, can in some cases generate responses that are repetitive, unhelpful, or inconsistent in very long chat sessions in both English and non-English languages. Developers are encouraged to place appropriate mitigations, like limiting conversation turns to account for the possible conversational drift.
Developers should apply responsible AI best practices, including mapping, measuring, and mitigating risks associated with their specific use case and cultural, linguistic context. Phi 4 family of models are general purpose models. As developers plan to deploy these models for specific use cases, they are encouraged to fine-tune the models for their use case and leverage the models as part of broader AI systems with language-specific safeguards in place. Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess the suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
## Training
### Model
+ **Architecture:** Phi-4-mini-instruct has 3.8B parameters and is a dense decoder-only Transformer model. When compared with Phi-3.5-mini, the major changes with Phi-4-mini-instruct are 200K vocabulary, grouped-query attention, and shared input and output embedding.<br>
+ **Inputs:** Text. It is best suited for prompts using the chat format.<br>
+ **Context length:** 128K tokens<br>
+ **GPUs:** 512 A100-80G<br>
+ **Training time:** 21 days<br>
+ **Training data:** 5T tokens<br>
+ **Outputs:** Generated text in response to the input<br>
+ **Dates:** Trained between November and December 2024<br>
+ **Status:** This is a static model trained on offline datasets with the cutoff date of June 2024 for publicly available data.<br>
+ **Supported languages:** Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian<br>
+ **Release date:** February 2025<br>
### Training Datasets
Phi-4-mini’s training data includes a wide variety of sources, totaling 5 trillion tokens, and is a combination of
1) publicly available documents filtered for quality, selected high-quality educational data, and code
2) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (e.g., science, daily activities, theory of mind, etc.)
3) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness. Focus was placed on the quality of data that could potentially improve the reasoning ability for the model, and the publicly available documents were filtered to contain a preferred level of knowledge. As an example, the result of a game in premier league on a particular day might be good training data for frontier models, but such information was removed to leave more model capacity for reasoning for the model’s small size. More details about data can be found in the Phi-4-mini-instruct technical report.
The decontamination process involved normalizing and tokenizing the dataset, then generating and comparing n-grams between the target dataset and benchmark datasets. Samples with matching n-grams above a threshold were flagged as contaminated and removed from the dataset. A detailed contamination report was generated, summarizing the matched text, matching ratio, and filtered results for further analysis.
### Fine-tuning
A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/sample_finetune.py).
## Safety Evaluation and Red-Teaming
Various evaluation techniques including red teaming, adversarial conversation simulations, and multilingual safety evaluation benchmark datasets were leveraged to evaluate Phi-4 models’ propensity to produce undesirable outputs across multiple languages and risk categories. Several approaches were used to compensate for the limitations of one approach alone. Findings across the various evaluation methods indicate that safety post-training that was done as detailed in the Phi 3 Safety Post-Training paper had a positive impact across multiple languages and risk categories as observed by refusal rates (refusal to output undesirable outputs) and robustness to jailbreak techniques. Details on prior red team evaluations across Phi models can be found in the Phi 3 Safety Post-Training paper. For this release, the red team tested the model in English, Chinese, Japanese, Spanish, Portuguese, Arabic, Thai, and Russian for the following potential harms: Hate Speech and Bias, Violent Crimes, Specialized Advice, and Election Information. Their findings indicate that the model is resistant to jailbreak techniques across languages, but that language-specific attack prompts leveraging cultural context can cause the model to output harmful content. Another insight was that with function calling scenarios, the model could sometimes hallucinate function names or URL’s. The model may also be more susceptible to longer multi-turn jailbreak techniques across both English and non-English languages. These findings highlight the need for industry-wide investment in the development of high-quality safety evaluation datasets across multiple languages, including low resource languages, and risk areas that account for cultural nuances where those languages are spoken.
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
## Hardware
Note that by default, the Phi-4-mini-instruct model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
If you want to run the model on:
* NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager"
## License
The model is licensed under the [MIT license](./LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
## Appendix A: Benchmark Methodology
We include a brief word on methodology here - and in particular, how we think about optimizing prompts.
In an ideal world, we would never change any prompts in our benchmarks to ensure it is always an apples-to-apples comparison when comparing different models. Indeed, this is our default approach, and is the case in the vast majority of models we have run to date.
There are, however, some exceptions to this. In some cases, we see a model that performs worse than expected on a given eval due to a failure to respect the output format. For example:
+ A model may refuse to answer questions (for no apparent reason), or in coding tasks models may prefix their response with “Sure, I can help with that. …” which may break the parser. In such cases, we have opted to try different system messages (e.g. “You must always respond to a question” or “Get to the point!”).
+ With some models, we observed that few shots actually hurt model performance. In this case we did allow running the benchmarks with 0-shots for all cases.
+ We have tools to convert between chat and completions APIs. When converting a chat prompt to a completion prompt, some models have different keywords e.g. Human vs User. In these cases, we do allow for model-specific mappings for chat to completion prompts.
However, we do not:
+ Pick different few-shot examples. Few shots will always be the same when comparing different models.
+ Change prompt format: e.g. if it is an A/B/C/D multiple choice, we do not tweak this to 1/2/3/4 multiple choice.
### Benchmark datasets
The model was evaluated across a breadth of public and internal benchmarks to understand the model’s capabilities under multiple tasks and conditions. While most evaluations use English, the leading multilingual benchmark was incorporated that covers performance in select languages. More specifically,
+ Reasoning:
+ Winogrande: commonsense reasoning around pronoun resolution
+ PIQA: physical commonsense reasoning around everyday situations
+ ARC-challenge: grade-school multiple choice science questions
+ GPQA: very hard questions written and validated by experts in biology, physics, and chemistry
+ MedQA: medical questions answering
+ Social IQA: social commonsense intelligence
+ BoolQ: natural questions from context
+ TruthfulQA: grounded reasoning
+ Language understanding:
+ HellaSwag: commonsense natural language inference around everyday events
+ ANLI: adversarial natural language inference
+ Function calling:
+ Berkeley function calling function and tool call
+ Internal function calling benchmarks
+ World knowledge:
+ TriviaQA: trivia question on general topics
+ Math:
+ GSM8K: grade-school math word problems
+ GSM8K Hard: grade-school math word problems with large values and some absurdity.
+ MATH: challenging competition math problems
+ Code:
+ HumanEval HumanEval+, MBPP, MBPP+: python coding tasks
+ LiveCodeBenh, LiveBench: contamination-free code tasks
+ BigCode Bench: challenging programming tasks
+ Spider: SQL query tasks
+ Internal coding benchmarks
+ Instructions following:
+ IFEval: verifiable instructions
+ Internal instructions following benchmarks
+ Multilingual:
+ MGSM: multilingual grade-school math
+ Multilingual MMLU and MMLU-pro
+ MEGA: multilingual NLP tasks
+ Popular aggregated datasets: MMLU, MMLU-pro, BigBench-Hard, AGI Eval
+ Multi-turn conversations:
+ Data generated by in-house adversarial conversation simulation tool
+ Single-turn trustworthiness evaluation:
+ DecodingTrust: a collection of trustworthiness benchmarks in eight different perspectives
+ XSTest: exaggerated safety evaluation
+ Toxigen: adversarial and hate speech detection
+ Red Team:
+ Responses to prompts provided by AI Red Team at Microsoft | [
"MEDQA"
] |
QuantFactory/Phi-3-mini-128k-instruct-GGUF | QuantFactory | text-generation | [
"gguf",
"nlp",
"code",
"text-generation",
"en",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | "2024-04-23T16:25:57Z" | 2024-05-24T12:53:35+00:00 | 3,696 | 35 | ---
language:
- en
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- code
---
# microsoft/Phi-3-mini-128k-instruct
- This is quantized version of `microsoft/Phi-3-mini-128k-instruct`
## Model Summary
The Phi-3-Mini-128K-Instruct is a 3.8 billion-parameter, lightweight, state-of-the-art open model trained using the Phi-3 datasets.
This dataset includes both synthetic data and filtered publicly available website data, with an emphasis on high-quality and reasoning-dense properties.
The model belongs to the Phi-3 family with the Mini version in two variants [4K](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [128K](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) which is the context length (in tokens) that it can support.
After initial training, the model underwent a post-training process that involved supervised fine-tuning and direct preference optimization to enhance its ability to follow instructions and adhere to safety measures.
When evaluated against benchmarks that test common sense, language understanding, mathematics, coding, long-term context, and logical reasoning, the Phi-3 Mini-128K-Instruct demonstrated robust and state-of-the-art performance among models with fewer than 13 billion parameters.
Resources and Technical Documentation:
+ [Phi-3 Microsoft Blog](https://aka.ms/phi3blog-april)
+ [Phi-3 Technical Report](https://aka.ms/phi3-tech-report)
+ [Phi-3 on Azure AI Studio](https://aka.ms/phi3-azure-ai)
+ Phi-3 ONNX: [128K](https://aka.ms/Phi3-mini-128k-instruct-onnx)
## Intended Uses
**Primary use cases**
The model is intended for commercial and research use in English. The model provides uses for applications which require:
1) Memory/compute constrained environments
2) Latency bound scenarios
3) Strong reasoning (especially code, math and logic)
Our model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
**Use case considerations**
Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fariness before using within a specific downstream use case, particularly for high risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
## How to Use
Phi-3 Mini-128K-Instruct has been integrated in the development version (4.40.0) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
The current `transformers` version can be verified with: `pip list | grep transformers`.
### Chat Format
Given the nature of the training data, the Phi-3 Mini-128K-Instruct model is best suited for prompts using the chat format as follows.
You can provide the prompt as a question with a generic template as follow:
```markdown
<|user|>\nQuestion<|end|>\n<|assistant|>
```
For example:
```markdown
<|system|>
You are a helpful AI assistant.<|end|>
<|user|>
How to explain Internet for a medieval knight?<|end|>
<|assistant|>
```
where the model generates the text after `<|assistant|>`. In case of few-shots prompt, the prompt can be formatted as the following:
```markdown
<|system|>
You are a helpful AI assistant.<|end|>
<|user|>
I am going to Paris, what should I see?<|end|>
<|assistant|>
Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris:\n\n1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city.\n2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa.\n3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows.\n\nThese are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world."<|end|>
<|user|>
What is so great about #1?<|end|>
<|assistant|>
```
### Sample inference code
This code snippets show how to get quickly started with running the model on a GPU:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-128k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
messages = [
{"role": "system", "content": "You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
## Responsible AI Considerations
Like other language models, the Phi series models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: the Phi models are trained primarily on English text. Languages other than English will experience worse performance. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: these models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the use case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
Developers should apply responsible AI best practices and are responsible for ensuring that a specific use case complies with relevant laws and regulations (e.g. privacy, trade, etc.). Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
## Training
### Model
* Architecture: Phi-3 Mini-128K-Instruct has 3.8B parameters and is a dense decoder-only Transformer model. The model is fine-tuned with Supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) to ensure alignment with human preferences and safety guidlines.
* Inputs: Text. It is best suited for prompts using chat format.
* Context length: 128K tokens
* GPUs: 512 H100-80G
* Training time: 7 days
* Training data: 3.3T tokens
* Outputs: Generated text in response to the input
* Dates: Our models were trained between February and April 2024
* Status: This is a static model trained on an offline dataset with cutoff date October 2023. Future versions of the tuned models may be released as we improve models.
### Datasets
Our training data includes a wide variety of sources, totaling 3.3 trillion tokens, and is a combination of
1) Publicly available documents filtered rigorously for quality, selected high-quality educational data, and code;
2) Newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.);
3) High quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness.
### Fine-tuning
A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/sample_finetune.py).
## Benchmarks
We report the results for Phi-3-Mini-128K-Instruct on standard open-source benchmarks measuring the model's reasoning ability (both common sense reasoning and logical reasoning). We compare to Phi-2, Mistral-7b-v0.1, Mixtral-8x7b, Gemma 7B, Llama-3-8B-Instruct, and GPT-3.5.
All the reported numbers are produced with the exact same pipeline to ensure that the numbers are comparable. These numbers might differ from other published numbers due to slightly different choices in the evaluation.
As is now standard, we use few-shot prompts to evaluate the models, at temperature 0.
The prompts and number of shots are part of a Microsoft internal tool to evaluate language models, and in particular we did no optimization to the pipeline for Phi-3.
More specifically, we do not change prompts, pick different few-shot examples, change prompt format, or do any other form of optimization for the model.
