id
stringlengths
6
113
author
stringlengths
2
36
task_category
stringclasses
39 values
tags
listlengths
1
4.05k
created_time
int64
1,646B
1,742B
last_modified
timestamp[s]date
2020-05-14 13:13:12
2025-03-18 10:01:09
downloads
int64
0
118M
likes
int64
0
4.86k
README
stringlengths
30
1.01M
matched_task
listlengths
1
10
is_bionlp
stringclasses
3 values
guydebruyn/marian-finetuned-kde4-en-to-fr
guydebruyn
translation
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,697,544,968,000
2023-10-22T14:58:08
16
0
--- base_model: Helsinki-NLP/opus-mt-en-fr datasets: - kde4 license: apache-2.0 metrics: - bleu tags: - translation - generated_from_trainer model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - type: bleu value: 52.78125912187245 name: Bleu --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8567 - Bleu: 52.7813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
[ "TRANSLATION" ]
Non_BioNLP
RichardErkhov/knowledgator_-_Qwen-encoder-1.5B-8bits
RichardErkhov
null
[ "safetensors", "qwen2", "arxiv:2404.05961", "8-bit", "bitsandbytes", "region:us" ]
1,741,430,762,000
2025-03-08T10:47:26
2
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen-encoder-1.5B - bnb 8bits - Model creator: https://huggingface.co/knowledgator/ - Original model: https://huggingface.co/knowledgator/Qwen-encoder-1.5B/ Original model description: --- license: apache-2.0 datasets: - wikimedia/wikipedia language: - en library_name: transformers tags: - LLM2Vec - encoder - LLM - classification - NER - question-answering --- # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders > LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders. It consists of 3 simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. The model can be further fine-tuned to achieve state-of-the-art performance. - **Repository:** https://github.com/McGill-NLP/llm2vec - **Paper:** https://arxiv.org/abs/2404.05961 ## Overview: This is a bi-directional version of Qwen2-1.5B trained with masked token prediction on the Wikipedia dataset. Modern decoder models offer several advantages over classical encoders like BERT: They are pre-trained on more recent textual corpora They are trained on larger and more diverse datasets Modern decoders have better support for long-context windows Flash-attention support is available for these models Considering these benefits, we are excited to release a series of decoder models tuned to work in a bi-directional setting. This approach combines the strengths of modern decoder architectures with the versatility of bi-directional context understanding, potentially opening up new possibilities for various natural language processing tasks, such as NER. In comparison to original LLM2Vec we trained all weights of LLama model, it potentially improve bi-directional abilities of the model. ## Installation ```bash pip install llm2vec ``` ## Usage ```python from llm2vec.models import Qwen2BiModel import torch from transformers import AutoTokenizer # Loading base Mistral model, along with custom code that enables bidirectional connections in decoder-only LLMs. MNTP LoRA weights are merged into the base model. tokenizer = AutoTokenizer.from_pretrained( "knowledgator/Qwen-encoder-1.5B" ) model = Qwen2BiModel.from_pretrained("knowledgator/Qwen-encoder-1.5B") text = "The quick brown fox jumps over the lazy dog." inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Here's an improved and expanded version of the README snippet: ## Adapting for Different Discriminative Tasks Our bi-directional LLaMA model can be easily adapted for various discriminative tasks such as text classification, question answering, and token classification. To use these specialized versions, we provide a [fork of LLM2Vec](https://github.com/Knowledgator/llm2vec) with additional functionality. ### Installation To get started, clone our fork of LLM2Vec and install it: ```bash git clone https://github.com/Knowledgator/llm2vec.git cd llm2vec pip install -e . ``` Using `-e` flag installs the package in editable mode, which is useful for development. ### Usage Here's how to import and use the models for different tasks: ```python from llm2vec import ( AutoLLMEncoderForSequenceClassification, AutoLLMEncoderForQuestionAnswering, AutoLLMEncoderForTokenClassification ) # Load models for different tasks classification_model = AutoLLMEncoderForSequenceClassification.from_pretrained('knowledgator/Qwen-encoder-1.5B') question_answering_model = AutoLLMEncoderForQuestionAnswering.from_pretrained('knowledgator/Qwen-encoder-1.5B') token_classification_model = AutoLLMEncoderForTokenClassification.from_pretrained('knowledgator/Qwen-encoder-1.5B') ``` ### Example: Text Classification Here's a basic example of how to use the model for text classification: ```python from transformers import AutoTokenizer # Load tokenizer tokenizer = AutoTokenizer.from_pretrained('knowledgator/Qwen-encoder-1.5B') # Prepare input text = "This movie is great!" inputs = tokenizer(text, return_tensors="pt") # Get classification logits outputs = classification_model(**inputs) logits = outputs.logits # The logits can be used with a softmax function to get probabilities # or you can use torch.argmax(logits, dim=1) to get the predicted class ``` ### Fine-tuning To fine-tune these models on your specific task: 1. Prepare your dataset in a format compatible with HuggingFace's `datasets` library. 2. Use the `Trainer` class from HuggingFace's `transformers` library to fine-tune the model. Here's a basic example: ```python from transformers import Trainer, TrainingArguments from datasets import load_dataset # Load your dataset dataset = load_dataset("your_dataset") # Define training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", ) # Initialize Trainer trainer = Trainer( model=classification_model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], ) # Fine-tune the model trainer.train() ``` ### Contributing We welcome contributions! If you have suggestions for improvements or encounter any issues, please open an issue or submit a pull request on our [GitHub repository](https://github.com/Knowledgator/llm2vec).
[ "TEXT_CLASSIFICATION", "QUESTION_ANSWERING" ]
Non_BioNLP
Jour/m2m100_418M-fr
Jour
translation
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2022-02-17T13:41:07
121
0
--- datasets: - kde4 license: mit tags: - translation - generated_from_trainer model-index: - name: m2m100_418M-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-fr This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.0+cpu - Datasets 1.16.1 - Tokenizers 0.10.3
[ "TRANSLATION" ]
Non_BioNLP
RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf
RichardErkhov
null
[ "gguf", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2103.03874", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2203.09509", "endpoints_compatible", "region:us", "conversational" ]
1,722,076,057,000
2024-07-27T16:34:00
131
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) google-gemma-2-9b-it - GGUF - Model creator: https://huggingface.co/SillyTilly/ - Original model: https://huggingface.co/SillyTilly/google-gemma-2-9b-it/ | Name | Quant method | Size | | ---- | ---- | ---- | | [google-gemma-2-9b-it.Q2_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q2_K.gguf) | Q2_K | 3.54GB | | [google-gemma-2-9b-it.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.IQ3_XS.gguf) | IQ3_XS | 3.86GB | | [google-gemma-2-9b-it.IQ3_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.IQ3_S.gguf) | IQ3_S | 4.04GB | | [google-gemma-2-9b-it.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q3_K_S.gguf) | Q3_K_S | 4.04GB | | [google-gemma-2-9b-it.IQ3_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.IQ3_M.gguf) | IQ3_M | 4.19GB | | [google-gemma-2-9b-it.Q3_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q3_K.gguf) | Q3_K | 4.43GB | | [google-gemma-2-9b-it.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q3_K_M.gguf) | Q3_K_M | 4.43GB | | [google-gemma-2-9b-it.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q3_K_L.gguf) | Q3_K_L | 4.78GB | | [google-gemma-2-9b-it.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.IQ4_XS.gguf) | IQ4_XS | 4.86GB | | [google-gemma-2-9b-it.Q4_0.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q4_0.gguf) | Q4_0 | 5.07GB | | [google-gemma-2-9b-it.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.IQ4_NL.gguf) | IQ4_NL | 5.1GB | | [google-gemma-2-9b-it.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q4_K_S.gguf) | Q4_K_S | 5.1GB | | [google-gemma-2-9b-it.Q4_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q4_K.gguf) | Q4_K | 5.37GB | | [google-gemma-2-9b-it.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q4_K_M.gguf) | Q4_K_M | 5.37GB | | [google-gemma-2-9b-it.Q4_1.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q4_1.gguf) | Q4_1 | 5.55GB | | [google-gemma-2-9b-it.Q5_0.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q5_0.gguf) | Q5_0 | 6.04GB | | [google-gemma-2-9b-it.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q5_K_S.gguf) | Q5_K_S | 6.04GB | | [google-gemma-2-9b-it.Q5_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q5_K.gguf) | Q5_K | 6.19GB | | [google-gemma-2-9b-it.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q5_K_M.gguf) | Q5_K_M | 6.19GB | | [google-gemma-2-9b-it.Q5_1.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q5_1.gguf) | Q5_1 | 6.52GB | | [google-gemma-2-9b-it.Q6_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q6_K.gguf) | Q6_K | 7.07GB | | [google-gemma-2-9b-it.Q8_0.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-9b-it-gguf/blob/main/google-gemma-2-9b-it.Q8_0.gguf) | Q8_0 | 9.15GB | Original model description: --- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license tags: - conversational --- # Gemma 2 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma] **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/gemma-2-9b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype,) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B | | ------------------------------ | ------------- | ----------- | ------------ | | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 | | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 | | [PIQA][piqa] | 0-shot | 81.7 | 83.2 | | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 | | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 | | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 | | [ARC-e][arc] | 0-shot | 88.0 | 88.6 | | [ARC-c][arc] | 25-shot | 68.4 | 71.4 | | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 | | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 | | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 | | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 | | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 | | [MATH][math] | 4-shot | 36.6 | 42.3 | | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 | | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 | | ------------------------------ | ------------- | ----------- | ------------ | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq]. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 2.0 | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B | | ------------------------ | ------------- | --------------- | ---------------- | | [RealToxicity][realtox] | average | 8.25 | 8.84 | | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 | | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 | | [Winogender][winogender] | top-1 | 79.17 | 77.22 | | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 | | [Winobias 1_2][winobias] | | 78.09 | 81.94 | | [Winobias 2_2][winobias] | | 95.32 | 97.22 | | [Toxigen][toxigen] | | 39.30 | 38.42 | | ------------------------ | ------------- | --------------- | ---------------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2 [terms]: https://ai.google.dev/gemma/terms [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335 [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11 [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/google/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [foundation-models]: https://ai.google/discover/foundation-models/ [gemini-2-paper]: https://goo.gle/gemma2report [mmlu]: https://arxiv.org/abs/2009.03300 [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [boolq]: https://arxiv.org/abs/1905.10044 [winogrande]: https://arxiv.org/abs/1907.10641 [commonsenseqa]: https://arxiv.org/abs/1811.00937 [openbookqa]: https://arxiv.org/abs/1809.02789 [arc]: https://arxiv.org/abs/1911.01547 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [humaneval]: https://arxiv.org/abs/2107.03374 [mbpp]: https://arxiv.org/abs/2108.07732 [gsm8k]: https://arxiv.org/abs/2110.14168 [realtox]: https://arxiv.org/abs/2009.11462 [bold]: https://arxiv.org/abs/2101.11718 [crows]: https://aclanthology.org/2020.emnlp-main.154/ [bbq]: https://arxiv.org/abs/2110.08193v2 [winogender]: https://arxiv.org/abs/1804.09301 [truthfulqa]: https://arxiv.org/abs/2109.07958 [winobias]: https://arxiv.org/abs/1804.06876 [math]: https://arxiv.org/abs/2103.03874 [agieval]: https://arxiv.org/abs/2304.06364 [big-bench]: https://arxiv.org/abs/2206.04615 [toxigen]: https://arxiv.org/abs/2203.09509
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
TBD
gpfan/ai-tiago
gpfan
summarization
[ "art", "summarization", "aa", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:apache-2.0", "region:us" ]
1,729,774,226,000
2024-10-24T14:47:36
0
0
--- base_model: - black-forest-labs/FLUX.1-dev language: - aa license: apache-2.0 pipeline_tag: summarization tags: - art ---
[ "SUMMARIZATION" ]
Non_BioNLP
fathyshalab/reklambox2-6-20
fathyshalab
text-classification
[ "sentence-transformers", "pytorch", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,677,804,971,000
2023-03-03T01:58:23
8
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # fathyshalab/reklambox2-6-20 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/reklambox2-6-20") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Saxo/Linkbricks-Horizon-AI-Avengers-V1-32B
Saxo
text-generation
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "ko", "en", "jp", "cn", "dataset:Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset", "dataset:Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset", "dataset:Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface", "dataset:Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface", "dataset:Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface", "dataset:Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface", "dataset:Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface", "dataset:Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled", "dataset:Saxo/ko-news-corpus-1", "dataset:Saxo/ko-news-corpus-2", "dataset:Saxo/ko-news-corpus-3", "dataset:Saxo/ko-news-corpus-4", "dataset:Saxo/ko-news-corpus-5", "dataset:Saxo/ko-news-corpus-6", "dataset:Saxo/ko-news-corpus-7", "dataset:Saxo/ko-news-corpus-8", "dataset:Saxo/ko-news-corpus-9", "dataset:maywell/ko_Ultrafeedback_binarized", "dataset:youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo", "dataset:lilacai/glaive-function-calling-v2-sharegpt", "dataset:kuotient/gsm8k-ko", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,735,489,995,000
2025-02-24T09:02:47
683
6
--- base_model: Qwen/Qwen2.5-32B-Instruct datasets: - Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset - Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset - Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface - Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled - Saxo/ko-news-corpus-1 - Saxo/ko-news-corpus-2 - Saxo/ko-news-corpus-3 - Saxo/ko-news-corpus-4 - Saxo/ko-news-corpus-5 - Saxo/ko-news-corpus-6 - Saxo/ko-news-corpus-7 - Saxo/ko-news-corpus-8 - Saxo/ko-news-corpus-9 - maywell/ko_Ultrafeedback_binarized - youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo - lilacai/glaive-function-calling-v2-sharegpt - kuotient/gsm8k-ko language: - ko - en - jp - cn library_name: transformers license: apache-2.0 pipeline_tag: text-generation --- # Model Card for Model ID <div align="center"> <img src="http://www.linkbricks.com/wp-content/uploads/2024/11/fulllogo.png" /> </div> <br> <a href="https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/">Open LLM Leaderboard</a> 🏆 <32B, Rank-2 2025/02/24~ <br> <br> <br> AI専門企業であるLinkbricks Horizon-AI のデータサイエンティストであるジ・ユンソン(Saxo)代表が<br> Qwen/Qwen2.5-32B-Instructベースモデルを使用し、H100-80G 8個で約35%程度のパラメータをCPT->SFT->DPO->ORPOした多言語強化言語モデル。<br> 8千万件の様々な言語圏のニュースやウィキコーパスを基に、様々なタスク別の日本語・韓国語・中国語・英語クロス学習データと数学や論理判断データを通じて、日中韓英言語のクロスエンハンスメント処理と複雑な論理問題にも対応できるように訓練したモデルである。 -トークナイザーは、単語拡張なしでベースモデルのまま使用します。<br> -カスタマーレビューやソーシャル投稿の高次元分析及びコーディングとライティング、数学、論理判断などが強化されたモデル。<br> -Function Call<br> -Deepspeed Stage=3、rslora及びBAdam Layer Modeを使用 <br> -「transformers_version」: 「4.46.3」<br> <br><br> AI 전문 기업인 Linkbricks Horizon-AI 의 데이터사이언티스트인 지윤성(Saxo) 대표가 Qwen/Qwen2.5-32B-Instruct 베이스모델을 사용해서 H100-80G 8개를 통해 약 35%정도의 파라미터를 CPT->SFT->DPO->ORPO 한 다국어 강화 언어 모델<br> 8천만건의 다양한 언어권의 뉴스 및 위키 코퍼스를 기준으로 다양한 테스크별 일본어-한국어-중국어-영어 교차 학습 데이터와 수학 및 논리판단 데이터를 통하여 한중일영 언어 교차 증강 처리와 복잡한 논리 문제 역시 대응 가능하도록 훈련한 모델이다.<br> -토크나이저는 단어 확장 없이 베이스 모델 그대로 사용<br> -고객 리뷰나 소셜 포스팅 고차원 분석 및 코딩과 작문, 수학, 논리판단 등이 강화된 모델<br> -Function Call 및 Tool Calling 지원<br> -Deepspeed Stage=3, rslora 및 BAdam Layer Mode 사용 <br> -"transformers_version": "4.46.3"<br> <br><br> Finetuned by Mr. Yunsung Ji (Saxo), a data scientist and CEO at Linkbricks Horiozn-AI, a company specializing in AI and big data analytics <br> about 35% of total parameters CPT->SFT->DPO->ORPO training model based on Qwen/Qwen2.5-32B-Instruct through 8 H100-80Gs as multi-lingual boosting language model <br> It is a model that has been trained to handle Japanese-Korean-Chinese-English cross-training data and 80M multi-lingual news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems. <br> -Tokenizer uses the base model without word expansion<br> -Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, math and decision making<br> -Function Calling<br> -Deepspeed Stage=3, use rslora and BAdam Layer Mode<br> <br><br> <a href="www.horizonai.ai">www.horizonai.ai</a>, <a href="www.linkbricks.com">www.linkbricks.com</a>, <a href="www.linkbricks.vc">www.linkbricks.vc</a>
[ "TRANSLATION", "SUMMARIZATION" ]
Non_BioNLP
barisaydin/bge-large-en
barisaydin
feature-extraction
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "mteb", "sentence-transfomres", "en", "arxiv:2309.07597", "license:mit", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
1,695,232,811,000
2023-09-20T18:09:26
11
0
--- language: - en license: mit tags: - mteb - sentence-transfomres - transformers model-index: - name: bge-large-en results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.94029850746269 - type: ap value: 40.00228964744091 - type: f1 value: 70.86088267934595 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.93745 - type: ap value: 88.24758534667426 - type: f1 value: 91.91033034217591 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.158 - type: f1 value: 45.78935185074774 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 39.972 - type: map_at_10 value: 54.874 - type: map_at_100 value: 55.53399999999999 - type: map_at_1000 value: 55.539 - type: map_at_3 value: 51.031000000000006 - type: map_at_5 value: 53.342999999999996 - type: mrr_at_1 value: 40.541 - type: mrr_at_10 value: 55.096000000000004 - type: mrr_at_100 value: 55.75599999999999 - type: mrr_at_1000 value: 55.761 - type: mrr_at_3 value: 51.221000000000004 - type: mrr_at_5 value: 53.568000000000005 - type: ndcg_at_1 value: 39.972 - type: ndcg_at_10 value: 62.456999999999994 - type: ndcg_at_100 value: 65.262 - type: ndcg_at_1000 value: 65.389 - type: ndcg_at_3 value: 54.673 - type: ndcg_at_5 value: 58.80499999999999 - type: precision_at_1 value: 39.972 - type: precision_at_10 value: 8.634 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 21.740000000000002 - type: precision_at_5 value: 15.036 - type: recall_at_1 value: 39.972 - type: recall_at_10 value: 86.344 - type: recall_at_100 value: 98.578 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 65.22 - type: recall_at_5 value: 75.178 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.94652870403906 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 43.17257160340209 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 63.97867370559182 - type: mrr value: 77.00820032537484 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 80.00986015960616 - type: cos_sim_spearman value: 80.36387933827882 - type: euclidean_pearson value: 80.32305287257296 - type: euclidean_spearman value: 82.0524720308763 - type: manhattan_pearson value: 80.19847473906454 - type: manhattan_spearman value: 81.87957652506985 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 88.00000000000001 - type: f1 value: 87.99039027511853 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 41.36932844640705 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 38.34983239611985 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 32.257999999999996 - type: map_at_10 value: 42.937 - type: map_at_100 value: 44.406 - type: map_at_1000 value: 44.536 - type: map_at_3 value: 39.22 - type: map_at_5 value: 41.458 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 48.701 - type: mrr_at_100 value: 49.431000000000004 - type: mrr_at_1000 value: 49.476 - type: mrr_at_3 value: 45.875 - type: mrr_at_5 value: 47.67 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 49.35 - type: ndcg_at_100 value: 54.618 - type: ndcg_at_1000 value: 56.655 - type: ndcg_at_3 value: 43.826 - type: ndcg_at_5 value: 46.72 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 9.328 - type: precision_at_100 value: 1.484 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 20.649 - type: precision_at_5 value: 15.25 - type: recall_at_1 value: 32.257999999999996 - type: recall_at_10 value: 61.849 - type: recall_at_100 value: 83.70400000000001 - type: recall_at_1000 value: 96.344 - type: recall_at_3 value: 46.037 - type: recall_at_5 value: 53.724000000000004 - type: map_at_1 value: 32.979 - type: map_at_10 value: 43.376999999999995 - type: map_at_100 value: 44.667 - type: map_at_1000 value: 44.794 - type: map_at_3 value: 40.461999999999996 - type: map_at_5 value: 42.138 - type: mrr_at_1 value: 41.146 - type: mrr_at_10 value: 49.575 - type: mrr_at_100 value: 50.187000000000005 - type: mrr_at_1000 value: 50.231 - type: mrr_at_3 value: 47.601 - type: mrr_at_5 value: 48.786 - type: ndcg_at_1 value: 41.146 - type: ndcg_at_10 value: 48.957 - type: ndcg_at_100 value: 53.296 - type: ndcg_at_1000 value: 55.254000000000005 - type: ndcg_at_3 value: 45.235 - type: ndcg_at_5 value: 47.014 - type: precision_at_1 value: 41.146 - type: precision_at_10 value: 9.107999999999999 - type: precision_at_100 value: 1.481 - type: precision_at_1000 value: 0.193 - type: precision_at_3 value: 21.783 - type: precision_at_5 value: 15.274 - type: recall_at_1 value: 32.979 - type: recall_at_10 value: 58.167 - type: recall_at_100 value: 76.374 - type: recall_at_1000 value: 88.836 - type: recall_at_3 value: 46.838 - type: recall_at_5 value: 52.006 - type: map_at_1 value: 40.326 - type: map_at_10 value: 53.468 - type: map_at_100 value: 54.454 - type: map_at_1000 value: 54.508 - type: map_at_3 value: 50.12799999999999 - type: map_at_5 value: 51.991 - type: mrr_at_1 value: 46.394999999999996 - type: mrr_at_10 value: 57.016999999999996 - type: mrr_at_100 value: 57.67099999999999 - type: mrr_at_1000 value: 57.699999999999996 - type: mrr_at_3 value: 54.65 - type: mrr_at_5 value: 56.101 - type: ndcg_at_1 value: 46.394999999999996 - type: ndcg_at_10 value: 59.507 - type: ndcg_at_100 value: 63.31099999999999 - type: ndcg_at_1000 value: 64.388 - type: ndcg_at_3 value: 54.04600000000001 - type: ndcg_at_5 value: 56.723 - type: precision_at_1 value: 46.394999999999996 - type: precision_at_10 value: 9.567 - type: precision_at_100 value: 1.234 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 24.117 - type: precision_at_5 value: 16.426 - type: recall_at_1 value: 40.326 - type: recall_at_10 value: 73.763 - type: recall_at_100 value: 89.927 - type: recall_at_1000 value: 97.509 - type: recall_at_3 value: 59.34 - type: recall_at_5 value: 65.915 - type: map_at_1 value: 26.661 - type: map_at_10 value: 35.522 - type: map_at_100 value: 36.619 - type: map_at_1000 value: 36.693999999999996 - type: map_at_3 value: 33.154 - type: map_at_5 value: 34.353 - type: mrr_at_1 value: 28.362 - type: mrr_at_10 value: 37.403999999999996 - type: mrr_at_100 value: 38.374 - type: mrr_at_1000 value: 38.428000000000004 - type: mrr_at_3 value: 35.235 - type: mrr_at_5 value: 36.269 - type: ndcg_at_1 value: 28.362 - type: ndcg_at_10 value: 40.431 - type: ndcg_at_100 value: 45.745999999999995 - type: ndcg_at_1000 value: 47.493 - type: ndcg_at_3 value: 35.733 - type: ndcg_at_5 value: 37.722 - type: precision_at_1 value: 28.362 - type: precision_at_10 value: 6.101999999999999 - type: precision_at_100 value: 0.922 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 15.140999999999998 - type: precision_at_5 value: 10.305 - type: recall_at_1 value: 26.661 - type: recall_at_10 value: 53.675 - type: recall_at_100 value: 77.891 - type: recall_at_1000 value: 90.72 - type: recall_at_3 value: 40.751 - type: recall_at_5 value: 45.517 - type: map_at_1 value: 18.886 - type: map_at_10 value: 27.288 - type: map_at_100 value: 28.327999999999996 - type: map_at_1000 value: 28.438999999999997 - type: map_at_3 value: 24.453 - type: map_at_5 value: 25.959 - type: mrr_at_1 value: 23.134 - type: mrr_at_10 value: 32.004 - type: mrr_at_100 value: 32.789 - type: mrr_at_1000 value: 32.857 - type: mrr_at_3 value: 29.084 - type: mrr_at_5 value: 30.614 - type: ndcg_at_1 value: 23.134 - type: ndcg_at_10 value: 32.852 - type: ndcg_at_100 value: 37.972 - type: ndcg_at_1000 value: 40.656 - type: ndcg_at_3 value: 27.435 - type: ndcg_at_5 value: 29.823 - type: precision_at_1 value: 23.134 - type: precision_at_10 value: 6.032 - type: precision_at_100 value: 0.9950000000000001 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 13.017999999999999 - type: precision_at_5 value: 9.501999999999999 - type: recall_at_1 value: 18.886 - type: recall_at_10 value: 45.34 - type: recall_at_100 value: 67.947 - type: recall_at_1000 value: 86.924 - type: recall_at_3 value: 30.535 - type: recall_at_5 value: 36.451 - type: map_at_1 value: 28.994999999999997 - type: map_at_10 value: 40.04 - type: map_at_100 value: 41.435 - type: map_at_1000 value: 41.537 - type: map_at_3 value: 37.091 - type: map_at_5 value: 38.802 - type: mrr_at_1 value: 35.034 - type: mrr_at_10 value: 45.411 - type: mrr_at_100 value: 46.226 - type: mrr_at_1000 value: 46.27 - type: mrr_at_3 value: 43.086 - type: mrr_at_5 value: 44.452999999999996 - type: ndcg_at_1 value: 35.034 - type: ndcg_at_10 value: 46.076 - type: ndcg_at_100 value: 51.483000000000004 - type: ndcg_at_1000 value: 53.433 - type: ndcg_at_3 value: 41.304 - type: ndcg_at_5 value: 43.641999999999996 - type: precision_at_1 value: 35.034 - type: precision_at_10 value: 8.258000000000001 - type: precision_at_100 value: 1.268 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 19.57 - type: precision_at_5 value: 13.782 - type: recall_at_1 value: 28.994999999999997 - type: recall_at_10 value: 58.538000000000004 - type: recall_at_100 value: 80.72399999999999 - type: recall_at_1000 value: 93.462 - type: recall_at_3 value: 45.199 - type: recall_at_5 value: 51.237 - type: map_at_1 value: 24.795 - type: map_at_10 value: 34.935 - type: map_at_100 value: 36.306 - type: map_at_1000 value: 36.417 - type: map_at_3 value: 31.831 - type: map_at_5 value: 33.626 - type: mrr_at_1 value: 30.479 - type: mrr_at_10 value: 40.225 - type: mrr_at_100 value: 41.055 - type: mrr_at_1000 value: 41.114 - type: mrr_at_3 value: 37.538 - type: mrr_at_5 value: 39.073 - type: ndcg_at_1 value: 30.479 - type: ndcg_at_10 value: 40.949999999999996 - type: ndcg_at_100 value: 46.525 - type: ndcg_at_1000 value: 48.892 - type: ndcg_at_3 value: 35.79 - type: ndcg_at_5 value: 38.237 - type: precision_at_1 value: 30.479 - type: precision_at_10 value: 7.6259999999999994 - type: precision_at_100 value: 1.203 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 17.199 - type: precision_at_5 value: 12.466000000000001 - type: recall_at_1 value: 24.795 - type: recall_at_10 value: 53.421 - type: recall_at_100 value: 77.189 - type: recall_at_1000 value: 93.407 - type: recall_at_3 value: 39.051 - type: recall_at_5 value: 45.462 - type: map_at_1 value: 26.853499999999997 - type: map_at_10 value: 36.20433333333333 - type: map_at_100 value: 37.40391666666667 - type: map_at_1000 value: 37.515 - type: map_at_3 value: 33.39975 - type: map_at_5 value: 34.9665 - type: mrr_at_1 value: 31.62666666666667 - type: mrr_at_10 value: 40.436749999999996 - type: mrr_at_100 value: 41.260333333333335 - type: mrr_at_1000 value: 41.31525 - type: mrr_at_3 value: 38.06733333333332 - type: mrr_at_5 value: 39.41541666666667 - type: ndcg_at_1 value: 31.62666666666667 - type: ndcg_at_10 value: 41.63341666666667 - type: ndcg_at_100 value: 46.704166666666666 - type: ndcg_at_1000 value: 48.88483333333335 - type: ndcg_at_3 value: 36.896 - type: ndcg_at_5 value: 39.11891666666667 - type: precision_at_1 value: 31.62666666666667 - type: precision_at_10 value: 7.241083333333333 - type: precision_at_100 value: 1.1488333333333334 - type: precision_at_1000 value: 0.15250000000000002 - type: precision_at_3 value: 16.908333333333335 - type: precision_at_5 value: 11.942833333333333 - type: recall_at_1 value: 26.853499999999997 - type: recall_at_10 value: 53.461333333333336 - type: recall_at_100 value: 75.63633333333333 - type: recall_at_1000 value: 90.67016666666666 - type: recall_at_3 value: 40.24241666666667 - type: recall_at_5 value: 45.98608333333333 - type: map_at_1 value: 25.241999999999997 - type: map_at_10 value: 31.863999999999997 - type: map_at_100 value: 32.835 - type: map_at_1000 value: 32.928000000000004 - type: map_at_3 value: 29.694 - type: map_at_5 value: 30.978 - type: mrr_at_1 value: 28.374 - type: mrr_at_10 value: 34.814 - type: mrr_at_100 value: 35.596 - type: mrr_at_1000 value: 35.666 - type: mrr_at_3 value: 32.745000000000005 - type: mrr_at_5 value: 34.049 - type: ndcg_at_1 value: 28.374 - type: ndcg_at_10 value: 35.969 - type: ndcg_at_100 value: 40.708 - type: ndcg_at_1000 value: 43.08 - type: ndcg_at_3 value: 31.968999999999998 - type: ndcg_at_5 value: 34.069 - type: precision_at_1 value: 28.374 - type: precision_at_10 value: 5.583 - type: precision_at_100 value: 0.8630000000000001 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 13.547999999999998 - type: precision_at_5 value: 9.447999999999999 - type: recall_at_1 value: 25.241999999999997 - type: recall_at_10 value: 45.711 - type: recall_at_100 value: 67.482 - type: recall_at_1000 value: 85.13300000000001 - type: recall_at_3 value: 34.622 - type: recall_at_5 value: 40.043 - type: map_at_1 value: 17.488999999999997 - type: map_at_10 value: 25.142999999999997 - type: map_at_100 value: 26.244 - type: map_at_1000 value: 26.363999999999997 - type: map_at_3 value: 22.654 - type: map_at_5 value: 24.017 - type: mrr_at_1 value: 21.198 - type: mrr_at_10 value: 28.903000000000002 - type: mrr_at_100 value: 29.860999999999997 - type: mrr_at_1000 value: 29.934 - type: mrr_at_3 value: 26.634999999999998 - type: mrr_at_5 value: 27.903 - type: ndcg_at_1 value: 21.198 - type: ndcg_at_10 value: 29.982999999999997 - type: ndcg_at_100 value: 35.275 - type: ndcg_at_1000 value: 38.074000000000005 - type: ndcg_at_3 value: 25.502999999999997 - type: ndcg_at_5 value: 27.557 - type: precision_at_1 value: 21.198 - type: precision_at_10 value: 5.502 - type: precision_at_100 value: 