The number of k–shot examples is listed per-benchmark.
| | Phi-3-Mini-128K-In<br>3.8b | Phi-3-Small<br>7b (preview) | Phi-3-Medium<br>14b (preview) | Phi-2<br>2.7b | Mistral<br>7b | Gemma<br>7b | Llama-3-In<br>8b | Mixtral<br>8x7b | GPT-3.5<br>version 1106 |
|---|---|---|---|---|---|---|---|---|---|
| MMLU <br>5-Shot | 68.1 | 75.3 | 78.2 | 56.3 | 61.7 | 63.6 | 66.5 | 68.4 | 71.4 |
| HellaSwag <br> 5-Shot | 74.5 | 78.7 | 83.2 | 53.6 | 58.5 | 49.8 | 71.1 | 70.4 | 78.8 |
| ANLI <br> 7-Shot | 52.8 | 55.0 | 58.7 | 42.5 | 47.1 | 48.7 | 57.3 | 55.2 | 58.1 |
| GSM-8K <br> 0-Shot; CoT | 83.6 | 86.4 | 90.8 | 61.1 | 46.4 | 59.8 | 77.4 | 64.7 | 78.1 |
| MedQA <br> 2-Shot | 55.3 | 58.2 | 69.8 | 40.9 | 49.6 | 50.0 | 60.5 | 62.2 | 63.4 |
| AGIEval <br> 0-Shot | 36.9 | 45.0 | 49.7 | 29.8 | 35.1 | 42.1 | 42.0 | 45.2 | 48.4 |
| TriviaQA <br> 5-Shot | 57.1 | 59.1 | 73.3 | 45.2 | 72.3 | 75.2 | 67.7 | 82.2 | 85.8 |
| Arc-C <br> 10-Shot | 84.0 | 90.7 | 91.9 | 75.9 | 78.6 | 78.3 | 82.8 | 87.3 | 87.4 |
| Arc-E <br> 10-Shot | 95.2 | 97.1 | 98.0 | 88.5 | 90.6 | 91.4 | 93.4 | 95.6 | 96.3 |
| PIQA <br> 5-Shot | 83.6 | 87.8 | 88.2 | 60.2 | 77.7 | 78.1 | 75.7 | 86.0 | 86.6 |
| SociQA <br> 5-Shot | 76.1 | 79.0 | 79.4 | 68.3 | 74.6 | 65.5 | 73.9 | 75.9 | 68.3 |
| BigBench-Hard <br> 0-Shot | 71.5 | 75.0 | 82.5 | 59.4 | 57.3 | 59.6 | 51.5 | 69.7 | 68.32 |
| WinoGrande <br> 5-Shot | 72.5 | 82.5 | 81.2 | 54.7 | 54.2 | 55.6 | 65.0 | 62.0 | 68.8 |
| OpenBookQA <br> 10-Shot | 80.6 | 88.4 | 86.6 | 73.6 | 79.8 | 78.6 | 82.6 | 85.8 | 86.0 |
| BoolQ <br> 0-Shot | 78.7 | 82.9 | 86.5 | -- | 72.2 | 66.0 | 80.9 | 77.6 | 79.1 |
| CommonSenseQA <br> 10-Shot | 78.0 | 80.3 | 82.6 | 69.3 | 72.6 | 76.2 | 79 | 78.1 | 79.6 |
| TruthfulQA <br> 10-Shot | 63.2 | 68.1 | 74.8 | -- | 52.1 | 53.0 | 63.2 | 60.1 | 85.8 |
| HumanEval <br> 0-Shot | 57.9 | 59.1 | 54.7 | 59.0 | 28.0 | 34.1 | 60.4| 37.8 | 62.2 |
| MBPP <br> 3-Shot | 62.5 | 71.4 | 73.7 | 60.6 | 50.8 | 51.5 | 67.7 | 60.2 | 77.8 |
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [DeepSpeed](https://github.com/microsoft/DeepSpeed)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
## Hardware
Note that by default, the Phi-3-mini model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
If you want to run the model on:
* NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager"
* Optimized inference on GPU, CPU, and Mobile: use the **ONNX** models [128K](https://aka.ms/phi3-mini-128k-instruct-onnx)
## Cross Platform Support
ONNX runtime ecosystem now supports Phi-3 Mini models across platforms and hardware. You can find the optimized Phi-3 Mini-128K-Instruct ONNX model [here](https://aka.ms/phi3-mini-128k-instruct-onnx).
Optimized Phi-3 models are also published here in ONNX format, to run with ONNX Runtime on CPU and GPU across devices, including server platforms, Windows, Linux and Mac desktops, and mobile CPUs, with the precision best suited to each of these targets. DirectML support lets developers bring hardware acceleration to Windows devices at scale across AMD, Intel, and NVIDIA GPUs.
Along with DirectML, ONNX Runtime provides cross platform support for Phi-3 across a range of devices CPU, GPU, and mobile.
Here are some of the optimized configurations we have added:
1. ONNX models for int4 DML: Quantized to int4 via AWQ
2. ONNX model for fp16 CUDA
3. ONNX model for int4 CUDA: Quantized to int4 via RTN
4. ONNX model for int4 CPU and Mobile: Quantized to int4 via RTN
## License
The model is licensed under the [MIT license](https://huggingface.co/microsoft/Phi-3-mini-128k/resolve/main/LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies. | [
"MEDQA"
] |
Almawave/Velvet-14B | Almawave | text-generation | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"vllm",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | "2025-01-31T00:53:58Z" | 2025-02-20T14:38:44+00:00 | 3,649 | 129 | ---
language:
- en
- fr
- de
- es
- it
- pt
library_name: transformers
license: apache-2.0
tags:
- vllm
inference: false
extra_gated_description: If you want to learn more about how we process your personal
data, please read our <a href="https://www.almawave.com/privacy-policy/">Privacy
Policy</a>.
---
# Model Card for Velvet-14B
Velvet is an Italian family of large language models, developed from scratch, featuring a dense architecture. This model was trained on the HPC Leonardo infrastructure hosted by [CINECA](https://www.cineca.it/en), utilizing public data that underwent extensive curation.
The training process commenced with over 10 trillion tokens and culminated in more than 4 trillion tokens, across six languages (Italian, English, Spanish, Portuguese-Brazilian, German, French) for the 14B model.
Efforts were specifically made to maintain balance between languages, with particular emphasis on Italian, which comprises approximately 23% of the data. In addition to linguistic data, Velvet incorporates over 400 billion tokens from more than 100 programming languages to facilitate more structured inferences in the aforementioned languages.
## Model details
- **Model Developers:** Technology and innovation Team, Almawave
- **Input:** Models input text only.
- **Output:** Models generate text only.
- **Release Date:** January 31st, 2025.
- **License:** Apache 2.
### Model Architecture and training
Velvet family of models comes in two sizes --- 2B and 14B parameters --- namely, **Velvet-2B** and **Velvet-14B**.
**Velvet-14B** is a 14B parameter long-context instruct model finetuned from **Velvet-14B-base** using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
#### Architecture
- Auto-regressive language model with a transformer-based causal decoder-only design.
- 50 transformer layers.
- MLP intermediate size of 12,544.
- Grouped Query Attention (GQA): 40 query heads and 8 key-value heads for efficiency.
- Rotary Position Embedding (RoPE): High theta value for long-context modeling.
- SiLU activation function with RMSNorm method.
- Context length up to 128K tokens, trained on sequences of 4/8/16k tokens.
- 127K vocabulary size, designed to accommodate language diversity.
- Training phase: pretraining & post-training.
### Status
This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
Almawave is actively working on strategies to enhance alignment and robustness in future iterations of the Velvet model.
### License
Velvet-14B and Velvet-2B are made available under the Apache 2.0 license
### Supported Languages
Velvet-14B has been trained on Italian, English, German, Spanish, French, Portuguese.
To ensure high-quality multilingual performance, the dataset was curated to balance linguistic representation, reducing overfitting biases toward high-resource languages.
## Intended Use
Velvet-14B is designed to be integrated into AI systems or applications. Its potential use include, but it is not limited to, text generation, classification, summarization, question answering. It is important to note that specific applications may need further model adaptations or additional safeguards to prevent undesirable behavior or outputs.
### Capabilities
- Summarization
- Information Extraction
- RAG (Retrieval Augmented Generation)
- Paraphrasing
- Textual Entailment
- Natural Language Inference
- Common Sense Reasoning
- Multistep Reasoning
- Text Classification
- Machine Translation
- Question Answering
- Text Completion
- Multiturn Conversation
## Training Data
### Overview
The model was pretrained on over 4 trillion tokens of data from publicly available sources. These sources include diverse collection of web text exposes the model to an extensive range of linguistic styles, topics, and vocabulary. The training dataset has been built with a balanced representation of multiple languages.
The fine-tuning data includes publicly available instruction datasets, as well as over 2M human-annotated and synthetic examples for SFT.
Moreover we used over 50k human generated examples for safety instructions. Neither the pretraining nor the fine-tuning datasets include Almawave's customer data.
We have made significant efforts to enhance the reliability of responses in terms of factual accuracy; however, we always recommend grounding LLM responses with external factual data (e.g. Retrieval Augmented Generation).
### Data Freshness
The pretraining data has a cutoff between August 2024 and October 2024 for the two different models.
## Evaluation
### EU languages
Velvet-14B average on EU languages covered by the model, unless specified.
| Category | Benchmark | Velvet-14B |
|---------------------------| ------------------------| -------------------|
| General | MMLU (5-shot) | 56.4 |
| Instruction Following | IFEval (0-shot) - en | 65.4 |
| Commonsense | Hellaswag (10-shot) | 72.8 |
| | WinoGrande (0-shot) - en | 72.5 |
| Reasoning | ARC-Challenge (25-shot) | 57.3 |
|| MUSR (0-shot) - en | 12.3 |
|Function Calling/Tool Use| BFCL (AST summary) - en | 67.5 |
### Italian language
| Category | Benchmark | Velvet-14B |
|---------------------------| ------------------------| -------------------|
| General | MMLU (5-shot) | 58.6 |
| Commonsense | Hellaswag (0-shot) | 72.7 |
| | WinoGrande ITA-bench (0-shot) | 73.2 |
|| PIQA ITA-bench (0-shot) | 71.7 |
|| SciQ ITA-bench (0-shot) with p. | 91.9 |
| Reasoning | ARC-Challenge (0-shot) | 55.2 |
### Tokenizer
| Lang | Fertility | Parity (en) | Parity (it) |
|--------| ------------------| ---------------| ---------------|
|en| 1.403 | 1.000 | 0.904
|it| 1.464 | 1.129 | 1.000
|pt| 1.386 | 1.135 | 1.016
|es| 1.324 | 1.205 | 1.078
|de| 1.984 | 1.240 | 1.112
|fr| 1.632 | 1.330 | 1.191
|code| 2.672| NA| NA |
## Usage
The model can be used with the following frameworks;
- [`vllm`](https://github.com/vllm-project/vllm)
- [`transformers`](https://github.com/huggingface/transformers)
- [`ollama`](https://ollama.com/Almawave/Velvet)
## Responsibility and Safety
Large language models are versatile technologies designed to serve a wide range of applications. However, they are not intended to meet every developer\'s safety requirements out-of-the-box, as these requirements naturally vary depending on the specific use case and application context.
### Safety
For our instruction-trained model, we have undertaken comprehensive exercises, engaged in adversarial internal and external evaluations, and put into place mitigation techniques to reduce risks. These exercises were designed to thoroughly examine the model\'s limitations and potential, simulating real and hypothetical scenarios where undesirable behavior might arise.
However, despite these efforts, it is inevitable that some residual hazards are bound to exist, as every large language model presents intrinsic complexities that cannot be completely eliminated.
Then, developers are advised to implement suitable safety measures and exercise due diligence, tailoring these safeguards to align with their product policies and the specific requirements of their applications.
Some trade-offs between model helpfulness and alignment are likely inevitable. Developers should thoughtfully balance the benefits of alignment and helpfulness for their specific applications and audiences.
They must also remain aware of residual risks when using Velvet models and leverage additional safety tools as necessary to achieve an appropriate safety standard for their use case.
We advise developers to carefully evaluate risks in the context of their specific use case. They should consider the potential implications of a model failure in their applications and put adequate measures in place to manage such eventualities.
In parallel, we are collaborating with the scientific and industrial community to establish AI safety benchmark standards that are transparent, rigorous, and interpretable. The goal is to promote a better understanding of the risks associated with large language models and support the development of safer and more responsible solutions.
### **Governance and Internal Oversight**
Almawave has established an **internal governance framework** for the management and continuous oversight of the Velvet model family.
Key governance elements include:
- **Supervision by an Ethical and Technical Committee** to ensure the model aligns with principles of **transparency, fairness, and safety**.
- **Ongoing bias monitoring** through auditing tools, with iterative updates to improve alignment with ethical guidelines.
- **Restrictions on commercial and institutional usage** to ensure compliance with regulatory frameworks and **shared responsibility principles**.
- **Periodic review processes** to assess the model’s impact in high-risk applications.
## Bias, Risks, and Limitations
Velvet has been trained on a dataset that, despite all the data curation efforts, might include toxic language and societal biases. This means that models in the Velvet family may reproduce these biases and produce harmful responses when prompted with such inputs. This is a common issue in AI models trained on large datasets, as they can inadvertently perpetuate the biases present in the data.
Furthermore, the model may generate inaccurate, incomplete, or redundant responses, which could be socially unacceptable or undesirable, even if the input prompt is not explicitly offensive. This is a potential flaw in the model\'s design and training process, and it underscores the importance of careful validation and monitoring of AI systems to ensure that they are functioning as intended.
Additionally, using the recommended prompt template is crucial to mitigate the risk of harmful responses, as it is designed to guide the model towards more appropriate and safe outputs. However, it is important to note that the model\'s performance may still vary depending on the specific context and complexity of the input prompt.
Finally, when using this model in an agentic workflow, it is essential to validate that all imported packages and dependencies are from trusted sources to ensure the model\'s security and integrity. This is a critical step in maintaining the model\'s ethical and responsible use, and it is important to prioritize end-to-end security measures to prevent any potential vulnerabilities or breaches.
Future versions of Velvet will integrate automated red-teaming protocols, continuously stress-testing the model against adversarial prompts to identify and mitigate emerging risks.
### Sensitive Data Handling and Usage Restrictions
The Velvet model has not been trained on unauthorized personal data and must not be used to process sensitive data without appropriate security measures.
Usage Restrictions:
- Prohibited use on sensitive healthcare, financial, or government data without specific safeguards.
- Mandatory human validation in scenarios where the model’s outputs could have legal or ethical consequences.
- High-risk applications (legal, medical, public governance) must implement content filtering and auditing techniques to ensure response quality and safety.
## Ethical Considerations
Almawave core values are openness, inclusivity, and helpfulness. We aim to create AI that is accessible and beneficial for everyone, regardless of their background. Velvet models are designed to be respectful of diverse perspectives and avoid unnecessary judgments. Therefore, Velvet models are designed to be inclusive and respectful of diverse perspectives and needs. We strive to avoid unnecessary judgment or the imposition of normative views, recognizing that content deemed problematic in some contexts can have valuable applications in others.
We deeply respect the dignity and autonomy of all users, particularly their right to free thought and expression, which are fundamental to innovation and progress.
While we have taken significant steps to ensure the safety and reliability of Velvet models, it is important to acknowledge that they may occasionally generate inaccurate, biased, or unsafe responses.
Almawave is actively engaging with ethics committees and domain experts to ensure continuous oversight of Velvet’s outputs, improving safeguards through community feedback.
We strongly encourage the community to exercise caution and conduct thorough safety testing and fine-tuning when using Velvet models for specific tasks.
Opinions expressed by Velvet depend on training data and do not reflect any opinions of Almawave.
## Contributions
Direction: Raniero Romagnoli
- Model engineering and training: David Alessandrini, Francesco Buciuni, Andrea Favalli, Diego Perna, David Preti, Federico Wolenski, Fabio Massimo Zanzotto
- Data engineering and management: Valentina Bellomaria, Cristina Giannone, Alfredo Serafini
- Use case adaptation and testing: Salvatore Ricciardi, Simone Scaboro, Beatrice Turano, Giancarlo Xompero
- Evaluation: Giovanni Cingolani, Silvana De Benedictis, Caterina Masotti, Riccardo Pasquini, Guillaume Ruiz, Giuseppe Scrugli, Alessandro Vizzarro
- Product and governance: Beata Dobrzynska, Matteo Amore, Marco Gennaro Di Martino, Vincenzo Sciacca, Alessandra Staglianò, Luca Vinciguerra
| [
"SCIQ"
] |
BSC-LT/salamandra-2b | BSC-LT | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"bg",
"ca",
"code",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"eu",
"fi",
"fr",
"ga",
"gl",
"hr",
"hu",
"it",
"lt",
"lv",
"mt",
"nl",
"nn",
"oc",
"pl",
"pt",
"ro",
"ru",
"sh",
"sk",
"sl",
"sr",
"sv",
"uk",
"dataset:oscar-corpus/colossal-oscar-1.0",
"dataset:HuggingFaceFW/fineweb-edu",
"dataset:joelniklaus/eurlex_resources",
"dataset:joelito/legal-mc4",
"dataset:projecte-aina/CATalog",
"dataset:UFRGS/brwac",
"dataset:community-datasets/hrwac",
"dataset:danish-foundation-models/danish-gigaword",
"dataset:HiTZ/euscrawl",
"dataset:PleIAs/French-PD-Newspapers",
"dataset:PleIAs/French-PD-Books",
"dataset:AI-team-UoA/greek_legal_code",
"dataset:HiTZ/latxa-corpus-v1.1",
"dataset:allenai/peS2o",
"dataset:pile-of-law/pile-of-law",
"dataset:PORTULAN/parlamento-pt",
"dataset:hoskinson-center/proof-pile",
"dataset:togethercomputer/RedPajama-Data-1T",
"dataset:bigcode/starcoderdata",
"dataset:bjoernp/tagesschau-2018-2023",
"dataset:EleutherAI/the_pile_deduplicated",
"arxiv:2502.08489",
"arxiv:2403.14009",
"arxiv:2403.20266",
"arxiv:2101.00027",
"arxiv:2207.00220",
"arxiv:1810.06694",
"arxiv:1911.05507",
"arxiv:1906.03741",
"arxiv:2406.17557",
"arxiv:2402.06619",
"arxiv:1803.09010",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2024-09-30T13:44:13Z" | 2025-02-20T16:36:39+00:00 | 3,633 | 23 | ---
datasets:
- oscar-corpus/colossal-oscar-1.0
- HuggingFaceFW/fineweb-edu
- joelniklaus/eurlex_resources
- joelito/legal-mc4
- projecte-aina/CATalog
- UFRGS/brwac
- community-datasets/hrwac
- danish-foundation-models/danish-gigaword
- HiTZ/euscrawl
- PleIAs/French-PD-Newspapers
- PleIAs/French-PD-Books
- AI-team-UoA/greek_legal_code
- HiTZ/latxa-corpus-v1.1
- allenai/peS2o
- pile-of-law/pile-of-law
- PORTULAN/parlamento-pt
- hoskinson-center/proof-pile
- togethercomputer/RedPajama-Data-1T
- bigcode/starcoderdata
- bjoernp/tagesschau-2018-2023
- EleutherAI/the_pile_deduplicated
language:
- bg
- ca
- code
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fi
- fr
- ga
- gl
- hr
- hu
- it
- lt
- lv
- mt
- nl
- nn
- \no
- oc
- pl
- pt
- ro
- ru
- sh
- sk
- sl
- sr
- sv
- uk
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---

# Salamandra Model Card
This repository contains the model described in [Salamandra Technical Report](https://huggingface.co/papers/2502.08489).
Salamandra is a highly multilingual model pre-trained from scratch that comes in three different
sizes — 2B, 7B and 40B parameters — with their respective base and instruction-tuned variants.
This model card corresponds to the 2B base version.
To visit the model cards of other Salamandra versions, please refer to the [Model Index](#model-index).
The entire Salamandra family is released under a permissive [Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0).
Along with the open weights, all training scripts and configuration files are made publicly available in [this GitHub repository](https://github.com/langtech-bsc/salamandra).
---
## Model Details
### Description
Transformer-based decoder-only language model that has been pre-trained from scratch on 12.875 trillion tokens of highly curated data.
The pre-training corpus contains text in 35 European languages and code.
### Hyperparameters
The full list of hyperparameters for each model can be found [here](https://github.com/langtech-bsc/salamandra/blob/main/configs/bsc_2b.yaml).
### Architecture
| | |
|-------------------------|:--------------|
| Total Parameters | 2,253,490,176 |
| Embedding Parameters | 524,288,000 |
| Layers | 24 |
| Hidden size | 2,048 |
| Attention heads | 16 |
| Context length | 8,192 |
| Vocabulary size | 256,000 |
| Precision | bfloat16 |
| Embedding type | RoPE |
| Activation Function | SwiGLU |
| Layer normalization | RMS Norm |
| Flash attention | ✅ |
| Grouped Query Attention | ❌ |
| Num. query groups | N/A |
---
## Intended Use
### Direct Use
The models are intended for both research and commercial use in any of the languages included in the training data.
The base models are intended either for language generation or to be further fine-tuned for specific use-cases.
The instruction-tuned variants can be used as general-purpose assistants, as long as the user is fully aware of the model’s limitations.
### Out-of-scope Use
The model is not intended for malicious activities, such as harming others or violating human rights.
Any downstream application must comply with current laws and regulations.
Irresponsible usage in production environments without proper risk assessment and mitigation is also discouraged.
---
## Hardware and Software
### Training Framework
Pre-training was conducted using NVIDIA’s [NeMo Framework](https://docs.nvidia.com/nemo-framework/index.html),
which leverages PyTorch Lightning for efficient model training in highly distributed settings.
The instruction-tuned versions were produced with [FastChat](https://github.com/lm-sys/FastChat).
### Compute Infrastructure
All models were trained on [MareNostrum 5](https://www.bsc.es/ca/marenostrum/marenostrum-5), a pre-exascale EuroHPC supercomputer hosted and
operated by Barcelona Supercomputing Center.
The accelerated partition is composed of 1,120 nodes with the following specifications:
- 4x Nvidia Hopper GPUs with 64GB HBM2 memory
- 2x Intel Sapphire Rapids 8460Y+ at 2.3Ghz and 32c each (64 cores)
- 4x NDR200 (BW per node 800Gb/s)
- 512 GB of Main memory (DDR5)
- 460GB on NVMe storage
|Model|Nodes|GPUs|
|:---:|:---:|:---:|
|2B|64|256|
|7B|128|512|
|40B|256 / 512|1,024 / 2,048|
---
## How to use
This section offers examples of how to perform inference using various methods.
### Inference
You'll find different techniques for running inference, including Huggingface's Text Generation Pipeline, multi-GPU configurations, and vLLM for scalable and efficient generation.
#### Inference with Huggingface's Text Generation Pipeline
The Huggingface Text Generation Pipeline provides a straightforward way to run inference using the Salamandra-2b model.
```bash
pip install transformers torch accelerate sentencepiece protobuf
```
<details>
<summary>Show code</summary>
```python
from transformers import pipeline, set_seed
model_id = "BSC-LT/salamandra-2b"
# Sample prompts
prompts = [
"Todo el mundo sabe que vivir en Barcelona es",
"¿Pueblo o ciudad? Una ventaja de vivir en la ciudad es que hay muchas oportunidades de ocio y empleo, así como una gran diversidad de comercios para todos los gustos. Sin embargo, las ciudades suelen ser ",
"Llegir ens proporciona",
"What I find more fascinating about languages is that",
"La vie peut être",
"The future of AI is",
]
# Create the pipeline
generator = pipeline("text-generation", model_id, device_map="auto")
generation_args = {
"temperature": 0.1,
"top_p": 0.95,
"max_new_tokens": 25,
"repetition_penalty": 1.2,
"do_sample": True
}
# Fix the seed
set_seed(1)
# Generate texts
outputs = generator(prompts, **generation_args)
# Print outputs
for output in outputs:
print(output[0]["generated_text"])
```
</details>
#### Inference with single / multi GPU
This section provides a simple example of how to run inference using Huggingface's AutoModel class.
```bash
pip install transformers torch accelerate sentencepiece protobuf
```
<details>
<summary>Show code</summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "BSC-LT/salamandra-2b"
# Input text
text = "El mercat del barri és"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
generation_args = {
"temperature": 0.1,
"top_p": 0.95,
"max_new_tokens": 25,
"repetition_penalty": 1.2,
"do_sample": True
}
inputs = tokenizer(text, return_tensors="pt")
# Generate texts
output = model.generate(input_ids=inputs["input_ids"].to(model.device), attention_mask=inputs["attention_mask"], **generation_args)
# Print outputs
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</details>
#### Inference with vLLM
vLLM is an efficient library for inference that enables faster and more scalable text generation.
```bash
pip install vllm
```
<details>
<summary>Show code</summary>
```python
from vllm import LLM, SamplingParams
model_id = "BSC-LT/salamandra-2b"
# Sample prompts
prompts = [
"Todo el mundo sabe que vivir en Barcelona es",
"¿Pueblo o ciudad? Una ventaja de vivir en la ciudad es que hay muchas oportunidades de ocio y empleo, así como una gran diversidad de comercios para todos los gustos. Sin embargo, las ciudades suelen ser ",
"Llegir ens proporciona",
"What I find more fascinating about languages is that",
"La vie peut être",
"The future of AI is",
]
# Create a sampling params object
sampling_params = SamplingParams(
temperature=0.1,
top_p=0.95,
seed=1,
max_tokens=25,
repetition_penalty=1.2)
# Create an LLM
llm = LLM(model=model_id)
# Generate texts
outputs = llm.generate(prompts, sampling_params)
# Print outputs
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
</details>
---
## Data
### Pretraining Data
The pre-training corpus comprises data from 35 European languages and 92 programming languages, with detailed data sources provided below.
The initial three training epochs used 2.4 trillion tokens, obtained by manually adjusting data proportion to balance the representation
and give more importance to Spain’s co-official (Spanish, Catalan, Galician, and Basque). This way, we downsampled code and English data to half,
Spanish co-official languages were oversampled by 2x, and the remaining languages were kept in their original proportions.
During the following epochs, the Colossal OSCAR dataset was replaced with the FineWeb-Edu dataset.
This adjustment resulted in a total of 2.68 trillion tokens, distributed as outlined below:

The pretraining corpus is predominantly composed of data from Colossal OSCAR, which contributes a significant 53.05% of the total tokens.
Following this, Starcoder provides 13.67%, and FineWeb-Edu (350BT subset) adds 10.24%. The next largest sources are HPLT at 4.21% and French-PD at 3.59%.
Other notable contributions include MaCoCu, Legal-ES, and EurLex, each contributing around 1.72% to 1.41%.
These major sources collectively form the bulk of the corpus, ensuring a rich and diverse dataset for training the language model.
The remaining 10% comes from smaller sources in various languages.
Feel free to click the expand button below to see the full list of sources.