0.942 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 12.044 - type: precision_at_5 value: 8.782 - type: recall_at_1 value: 17.488999999999997 - type: recall_at_10 value: 40.821000000000005 - type: recall_at_100 value: 64.567 - type: recall_at_1000 value: 84.452 - type: recall_at_3 value: 28.351 - type: recall_at_5 value: 33.645 - type: map_at_1 value: 27.066000000000003 - type: map_at_10 value: 36.134 - type: map_at_100 value: 37.285000000000004 - type: map_at_1000 value: 37.389 - type: map_at_3 value: 33.522999999999996 - type: map_at_5 value: 34.905 - type: mrr_at_1 value: 31.436999999999998 - type: mrr_at_10 value: 40.225 - type: mrr_at_100 value: 41.079 - type: mrr_at_1000 value: 41.138000000000005 - type: mrr_at_3 value: 38.074999999999996 - type: mrr_at_5 value: 39.190000000000005 - type: ndcg_at_1 value: 31.436999999999998 - type: ndcg_at_10 value: 41.494 - type: ndcg_at_100 value: 46.678999999999995 - type: ndcg_at_1000 value: 48.964 - type: ndcg_at_3 value: 36.828 - type: ndcg_at_5 value: 38.789 - type: precision_at_1 value: 31.436999999999998 - type: precision_at_10 value: 6.931 - type: precision_at_100 value: 1.072 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 16.729 - type: precision_at_5 value: 11.567 - type: recall_at_1 value: 27.066000000000003 - type: recall_at_10 value: 53.705000000000005 - type: recall_at_100 value: 75.968 - type: recall_at_1000 value: 91.937 - type: recall_at_3 value: 40.865 - type: recall_at_5 value: 45.739999999999995 - type: map_at_1 value: 24.979000000000003 - type: map_at_10 value: 32.799 - type: map_at_100 value: 34.508 - type: map_at_1000 value: 34.719 - type: map_at_3 value: 29.947000000000003 - type: map_at_5 value: 31.584 - type: mrr_at_1 value: 30.237000000000002 - type: mrr_at_10 value: 37.651 - type: mrr_at_100 value: 38.805 - type: mrr_at_1000 value: 38.851 - type: mrr_at_3 value: 35.046 - type: mrr_at_5 value: 36.548 - type: ndcg_at_1 value: 30.237000000000002 - type: ndcg_at_10 value: 38.356 - type: ndcg_at_100 value: 44.906 - type: ndcg_at_1000 value: 47.299 - type: ndcg_at_3 value: 33.717999999999996 - type: ndcg_at_5 value: 35.946 - type: precision_at_1 value: 30.237000000000002 - type: precision_at_10 value: 7.292 - type: precision_at_100 value: 1.496 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.344 - type: recall_at_1 value: 24.979000000000003 - type: recall_at_10 value: 48.624 - type: recall_at_100 value: 77.932 - type: recall_at_1000 value: 92.66499999999999 - type: recall_at_3 value: 35.217 - type: recall_at_5 value: 41.394 - type: map_at_1 value: 22.566 - type: map_at_10 value: 30.945 - type: map_at_100 value: 31.759999999999998 - type: map_at_1000 value: 31.855 - type: map_at_3 value: 28.64 - type: map_at_5 value: 29.787000000000003 - type: mrr_at_1 value: 24.954 - type: mrr_at_10 value: 33.311 - type: mrr_at_100 value: 34.050000000000004 - type: mrr_at_1000 value: 34.117999999999995 - type: mrr_at_3 value: 31.238 - type: mrr_at_5 value: 32.329 - type: ndcg_at_1 value: 24.954 - type: ndcg_at_10 value: 35.676 - type: ndcg_at_100 value: 39.931 - type: ndcg_at_1000 value: 42.43 - type: ndcg_at_3 value: 31.365 - type: ndcg_at_5 value: 33.184999999999995 - type: precision_at_1 value: 24.954 - type: precision_at_10 value: 5.564 - type: precision_at_100 value: 0.826 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 13.555 - type: precision_at_5 value: 9.168 - type: recall_at_1 value: 22.566 - type: recall_at_10 value: 47.922 - type: recall_at_100 value: 67.931 - type: recall_at_1000 value: 86.653 - type: recall_at_3 value: 36.103 - type: recall_at_5 value: 40.699000000000005 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 16.950000000000003 - type: map_at_10 value: 28.612 - type: map_at_100 value: 30.476999999999997 - type: map_at_1000 value: 30.674 - type: map_at_3 value: 24.262 - type: map_at_5 value: 26.554 - type: mrr_at_1 value: 38.241 - type: mrr_at_10 value: 50.43 - type: mrr_at_100 value: 51.059 - type: mrr_at_1000 value: 51.090999999999994 - type: mrr_at_3 value: 47.514 - type: mrr_at_5 value: 49.246 - type: ndcg_at_1 value: 38.241 - type: ndcg_at_10 value: 38.218 - type: ndcg_at_100 value: 45.003 - type: ndcg_at_1000 value: 48.269 - type: ndcg_at_3 value: 32.568000000000005 - type: ndcg_at_5 value: 34.400999999999996 - type: precision_at_1 value: 38.241 - type: precision_at_10 value: 11.674 - type: precision_at_100 value: 1.913 - type: precision_at_1000 value: 0.252 - type: precision_at_3 value: 24.387 - type: precision_at_5 value: 18.163 - type: recall_at_1 value: 16.950000000000003 - type: recall_at_10 value: 43.769000000000005 - type: recall_at_100 value: 66.875 - type: recall_at_1000 value: 84.92699999999999 - type: recall_at_3 value: 29.353 - type: recall_at_5 value: 35.467 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 9.276 - type: map_at_10 value: 20.848 - type: map_at_100 value: 29.804000000000002 - type: map_at_1000 value: 31.398 - type: map_at_3 value: 14.886 - type: map_at_5 value: 17.516000000000002 - type: mrr_at_1 value: 71 - type: mrr_at_10 value: 78.724 - type: mrr_at_100 value: 78.976 - type: mrr_at_1000 value: 78.986 - type: mrr_at_3 value: 77.333 - type: mrr_at_5 value: 78.021 - type: ndcg_at_1 value: 57.875 - type: ndcg_at_10 value: 43.855 - type: ndcg_at_100 value: 48.99 - type: ndcg_at_1000 value: 56.141 - type: ndcg_at_3 value: 48.914 - type: ndcg_at_5 value: 45.961 - type: precision_at_1 value: 71 - type: precision_at_10 value: 34.575 - type: precision_at_100 value: 11.182 - type: precision_at_1000 value: 2.044 - type: precision_at_3 value: 52.5 - type: precision_at_5 value: 44.2 - type: recall_at_1 value: 9.276 - type: recall_at_10 value: 26.501 - type: recall_at_100 value: 55.72899999999999 - type: recall_at_1000 value: 78.532 - type: recall_at_3 value: 16.365 - type: recall_at_5 value: 20.154 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.71 - type: f1 value: 47.74801556489574 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 73.405 - type: map_at_10 value: 82.822 - type: map_at_100 value: 83.042 - type: map_at_1000 value: 83.055 - type: map_at_3 value: 81.65299999999999 - type: map_at_5 value: 82.431 - type: mrr_at_1 value: 79.178 - type: mrr_at_10 value: 87.02 - type: mrr_at_100 value: 87.095 - type: mrr_at_1000 value: 87.09700000000001 - type: mrr_at_3 value: 86.309 - type: mrr_at_5 value: 86.824 - type: ndcg_at_1 value: 79.178 - type: ndcg_at_10 value: 86.72 - type: ndcg_at_100 value: 87.457 - type: ndcg_at_1000 value: 87.691 - type: ndcg_at_3 value: 84.974 - type: ndcg_at_5 value: 86.032 - type: precision_at_1 value: 79.178 - type: precision_at_10 value: 10.548 - type: precision_at_100 value: 1.113 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 32.848 - type: precision_at_5 value: 20.45 - type: recall_at_1 value: 73.405 - type: recall_at_10 value: 94.39699999999999 - type: recall_at_100 value: 97.219 - type: recall_at_1000 value: 98.675 - type: recall_at_3 value: 89.679 - type: recall_at_5 value: 92.392 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 22.651 - type: map_at_10 value: 36.886 - type: map_at_100 value: 38.811 - type: map_at_1000 value: 38.981 - type: map_at_3 value: 32.538 - type: map_at_5 value: 34.763 - type: mrr_at_1 value: 44.444 - type: mrr_at_10 value: 53.168000000000006 - type: mrr_at_100 value: 53.839000000000006 - type: mrr_at_1000 value: 53.869 - type: mrr_at_3 value: 50.54 - type: mrr_at_5 value: 52.068000000000005 - type: ndcg_at_1 value: 44.444 - type: ndcg_at_10 value: 44.994 - type: ndcg_at_100 value: 51.599 - type: ndcg_at_1000 value: 54.339999999999996 - type: ndcg_at_3 value: 41.372 - type: ndcg_at_5 value: 42.149 - type: precision_at_1 value: 44.444 - type: precision_at_10 value: 12.407 - type: precision_at_100 value: 1.9269999999999998 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 27.726 - type: precision_at_5 value: 19.814999999999998 - type: recall_at_1 value: 22.651 - type: recall_at_10 value: 52.075 - type: recall_at_100 value: 76.51400000000001 - type: recall_at_1000 value: 92.852 - type: recall_at_3 value: 37.236000000000004 - type: recall_at_5 value: 43.175999999999995 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 40.777 - type: map_at_10 value: 66.79899999999999 - type: map_at_100 value: 67.65299999999999 - type: map_at_1000 value: 67.706 - type: map_at_3 value: 63.352 - type: map_at_5 value: 65.52900000000001 - type: mrr_at_1 value: 81.553 - type: mrr_at_10 value: 86.983 - type: mrr_at_100 value: 87.132 - type: mrr_at_1000 value: 87.136 - type: mrr_at_3 value: 86.156 - type: mrr_at_5 value: 86.726 - type: ndcg_at_1 value: 81.553 - type: ndcg_at_10 value: 74.64 - type: ndcg_at_100 value: 77.459 - type: ndcg_at_1000 value: 78.43 - type: ndcg_at_3 value: 69.878 - type: ndcg_at_5 value: 72.59400000000001 - type: precision_at_1 value: 81.553 - type: precision_at_10 value: 15.654000000000002 - type: precision_at_100 value: 1.783 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 45.199 - type: precision_at_5 value: 29.267 - type: recall_at_1 value: 40.777 - type: recall_at_10 value: 78.271 - type: recall_at_100 value: 89.129 - type: recall_at_1000 value: 95.49 - type: recall_at_3 value: 67.79899999999999 - type: recall_at_5 value: 73.167 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 93.5064 - type: ap value: 90.25495114444111 - type: f1 value: 93.5012434973381 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.301 - type: map_at_10 value: 35.657 - type: map_at_100 value: 36.797000000000004 - type: map_at_1000 value: 36.844 - type: map_at_3 value: 31.743 - type: map_at_5 value: 34.003 - type: mrr_at_1 value: 23.854 - type: mrr_at_10 value: 36.242999999999995 - type: mrr_at_100 value: 37.32 - type: mrr_at_1000 value: 37.361 - type: mrr_at_3 value: 32.4 - type: mrr_at_5 value: 34.634 - type: ndcg_at_1 value: 23.868000000000002 - type: ndcg_at_10 value: 42.589 - type: ndcg_at_100 value: 48.031 - type: ndcg_at_1000 value: 49.189 - type: ndcg_at_3 value: 34.649 - type: ndcg_at_5 value: 38.676 - type: precision_at_1 value: 23.868000000000002 - type: precision_at_10 value: 6.6850000000000005 - type: precision_at_100 value: 0.9400000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.651 - type: precision_at_5 value: 10.834000000000001 - type: recall_at_1 value: 23.301 - type: recall_at_10 value: 63.88700000000001 - type: recall_at_100 value: 88.947 - type: recall_at_1000 value: 97.783 - type: recall_at_3 value: 42.393 - type: recall_at_5 value: 52.036 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.64888280893753 - type: f1 value: 94.41310774203512 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 79.72184222526221 - type: f1 value: 61.522034067350106 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 79.60659045057163 - type: f1 value: 77.268649687049 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 81.83254875588432 - type: f1 value: 81.61520635919082 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 36.31529875009507 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.734233714415073 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.994501713009452 - type: mrr value: 32.13512850703073 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.603000000000001 - type: map_at_10 value: 13.767999999999999 - type: map_at_100 value: 17.197000000000003 - type: map_at_1000 value: 18.615000000000002 - type: map_at_3 value: 10.567 - type: map_at_5 value: 12.078999999999999 - type: mrr_at_1 value: 44.891999999999996 - type: mrr_at_10 value: 53.75299999999999 - type: mrr_at_100 value: 54.35 - type: mrr_at_1000 value: 54.388000000000005 - type: mrr_at_3 value: 51.495999999999995 - type: mrr_at_5 value: 52.688 - type: ndcg_at_1 value: 43.189 - type: ndcg_at_10 value: 34.567 - type: ndcg_at_100 value: 32.273 - type: ndcg_at_1000 value: 41.321999999999996 - type: ndcg_at_3 value: 40.171 - type: ndcg_at_5 value: 37.502 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.139 - type: precision_at_100 value: 7.739999999999999 - type: precision_at_1000 value: 2.054 - type: precision_at_3 value: 37.152 - type: precision_at_5 value: 31.826999999999998 - type: recall_at_1 value: 6.603000000000001 - type: recall_at_10 value: 17.023 - type: recall_at_100 value: 32.914 - type: recall_at_1000 value: 64.44800000000001 - type: recall_at_3 value: 11.457 - type: recall_at_5 value: 13.816 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 30.026000000000003 - type: map_at_10 value: 45.429 - type: map_at_100 value: 46.45 - type: map_at_1000 value: 46.478 - type: map_at_3 value: 41.147 - type: map_at_5 value: 43.627 - type: mrr_at_1 value: 33.951 - type: mrr_at_10 value: 47.953 - type: mrr_at_100 value: 48.731 - type: mrr_at_1000 value: 48.751 - type: mrr_at_3 value: 44.39 - type: mrr_at_5 value: 46.533 - type: ndcg_at_1 value: 33.951 - type: ndcg_at_10 value: 53.24100000000001 - type: ndcg_at_100 value: 57.599999999999994 - type: ndcg_at_1000 value: 58.270999999999994 - type: ndcg_at_3 value: 45.190999999999995 - type: ndcg_at_5 value: 49.339 - type: precision_at_1 value: 33.951 - type: precision_at_10 value: 8.856 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.713 - type: precision_at_5 value: 14.838000000000001 - type: recall_at_1 value: 30.026000000000003 - type: recall_at_10 value: 74.512 - type: recall_at_100 value: 93.395 - type: recall_at_1000 value: 98.402 - type: recall_at_3 value: 53.677 - type: recall_at_5 value: 63.198 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 71.41300000000001 - type: map_at_10 value: 85.387 - type: map_at_100 value: 86.027 - type: map_at_1000 value: 86.041 - type: map_at_3 value: 82.543 - type: map_at_5 value: 84.304 - type: mrr_at_1 value: 82.35 - type: mrr_at_10 value: 88.248 - type: mrr_at_100 value: 88.348 - type: mrr_at_1000 value: 88.349 - type: mrr_at_3 value: 87.348 - type: mrr_at_5 value: 87.96300000000001 - type: ndcg_at_1 value: 82.37 - type: ndcg_at_10 value: 88.98 - type: ndcg_at_100 value: 90.16499999999999 - type: ndcg_at_1000 value: 90.239 - type: ndcg_at_3 value: 86.34100000000001 - type: ndcg_at_5 value: 87.761 - type: precision_at_1 value: 82.37 - type: precision_at_10 value: 13.471 - type: precision_at_100 value: 1.534 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.827 - type: precision_at_5 value: 24.773999999999997 - type: recall_at_1 value: 71.41300000000001 - type: recall_at_10 value: 95.748 - type: recall_at_100 value: 99.69200000000001 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 87.996 - type: recall_at_5 value: 92.142 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.96878497780007 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 65.31371347128074 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 5.287 - type: map_at_10 value: 13.530000000000001 - type: map_at_100 value: 15.891 - type: map_at_1000 value: 16.245 - type: map_at_3 value: 9.612 - type: map_at_5 value: 11.672 - type: mrr_at_1 value: 26 - type: mrr_at_10 value: 37.335 - type: mrr_at_100 value: 38.443 - type: mrr_at_1000 value: 38.486 - type: mrr_at_3 value: 33.783 - type: mrr_at_5 value: 36.028 - type: ndcg_at_1 value: 26 - type: ndcg_at_10 value: 22.215 - type: ndcg_at_100 value: 31.101 - type: ndcg_at_1000 value: 36.809 - type: ndcg_at_3 value: 21.104 - type: ndcg_at_5 value: 18.759999999999998 - type: precision_at_1 value: 26 - type: precision_at_10 value: 11.43 - type: precision_at_100 value: 2.424 - type: precision_at_1000 value: 0.379 - type: precision_at_3 value: 19.7 - type: precision_at_5 value: 16.619999999999997 - type: recall_at_1 value: 5.287 - type: recall_at_10 value: 23.18 - type: recall_at_100 value: 49.208 - type: recall_at_1000 value: 76.85300000000001 - type: recall_at_3 value: 11.991999999999999 - type: recall_at_5 value: 16.85 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.87834913790886 - type: cos_sim_spearman value: 81.04583513112122 - type: euclidean_pearson value: 81.20484174558065 - type: euclidean_spearman value: 80.76430832561769 - type: manhattan_pearson value: 81.21416730978615 - type: manhattan_spearman value: 80.7797637394211 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.56143998865157 - type: cos_sim_spearman value: 79.75387012744471 - type: euclidean_pearson value: 83.7877519997019 - type: euclidean_spearman value: 79.90489748003296 - type: manhattan_pearson value: 83.7540590666095 - type: manhattan_spearman value: 79.86434577931573 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.92102564177941 - type: cos_sim_spearman value: 84.98234585939103 - type: euclidean_pearson value: 84.47729567593696 - type: euclidean_spearman value: 85.09490696194469 - type: manhattan_pearson value: 84.38622951588229 - type: manhattan_spearman value: 85.02507171545574 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.1891164763377 - type: cos_sim_spearman value: 80.7997969966883 - type: euclidean_pearson value: 80.48572256162396 - type: euclidean_spearman value: 80.57851903536378 - type: manhattan_pearson value: 80.4324819433651 - type: manhattan_spearman value: 80.5074526239062 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 82.64319975116025 - type: cos_sim_spearman value: 84.88671197763652 - type: euclidean_pearson value: 84.74692193293231 - type: euclidean_spearman value: 85.27151722073653 - type: manhattan_pearson value: 84.72460516785438 - type: manhattan_spearman value: 85.26518899786687 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.24687565822381 - type: cos_sim_spearman value: 85.60418454111263 - type: euclidean_pearson value: 84.85829740169851 - type: euclidean_spearman value: 85.66378014138306 - type: manhattan_pearson value: 84.84672408808835 - type: manhattan_spearman value: 85.63331924364891 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.87758895415485 - type: cos_sim_spearman value: 85.8193745617297 - type: euclidean_pearson value: 85.78719118848134 - type: euclidean_spearman value: 84.35797575385688 - type: manhattan_pearson value: 85.97919844815692 - type: manhattan_spearman value: 84.58334745175151 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.27076035963599 - type: cos_sim_spearman value: 67.21433656439973 - type: euclidean_pearson value: 68.07434078679324 - type: euclidean_spearman value: 66.0249731719049 - type: manhattan_pearson value: 67.95495198947476 - type: manhattan_spearman value: 65.99893908331886 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.22437747056817 - type: cos_sim_spearman value: 85.0995685206174 - type: euclidean_pearson value: 84.08616925603394 - type: euclidean_spearman value: 84.89633925691658 - type: manhattan_pearson value: 84.08332675923133 - type: manhattan_spearman value: 84.8858228112915 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.6909022589666 - type: mrr value: 96.43341952165481 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 57.660999999999994 - type: map_at_10 value: 67.625 - type: map_at_100 value: 68.07600000000001 - type: map_at_1000 value: 68.10199999999999 - type: map_at_3 value: 64.50399999999999 - type: map_at_5 value: 66.281 - type: mrr_at_1 value: 61 - type: mrr_at_10 value: 68.953 - type: mrr_at_100 value: 69.327 - type: mrr_at_1000 value: 69.352 - type: mrr_at_3 value: 66.833 - type: mrr_at_5 value: 68.05 - type: ndcg_at_1 value: 61 - type: ndcg_at_10 value: 72.369 - type: ndcg_at_100 value: 74.237 - type: ndcg_at_1000 value: 74.939 - type: ndcg_at_3 value: 67.284 - type: ndcg_at_5 value: 69.72500000000001 - type: precision_at_1 value: 61 - type: precision_at_10 value: 9.733 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.222 - type: precision_at_5 value: 17.4 - type: recall_at_1 value: 57.660999999999994 - type: recall_at_10 value: 85.656 - type: recall_at_100 value: 93.833 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 71.961 - type: recall_at_5 value: 78.094 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.86930693069307 - type: cos_sim_ap value: 96.76685487950894 - type: cos_sim_f1 value: 93.44587884806354 - type: cos_sim_precision value: 92.80078895463511 - type: cos_sim_recall value: 94.1 - type: dot_accuracy value: 99.54356435643564 - type: dot_ap value: 81.18659960405607 - type: dot_f1 value: 75.78008915304605 - type: dot_precision value: 75.07360157016683 - type: dot_recall value: 76.5 - type: euclidean_accuracy value: 99.87326732673267 - type: euclidean_ap value: 96.8102411908941 - type: euclidean_f1 value: 93.6127744510978 - type: euclidean_precision value: 93.42629482071713 - type: euclidean_recall value: 93.8 - type: manhattan_accuracy value: 99.87425742574257 - type: manhattan_ap value: 96.82857341435529 - type: manhattan_f1 value: 93.62129583124059 - type: manhattan_precision value: 94.04641775983855 - type: manhattan_recall value: 93.2 - type: max_accuracy value: 99.87425742574257 - type: max_ap value: 96.82857341435529 - type: max_f1 value: 93.62129583124059 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.92560972698926 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.92797240259008 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.244624045597654 - type: mrr value: 56.185303666921314 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.02491987312937 - type: cos_sim_spearman value: 32.055592206679734 - type: dot_pearson value: 24.731627575422557 - type: dot_spearman value: 24.308029077069733 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.231 - type: map_at_10 value: 1.899 - type: map_at_100 value: 9.498 - type: map_at_1000 value: 20.979999999999997 - type: map_at_3 value: 0.652 - type: map_at_5 value: 1.069 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.4 - type: mrr_at_100 value: 93.4 - type: mrr_at_1000 value: 93.4 - type: mrr_at_3 value: 93 - type: mrr_at_5 value: 93.4 - type: ndcg_at_1 value: 86 - type: ndcg_at_10 value: 75.375 - type: ndcg_at_100 value: 52.891999999999996 - type: ndcg_at_1000 value: 44.952999999999996 - type: ndcg_at_3 value: 81.05 - type: ndcg_at_5 value: 80.175 - type: precision_at_1 value: 88 - type: precision_at_10 value: 79 - type: precision_at_100 value: 53.16 - type: precision_at_1000 value: 19.408 - type: precision_at_3 value: 85.333 - type: precision_at_5 value: 84 - type: recall_at_1 value: 0.231 - type: recall_at_10 value: 2.078 - type: recall_at_100 value: 12.601 - type: recall_at_1000 value: 41.296 - type: recall_at_3 value: 0.6779999999999999 - type: recall_at_5 value: 1.1360000000000001 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.782 - type: map_at_10 value: 10.204 - type: map_at_100 value: 16.176 - type: map_at_1000 value: 17.456 - type: map_at_3 value: 5.354 - type: map_at_5 value: 7.503 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 54.010000000000005 - type: mrr_at_100 value: 54.49 - type: mrr_at_1000 value: 54.49 - type: mrr_at_3 value: 48.980000000000004 - type: mrr_at_5 value: 51.735 - type: ndcg_at_1 value: 36.735 - type: ndcg_at_10 value: 26.61 - type: ndcg_at_100 value: 36.967 - type: ndcg_at_1000 value: 47.274 - type: ndcg_at_3 value: 30.363 - type: ndcg_at_5 value: 29.448999999999998 - type: precision_at_1 value: 40.816 - type: precision_at_10 value: 23.878 - type: precision_at_100 value: 7.693999999999999 - type: precision_at_1000 value: 1.4489999999999998 - type: precision_at_3 value: 31.293 - type: precision_at_5 value: 29.796 - type: recall_at_1 value: 2.782 - type: recall_at_10 value: 16.485 - type: recall_at_100 value: 46.924 - type: recall_at_1000 value: 79.365 - type: recall_at_3 value: 6.52 - type: recall_at_5 value: 10.48 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.08300000000001 - type: ap value: 13.91559884590195 - type: f1 value: 53.956838444291364 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.34069043576683 - type: f1 value: 59.662041994618406 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.70780611078653 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.10734934732073 - type: cos_sim_ap value: 77.58349999516054 - type: cos_sim_f1 value: 70.25391395868965 - type: cos_sim_precision value: 70.06035161374967 - type: cos_sim_recall value: 70.44854881266491 - type: dot_accuracy value: 80.60439887941826 - type: dot_ap value: 54.52935200483575 - type: dot_f1 value: 54.170444242973716 - type: dot_precision value: 47.47715534366309 - type: dot_recall value: 63.06068601583114 - type: euclidean_accuracy value: 87.26828396018358 - type: euclidean_ap value: 78.00158454104036 - type: euclidean_f1 value: 70.70292457670601 - type: euclidean_precision value: 68.79680479281079 - type: euclidean_recall value: 72.71767810026385 - type: manhattan_accuracy value: 87.11330988853788 - type: manhattan_ap value: 77.92527099601855 - type: manhattan_f1 value: 70.76488706365502 - type: manhattan_precision value: 68.89055472263868 - type: manhattan_recall value: 72.74406332453826 - type: max_accuracy value: 87.26828396018358 - type: max_ap value: 78.00158454104036 - type: max_f1 value: 70.76488706365502 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.80804905499282 - type: cos_sim_ap value: 83.06187782630936 - type: cos_sim_f1 value: 74.99716435403985 - type: cos_sim_precision value: 73.67951860931579 - type: cos_sim_recall value: 76.36279642747151 - type: dot_accuracy value: 81.83141227151008 - type: dot_ap value: 67.18241090841795 - type: dot_f1 value: 62.216037571751606 - type: dot_precision value: 56.749381227391005 - type: dot_recall value: 68.84816753926701 - type: euclidean_accuracy value: 87.91671517832887 - type: euclidean_ap value: 83.56538942001427 - type: euclidean_f1 value: 75.7327253337256 - type: euclidean_precision value: 72.48856036606828 - type: euclidean_recall value: 79.28087465352634 - type: manhattan_accuracy value: 87.86626304963713 - type: manhattan_ap value: 83.52939841172832 - type: manhattan_f1 value: 75.73635656329888 - type: manhattan_precision value: 72.99150182103836 - type: manhattan_recall value: 78.69571912534647 - type: max_accuracy value: 87.91671517832887 - type: max_ap value: 83.56538942001427 - type: max_f1 value: 75.73635656329888 --- **Recommend switching to newest [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5), which has more reasonable similarity distribution and same method of usage.** <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector databases for LLMs. ************* 🌟**Updates**🌟 ************* - 09/15/2023: Release [paper](https://arxiv.org/pdf/2309.07597.pdf) and [dataset](https://data.baai.ac.cn/details/BAAI-MTP). - 09/12/2023: New Release: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval\* | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. \**: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details pelease refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find our work helpful, please cite us: ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
[ "SEMANTIC_SIMILARITY", "SUMMARIZATION" ]
Non_BioNLP
RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
1,722,847,584,000
2024-08-05T19:07:47
546
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) L3-Super-Nova-RP-8B - GGUF - Model creator: https://huggingface.co/Casual-Autopsy/ - Original model: https://huggingface.co/Casual-Autopsy/L3-Super-Nova-RP-8B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [L3-Super-Nova-RP-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q2_K.gguf) | Q2_K | 2.96GB | | [L3-Super-Nova-RP-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [L3-Super-Nova-RP-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.IQ3_S.gguf) | IQ3_S | 3.43GB | | [L3-Super-Nova-RP-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [L3-Super-Nova-RP-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.IQ3_M.gguf) | IQ3_M | 3.52GB | | [L3-Super-Nova-RP-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q3_K.gguf) | Q3_K | 3.74GB | | [L3-Super-Nova-RP-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [L3-Super-Nova-RP-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [L3-Super-Nova-RP-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [L3-Super-Nova-RP-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q4_0.gguf) | Q4_0 | 4.34GB | | [L3-Super-Nova-RP-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [L3-Super-Nova-RP-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [L3-Super-Nova-RP-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q4_K.gguf) | Q4_K | 4.58GB | | [L3-Super-Nova-RP-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [L3-Super-Nova-RP-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q4_1.gguf) | Q4_1 | 4.78GB | | [L3-Super-Nova-RP-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q5_0.gguf) | Q5_0 | 5.21GB | | [L3-Super-Nova-RP-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [L3-Super-Nova-RP-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q5_K.gguf) | Q5_K | 5.34GB | | [L3-Super-Nova-RP-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [L3-Super-Nova-RP-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q5_1.gguf) | Q5_1 | 5.65GB | | [L3-Super-Nova-RP-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q6_K.gguf) | Q6_K | 6.14GB | | [L3-Super-Nova-RP-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Casual-Autopsy_-_L3-Super-Nova-RP-8B-gguf/blob/main/L3-Super-Nova-RP-8B.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- pipeline_tag: text-generation library_name: transformers language: - en license: llama3 tags: - mergekit - merge - multi-step merge - not-for-all-audiences - nsfw - rp - roleplay - role-play - summarization - emotion classification base_model: - nothingiisreal/L3-8B-Celeste-v1 - Nitral-AI/Hathor_Tahsin-L3-8B-v0.85 - Sao10K/L3-8B-Stheno-v3.2 - ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B - Sao10K/L3-8B-Lunaris-v1 - turboderp/llama3-turbcat-instruct-8b - ChaoticNeutrals/Domain-Fusion-L3-8B - migtissera/Llama-3-8B-Synthia-v3.5 - TheDrummer/Llama-3SOME-8B-v2 - ChaoticNeutrals/Hathor_RP-v.01-L3-8B - TheSkullery/llama-3-cat-8b-instruct-v1 - FPHam/L3-8B-Everything-COT - Ayush-1722/Meta-Llama-3-8B-Instruct-Summarize-v0.2-24K-LoRANET-Merged - OEvortex/Emotional-llama-8B - lighteternal/Llama3-merge-biomed-8b - Casual-Autopsy/Llama3-merge-psychotherapy-8b - Sao10K/L3-8B-Tamamo-v1 - ResplendentAI/Nymph_8B - ChaoticNeutrals/T-900-8B - Sao10K/L3-8B-Niitama-v1 - bluuwhale/L3-SthenoMaidBlackroot-8B-V1 - Hastagaras/Jamet-8B-L3-MK.V-Blackroot - Hastagaras/Halu-8B-Llama3-Blackroot - crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 --- | <img src="https://huggingface.co/Casual-Autopsy/L3-Super-Nova-RP-8B/resolve/main/Card-Assets/NovaKid-Girl.jpeg" width="50%" height="50%" style="display: block; margin: auto;"> | |:---:| | Image generated by [mayonays_on_toast](https://civitai.com/user/mayonays_on_toast) - [Sauce](https://civitai.com/images/10153472) | *** *** *** # L3-Super-Nova-RP-8B This is a role-playing model designed with the goal of good creativity and intelligence to improve advance role-playing experiences. The aim of L3-Super-Nova-RP-8B is to be good at Chain-of-Thoughts, summarizing information, and recognizing emotions. It also includes data about the human body and mind in an attempt to enhance understanding and interaction within role-playing scenarios. The model was developed using various methods in multiple merging steps. To boost creativity, it used techniques to strengthen and adjust its output which was paried with the newly released merge method. All merge calculations were done in float32 format and then converted to the usual bfloat16 during merging. *** *** ## Presets *** ### Text Gen The current good starting preset for this model. **Subject to change.