<details>
<summary>Data Sources</summary>
| Dataset | Language | Source |
|---|---|---|
| Colossal OSCAR 1.0 | bg, ca, cs, cy, da, de, el, en, es, et, eu, fi, fr, ga, gl, hr, hu, it, lt, lv, mt, nl, nn, no, oc, pl, pt, ro, ru, sh, sk, sl, sr, sv, uk | Brack et al., 2024 |
| Aya Dataset (w/o Evaluation Suite) | eu, hr, nl, fi, ka, hu, lt, nn, ro, sk, lv, cy, bg, cs, en, fr, de, ga, mt, pl, ru, sl, sv, ca, da, et, gl, el, it, no, pt, sr, es, uk | Singh et al., 2024 |
| Wikimedia dumps | bg, ca, cs, da, de, el, en, es, et, eu, fi, fr, ga, gl, hr, hu, it, lt, lv, mt, nl, nn, no, pl, pt, ro, sh, sk, sl, sr, uk | [Link](https://dumps.wikimedia.org/) |
| OpenSubtitles v2016 | bg, ca, cs, da, de, el, en, es, et, eu, fi, fr, gl, hr, it, lt, lv, nl, no, pl, pt, ro, sk, sl, sr, sv, uk | Lison & Tiedemann, 2016 |
| EurLEX-Resources | bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv | [Link](https://huggingface.co/datasets/joelniklaus/eurlex_resources) |
| MC4-Legal | bg, cs, da, de, el, en, es, et, fi, fr, ga, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv | [Link](https://huggingface.co/datasets/joelito/legal-mc4) |
| Parlamint | at, bg, cz, dk, ee, es, es-ga, fi, fr, gb, gr, hr, hu, it, lv, nl, no, pl, pt, rs, se, si | Erjavec et al., 2021 |
| MaCoCu | bg, ca, el, hr, mt, sl, sr, uk | Bañón et al., 2022 |
| CURLICAT | bg, hr, hu, pl, ro, sk, sl | Váradi et al., 2022 |
| Norwegian Colossal Corpus (NCC) | nn, no | Kummervold et al., 2021 |
| Academic Slovene KAS 2.0 | sl | Žagar et al., 2022 |
| BIGPATENT | en | Sharma et al., 2019 |
| Biomedical-ES | es | Internally generated biomedical dataset: Wikipedia LS, Pubmed, MeSpEn, patents, clinical cases, medical crawler |
| Brazilian Portuguese Web as Corpus (BrWaC) | pt | Wagner Filho et al., 2018 |
| Bulgarian National Corpus (BulNC) | bg | [Link](http://old.dcl.bas.bg/dataset/BulNC.7z) |
| CaBeRnet | fr | Popa-Fabre et al., 2020 |
| CATalog 1.0 | ca | Palomar-Giner et al., 2024 |
| CorpusNÓS | gl | de-Dios-Flores et al., 2024 |
| Croatian Web as Corpus 2.1 (hrWaC) | hr | Ljubešić & Klubička, 2014 |
| DaNewsroom | da | Varab & Schluter, 2020 |
| Danish GigaWord | da | Strømberg-Derczynski et al., 2021 |
| DK-CLARIN Reference Corpus of General Danish | da | [Link](https://korpus.dsl.dk/clarin/) |
| Estonian National Corpus 2021 (ENC) | et | Koppel & Kallas, 2022 |
| Estonian Reference Corpus (ERC) | et | [Link](https://www.cl.ut.ee/korpused/segakorpus/) |
| EusCrawl (w/o Wikipedia or NC-licenses) | eu | Artetxe et al., 2022 |
| FineWeb-Edu (350BT subset) | en | Penedo et al., 2024 |
| French Public Domain Books (French-PD) | fr | [Link](https://huggingface.co/datasets/PleIAs/French-PD-Books) |
| French Public Domain Newspapers (French-PD) | fr | [Link](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers) |
| German Web as Corpus (DeWaC) | de | [Link](https://docs.sslmit.unibo.it/doku.php?id=corpora:dewac) |
| Greek Legal Code (GLC) | el | Papaloukas et al., 2021 |
| Greek Web Corpus (GWC) | el | Outsios et al., 2018 |
| HPLT v1 - Spanish | es | de Gibert et al., 2024 |
| HPLT v1.1 - Spanish | es | de Gibert et al., 2024 |
| Irish Universal Dependencies (Ga-UD) | ga | [Link](https://universaldependencies.org/ga/index.html) |
| Italian Web as Corpus (ItWaC) | it | [Link](https://docs.sslmit.unibo.it/doku.php?id=corpora:itwac) |
| Korpus Malti | mt | Micallef et al., 2022 |
| Korpus slovenských právnych predpisov v1.9 (SK-Laws) | sk | [Link](https://www.juls.savba.sk/data/marcell/legal-sk-20220322-1.9.ver.xz) |
| Latxa Corpus v1.1 (GAITU) | eu | Etxaniz et al., 2024 [Link](https://huggingface.co/datasets/HiTZ/latxa-corpus-v1.1) |
| Laws and legal acts of Ukraine (UK-Laws) | uk | [Link](https://lang.org.ua/en/corpora/#anchor7) |
| Legal-ES | es | Internally generated legal dataset: BOE, BORME, Senado, Congreso, Spanish court orders, DOGC |
| MARCELL Romanian legislative subcorpus v2 | ro | [Link](https://elrc-share.eu/reposMARCELL%20Romanian%20legislative%20subcorpus%20v2itory/browse/marcell-romanian-legislative-subcorpus-v2/2da548428b9d11eb9c1a00155d026706ce94a6b59ffc4b0e9fb5cd9cebe6889e/) |
| Math AMPS | en | Hendrycks et al., 2021 |
| NKPJ National Corpus of Polish v1.2 (NKPJ) | pl | Lewandowska-Tomaszczyk et al., 2013 |
| Occitan Corpus (IEA-AALO) | oc | Provided by [IEA](https://www.institutestudisaranesi.cat/) |
| Open Legal Data - German court decisions and laws | de | Ostendorff et al., 2020 |
| ParlamentoPT | pt | Rodrigues et al., 2023 |
| peS2o | en | Soldaini & Lo, 2023 |
| PG-19 | en | Rae et al., 2019 |
| Pile of Law (selected subsets) | en | Henderson* et al., 2022 |
| Polish Parliamentary Corpus (PPC) | pl | Ogrodniczuk, 2018 |
| Proof Pile | en | [Link](https://huggingface.co/datasets/hoskinson-center/proof-pile) |
| RedPajama-Data T1 (StackExchange subset) | en | Computer, 2023 |
| Scientific-ES | es | Internally generated scientific dataset: Dialnet, Scielo, CSIC, TDX, BSC, UCM |
| SK Court Decisions v2.0 (OD-Justice) | sk | [Link](https://www.juls.savba.sk/data/od-justice/od-justice-2.0.ver.xz) |
| Slovene Web as Corpus (slWaC) | sl | Erjavec et al., 2015 |
| SoNaR Corpus NC 1.2 | nl | [Link](https://taalmaterialen.ivdnt.org/download/tstc-sonar-corpus/) |
| Spanish Legal Domain Corpora (Spanish-Legal) | es | Gutiérrez-Fandiño et al., 2021 |
| SrpKorSubset: news, legal, academic, conversation, lit- erary (SrpKor) | sr | [Link](http://www.korpus.matf.bg.ac.rs/) |
| Starcoder | code | Li et al., 2023 |
| State-related content from the Latvian Web (State-Latvian-Web) | lv | [Link](https://catalog.elra.info/en-us/repository/browse/ELRA-W0169/) |
| SYN v9: large corpus of written Czech | cs | Křen et al., 2021 |
| Tagesschau Archive Article | de | [Link](https://huggingface.co/datasets/bjoernp/tagesschau-2018-2023) |
| The Danish Parliament Corpus 2009 - 2017, v1 | da | Hansen, 2018 |
| The Gaois bilingual corpus of English-Irish legislation (Ga-Legislation) | ga | [Link](https://portulanclarin.net/repository/browse/the-gaois-bilingual-corpus-of-english-irish-legislation-processed/daeac17c9e3511ea9b7f02420a000407b83de243dc0b469aab41084386c5b80f/) |
| The Pile (PhilPapers) | en | Gao et al., 2021 |
| The Swedish Culturomics Gigaword Corpus (Swedish- Gigaword) | sv | Rødven-Eide, 2016 |
| Welsh-GOV | cy | Crawling from [Link](https://www.llyw.cymru) |
| Yle Finnish News Archive (Yle-News) | fi | [Link](http://urn.fi/urn:nbn:fi:lb-2021050401) |
To consult the data summary document with the respective licences, please send an e-mail to [email protected].
<details>
<summary>References</summary>
- Abadji, J., Suárez, P. J. O., Romary, L., & Sagot, B. (2021). Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus (H. Lüngen, M. Kupietz, P. Bański, A. Barbaresi, S. Clematide, & I. Pisetta, Eds.; pp. 1–9). Leibniz-Institut für Deutsche Sprache. [Link](https://doi.org/10.14618/ids-pub-10468)
- Artetxe, M., Aldabe, I., Agerri, R., Perez-de-Viñaspre, O., & Soroa, A. (2022). Does Corpus Quality Really Matter for Low-Resource Languages?
- Bañón, M., Esplà-Gomis, M., Forcada, M. L., García-Romero, C., Kuzman, T., Ljubešić, N., van Noord, R., Sempere, L. P., Ramírez-Sánchez, G., Rupnik, P., Suchomel, V., Toral, A., van der Werff, T., & Zaragoza, J. (2022). MaCoCu: Massive collection and curation of monolingual and bilingual data: Focus on under-resourced languages. Proceedings of the 23rd Annual Conference of the European Association for Machine Translation, 303–304. [Link](https://aclanthology.org/2022.eamt-1.41)
- Brack, M., Ostendorff, M., Suarez, P. O., Saiz, J. J., Castilla, I. L., Palomar-Giner, J., Shvets, A., Schramowski, P., Rehm, G., Villegas, M., & Kersting, K. (2024). Community OSCAR: A Community Effort for Multilingual Web Data. [Link](https://occiglot.eu/papers/Community_Oscar.pdf)
- Computer, T. (2023). RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset [Computer software]. [Link](https://github.com/togethercomputer/RedPajama-Data)
- de Gibert, O., Nail, G., Arefyev, N., Bañón, M., van der Linde, J., Ji, S., Zaragoza-Bernabeu, J., Aulamo, M., Ramírez-Sánchez, G., Kutuzov, A., Pyysalo, S., Oepen, S., & Tiedemann, J. (2024). A New Massive Multilingual Dataset for High-Performance Language Technologies (arXiv:2403.14009). arXiv. [Link](http://arxiv.org/abs/2403.14009)
- Dodge, J., Sap, M., Marasović, A., Agnew, W., Ilharco, G., Groeneveld, D., Mitchell, M., & Gardner, M. (2021). Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus. In M.-F. Moens, X. Huang, L. Specia, & S. W. Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 1286–1305). Association for Computational Linguistics. [Link](https://doi.org/10.18653/v1/2021.emnlp-main.98)
- Erjavec, T., Ljubešić, N., & Logar, N. (2015). The slWaC corpus of the Slovene web. Informatica (Slovenia), 39, 35–42.
- Erjavec, T., Ogrodniczuk, M., Osenova, P., Ljubešić, N., Simov, K., Grigorova, V., Rudolf, M., Pančur, A., Kopp, M., Barkarson, S., Steingrímsson, S. hór, van der Pol, H., Depoorter, G., de Does, J., Jongejan, B., Haltrup Hansen, D., Navarretta, C., Calzada Pérez, M., de Macedo, L. D., … Rayson, P. (2021). Linguistically annotated multilingual comparable corpora of parliamentary debates ParlaMint.ana 2.1. [Link](http://hdl.handle.net/11356/1431)
- Etxaniz, J., Sainz, O., Perez, N., Aldabe, I., Rigau, G., Agirre, E., Ormazabal, A., Artetxe, M., & Soroa, A. (2024). Latxa: An Open Language Model and Evaluation Suite for Basque. [Link] (https://arxiv.org/abs/2403.20266)
- Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., Presser, S., & Leahy, C. (2021). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. CoRR, abs/2101.00027. [Link](https://arxiv.org/abs/2101.00027)
- Gutiérrez-Fandiño, A., Armengol-Estapé, J., Gonzalez-Agirre, A., & Villegas, M. (2021). Spanish Legalese Language Model and Corpora.
- Hansen, D. H. (2018). The Danish Parliament Corpus 2009—2017, v1. [Link](http://hdl.handle.net/20.500.12115/8)
- Henderson*, P., Krass*, M. S., Zheng, L., Guha, N., Manning, C. D., Jurafsky, D., & Ho, D. E. (2022). Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset. arXiv. [Link](https://arxiv.org/abs/2207.00220)
- Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset. NeurIPS.
- Jansen, T., Tong, Y., Zevallos, V., & Suarez, P. O. (2022). Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content Detection in Multilingual Heterogeneous Web Data.
- Koppel, K., & Kallas, J. (2022). Eesti keele ühendkorpuste sari 2013–2021: Mahukaim eestikeelsete digitekstide kogu. Eesti Rakenduslingvistika Ühingu Aastaraamat Estonian Papers in Applied Linguistics, 18, 207–228. [Link](https://doi.org/10.5128/erya18.12)
- Křen, M., Cvrček, V., Henyš, J., Hnátková, M., Jelínek, T., Kocek, J., Kováříková, D., Křivan, J., Milička, J., Petkevič, V., Procházka, P., Skoumalová, H., Šindlerová, J., & Škrabal, M. (2021). SYN v9: Large corpus of written Czech. [Link](http://hdl.handle.net/11234/1-4635)
- Kreutzer, J., Caswell, I., Wang, L., Wahab, A., van Esch, D., Ulzii-Orshikh, N., Tapo, A., Subramani, N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S., Samb, S., Sagot, B., Rivera, C., Rios, A., Papadimitriou, I., Osei, S., Suarez, P. O., … Adeyemi, M. (2022). Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets. Transactions of the Association for Computational Linguistics, 10, 50–72. [Link](https://doi.org/10.1162/tacl_a_00447)
- Kummervold, P. E., De la Rosa, J., Wetjen, F., & Brygfjeld, S. A. (2021). Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model. In S. Dobnik & L. Øvrelid (Eds.), Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa) (pp. 20–29). Linköping University Electronic Press, Sweden. [Link](https://aclanthology.org/2021.nodalida-main.3)
- Lewandowska-Tomaszczyk, B., Górski, R., Łaziński, M., & Przepiórkowski, A. (2013). The National Corpus of Polish (NKJP). Language use and data analysis. 309–319.
- Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., … Vries, H. de. (2023). StarCoder: May the source be with you!
- Lison, P., & Tiedemann, J. (2016). OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16) (pp. 923–929). European Language Resources Association (ELRA). [Link](https://aclanthology.org/L16-1147)
- Ljubešić, N., & Klubička, F. (2014). Bs,hr,srWaC - Web Corpora of Bosnian, Croatian and Serbian. In F. Bildhauer & R. Schäfer (Eds.), Proceedings of the 9th Web as Corpus Workshop (WaC-9) (pp. 29–35). Association for Computational Linguistics. [Link](https://doi.org/10.3115/v1/W14-0405)
- Micallef, K., Gatt, A., Tanti, M., van der Plas, L., & Borg, C. (2022). Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese. Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, 90–101. [Link](https://doi.org/10.18653/v1/2022.deeplo-1.10)
- Ogrodniczuk, M. (2018). Polish Parliamentary Corpus. [Link](https://api.semanticscholar.org/CorpusID:235134113)
- Ostendorff, M., Blume, T., & Ostendorff, S. (2020). Towards an Open Platform for Legal Information. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, 385–388. [Link](https://doi.org/10.1145/3383583.3398616)
- Ostendorff, M., Suarez, P. O., Lage, L. F., & Rehm, G. (2024). LLM-Datasets: An Open Framework for Pretraining Datasets of Large Language Models. First Conference on Language Modeling. [Link](https://openreview.net/forum?id=5RdIMlGLXL)
- Outsios, S., Skianis, K., Meladianos, P., Xypolopoulos, C., & Vazirgiannis, M. (2018). Word Embeddings from Large-Scale Greek Web content. arXiv Preprint arXiv:1810.06694.