** **Settings by yours truly** ```yaml Top K: 40 Min P: 0.075 # I've got some good results as low as 0.05 as well Repetition Penalty: 1.01 # Don't make this higher, DRY handles the bulk of Squashing Repetition. # This is just to lightly nudge the bot to move the plot forward Rep Pen Range: 2048 # Don't make this higher either. Presence Penalty: 0.03 # Minor encouragement to use synonyms. Don't make this higher maybe? Smoothing Factor: 0.3 DRY Repetition Penalty: Multiplier: 0.8 Base: 1.75 Allowed Length: 2 Penalty Range: 4096 Dynamic Temperature: Min Temp: 0.5 Max Temp: 1.25 Exponent: 0.85 ``` *** ### Context/Instruct [Virt-io's SillyTavern Presets](https://huggingface.co/Virt-io/SillyTavern-Presets) work really well with this. *** *** ## Usage Info Some of the **INT** models were chosen with some of SillyTavern's features in mind, such as emotion based sprites, dynamic music, and pretty much any feature, extension, or STscript that uses sumarization. With that said, it's recommended to use SillyTavern as your front-end. While not required, I'd recommend building the story string prompt with Lorebooks rather than using the Advance Formatting menu. The only thing you really need in the Story String prompt within Advance Formatting is the system prompt. Doing it this way tends to keep the character more consistent as the RP goes on as all character card info is locked to a certain depth rather than getting further and further away within the context. *** *** ## Quants GGUF: - [Static GGUFs](https://huggingface.co/mradermacher/L3-Super-Nova-RP-8B-GGUF) by mradermacher - [Imatrix GGUFs](https://huggingface.co/mradermacher/L3-Super-Nova-RP-8B-i1-GGUF) by mradermacher Exl2: - [8.0bpw-h8 Exl2](https://huggingface.co/Slvcxc/L3-Super-Nova-RP-8B-8.0bpw-h8-exl2) by Slvcxc *** *** ## Merge Info The merge methods used were **Ties**, **Dare Ties**, **Breadcrumbs Ties**, **SLERP**, and **DELLA**. The model was finished off with both **Merge Densification**, and **Negative Weighting** techniques to boost creativity. All merging steps had the merge calculations done in **float32** and were output as **bfloat16**. *** ### Models Merged The following models were used to make this merge: * [nothingiisreal/L3-8B-Celeste-v1](https://huggingface.co/nothingiisreal/L3-8B-Celeste-v1) * [Nitral-AI/Hathor_Tahsin-L3-8B-v0.85](https://huggingface.co/Nitral-AI/Hathor_Tahsin-L3-8B-v0.85) * [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2) * [ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B) * [Sao10K/L3-8B-Lunaris-v1](https://huggingface.co/Sao10K/L3-8B-Lunaris-v1) * [turboderp/llama3-turbcat-instruct-8b](https://huggingface.co/turboderp/llama3-turbcat-instruct-8b) * [ChaoticNeutrals/Domain-Fusion-L3-8B](https://huggingface.co/ChaoticNeutrals/Domain-Fusion-L3-8B) * [migtissera/Llama-3-8B-Synthia-v3.5](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5) * [TheDrummer/Llama-3SOME-8B-v2](https://huggingface.co/TheDrummer/Llama-3SOME-8B-v2) * [ChaoticNeutrals/Hathor_RP-v.01-L3-8B](https://huggingface.co/ChaoticNeutrals/Hathor_RP-v.01-L3-8B) * [TheSkullery/llama-3-cat-8b-instruct-v1](https://huggingface.co/TheSkullery/llama-3-cat-8b-instruct-v1) * [FPHam/L3-8B-Everything-COT](https://huggingface.co/FPHam/L3-8B-Everything-COT) * [Ayush-1722/Meta-Llama-3-8B-Instruct-Summarize-v0.2-24K-LoRANET-Merged](https://huggingface.co/Ayush-1722/Meta-Llama-3-8B-Instruct-Summarize-v0.2-24K-LoRANET-Merged) * [OEvortex/Emotional-llama-8B](https://huggingface.co/OEvortex/Emotional-llama-8B) * [lighteternal/Llama3-merge-biomed-8b](https://huggingface.co/lighteternal/Llama3-merge-biomed-8b) * [Casual-Autopsy/Llama3-merge-psychotherapy-8b](https://huggingface.co/Casual-Autopsy/Llama3-merge-psychotherapy-8b) * [Sao10K/L3-8B-Tamamo-v1](https://huggingface.co/Sao10K/L3-8B-Tamamo-v1) * [ResplendentAI/Nymph_8B](https://huggingface.co/ResplendentAI/Nymph_8B) * [ChaoticNeutrals/T-900-8B](https://huggingface.co/ChaoticNeutrals/T-900-8B) * [Sao10K/L3-8B-Niitama-v1](https://huggingface.co/Sao10K/L3-8B-Niitama-v1) * [bluuwhale/L3-SthenoMaidBlackroot-8B-V1](https://huggingface.co/bluuwhale/L3-SthenoMaidBlackroot-8B-V1) * [Hastagaras/Jamet-8B-L3-MK.V-Blackroot](https://huggingface.co/Hastagaras/Jamet-8B-L3-MK.V-Blackroot) * [Hastagaras/Halu-8B-Llama3-Blackroot](https://huggingface.co/Hastagaras/Halu-8B-Llama3-Blackroot) * [crestf411/L3-8B-sunfall-v0.4-stheno-v3.2](https://huggingface.co/crestf411/L3-8B-sunfall-v0.4-stheno-v3.2) *** *** ## Evaluation Results *** ### [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) **Explaination for AI RP newbies:** IFEval is the most important evaluation for RP AIs as it determines how well it can follow OOC, Lorebooks, and most importantly character cards. The rest don't matter. At least not nearly as much as IFEval. |Metric | Value| |:------------------|------:| |Avg. |N/A| |IFEval (0-Shot) |N/A| |BBH (3-Shot) |N/A| |MATH Lvl 5 (4-Shot)|N/A| |GPQA (0-shot) |N/A| |MuSR (0-shot) |N/A| |MMLU-PRO (5-shot) |N/A| *** ### [UGI Leaderboard](https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard) Information about the metrics can be found at the bottom of the [UGI Leaderboard](https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard) in the respective tabs. |Metric(UGI-Leaderboard) | Value | Value | Metric(Writing Style)| |:------------------------|:-----:|:-----:|----------------------:| |UGI(Avg.) |23.56 |0.199 |RegV1 | |W/10 |5.8 |0.218 |RegV2 | |Unruly |22.5 |0.15 |MyScore | |Internet |11.8 |8.34 |ASSS | |Stats |18.7 |10.26 |SMOG | |Writing |31.5 |1.76 |Yule | |PolContro |33.3 | | | *** *** ## Secret Sauce The following YAML configs were used to make this merge. *** ### Super-Nova-CRE_pt.1 ```yaml models: - model: nothingiisreal/L3-8B-Celeste-v1 - model: Nitral-AI/Hathor_Tahsin-L3-8B-v0.85 parameters: density: [0.35, 0.45, 0.5, 0.55, 0.65, 0.55, 0.5, 0.45, 0.35] weight: [0.495, 0.165, 0.165, 0.495, 0.495, 0.165, 0.165, 0.495] - model: Sao10K/L3-8B-Stheno-v3.2 parameters: density: [0.65, 0.55, 0.5, 0.45, 0.35, 0.45, 0.5, 0.55, 0.65] weight: [0.165, 0.495, 0.495, 0.165, 0.165, 0.495, 0.495, 0.165] merge_method: dare_ties base_model: nothingiisreal/L3-8B-Celeste-v1 parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-CRE_pt.2 ```yaml models: - model: nothingiisreal/L3-8B-Celeste-v1 - model: ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B parameters: density: [0.35, 0.45, 0.5, 0.55, 0.65, 0.55, 0.5, 0.45, 0.35] weight: [0.165, 0.495, 0.495, 0.165, 0.165, 0.495, 0.495, 0.165] - model: Sao10K/L3-8B-Lunaris-v1 parameters: density: [0.65, 0.55, 0.5, 0.45, 0.35, 0.45, 0.5, 0.55, 0.65] weight: [0.495, 0.165, 0.165, 0.495, 0.495, 0.165, 0.165, 0.495] merge_method: dare_ties base_model: nothingiisreal/L3-8B-Celeste-v1 parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-UNC_pt.1 ```yaml models: - model: turboderp/llama3-turbcat-instruct-8b - model: ChaoticNeutrals/Domain-Fusion-L3-8B parameters: density: 0.5 weight: [0.495, 0.165, 0.165, 0.495, 0.495, 0.165, 0.165, 0.495] - model: migtissera/Llama-3-8B-Synthia-v3.5 parameters: density: 0.5 weight: [0.165, 0.495, 0.495, 0.165, 0.165, 0.495, 0.495, 0.165] merge_method: dare_ties base_model: turboderp/llama3-turbcat-instruct-8b parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-UNC_pt.2 ```yaml models: - model: turboderp/llama3-turbcat-instruct-8b - model: TheDrummer/Llama-3SOME-8B-v2 parameters: density: 0.5 weight: [0.165, 0.495, 0.495, 0.165, 0.165, 0.495, 0.495, 0.165] - model: ChaoticNeutrals/Hathor_RP-v.01-L3-8B parameters: density: 0.5 weight: [0.495, 0.165, 0.165, 0.495, 0.495, 0.165, 0.165, 0.495] merge_method: dare_ties base_model: turboderp/llama3-turbcat-instruct-8b parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-INT_pt.1 ```yaml models: - model: TheSkullery/llama-3-cat-8b-instruct-v1 - model: FPHam/L3-8B-Everything-COT parameters: density: 0.5 weight: [0.139, 0.139, 0.208, 0.139, 0.208] - model: Ayush-1722/Meta-Llama-3-8B-Instruct-Summarize-v0.2-24K-LoRANET-Merged parameters: density: 0.5 weight: [0.139, 0.208, 0.139, 0.208, 0.139] - model: OEvortex/Emotional-llama-8B parameters: density: 0.5 weight: [0.208, 0.139, 0.208, 0.139, 0.139] - model: lighteternal/Llama3-merge-biomed-8b parameters: density: 0.5 weight: [0.208, 0.139, 0.139, 0.139, 0.208] - model: Casual-Autopsy/Llama3-merge-psychotherapy-8b parameters: density: 0.5 weight: [0.139, 0.208, 0.139, 0.208, 0.139] merge_method: ties base_model: TheSkullery/llama-3-cat-8b-instruct-v1 parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-INT_pt.2 ```yaml models: - model: TheSkullery/llama-3-cat-8b-instruct-v1 - model: FPHam/L3-8B-Everything-COT parameters: density: 0.9 gamma: 0.01 weight: [0.139, 0.208, 0.208, 0.139, 0.139] - model: Ayush-1722/Meta-Llama-3-8B-Instruct-Summarize-v0.2-24K-LoRANET-Merged parameters: density: 0.9 gamma: 0.01 weight: [0.208, 0.139, 0.139, 0.139, 0.208] - model: OEvortex/Emotional-llama-8B parameters: density: 0.9 gamma: 0.01 weight: [0.139, 0.139, 0.208, 0.208, 0.139] - model: lighteternal/Llama3-merge-biomed-8b parameters: density: 0.9 gamma: 0.01 weight: [0.139, 0.208, 0.139, 0.208, 0.139] - model: Casual-Autopsy/Llama3-merge-psychotherapy-8b parameters: density: 0.9 gamma: 0.01 weight: [0.208, 0.139, 0.139, 0.139, 0.208] merge_method: breadcrumbs_ties base_model: TheSkullery/llama-3-cat-8b-instruct-v1 parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-CRE ```yaml models: - model: Casual-Autopsy/Super-Nova-CRE_pt.1 - model: Casual-Autopsy/Super-Nova-CRE_pt.2 merge_method: slerp base_model: Casual-Autopsy/Super-Nova-CRE_pt.1 parameters: t: - filter: self_attn value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5] - filter: mlp value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] - value: 0.5 embed_slerp: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-UNC ```yaml models: - model: Casual-Autopsy/Super-Nova-UNC_pt.1 - model: Casual-Autopsy/Super-Nova-UNC_pt.2 merge_method: slerp base_model: Casual-Autopsy/Super-Nova-UNC_pt.1 parameters: t: - value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5] embed_slerp: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-INT ```yaml models: - model: Casual-Autopsy/Super-Nova-INT_pt.1 - model: Casual-Autopsy/Super-Nova-INT_pt.2 merge_method: slerp base_model: Casual-Autopsy/Super-Nova-INT_pt.1 parameters: t: - value: 0.5 embed_slerp: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-RP_stp.1 ```yaml models: - model: Casual-Autopsy/Super-Nova-CRE - model: asual-Autopsy/Super-Nova-UNC merge_method: slerp base_model: Casual-Autopsy/Super-Nova-CRE parameters: t: - value: [0.7, 0.5, 0.3, 0.25, 0.2, 0.25, 0.3, 0.5, 0.7] embed_slerp: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-RP_stp.2 ```yaml models: - model: Casual-Autopsy/Super-Nova-RP_stp.1 - model: Casual-Autopsy/Super-Nova-INT merge_method: slerp base_model: Casual-Autopsy/Super-Nova-RP_stp.1 parameters: t: - value: [0.1, 0.15, 0.2, 0.4, 0.6, 0.4, 0.2, 0.15, 0.1] embed_slerp: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-RP_pt.1 ```yaml models: - model: Casual-Autopsy/Super-Nova-RP_stp.2 - model: Sao10K/L3-8B-Tamamo-v1 parameters: density: [0.4, 0.6, 0.5, 0.6, 0.4] epsilon: [0.15, 0.15, 0.25, 0.15, 0.15] lambda: 0.85 weight: [-0.01523, 0.01768, -0.01384, 0.01835, -0.01247] - model: ResplendentAI/Nymph_8B parameters: density: [0.65, 0.35, 0.5, 0.35, 0.65] epsilon: [0.1, 0.1, 0.25, 0.1, 0.1] lambda: 0.85 weight: [0.01823, -0.01647, 0.01422, -0.01975, 0.01128] - model: ChaoticNeutrals/T-900-8B parameters: density: [0.35, 0.65, 0.5, 0.65, 0.35] epsilon: [0.1, 0.1, 0.25, 0.1, 0.1] lambda: 0.85 weight: [-0.01891, 0.01554, -0.01325, 0.01791, -0.01458] - model: Sao10K/L3-8B-Niitama-v1 parameters: density: [0.6, 0.4, 0.5, 0.4, 0.6] epsilon: [0.15, 0.15, 0.25, 0.15, 0.15] lambda: 0.85 weight: [0.01768, -0.01675, 0.01285, -0.01696, 0.01421] merge_method: della base_model: Casual-Autopsy/Super-Nova-RP_stp.2 parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### Super-Nova-RP_pt.2 ```yaml models: - model: Casual-Autopsy/Super-Nova-RP_stp.2 - model: bluuwhale/L3-SthenoMaidBlackroot-8B-V1 parameters: density: [0.4, 0.6, 0.5, 0.6, 0.4] epsilon: [0.15, 0.15, 0.25, 0.15, 0.15] lambda: 0.85 weight: [-0.01935, 0.01785, -0.01512, 0.01809, -0.01371] - model: Hastagaras/Jamet-8B-L3-MK.V-Blackroot parameters: density: [0.65, 0.35, 0.5, 0.35, 0.65] epsilon: [0.1, 0.1, 0.25, 0.1, 0.1] lambda: 0.85 weight: [0.01847, -0.01468, 0.01503, -0.01822, 0.01459] - model: Hastagaras/Halu-8B-Llama3-Blackroot parameters: density: [0.35, 0.65, 0.5, 0.65, 0.35] epsilon: [0.1, 0.1, 0.25, 0.1, 0.1] lambda: 0.85 weight: [-0.01578, 0.01821, -0.01753, 0.01677, -0.01442] - model: crestf411/L3-8B-sunfall-v0.4-stheno-v3.2 parameters: density: [0.6, 0.5, 0.5, 0.5, 0.6] epsilon: [0.15, 0.15, 0.25, 0.15, 0.15] lambda: 0.85 weight: [0.01667, -0.01740, 0.01560, -0.01564, 0.01315] merge_method: della base_model: Casual-Autopsy/Super-Nova-RP_stp.2 parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 ``` *** ### L3-Super-Nova-RP-8B ```yaml models: - model: Casual-Autopsy/Super-Nova-RP_pt.1 - model: Casual-Autopsy/Super-Nova-RP_pt.2 merge_method: slerp base_model: Casual-Autopsy/Super-Nova-RP_pt.1 parameters: t: - value: 0.5 dtype: float32 out_dtype: bfloat16 ```
[ "SUMMARIZATION" ]
Non_BioNLP
plaguss/bge-base-argilla-sdk-matryoshka
plaguss
sentence-similarity
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:882", "loss:MatryoshkaLoss", "loss:TripletLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1703.07737", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
1,718,789,781,000
2024-06-19T09:36:43
7
5
--- base_model: BAAI/bge-base-en-v1.5 datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:882 - loss:MatryoshkaLoss - loss:TripletLoss widget: - source_sentence: 'hide: footer Fields Fields in Argilla are define the content of a record that will be reviewed by a user.' sentences: - The tourists tried to hide their footprints in the sand as they walked along the deserted beach. - Can the rg.Suggestion class be used to handle model predictions in Argilla? - Can users customize the fields in Argilla to fit their specific annotation needs? - source_sentence: "=== \"Single condition\"\n\n=== \"Multiple conditions\"\n\nFilter\ \ by status\n\nYou can filter records based on their status. The status can be\ \ pending, draft, submitted, or discarded.\n\n```python\nimport argilla_sdk as\ \ rg\n\nclient = rg.Argilla(api_url=\"\", api_key=\"\")\n\nworkspace = client.workspaces(\"\ my_workspace\")\n\ndataset = client.datasets(name=\"my_dataset\", workspace=workspace)\n\ \nstatus_filter = rg.Query(\n filter = rg.Filter((\"status\", \"==\", \"submitted\"\ ))\n)" sentences: - The submitted application was rejected due to incomplete documentation. - How can I apply filters to records by their status in Argilla? - Can Argilla's IntegerMetadataProperty support a range of integer values as metadata? - source_sentence: 'description: In this section, we will provide a step-by-step guide to show how to filter and query a dataset. Query, filter, and export records This guide provides an overview of how to query and filter a dataset in Argilla and export records.' sentences: - The new restaurant in town offers a unique filter coffee that is a must-try for coffee enthusiasts. - Is it possible to design a user role with tailored access permissions within Argilla? - Can Argilla be employed to search and filter datasets based on particular requirements or keywords? - source_sentence: 'hide: footer Fields Fields in Argilla are define the content of a record that will be reviewed by a user.' sentences: - Is it possible for annotators to tailor Argilla's fields to their unique annotation requirements? - The tourists tried to hide their footprints in the sand as they walked along the deserted beach. - Can this partnership with Prolific provide researchers with a broader range of annotators to draw from, enhancing the quality of their studies? - source_sentence: 'hide: footer rg.Argilla To interact with the Argilla server from python you can use the Argilla class. The Argilla client is used to create, get, update, and delete all Argilla resources, such as workspaces, users, datasets, and records. Usage Examples Connecting to an Argilla server To connect to an Argilla server, instantiate the Argilla class and pass the api_url of the server and the api_key to authenticate. ```python import argilla_sdk as rg' sentences: - Can the Argilla class be employed to streamline dataset administration tasks in my Argilla server setup? - Is it possible to create new data entries in my dataset via Argilla's annotation tools? - The Argilla flowers were blooming beautifully in the garden. model-index: - name: BGE base ArgillaSDK Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.1326530612244898 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2857142857142857 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3877551020408163 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5204081632653061 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1326530612244898 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09523809523809525 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.07755102040816327 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05204081632653061 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1326530612244898 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2857142857142857 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3877551020408163 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5204081632653061 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3086125494748455 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.24321752510528016 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.26038538311827203 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.10204081632653061 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2755102040816326 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3877551020408163 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5102040816326531 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.10204081632653061 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09183673469387756 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.07755102040816327 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05102040816326531 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10204081632653061 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2755102040816326 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3877551020408163 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5102040816326531 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.29420081448590024 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.22640913508260446 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24259809105769914 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.12244897959183673 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2755102040816326 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3877551020408163 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12244897959183673 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09183673469387753 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.07755102040816327 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.049999999999999996 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12244897959183673 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2755102040816326 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3877551020408163 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2931450934182018 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2290937803692905 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24454883014070852 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.09183673469387756 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.25510204081632654 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3163265306122449 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.46938775510204084 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.09183673469387756 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08503401360544219 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06326530612244897 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.046938775510204075 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.09183673469387756 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.25510204081632654 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3163265306122449 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.46938775510204084 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2629197762336244 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1992265954000647 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2164845577697655 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.08163265306122448 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.25510204081632654 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3163265306122449 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.47959183673469385 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.08163265306122448 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08503401360544219 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06326530612244897 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04795918367346938 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.08163265306122448 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.25510204081632654 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3163265306122449 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.47959183673469385 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2610977190273289 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.19399497894395853 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.20591442395637935 name: Cosine Map@100 --- # BGE base ArgillaSDK Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("plaguss/bge-base-argilla-sdk-matryoshka") # Run inference sentences = [ 'hide: footer\n\nrg.Argilla\n\nTo interact with the Argilla server from python you can use the Argilla class. The Argilla client is used to create, get, update, and delete all Argilla resources, such as workspaces, users, datasets, and records.\n\nUsage Examples\n\nConnecting to an Argilla server\n\nTo connect to an Argilla server, instantiate the Argilla class and pass the api_url of the server and the api_key to authenticate.\n\n```python\nimport argilla_sdk as rg', 'Can the Argilla class be employed to streamline dataset administration tasks in my Argilla server setup?', 'The Argilla flowers were blooming beautifully in the garden.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1327 | | cosine_accuracy@3 | 0.2857 | | cosine_accuracy@5 | 0.3878 | | cosine_accuracy@10 | 0.5204 | | cosine_precision@1 | 0.1327 | | cosine_precision@3 | 0.0952 | | cosine_precision@5 | 0.0776 | | cosine_precision@10 | 0.052 | | cosine_recall@1 | 0.1327 | | cosine_recall@3 | 0.2857 | | cosine_recall@5 | 0.3878 | | cosine_recall@10 | 0.5204 | | cosine_ndcg@10 | 0.3086 | | cosine_mrr@10 | 0.2432 | | **cosine_map@100** | **0.2604** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.102 | | cosine_accuracy@3 | 0.2755 | | cosine_accuracy@5 | 0.3878 | | cosine_accuracy@10 | 0.5102 | | cosine_precision@1 | 0.102 | | cosine_precision@3 | 0.0918 | | cosine_precision@5 | 0.0776 | | cosine_precision@10 | 0.051 | | cosine_recall@1 | 0.102 | | cosine_recall@3 | 0.2755 | | cosine_recall@5 | 0.3878 | | cosine_recall@10 | 0.5102 | | cosine_ndcg@10 | 0.2942 | | cosine_mrr@10 | 0.2264 | | **cosine_map@100** | **0.2426** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1224 | | cosine_accuracy@3 | 0.2755 | | cosine_accuracy@5 | 0.3878 | | cosine_accuracy@10 | 0.5 | | cosine_precision@1 | 0.1224 | | cosine_precision@3 | 0.0918 | | cosine_precision@5 | 0.0776 | | cosine_precision@10 | 0.05 | | cosine_recall@1 | 0.1224 | | cosine_recall@3 | 0.2755 | | cosine_recall@5 | 0.3878 | | cosine_recall@10 | 0.5 | | cosine_ndcg@10 | 0.2931 | | cosine_mrr@10 | 0.2291 | | **cosine_map@100** | **0.2445** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0918 | | cosine_accuracy@3 | 0.2551 | | cosine_accuracy@5 | 0.3163 | | cosine_accuracy@10 | 0.4694 | | cosine_precision@1 | 0.0918 | | cosine_precision@3 | 0.085 | | cosine_precision@5 | 0.0633 | | cosine_precision@10 | 0.0469 | | cosine_recall@1 | 0.0918 | | cosine_recall@3 | 0.2551 | | cosine_recall@5 | 0.3163 | | cosine_recall@10 | 0.4694 | | cosine_ndcg@10 | 0.2629 | | cosine_mrr@10 | 0.1992 | | **cosine_map@100** | **0.2165** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0816 | | cosine_accuracy@3 | 0.2551 | | cosine_accuracy@5 | 0.3163 | | cosine_accuracy@10 | 0.4796 | | cosine_precision@1 | 0.0816 | | cosine_precision@3 | 0.085 | | cosine_precision@5 | 0.0633 | | cosine_precision@10 | 0.048 | | cosine_recall@1 | 0.0816 | | cosine_recall@3 | 0.2551 | | cosine_recall@5 | 0.3163 | | cosine_recall@10 | 0.4796 | | cosine_ndcg@10 | 0.2611 | | cosine_mrr@10 | 0.194 | | **cosine_map@100** | **0.2059** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 882 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 90.85 tokens</li><li>max: 198 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 25.44 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 22.33 tokens</li><li>max: 61 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>``<br>!!! note "Update the metadata"<br> ThemetadataofRecordobject is a python dictionary. So to update the metadata of a record, you can iterate over the records and update the metadata by key or usingmetadata.update`. After that, you should update the records in the dataset.</code> | <code>Can I use Argilla to annotate the metadata of Record objects and update them in the dataset?</code> | <code>The beautiful scenery of the Argilla valley in Italy is perfect for a relaxing summer vacation.</code> | | <code>git checkout [branch-name]<br>git rebase [default-branch]<br>```<br><br>If everything is right, we need to commit and push the changes to your fork. For that, run the following commands:<br><br>```sh<br><br>Add the changes to the staging area<br><br>git add filename<br><br>Commit the changes by writing a proper message<br><br>git commit -m "commit-message"<br><br>Push the changes to your fork</code> | <code>Can I commit Argilla's annotation changes and push them to a forked project repository after rebasing from the default branch?</code> | <code>The beautiful beach in Argilla, Spain, is a popular spot for surfers to catch a wave and enjoy the sunny weather.</code> | | <code>Accessing Record Attributes<br><br>The Record object has suggestions, responses, metadata, and vectors attributes that can be accessed directly whilst iterating over records in a dataset.<br><br>python<br>for record in dataset.records(<br> with_suggestions=True,<br> with_responses=True,<br> with_metadata=True,<br> with_vectors=True<br> ):<br> print(record.suggestions)<br> print(record.responses)<br> print(record.metadata)<br> print(record.vectors)</code> | <code>Is it possible to retrieve the suggestions, responses, metadata, and vectors of a Record object at the same time when iterating over a dataset in Argilla?</code> | <code>The new hiking trail offered breathtaking suggestions for scenic views, responses to environmental concerns, and metadata about the surrounding ecosystem, but it lacked vectors for navigation.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "TripletLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.1802 | 5 | 21.701 | - | - | - | - | - | | 0.3604 | 10 | 21.7449 | - | - | - | - | - | | 0.5405 | 15 | 21.7453 | - | - | - | - | - | | 0.7207 | 20 | 21.7168 | - | - | - | - | - | | 0.9009 | 25 | 21.6945 | - | - | - | - | - | | **0.973** | **27** | **-** | **0.2165** | **0.2445** | **0.2426** | **0.2059** | **0.2604** | | 1.0811 | 30 | 21.7248 | - | - | - | - | - | | 1.2613 | 35 | 21.7322 | - | - | - | - | - | | 1.4414 | 40 | 21.7367 | - | - | - | - | - | | 1.6216 | 45 | 21.6821 | - | - | - | - | - | | 1.8018 | 50 | 21.8392 | - | - | - | - | - | | 1.9820 | 55 | 21.6441 | 0.2165 | 0.2445 | 0.2426 | 0.2059 | 0.2604 | | 2.1622 | 60 | 21.8154 | - | - | - | - | - | | 2.3423 | 65 | 21.7098 | - | - | - | - | - | | 2.5225 | 70 | 21.6447 | - | - | - | - | - | | 2.7027 | 75 | 21.6033 | - | - | - | - | - | | 2.8829 | 80 | 21.8271 | - | - | - | - | - | | 2.9189 | 81 | - | 0.2165 | 0.2445 | 0.2426 | 0.2059 | 0.2604 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.8 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2 - Accelerate: 0.31.0 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
HPLT/translate-en-hr-v1.0-hplt_opus
HPLT
translation
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "hr", "license:cc-by-4.0", "autotrain_compatible", "region:us" ]
1,709,033,214,000
2024-03-14T00:56:45
88
1
--- language: - en - hr license: cc-by-4.0 tags: - translation inference: false --- ## HPLT MT release v1.0 This repository contains the translation model for English-Croatian trained with OPUS and HPLT data. The model is available in both Marian and Hugging Face formats. ### Model Info * Source language: English * Target language: Croatian * Dataset: OPUS and HPLT data * Model architecture: Transformer-base * Tokenizer: SentencePiece (Unigram) * Cleaning: We used [OpusCleaner](https://github.com/hplt-project/OpusCleaner) with a set of basic rules. Details can be found in the filter files [here](https://github.com/hplt-project/HPLT-MT-Models/tree/main/v1.0/data/en-hr/raw/v2). You can check out our [deliverable report](https://hplt-project.org/HPLT_D5_1___Translation_models_for_select_language_pairs.pdf), [GitHub repository](https://github.com/hplt-project/HPLT-MT-Models/tree/main/v1.0), and [website](https://hplt-project.org) for more details. ### Usage The model has been trained with [MarianNMT](https://github.com/marian-nmt/marian) and the weights are in the Marian format. We have also converted the model into the Hugging Face format so it is compatible with `transformers`. #### Using Marian To run inference with MarianNMT, refer to the [Inference/Decoding/Translation](https://github.com/hplt-project/HPLT-MT-Models/tree/main/v1.0#inferencedecodingtranslation) section of our GitHub repository. You will need the model file `model.npz.best-chrf.npz` and the vocabulary file `model.en-hr.spm` from this repository. #### Using transformers We have also converted this model to the Hugging Face format and you can get started with the script below. **Note** that due a [known issue](https://github.com/huggingface/transformers/issues/26216) in weight conversion, the checkpoint cannot work with transformer versions <4.26 or >4.30. We tested and suggest `pip install transformers==4.28`. ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("HPLT/translate-en-hr-v1.0-hplt_opus") model = AutoModelForSeq2SeqLM.from_pretrained("HPLT/translate-en-hr-v1.0-hplt_opus") inputs = ["Input goes here.", "Make sure the language is right."] batch_tokenized = tokenizer(inputs, return_tensors="pt", padding=True) model_output = model.generate( **batch_tokenized, num_beams=6, max_new_tokens=512 ) batch_detokenized = tokenizer.batch_decode( model_output, skip_special_tokens=True, ) print(batch_detokenized) ``` ### Benchmarks When decoded using Marian, the model has the following test scores. | Test set | BLEU | chrF++ | COMET22 | | -------------------------------------- | ---- | ----- | ----- | | FLORES200 | 30.5 | 56.5 | 0.8856 | | NTREX | 32.5 | 57.0 | 0.8512 | ### Acknowledgements This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101070350 and from UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee [grant number 10052546] Brought to you by researchers from the University of Edinburgh and Charles University in Prague with support from the whole HPLT consortium.
[ "TRANSLATION" ]
Non_BioNLP
Woondsc/nllb-1.3B-KMA-KCD
Woondsc
translation
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "pytorch", "flores-200", "Medical", "translation", "ko", "en", "base_model:facebook/nllb-200-1.3B", "base_model:finetune:facebook/nllb-200-1.3B", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,742,186,363,000
2025-03-18T08:34:10
2
0
--- base_model: - facebook/nllb-200-1.3B language: - ko - en library_name: transformers license: cc-by-4.0 pipeline_tag: translation tags: - pytorch - flores-200 - Medical --- * Explanation ! - This model is a fine-tuned version of the NLLB-200-1.3B model, specifically adapted for the medical terminology domain. All usage guidelines and copyright policies comply with those of the base model. - The fine-tuning dataset consists of the KMA Medical Terminology Collection and the KCD-8 masterfile's Korean-English description dataset. - It is specialized for translating Korean medical terms into English. ( ! Especially fitted for translating cause-of-death Korean text into English terms ! ) - After pushing the model, we have continuously identified mistranslations and are updating the # Woondsc/nllb-1.3B-KMA-KCD-FFTtest # model to address these issues. This model is an improved fine-tuned version specifically designed to correct additional mistranslations in the original model. - If you are looking to build a general Korean-to-English translation model for other purposes, feel free to use this model. However, if you need better performance for Korean-to-English medical translations, we recommend using # Woondsc/nllb-1.3B-KMA-KCD-FFTtest # instead. # Here is the example of using this model for translating Korean COD into English term . . . ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model directly tokenizer = AutoTokenizer.from_pretrained("Woondsc/nllb-1.3B-KMA-KCD") model = AutoModelForSeq2SeqLM.from_pretrained("Woondsc/nllb-1.3B-KMA-KCD") # Transformer function setting def translate(text, model, tokenizer, target_lang="eng_Latn"): inputs = tokenizer(text, return_tensors="pt") inputs["forced_bos_token_id"] = tokenizer.convert_tokens_to_ids(target_lang) translated_tokens = model.generate(**inputs) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] return translated_text # Execute example korean_text = "간질" english_translation = translate(korean_text, model, tokenizer) print("번역 결과:", english_translation) ```
[ "TRANSLATION" ]
BioNLP
influencer/vit-base-PICAI
influencer
image-classification
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,711,476,815,000
2024-03-29T09:22:36
29
0
--- base_model: google/vit-base-patch16-224 license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: vit-base-PICAI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-PICAI This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the PICAI dataset. PI-CAI (Prostate Imaging: Cancer AI) is an all-new grand challenge, with over 10,000 carefully-curated prostate MRI exams to validate modern AI algorithms and estimate radiologists’ performance at csPCa detection and diagnosis. Key aspects of the study design have been established in conjunction with an international, multi-disciplinary scientific advisory board (16 experts in prostate AI, radiology and urology) ⁠—to unify and standardize present-day guidelines, and to ensure meaningful validation of prostate-AI towards clinical translation (Reinke et al., 2022). More can be found at the official Grand Channel Website: https://pi-cai.grand-challenge.org It achieves the following results on the evaluation set: - Loss: 0.6043 - Accuracy: 0.7371 - Roc Auc: 0.7059 ## Model description More information needed ## Intended uses & limitations This model is just a test of how ViT perform with basic fine tuning over a challengin medical imaging dataset, and also to assess the explanation properties of ViT by looking at attention matrices produced by the model. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:| | 0.4995 | 0.14 | 50 | 0.5423 | 0.7371 | 0.7072 | | 0.4729 | 0.29 | 100 | 0.6259 | 0.7314 | 0.7183 | | 0.5558 | 0.43 | 150 | 0.5564 | 0.7243 | 0.7189 | | 0.5825 | 0.57 | 200 | 0.5912 | 0.6943 | 0.7177 | | 0.5091 | 0.71 | 250 | 0.5656 | 0.73 | 0.7140 | | 0.4575 | 0.86 | 300 | 0.5846 | 0.7386 | 0.6858 | | 0.5168 | 1.0 | 350 | 0.5363 | 0.7471 | 0.7076 | | 0.5305 | 1.14 | 400 | 0.5600 | 0.7357 | 0.7042 | | 0.4275 | 1.29 | 450 | 0.5864 | 0.7357 | 0.6988 | | 0.5588 | 1.43 | 500 | 0.5477 | 0.75 | 0.7078 | | 0.4573 | 1.57 | 550 | 0.5321 | 0.7571 | 0.7253 | | 0.5094 | 1.71 | 600 | 0.5840 | 0.7457 | 0.7054 | | 0.5311 | 1.86 | 650 | 0.5719 | 0.7229 | 0.7098 | | 0.4582 | 2.0 | 700 | 0.5439 | 0.7357 | 0.7062 | | 0.5142 | 2.14 | 750 | 0.6668 | 0.6629 | 0.6899 | | 0.3833 | 2.29 | 800 | 0.5705 | 0.7286 | 0.6954 | | 0.4676 | 2.43 | 850 | 0.6152 | 0.6943 | 0.6795 | | 0.4682 | 2.57 | 900 | 0.5679 | 0.7443 | 0.7077 | | 0.4112 | 2.71 | 950 | 0.5600 | 0.7329 | 0.7073 | | 0.5107 | 2.86 | 1000 | 0.5686 | 0.7343 | 0.7017 | | 0.4078 | 3.0 | 1050 | 0.6165 | 0.7429 | 0.7168 | | 0.479 | 3.14 | 1100 | 0.5952 | 0.7257 | 0.7004 | | 0.3704 | 3.29 | 1150 | 0.5937 | 0.7314 | 0.6980 | | 0.3733 | 3.43 | 1200 | 0.5923 | 0.7214 | 0.7001 | | 0.3682 | 3.57 | 1250 | 0.6183 | 0.7429 | 0.6963 | | 0.3283 | 3.71 | 1300 | 0.6130 | 0.73 | 0.7012 | | 0.3709 | 3.86 | 1350 | 0.6123 | 0.74 | 0.7045 | | 0.3859 | 4.0 | 1400 | 0.6043 | 0.7371 | 0.7059 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "TRANSLATION" ]
Non_BioNLP
Helsinki-NLP/opus-mt-itc-en
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "ca", "rm", "es", "ro", "gl", "sc", "co", "wa", "pt", "oc", "an", "id", "fr", "ht", "itc", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T11:59:01
43
2
--- language: - it - ca - rm - es - ro - gl - sc - co - wa - pt - oc - an - id - fr - ht - itc - en license: apache-2.0 tags: - translation --- ### itc-eng * source group: Italic languages * target group: English * OPUS readme: [itc-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-eng/README.md) * model: transformer * source language(s): arg ast cat cos egl ext fra frm_Latn gcf_Latn glg hat ind ita lad lad_Latn lat_Latn lij lld_Latn lmo max_Latn mfe min mwl oci pap pms por roh ron scn spa tmw_Latn vec wln zlm_Latn zsm_Latn * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2016-enro-roneng.ron.eng | 36.5 | 0.628 | | newsdiscussdev2015-enfr-fraeng.fra.eng | 30.9 | 0.561 | | newsdiscusstest2015-enfr-fraeng.fra.eng | 35.5 | 0.590 | | newssyscomb2009-fraeng.fra.eng | 29.2 | 0.560 | | newssyscomb2009-itaeng.ita.eng | 32.2 | 0.583 | | newssyscomb2009-spaeng.spa.eng | 29.3 | 0.563 | | news-test2008-fraeng.fra.eng | 25.2 | 0.531 | | news-test2008-spaeng.spa.eng | 26.3 | 0.539 | | newstest2009-fraeng.fra.eng | 28.5 | 0.555 | | newstest2009-itaeng.ita.eng | 31.6 | 0.578 | | newstest2009-spaeng.spa.eng | 28.7 | 0.558 | | newstest2010-fraeng.fra.eng | 29.7 | 0.571 | | newstest2010-spaeng.spa.eng | 32.8 | 0.593 | | newstest2011-fraeng.fra.eng | 30.9 | 0.580 | | newstest2011-spaeng.spa.eng | 31.8 | 0.582 | | newstest2012-fraeng.fra.eng | 31.1 | 0.576 | | newstest2012-spaeng.spa.eng | 35.0 | 0.604 | | newstest2013-fraeng.fra.eng | 31.7 | 0.573 | | newstest2013-spaeng.spa.eng | 32.4 | 0.589 | | newstest2014-fren-fraeng.fra.eng | 34.0 | 0.606 | | newstest2016-enro-roneng.ron.eng | 34.8 | 0.608 | | Tatoeba-test.arg-eng.arg.eng | 41.5 | 0.528 | | Tatoeba-test.ast-eng.ast.eng | 36.0 | 0.519 | | Tatoeba-test.cat-eng.cat.eng | 53.7 | 0.696 | | Tatoeba-test.cos-eng.cos.eng | 56.5 | 0.640 | | Tatoeba-test.egl-eng.egl.eng | 4.6 | 0.217 | | Tatoeba-test.ext-eng.ext.eng | 39.1 | 0.547 | | Tatoeba-test.fra-eng.fra.eng | 53.4 | 0.688 | | Tatoeba-test.frm-eng.frm.eng | 22.3 | 0.409 | | Tatoeba-test.gcf-eng.gcf.eng | 18.7 | 0.308 | | Tatoeba-test.glg-eng.glg.eng | 54.8 | 0.701 | | Tatoeba-test.hat-eng.hat.eng | 42.6 | 0.583 | | Tatoeba-test.ita-eng.ita.eng | 64.8 | 0.767 | | Tatoeba-test.lad-eng.lad.eng | 14.4 | 0.433 | | Tatoeba-test.lat-eng.lat.eng | 19.5 | 0.390 | | Tatoeba-test.lij-eng.lij.eng | 8.9 | 0.280 | | Tatoeba-test.lld-eng.lld.eng | 17.4 | 0.331 | | Tatoeba-test.lmo-eng.lmo.eng | 10.8 | 0.306 | | Tatoeba-test.mfe-eng.mfe.eng | 66.0 | 0.820 | | Tatoeba-test.msa-eng.msa.eng | 40.8 | 0.590 | | Tatoeba-test.multi.eng | 47.6 | 0.634 | | Tatoeba-test.mwl-eng.mwl.eng | 41.3 | 0.707 | | Tatoeba-test.oci-eng.oci.eng | 20.3 | 0.401 | | Tatoeba-test.pap-eng.pap.eng | 53.9 | 0.642 | | Tatoeba-test.pms-eng.pms.eng | 12.2 | 0.334 | | Tatoeba-test.por-eng.por.eng | 59.3 | 0.734 | | Tatoeba-test.roh-eng.roh.eng | 17.7 | 0.420 | | Tatoeba-test.ron-eng.ron.eng | 54.5 | 0.697 | | Tatoeba-test.scn-eng.scn.eng | 40.0 | 0.443 | | Tatoeba-test.spa-eng.spa.eng | 55.9 | 0.712 | | Tatoeba-test.vec-eng.vec.eng | 11.2 | 0.304 | | Tatoeba-test.wln-eng.wln.eng | 20.9 | 0.360 | ### System Info: - hf_name: itc-eng - source_languages: itc - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'ca', 'rm', 'es', 'ro', 'gl', 'sc', 'co', 'wa', 'pt', 'oc', 'an', 'id', 'fr', 'ht', 'itc', 'en'] - src_constituents: {'ita', 'cat', 'roh', 'spa', 'pap', 'bjn', 'lmo', 'mwl', 'lij', 'lat_Latn', 'lad_Latn', 'pcd', 'lat_Grek', 'ext', 'ron', 'ast', 'glg', 'pms', 'zsm_Latn', 'srd', 'gcf_Latn', 'lld_Latn', 'min', 'tmw_Latn', 'cos', 'wln', 'zlm_Latn', 'por', 'egl', 'oci', 'vec', 'arg', 'ind', 'fra', 'hat', 'lad', 'max_Latn', 'frm_Latn', 'scn', 'mfe'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eng/opus2m-2020-08-01.test.txt - src_alpha3: itc - tgt_alpha3: eng - short_pair: itc-en - chrF2_score: 0.634 - bleu: 47.6 - brevity_penalty: 0.981 - ref_len: 77633.0 - src_name: Italic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: itc - tgt_alpha2: en - prefer_old: False - long_pair: itc-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
[ "TRANSLATION" ]
Non_BioNLP
law-ai/InLegalTrans-En2Indic-1B
law-ai
translation
[ "safetensors", "IndicTrans", "InLegalTrans", "Legal", "NLP", "translation", "custom_code", "en", "bn", "hi", "mr", "ta", "te", "ml", "pa", "gu", "or", "dataset:MILPaC", "arxiv:2310.09765", "base_model:ai4bharat/indictrans2-en-indic-1B", "base_model:finetune:ai4bharat/indictrans2-en-indic-1B", "license:mit", "region:us" ]
1,737,282,336,000
2025-01-19T15:26:16
88
0
--- base_model: - ai4bharat/indictrans2-en-indic-1B datasets: - MILPaC language: - en - bn - hi - mr - ta - te - ml - pa - gu - or license: mit metrics: - bleu - google_bleu - chrf++ pipeline_tag: translation tags: - InLegalTrans - Legal - NLP inference: false --- # InLegalTrans This is the model card of ***InLegalTrans-En2Indic-1B*** translation model, a fine-tuned version of the [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B) model specifically tailored for translating Indian legal texts from English to Indian languages. ### Training Data We use the [**MILPaC**](https://github.com/Law-AI/MILPaC) **(Multilingual Indian Legal Parallel Corpus)** corpus for fine-tuning. It is the first high-quality Indian legal parallel corpus, containing parallel aligned text units in English (EN) and nine Indian (IN) languages -- Bengali (BN), Hindi (HI), Marathi (MR), Tamil (TA), Telugu (TE), Malayalam (ML), Panjabi (PA), Gujarati (GU), and Oriya (OR). Please refer to the [paper](https://arxiv.org/abs/2310.09765) for more details about this corpus. For fine-tuning, we randomly split MILPaC language-wise in a 80 (train) - 10 (validation) - 10 (test) ratio. We use the 80\% train split (combined 80\% of each English-to-Indic language pair) to fine-tune the [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B) model and 10\% validation split (combined 10\% of each English-to-Indic language pair) to select the best checkpoint and to prevent overfitting. ### Model Overview and Usage Instructions This [InLegalTrans](https://huggingface.co/law-ai/InLegalTrans-En2Indic-1B) model uses the same tokenizer as the [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B) model and has the same architecture with ~1.12B parameters. ```python import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from IndicTransToolkit import IndicProcessor # Install IndicTransToolkit from https://github.com/VarunGumma/IndicTransToolkit device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") src_lang, tgt_lang = "eng_Latn", "ben_Beng" # Use the BCP-47 language codes used by the FLORES-200 dataset tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True) # Use IndicTrans2 tokenizer to enable their custom tokenization script to be run model = AutoModelForSeq2SeqLM.from_pretrained( "law-ai/InLegalTrans-En2Indic-1B", trust_remote_code=True, attn_implementation="eager", low_cpu_mem_usage=True, ).to(device) ip = IndicProcessor(inference=True) input_sentences = [ "(7) Any such allowance for the maintenance and expenses for proceeding shall be payable from the date of the order, or, if so ordered, from the date of the application for maintenance or expenses of proceeding, as the case may be.", "(2) Where it appears to the Tribunal that, in consequence of any decision of a competent Civil Court, any order made under section 9 should be cancelled or varied, it shall cancel the order or, as the case may be, vary the same accordingly.", ] batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang) input_text_encoding = tokenizer( batch, max_length=256, truncation=True, padding="longest", return_tensors="pt", return_attention_mask=True, ).to(device) generated_tokens = model.generate( **input_text_encoding, max_length=256, do_sample=True, num_beams=4, num_return_sequences=1, early_stopping=False, use_cache=True, ) with tokenizer.as_target_tokenizer(): generated_tokens = tokenizer.batch_decode( generated_tokens.detach().cpu().tolist(), skip_special_tokens=True, clean_up_tokenization_spaces=True, ) translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang) for input_sentence, translation in zip(input_sentences, translations): print(f"Sentence in {src_lang} language: {input_sentence}") print(f"Translated Sentence in {tgt_lang} language: {translation}") ``` ### Fine-tuning Results The following table contains the performance results of the [InLegalTrans](https://huggingface.co/law-ai/InLegalTrans-En2Indic-1B) model compared to the [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B) model over the 10\% test split of **MILPaC**. Performances are evaluated using *BLEU*, *GLEU*, and *chrF++* metrics. For all English-to-Indic language pairs, [InLegalTrans](https://huggingface.co/law-ai/InLegalTrans-En2Indic-1B) demonstrated a significant improvement over [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B), achieving consistently better performance across all evaluation metrics. | EN-to-IN | Model | BLEU | GLEU | chrF++ | |------------|---------------------|------|------|--------| | EN-to-BN | *IndicTrans2* | 25.4 | 28.8 | 53.7 | | | ***InLegalTrans*** | **45.8** | **47.6** | **70.9** | | EN-to-HI | *IndicTrans2* | 41.0 | 42.5 | 59.9 | | | ***InLegalTrans*** | **56.9** | **57.1** | **73.8** | | EN-to-MR | *IndicTrans2* | 25.2 | 28.7 | 55.4 | | | ***InLegalTrans*** | **44.4** | **46.0** | **68.9** | | EN-to-TA | *IndicTrans2* | 32.8 | 35.3 | 62.3 | | | ***InLegalTrans*** | **40.0** | **42.5** | **69.9** | | EN-to-TE | *IndicTrans2* | 10.7 | 14.2 | 37.9 | | | ***InLegalTrans*** | **31.3** | **31.6** | **58.5** | | EN-to-ML | *IndicTrans2* | 21.9 | 25.8 | 52.9 | | | ***InLegalTrans*** | **37.4** | **40.3** | **69.7** | | EN-to-PA | *IndicTrans2* | 27.8 | 31.6 | 51.5 | | | ***InLegalTrans*** | **44.3** | **45.6** | **65.5** | | EN-to-GU | *IndicTrans2* | 27.5 | 31.1 | 55.7 | | | ***InLegalTrans*** | **42.8** | **45.2** | **68.8** | | EN-to-OR | *IndicTrans2* | 06.6 | 12.6 | 37.1 | | | ***InLegalTrans*** | **14.2** | **19.9** | **47.5** | ### Citation If you use this [InLegalTrans](https://huggingface.co/law-ai/InLegalTrans-En2Indic-1B) translation model or the [**MILPaC**](https://github.com/Law-AI/MILPaC) corpus, please cite the following paper: ``` @article{mahapatra2024milpacnovelbenchmarkevaluating, title = {MILPaC: A Novel Benchmark for Evaluating Translation of Legal Text to Indian Languages}, author = {Sayan Mahapatra and Debtanu Datta and Shubham Soni and Adrijit Goswami and Saptarshi Ghosh}, year = {2024}, journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.}, publisher = {Association for Computing Machinery}, } ``` ### About Us We are a group of Natural Language Processing (NLP) researchers from the *Indian Institute of Technology (IIT) Kharagpur*. Our research interests are primarily ML, DL, and NLP applications for the legal domain, with a special focus on the challenges and oppurtunites for the Indian legal scenario. Our current and past projects include: - Legal Statute Identification - Semantic segmentation of legal documents - Monolingual (e.g., English-to-English) and Cross-lingual (e.g., English-to-Hindi) Summarization of legal documents - Translation in the Indian legal domain - Court Judgment Prediction - Legal Document Matching Explore our publicly available codes and datasets at: [Law and AI, IIT Kharagpur](https://github.com/Law-AI).
[ "TRANSLATION", "SUMMARIZATION" ]
Non_BioNLP
1998Shubham007/ModelRecomm
1998Shubham007
sentence-similarity
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "en", "dataset:s2orc", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:ms_marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:code_search_net", "dataset:search_qa", "dataset:eli5", "dataset:snli", "dataset:multi_nli", "dataset:wikihow", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/QQP", "dataset:embedding-data/SPECTER", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/WikiAnswers", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
1,713,434,443,000
2024-04-18T10:00:49
7
0
--- datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers language: en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
[ "QUESTION_ANSWERING" ]
Non_BioNLP
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task432
Lots-of-LoRAs
null
[ "pytorch", "safetensors", "en", "arxiv:1910.09700", "arxiv:2407.00066", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:mit", "region:us" ]
1,735,738,438,000
2025-01-01T13:34:04
0
0
--- base_model: mistralai/Mistral-7B-Instruct-v0.2 language: en library_name: pytorch license: mit --- # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task432 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task432_alt_en_hi_translation - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task432_alt_en_hi_translation sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "TRANSLATION" ]
Non_BioNLP
LoneStriker/bagel-8x7b-v0.2-6.0bpw-h6-exl2
LoneStriker
text-generation
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:ai2_arc", "dataset:jondurbin/airoboros-3.2", "dataset:codeparrot/apps", "dataset:facebook/belebele", "dataset:boolq", "dataset:jondurbin/cinematika-v0.1", "dataset:drop", "dataset:lmsys/lmsys-chat-1m", "dataset:TIGER-Lab/MathInstruct", "dataset:cais/mmlu", "dataset:Muennighoff/natural-instructions", "dataset:openbookqa", "dataset:piqa", "dataset:Vezora/Tested-22k-Python-Alpaca", "dataset:cakiki/rosetta-code", "dataset:Open-Orca/SlimOrca", "dataset:spider", "dataset:squad_v2", "dataset:migtissera/Synthia-v1.3", "dataset:datasets/winogrande", "dataset:nvidia/HelpSteer", "dataset:Intel/orca_dpo_pairs", "dataset:unalignment/toxic-dpo-v0.1", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:allenai/ultrafeedback_binarized_cleaned", "dataset:Squish42/bluemoon-fandom-1-1-rp-cleaned", "dataset:LDJnr/Capybara", "dataset:JULIELab/EmoBank", "dataset:kingbri/PIPPA-shareGPT", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,704,483,991,000
2024-01-05T20:04:24
5
0
--- datasets: - ai2_arc - jondurbin/airoboros-3.2 - codeparrot/apps - facebook/belebele - boolq - jondurbin/cinematika-v0.1 - drop - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - cais/mmlu - Muennighoff/natural-instructions - openbookqa - piqa - Vezora/Tested-22k-Python-Alpaca - cakiki/rosetta-code - Open-Orca/SlimOrca - spider - squad_v2 - migtissera/Synthia-v1.3 - datasets/winogrande - nvidia/HelpSteer - Intel/orca_dpo_pairs - unalignment/toxic-dpo-v0.1 - jondurbin/truthy-dpo-v0.1 - allenai/ultrafeedback_binarized_cleaned - Squish42/bluemoon-fandom-1-1-rp-cleaned - LDJnr/Capybara - JULIELab/EmoBank - kingbri/PIPPA-shareGPT license: apache-2.0 --- # A bagel, with everything (except DPO) ![bagel](bagel.png) ## Overview An experimental fine-tune of [mixtral-8x7b-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [bagel](https://github.com/jondurbin/bagel) This is the model after the SFT phase, before DPO has been applied. Hardware kindly provided by [Massed Compute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon) ### Data sources *Yes, you will see benchmark names in the list, but this only uses the train splits, and a decontamination by cosine similarity is performed at the end as a sanity check* - [ai2_arc](https://huggingface.co/datasets/ai2_arc) - Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent. - [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1) - Variety of categories of synthetic instructions generated by gpt-4. - [apps](https://huggingface.co/datasets/codeparrot/apps) - Python coding dataset with 10k problems. - [belebele](https://huggingface.co/datasets/facebook/belebele) - Multi-lingual reading comprehension dataset. - [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned) - Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT. - [boolq](https://huggingface.co/datasets/boolq) - Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?) - [capybara](https://huggingface.co/datasets/LDJnr/Capybara) - Multi-turn dataset used to create the capybara models. - [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text) - RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be. - [drop](https://huggingface.co/datasets/drop) - More reading comprehension. - [emobank](https://github.com/JULIELab/EmoBank) - Emotion annotations using the Valence-Arousal-Domninance scheme. - [gutenberg](https://www.gutenberg.org/) (plain text) - Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize) - [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO) - Chats collected by the lmsys chat arena, containing a wide variety of chats with various models. - [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) - Composite dataset with a variety of math-related tasks and problem/question formats. - [mmlu](https://huggingface.co/datasets/cais/mmlu) - Massive Multitask Language Understanding - a wide variety of questions about various subject matters. - [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions) - Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type) - [openbookqa](https://huggingface.co/datasets/openbookqa) - Question answering dataset. - [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT) - Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format. - [piqa](https://huggingface.co/datasets/piqa) - Phyiscal interaction question answering. - [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca) - Python instruction response pairs, validated as functional. - [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code) - Code problems and solutions in a variety of programming languages taken from rosettacode.org. - [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca) - Collection of ~500k gpt-4 verified chats from OpenOrca. - [spider](https://huggingface.co/datasets/spider) - SQL-targeted dataset. - [squad_v2](https://huggingface.co/datasets/squad_v2) - Contextual question answering (RAG). - [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3) - GPT-4 generated data using advanced prompting from Migel Tissera. - [winogrande](https://huggingface.co/datasets/winogrande) - Fill in the blank style prompts. Only the train splits were used (if a split was provided), and an additional pass of decontamination is performed using approximate nearest neighbor search (via faiss). ## Prompt formatting In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml (sorta). I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is actually converted into every prompt format. This means each epoch of our fine-tune is really basically 4 epochs. So, for the fine-tunes, I would recommend only doing 1 epoch (or 0.75 epochs). I am testing with a single epoch using a relatively low learning rate. ### Alpaca (sort of) ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {system prompt, if provided} {instruction} ### Response: ``` The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section. ### Vicuna ``` {system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."} USER: {instruction} ASSISTANT: ``` ### ChatML (sort of) I don't really understand the point of having special tokens for `<|im_start|>` and `<|im_end|>`, because in practice they just act as BOS and EOS tokens (but, please correct me if I'm wrong). So, instead of: ```text {bos}<|im_start|>{role} {text} <|im_end|>{eos} ``` I just changed it to: ```text {bos}{role} {text} {eos} ``` If you *really* want to use `<|im_start|>` and `<|im_end|>`, just update your `tokenizer_config.json` to use `<|im_start|>` instead of `<s>` and `<|im_end|>` instead of `</s>` and when tokenizing. And if you still don't like what I've done to this chat-ml-ish format, feel free to cry into your pillow or fork the code and do a new fine-tune. ### Llama-2 chat ``` [INST] <<SYS>> {system} <</SYS>> {instruction} [/INST] ``` ### Default via chat template The model's `tokenizer_config.json` includes the default chat template (llama-2), so you can simply use the `apply_chat_template` method to build the full prompt. ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/bagel-8x7b-v0.2') chat = [ {"role": "system", "content": "You are Bob, a friendly AI assistant."}, {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` ### Contribute If you're interested in new functionality/datasets, take a look at [bagel repo](https://github.com/jondurbin/bagel) and either make a PR or open an issue with details. To help me with the fine-tuning costs (which are extremely expensive for these large combined datasets): - https://bmc.link/jondurbin - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11 - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf ### Guide for certain tasks #### RA(G)/contextual question answering The model was trained to ignore what it thinks it knows, and uses the context to answer the questions, when using the format below. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a contextual prompt is as follows: ``` BEGININPUT BEGINCONTEXT [key0: value0] [key1: value1] ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set __Use a very low temperature!__ Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` #### Summarization 500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example: ``` BEGININPUT {text to summarize} ENDINPUT BEGININSTRUCTION Summarize the input in around 130 words. ENDINSTRUCTION ``` #### Agent/function calling The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML. Example prompt: ``` As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format. Input: I want to know how many times 'Python' is mentioned in my text file. Available functions: file_analytics: description: This tool performs various operations on a text file. params: action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc. filters: keyword: The word or phrase we want to search for. ``` Response: ```json { "function": "file_analytics", "params": { "action": "count_occurrences", "filters": { "keyword": "Python" } } } ``` #### reWOO style execution planning The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions! Example prompt: ``` Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string that could be the user's question, one or more prior evidence values, or a combination of both. Here are the tools available to be called: DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer. TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links. HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links. KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:? The output should be in format: Plan: [first action to take based on input question] :evidence0: = [function to call with input parameter] Plan: [next action to take, based on result of :evidence0:] :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"] ... Answer: [:evidence[n]: containing the final answer.] Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work? ``` Response: ``` Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020. :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner] Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate. :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?] Plan: Conduct another web search to find the most famous work of the identified laureate. :evidence2: = DuckDuckGo[Most famous work of :evidence1:] Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search. :evidence3: = HyperlinkExtractor[:evidence2:] Plan: Use the TextScraper tool to extract information from the relevant links. :evidence4: = TextScraper[:evidence3:] Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information. :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?] Answer: :evidence5: ``` For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening: ```python import re import requests def inject_context(input_text, **context): for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)): input_text = input_text.replace(ref, context.get(ref, "")) return input_text def duckduckgo(input_text, **context): search_string = inject_context(input_text, **context) ... search via duck duck go using search_string ... return text content def link_extractor(input_text, **context): input_text = inject_context(input_text, **context) return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I)))) def scrape(input_text, **context): input_text = inject_context(input_text, **context) text = [] for link in input_text.splitlines(): text.append(requests.get(link).text) return "\n".join(text) def infer(input_text, **context) prompt = inject_context(input_text, **context) ... call model with prompt, return output def parse_plan(plan): method_map = { "DuckDuckGo": duckduckgo, "HyperlinkExtractor": link_extractor, "KnowledgeModel": infer, "TextScraper": scrape, } context = {} for line in plan.strip().splitlines(): if line.startswith("Plan:"): print(line) continue parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I) if not parts: if line.startswith("Answer: "): return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...") raise RuntimeError("bad format: " + line) context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context) ``` ### Fine-tuning information You can find charts, and the full configuration used to fine-tune this model on [weights and biases](https://wandb.ai/jondurbin/bagel-8x7b-v0.2/runs/agxjjdso?workspace=user-jondurbin) The model was fine-tuned on an 8x a6000 instance, for 4 days, 15 hours, 6 minutes and 42 seconds. ### Licence and usage restrictions The base model is mixtral-8x7b-v0.1, which is licensed as apache-2.0 - no issues there. The fine-tuning data, however, includes several datasets that have data generated at least in part by OpenAI's gpt-4. I am not a lawyer, so I can't help determine if this is actually commercially viable, but some questions that often come up are: - Does the OpenAI ToS apply only to the user who created the dataset initially, and not subsequent models? - If the dataset was released under a permissive license, but actually includes OpenAI generated data, does that ToS supersede the license? - Does the dataset fall completely under fair use anyways, since the model isn't really capable of reproducing the entire training set verbatim? Use your best judgement and seek legal advice if you are concerned about the terms. In any case, by using this model, you agree to completely indemnify me.