- Palomar-Giner, J., Saiz, J. J., Espuña, F., Mina, M., Da Dalt, S., Llop, J., Ostendorff, M., Ortiz Suarez, P., Rehm, G., Gonzalez-Agirre, A., & Villegas, M. (2024). A CURATEd CATalog: Rethinking the Extraction of Pretraining Corpora for Mid-Resourced Languages. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 335–349). ELRA and ICCL. [Link](https://aclanthology.org/2024.lrec-main.31)
- Papaloukas, C., Chalkidis, I., Athinaios, K., Pantazi, D.-A., & Koubarakis, M. (2021). Multi-granular Legal Topic Classification on Greek Legislation. Proceedings of the Natural Legal Language Processing Workshop 2021, 63–75. [Link](https://doi.org/10.48550/arXiv.2109.15298)
- Popa-Fabre, M., Ortiz Suárez, P. J., Sagot, B., & de la Clergerie, É. (2020). French Contextualized Word-Embeddings with a sip of CaBeRnet: A New French Balanced Reference Corpus. Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora, 15–23. [Link](https://aclanthology.org/2020.cmlc-1.3)
- Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., & Lillicrap, T. P. (2019). Compressive Transformers for Long-Range Sequence Modelling. arXiv Preprint. [Link](https://arxiv.org/abs/1911.05507)
- Rodrigues, J., Gomes, L., Silva, J., Branco, A., Santos, R., Cardoso, H. L., & Osório, T. (2023). Advancing Neural Encoding of Portuguese with Transformer Albertina PT-\*.
- Rødven-Eide, S. (2016). The Swedish Culturomics Gigaword CorpusThe Swedish Culturomics Gigaword Corpus [Dataset]. Språkbanken Text. [Link](https://doi.org/10.23695/3WMV-1Z09)
- Sharma, E., Li, C., & Wang, L. (2019). BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization. CoRR, abs/1906.03741. [Link](http://arxiv.org/abs/1906.03741)
- Soldaini, L., & Lo, K. (2023). peS2o (Pretraining Efficiently on S2ORC) Dataset. Allen Institute for AI.
- Strømberg-Derczynski, L., Ciosici, M., Baglini, R., Christiansen, M. H., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Madsen, J., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2021). The Danish Gigaword Corpus. Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), 413–421. [Link](https://aclanthology.org/2021.nodalida-main.46)
- Subramani, N., Luccioni, S., Dodge, J., & Mitchell, M. (2023). Detecting Personal Information in Training Corpora: An Analysis. 208–220. [Link](https://doi.org/10.18653/v1/2023.trustnlp-1.18)
- Varab, D., & Schluter, N. (2020). DaNewsroom: A Large-scale Danish Summarisation Dataset. Proceedings of The 12th Language Resources and Evaluation Conference, 6731–6739. [Link](https://www.aclweb.org/anthology/2020.lrec-1.831)
- Váradi, T., Nyéki, B., Koeva, S., Tadić, M., Štefanec, V., Ogrodniczuk, M., Nitoń, B., Pezik, P., Barbu Mititelu, V., Irimia, E., Mitrofan, M., Tufi\textcommabelows, D., Garabík, R., Krek, S., & Repar, A. (2022). Introducing the CURLICAT Corpora: Seven-language Domain Specific Annotated Corpora from Curated Sources. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 100–108). European Language Resources Association. [Link](https://aclanthology.org/2022.lrec-1.11)
- Wagner Filho, J. A., Wilkens, R., Idiart, M., & Villavicencio, A. (2018). The brwac corpus: A new open resource for brazilian portuguese. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).
- Žagar, A., Kavaš, M., Robnik-Šikonja, M., Erjavec, T., Fišer, D., Ljubešić, N., Ferme, M., Borovič, M., Boškovič, B., Ojsteršek, M., & Hrovat, G. (2022). Corpus of academic Slovene KAS 2.0. [Link](http://hdl.handle.net/11356/1448)
- Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson, Phu Mon Htut, and Samuel Bowman. 2022. BBQ: A hand-built bias benchmark for question answering. In Findings of the Association for Computational Linguistics: ACL 2022, pages 2086–2105, Dublin, Ireland. Association for Computational Linguistics.
- Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The Woman Worked as a Babysitter: On Biases in Language Generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3407–3412, Hong Kong, China. Association for Computational Linguistics.
- Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., & Tafjord, O. (2018). Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge. arXiv:1803. 05457v1.
- Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.
- Penedo, G., Kydlíček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Von Werra, L., & Wolf, T. (2024). The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale (arXiv:2406.17557). arXiv. http://arxiv.org/abs/2406.17557
- Singh, S., Vargus, F., Dsouza, D., Karlsson, B. F., Mahendiran, A., Ko, W.-Y., Shandilya, H., Patel, J., Mataciunas, D., OMahony, L., Zhang, M., Hettiarachchi, R., Wilson, J., Machado, M., Moura, L. S., Krzemiński, D., Fadaei, H., Ergün, I., Okoh, I., … Hooker, S. (2024). Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning (arXiv:2402.06619). arXiv. http://arxiv.org/abs/2402.06619
</details>
</details>
The model was trained on 3 pre-training epochs with 2.4T tokens per epoch, 2 additional pre-training epochs in which the English part
of the Colossal OSCAR dataset was replaced with FineWeb-Edu (350BT subset), resulting in 2.68T tokens per epoch;
and 1 final epoch of 0.315T higher quality tokens, meaning that the total number of tokens seen during pre-training is approximately 12.875 trillion tokens.
We provide an extense Datasheet section following the best practices defined by [(Gebru et al., 2021)](https://arxiv.org/pdf/1803.09010).
<details>
<summary>Datasheet</summary>
#### Motivation
**For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description.**
The purpose of creating this dataset is to pre-train the Salamandra family of multilingual models with high performance in a large number of European languages (35)
and programming languages (92). We also want to represent the co-official languages of Spain: Spanish, Catalan, Galician and Basque. For this reason, we oversample
these languages by a factor of 2.
There is a great lack of massive multilingual data, especially in minority languages (Ostendorff & Rehm, 2023), so part of our efforts in the creation of
this pre-training dataset have resulted in the contribution to large projects such as the Community OSCAR (Brack et al., 2024), which includes 151 languages
and 40T words, or CATalog (Palomar-Giner et al., 2024), the largest open dataset in Catalan in the world.
**Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?**
The dataset has been created by the Language Technologies unit (LangTech) of the Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS),
which aims to advance the field of natural language processing through cutting-edge research and development and the use of HPC. In particular, it was created by
the unit's data team, the main contributors being José Javier Saiz, Ferran Espuña and Jorge Palomar.
However, the creation of the dataset would not have been possible without the collaboration of a large number of collaborators, partners and public institutions,
which can be found in detail in the acknowledgements.
**Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.**
This work has been promoted and financed by the Government of Catalonia through the [Aina project](https://projecteaina.cat/).
This work is funded by the _Ministerio para la Transformación Digital y de la Función Pública_ - Funded by EU – NextGenerationEU
within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337.
#### Composition
**What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.**
The dataset consists entirely of text documents in various languages. Specifically, data was mainly sourced from the following databases and
repositories:
- **Common Crawl:** Repository that holds website data and is run by the Common Crawl non-profit organization. It is updated monthly and is
distributed under the CC0 1.0 public domain license.
- **GitHub:** Community platform that allows developers to create, store, manage, and share their code. Repositories are crawled and then
distributed with their original licenses, which may vary from permissive to non-commercial licenses.
- **Wikimedia:** Database that holds the collection databases managed by the Wikimedia Foundation, including Wikipedia, Wikibooks, Wikinews,
Wikiquote, Wikisource, and Wikivoyage. It is updated monthly and is distributed under Creative Commons Attribution-ShareAlike License 4.0.
- **EurLex:** Repository that holds the collection of legal documents from the European Union, available in all of the EU’s 24 official
languages and run by the Publications Office of the European Union. It is updated daily and is distributed under the Creative Commons
Attribution 4.0 International license.
- **Other repositories:** Specific repositories were crawled under permission for domain-specific corpora, which include academic, legal,
and newspaper repositories.
We provide a complete list of dataset sources at the end of this section.
**How many instances are there in total (of each type, if appropriate)?**
The dataset contains a diverse range of instances across multiple languages, with notable adjustments for certain languages. English
represents the largest portion, accounting for 39.31% of the total data. Spanish was upsampled by a factor of 2, bringing its share to 16.12%,
while Catalan (1.97%), Basque (0.24%), and Galician (0.31%) were also upsampled by 2. On the other hand, code-related data was downsampled
by half, making up 5.78% of the total. Other prominent languages include French (6.6%), Russian (5.56%), German (4.79%), and Hungarian
(4.59%), with several additional languages contributing between 1% and 2%, and smaller portions represented by a variety of others.
**Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).**
The dataset is a sample from multiple sources, with different weights based on the primary language of the content: Spanish, Catalan,
Basque, and Galician content was upsampled by a factor of two, while programming languages were downsampled by a factor of half. Other
sources were sampled in proportion to their occurrence.
**What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description.**
Each instance consists of a text document processed for deduplication, language identification, and source-specific filtering. Some documents required
optical character recognition (OCR) to extract text from non-text formats such as PDFs.
**Is there a label or target associated with each instance? If so, please provide a description.**
Each instance is labelled with a unique identifier, the primary language of the content, and the URL for web-sourced instances. Additional labels were
automatically assigned to detect specific types of content -harmful or toxic content- and to assign preliminary indicators of undesired qualities -very
short documents, high density of symbols, etc.- which were used for filtering instances.
**Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.**
No significant information is missing from the instances.
**Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these relationships are made explicit.**
Instances are related through shared metadata, such as source and language identifiers.
**Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind them.**
The dataset is randomly divided into training, validation and test sets, where the validation and test sets are each 1% of the total corpus.
**Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.**
Despite removing duplicated instances within each source, redundancy remains at the paragraph and sentence levels, particularly in web-sourced
instances where search engine optimization techniques and templates contribute to repeated textual patterns. Some instances may be also duplicated
across sources due to format variations.
**Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a dataset consumer? Please provide descriptions of all external resources and any restrictions associated with them, as well as links or other access points, as appropriate.**
The dataset is self-contained and does not rely on external resources.
**Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor–patient confidentiality, data that includes the content of individuals’ non-public communications)? If so, please provide a description.**
The dataset does not contain confidential data.
**Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why. If the dataset does not relate to people, you may skip the remaining questions in this section.**
The dataset includes web-crawled content, which may overrepresent pornographic material across languages (Kreutzer et al., 2022). Although
pre-processing techniques were applied to mitigate offensive content, the heterogeneity and scale of web-sourced data make exhaustive
filtering challenging, which makes it next to impossible to identify all adult content without falling into excessive filtering, which may
negatively influence certain demographic groups (Dodge et al., 2021).
**Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset.**
The dataset does not explicitly identify any subpopulations.
**Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.**
Web-sourced instances in the dataset may contain personally identifiable information (PII) that is publicly available on the Web, such as names,
IP addresses, email addresses, and phone numbers. While it would be possible to indirectly identify individuals through the combination of multiple
data points, the nature and scale of web data makes it difficult to parse such information. In any case, efforts are made to filter or anonymize
sensitive data (Mina et al., 2024), but some identifiable information may remain in the dataset.
**Does the dataset contain data that might be considered sensitive in any way? If so, please provide a description.**
Given that the dataset includes web-sourced content and other publicly available documents, instances may inadvertently reveal financial
information, health-related details, or forms of government identification, such as social security numbers (Subramani et al., 2023),
especially if the content originates from less-regulated sources or user-generated platforms.
#### Collection Process
**How was the data collected?**
This dataset is constituted by combining several sources, whose acquisition methods can be classified into three groups:
- Web-sourced datasets with some preprocessing available under permissive license.
- Domain-specific or language-specific raw crawls.
- Manually curated data obtained through collaborators, data providers (by means of legal assignment agreements) or open source projects (e.g. CATalog).
**What mechanisms or procedures were used to collect the data? How were these mechanisms or procedures validated?**
The data collection process was carried out using three different mechanisms, each corresponding to one of the groups defined in the previous answer. The specific methods used and their respective validation procedures are outlined below:
- Open Direct Download: Data were obtained directly from publicly accessible sources, such as websites or repositories that provide open data downloads. We validate the data with a data integrity check, which ensures that the downloaded files are complete, uncorrupted and in the expected format and structure.
- Ad hoc scrapers or crawlers: Custom web scraping scripts or crawlers were used to extract data from various online sources where direct downloads were not available. These scripts navigate web pages, extract relevant data and store it in a structured format. We validate this method with software unit tests to evaluate the functionality of individual components of the scraping programs, checking for errors or unexpected behaviour. In addition, data integrity tests were performed to verify that the collected data remained complete throughout the extraction and storage process.
- Direct download via FTP, SFTP, API or S3: Some datasets were acquired using secure transfer protocols such as FTP (File Transfer Protocol), SFTP (Secure File Transfer Protocol), or API (Application Programming Interface) requests from cloud storage services such as Amazon S3. As with the open direct download method, data integrity tests were used to validate the completeness of the files to ensure that the files were not altered or corrupted during the transfer process.
**If the dataset is a sample from a larger set, what was the sampling strategy?**
The sampling strategy was to use the whole dataset resulting from the filtering explained in the 'preprocessing/cleaning/labelling' section,
with the particularity that an upsampling of 2 (i.e. twice the probability of sampling a document) was performed for the co-official languages
of Spain (Spanish, Catalan, Galician, Basque), and a downsampling of 1/2 was applied for code (half the probability of sampling a code document,
evenly distributed among all programming languages).
**Who was involved in the data collection process and how were they compensated?**
This data is generally extracted, filtered and sampled by automated processes. The code required to run these processes has been developed entirely
by members of the Language Technologies data team, or otherwise obtained from open-source software. Furthermore, there has been no monetary
consideration for acquiring data from suppliers.
**Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances? If not, please describe the timeframe in which the data associated with the instances was created.**
Data were acquired and processed from April 2023 to April 2024. However, as mentioned, much data has been obtained from open projects such
as Common Crawl, which contains data from 2014, so it is the end date (04/2024) rather than the start date that is important.
**Were any ethical review processes conducted? If so, please provide a description of these review processes, including the outcomes, as well as a link or other access point to any supporting documentation.**
No particular ethical review process has been carried out as the data is mostly open and not particularly sensitive. However, we have an
internal evaluation team and a bias team to monitor ethical issues. In addition, we work closely with ‘Observatori d'Ètica en Intel·ligència
Artificial’ (OEIAC) and ‘Agencia Española de Supervisión de la Inteligencia Artificial’ (AESIA) to audit the processes we carry out from an
ethical and legal point of view, respectively.