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
nlpie/clinical-distilbert-i2b2-2010
nlpie
token-classification
[ "transformers", "pytorch", "distilbert", "token-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,681,505,901,000
2024-03-26T16:45:54
62
1
--- license: mit title: README emoji: 🧬 colorFrom: gray colorTo: purple sdk: static pinned: false --- # Model Description ClinicalDistilBERT-i2b2-2010 is a lightweight BERT-based model developed by fine-tuning [ClinicalDistilBERT](https://huggingface.co/nlpie/clinical-distilbert) on the i2b2-2010 dataset for clinical Named Entity Recognition (NER). It is specifically designed to recognise entities from three categories: `problem`, `treatment`, and `test`. # Architecture The architecture of this model remains the same as the ClinicalDistilBERT model. The size of the hidden dimension and the embedding layer are both set to 768. The vocabulary size is 28996. The number of transformer layers is 6, and the expansion rate of the feed-forward layer is 4. Overall, this model contains approximately 65 million parameters. # Use Cases This model is suited for clinical NER and for medical tasks that require identification and classification of problems, treatments, and tests. # Citation If you use this model, please consider citing the following paper: ```bibtex @article{rohanian2023lightweight, title={Lightweight transformers for clinical natural language processing}, author={Rohanian, Omid and Nouriborji, Mohammadmahdi and Jauncey, Hannah and Kouchaki, Samaneh and Nooralahzadeh, Farhad and Clifton, Lei and Merson, Laura and Clifton, David A and ISARIC Clinical Characterisation Group and others}, journal={Natural Language Engineering}, pages={1--28}, year={2023}, publisher={Cambridge University Press} }
[ "NAMED_ENTITY_RECOGNITION" ]
BioNLP
Robin021/llama-7b-hf
Robin021
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,680,863,812,000
2023-04-07T10:47:19
10
0
--- license: other --- LLaMA-7B converted to work with Transformers/HuggingFace. This is under a special license, please see the LICENSE file for details. -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
[ "QUESTION_ANSWERING" ]
Non_BioNLP
google/paligemma-3b-ft-textcaps-224
google
image-text-to-text
[ "transformers", "safetensors", "paligemma", "image-text-to-text", "arxiv:2310.09199", "arxiv:2303.15343", "arxiv:2403.08295", "arxiv:1706.03762", "arxiv:2010.11929", "arxiv:2209.06794", "arxiv:2209.04372", "arxiv:2103.01913", "arxiv:2401.06209", "arxiv:2305.10355", "arxiv:2205.12522", "arxiv:2110.11624", "arxiv:2108.03353", "arxiv:2010.04295", "arxiv:2203.10244", "arxiv:1810.12440", "arxiv:1905.13648", "arxiv:1608.00272", "arxiv:1908.04913", "arxiv:2407.07726", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,715,556,244,000
2024-07-19T12:09:57
67
0
--- library_name: transformers license: gemma pipeline_tag: image-text-to-text extra_gated_heading: Access PaliGemma on Hugging Face extra_gated_prompt: To access PaliGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # PaliGemma model card **Model page:** [PaliGemma](https://ai.google.dev/gemma/docs/paligemma) Transformers PaliGemma 3B weights, fine-tuned with 224*224 input images on the <a href="https://textvqa.org/textcaps/">TextCaps</a> dataset. The models are available in float32, bfloat16 and float16 format for research purposes only. The fine-tune config is available at <a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/transfers/textcaps.py">big_vision</a>. **Resources and technical documentation:** * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [PaliGemma on Kaggle](https://www.kaggle.com/models/google/paligemma) * [PaliGemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363) **Terms of Use:** [Terms](https://www.kaggle.com/models/google/paligemma-ft/license/consent/verify/huggingface?returnModelRepoId=google/paligemma-3b-ft-textcaps-224) **Authors:** Google ## Model information ### Model summary #### Description PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and based on open components such as the [SigLIP vision model](https://arxiv.org/abs/2303.15343) and the [Gemma language model](https://arxiv.org/abs/2403.08295). It takes both image and text as input and generates text as output, supporting multiple languages. It is designed for class-leading fine-tune performance on a wide range of vision-language tasks such as image and short video caption, visual question answering, text reading, object detection and object segmentation. #### Model architecture PaliGemma is the composition of a [Transformer decoder](https://arxiv.org/abs/1706.03762) and a [Vision Transformer image encoder](https://arxiv.org/abs/2010.11929), with a total of 3 billion params. The text decoder is initialized from [Gemma-2B](https://www.kaggle.com/models/google/gemma). The image encoder is initialized from [SigLIP-So400m/14](https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb). PaliGemma is trained following the PaLI-3 recipes. #### Inputs and outputs * **Input:** Image and text string, such as a prompt to caption the image, or a question. * **Output:** Generated text in response to the input, such as a caption of the image, an answer to a question, a list of object bounding box coordinates, or segmentation codewords. ### Model data #### Pre-train datasets PaliGemma is pre-trained on the following mixture of datasets: * **WebLI:** [WebLI (Web Language Image)](https://arxiv.org/abs/2209.06794) is a web-scale multilingual image-text dataset built from the public web. A wide range of WebLI splits are used to acquire versatile model capabilities, such as visual semantic understanding, object localization, visually-situated text understanding, multilinguality, etc. * **CC3M-35L:** Curated English image-alt_text pairs from webpages ([Sharma et al., 2018](https://aclanthology.org/P18-1238/)). We used the [Google Cloud Translation API](https://cloud.google.com/translate) to translate into 34 additional languages. * **VQ²A-CC3M-35L/VQG-CC3M-35L:** A subset of VQ2A-CC3M ([Changpinyo et al., 2022a](https://aclanthology.org/2022.naacl-main.142/)), translated into the same additional 34 languages as CC3M-35L, using the [Google Cloud Translation API](https://cloud.google.com/translate). * **OpenImages:** Detection and object-aware questions and answers ([Piergiovanni et al. 2022](https://arxiv.org/abs/2209.04372)) generated by handcrafted rules on the [OpenImages dataset]. * **WIT:** Images and texts collected from Wikipedia ([Srinivasan et al., 2021](https://arxiv.org/abs/2103.01913)). [OpenImages dataset]: https://storage.googleapis.com/openimages/web/factsfigures_v7.html #### Data responsibility filtering The following filters are applied to WebLI, with the goal of training PaliGemma on clean data: * **Pornographic image filtering:** This filter removes images deemed to be of pornographic nature. * **Text safety filtering:** We identify and filter out images that are paired with unsafe text. Unsafe text is any text deemed to contain or be about CSAI, pornography, vulgarities, or otherwise offensive. * **Text toxicity filtering:** We further use the [Perspective API](https://perspectiveapi.com/) to identify and filter out images that are paired with text deemed insulting, obscene, hateful or otherwise toxic. * **Text personal information filtering:** We filtered certain personal information and other sensitive data using [Cloud Data Loss Prevention (DLP) API](https://cloud.google.com/security/products/dlp) to protect the privacy of individuals. Identifiers such as social security numbers and [other sensitive information types] were removed. * **Additional methods:** Filtering based on content quality and safety in line with our policies and practices. [other sensitive information types]: https://cloud.google.com/sensitive-data-protection/docs/high-sensitivity-infotypes-reference?_gl=1*jg604m*_ga*ODk5MzA3ODQyLjE3MTAzMzQ3NTk.*_ga_WH2QY8WWF5*MTcxMDUxNTkxMS4yLjEuMTcxMDUxNjA2NC4wLjAuMA..&_ga=2.172110058.-899307842.1710334759 ## How to Use PaliGemma is a single-turn vision language model not meant for conversational use, and it works best when fine-tuning to a specific use case. You can configure which task the model will solve by conditioning it with task prefixes, such as “detect” or “segment”. The pretrained models were trained in this fashion to imbue them with a rich set of capabilities (question answering, captioning, segmentation, etc.). However, they are not designed to be used directly, but to be transferred (by fine-tuning) to specific tasks using a similar prompt structure. For interactive testing, you can use the "mix" family of models, which have been fine-tuned on a mixture of tasks. Please, refer to the [usage and limitations section](#usage-and-limitations) for intended use cases, or visit the [blog post](https://huggingface.co/blog/paligemma-google-vlm) for additional details and examples. ## Use in Transformers The following snippets use model `google/paligemma-3b-mix-224` for reference purposes. The model in this repo you are now browsing may have been trained for other tasks, please make sure you use appropriate inputs for the task at hand. ### Running the default precision (`float32`) on CPU ```python from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image import requests import torch model_id = "google/paligemma-3b-mix-224" url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval() processor = AutoProcessor.from_pretrained(model_id) # Instruct the model to create a caption in Spanish prompt = "caption es" model_inputs = processor(text=prompt, images=image, return_tensors="pt") input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded) ``` Output: `Un auto azul estacionado frente a un edificio.` ### Running other precisions on CUDA For convenience, the repos contain revisions of the weights already converted to `bfloat16` and `float16`, so you can use them to reduce the download size and avoid casting on your local computer. This is how you'd run `bfloat16` on an nvidia CUDA card. ```python from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image import requests import torch model_id = "google/paligemma-3b-mix-224" device = "cuda:0" dtype = torch.bfloat16 url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) model = PaliGemmaForConditionalGeneration.from_pretrained( model_id, torch_dtype=dtype, device_map=device, revision="bfloat16", ).eval() processor = AutoProcessor.from_pretrained(model_id) # Instruct the model to create a caption in Spanish prompt = "caption es" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded) ``` ### Loading in 4-bit / 8-bit You need to install `bitsandbytes` to automatically run inference using 8-bit or 4-bit precision: ``` pip install bitsandbytes accelerate ``` ``` from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image import requests import torch model_id = "google/paligemma-3b-mix-224" device = "cuda:0" dtype = torch.bfloat16 url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = PaliGemmaForConditionalGeneration.from_pretrained( model_id, quantization_config=quantization_config ).eval() processor = AutoProcessor.from_pretrained(model_id) # Instruct the model to create a caption in Spanish prompt = "caption es" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded) ``` ## Implementation information ### Hardware PaliGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax), [Flax](https://github.com/google/flax), [TFDS](https://github.com/tensorflow/datasets) and [`big_vision`](https://github.com/google-research/big_vision). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. TFDS is used to access datasets and Flax is used for model architecture. The PaliGemma fine-tune code and inference code are released in the `big_vision` GitHub repository. ## Evaluation information ### Benchmark results In order to verify the transferability of PaliGemma to a wide variety of academic tasks, we fine-tune the pretrained models on each task. Additionally we train the mix model with a mixture of the transfer tasks. We report results on different resolutions to provide an impression of which tasks benefit from increased resolution. Importantly, none of these tasks or datasets are part of the pretraining data mixture, and their images are explicitly removed from the web-scale pre-training data. #### Mix model (fine-tune on mixture of transfer tasks) <table> <tbody><tr> <th>Benchmark</th> <th>Metric (split)</th> <th>mix-224</th> <th>mix-448</th> </tr> <tr> <td><a href="https://arxiv.org/abs/2401.06209">MMVP</a></td> <td>Paired Accuracy</td> <td>46.00</td> <td>45.33</td> </tr> <tr> <td><a href="https://arxiv.org/abs/2305.10355">POPE</a></td> <td>Accuracy<br>(random/popular/adversarial)</td> <td> 88.00<br> 86.63<br> 85.67 </td> <td> 89.37<br> 88.40<br> 87.47 </td> </tr> <tr> <td><a href="https://cs.stanford.edu/people/dorarad/gqa/about.html">GQA</a></td> <td>Accuracy (test)</td> <td>65.20</td> <td>65.47</td> </tr> </tbody></table> #### Single task (fine-tune on single task) <table> <tbody><tr> <th>Benchmark<br>(train split)</th> <th>Metric<br>(split)</th> <th>pt-224</th> <th>pt-448</th> <th>pt-896</th> </tr> <tr> <th>Captioning</th> </tr> <tr> <td> <a href="https://cocodataset.org/#home">COCO captions</a><br>(train+restval) </td> <td>CIDEr (val)</td> <td>141.92</td> <td>144.60</td> </tr> <tr> <td> <a href="https://nocaps.org/">NoCaps</a><br>(Eval of COCO<br>captions transfer) </td> <td>CIDEr (val)</td> <td>121.72</td> <td>123.58</td> </tr> <tr> <td> <a href="https://arxiv.org/pdf/2205.12522">COCO-35L</a><br>(train) </td> <td>CIDEr dev<br>(en/avg-34/avg)</td> <td> 139.2<br> 115.8<br> 116.4 </td> <td> 141.2<br> 118.0<br> 118.6 </td> </tr> <tr> <td> <a href="https://arxiv.org/pdf/2205.12522">XM3600</a><br>(Eval of COCO-35L transfer) </td> <td>CIDEr dev<br>(en/avg-34/avg)</td> <td> 78.1<br> 41.3<br> 42.4 </td> <td> 80.0<br> 41.9<br> 42.9 </td> </tr> <tr> <td> <a href="https://textvqa.org/textcaps/">TextCaps</a><br>(train) </td> <td>CIDEr (val)</td> <td>127.48</td> <td>153.94</td> </tr> <tr> <td> <a href="https://arxiv.org/abs/2110.11624">SciCap</a><br>(first sentence, no subfigure)<br>(train+val) </td> <td>CIDEr/BLEU-4<br>(test)</td> <td> 162.25<br> 0.192<br> </td> <td> 181.49<br> 0.211<br> </td> </tr> <tr> <td> <a href="https://arxiv.org/abs/2108.03353">Screen2words</a><br>(train+dev) </td> <td>CIDEr (test)</td> <td>117.57</td> <td>119.59</td> </tr> <tr> <td> <a href="https://arxiv.org/abs/2010.04295">Widget Captioning</a><br>(train+dev) </td> <td>CIDEr (test)</td> <td>136.07</td> <td>148.36</td> </tr> <tr> <th>Question answering</th> </tr> <tr> <td> <a href="https://visualqa.org/index.html">VQAv2</a><br>(train+validation) </td> <td>Accuracy<br>(Test server - std)</td> <td>83.19</td> <td>85.64</td> </tr> <tr> <td> <a href="https://arxiv.org/abs/2401.06209">MMVP</a><br>(Eval of VQAv2 transfer) </td> <td>Paired Accuracy</td> <td>47.33</td> <td>45.33</td> </tr> <tr> <td> <a href="https://arxiv.org/abs/2305.10355">POPE</a><br>(Eval of VQAv2 transfer) </td> <td>Accuracy<br>(random/popular/<br>adversarial)</td> <td> 87.80<br> 85.87<br> 84.27 </td> <td> 88.23<br> 86.77<br> 85.90 </td> </tr> <tr> <td> <a href="https://okvqa.allenai.org/">OKVQA</a><br>(train) </td> <td>Accuracy (val)</td> <td>63.54</td> <td>63.15</td> </tr> <tr> <td> <a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (MC)<br>(train+val) </td> <td>Accuracy<br>(Test server)</td> <td>76.37</td> <td>76.90</td> </tr> <tr> <td> <a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (DA)<br>(train+val) </td> <td>Accuracy<br>(Test server)</td> <td>61.85</td> <td>63.22</td> </tr> <tr> <td> <a href="https://cs.stanford.edu/people/dorarad/gqa/about.html">GQA</a><br>(train_balanced+<br>val_balanced) </td> <td>Accuracy<br>(testdev balanced)</td> <td>65.61</td> <td>67.03</td> </tr> <tr> <td> <a href="https://aclanthology.org/2022.findings-acl.196/">xGQA</a><br>(Eval of GQA transfer) </td> <td>Mean Accuracy<br>(bn, de, en, id,<br>ko, pt, ru, zh)</td> <td>58.37</td> <td>59.07</td> </tr> <tr> <td> <a href="https://lil.nlp.cornell.edu/nlvr/">NLVR2</a><br>(train+dev) </td> <td>Accuracy (test)</td> <td>90.02</td> <td>88.93</td> </tr> <tr> <td> <a href="https://marvl-challenge.github.io/">MaRVL</a><br>(Eval of NLVR2 transfer) </td> <td>Mean Accuracy<br>(test)<br>(id, sw, ta, tr, zh)</td> <td>80.57</td> <td>76.78</td> </tr> <tr> <td> <a href="https://allenai.org/data/diagrams">AI2D</a><br>(train) </td> <td>Accuracy (test)</td> <td>72.12</td> <td>73.28</td> </tr> <tr> <td> <a href="https://scienceqa.github.io/">ScienceQA</a><br>(Img subset, no CoT)<br>(train+val) </td> <td>Accuracy (test)</td> <td>95.39</td> <td>95.93</td> </tr> <tr> <td> <a href="https://zenodo.org/records/6344334">RSVQA-LR</a> (Non numeric)<br>(train+val) </td> <td>Mean Accuracy<br>(test)</td> <td>92.65</td> <td>93.11</td> </tr> <tr> <td> <a href="https://zenodo.org/records/6344367">RSVQA-HR</a> (Non numeric)<br>(train+val) </td> <td>Mean Accuracy<br>(test/test2)</td> <td> 92.61<br> 90.58 </td> <td> 92.79<br> 90.54 </td> </tr> <tr> <td> <a href="https://arxiv.org/abs/2203.10244">ChartQA</a><br>(human+aug)x(train+val) </td> <td>Mean Relaxed<br>Accuracy<br>(test_human,<br>test_aug)</td> <td>57.08</td> <td>71.36</td> </tr> <tr> <td> <a href="https://vizwiz.org/tasks-and-datasets/vqa/">VizWiz VQA</a><br>(train+val) </td> <td>Accuracy<br>(Test server - std)</td> <td> 73.7 </td> <td> 75.52 </td> </tr> <tr> <td> <a href="https://arxiv.org/abs/1810.12440">TallyQA</a><br>(train) </td> <td>Accuracy<br>(test_simple/<br>test_complex)</td> <td> 81.72<br> 69.56 </td> <td> 84.86<br> 72.27 </td> </tr> <tr> <td> <a href="https://ocr-vqa.github.io/">OCR-VQA</a><br>(train+val) </td> <td>Accuracy (test)</td> <td>72.32</td> <td>74.61</td> <td>74.93</td> </tr> <tr> <td> <a href="https://textvqa.org/">TextVQA</a><br>(train+val) </td> <td>Accuracy<br>(Test server - std)</td> <td>55.47</td> <td>73.15</td> <td>76.48</td> </tr> <tr> <td> <a href="https://www.docvqa.org/">DocVQA</a><br>(train+val) </td> <td>ANLS (Test server)</td> <td>43.74</td> <td>78.02</td> <td>84.77</td> </tr> <tr> <td> <a href="https://openaccess.thecvf.com/content/WACV2022/papers/Mathew_InfographicVQA_WACV_2022_paper.pdf">Infographic VQA</a><br>(train+val) </td> <td>ANLS (Test server)</td> <td>28.46</td> <td>40.47</td> <td>47.75</td> </tr> <tr> <td> <a href="https://arxiv.org/abs/1905.13648">SceneText VQA</a><br>(train+val) </td> <td>ANLS (Test server)</td> <td>63.29</td> <td>81.82</td> <td>84.40</td> </tr> <tr> <th>Segmentation</th> </tr> <tr> <td> <a href="https://arxiv.org/abs/1608.00272">RefCOCO</a><br>(combined refcoco, refcoco+,<br>refcocog excluding val<br>and test images) </td> <td>MIoU<br>(validation)<br>refcoco/refcoco+/<br>refcocog</td> <td> 73.40<br> 68.32<br> 67.65 </td> <td> 75.57<br> 69.76<br> 70.17 </td> <td> 76.94<br> 72.18<br> 72.22 </td> </tr> <tr> <th>Video tasks (Caption/QA)</th> </tr> <tr> <td>MSR-VTT (Captioning)</td> <td>CIDEr (test)</td> <td>70.54</td> </tr> <tr> <td>MSR-VTT (QA)</td> <td>Accuracy (test)</td> <td>50.09</td> </tr> <tr> <td>ActivityNet (Captioning)</td> <td>CIDEr (test)</td> <td>34.62</td> </tr> <tr> <td>ActivityNet (QA)</td> <td>Accuracy (test)</td> <td>50.78</td> </tr> <tr> <td>VATEX (Captioning)</td> <td>CIDEr (test)</td> <td>79.73</td> </tr> <tr> <td>MSVD (QA)</td> <td>Accuracy (test)</td> <td>60.22</td> </tr> </tbody></table> ## Ethics and safety ### Evaluation approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering child safety, content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach, but with image captioning and visual question answering setups. * Image-to-Text benchmark evaluation: Benchmark against relevant academic datasets such as FairFace Dataset ([Karkkainen et al., 2021](https://arxiv.org/abs/1908.04913)). ### Evaluation results * The human evaluation results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety and representational harms. * On top of robust internal evaluations, we also use the Perspective API (threshold of 0.8) to measure toxicity, profanity, and other potential issues in the generated captions for images sourced from the FairFace dataset. We report the maximum and median values observed across subgroups for each of the perceived gender, ethnicity, and age attributes. <table> <tbody><tr> </tr></tbody><tbody><tr><th>Metric</th> <th>Perceived<br>gender</th> <th></th> <th>Ethnicity</th> <th></th> <th>Age group</th> <th></th> </tr> <tr> <th></th> <th>Maximum</th> <th>Median</th> <th>Maximum</th> <th>Median</th> <th>Maximum</th> <th>Median</th> </tr> <tr> <td>Toxicity</td> <td>0.04%</td> <td>0.03%</td> <td>0.08%</td> <td>0.00%</td> <td>0.09%</td> <td>0.00%</td> </tr> <tr> <td>Identity Attack</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> </tr> <tr> <td>Insult</td> <td>0.06%</td> <td>0.04%</td> <td>0.09%</td> <td>0.07%</td> <td>0.16%</td> <td>0.00%</td> </tr> <tr> <td>Threat</td> <td>0.06%</td> <td>0.05%</td> <td>0.14%</td> <td>0.05%</td> <td>0.17%</td> <td>0.00%</td> </tr> <tr> <td>Profanity</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> <td>0.00%</td> </tr> </tbody></table> ## Usage and limitations ### Intended usage Open Vision Language Models (VLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Fine-tune on specific vision-language task: * The pre-trained models can be fine-tuned on a wide range of vision-language tasks such as: image captioning, short video caption, visual question answering, text reading, object detection and object segmentation. * The pre-trained models can be fine-tuned for specific domains such as remote sensing question answering, visual questions from people who are blind, science question answering, describe UI element functionalities. * The pre-trained models can be fine-tuned for tasks with non-textual outputs such as bounding boxes or segmentation masks. Vision-language research: * The pre-trained models and fine-tuned models can serve as a foundation for researchers to experiment with VLM techniques, develop algorithms, and contribute to the advancement of the field. ### Ethical considerations and risks The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * VLMs trained on large-scale, real-world image-text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * VLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](https://ai.google.dev/responsible). * Transparency and Accountability * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * **Perpetuation of biases:** It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * **Generation of harmful content:** Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * **Misuse for malicious purposes:** Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * **Privacy violations:** Models were trained on data filtered to remove certain personal information and sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Limitations * Most limitations inherited from the underlying Gemma model still apply: * VLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * Natural language is inherently complex. VLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * VLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * VLMs rely on statistical patterns in language and images. They might lack the ability to apply common sense reasoning in certain situations. * PaliGemma was designed first and foremost to serve as a general pre-trained model for transfer to specialized tasks. Hence, its "out of the box" or "zero-shot" performance might lag behind models designed specifically for that. * PaliGemma is not a multi-turn chatbot. It is designed for a single round of image and text input. ## Citation ```bibtex @article{beyer2024paligemma, title={{PaliGemma: A versatile 3B VLM for transfer}}, author={Lucas Beyer* and Andreas Steiner* and André Susano Pinto* and Alexander Kolesnikov* and Xiao Wang* and Daniel Salz and Maxim Neumann and Ibrahim Alabdulmohsin and Michael Tschannen and Emanuele Bugliarello and Thomas Unterthiner and Daniel Keysers and Skanda Koppula and Fangyu Liu and Adam Grycner and Alexey Gritsenko and Neil Houlsby and Manoj Kumar and Keran Rong and Julian Eisenschlos and Rishabh Kabra and Matthias Bauer and Matko Bošnjak and Xi Chen and Matthias Minderer and Paul Voigtlaender and Ioana Bica and Ivana Balazevic and Joan Puigcerver and Pinelopi Papalampidi and Olivier Henaff and Xi Xiong and Radu Soricut and Jeremiah Harmsen and Xiaohua Zhai*}, year={2024}, journal={arXiv preprint arXiv:2407.07726} } ``` Find the paper [here](https://arxiv.org/abs/2407.07726).
[ "QUESTION_ANSWERING", "TRANSLATION" ]
Non_BioNLP
Xenova/distilbart-cnn-6-6
Xenova
summarization
[ "transformers.js", "onnx", "bart", "text2text-generation", "summarization", "base_model:sshleifer/distilbart-cnn-6-6", "base_model:quantized:sshleifer/distilbart-cnn-6-6", "license:apache-2.0", "region:us" ]
1,683,062,871,000
2024-10-08T13:29:40
1,560
7
--- base_model: sshleifer/distilbart-cnn-6-6 library_name: transformers.js license: apache-2.0 pipeline_tag: summarization --- https://huggingface.co/sshleifer/distilbart-cnn-6-6 with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
[ "SUMMARIZATION" ]
Non_BioNLP
facebook/fasttext-su-vectors
facebook
feature-extraction
[ "fasttext", "feature-extraction", "su", "arxiv:1607.04606", "arxiv:1802.06893", "arxiv:1607.01759", "arxiv:1612.03651", "license:cc-by-sa-3.0", "region:us" ]
1,679,637,947,000
2023-06-03T22:16:30
5
0
--- language: su library_name: fasttext license: cc-by-sa-3.0 tags: - feature-extraction widget: - text: apple example_title: apple --- # fastText (Sundanese) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-su-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
pkbiswas/Falcon-7b-Summarization-QLoRa
pkbiswas
summarization
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "summarization", "dataset:scitldr", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "license:apache-2.0", "region:us" ]
1,713,647,402,000
2024-11-17T08:19:03
5
0
--- base_model: tiiuae/falcon-7b-instruct datasets: - scitldr library_name: peft license: apache-2.0 pipeline_tag: summarization tags: - generated_from_trainer model-index: - name: Falcon-Summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Falcon-Summarization This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4431 | 0.2 | 200 | 2.5148 | | 2.376 | 0.4 | 400 | 2.5112 | | 2.4269 | 0.6 | 600 | 2.4901 | | 2.368 | 0.8 | 800 | 2.4763 | | 2.372 | 1.0 | 1000 | 2.4684 | | 2.0904 | 1.2 | 1200 | 2.5018 | | 2.099 | 1.41 | 1400 | 2.5137 | | 2.0482 | 1.61 | 1600 | 2.4993 | | 1.9974 | 1.81 | 1800 | 2.5006 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
[ "SUMMARIZATION" ]
BioNLP
dtorber/NAS-bilingue
dtorber
summarization
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,681,166,039,000
2023-05-19T21:06:30
25
0
--- tags: - summarization - generated_from_trainer model-index: - name: NAS-bilingue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NAS-bilingue This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7187 - Rougelsum: 0.0922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.3739167643078955e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:| | No log | 1.0 | 5 | 4.5936 | 0.0759 | | No log | 2.0 | 10 | 4.4276 | 0.0759 | | No log | 3.0 | 15 | 4.2936 | 0.0759 | | No log | 4.0 | 20 | 4.1820 | 0.0759 | | No log | 5.0 | 25 | 4.0896 | 0.0881 | | No log | 6.0 | 30 | 4.0121 | 0.0970 | | No log | 7.0 | 35 | 3.9451 | 0.0918 | | No log | 8.0 | 40 | 3.8875 | 0.0922 | | No log | 9.0 | 45 | 3.8395 | 0.0922 | | No log | 10.0 | 50 | 3.8011 | 0.0922 | | No log | 11.0 | 55 | 3.7707 | 0.0922 | | No log | 12.0 | 60 | 3.7480 | 0.0922 | | No log | 13.0 | 65 | 3.7320 | 0.0922 | | No log | 14.0 | 70 | 3.7223 | 0.0922 | | No log | 15.0 | 75 | 3.7187 | 0.0922 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
[ "SUMMARIZATION" ]
Non_BioNLP
Unbabel/TowerInstruct-7B-v0.2
Unbabel
translation
[ "transformers", "safetensors", "llama", "text-generation", "translation", "en", "de", "fr", "zh", "pt", "nl", "ru", "ko", "it", "es", "arxiv:2402.17733", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,707,492,648,000
2024-09-09T14:08:25
2,708
33
--- language: - en - de - fr - zh - pt - nl - ru - ko - it - es license: cc-by-nc-4.0 metrics: - comet pipeline_tag: translation --- # Model Card for TowerInstruct-7B-v0.2 ## Model Details ### Model Description TowerInstruct-7B is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct-7B-v0.2 is the first model in the series. The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and paragraph/document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation. We will release more details in the upcoming technical report. For now, you can check results obtained with the model [here](https://unbabel.com/announcing-tower-an-open-multilingual-llm-for-translation-related-tasks/). - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions. - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian - **License:** CC-BY-NC-4.0, Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved. - **Finetuned from model:** [TowerBase](https://huggingface.co/Unbabel/TowerBase-7B-v0.1) **Update**: TowerInstruct-7B-v0.2 has more reliable document-level translation capabilities in comparison with TowerInstruct-7B-v0.1. The new version of TowerBlocks used to train v0.2 is also available in the Tower collection. ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset ([TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1)), which contains a diverse range of data sources: - Translation (sentence and paragraph-level) - Automatic Post Edition - Machine Translation Evaluation - Context-aware Translation - Terminology-aware Translation - Multi-reference Translation - Named-entity Recognition - Paraphrase Generation - Synthetic Chat data - Code instructions You can find the dataset and all data sources of [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1) here. Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="Unbabel/TowerInstruct-7B-v0.2", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {"role": "user", "content": "Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=False) print(outputs[0]["generated_text"]) # <|im_start|>user # Translate the following text from Portuguese into English. # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução. # English:<|im_end|> # <|im_start|>assistant # A group of researchers has launched a new model for translation-related tasks. ``` ### Out-of-Scope Use The model is not guaranteed to perform for languages other than the 10 languages it supports. Even though we trained the model on conversational data and code instructions, it is not intended to be used as a conversational chatbot or code assistant. We are currently working on improving quality and consistency on document-level translation. This model should is not intended to be use as a document-level translator. ## Bias, Risks, and Limitations TowerInstruct-v0.2 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements). ## Prompt Format TowerInstruct-v0.2 was trained using the ChatML prompt templates without any system prompts. An example follows below: ``` <|im_start|>user {USER PROMPT}<|im_end|> <|im_start|>assistant {MODEL RESPONSE}<|im_end|> <|im_start|>user [...] ``` ### Supervised tasks The prompts for all supervised tasks can be found in [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1). We have used multiple prompt templates for each task. While different prompts may offer different outputs, the difference in downstream performance should be very minimal. ## Training Details ### Training Data Link to [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1). #### Training Hyperparameters The following hyperparameters were used during training: - total_train_batch_size: 256 - learning_rate: 7e-06 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - weight_decay: 0.01 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 4 - max_seq_length: 2048 ## Citation ```bibtex @misc{tower_llm_2024, title={Tower: An Open Multilingual Large Language Model for Translation-Related Tasks}, author={Duarte M. Alves and José Pombal and Nuno M. Guerreiro and Pedro H. Martins and João Alves and Amin Farajian and Ben Peters and Ricardo Rei and Patrick Fernandes and Sweta Agrawal and Pierre Colombo and José G. C. de Souza and André F. T. Martins}, year={2024}, eprint={2402.17733}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