#### Preprocessing
**Was any preprocessing/cleaning/labeling of the data done? If so, please provide a description. If not, you may skip the remaining questions in this section.**
No changes were made to the content of individual text document instances. However, the web-sourced documents underwent a filtering process based on specific criteria along two key dimensions:
- Quality filtering: The text processing pipeline CURATE (Palomar et. al, 2024) calculates a quality score for each document based on a set of filtering criteria that identify undesirable textual characteristics. Any document with a score below the 0.8 threshold was excluded from the dataset.
- Harmful or adult content filtering: To reduce the amount of harmful or inappropriate material in the dataset, documents from Colossal OSCAR were filtered using the Ungoliant pipeline (Abadji et al., 2021), which uses the 'harmful\_pp' field, a perplexity-based score generated by a language model.
**Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data? If so, please provide a link or other access point to the “raw” data.**
The original raw data was not kept.
**Is the software that was used to preprocess/clean/label the data available? If so, please provide a link or other access point.**
Yes, the preprocessing and filtering software is open-sourced. The [CURATE](https://github.com/langtech-bsc/CURATE) pipeline was used for CATalog and other curated datasets,
and the [Ungoliant](https://github.com/oscar-project/ungoliant) pipeline was used for the OSCAR project.
#### Uses
**Has the dataset been used for any tasks already? If so, please provide a description.**
Pre-train the Salamandra model family.
**What (other) tasks could the dataset be used for?**
The data can be used primarily to pre-train other language models, which can then be used for a wide range of use cases. The dataset could
also be used for other tasks such as fine-tuning language models, cross-lingual NLP tasks, machine translation, domain-specific text
generation, and language-specific data analysis.
**Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses? Is there anything a dataset consumer could do to mitigate these risks or harms?**
Web-crawled content is over-represented with standard language varieties, impacting language model performance for minority languages.
Language diversity in data is crucial to avoid bias, especially in encoding non-standard dialects, preventing the exclusion of demographic
groups. Moreover, despite legal uncertainties in web-scraped data, we prioritize permissive licenses and privacy protection measures,
acknowledging the challenges posed by personally identifiable information (PII) within large-scale datasets. Our ongoing efforts aim to
address privacy concerns and contribute to a more inclusive linguistic dataset.
**Are there tasks for which the dataset should not be used?**
-
#### Distribution
**Will the dataset be distributed to third parties outside of the entity on behalf of which the dataset was created? If so, please provide a description.**
The dataset will not be released or distributed to third parties. Any related question to distribution is omitted in this section.
#### Maintenance
**Who will be supporting/hosting/maintaining the dataset?**
The dataset will be hosted by the Language Technologies unit (LangTech) of the Barcelona Supercomputing Center (BSC). The team will ensure
regular updates and monitor the dataset for any issues related to content integrity, legal compliance, and bias for the sources they are
responsible for.
**How can the owner/curator/manager of the dataset be contacted?**
The data owner may be contacted with the email address [email protected].
**Will the dataset be updated?**
The dataset will not be updated.
**If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances? If so, please describe these limits and explain how they will be enforced.**
The dataset does not keep sensitive data that could allow direct identification of individuals, apart from the data that is publicly available in
web-sourced content. Due to the sheer volume and diversity of web data, it is not feasible to notify individuals or manage data retention on an
individual basis. However, efforts are made to mitigate the risks associated with sensitive information through pre-processing and filtering to
remove identifiable or harmful content. Despite these measures, vigilance is maintained to address potential privacy and ethical issues.
**Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.**
Since the dataset will not be updated, only the final version will be kept.
**If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?**
The dataset does not allow for external contributions.
</details>
---
## Evaluation
### Gold-standard benchmarks
Evaluation is done using the Language Model Evaluation Harness (Gao et al., 2024). We evaluate on a set of tasks taken from [SpanishBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/spanish_bench), [CatalanBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/catalan_bench), [BasqueBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/basque_bench) and [GalicianBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/galician_bench). We also use English tasks already available on the LM Evaluation Harness. These benchmarks include both new and existing tasks and datasets. In the tables below, we include the results in a selection of evaluation datasets that represent model's performance across a variety of tasks within these benchmarks.
We only use tasks that are either human generated, human translated, or with a strong human-in-the-loop (i.e., machine translation followed by professional revision or machine generation followed by human revision and annotation). This is the reason behind the variety in number of tasks reported across languages. As more tasks that fulfill these requirements are published, we will update the presented results. We also intend to expand the evaluation to other languages, as long as the datasets meet our quality standards.
During the implementation of the evaluation we observed a series of issues worth considering when replicating and interpreting the results presented. These issues include ≈1.5% variances in performance in some tasks depending on the version of the `transformers` library used, and depending on the use (or lack of use) of tensor parallelism when loading a model. When implementing existing tasks, we carry out a comprehensive quality evaluation of the dataset, the Harness task itself, and what kind of input models see during evaluation. Our implementation (see links above) addresses multiple existing problems such as errors in datasets and prompts, and lack of pre-processing. All this means that results will vary if using other Harness implementations, and may slightly vary depending on the replication setup.
It should be noted that these results are subject to all the drawbacks of every current gold-standard evaluation, and that the figures do not fully represent the model's capabilities and potential. We thus advise caution when reading and interpreting the results.
A full list of results compared to other baselines, a discussion of the model's performance across tasks and its implications, and details regarding problem-solving with task implementation will soon be available in the technical report.
All results reported below are on a 5-shot setting.
#### Spanish
<table><thead>
<tr>
<th>Category</th>
<th>Task</th>
<th>Metric</th>
<th>Result</th>
</tr></thead>
<tbody>
<tr>
<td rowspan="2">Commonsense Reasoning</td>
<td>copa_es</td>
<td>acc</td>
<td>72.8</td>
</tr>
<tr>
<td>xstorycloze_es</td>
<td>acc</td>
<td>64.73</td>
</tr>
<tr>
<td rowspan="2">NLI</td>
<td>wnli_es</td>
<td>acc</td>
<td>56.34</td>
</tr>
<tr>
<td>xnli_es</td>
<td>acc</td>
<td>44.74</td>
</tr>
<tr>
<td>Paraphrasing</td>
<td>paws_es</td>
<td>acc</td>
<td>55.95</td>
</tr>
<tr>
<td rowspan="2">QA</td>
<td>openbookqa_es</td>
<td>acc</td>
<td>31.4</td>
</tr>
<tr>
<td>xquad_es</td>
<td>acc</td>
<td>57.59</td>
</tr>
<tr>
<td>Translation</td>
<td>flores_es</td>
<td>bleu</td>
<td>20.05</td>
</tr>
</tbody>
</table>
#### Catalan
<table><thead>
<tr>
<th>Category</th>
<th>Task</th>
<th>Metric</th>
<th>Result</th>
</tr></thead>
<tbody>
<tr>
<td rowspan="2">Commonsense Reasoning</td>
<td>copa_ca</td>
<td>acc</td>
<td>70.2</td>
</tr>
<tr>
<td>xstorycloze_ca</td>
<td>acc</td>
<td>66.38</td>
</tr>
<tr>
<td rowspan="2">NLI</td>
<td>wnli_ca</td>
<td>acc</td>
<td>56.34</td>
</tr>
<tr>
<td>xnli_ca</td>
<td>acc</td>
<td>48.15</td>
</tr>
<tr>
<td rowspan="2">Paraphrasing</td>
<td>parafraseja</td>
<td>acc</td>
<td>61.35</td>
</tr>
<tr>
<td>paws_ca</td>
<td>acc</td>
<td>57.05</td>
</tr>
<tr>
<td rowspan="5">QA</td>
<td>arc_ca_easy</td>
<td>acc</td>
<td>55.3</td>
</tr>
<tr>
<td>arc_ca_challenge</td>
<td>acc</td>
<td>27.65</td>
</tr>
<tr>
<td>openbookqa_ca</td>
<td>acc</td>
<td>29.40</td>
</tr>
<tr>
<td>piqa_ca</td>
<td>acc</td>
<td>63.82</td>
</tr>
<tr>
<td>siqa_ca</td>
<td>acc</td>
<td>43.04</td>
</tr>
<tr>
<td>Translation</td>
<td>flores_ca</td>
<td>bleu</td>
<td>24.93</td>
</tr>
</tbody></table>
#### Basque
<table><thead>
<tr>
<th>Category</th>
<th>Task</th>
<th>Metric</th>
<th>Result</th>
</tr></thead>
<tbody>
<tr>
<td rowspan="2">Commonsense Reasoning</td>
<td>xcopa_eu</td>
<td>acc</td>
<td>58</td>
</tr>
<tr>
<td>xstorycloze_eu</td>
<td>acc</td>
<td>58.97</td>
</tr>
<tr>
<td rowspan="2">NLI</td>
<td>wnli_eu</td>
<td>acc</td>
<td>43.66</td>
</tr>
<tr>
<td>xnli_eu</td>
<td>acc</td>
<td>42.03</td>
</tr>
<tr>
<td rowspan="4">QA</td>
<td>eus_exams</td>
<td>acc</td>
<td>26.11</td>
</tr>
<tr>
<td>eus_proficiency</td>
<td>acc</td>
<td>24.09</td>
</tr>
<tr>
<td>eus_trivia</td>
<td>acc</td>
<td>28.05</td>
</tr>
<tr>
<td>piqa_eu</td>
<td>acc</td>
<td>56.86</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td>eus_reading</td>
<td>acc</td>
<td>28.41</td>
</tr>
<tr>
<td>Translation</td>
<td>flores_eu</td>
<td>bleu</td>
<td>8.96</td>
</tr>
</tbody></table>
#### Galician
<table><thead>
<tr>
<th>Category</th>
<th>Task</th>
<th>Metric</th>
<th>Result</th>
</tr></thead>
<tbody>
<tr>
<td>Commonsense Reasoning</td>
<td>xstorycloze_gl</td>
<td>acc</td>
<td>64.99</td>
</tr>
<tr>
<td>NLI</td>
<td>xnli_gl</td>
<td>acc</td>
<td>47.35</td>
</tr>
<tr>
<td rowspan="2">Paraphrasing</td>
<td>parafrases_gl</td>
<td>acc</td>
<td>56.08</td>
</tr>
<tr>
<td>paws_gl</td>
<td>acc</td>
<td>54.85</td>
</tr>
<tr>
<td>QA</td>
<td>openbookqa_gl</td>
<td>acc</td>
<td>25.4</td>
</tr>
<tr>
<td>Translation</td>
<td>flores_gl</td>
<td>bleu</td>
<td>22.38</td>
</tr>
</tbody>
</table>
#### English
<table><thead>
<tr>
<th>Category</th>
<th>Task</th>
<th>Metric</th>
<th>Result</th>
</tr></thead>
<tbody>
<tr>
<td rowspan="2">Commonsense Reasoning</td>
<td>copa</td>
<td>acc</td>
<td>83.00</td>
</tr>
<tr>
<td>xstorycloze_en</td>
<td>acc</td>
<td>71.81</td>
</tr>
<tr>
<td rowspan="2">NLI</td>
<td>wnli</td>
<td>acc</td>
<td>52.11</td>
</tr>
<tr>
<td>xnli_en</td>
<td>acc</td>
<td>46.47</td>
</tr>
<tr>
<td>Paraphrasing</td>
<td>paws *</td>
<td>acc</td>
<td>56.5</td>
</tr>
<tr>
<td rowspan="6">QA</td>
<td>arc_easy</td>
<td>acc</td>
<td>72.14</td>
</tr>
<tr>
<td>arc_challenge</td>
<td>acc</td>
<td>35.41</td>
</tr>
<tr>
<td>openbookqa</td>
<td>acc</td>
<td>28.00</td>
</tr>
<tr>
<td>piqa</td>
<td>acc</td>
<td>73.61</td>
</tr>
<tr>
<td>social_iqa</td>
<td>acc</td>
<td>44.78</td>
</tr>
<tr>
<td>xquad_en **</td>
<td>acc</td>
<td>64.87</td>
</tr>
</tbody></table>
\* Current LM Evaluation Harness implementation is lacking correct pre-processing. These results are obtained with adequate pre-processing.
\*\* This task is not yet available in the official Harness, we hope to add it soon.
---
## Ethical Considerations and Limitations
We examine the presence of undesired societal and cognitive biases present in this model using different benchmarks. For societal biases, we test performance using the BBQ dataset (Parrish et al., 2022) in the original English and the Regard dataset (Sheng et al., 2019). We report inadequate accuracies in both ambiguous and disambiguated contexts, which is indicative of the presence of societal biases which need to be addressed in post-training phases.
Our cognitive bias analysis focuses on positional effects in 0-shot settings, and majority class bias in few-shot settings. For positional effects, we leverage the ARC Multiple Choice Question dataset (Clark et al., 2018). We observe moderate to strong to very strong primacy effects, whereby the model shows a preference for answers towards the beginning of the list of provided answers. We measure the effects of majority class effects in few-shot settings using SST-2 (Socher et al., 2013). We detect moderate effects, implying that outputs can be influenced by the prompts.
Our analyses of these biases are by no means exhaustive and are limited by the relative scarcity of adequate resources in all languages present in the training data. We aim to gradually extend and expand our analyses in future work.
We highlight that these results can be expected from a pretrained model that has not yet been instruction-tuned or aligned. These tests are performed in order to show the biases the model may contain. We urge developers to take them into account and perform safety testing and tuning tailored to their specific applications of the model.
---
## Additional information
### Author
The Language Technologies Unit from Barcelona Supercomputing Center.
### Contact
For further information, please send an email to <[email protected]>.
### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.
### Funding
This work has been promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/).
This work is funded by the _Ministerio para la Transformación Digital y de la Función Pública_ - Funded by EU – NextGenerationEU
within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337.
### Acknowledgements
This project has benefited from the contributions of numerous teams and institutions, mainly through data contributions, knowledge transfer or technical support.
In Catalonia, many institutions have been involved in the project. Our thanks to Òmnium Cultural, Parlament de Catalunya, Institut d'Estudis Aranesos, Racó Català, Vilaweb, ACN, Nació Digital, El món and Aquí Berguedà.
At the national level, we are especially grateful to our ILENIA project partners: CENID, HiTZ and CiTIUS for their participation. We also extend our genuine gratitude to the Spanish Senate and Congress, Fundación Dialnet, and the ‘Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)’ of the University of Las Palmas de Gran Canaria.