[ "TRANSLATION" ]
Non_BioNLP
nsridhar/aftermath-synthetic-150
nsridhar
text-classification
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,678,938,725,000
2023-03-16T03:52:20
10
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # nsridhar/aftermath-synthetic-150 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("nsridhar/aftermath-synthetic-150") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Shawn156/distilbert-base-uncased-finetuned-clinc
Shawn156
text-classification
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,701,670,429,000
2023-12-05T07:07:57
3
0
--- base_model: distilbert-base-uncased datasets: - clinc_oos license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: type: text-classification name: Text Classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - type: accuracy value: 0.915483870967742 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7820 - Accuracy: 0.9155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2956 | 0.7229 | | 3.791 | 2.0 | 636 | 1.8891 | 0.8287 | | 3.791 | 3.0 | 954 | 1.1666 | 0.8910 | | 1.6987 | 4.0 | 1272 | 0.8659 | 0.9113 | | 0.9008 | 5.0 | 1590 | 0.7820 | 0.9155 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
sushanthreddy99/marian-finetuned-kde4-en-to-fr
sushanthreddy99
translation
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,733,760,653,000
2024-12-09T18:08:05
4
0
--- base_model: Helsinki-NLP/opus-mt-en-fr datasets: - kde4 library_name: transformers license: apache-2.0 metrics: - bleu tags: - translation - generated_from_trainer model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - type: bleu value: 53.907166441222394 name: Bleu --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8448 - Model Preparation Time: 0.0035 - Bleu: 53.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
[ "TRANSLATION" ]
Non_BioNLP
naver/oscar-mistral-small-24b
naver
null
[ "COCOM", "custom_code", "en", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:cc-by-4.0", "region:us" ]
1,741,972,225,000
2025-03-17T14:59:20
30
1
--- base_model: - mistralai/Mistral-Small-24B-Instruct-2501 - meta-llama/Llama-3.2-1B-Instruct language: - en license: cc-by-4.0 --- # Model Card for OSCAR-mistral-small-24b OSCAR is a context compression model to be used for efficient inference when doing Retrieval Augmented Generation (RAG), particularly optimized for question answering. OSCAR contains a (fast and light) compressor LLM, used to compress documents, and a LoRA-adapted decoder LLM (here Mistral-Small-24B-Instruct-2501) able to work from this representation. In a RAG pipeline compressing the documents enable 3x-5x faster inference. Final pipeline is as performant as the base decoder model. *Developed by*: Naver Labs Europe *License*: [CC BY-NC 4.0.](https://creativecommons.org/licenses/by-nc/4.0/) * *Model*: `oscar-mistral-small-24b` * *Backbone model*: [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) * *Compression model*: [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) * *Model size*: 23.6 billion parameters * *Compression rate*: x16: each document (of size up to 128 tokens) is converted into 8 embedding vectors. ## Usage ```python from transformers import AutoModel oscar = AutoModel.from_pretrained('naver/oscar-mistral-small-24b', trust_remote_code=True).to('cuda') # Example documents and question: documents = [ [ "Weldenia is a monotypic genus of flowering plant in the family Commelinaceae, first describ ed in 1829. It has one single species: Weldenia candida, which grows originally in Mexico and Guatemala.", "Hagsatera is a genus of flowering plants from the orchid family, Orchidaceae. There are two known species, native to Mexico and Guatemala", "Alsobia is a genus of flowering plants in the family Gesneriaceae, native to Mexico, Guatemala and Costa Rica. The two species are succulent, stoloniferous herbs and were previously included in the genus \"Episcia\". Recent molecular studies have supported the separation of \"Alsobia\" from \"Episcia\"" ] ] questions = ["Which genus of plant grows originally in Mexico and Guatemala, Phylica or Weldenia?"] # End-to-end usage out = oscar.generate_from_text(questions=questions, documents=documents, max_new_tokens=64, query_dependent=True) print('Generated answer', out) # Document compression: embeddings = oscar.compress_documents(documents=documents[0], questions=questions * len(documents[0])) # compression is query-dependent, one question per doc here # Generation from compressed documents: out = oscar.generate_from_compressed_documents_and_questions(questions=questions, compressed_documents=embeddings) ``` The recommended usage is to provide documents cropped to about 128 tokens, which is common practice when doing RAG. ## Model features * **OSCAR enables high accuracy responses from the compressed documents** * **OSCAR is robust to various domains** We tested its compression/decoding abilities on various sets of data. * **OSCAR enables up to x5 faster generation** depending on the number of retrieved documents and various context sizes. ## License This work is licensed under CC BY-NC 4.0. ## Cite ``` TODO ``` ## Acknowledgements Model trained at [Naver Labs Europe](https://europe.naverlabs.com/) Team: * [Maxime LOUIS](https://europe.naverlabs.com/people_user_naverlabs/maxime-louis/) * [Thibault Format](https://europe.naverlabs.com/people_user_naverlabs/thibault-formal/) * [Hervé Dejean](https://europe.naverlabs.com/people_user_naverlabs/herve-dejean/) * [Stéphane Clinchant](https://europe.naverlabs.com/people_user_naverlabs/st%C3%A9phane-clinchant/)
[ "QUESTION_ANSWERING" ]
Non_BioNLP
sebastiansarasti/Pix2Pix
sebastiansarasti
null
[ "license:apache-2.0", "region:us" ]
1,736,731,719,000
2025-01-30T03:09:26
0
0
--- license: apache-2.0 --- # GAN for Comic Faces Paired Generation ## Model Overview This model implements a **Generative Adversarial Network (GAN)** with a **UNet generator** and a **PatchGAN discriminator**. The network is designed to generate paired images of comic faces based on a synthetic dataset of comic faces. The model aims to generate high-quality image pairs where the first image is transformed into a second target image (e.g., photo-to-cartoon or cartoon-to-photo transformations). - **Dataset:** [Comic Faces Paired Synthetic Dataset](https://www.kaggle.com/datasets/defileroff/comic-faces-paired-synthetic) - **Batch Size:** 32 - **Input Shape:** (3, 256, 256) (RGB Images) - **Output Shape:** (3, 256, 256) ## Model Architecture ### Generator: **UNet** The generator uses a **UNet architecture**, which is designed for image-to-image translation tasks. It has an encoder-decoder structure with skip connections, allowing for high-resolution output. The architecture includes the following layers: - **Encoder Path (Contracting Path):** The encoder consists of **DoubleConv** layers that progressively downsample the input image to extract features. It uses **MaxPool2d** to reduce spatial dimensions. - **Bottleneck:** The deepest layer of the network (with 1024 feature channels) processes the smallest version of the image. - **Decoder Path (Expanding Path):** The decoder uses **Upsample** layers to progressively increase the spatial dimensions and **DoubleConv** layers to refine the output. Skip connections are used to combine features from the encoder path. - **Final Convolution:** The final layer outputs the transformed image using a **1x1 convolution**. ### Discriminator: **PatchGANDiscriminator** The discriminator uses a **PatchGAN** architecture, which classifies patches of the image as real or fake. The discriminator works by processing the **input image and output image pair** (3 channels for the input image + 3 channels for the generated output). It progressively reduces the spatial dimensions using **Conv2d** and **LeakyReLU** activations, while normalizing each layer with **InstanceNorm2d**. The final output is a probability score indicating whether the patch is real or fake. --- ### Generator Code (UNet): ```python class UNet(nn.Module, PyTorchModelHubMixin): def __init__(self, in_channels, out_channels): super(UNet, self).__init__() # Contracting Path (Encoder) self.down_conv1 = DoubleConv(in_channels, 64) self.down_conv2 = DoubleConv(64, 128) self.down_conv3 = DoubleConv(128, 256) self.down_conv4 = DoubleConv(256, 512) self.down_conv5 = DoubleConv(512, 1024) # Downsampling self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) # Upsampling layers using nn.Upsample self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) # Decoder (Expanding Path) self.up_conv1 = DoubleConv(1024 + 512, 512) self.up_conv2 = DoubleConv(512 + 256, 256) self.up_conv3 = DoubleConv(256 + 128, 128) self.up_conv4 = DoubleConv(128 + 64, 64) # Final 1x1 convolution to get desired number of output channels self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1) def forward(self, x): x1 = self.down_conv1(x) x2 = self.down_conv2(self.maxpool(x1)) x3 = self.down_conv3(self.maxpool(x2)) x4 = self.down_conv4(self.maxpool(x3)) x5 = self.down_conv5(self.maxpool(x4)) x = self.upsample(x5) x = torch.cat([x4, x], dim=1) x = self.up_conv1(x) x = self.upsample(x) x = torch.cat([x3, x], dim=1) x = self.up_conv2(x) x = self.upsample(x) x = torch.cat([x2, x], dim=1) x = self.up_conv3(x) x = self.upsample(x) x = torch.cat([x1, x], dim=1) x = self.up_conv4(x) return self.final_conv(x) class PatchGANDiscriminator(nn.Module, PyTorchModelHubMixin): def __init__(self, in_channels=6): super().__init__() self.layers = nn.Sequential( nn.Conv2d(in_channels, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1), nn.InstanceNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1), ) def forward(self, x): return self.layers(x) ```
[ "TRANSLATION" ]
Non_BioNLP
pszemraj/long-t5-tglobal-xl-sci-simplify-elife
pszemraj
summarization
[ "transformers", "pytorch", "longt5", "text2text-generation", "generated_from_trainer", "summarization", "dataset:pszemraj/scientific_lay_summarisation-elife-norm", "license:apache-2.0", "model-index", "autotrain_compatible", "region:us" ]
1,686,906,389,000
2023-06-18T12:20:00
22
2
--- datasets: - pszemraj/scientific_lay_summarisation-elife-norm license: apache-2.0 metrics: - rouge pipeline_tag: summarization tags: - generated_from_trainer inference: false model-index: - name: long-t5-tglobal-xl-scientific_lay_summarisation-elife-norm-16384-summ-v1 results: - task: type: summarization name: Summarization dataset: name: pszemraj/scientific_lay_summarisation-elife-norm type: pszemraj/scientific_lay_summarisation-elife-norm split: validation metrics: - type: rouge value: 47.1446 name: Rouge1 --- # long-t5-tglobal-xl-sci-simplify-elife This model is a fine-tuned version of [google/long-t5-tglobal-xl](https://huggingface.co/google/long-t5-tglobal-xl) on the pszemraj/scientific_lay_summarisation-elife-norm dataset. It achieves the following results on the evaluation set: - Loss: 1.6666 - Rouge1: 47.1446 - Rouge2: 14.2158 - Rougel: 23.3524 - Rougelsum: 44.6063 - Gen Len: 431.22 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data the `pszemraj/scientific_lay_summarisation-elife-norm` dataset, input 16384 tokens then truncate, output 1024 tokens then truncate. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 6963 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.7959 | 1.0 | 543 | 1.6770 | 44.4187 | 12.6752 | 22.4669 | 41.944 | 456.33 | | 1.7578 | 2.0 | 1086 | 1.6666 | 47.1446 | 14.2158 | 23.3524 | 44.6063 | 431.22 |
[ "SUMMARIZATION" ]
BioNLP
Helsinki-NLP/opus-mt-ja-ru
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ja", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T11:59:20
2,083
1
--- language: - ja - ru license: apache-2.0 tags: - translation --- ### jpn-rus * source group: Japanese * target group: Russian * OPUS readme: [jpn-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-rus/README.md) * model: transformer-align * source language(s): jpn jpn_Bopo jpn_Hani jpn_Hira jpn_Kana jpn_Latn jpn_Yiii * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.rus | 23.2 | 0.441 | ### System Info: - hf_name: jpn-rus - source_languages: jpn - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'ru'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: rus - short_pair: ja-ru - chrF2_score: 0.441 - bleu: 23.2 - brevity_penalty: 0.9740000000000001 - ref_len: 70820.0 - src_name: Japanese - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: ru - prefer_old: False - long_pair: jpn-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
[ "TRANSLATION" ]
Non_BioNLP
YakovElm/Apache5SetFitModel_balance_ratio_Half
YakovElm
text-classification
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,685,456,800,000
2023-05-31T19:58:54
8
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # YakovElm/Apache5SetFitModel_balance_ratio_Half This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("YakovElm/Apache5SetFitModel_balance_ratio_Half") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Funnyworld1412/ABSA_bert-base_MiniLM-L6-polarity
Funnyworld1412
text-classification
[ "setfit", "safetensors", "bert", "absa", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/bert-base-nli-mean-tokens", "base_model:finetune:sentence-transformers/bert-base-nli-mean-tokens", "model-index", "region:us" ]
1,719,347,501,000
2024-06-25T20:31:55
9
0
--- base_model: sentence-transformers/bert-base-nli-mean-tokens library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: gamenya seru bagus paket:gamenya seru bagus paket worth it gak lag mudah mainnya tugas hadiah bagus modenya sayangnya game kadang ngebug gapapa kasih - text: tolong perbaiki analog nya pengaturan posisi:tolong perbaiki analog nya pengaturan posisi berpindah pindah - text: visualisasi bagus segi graphic:visualisasi bagus segi graphic bagus ya game cocok sih mantra nya banyakin contoh mantra penghilang - text: jaringan udah bagus game jaringan nya bagus:game nya udah bagus jaringan game nya bermasalah jaringan udah bagus game jaringan nya bagus mohon nambahin karakter - text: kali game stuk loading server pakai jaringan:game bagus cma kendala kali game stuk loading server pakai jaringan wifi masuk jaringan jaringan bermasalah main game online lancar game susah akses tolong diperbaiki supercell detik bermain coc lancar masuk kendala inference: false model-index: - name: SetFit Polarity Model with sentence-transformers/bert-base-nli-mean-tokens results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8478260869565217 name: Accuracy --- # SetFit Polarity Model with sentence-transformers/bert-base-nli-mean-tokens This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/bert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/bert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_bert-base_MiniLM-L6-aspect](https://huggingface.co/Funnyworld1412/ABSA_bert-base_MiniLM-L6-aspect) - **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_bert-base_MiniLM-L6-polarity](https://huggingface.co/Funnyworld1412/ABSA_bert-base_MiniLM-L6-polarity) - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negatif | <ul><li>'seru tolong diperbaiki pencarian lawan bermain ketemu player:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'bugnya nakal banget y:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li><li>'kadang g setara levelnya dahlah gk suka:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> | | positif | <ul><li>'kapada supercell game nya bagus seru:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'fairrrr mending uninstall gamenya maen game yg:overall gamenya bagus pencarian match dikasih musuh yg levelnya levelku yg pertandingan fair menganggu kenyamanan pemainnya kalo nyariin musuh gapapa nyarinya kasih yg fair levelnya gaush buru buru ngasih yg gak fairrrr pas arena 4 udh dikasih musuh yg pletonnya 2 yg level 11 gak fairrrr mending uninstall gamenya maen game yg yg org gak fairr'</li><li>'gameplay menyenangkan pemain afk:gameplay menyenangkan pemain afk pertengahan menyerah 2vs2 mode mengganggu tolong tambahkan fitur lapor pemain'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8478 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "Funnyworld1412/ABSA_bert-base_MiniLM-L6-aspect", "Funnyworld1412/ABSA_bert-base_MiniLM-L6-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 28.3626 | 83 | | Label | Training Sample Count | |:--------|:----------------------| | negatif | 738 | | positif | 528 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0003 | 1 | 0.3075 | - | | 0.0158 | 50 | 0.1854 | - | | 0.0316 | 100 | 0.4431 | - | | 0.0474 | 150 | 0.3251 | - | | 0.0632 | 200 | 0.2486 | - | | 0.0790 | 250 | 0.2371 | - | | 0.0948 | 300 | 0.3149 | - | | 0.1106 | 350 | 0.1397 | - | | 0.1264 | 400 | 0.1131 | - | | 0.1422 | 450 | 0.2388 | - | | 0.1580 | 500 | 0.1256 | - | | 0.1738 | 550 | 0.157 | - | | 0.1896 | 600 | 0.3768 | - | | 0.2054 | 650 | 0.022 | - | | 0.2212 | 700 | 0.221 | - | | 0.2370 | 750 | 0.122 | - | | 0.2528 | 800 | 0.028 | - | | 0.2686 | 850 | 0.102 | - | | 0.2844 | 900 | 0.2231 | - | | 0.3002 | 950 | 0.1853 | - | | 0.3160 | 1000 | 0.2167 | - | | 0.3318 | 1050 | 0.0054 | - | | 0.3476 | 1100 | 0.027 | - | | 0.3633 | 1150 | 0.0189 | - | | 0.3791 | 1200 | 0.0033 | - | | 0.3949 | 1250 | 0.2548 | - | | 0.4107 | 1300 | 0.0043 | - | | 0.4265 | 1350 | 0.0033 | - | | 0.4423 | 1400 | 0.0012 | - | | 0.4581 | 1450 | 0.1973 | - | | 0.4739 | 1500 | 0.0006 | - | | 0.4897 | 1550 | 0.001 | - | | 0.5055 | 1600 | 0.0002 | - | | 0.5213 | 1650 | 0.2304 | - | | 0.5371 | 1700 | 0.0005 | - | | 0.5529 | 1750 | 0.0025 | - | | 0.5687 | 1800 | 0.0185 | - | | 0.5845 | 1850 | 0.0023 | - | | 0.6003 | 1900 | 0.185 | - | | 0.6161 | 1950 | 0.0004 | - | | 0.6319 | 2000 | 0.0003 | - | | 0.6477 | 2050 | 0.0005 | - | | 0.6635 | 2100 | 0.0126 | - | | 0.6793 | 2150 | 0.0004 | - | | 0.6951 | 2200 | 0.0103 | - | | 0.7109 | 2250 | 0.0009 | - | | 0.7267 | 2300 | 0.0019 | - | | 0.7425 | 2350 | 0.0018 | - | | 0.7583 | 2400 | 0.1837 | - | | 0.7741 | 2450 | 0.002 | - | | 0.7899 | 2500 | 0.0003 | - | | 0.8057 | 2550 | 0.0006 | - | | 0.8215 | 2600 | 0.2006 | - | | 0.8373 | 2650 | 0.0003 | - | | 0.8531 | 2700 | 0.0006 | - | | 0.8689 | 2750 | 0.0003 | - | | 0.8847 | 2800 | 0.0001 | - | | 0.9005 | 2850 | 0.0002 | - | | 0.9163 | 2900 | 0.0003 | - | | 0.9321 | 2950 | 0.0002 | - | | 0.9479 | 3000 | 0.0003 | - | | 0.9637 | 3050 | 0.001 | - | | 0.9795 | 3100 | 0.0002 | - | | 0.9953 | 3150 | 0.0007 | - | | 1.0 | 3165 | - | 0.2256 | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.5 - Transformers: 4.36.2 - PyTorch: 2.1.2 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
ademakyol/distilbert-emotion
ademakyol
text-classification
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,715,552,324,000
2024-05-12T22:29:51
4
0
--- base_model: distilbert-base-uncased datasets: - emotion license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: distilbert-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.935 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1535 - Accuracy: 0.935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.2074 | 0.924 | | No log | 2.0 | 250 | 0.1535 | 0.935 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
phungkhaccuong/fa71addc-951a-12d7-783c-32157f080bb4
phungkhaccuong
null
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:adapter:NousResearch/Hermes-2-Pro-Mistral-7B", "license:apache-2.0", "region:us" ]
1,736,498,316,000
2025-01-10T09:12:42
1
0
--- base_model: NousResearch/Hermes-2-Pro-Mistral-7B library_name: peft license: apache-2.0 tags: - axolotl - generated_from_trainer model-index: - name: fa71addc-951a-12d7-783c-32157f080bb4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Pro-Mistral-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 63a6e52889f0869c_train_data.json ds_type: json format: custom path: /workspace/input_data/63a6e52889f0869c_train_data.json type: field_input: langpair field_instruction: source field_output: good-translation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: phungkhaccuong/fa71addc-951a-12d7-783c-32157f080bb4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/63a6e52889f0869c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95d283ba-c7ba-4e03-aefa-9110a8ae8a1d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 95d283ba-c7ba-4e03-aefa-9110a8ae8a1d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fa71addc-951a-12d7-783c-32157f080bb4 This model is a fine-tuned version of [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.8958 | | 6.12 | 0.0023 | 10 | 1.4180 | | 3.7388 | 0.0046 | 20 | 0.9980 | | 4.2057 | 0.0069 | 30 | 0.9261 | | 3.9987 | 0.0093 | 40 | 0.9167 | | 3.8477 | 0.0116 | 50 | 0.9126 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
[ "TRANSLATION" ]
Non_BioNLP
Intel/fid_t5_large_nq
Intel
text-generation
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "text-generation", "en", "dataset:kilt_tasks", "arxiv:2007.01282", "license:cc-by-sa-3.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,676,813,484,000
2023-09-07T11:32:37
356
3
--- datasets: - kilt_tasks language: - en license: cc-by-sa-3.0 metrics: - exact_match pipeline_tag: text-generation model-index: - name: results results: - task: type: text-generation name: Question Answering dataset: name: NQ KILT type: kilt_tasks args: nq metrics: - type: exact_match value: 59.01 name: Exact Macth --- # Fusion-In-Decoder Base on Natural Questions This trained model is based on the [Fusion-In-Decoder](https://arxiv.org/abs/2007.01282) model, and trained on the [Natural Questions](https://huggingface.co/datasets/natural_questions) dataset. # Model Details Model is based on Fusion-In-Decoder, which in turn is based on the `t5-large` checkpoint as the base model. For training, we utilized text retrieval for each query, which provides a collection of relevant passages for it. We note that the passages were retrieved using a corpus based on [Wikipedia](https://huggingface.co/datasets/wiki_dpr). # Evaluation See model performance on Evaluation Results tab on the right side.
[ "QUESTION_ANSWERING" ]
Non_BioNLP
semindan/paws_x_xlm_r_only_zh
semindan
text-classification
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:paws-x", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,671,316,997,000
2023-01-07T14:27:05
14
0
--- datasets: - paws-x license: mit metrics: - accuracy tags: - text-classification - generated_from_trainer model-index: - name: paws_x_xlm_r_only_zh results: - task: type: text-classification name: Text Classification dataset: name: paws-x type: paws-x config: zh split: train args: zh metrics: - type: accuracy value: 0.841 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paws_x_xlm_r_only_zh This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the paws-x dataset. It achieves the following results on the evaluation set: - Loss: 0.6193 - Accuracy: 0.841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4928 | 1.0 | 386 | 0.4940 | 0.805 | | 0.2904 | 2.0 | 772 | 0.4153 | 0.8415 | | 0.2302 | 3.0 | 1158 | 0.4341 | 0.8465 | | 0.1899 | 4.0 | 1544 | 0.4475 | 0.8425 | | 0.1599 | 5.0 | 1930 | 0.4623 | 0.84 | | 0.1358 | 6.0 | 2316 | 0.5354 | 0.8465 | | 0.1147 | 7.0 | 2702 | 0.5736 | 0.847 | | 0.1012 | 8.0 | 3088 | 0.5782 | 0.849 | | 0.087 | 9.0 | 3474 | 0.5844 | 0.844 | | 0.08 | 10.0 | 3860 | 0.6193 | 0.841 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
fathyshalab/reklambox2-2-12-xlm
fathyshalab
text-classification
[ "sentence-transformers", "pytorch", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,677,845,385,000
2023-03-03T12:10:04
9
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # fathyshalab/reklambox2-2-12-xlm This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/reklambox2-2-12-xlm") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
unum-cloud/uform-gen2-dpo
unum-cloud
image-to-text
[ "transformers", "safetensors", "vlm", "feature-extraction", "image-captioning", "visual-question-answering", "image-to-text", "custom_code", "en", "dataset:X2FD/LVIS-Instruct4V", "dataset:BAAI/SVIT", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:MMInstruction/VLFeedback", "dataset:zhiqings/LLaVA-Human-Preference-10K", "license:apache-2.0", "region:us" ]
1,711,565,296,000
2024-04-24T18:30:43
2,740
43
--- datasets: - X2FD/LVIS-Instruct4V - BAAI/SVIT - HuggingFaceH4/ultrachat_200k - MMInstruction/VLFeedback - zhiqings/LLaVA-Human-Preference-10K language: - en library_name: transformers license: apache-2.0 pipeline_tag: image-to-text tags: - image-captioning - visual-question-answering widget: - src: interior.jpg example_title: Detailed caption output: text: The image shows a serene and well-lit bedroom with a white bed, a black bed frame, and a white comforter. There’s a gray armchair with a white cushion, a black dresser with a mirror and a vase, and a white rug on the floor. The room has a large window with white curtains, and there are several decorative items, including a picture frame, a vase with a flower, and a lamp. The room is well-organized and has a calming atmosphere. - src: cat.jpg example_title: Short caption output: text: A white and orange cat stands on its hind legs, reaching towards a wooden table with a white teapot and a basket of red raspberries. The table is on a small wooden bench, surrounded by orange flowers. The cat’s position and action create a serene, playful scene in a garden. --- <img src="Captions.jpg"> ## Description UForm-Gen2-dpo is a small generative vision-language model alined for Image Captioning and Visual Question Answering on preference datasets VLFeedback and LLaVA-Human-Preference-10K using Direct Preference Optimization (DPO). The model consists of two parts: 1. CLIP-like ViT-H/14 2. [Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) The model took less than one day to train on a DGX-H100 with 8x H100 GPUs. Thanks to [Nebius.ai](https://nebius.ai) for providing the compute 🤗 ### Usage The generative model can be used to caption images, answer questions about them. Also it is suitable for a multimodal chat. ```python from transformers import AutoModel, AutoProcessor model = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True) processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True) prompt = "Question or Instruction" image = Image.open("image.jpg") inputs = processor(text=[prompt], images=[image], return_tensors="pt") with torch.inference_mode(): output = model.generate( **inputs, do_sample=False, use_cache=True, max_new_tokens=256, eos_token_id=151645, pad_token_id=processor.tokenizer.pad_token_id ) prompt_len = inputs["input_ids"].shape[1] decoded_text = processor.batch_decode(output[:, prompt_len:])[0] ``` You can check examples of different prompts in our demo space. ## Evaluation perception reasoning OCR artwork celebrity code_reasoning color commonsense_reasoning count existence landmark numerical_calculation position posters scene text_translation MME Benchmark | Model | perception| reasoning | OCR | artwork | celebrity | code_reasoning | color | commonsense_reasoning | count | existence | landmark | numerical_calculation | position | posters | scene | text_translation | | :---------------------------------- | --------: | --------: | -----:| ----------:| ----------:| --------------:| -----:| ---------------------:| -----:| ---------:| --------:| ---------------------:| --------:| -------:| -----:| ----------------:| | uform-gen2-dpo | 1,048.75 | 224.64 | 72.50 | 97.25 | 62.65 | 67.50 | 123.33 | 57.14 | 136.67 | 195.00 | 104.00 | 50.00 | 51.67 | 59.18 | 146.50 | 50.00 | | uform-gen2-qwen-500m | 863.40 | 236.43 | 57.50 | 93.00 | 67.06 | 57.50 | 78.33 | 81.43 | 53.33 | 150.00 | 98.00 | 50.00 | 50.00 | 62.93 | 153.25 | 47.50 |
[ "QUESTION_ANSWERING", "TRANSLATION" ]
Non_BioNLP
c01zaut/gemma-2-27b-it-rk3588-1.1.2
c01zaut
text-generation
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2103.03874", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2203.09509", "base_model:google/gemma-2-27b", "base_model:finetune:google/gemma-2-27b", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,732,568,236,000
2024-11-25T21:57:41
7
0
--- base_model: google/gemma-2-27b library_name: transformers license: gemma pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # gemma-2-27b-it-RK3588-1.1.2 This version of gemma-2-27b-it has been converted to run on the RK3588 NPU using ['w8a8'] quantization. This model has been optimized with the following LoRA: Compatible with RKLLM version: 1.1.2 ## Useful links: [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531) Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit # Original Model Card for base model, gemma-2-27b-it, below: # Gemma 2 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma] **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-27b-it) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with: ```sh pip install -U transformers ``` Then, copy the snippet from the section that is relevant for your usecase. #### Running with the `pipeline` API ```python import torch from transformers import pipeline pipe = pipeline( "text-generation", model="google/gemma-2-27b-it", model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", # replace with "mps" to run on a Mac device ) messages = [ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."}, ] outputs = pipe(messages, max_new_tokens=256) assistant_response = outputs[0]["generated_text"][-1]["content"].strip() print(assistant_response) # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜 ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto", torch_dtype=torch.bfloat16, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows: ```python messages = [ {"role": "user", "content": "Write me a poem about Machine Learning."}, ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**input_ids, max_new_tokens=256) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` #### Running the model through a CLI The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage) for getting started, then launch the CLI through the following command: ```shell local-gemma --model 27b --preset speed ``` #### Quantized Versions through `bitsandbytes` <details> <summary> Using 8-bit precision (int8) </summary> ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", quantization_config=quantization_config, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` </details> <details> <summary> Using 4-bit precision </summary> ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", quantization_config=quantization_config, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` </details> #### Advanced Usage <details> <summary> Torch compile </summary> [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the inference of PyTorch modules. The Gemma-2 model can be run up to 6x faster by leveraging torch compile. Note that two warm-up steps are required before the full inference speed is realised: ```python import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from transformers import AutoTokenizer, Gemma2ForCausalLM from transformers.cache_utils import HybridCache import torch torch.set_float32_matmul_precision("high") # load the model + tokenizer tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-27b-it", torch_dtype=torch.bfloat16) model.to("cuda") # apply the torch compile transformation model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) # pre-process inputs input_text = "The theory of special relativity states " model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda") prompt_length = model_inputs.input_ids.shape[1] # set-up k/v cache past_key_values = HybridCache( config=model.config, max_batch_size=1, max_cache_len=model.config.max_position_embeddings, device=model.device, dtype=model.dtype ) # enable passing kv cache to generate model._supports_cache_class = True model.generation_config.cache_implementation = None # two warm-up steps for idx in range(2): outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128) past_key_values.reset() # fast run outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config). </details> ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/gemma-2-27b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B | | ------------------------------ | ------------- | ----------- | ------------ | | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 | | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 | | [PIQA][piqa] | 0-shot | 81.7 | 83.2 | | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 | | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 | | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 | | [ARC-e][arc] | 0-shot | 88.0 | 88.6 | | [ARC-c][arc] | 25-shot | 68.4 | 71.4 | | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 | | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 | | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 | | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 | | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 | | [MATH][math] | 4-shot | 36.6 | 42.3 | | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 | | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 | | ------------------------------ | ------------- | ----------- | ------------ | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq]. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 2.0 | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B | | ------------------------ | ------------- | --------------- | ---------------- | | [RealToxicity][realtox] | average | 8.25 | 8.84 | | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 | | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 | | [Winogender][winogender] | top-1 | 79.17 | 77.22 | | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 | | [Winobias 1_2][winobias] | | 78.09 | 81.94 | | [Winobias 2_2][winobias] | | 95.32 | 97.22 | | [Toxigen][toxigen] | | 39.30 | 38.42 | | ------------------------ | ------------- | --------------- | ---------------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2 [terms]: https://ai.google.dev/gemma/terms [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335 [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11 [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/google/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [foundation-models]: https://ai.google/discover/foundation-models/ [gemini-2-paper]: https://goo.gle/gemma2report [mmlu]: https://arxiv.org/abs/2009.03300 [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [boolq]: https://arxiv.org/abs/1905.10044 [winogrande]: https://arxiv.org/abs/1907.10641 [commonsenseqa]: https://arxiv.org/abs/1811.00937 [openbookqa]: https://arxiv.org/abs/1809.02789 [arc]: https://arxiv.org/abs/1911.01547 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [humaneval]: https://arxiv.org/abs/2107.03374 [mbpp]: https://arxiv.org/abs/2108.07732 [gsm8k]: https://arxiv.org/abs/2110.14168 [realtox]: https://arxiv.org/abs/2009.11462 [bold]: https://arxiv.org/abs/2101.11718 [crows]: https://aclanthology.org/2020.emnlp-main.154/ [bbq]: https://arxiv.org/abs/2110.08193v2 [winogender]: https://arxiv.org/abs/1804.09301 [truthfulqa]: https://arxiv.org/abs/2109.07958 [winobias]: https://arxiv.org/abs/1804.06876 [math]: https://arxiv.org/abs/2103.03874 [agieval]: https://arxiv.org/abs/2304.06364 [big-bench]: https://arxiv.org/abs/2206.04615 [toxigen]: https://arxiv.org/abs/2203.09509