At the international level, we thank the Welsh government, DFKI, Occiglot project, especially Malte Ostendorff, and The Common Crawl Foundation, especially Pedro Ortiz, for their collaboration. We would also like to give special thanks to the NVIDIA team, with whom we have met regularly, specially to: Ignacio Sarasua, Adam Henryk Grzywaczewski, Oleg Sudakov, Sergio Perez, Miguel Martinez, Felipes Soares and Meriem Bendris. Their constant support has been especially appreciated throughout the entire process.
Their valuable efforts have been instrumental in the development of this work.
### Disclaimer
Be aware that the model may contain biases or other unintended distortions.
When third parties deploy systems or provide services based on this model, or use the model themselves,
they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations,
including those governing the use of Artificial Intelligence.
The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use.
### Citation
```
@misc{gonzalezagirre2025salamandratechnicalreport,
title={Salamandra Technical Report},
author={Aitor Gonzalez-Agirre and Marc Pàmies and Joan Llop and Irene Baucells and Severino Da Dalt and Daniel Tamayo and José Javier Saiz and Ferran Espuña and Jaume Prats and Javier Aula-Blasco and Mario Mina and Adrián Rubio and Alexander Shvets and Anna Sallés and Iñaki Lacunza and Iñigo Pikabea and Jorge Palomar and Júlia Falcão and Lucía Tormo and Luis Vasquez-Reina and Montserrat Marimon and Valle Ruíz-Fernández and Marta Villegas},
year={2025},
eprint={2502.08489},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.08489},
}
```
### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Model Index
|Model|Base|Instruct|
|:---:|:---:|:---:|
|2B| [Link](https://huggingface.co/BSC-LT/salamandra-2b) | [Link](https://huggingface.co/BSC-LT/salamandra-2b-instruct) |
|7B| [Link](https://huggingface.co/BSC-LT/salamandra-7b) | [Link](https://huggingface.co/BSC-LT/salamandra-7b-instruct) |
|40B| [Link](https://huggingface.co/BSC-LT/ALIA-40b) | WiP | | [
"BEAR",
"SCIELO"
] |
croissantllm/CroissantLLMChat-v0.1 | croissantllm | text-generation | [
"transformers",
"safetensors",
"llama",
"text-generation",
"legal",
"code",
"text-generation-inference",
"art",
"conversational",
"fr",
"en",
"dataset:croissantllm/croissant_dataset",
"dataset:croissantllm/CroissantLLM-2201-sft",
"dataset:cerebras/SlimPajama-627B",
"dataset:uonlp/CulturaX",
"dataset:pg19",
"dataset:bigcode/starcoderdata",
"arxiv:2402.00786",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | "2024-01-24T09:18:45Z" | 2024-04-26T10:02:01+00:00 | 3,614 | 50 | ---
datasets:
- croissantllm/croissant_dataset
- croissantllm/CroissantLLM-2201-sft
- cerebras/SlimPajama-627B
- uonlp/CulturaX
- pg19
- bigcode/starcoderdata
language:
- fr
- en
license: mit
pipeline_tag: text-generation
tags:
- legal
- code
- text-generation-inference
- art
---
# CroissantLLMChat (190k steps + Chat)
This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 190k steps (2.99 T) tokens and a final Chat finetuning phase.
https://arxiv.org/abs/2402.00786
For best performance, it should be used with a temperature of 0.3 or more, and with the exact template described below:
```python
chat = [
{"role": "user", "content": "Que puis-je faire à Marseille en hiver?"},
]
chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
corresponding to:
```python
chat_input = """<|im_start|>user
{USER QUERY}<|im_end|>
<|im_start|>assistant\n"""
```
## Abstract
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware.
To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources.
To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives.
This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
## Citation
Our work can be cited as:
```bash
@misc{faysse2024croissantllm,
title={CroissantLLM: A Truly Bilingual French-English Language Model},
author={Manuel Faysse and Patrick Fernandes and Nuno M. Guerreiro and António Loison and Duarte M. Alves and Caio Corro and Nicolas Boizard and João Alves and Ricardo Rei and Pedro H. Martins and Antoni Bigata Casademunt and François Yvon and André F. T. Martins and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2402.00786},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Usage
This model is a Chat model, that is, it is finetuned for Chat function and works best with the provided template.
#### With generate
This might require a stopping criteria on <|im_end|> token.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "croissantllm/CroissantLLMChat-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
generation_args = {
"max_new_tokens": 256,
"do_sample": True,
"temperature": 0.3,
"top_p": 0.90,
"top_k": 40,
"repetition_penalty": 1.05,
"eos_token_id": [tokenizer.eos_token_id, 32000],
}
chat = [
{"role": "user", "content": "Qui est le président francais actuel ?"},
]
chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat_input, return_tensors="pt").to(model.device)
tokens = model.generate(**inputs, **generation_args)
print(tokenizer.decode(tokens[0]))
# print tokens individually
print([(tokenizer.decode([tok]), tok) for tok in tokens[0].tolist()])
```
## Model limitations
Evaluation results indicate the model is strong in its size category, and offers decent performances on writing-based tasks and internal knowledge, and very strong performance on translation tasks. The small size of the CroissantLLM model however hinders its capacity to perform more complex reasoning-based tasks, at least in a zero or few-shot manner in its generalist base or chat-model versions. This is aligned with other models of size and underlines the importance of scale for more abstract tasks.
#### Knowledge Cutoff
The model training dataset has a data cutoff date corresponding to the November 2023 Wikipedia dump. This is the de facto knowledge cutoff date for our base model, although a lot of information dates back further. Updated versions can be trained through continued pre-training or subsequent fine-tuning.
#### Multilingual performance.
CroissantLLM is mostly a French and English model. Code performance is relatively limited, and although some amount of data from other languages is included within the SlimPajama training set, out-of-the-box performance in other languages is not to be expected, although some European languages do work quite well.
#### Hallucinations.
CroissantLLM can hallucinate and output factually incorrect data, especially regarding complex topics. This is to be expected given the small model size, and hallucination rates seem inferior to most models of the same size category although no quantitative assessments have been conducted outside of MT-Bench experiments. | [
"CRAFT"
] |
projecte-aina/matxa-tts-cat-multiaccent | projecte-aina | text-to-speech | [
"pytorch",
"onnx",
"matcha-tts",
"acoustic modelling",
"speech",
"multispeaker",
"tts",
"text-to-speech",
"ca",
"arxiv:2105.06337",
"arxiv:2309.03199",
"base_model:projecte-aina/matxa-tts-cat-multispeaker",
"base_model:quantized:projecte-aina/matxa-tts-cat-multispeaker",
"license:cc-by-nc-4.0",
"region:us"
] | "2024-04-16T10:08:09Z" | 2024-10-01T12:29:45+00:00 | 3,607 | 8 | ---
base_model: BSC-LT/matcha-tts-cat-multispeaker
language:
- ca
license: cc-by-nc-4.0
pipeline_tag: text-to-speech
tags:
- matcha-tts
- acoustic modelling
- speech
- multispeaker
- tts
---
# 🍵 Matxa-TTS (Matcha-TTS) Catalan Multiaccent
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation](#citation)
- [Additional information](#additional-information)
</details>
## Summary
Here we present 🍵 Matxa, the first multispeaker, multidialectal neural TTS model. It works together with the vocoder model 🥑 alVoCat, to generate high quality and expressive speech efficiently in four dialects:
* Balear
* Central
* North-Occidental
* Valencian
Both models are trained with open data; 🍵 Matxa models are free (as in freedom) to use for non-comercial purposes, but for commercial purposes it needs licensing from the voice artist. To listen to the voices you can visit the [dedicated space](https://huggingface.co/spaces/projecte-aina/matxa-alvocat-tts-ca).
## Model Description
🍵 **Matxa-TTS** is based on **Matcha-TTS** that is an encoder-decoder architecture designed for fast acoustic modelling in TTS.
The encoder part is based on a text encoder and a phoneme duration prediction that together predict averaged acoustic features.
And the decoder has essentially a U-Net backbone inspired by [Grad-TTS](https://arxiv.org/pdf/2105.06337.pdf), which is based on the Transformer architecture.
In the latter, by replacing 2D CNNs by 1D CNNs, a large reduction in memory consumption and fast synthesis is achieved.
**Matxa-TTS** is a non-autorregressive model trained with optimal-transport conditional flow matching (OT-CFM).
This yields an ODE-based decoder capable of generating high output quality in fewer synthesis steps than models trained using score matching.
## Intended Uses and Limitations
This model is intended to serve as an acoustic feature generator for multispeaker text-to-speech systems for the Catalan language.
It has been finetuned using a Catalan phonemizer, therefore if the model is used for other languages it will not produce intelligible samples after mapping
its output into a speech waveform.
The quality of the samples can vary depending on the speaker.
This may be due to the sensitivity of the model in learning specific frequencies and also due to the quality of samples for each speaker.
As explained in the licenses section, the models can be used only for non-commercial purposes. Any parties interested in using them
commercially need to contact the rights holders, the voice artists for licensing their voices. For more information see the licenses section
under [Additional information](#additional-information).
## How to Get Started with the Model
### Installation
Models have been trained using the espeak-ng open source text-to-speech software.
The main [espeak-ng](https://github.com/espeak-ng/espeak-ng) now contains the Catalan phonemizer work started [here](https://github.com/projecte-aina/espeak-ng)
Create a virtual environment:
```bash
python -m venv /path/to/venv
source /path/to/venv/bin/activate
```
For training and synthesizing with Catalan Matxa-TTS you need to compile espeak-ng:
```bash
git clone https://github.com/espeak-ng/espeak-ng
export PYTHON=/path/to/env/<env_name>/bin/python
cd /path/to/espeak-ng
./autogen.sh
./configure --prefix=/path/to/espeak-ng
make
make install
```
Clone the repository:
```bash
git clone -b dev-cat https://github.com/langtech-bsc/Matcha-TTS.git
cd Matcha-TTS
```
Install the package from source:
```bash
pip install -e .
```
### For Inference
#### PyTorch
Speech end-to-end inference can be done together with **Catalan Matxa-TTS**.
Both models (Catalan Matxa-TTS and alVoCat) are loaded remotely from the HF hub.
First, export the following environment variables to include the installed espeak-ng version:
```bash
export PYTHON=/path/to/your/venv/bin/python
export ESPEAK_DATA_PATH=/path/to/espeak-ng/espeak-ng-data
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/espeak-ng/lib
export PATH="/path/to/espeak-ng/bin:$PATH"
```
Then you can run the inference script:
```bash
cd Matcha-TTS
python3 matcha_vocos_inference.py --output_path=/output/path --text_input="Bon dia Manel, avui anem a la muntanya."
```
You can also modify the length scale (speech rate) and the temperature of the generated sample:
```bash
python3 matcha_vocos_inference.py --output_path=/output/path --text_input="Bon dia Manel, avui anem a la muntanya." --length_scale=0.8 --temperature=0.7
```
Additionally you can choose the speaker id from the following table
```bash
python3 matcha_vocos_inference.py --output_path=/output/path --text_input="Bon dia Manel, avui anem a la muntanya." --length_scale=0.8 --temperature=0.7 --speaker_id 3
```
| accent | Name | speaker_id |
|-----------------|------|------------|
| balear | quim | 0 |
| balear | olga | 1 |
| central | grau | 2 |
| central | elia | 3 |
| nord-occidental | pere | 4 |
| nord-occidental | emma | 5 |
| valencia | lluc | 6 |
| valencia | gina | 7 |
Be aware that depending on the accent you should choose the proper text cleaner as an argument, by default it uses the catalan central cleaner.
```bash
python3 matcha_vocos_inference.py --output_path=/output/path --text_input="Bon dia Manel, avui anem a la muntanya." --length_scale=0.8 --temperature=0.7 --speaker_id 0 --cleaner "catalan_balear_cleaners"
```
| accent | cleaner |
|-----------------|---------------------------|
| balear | catalan_balear_cleaners |
| central | catalan_cleaners(default) |
| nord-occidental | catalan_occidental_cleaners|
| valencia | catalan_valencia_cleaners |
#### ONNX
We also release ONNXs version of the models, you can use it via the OVOS plugins.
Just install the plugin from pypi.
```bash
pip install ovos-tts-plugin-matxa-multispeaker-cat
```
and synthesize
```python
from ovos_tts_plugin_matxa_multispeaker_cat import MatxaCatalanTTSPlugin
sent = "Això és una prova de síntesi de veu."
tts = MatxaCatalanTTSPlugin()
tts.get_tts(sent, "test.wav", voice="valencia/gina")
```
### For Training
See the [repo instructions](https://github.com/langtech-bsc/Matcha-TTS/tree/dev-cat)
## Training Details
### Training data
The model was trained on a **Multiaccent Catalan** speech dataset
| Dataset | Language | Hours | Num. Speakers |
|---------|----------|-------|---------------|
| [LaFrescat](https://huggingface.co/datasets/projecte-aina/LaFrescat) | ca | 3.5 | 8 |
### Training procedure
***Matxa Multiaccent Catalan*** is finetuned from a Catalan Matxa-base model. This Matxa-base model was finetuned from the English multispeaker checkpoint, using a 100h subset of the Catalan CommonVoice v.16 database. The selection of this small set of samples was made by using the UTMOS system, a predictor of values of the metric Mean Opinion Score (MOS) a score usually set by human evaluators according to their subjective perception of speech quality.
The embedding layer was initialized with the number of catalan speakers per accent (in total 8) and the original hyperparameters were kept.
### Training Hyperparameters
* batch size: 32 (x2 GPUs)
* learning rate: 1e-4
* number of speakers: 2
* n_fft: 1024
* n_feats: 80
* sample_rate: 22050
* hop_length: 256
* win_length: 1024
* f_min: 0
* f_max: 8000
* data_statistics:
* mel_mean: -6578195
* mel_std: 2.538758
* number of samples: 13340
## Evaluation
Validation values obtained from tensorboard from epoch 2399*:
* val_dur_loss_epoch: 0.38
* val_prior_loss_epoch: 0.97
* val_diff_loss_epoch: 2.195
## Analyzing Multi-Accented Inferences
Here we show aligned spectrograms with phonemes from the same inference generated with the four accents. The following spectrograms correspond to the sentence *La seva gerra sembla molt antiga*.