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
Helsinki-NLP/opus-mt-hi-ur
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hi", "ur", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T11:57:39
85
0
--- language: - hi - ur license: apache-2.0 tags: - translation --- ### hin-urd * source group: Hindi * target group: Urdu * OPUS readme: [hin-urd](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hin-urd/README.md) * model: transformer-align * source language(s): hin * target language(s): urd * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hin.urd | 12.4 | 0.393 | ### System Info: - hf_name: hin-urd - source_languages: hin - target_languages: urd - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hin-urd/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hi', 'ur'] - src_constituents: {'hin'} - tgt_constituents: {'urd'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.test.txt - src_alpha3: hin - tgt_alpha3: urd - short_pair: hi-ur - chrF2_score: 0.39299999999999996 - bleu: 12.4 - brevity_penalty: 1.0 - ref_len: 1618.0 - src_name: Hindi - tgt_name: Urdu - train_date: 2020-06-16 - src_alpha2: hi - tgt_alpha2: ur - prefer_old: False - long_pair: hin-urd - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
[ "TRANSLATION" ]
Non_BioNLP
ai-forever/ru-en-RoSBERTa
ai-forever
feature-extraction
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "mteb", "transformers", "ru", "en", "arxiv:2408.12503", "base_model:ai-forever/ruRoberta-large", "base_model:finetune:ai-forever/ruRoberta-large", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
1,722,242,289,000
2024-09-26T07:57:30
8,582
34
--- base_model: ai-forever/ruRoberta-large language: - ru - en license: mit tags: - mteb - transformers - sentence-transformers model-index: - name: ru-en-RoSBERTa results: - task: type: MultilabelClassification dataset: name: MTEB CEDRClassification (default) type: ai-forever/cedr-classification config: default split: test revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4 metrics: - type: accuracy value: 44.68650371944739 - type: f1 value: 40.7601061886426 - type: lrap value: 70.69633368756747 - type: main_score value: 44.68650371944739 - task: type: Classification dataset: name: MTEB GeoreviewClassification (default) type: ai-forever/georeview-classification config: default split: test revision: 3765c0d1de6b7d264bc459433c45e5a75513839c metrics: - type: accuracy value: 49.697265625 - type: f1 value: 47.793186725286866 - type: f1_weighted value: 47.79131720298068 - type: main_score value: 49.697265625 - task: type: Clustering dataset: name: MTEB GeoreviewClusteringP2P (default) type: ai-forever/georeview-clustering-p2p config: default split: test revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec metrics: - type: main_score value: 65.42249614873316 - type: v_measure value: 65.42249614873316 - type: v_measure_std value: 0.8524815312312278 - task: type: Classification dataset: name: MTEB HeadlineClassification (default) type: ai-forever/headline-classification config: default split: test revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb metrics: - type: accuracy value: 78.0029296875 - type: f1 value: 77.95151940601424 - type: f1_weighted value: 77.95054643947716 - type: main_score value: 78.0029296875 - task: type: Classification dataset: name: MTEB InappropriatenessClassification (default) type: ai-forever/inappropriateness-classification config: default split: test revision: 601651fdc45ef243751676e62dd7a19f491c0285 metrics: - type: accuracy value: 61.32324218750001 - type: ap value: 57.11029460364367 - type: ap_weighted value: 57.11029460364367 - type: f1 value: 60.971337406307214 - type: f1_weighted value: 60.971337406307214 - type: main_score value: 61.32324218750001 - task: type: Classification dataset: name: MTEB KinopoiskClassification (default) type: ai-forever/kinopoisk-sentiment-classification config: default split: test revision: 5911f26666ac11af46cb9c6849d0dc80a378af24 metrics: - type: accuracy value: 63.27333333333334 - type: f1 value: 61.007042785228116 - type: f1_weighted value: 61.007042785228116 - type: main_score value: 63.27333333333334 - task: type: Reranking dataset: name: MTEB MIRACLReranking (ru) type: miracl/mmteb-miracl-reranking config: ru split: dev revision: 6d1962c527217f8927fca80f890f14f36b2802af metrics: - type: MAP@1(MIRACL) value: 30.691000000000003 - type: MAP@10(MIRACL) value: 49.178 - type: MAP@100(MIRACL) value: 51.225 - type: MAP@1000(MIRACL) value: 51.225 - type: MAP@20(MIRACL) value: 50.613 - type: MAP@3(MIRACL) value: 42.457 - type: MAP@5(MIRACL) value: 46.172000000000004 - type: NDCG@1(MIRACL) value: 51.002 - type: NDCG@10(MIRACL) value: 56.912 - type: NDCG@100(MIRACL) value: 61.197 - type: NDCG@1000(MIRACL) value: 61.197 - type: NDCG@20(MIRACL) value: 59.453 - type: NDCG@3(MIRACL) value: 51.083 - type: NDCG@5(MIRACL) value: 53.358000000000004 - type: P@1(MIRACL) value: 51.002 - type: P@10(MIRACL) value: 14.852000000000002 - type: P@100(MIRACL) value: 1.9529999999999998 - type: P@1000(MIRACL) value: 0.19499999999999998 - type: P@20(MIRACL) value: 8.657 - type: P@3(MIRACL) value: 31.435000000000002 - type: P@5(MIRACL) value: 23.608999999999998 - type: Recall@1(MIRACL) value: 30.691000000000003 - type: Recall@10(MIRACL) value: 67.006 - type: Recall@100(MIRACL) value: 79.952 - type: Recall@1000(MIRACL) value: 79.952 - type: Recall@20(MIRACL) value: 73.811 - type: Recall@3(MIRACL) value: 49.142 - type: Recall@5(MIRACL) value: 57.553 - type: main_score value: 56.912 - type: nAUC_MAP@1000_diff1(MIRACL) value: 10.786403475779332 - type: nAUC_MAP@1000_max(MIRACL) value: 29.477246196287275 - type: nAUC_MAP@1000_std(MIRACL) value: 15.938834129839046 - type: nAUC_MAP@100_diff1(MIRACL) value: 10.786403475779332 - type: nAUC_MAP@100_max(MIRACL) value: 29.477246196287275 - type: nAUC_MAP@100_std(MIRACL) value: 15.938834129839046 - type: nAUC_MAP@10_diff1(MIRACL) value: 12.255091348037595 - type: nAUC_MAP@10_max(MIRACL) value: 26.72625370045134 - type: nAUC_MAP@10_std(MIRACL) value: 14.180071586837812 - type: nAUC_MAP@1_diff1(MIRACL) value: 28.616487922173768 - type: nAUC_MAP@1_max(MIRACL) value: 12.986192530664518 - type: nAUC_MAP@1_std(MIRACL) value: 4.086145762604503 - type: nAUC_MAP@20_diff1(MIRACL) value: 11.360341572700476 - type: nAUC_MAP@20_max(MIRACL) value: 28.612330384153832 - type: nAUC_MAP@20_std(MIRACL) value: 15.787480742877937 - type: nAUC_MAP@3_diff1(MIRACL) value: 18.033783954867623 - type: nAUC_MAP@3_max(MIRACL) value: 20.97092332905034 - type: nAUC_MAP@3_std(MIRACL) value: 9.106058710108279 - type: nAUC_MAP@5_diff1(MIRACL) value: 14.784231238848433 - type: nAUC_MAP@5_max(MIRACL) value: 23.841145797143 - type: nAUC_MAP@5_std(MIRACL) value: 11.25686258970321 - type: nAUC_NDCG@1000_diff1(MIRACL) value: 1.4728095471561125 - type: nAUC_NDCG@1000_max(MIRACL) value: 39.84262968697792 - type: nAUC_NDCG@1000_std(MIRACL) value: 22.4186410243652 - type: nAUC_NDCG@100_diff1(MIRACL) value: 1.4728095471561125 - type: nAUC_NDCG@100_max(MIRACL) value: 39.84262968697792 - type: nAUC_NDCG@100_std(MIRACL) value: 22.4186410243652 - type: nAUC_NDCG@10_diff1(MIRACL) value: 5.242996478950954 - type: nAUC_NDCG@10_max(MIRACL) value: 33.86925934510759 - type: nAUC_NDCG@10_std(MIRACL) value: 19.457386638149625 - type: nAUC_NDCG@1_diff1(MIRACL) value: 16.925455715967676 - type: nAUC_NDCG@1_max(MIRACL) value: 36.72266755084653 - type: nAUC_NDCG@1_std(MIRACL) value: 18.357456476212622 - type: nAUC_NDCG@20_diff1(MIRACL) value: 3.361697278095995 - type: nAUC_NDCG@20_max(MIRACL) value: 37.38923489423496 - type: nAUC_NDCG@20_std(MIRACL) value: 22.29168372402657 - type: nAUC_NDCG@3_diff1(MIRACL) value: 10.936904314592084 - type: nAUC_NDCG@3_max(MIRACL) value: 30.547718047674284 - type: nAUC_NDCG@3_std(MIRACL) value: 15.142352896765665 - type: nAUC_NDCG@5_diff1(MIRACL) value: 8.618074920961075 - type: nAUC_NDCG@5_max(MIRACL) value: 30.808600807482367 - type: nAUC_NDCG@5_std(MIRACL) value: 15.793512242130051 - type: nAUC_P@1000_diff1(MIRACL) value: -24.81839490148569 - type: nAUC_P@1000_max(MIRACL) value: 34.16200383739091 - type: nAUC_P@1000_std(MIRACL) value: 20.95890369662007 - type: nAUC_P@100_diff1(MIRACL) value: -24.818394901485657 - type: nAUC_P@100_max(MIRACL) value: 34.16200383739092 - type: nAUC_P@100_std(MIRACL) value: 20.958903696620112 - type: nAUC_P@10_diff1(MIRACL) value: -22.646461560750986 - type: nAUC_P@10_max(MIRACL) value: 34.57373514819872 - type: nAUC_P@10_std(MIRACL) value: 24.27599718176041 - type: nAUC_P@1_diff1(MIRACL) value: 16.925455715967676 - type: nAUC_P@1_max(MIRACL) value: 36.72266755084653 - type: nAUC_P@1_std(MIRACL) value: 18.357456476212622 - type: nAUC_P@20_diff1(MIRACL) value: -23.33449798384014 - type: nAUC_P@20_max(MIRACL) value: 34.92822081787735 - type: nAUC_P@20_std(MIRACL) value: 25.048280657629267 - type: nAUC_P@3_diff1(MIRACL) value: -11.60659490286 - type: nAUC_P@3_max(MIRACL) value: 38.187883056013035 - type: nAUC_P@3_std(MIRACL) value: 21.234776997940628 - type: nAUC_P@5_diff1(MIRACL) value: -18.86697977242918 - type: nAUC_P@5_max(MIRACL) value: 35.6110661197626 - type: nAUC_P@5_std(MIRACL) value: 22.11165620702996 - type: nAUC_Recall@1000_diff1(MIRACL) value: -31.456413113303867 - type: nAUC_Recall@1000_max(MIRACL) value: 63.785265733309636 - type: nAUC_Recall@1000_std(MIRACL) value: 36.587933217871914 - type: nAUC_Recall@100_diff1(MIRACL) value: -31.456413113303867 - type: nAUC_Recall@100_max(MIRACL) value: 63.785265733309636 - type: nAUC_Recall@100_std(MIRACL) value: 36.587933217871914 - type: nAUC_Recall@10_diff1(MIRACL) value: -9.518740341549913 - type: nAUC_Recall@10_max(MIRACL) value: 35.00853357699468 - type: nAUC_Recall@10_std(MIRACL) value: 22.79313936486099 - type: nAUC_Recall@1_diff1(MIRACL) value: 28.616487922173768 - type: nAUC_Recall@1_max(MIRACL) value: 12.986192530664518 - type: nAUC_Recall@1_std(MIRACL) value: 4.086145762604503 - type: nAUC_Recall@20_diff1(MIRACL) value: -17.771143411342166 - type: nAUC_Recall@20_max(MIRACL) value: 47.59780316487735 - type: nAUC_Recall@20_std(MIRACL) value: 33.25494707686132 - type: nAUC_Recall@3_diff1(MIRACL) value: 10.171226133119783 - type: nAUC_Recall@3_max(MIRACL) value: 21.097634288680847 - type: nAUC_Recall@3_std(MIRACL) value: 10.087211861733298 - type: nAUC_Recall@5_diff1(MIRACL) value: 1.6868374913242932 - type: nAUC_Recall@5_max(MIRACL) value: 25.874440474993165 - type: nAUC_Recall@5_std(MIRACL) value: 13.46380924822079 - task: type: Retrieval dataset: name: MTEB MIRACLRetrieval (ru) type: miracl/mmteb-miracl config: ru split: dev revision: main metrics: - type: main_score value: 53.909 - type: map_at_1 value: 24.308 - type: map_at_10 value: 43.258 - type: map_at_100 value: 46.053 - type: map_at_1000 value: 46.176 - type: map_at_20 value: 44.962 - type: map_at_3 value: 36.129 - type: map_at_5 value: 40.077 - type: mrr_at_1 value: 49.92012779552716 - type: mrr_at_10 value: 62.639554490592865 - type: mrr_at_100 value: 63.09260401526302 - type: mrr_at_1000 value: 63.10428906436666 - type: mrr_at_20 value: 62.94919151853632 - type: mrr_at_3 value: 60.15708200212997 - type: mrr_at_5 value: 61.83439829605969 - type: nauc_map_at_1000_diff1 value: 24.249990208199268 - type: nauc_map_at_1000_max value: 25.29688440384686 - type: nauc_map_at_1000_std value: 2.4312163206740536 - type: nauc_map_at_100_diff1 value: 24.2554939267347 - type: nauc_map_at_100_max value: 25.25054164924535 - type: nauc_map_at_100_std value: 2.4121726280069757 - type: nauc_map_at_10_diff1 value: 24.411765629418987 - type: nauc_map_at_10_max value: 23.13035697774593 - type: nauc_map_at_10_std value: -0.1673711528601927 - type: nauc_map_at_1_diff1 value: 30.55123128484441 - type: nauc_map_at_1_max value: 13.83849108263988 - type: nauc_map_at_1_std value: -7.087181528435525 - type: nauc_map_at_20_diff1 value: 24.125033292556417 - type: nauc_map_at_20_max value: 24.563171125814296 - type: nauc_map_at_20_std value: 1.266006461448722 - type: nauc_map_at_3_diff1 value: 25.71581305774253 - type: nauc_map_at_3_max value: 18.708623514300097 - type: nauc_map_at_3_std value: -4.772722288463871 - type: nauc_map_at_5_diff1 value: 25.352787694389097 - type: nauc_map_at_5_max value: 20.974296353287084 - type: nauc_map_at_5_std value: -3.4007260047029835 - type: nauc_mrr_at_1000_diff1 value: 29.492072727604622 - type: nauc_mrr_at_1000_max value: 34.60333674990558 - type: nauc_mrr_at_1000_std value: 11.223537361751173 - type: nauc_mrr_at_100_diff1 value: 29.47919553914885 - type: nauc_mrr_at_100_max value: 34.618795300361995 - type: nauc_mrr_at_100_std value: 11.243824787491663 - type: nauc_mrr_at_10_diff1 value: 29.481060608078298 - type: nauc_mrr_at_10_max value: 34.752363175415745 - type: nauc_mrr_at_10_std value: 10.98618160728943 - type: nauc_mrr_at_1_diff1 value: 31.81056902767142 - type: nauc_mrr_at_1_max value: 30.351978574096773 - type: nauc_mrr_at_1_std value: 9.735911194663025 - type: nauc_mrr_at_20_diff1 value: 29.390754002995035 - type: nauc_mrr_at_20_max value: 34.75816984434079 - type: nauc_mrr_at_20_std value: 11.325226515477347 - type: nauc_mrr_at_3_diff1 value: 29.948364490803186 - type: nauc_mrr_at_3_max value: 33.973850208221556 - type: nauc_mrr_at_3_std value: 9.988883050022485 - type: nauc_mrr_at_5_diff1 value: 29.477773016468696 - type: nauc_mrr_at_5_max value: 34.38532892473932 - type: nauc_mrr_at_5_std value: 10.206783034393654 - type: nauc_ndcg_at_1000_diff1 value: 24.15494700259076 - type: nauc_ndcg_at_1000_max value: 32.367504385127035 - type: nauc_ndcg_at_1000_std value: 10.372857487814498 - type: nauc_ndcg_at_100_diff1 value: 23.97247958991815 - type: nauc_ndcg_at_100_max value: 32.21110774026889 - type: nauc_ndcg_at_100_std value: 11.065328347817761 - type: nauc_ndcg_at_10_diff1 value: 24.038789867355796 - type: nauc_ndcg_at_10_max value: 28.14682223937745 - type: nauc_ndcg_at_10_std value: 4.518525314723316 - type: nauc_ndcg_at_1_diff1 value: 31.81056902767142 - type: nauc_ndcg_at_1_max value: 30.351978574096773 - type: nauc_ndcg_at_1_std value: 9.735911194663025 - type: nauc_ndcg_at_20_diff1 value: 23.157990079778138 - type: nauc_ndcg_at_20_max value: 30.521172934621703 - type: nauc_ndcg_at_20_std value: 7.660125728373433 - type: nauc_ndcg_at_3_diff1 value: 24.44153871615053 - type: nauc_ndcg_at_3_max value: 27.08209732696818 - type: nauc_ndcg_at_3_std value: 3.8766269917792537 - type: nauc_ndcg_at_5_diff1 value: 24.952468410841863 - type: nauc_ndcg_at_5_max value: 26.29873769608537 - type: nauc_ndcg_at_5_std value: 1.3359423751654511 - type: nauc_precision_at_1000_diff1 value: -9.104010991734798 - type: nauc_precision_at_1000_max value: 20.36838078039637 - type: nauc_precision_at_1000_std value: 26.889986331386297 - type: nauc_precision_at_100_diff1 value: -7.181546793298205 - type: nauc_precision_at_100_max value: 24.32969645433586 - type: nauc_precision_at_100_std value: 31.546209514202232 - type: nauc_precision_at_10_diff1 value: -1.0044021788494442 - type: nauc_precision_at_10_max value: 29.37074096666726 - type: nauc_precision_at_10_std value: 25.000959926288214 - type: nauc_precision_at_1_diff1 value: 31.81056902767142 - type: nauc_precision_at_1_max value: 30.351978574096773 - type: nauc_precision_at_1_std value: 9.735911194663025 - type: nauc_precision_at_20_diff1 value: -5.242529022989003 - type: nauc_precision_at_20_max value: 28.199268120740822 - type: nauc_precision_at_20_std value: 28.460986811065037 - type: nauc_precision_at_3_diff1 value: 9.46419634664173 - type: nauc_precision_at_3_max value: 32.203956451949914 - type: nauc_precision_at_3_std value: 16.4095713138301 - type: nauc_precision_at_5_diff1 value: 3.719098257572974 - type: nauc_precision_at_5_max value: 30.53411024247047 - type: nauc_precision_at_5_std value: 17.926227114457067 - type: nauc_recall_at_1000_diff1 value: 12.347919922311121 - type: nauc_recall_at_1000_max value: 62.10824756167678 - type: nauc_recall_at_1000_std value: 65.9625810682273 - type: nauc_recall_at_100_diff1 value: 11.945066948287723 - type: nauc_recall_at_100_max value: 37.07070306829974 - type: nauc_recall_at_100_std value: 38.76495395051901 - type: nauc_recall_at_10_diff1 value: 14.793964290237943 - type: nauc_recall_at_10_max value: 23.170920682517334 - type: nauc_recall_at_10_std value: 5.07461971737137 - type: nauc_recall_at_1_diff1 value: 30.55123128484441 - type: nauc_recall_at_1_max value: 13.83849108263988 - type: nauc_recall_at_1_std value: -7.087181528435525 - type: nauc_recall_at_20_diff1 value: 10.349310874535616 - type: nauc_recall_at_20_max value: 27.72667852012557 - type: nauc_recall_at_20_std value: 13.37946493360006 - type: nauc_recall_at_3_diff1 value: 20.660181561801195 - type: nauc_recall_at_3_max value: 16.734608747226137 - type: nauc_recall_at_3_std value: -5.887299100086449 - type: nauc_recall_at_5_diff1 value: 19.292387971699007 - type: nauc_recall_at_5_max value: 18.151647291256193 - type: nauc_recall_at_5_std value: -5.3874570564310895 - type: ndcg_at_1 value: 49.919999999999995 - type: ndcg_at_10 value: 53.909 - type: ndcg_at_100 value: 61.346999999999994 - type: ndcg_at_1000 value: 62.831 - type: ndcg_at_20 value: 57.44200000000001 - type: ndcg_at_3 value: 48.034 - type: ndcg_at_5 value: 50.151 - type: precision_at_1 value: 49.919999999999995 - type: precision_at_10 value: 16.206 - type: precision_at_100 value: 2.467 - type: precision_at_1000 value: 0.27499999999999997 - type: precision_at_20 value: 9.847999999999999 - type: precision_at_3 value: 33.013999999999996 - type: precision_at_5 value: 25.495 - type: recall_at_1 value: 24.308 - type: recall_at_10 value: 64.226 - type: recall_at_100 value: 88.532 - type: recall_at_1000 value: 96.702 - type: recall_at_20 value: 73.855 - type: recall_at_3 value: 43.75 - type: recall_at_5 value: 53.293 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (ru) type: mteb/amazon_massive_intent config: ru split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 66.96704774714189 - type: f1 value: 63.75700201120695 - type: f1_weighted value: 65.79948352494334 - type: main_score value: 66.96704774714189 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (ru) type: mteb/amazon_massive_scenario config: ru split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 71.79556153328849 - type: f1 value: 71.04798190430378 - type: f1_weighted value: 71.11136110921589 - type: main_score value: 71.79556153328849 - task: type: STS dataset: name: MTEB RUParaPhraserSTS (default) type: merionum/ru_paraphraser config: default split: test revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4 metrics: - type: cosine_pearson value: 69.4312341087414 - type: cosine_spearman value: 76.16273410937974 - type: euclidean_pearson value: 73.59970264325928 - type: euclidean_spearman value: 76.16273410937974 - type: main_score value: 76.16273410937974 - type: manhattan_pearson value: 73.63850191752708 - type: manhattan_spearman value: 76.22156395676978 - type: pearson value: 69.4312341087414 - type: spearman value: 76.16273410937974 - task: type: Retrieval dataset: name: MTEB RiaNewsRetrieval (default) type: ai-forever/ria-news-retrieval config: default split: test revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7 metrics: - type: main_score value: 78.864 - type: map_at_1 value: 67.61 - type: map_at_10 value: 75.44800000000001 - type: map_at_100 value: 75.73 - type: map_at_1000 value: 75.74 - type: map_at_20 value: 75.63 - type: map_at_3 value: 74.058 - type: map_at_5 value: 74.935 - type: mrr_at_1 value: 67.61 - type: mrr_at_10 value: 75.44837698412663 - type: mrr_at_100 value: 75.7296913526584 - type: mrr_at_1000 value: 75.7404584781072 - type: mrr_at_20 value: 75.62998240983255 - type: mrr_at_3 value: 74.05833333333295 - type: mrr_at_5 value: 74.93533333333274 - type: nauc_map_at_1000_diff1 value: 76.73003886073126 - type: nauc_map_at_1000_max value: 23.880592237559313 - type: nauc_map_at_1000_std value: -16.639489061431295 - type: nauc_map_at_100_diff1 value: 76.72565072181389 - type: nauc_map_at_100_max value: 23.881455390102456 - type: nauc_map_at_100_std value: -16.63176355032267 - type: nauc_map_at_10_diff1 value: 76.64273887966773 - type: nauc_map_at_10_max value: 23.81082154251487 - type: nauc_map_at_10_std value: -16.77740307482434 - type: nauc_map_at_1_diff1 value: 79.73607180360645 - type: nauc_map_at_1_max value: 21.20262368559921 - type: nauc_map_at_1_std value: -19.089796155513238 - type: nauc_map_at_20_diff1 value: 76.7030611694817 - type: nauc_map_at_20_max value: 23.838907707504127 - type: nauc_map_at_20_std value: -16.672743811541736 - type: nauc_map_at_3_diff1 value: 76.50523775835022 - type: nauc_map_at_3_max value: 23.60179905501101 - type: nauc_map_at_3_std value: -17.693757802981956 - type: nauc_map_at_5_diff1 value: 76.61576372823448 - type: nauc_map_at_5_max value: 23.862587318336775 - type: nauc_map_at_5_std value: -17.0437966767025 - type: nauc_mrr_at_1000_diff1 value: 76.73003886073126 - type: nauc_mrr_at_1000_max value: 23.880592237559313 - type: nauc_mrr_at_1000_std value: -16.639489061431295 - type: nauc_mrr_at_100_diff1 value: 76.72565072181389 - type: nauc_mrr_at_100_max value: 23.881455390102456 - type: nauc_mrr_at_100_std value: -16.63176355032267 - type: nauc_mrr_at_10_diff1 value: 76.64273887966773 - type: nauc_mrr_at_10_max value: 23.81082154251487 - type: nauc_mrr_at_10_std value: -16.77740307482434 - type: nauc_mrr_at_1_diff1 value: 79.73607180360645 - type: nauc_mrr_at_1_max value: 21.20262368559921 - type: nauc_mrr_at_1_std value: -19.089796155513238 - type: nauc_mrr_at_20_diff1 value: 76.7030611694817 - type: nauc_mrr_at_20_max value: 23.838907707504127 - type: nauc_mrr_at_20_std value: -16.672743811541736 - type: nauc_mrr_at_3_diff1 value: 76.50523775835022 - type: nauc_mrr_at_3_max value: 23.60179905501101 - type: nauc_mrr_at_3_std value: -17.693757802981956 - type: nauc_mrr_at_5_diff1 value: 76.61576372823448 - type: nauc_mrr_at_5_max value: 23.862587318336775 - type: nauc_mrr_at_5_std value: -17.0437966767025 - type: nauc_ndcg_at_1000_diff1 value: 76.016960312922 - type: nauc_ndcg_at_1000_max value: 25.434179222015285 - type: nauc_ndcg_at_1000_std value: -14.489226598374966 - type: nauc_ndcg_at_100_diff1 value: 75.87402195675239 - type: nauc_ndcg_at_100_max value: 25.562687163467295 - type: nauc_ndcg_at_100_std value: -14.165819919505346 - type: nauc_ndcg_at_10_diff1 value: 75.47305900096035 - type: nauc_ndcg_at_10_max value: 24.9111489869184 - type: nauc_ndcg_at_10_std value: -15.106328069022739 - type: nauc_ndcg_at_1_diff1 value: 79.73607180360645 - type: nauc_ndcg_at_1_max value: 21.20262368559921 - type: nauc_ndcg_at_1_std value: -19.089796155513238 - type: nauc_ndcg_at_20_diff1 value: 75.71180859144839 - type: nauc_ndcg_at_20_max value: 25.12671193294504 - type: nauc_ndcg_at_20_std value: -14.582900241958443 - type: nauc_ndcg_at_3_diff1 value: 75.32126900936046 - type: nauc_ndcg_at_3_max value: 24.39543091769943 - type: nauc_ndcg_at_3_std value: -17.183511551234538 - type: nauc_ndcg_at_5_diff1 value: 75.46170695160178 - type: nauc_ndcg_at_5_max value: 25.001670951020937 - type: nauc_ndcg_at_5_std value: -15.861405796419376 - type: nauc_precision_at_1000_diff1 value: 65.48397136632431 - type: nauc_precision_at_1000_max value: 77.05533391807842 - type: nauc_precision_at_1000_std value: 54.14509238038628 - type: nauc_precision_at_100_diff1 value: 66.6077978535527 - type: nauc_precision_at_100_max value: 54.07639576230772 - type: nauc_precision_at_100_std value: 28.071043659958185 - type: nauc_precision_at_10_diff1 value: 68.71592258481675 - type: nauc_precision_at_10_max value: 31.40944055975099 - type: nauc_precision_at_10_std value: -4.421548783271478 - type: nauc_precision_at_1_diff1 value: 79.73607180360645 - type: nauc_precision_at_1_max value: 21.20262368559921 - type: nauc_precision_at_1_std value: -19.089796155513238 - type: nauc_precision_at_20_diff1 value: 68.87539427047768 - type: nauc_precision_at_20_max value: 35.602508001542176 - type: nauc_precision_at_20_std value: 3.6366951424017184 - type: nauc_precision_at_3_diff1 value: 70.84549884977267 - type: nauc_precision_at_3_max value: 27.35862016332144 - type: nauc_precision_at_3_std value: -15.255203279510601 - type: nauc_precision_at_5_diff1 value: 70.27864341297163 - type: nauc_precision_at_5_max value: 30.29162962827962 - type: nauc_precision_at_5_std value: -10.193470309556703 - type: nauc_recall_at_1000_diff1 value: 65.48397136632475 - type: nauc_recall_at_1000_max value: 77.05533391807865 - type: nauc_recall_at_1000_std value: 54.14509238038722 - type: nauc_recall_at_100_diff1 value: 66.60779785355253 - type: nauc_recall_at_100_max value: 54.07639576230805 - type: nauc_recall_at_100_std value: 28.071043659958207 - type: nauc_recall_at_10_diff1 value: 68.71592258481655 - type: nauc_recall_at_10_max value: 31.409440559751168 - type: nauc_recall_at_10_std value: -4.421548783271414 - type: nauc_recall_at_1_diff1 value: 79.73607180360645 - type: nauc_recall_at_1_max value: 21.20262368559921 - type: nauc_recall_at_1_std value: -19.089796155513238 - type: nauc_recall_at_20_diff1 value: 68.87539427047763 - type: nauc_recall_at_20_max value: 35.60250800154217 - type: nauc_recall_at_20_std value: 3.6366951424018716 - type: nauc_recall_at_3_diff1 value: 70.84549884977265 - type: nauc_recall_at_3_max value: 27.358620163321408 - type: nauc_recall_at_3_std value: -15.255203279510626 - type: nauc_recall_at_5_diff1 value: 70.2786434129717 - type: nauc_recall_at_5_max value: 30.291629628279733 - type: nauc_recall_at_5_std value: -10.193470309556629 - type: ndcg_at_1 value: 67.61 - type: ndcg_at_10 value: 78.864 - type: ndcg_at_100 value: 80.211 - type: ndcg_at_1000 value: 80.50699999999999 - type: ndcg_at_20 value: 79.514 - type: ndcg_at_3 value: 76.05499999999999 - type: ndcg_at_5 value: 77.625 - type: precision_at_1 value: 67.61 - type: precision_at_10 value: 8.941 - type: precision_at_100 value: 0.9570000000000001 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.598 - type: precision_at_3 value: 27.267000000000003 - type: precision_at_5 value: 17.118 - type: recall_at_1 value: 67.61 - type: recall_at_10 value: 89.41 - type: recall_at_100 value: 95.67 - type: recall_at_1000 value: 98.02 - type: recall_at_20 value: 91.96 - type: recall_at_3 value: 81.8 - type: recall_at_5 value: 85.59 - task: type: Reranking dataset: name: MTEB RuBQReranking (default) type: ai-forever/rubq-reranking config: default split: test revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2 metrics: - type: main_score value: 70.8676293869892 - type: map value: 70.8676293869892 - type: mrr value: 76.21519142795738 - type: nAUC_map_diff1 value: 37.107477549298316 - type: nAUC_map_max value: 24.03175751284917 - type: nAUC_map_std value: 10.543266622518289 - type: nAUC_mrr_diff1 value: 41.59000224211641 - type: nAUC_mrr_max value: 31.06363682531277 - type: nAUC_mrr_std value: 14.95221681925582 - task: type: Retrieval dataset: name: MTEB RuBQRetrieval (default) type: ai-forever/rubq-retrieval config: default split: test revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b metrics: - type: main_score value: 66.77499999999999 - type: map_at_1 value: 38.964 - type: map_at_10 value: 58.679 - type: map_at_100 value: 59.74699999999999 - type: map_at_1000 value: 59.784000000000006 - type: map_at_20 value: 59.386 - type: map_at_3 value: 53.183 - type: map_at_5 value: 56.619 - type: mrr_at_1 value: 56.08747044917257 - type: mrr_at_10 value: 67.69477747757892 - type: mrr_at_100 value: 68.11028091076142 - type: mrr_at_1000 value: 68.12016895906572 - type: mrr_at_20 value: 67.99200829920431 - type: mrr_at_3 value: 65.40583136327825 - type: mrr_at_5 value: 66.86564223798278 - type: nauc_map_at_1000_diff1 value: 35.13932221843019 - type: nauc_map_at_1000_max value: 31.603311334444573 - type: nauc_map_at_1000_std value: -8.046320861408992 - type: nauc_map_at_100_diff1 value: 35.10777181986462 - type: nauc_map_at_100_max value: 31.603059769116086 - type: nauc_map_at_100_std value: -8.027533855390534 - type: nauc_map_at_10_diff1 value: 34.864122757362644 - type: nauc_map_at_10_max value: 31.625252670171776 - type: nauc_map_at_10_std value: -8.334256854154406 - type: nauc_map_at_1_diff1 value: 40.90418146524424 - type: nauc_map_at_1_max value: 22.269308553048656 - type: nauc_map_at_1_std value: -9.89932822257807 - type: nauc_map_at_20_diff1 value: 34.88664926631265 - type: nauc_map_at_20_max value: 31.60883821879978 - type: nauc_map_at_20_std value: -8.095294415067395 - type: nauc_map_at_3_diff1 value: 35.13227486507324 - type: nauc_map_at_3_max value: 28.53848590790504 - type: nauc_map_at_3_std value: -9.223288317647375 - type: nauc_map_at_5_diff1 value: 35.0811457266201 - type: nauc_map_at_5_max value: 30.904120563551984 - type: nauc_map_at_5_std value: -9.190854442617361 - type: nauc_mrr_at_1000_diff1 value: 43.43247399448727 - type: nauc_mrr_at_1000_max value: 37.599979998251435 - type: nauc_mrr_at_1000_std value: -8.461570912726742 - type: nauc_mrr_at_100_diff1 value: 43.42803056119293 - type: nauc_mrr_at_100_max value: 37.60590141137654 - type: nauc_mrr_at_100_std value: -8.456064029069271 - type: nauc_mrr_at_10_diff1 value: 43.34260974243939 - type: nauc_mrr_at_10_max value: 37.7505248362988 - type: nauc_mrr_at_10_std value: -8.4789005424329 - type: nauc_mrr_at_1_diff1 value: 46.8647472051038 - type: nauc_mrr_at_1_max value: 34.40507832070825 - type: nauc_mrr_at_1_std value: -9.148947481764475 - type: nauc_mrr_at_20_diff1 value: 