This utterances shows three phonetic particularities that differentiate the Catalan variants.
In the Balearic and Valencian accents, [t] is pronounced, whereas it is not pronounced in the other two accents.
It can be seen that the **-v-** in *seva* is pronounced as [β] in Central accent while as [w] in Valencian.
Also, it is observed that the /ʒ/ in *gerra* has an affricate pronunciation ([d͡ʒ]) in Valencian.
*Balearic inference*

*Central inference*

*North-Western inference*

*Valencian inference*

## Citation
If this code contributes to your research, please cite the work:
```
@misc{mehta2024matchatts,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
author={Shivam Mehta and Ruibo Tu and Jonas Beskow and Éva Székely and Gustav Eje Henter},
year={2024},
eprint={2309.03199},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
```
## Additional Information
### Author
The Language Technologies Unit from Barcelona Supercomputing Center.
### Contact
For further information, please send an email to <[email protected]>.
### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.
### License
[Creative Commons Attribution Non-commercial 4.0](https://www.creativecommons.org/licenses/by-nc/4.0/)
These models are free to use for non-commercial and research purposes. Commercial use is only possible through licensing by
the voice artists. For further information, contact <[email protected]> and <[email protected]>.
### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
Part of the training of the model was possible thanks to the compute time given by Galician Supercomputing Center CESGA
([Centro de Supercomputación de Galicia](https://www.cesga.es/)), and also by [Barcelona Supercomputing Center](https://www.bsc.es/) in MareNostrum 5. | [
"ANEM"
] |
epfl-llm/meditron-7b | epfl-llm | text-generation | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"en",
"dataset:epfl-llm/guidelines",
"arxiv:2311.16079",
"base_model:meta-llama/Llama-2-7b",
"base_model:finetune:meta-llama/Llama-2-7b",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | "2023-11-08T16:03:23Z" | 2023-12-07T19:38:26+00:00 | 3,594 | 272 | ---
base_model: meta-llama/Llama-2-7b
datasets:
- epfl-llm/guidelines
language:
- en
license: llama2
metrics:
- accuracy
- perplexity
---
<img width=50% src="meditron_LOGO.png" alt="Alt text" title="Meditron-logo">
# Model Card for Meditron-7B-v1.0
Meditron is a suite of open-source medical Large Language Models (LLMs).
Meditron-7B is a 7 billion parameters model adapted to the medical domain from Llama-2-7B through continued pretraining on a comprehensively curated medical corpus, including selected PubMed articles, abstracts, a [new dataset](https://huggingface.co/datasets/epfl-llm/guidelines) of internationally-recognized medical guidelines, and general domain data from [RedPajama-v1](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T).
Meditron-7B, finetuned on relevant training data, outperforms Llama-2-7B and PMC-Llama on multiple medical reasoning tasks.
<details open>
<summary><strong>Advisory Notice</strong></summary>
<blockquote style="padding: 10px; margin: 0 0 10px; border-left: 5px solid #ddd;">
While Meditron is designed to encode medical knowledge from sources of high-quality evidence, it is not yet adapted to deliver this knowledge appropriately, safely, or within professional actionable constraints.
We recommend against deploying Meditron in medical applications without extensive use-case alignment, as well as additional testing, specifically including randomized controlled trials in real-world practice settings.
</blockquote>
</details>
## Model Details
- **Developed by:** [EPFL LLM Team](https://huggingface.co/epfl-llm)
- **Model type:** Causal decoder-only transformer language model
- **Language(s):** English (mainly)
- **Model License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
- **Code License:** [APACHE 2.0 LICENSE](LICENSE)
- **Continue-pretrained from model:** [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b)
- **Context length:** 2K tokens
- **Input:** Text-only data
- **Output:** Model generates text only
- **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we enhance model's performance.
- **Knowledge Cutoff:** August 2023
### Model Sources
- **Repository:** [epflLLM/meditron](https://github.com/epfLLM/meditron)
- **Trainer:** [epflLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
- **Paper:** *[MediTron-70B: Scaling Medical Pretraining for Large Language Models](https://arxiv.org/abs/2311.16079)*
## Uses
Meditron-7B is being made available for further testing and assessment as an AI assistant to enhance clinical decision-making and enhance access to an LLM for healthcare use. Potential use cases may include but are not limited to:
- Medical exam question answering
- Supporting differential diagnosis
- Disease information (symptoms, cause, treatment) query
- General health information query
### Direct Use
It is possible to use this model to generate text, which is useful for experimentation and understanding its capabilities.
It should not be used directly for production or work that may impact people.
### Downstream Use
Meditron-70B and Meditron-7B are both foundation models without finetuning or instruction-tuning. They can be finetuned, instruction-tuned, or RLHF-tuned for specific downstream tasks and applications.
There are two ways we have used this model for downstream question-answering tasks.
1. We apply in-context learning with k demonstrations (3 or 5 in our paper) added to the prompt.
2. We finetuned the models for downstream question-answering tasks using specific training sets.
We encourage and look forward to the adaption of the base model for more diverse applications.
If you want a more interactive way to prompt the model, we recommend using a high-throughput and memory-efficient inference engine with a UI that supports chat and text generation.
You can check out our deployment [guide](https://github.com/epfLLM/meditron/blob/main/deployment/README.md), where we used [FastChat](https://github.com/lm-sys/FastChat) with [vLLM](https://github.com/vllm-project/vllm). We collected generations for our qualitative analysis through an interactive UI platform, [BetterChatGPT](https://github.com/ztjhz/BetterChatGPT). Here is the prompt format we used as an example:
<img width=70% src="prompt_example.png" alt="qualitative-analysis-prompt" title="Qualitative Analysis Prompt">
### Out-of-Scope Use
We do not recommend using this model for natural language generation in a production environment, finetuned or otherwise.
## Truthfulness, Helpfulness, Risk, and Bias
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
We did an initial assessment of Meditron models' **Truthfulness** against baseline models and consumer-level medical models.
We use TruthfulQA (multiple choice) as the main evaluation benchmark.
We only focus on the categories that are relevant to the medical domain, including Health, Nutrition, Psychology, and Science.
For 7B models, we perform one-shot evaluations for consistent answer generation.
For 70B models, the evaluations are under the zero-shot setting.
Below, we report the detailed truthfulness performance of each category.
| | | | | | | | |
| --- | ------ |----- |----- |----- |----- |----- |----- |
|Category | meditron-70b | llama-2-70b | med42-70b* | meditron-7b | llama-2-7b | PMC-llama-7b |
|Health | 81.8 | 69.1 | 83.6 | 27.3 | 16.4 | 3.6 |
|Nutrition | 77.9 | 68.8 | 62.5 | 31.1 | 12.5 | 6.3 |
|Psychology| 47.4 | 36.8 | 52.6 | 21.1 | 10.5 | 0.0 |
|Science | 77.8 | 44.4 | 33.3 | 33.3 | 11.1 | 0.0 |
|Avg | 71.2 | 54.8 | 58.0 | 28.3 | 12.6 | 2.5 |
| | | | | | | |
For a more detailed performance analysis, please see our paper.
Significant research is still required to fully explore potential bias, fairness, and safety issues with this language model.
Please recognize that our evaluation on Meditron-7B's helpfulness, risk, and bias are highly limited.
Thus, as we noted in the safety notice, we strongly against any deployment in medical applications without further alignment process and rigorous evaluation!
### Recommendations
**IMPORTANT!**
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model.
While this model is capable of generating natural language text, we have only begun to explore this capability and its limitations.
Understanding these limitations is especially important in a domain like medicine.
Therefore, we strongly recommend against using this model in production for natural language generation or for professional purposes related to health and medicine.
## Training Details
### Training Data
Meditron’s domain-adaptive pre-training corpus GAP-Replay combines 48.1B tokens from four corpora:
- [**Clinical Guidelines**](https://huggingface.co/datasets/epfl-llm/guidelines): a new dataset of 46K internationally-recognized clinical practice guidelines from various healthcare-related sources, including hospitals and international organizations.
- **Medical Paper Abstracts**: 16.1M abstracts extracted from closed-access PubMed and PubMed Central papers.
- **Medical Papers**: full-text articles extracted from 5M publicly available PubMed and PubMed Central papers.
- **Replay Data**: 400M tokens of general domain pretraining data sampled from [RedPajama-v1](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
<img width=75% src="gap-replay.png" alt="Alt text" title="Meditron-logo">
#### Data Preprocessing
Please see the detailed preprocessing procedure in our paper.
### Training Procedure
We used the [Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) distributed training library, a derivative of Nvidia's Megatron LM project, to optimize training efficiency.
Hardware consists of 1 node of 8x NVIDIA A100 (80GB) SXM GPUs connected by NVLink and NVSwitch with a single Nvidia ConnectX-6 DX network card and equipped with 2 x AMD EPYC 7543 32-Core Processors and 512 GB of RAM.
Our three way parallelism scheme uses:
- Data Parallelism (DP -- different GPUs process different subsets of the batches) of 2,
- Pipeline Parallelism (PP -- different GPUs process different layers) of 4,
- Tensor Parallelism (TP -- different GPUs process different subtensors for matrix multiplication) of 1.
#### Training Hyperparameters
| | |
| --- | ------ |
| bf16 | true |
| lr | 3e-4 |
| eps | 1e-5 |
| betas | \[0.9, 0.95\] |
| clip_grad | 1 |
| weight decay | 0.1 |
| DP size | 16 |
| TP size | 4 |
| PP size | 1 |
| seq length | 2048 |
| lr scheduler | cosine|
| min lr | 1e-6 |
| warmup iteration | 2000 |
| micro batch size | 10 |
| global batch size | 1600 |
| | |
#### Sizes
The model was trained in September 2023.
The model architecture is exactly Llama 2, meaning
| | |
| --- | ------ |
| Model size | 7B |
| Hidden dimension | 4096 |
| Num. attention heads | 32 |
| Num. layers | 32 |
| | |
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data & Metrics
#### Testing Data
- [MedQA (USMLE)](https://huggingface.co/datasets/bigbio/med_qa)
- [MedMCQA](https://huggingface.co/datasets/medmcqa)
- [PubMedQA](https://huggingface.co/datasets/bigbio/pubmed_qa)
- [MMLU-Medical](https://huggingface.co/datasets/lukaemon/mmlu)
- [MedQA-4-Option](https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options)
#### Metrics
- Accuracy: suite the evaluation of multiple-choice question-answering tasks.
### Results
We finetune meditron-7b, llama-2-7b, pmc-llama-7b on each benchmark (pubmedqa, medmcqa, medqa)'s training data individually.
We report the finetuned models' performance with top token selection as the inference mode.
For MMLU-Medical, models finetuned on MedMCQA are used for inference.
For MedQA-4-Option, models finetuned on MedQA are used for inference.
For a more detailed performance analysis, please see our paper.
| | | | | | |
| --- | ------ |----- |----- |----- |----- |
|Dataset | meditron-7b | llama-2-7b | pmc-llama-7b | Zephyr-7B-beta* | Mistral-7B-instruct* |
|MMLU-Medical | 54.2 | 53.7 | 56.4 | 63.3 | 60.0 |
|PubMedQA | 74.4 | 61.8 | 59.2 | 46.0 | 17.8 |
|MedMCQA | 59.2 | 54.4 | 57.6 | 43.0 | 40.2 |
|MedQA | 47.9 | 44.0 | 42.4 | 42.8 | 32.4 |
|MedQA-4-Option| 52.0 | 49.6 | 49.2 | 48.5 | 41.1 |
|Avg | 57.5 | 52.7 | 53.0 | 48.7 | 38.3 |
| | | | | | |
**Note**: models with * are already instruction-tuned, so we exclude them from further finetuning on any training data.
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
- **Hardware Type:** 8 x NVIDIA A100 (80GB) SXM
- **Total GPU hours:** 588.8
- **Hardware Provider:** EPFL Research Computing Platform
- **Compute Region:** Switzerland
- **Carbon Emitted:** Switzerland has a carbon efficiency of 0.016 kgCO2/kWh (https://www.carbonfootprint.com/docs/2018_8_electricity_factors_august_2018_-_online_sources.pdf). 73.6 hours of 8 A100s means 588.8 hours at a TDP of 400W. Assuming a Power Usage effectiveness of 1.5, total emissions are estimated to be:
(400W / 1000W/kWh / GPU * 0.016 kgCO2/kWh * 73.6 h * 8 GPU) * 1.8 PUE = 6.8 kgCO2.
## Citation
**BibTeX:**
If you use Meditron or its training data, please cite our work:
```
@misc{chen2023meditron70b,
title={MEDITRON-70B: Scaling Medical Pretraining for Large Language Models},
author={Zeming Chen and Alejandro Hernández-Cano and Angelika Romanou and Antoine Bonnet and Kyle Matoba and Francesco Salvi and Matteo Pagliardini and Simin Fan and Andreas Köpf and Amirkeivan Mohtashami and Alexandre Sallinen and Alireza Sakhaeirad and Vinitra Swamy and Igor Krawczuk and Deniz Bayazit and Axel Marmet and Syrielle Montariol and Mary-Anne Hartley and Martin Jaggi and Antoine Bosselut},
year={2023},
eprint={2311.16079},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@software{epfmedtrn,
author = {Zeming Chen and Alejandro Hernández-Cano and Angelika Romanou and Antoine Bonnet and Kyle Matoba and Francesco Salvi and Matteo Pagliardini and Simin Fan and Andreas Köpf and Amirkeivan Mohtashami and Alexandre Sallinen and Alireza Sakhaeirad and Vinitra Swamy and Igor Krawczuk and Deniz Bayazit and Axel Marmet and Syrielle Montariol and Mary-Anne Hartley and Martin Jaggi and Antoine Bosselut},
title = {MediTron-70B: Scaling Medical Pretraining for Large Language Models},
month = November,
year = 2023,
url = {https://github.com/epfLLM/meditron}
}
``` | [
"MEDQA",
"PUBMEDQA"
] |
Subsets and Splits