43.37024314535158 - type: nauc_mrr_at_20_max value: 37.62040185137823 - type: nauc_mrr_at_20_std value: -8.497477607790167 - type: nauc_mrr_at_3_diff1 value: 42.980588675445404 - type: nauc_mrr_at_3_max value: 37.43524263010435 - type: nauc_mrr_at_3_std value: -8.698337782804687 - type: nauc_mrr_at_5_diff1 value: 43.224910985482765 - type: nauc_mrr_at_5_max value: 38.00633132611649 - type: nauc_mrr_at_5_std value: -8.554751807691591 - type: nauc_ndcg_at_1000_diff1 value: 36.58393000267959 - type: nauc_ndcg_at_1000_max value: 34.491617466873194 - type: nauc_ndcg_at_1000_std value: -6.968933918560401 - type: nauc_ndcg_at_100_diff1 value: 35.909285337288004 - type: nauc_ndcg_at_100_max value: 34.60361766529284 - type: nauc_ndcg_at_100_std value: -6.3241815724593256 - type: nauc_ndcg_at_10_diff1 value: 34.86940448346685 - type: nauc_ndcg_at_10_max value: 34.89327996781203 - type: nauc_ndcg_at_10_std value: -7.377912505502211 - type: nauc_ndcg_at_1_diff1 value: 47.16372543032823 - type: nauc_ndcg_at_1_max value: 34.48620759685232 - type: nauc_ndcg_at_1_std value: -8.881483248224074 - type: nauc_ndcg_at_20_diff1 value: 34.901006085701795 - type: nauc_ndcg_at_20_max value: 34.766948088105174 - type: nauc_ndcg_at_20_std value: -6.680375186500669 - type: nauc_ndcg_at_3_diff1 value: 35.16537335241684 - type: nauc_ndcg_at_3_max value: 31.385279916552566 - type: nauc_ndcg_at_3_std value: -8.871530629591442 - type: nauc_ndcg_at_5_diff1 value: 35.152664105492605 - type: nauc_ndcg_at_5_max value: 33.89982336069226 - type: nauc_ndcg_at_5_std value: -8.92795810387048 - type: nauc_precision_at_1000_diff1 value: -6.773234121047722 - type: nauc_precision_at_1000_max value: 7.0059404092503925 - type: nauc_precision_at_1000_std value: 4.757430160226248 - type: nauc_precision_at_100_diff1 value: -6.88009476644726 - type: nauc_precision_at_100_max value: 10.391099419327492 - type: nauc_precision_at_100_std value: 7.203837158689326 - type: nauc_precision_at_10_diff1 value: -0.7155570800016817 - type: nauc_precision_at_10_max value: 21.06902041338105 - type: nauc_precision_at_10_std value: 3.7465404459270815 - type: nauc_precision_at_1_diff1 value: 47.16372543032823 - type: nauc_precision_at_1_max value: 34.48620759685232 - type: nauc_precision_at_1_std value: -8.881483248224074 - type: nauc_precision_at_20_diff1 value: -4.695792117927824 - type: nauc_precision_at_20_max value: 16.53698826752203 - type: nauc_precision_at_20_std value: 6.681726081495262 - type: nauc_precision_at_3_diff1 value: 12.446292477522807 - type: nauc_precision_at_3_max value: 27.622770072159884 - type: nauc_precision_at_3_std value: -2.243774812074271 - type: nauc_precision_at_5_diff1 value: 5.851972491534291 - type: nauc_precision_at_5_max value: 25.400246002612235 - type: nauc_precision_at_5_std value: -0.8059534151280825 - type: nauc_recall_at_1000_diff1 value: 17.33619903703495 - type: nauc_recall_at_1000_max value: 46.39520954734979 - type: nauc_recall_at_1000_std value: 59.70020859630654 - type: nauc_recall_at_100_diff1 value: 9.309667388080348 - type: nauc_recall_at_100_max value: 35.92482580062717 - type: nauc_recall_at_100_std value: 24.021627313676188 - type: nauc_recall_at_10_diff1 value: 19.87959406394684 - type: nauc_recall_at_10_max value: 35.00740821313158 - type: nauc_recall_at_10_std value: -2.6455284599102784 - type: nauc_recall_at_1_diff1 value: 40.90418146524424 - type: nauc_recall_at_1_max value: 22.269308553048656 - type: nauc_recall_at_1_std value: -9.89932822257807 - type: nauc_recall_at_20_diff1 value: 15.028975252982061 - type: nauc_recall_at_20_max value: 34.901307836728016 - type: nauc_recall_at_20_std value: 2.9027647776175494 - type: nauc_recall_at_3_diff1 value: 26.13225834790859 - type: nauc_recall_at_3_max value: 27.915627935543725 - type: nauc_recall_at_3_std value: -8.069525359773976 - type: nauc_recall_at_5_diff1 value: 24.184086614024686 - type: nauc_recall_at_5_max value: 32.607378848166675 - type: nauc_recall_at_5_std value: -7.730984752196379 - type: ndcg_at_1 value: 55.969 - type: ndcg_at_10 value: 66.77499999999999 - type: ndcg_at_100 value: 70.324 - type: ndcg_at_1000 value: 70.95700000000001 - type: ndcg_at_20 value: 68.613 - type: ndcg_at_3 value: 59.256 - type: ndcg_at_5 value: 63.223 - type: precision_at_1 value: 55.969 - type: precision_at_10 value: 13.297999999999998 - type: precision_at_100 value: 1.585 - type: precision_at_1000 value: 0.167 - type: precision_at_20 value: 7.222 - type: precision_at_3 value: 32.467 - type: precision_at_5 value: 23.073 - type: recall_at_1 value: 38.964 - type: recall_at_10 value: 81.248 - type: recall_at_100 value: 95.124 - type: recall_at_1000 value: 99.30600000000001 - type: recall_at_20 value: 87.35199999999999 - type: recall_at_3 value: 62.785000000000004 - type: recall_at_5 value: 71.986 - task: type: Classification dataset: name: MTEB RuReviewsClassification (default) type: ai-forever/ru-reviews-classification config: default split: test revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a metrics: - type: accuracy value: 67.958984375 - type: f1 value: 67.250877785427 - type: f1_weighted value: 67.25215701797296 - type: main_score value: 67.958984375 - task: type: STS dataset: name: MTEB RuSTSBenchmarkSTS (default) type: ai-forever/ru-stsbenchmark-sts config: default split: test revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018 metrics: - type: cosine_pearson value: 79.11336124619963 - type: cosine_spearman value: 78.69157477180703 - type: euclidean_pearson value: 77.84066073571212 - type: euclidean_spearman value: 78.69157477180703 - type: main_score value: 78.69157477180703 - type: manhattan_pearson value: 77.79213012957939 - type: manhattan_spearman value: 78.61384378877501 - type: pearson value: 79.11336124619963 - type: spearman value: 78.69157477180703 - task: type: Classification dataset: name: MTEB RuSciBenchGRNTIClassification (default) type: ai-forever/ru-scibench-grnti-classification config: default split: test revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 metrics: - type: accuracy value: 59.326171875 - type: f1 value: 58.01171745357119 - type: f1_weighted value: 58.02106511480968 - type: main_score value: 59.326171875 - task: type: Clustering dataset: name: MTEB RuSciBenchGRNTIClusteringP2P (default) type: ai-forever/ru-scibench-grnti-classification config: default split: test revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 metrics: - type: main_score value: 55.46570753380975 - type: v_measure value: 55.46570753380975 - type: v_measure_std value: 0.9813885872798612 - task: type: Classification dataset: name: MTEB RuSciBenchOECDClassification (default) type: ai-forever/ru-scibench-oecd-classification config: default split: test revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 metrics: - type: accuracy value: 46.328125 - type: f1 value: 44.19158709013339 - type: f1_weighted value: 44.190957945676026 - type: main_score value: 46.328125 - task: type: Clustering dataset: name: MTEB RuSciBenchOECDClusteringP2P (default) type: ai-forever/ru-scibench-oecd-classification config: default split: test revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 metrics: - type: main_score value: 47.28635342613908 - type: v_measure value: 47.28635342613908 - type: v_measure_std value: 0.7431017612993989 - task: type: STS dataset: name: MTEB STS22 (ru) type: mteb/sts22-crosslingual-sts config: ru split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 63.10139371129796 - type: cosine_spearman value: 67.06445400504978 - type: euclidean_pearson value: 62.74563386470613 - type: euclidean_spearman value: 67.06445400504978 - type: main_score value: 67.06445400504978 - type: manhattan_pearson value: 62.540465664732395 - type: manhattan_spearman value: 66.65899492022648 - type: pearson value: 63.10139371129796 - type: spearman value: 67.06445400504978 - task: type: MultilabelClassification dataset: name: MTEB SensitiveTopicsClassification (default) type: ai-forever/sensitive-topics-classification config: default split: test revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2 metrics: - type: accuracy value: 33.0712890625 - type: f1 value: 38.063573562290024 - type: lrap value: 49.586995442707696 - type: main_score value: 33.0712890625 - task: type: PairClassification dataset: name: MTEB TERRa (default) type: ai-forever/terra-pairclassification config: default split: dev revision: 7b58f24536063837d644aab9a023c62199b2a612 metrics: - type: cosine_accuracy value: 61.563517915309454 - type: cosine_accuracy_threshold value: 75.3734290599823 - type: cosine_ap value: 60.78861909325018 - type: cosine_f1 value: 67.25663716814158 - type: cosine_f1_threshold value: 54.05237674713135 - type: cosine_precision value: 50.836120401337794 - type: cosine_recall value: 99.34640522875817 - type: dot_accuracy value: 61.563517915309454 - type: dot_accuracy_threshold value: 75.37343502044678 - type: dot_ap value: 60.78861909325018 - type: dot_f1 value: 67.25663716814158 - type: dot_f1_threshold value: 54.05237674713135 - type: dot_precision value: 50.836120401337794 - type: dot_recall value: 99.34640522875817 - type: euclidean_accuracy value: 61.563517915309454 - type: euclidean_accuracy_threshold value: 70.18057107925415 - type: euclidean_ap value: 60.78861909325018 - type: euclidean_f1 value: 67.25663716814158 - type: euclidean_f1_threshold value: 95.86195945739746 - type: euclidean_precision value: 50.836120401337794 - type: euclidean_recall value: 99.34640522875817 - type: main_score value: 60.78861909325018 - type: manhattan_accuracy value: 60.91205211726385 - type: manhattan_accuracy_threshold value: 1813.1645202636719 - type: manhattan_ap value: 60.478709337038936 - type: manhattan_f1 value: 67.10816777041943 - type: manhattan_f1_threshold value: 2475.027275085449 - type: manhattan_precision value: 50.66666666666667 - type: manhattan_recall value: 99.34640522875817 - type: max_ap value: 60.78861909325018 - type: max_f1 value: 67.25663716814158 - type: max_precision value: 50.836120401337794 - type: max_recall value: 99.34640522875817 - type: similarity_accuracy value: 61.563517915309454 - type: similarity_accuracy_threshold value: 75.3734290599823 - type: similarity_ap value: 60.78861909325018 - type: similarity_f1 value: 67.25663716814158 - type: similarity_f1_threshold value: 54.05237674713135 - type: similarity_precision value: 50.836120401337794 - type: similarity_recall value: 99.34640522875817 --- # Model Card for ru-en-RoSBERTa The ru-en-RoSBERTa is a general text embedding model for Russian. The model is based on [ruRoBERTa](https://huggingface.co/ai-forever/ruRoberta-large) and fine-tuned with ~4M pairs of supervised, synthetic and unsupervised data in Russian and English. Tokenizer supports some English tokens from [RoBERTa](https://huggingface.co/FacebookAI/roberta-large) tokenizer. For more model details please refer to our [article](https://arxiv.org/abs/2408.12503). ## Usage The model can be used as is with prefixes. It is recommended to use CLS pooling. The choice of prefix and pooling depends on the task. We use the following basic rules to choose a prefix: - `"search_query: "` and `"search_document: "` prefixes are for answer or relevant paragraph retrieval - `"classification: "` prefix is for symmetric paraphrasing related tasks (STS, NLI, Bitext Mining) - `"clustering: "` prefix is for any tasks that rely on thematic features (topic classification, title-body retrieval) To better tailor the model to your needs, you can fine-tune it with relevant high-quality Russian and English datasets. Below are examples of texts encoding using the Transformers and SentenceTransformers libraries. ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def pool(hidden_state, mask, pooling_method="cls"): if pooling_method == "mean": s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1) d = mask.sum(axis=1, keepdim=True).float() return s / d elif pooling_method == "cls": return hidden_state[:, 0] inputs = [ # "classification: Он нам и <unk> не нужон ваш Интернет!", "clustering: В Ярославской области разрешили работу бань, но без посетителей", "search_query: Сколько программистов нужно, чтобы вкрутить лампочку?", # "classification: What a time to be alive!", "clustering: Ярославским баням разрешили работать без посетителей", "search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", ] tokenizer = AutoTokenizer.from_pretrained("ai-forever/ru-en-RoSBERTa") model = AutoModel.from_pretrained("ai-forever/ru-en-RoSBERTa") tokenized_inputs = tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): outputs = model(**tokenized_inputs) embeddings = pool( outputs.last_hidden_state, tokenized_inputs["attention_mask"], pooling_method="cls" # or try "mean" ) embeddings = F.normalize(embeddings, p=2, dim=1) sim_scores = embeddings[:3] @ embeddings[3:].T print(sim_scores.diag().tolist()) # [0.4796873927116394, 0.9409002065658569, 0.7761015892028809] ``` ### SentenceTransformers ```python from sentence_transformers import SentenceTransformer inputs = [ # "classification: Он нам и <unk> не нужон ваш Интернет!", "clustering: В Ярославской области разрешили работу бань, но без посетителей", "search_query: Сколько программистов нужно, чтобы вкрутить лампочку?", # "classification: What a time to be alive!", "clustering: Ярославским баням разрешили работать без посетителей", "search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", ] # loads model with CLS pooling model = SentenceTransformer("ai-forever/ru-en-RoSBERTa") # embeddings are normalized by default embeddings = model.encode(inputs, convert_to_tensor=True) sim_scores = embeddings[:3] @ embeddings[3:].T print(sim_scores.diag().tolist()) # [0.47968706488609314, 0.940900444984436, 0.7761018872261047] ``` or using prompts (sentence-transformers>=2.4.0): ```python from sentence_transformers import SentenceTransformer # loads model with CLS pooling model = SentenceTransformer("ai-forever/ru-en-RoSBERTa") classification = model.encode(["Он нам и <unk> не нужон ваш Интернет!", "What a time to be alive!"], prompt_name="classification") print(classification[0] @ classification[1].T) # 0.47968706488609314 clustering = model.encode(["В Ярославской области разрешили работу бань, но без посетителей", "Ярославским баням разрешили работать без посетителей"], prompt_name="clustering") print(clustering[0] @ clustering[1].T) # 0.940900444984436 query_embedding = model.encode("Сколько программистов нужно, чтобы вкрутить лампочку?", prompt_name="search_query") document_embedding = model.encode("Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", prompt_name="search_document") print(query_embedding @ document_embedding.T) # 0.7761018872261047 ``` ## Citation ``` @misc{snegirev2024russianfocusedembeddersexplorationrumteb, title={The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design}, author={Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov}, year={2024}, eprint={2408.12503}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2408.12503}, } ``` ## Limitations The model is designed to process texts in Russian, the quality in English is unknown. Maximum input text length is limited to 512 tokens.
[ "PARAPHRASING" ]
Non_BioNLP
fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-52831585
fine-tuned
feature-extraction
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "custom_code", "en", "dataset:fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-52831585", "dataset:allenai/c4", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
1,716,981,388,000
2024-05-29T11:16:41
7
0
--- datasets: - fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-52831585 - allenai/c4 language: - en - en license: apache-2.0 pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb --- This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case: None ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-52831585', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
EJinHF/autotrain-squality_bart_sparse_oracle_with_query-66614136607
EJinHF
summarization
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:EJinHF/autotrain-data-squality_bart_sparse_oracle_with_query", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,686,736,273,000
2023-06-14T09:57:38
22
0
--- datasets: - EJinHF/autotrain-data-squality_bart_sparse_oracle_with_query language: - unk tags: - autotrain - summarization widget: - text: I love AutoTrain co2_eq_emissions: emissions: 0.8905213684161395 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 66614136607 - CO2 Emissions (in grams): 0.8905 ## Validation Metrics - Loss: 3.217 - Rouge1: 33.481 - Rouge2: 6.827 - RougeL: 19.276 - RougeLsum: 30.892 - Gen Len: 140.528 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/EJinHF/autotrain-squality_bart_sparse_oracle_with_query-66614136607 ```
[ "SUMMARIZATION" ]
Non_BioNLP
allenai/tk-instruct-3b-pos
allenai
text2text-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:Super-NaturalInstructions", "arxiv:1910.10683", "arxiv:2204.07705", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,651,867,070,000
2023-01-24T17:09:59
87
0
--- datasets: - Super-NaturalInstructions language: en license: apache-2.0 --- # Model description Tk-Instruct is a series of encoder-decoder Transformer models that are trained to solve various NLP tasks by following in-context instructions (plain language task definitions, k-shot examples, explanations, etc). Built upon the pre-trained [T5 models](https://arxiv.org/abs/1910.10683), they are fine-tuned on a large number of tasks & instructions that are collected in the [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. This enables the model to not only process the training tasks, but also generalize to many unseen tasks without further parameter update. More resources for using the model: - **Paper**: [link](https://arxiv.org/abs/2204.07705) - **Code repository**: [Tk-Instruct](https://github.com/yizhongw/Tk-Instruct) - **Official Website**: [Natural Instructions](https://instructions.apps.allenai.org/) - **All released models**: [allenai/tk-instruct](https://huggingface.co/models?search=allenai/tk-instruct) ## Intended uses & limitations Tk-Instruct can be used to do many NLP tasks by following instructions. ### How to use When instructing the model, task definition or demonstration examples or explanations should be prepended to the original input and fed into the model. You can easily try Tk-Instruct models as follows: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("allenai/tk-instruct-3b-def") >>> model = AutoModelForSeq2SeqLM.from_pretrained("allenai/tk-instruct-3b-def") >>> input_ids = tokenizer.encode( "Definition: return the currency of the given country. Now complete the following example - Input: India. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'Indian Rupee' >>> input_ids = tokenizer.encode( "Definition: negate the following sentence. Input: John went to school. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'John did not go to shool.' ``` ### Limitations We are still working on understanding the behaviors of these models, but here are several issues we have found: - Models are generally sensitive to the instruction. Sometimes rewording the instruction can lead to very different output. - Models are not always compliant to the instruction. Sometimes the model don't follow your instruction (e.g., when you ask the model to generate one sentence, it might still generate one word or a long story). - Models might totally fail on some tasks. If you find serious issues or any interesting result, you are welcome to share with us! ## Training data Tk-Instruct is trained using the tasks & instructions in [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. We follow the official train/test split. Tk-Instruct model series were trained using 757 tasks, and mTk-Instruct series were trained using 1271 tasks (including some non-English tasks). The training tasks are in 64 broad categories, such as text categorization / question answering / sentiment analysis / summarization / grammar error detection / dialogue generation / etc. The other 12 categories are selected for evaluation. ## Training procedure All our models are initialized from either T5 models or mT5 models. Because generating the output can be regarded as a form of language modeling, we used their [LM adapted version](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k). All data is converted into a text-to-text format, and models are fine-tuned to maximize the likelihood of the output sequence. Our [released models](https://huggingface.co/models?search=allenai/tk-instruct) are in different sizes, and each of them was trained with a specific type of instruction encoding. For instance, `tk-instruct-3b-def-pos` was initialized from [t5-xl-lm-adapt](https://huggingface.co/google/t5-xl-lm-adapt), and it saw task definition & 2 positive examples as the instruction during training time. Although they are trained with only one type of instruction encodings, we found they can usually work with other type of encodings at test time (see more in our paper). ### BibTeX entry and citation info ```bibtex @article{wang2022benchmarking, title={Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and A. Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and M. Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddharth Deepak Mishra and Sujan C. Reddy and Sumanta Patro and Tanay Dixit and Xu-dong Shen and Chitta Baral and Yejin Choi and Hannaneh Hajishirzi and Noah A. Smith and Daniel Khashabi}, year={2022}, archivePrefix={arXiv}, eprint={2204.07705}, primaryClass={cs.CL}, } ```
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
ak2603/mt5-small-finetuned-Drishtants-summaries
ak2603
summarization
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,736,179,305,000
2025-01-08T19:06:34
13
0
--- base_model: google/mt5-small library_name: transformers license: apache-2.0 metrics: - rouge tags: - summarization - generated_from_trainer model-index: - name: mt5-small-finetuned-Drishtants-summaries results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-Drishtants-summaries This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8276 - Rouge1: 0.3953 - Rouge2: 0.2206 - Rougel: 0.3789 - Rougelsum: 0.3822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 24.1138 | 1.0 | 13 | 15.3479 | 0.0044 | 0.0 | 0.0043 | 0.0044 | | 19.7323 | 2.0 | 26 | 13.7879 | 0.0044 | 0.0 | 0.0043 | 0.0044 | | 18.329 | 3.0 | 39 | 11.7699 | 0.0042 | 0.0 | 0.0039 | 0.0042 | | 15.8092 | 4.0 | 52 | 12.9758 | 0.0067 | 0.0 | 0.0064 | 0.0067 | | 13.8072 | 5.0 | 65 | 8.1803 | 0.0048 | 0.0 | 0.0048 | 0.0048 | | 11.9323 | 6.0 | 78 | 6.4151 | 0.0048 | 0.0 | 0.0048 | 0.0048 | | 10.8486 | 7.0 | 91 | 5.3122 | 0.0067 | 0.0 | 0.0067 | 0.0067 | | 10.2067 | 8.0 | 104 | 5.1497 | 0.0098 | 0.0 | 0.0097 | 0.0096 | | 9.4972 | 9.0 | 117 | 4.9039 | 0.0136 | 0.0 | 0.0135 | 0.0132 | | 8.4609 | 10.0 | 130 | 3.9617 | 0.0272 | 0.0013 | 0.0273 | 0.0269 | | 7.2721 | 11.0 | 143 | 3.4252 | 0.0526 | 0.0093 | 0.0522 | 0.0492 | | 5.943 | 12.0 | 156 | 3.1756 | 0.0746 | 0.0170 | 0.0640 | 0.0658 | | 5.5122 | 13.0 | 169 | 2.9797 | 0.0649 | 0.0121 | 0.0610 | 0.0573 | | 5.1628 | 14.0 | 182 | 2.8133 | 0.0818 | 0.0215 | 0.0738 | 0.0733 | | 4.9023 | 15.0 | 195 | 2.6725 | 0.0798 | 0.0262 | 0.0767 | 0.0765 | | 4.4493 | 16.0 | 208 | 2.5408 | 0.0924 | 0.0348 | 0.0881 | 0.0891 | | 4.3145 | 17.0 | 221 | 2.4332 | 0.0914 | 0.0361 | 0.0796 | 0.0800 | | 3.978 | 18.0 | 234 | 2.3434 | 0.0952 | 0.0422 | 0.0835 | 0.0843 | | 3.9377 | 19.0 | 247 | 2.2749 | 0.1289 | 0.0617 | 0.1138 | 0.1137 | | 3.6415 | 20.0 | 260 | 2.2123 | 0.1701 | 0.0698 | 0.1471 | 0.1451 | | 3.4801 | 21.0 | 273 | 2.1490 | 0.1682 | 0.0758 | 0.1497 | 0.1480 | | 3.5114 | 22.0 | 286 | 2.0997 | 0.1885 | 0.0858 | 0.1658 | 0.1662 | | 3.3784 | 23.0 | 299 | 2.0567 | 0.1971 | 0.0931 | 0.1730 | 0.1729 | | 3.2501 | 24.0 | 312 | 2.0291 | 0.1969 | 0.0952 | 0.1752 | 0.1753 | | 3.208 | 25.0 | 325 | 2.0057 | 0.1959 | 0.0883 | 0.1746 | 0.1753 | | 3.0992 | 26.0 | 338 | 1.9769 | 0.1984 | 0.0961 | 0.1759 | 0.1762 | | 2.9069 | 27.0 | 351 | 1.9474 | 0.1938 | 0.0975 | 0.1734 | 0.1734 | | 3.0772 | 28.0 | 364 | 1.9259 | 0.1897 | 0.0978 | 0.1714 | 0.1710 | | 2.8778 | 29.0 | 377 | 1.9098 | 0.1766 | 0.0934 | 0.1584 | 0.1582 | | 2.8723 | 30.0 | 390 | 1.8937 | 0.1752 | 0.0860 | 0.1551 | 0.1551 | | 2.8102 | 31.0 | 403 | 1.8786 | 0.1808 | 0.0889 | 0.1610 | 0.1603 | | 2.8453 | 32.0 | 416 | 1.8660 | 0.1971 | 0.0919 | 0.1745 | 0.1752 | | 2.925 | 33.0 | 429 | 1.8544 | 0.2724 | 0.1441 | 0.2562 | 0.2564 | | 2.8222 | 34.0 | 442 | 1.8468 | 0.3749 | 0.2099 | 0.3583 | 0.3592 | | 2.7711 | 35.0 | 455 | 1.8414 | 0.3950 | 0.2216 | 0.3742 | 0.3785 | | 2.8176 | 36.0 | 468 | 1.8367 | 0.3953 | 0.2206 | 0.3789 | 0.3822 | | 2.7044 | 37.0 | 481 | 1.8321 | 0.3947 | 0.2201 | 0.3781 | 0.3817 | | 2.7696 | 38.0 | 494 | 1.8295 | 0.3953 | 0.2206 | 0.3789 | 0.3822 | | 2.6015 | 39.0 | 507 | 1.8281 | 0.3953 | 0.2206 | 0.3789 | 0.3822 | | 2.6849 | 40.0 | 520 | 1.8276 | 0.3953 | 0.2206 | 0.3789 | 0.3822 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "SUMMARIZATION" ]
Non_BioNLP
hezarai/bert-fa-ner-arman
hezarai
token-classification
[ "hezar", "token-classification", "fa", "dataset:hezarai/arman-ner", "base_model:hezarai/bert-base-fa", "base_model:finetune:hezarai/bert-base-fa", "region:us" ]
1,691,150,663,000
2024-11-14T08:26:23
19
0
--- base_model: - hezarai/bert-base-fa datasets: - hezarai/arman-ner language: - fa library_name: hezar pipeline_tag: token-classification tags: - token-classification - hezar --- ParsBERT model trained on the [Arman-NER](https://huggingface.co/datasets/hezarai/arman-ner) for Named Entity Recognition.
[ "NAMED_ENTITY_RECOGNITION" ]
Non_BioNLP
mesolitica/t5-tiny-bahasa-cased
mesolitica
text2text-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,665,070,188,000
2022-10-06T15:35:23
8
0
--- language: ms --- # t5-tiny-bahasa-cased Pretrained T5 tiny on both standard and local language model for Malay. ## Pretraining Corpus `t5-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. 11. Social media normalization. 12. Noisy EN-MS translation. 13. Noisy MS-EN translation. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
[ "SEMANTIC_SIMILARITY", "TRANSLATION", "SUMMARIZATION" ]
Non_BioNLP
TUM/GottBERT_filtered_base_best
TUM
null
[ "pytorch", "safetensors", "roberta", "RoBERTa", "GottBERT", "BERT", "de", "license:mit", "region:us" ]
1,729,700,809,000
2024-12-10T10:16:27
162
0
--- language: - de license: mit tags: - RoBERTa - GottBERT - BERT --- # GottBERT: A pure German language model GottBERT is the first German-only RoBERTa model, pre-trained on the German portion of the first released OSCAR dataset. This model aims to provide enhanced natural language processing (NLP) performance for the German language across various tasks, including Named Entity Recognition (NER), text classification, and natural language inference (NLI). GottBERT has been developed in two versions: a **base model** and a **large model**, tailored specifically for German-language tasks. - **Model Type**: RoBERTa - **Language**: German - **Base Model**: 12 layers, 125 million parameters - **Large Model**: 24 layers, 355 million parameters - **License**: MIT --- ## Pretraining Details - **Corpus**: German portion of the OSCAR dataset (Common Crawl). - **Data Size**: - Unfiltered: 145GB (~459 million documents) - Filtered: 121GB (~382 million documents) - **Preprocessing**: Filtering included correcting encoding errors (e.g., erroneous umlauts), removing spam and non-German documents using language detection and syntactic filtering. ### Filtering Metrics - **Stopword Ratio**: Detects spam and meaningless content. - **Punctuation Ratio**: Detects abnormal punctuation patterns. - **Upper Token Ratio**: Identifies documents with excessive uppercase tokens (often noisy content). ## **Training Configuration** - **Framework**: [Fairseq](https://github.com/scheiblr/fairseq/tree/TPUv4_very_old) - **Hardware**: - Base Model: 256 TPUv3 pod/128 TPUv4 pod - Large Model: 128 TPUv4 pod - **Training Time**: - Base Model: 1.2 days - Large Model: 5.7 days - **Batch Size**: 8k tokens - **Learning Rate**: - Base: Peak LR = 0.0004 - Large: Peak LR = 0.00015 - **Training Iterations**: 100k steps with a 10k warm-up phase ## Evaluation and Results GottBERT was evaluated across various downstream tasks: - **NER**: CoNLL 2003, GermEval 2014 - **Text Classification**: GermEval 2018 (coarse & fine), 10kGNAD - **NLI**: German subset of XNLI Mertics: - **NER and Text Classification**: F1 Score - **NLI**: Accuracy Details: - **bold** values indicate the best performing model within one architecure (base, large), <ins>undescored</ins> values the second best. | Model | Accuracy NLI | GermEval\_14 F1 | CoNLL F1 | Coarse F1 | Fine F1 | 10kGNAD F1 | |-------------------------------------|--------------|----------------|----------|-----------|---------|------------| | [GottBERT_base_best](https://huggingface.co/TUM/GottBERT_base_best) | 80.82 | 87.55 | <ins>85.93</ins> | 78.17 | 53.30 | 89.64 | | [GottBERT_base_last](https://huggingface.co/TUM/GottBERT_base_last) | 81.04 | 87.48 | 85.61 | <ins>78.18</ins> | **53.92** | 90.27 | | [GottBERT_filtered_base_best](https://huggingface.co/TUM/GottBERT_filtered_base_best) | 80.56 | <ins>87.57</ins> | **86.14** | **78.65** | 52.82 | 89.79 | | [GottBERT_filtered_base_last](https://huggingface.co/TUM/GottBERT_filtered_base_last) | 80.74 | **87.59** | 85.66 | 78.08 | 52.39 | 89.92 | | GELECTRA_base | **81.70** | 86.91 | 85.37 | 77.26 | 50.07 | 89.02 | | GBERT_base | 80.06 | 87.24 | 85.16 | 77.37 | 51.51 | **90.30** | | dbmdzBERT | 68.12 | 86.82 | 85.15 | 77.46 | 52.07 | **90.34** | | GermanBERT | 78.16 | 86.53 | 83.87 | 74.81 | 47.78 | 90.18 | | XLM-R_base | 79.76 | 86.14 | 84.46 | 77.13 | 50.54 | 89.81 | | mBERT | 77.03 | 86.67 | 83.18 | 73.54 | 48.32 | 88.90 | | [GottBERT_large](https://huggingface.co/TUM/GottBERT_large) | 82.46 | 88.20 | <ins>86.78</ins> | 79.40 | 54.61 | 90.24 | | [GottBERT_filtered_large_best](https://huggingface.co/TUM/GottBERT_filtered_large_best) | 83.31 | 88.13 | 86.30 | 79.32 | 54.70 | 90.31 | | [GottBERT_filtered_large_last](https://huggingface.co/TUM/GottBERT_filtered_large_last) | 82.79 | <ins>88.27</ins> | 86.28 | 78.96 | 54.72 | 90.17 | | GELECTRA_large | **86.33** | <ins>88.72</ins> | <ins>86.78</ins> | **81.28** | <ins>56.17</ins> | **90.97** | | GBERT_large | <ins>84.21</ins> | <ins>88.72</ins> | **87.19** | <ins>80.84</ins> | **57.37** | <ins>90.74</ins> | | XLM-R_large | 84.07 | **88.83** | 86.54 | 79.05 | 55.06 | 90.17 | ## Model Architecture - **Base Model**: 12 layers, 125M parameters, 52k token vocabulary. - **Large Model**: 24 layers, 355M parameters, 52k token vocabulary. ### Tokenizer - **Type**: GPT-2 Byte-Pair Encoding (BPE) - **Vocabulary Size**: 52k subword tokens - **Trained on**: 40GB subsample of the unfiltered German OSCAR corpus. ## Limitations - **Filtered vs Unfiltered Data**: Minor improvements seen with filtered data, but not significant enough to justify filtering in every case. - **Computation Limitations**: Fixed memory allocation on TPUs required processing data as a single stream, unlike GPU training which preserves document boundaries. Training was performed in 32-bit mode due to framework limitations, increasing memory usage. ## Fairseq Checkpoints Get the fairseq checkpoints [here](https://drive.proton.me/urls/CFSGE8ZK9R#1F1G727lv77k). ## Citations If you use GottBERT in your research, please cite the following paper: ```bibtex @inproceedings{scheible-etal-2024-gottbert, title = "{G}ott{BERT}: a pure {G}erman Language Model", author = "Scheible, Raphael and Frei, Johann and Thomczyk, Fabian and He, Henry and Tippmann, Patric and Knaus, Jochen and Jaravine, Victor and Kramer, Frank and Boeker, Martin", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.emnlp-main.1183", pages = "21237--21250", } ```
[ "NAMED_ENTITY_RECOGNITION", "TEXT_CLASSIFICATION" ]
Non_BioNLP
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_qnli
gokuls
text-classification
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,675,030,854,000
2023-01-29T23:37:48
149
0
--- datasets: - glue language: - en license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_qnli results: - task: type: text-classification name: Text Classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - type: accuracy value: 0.615595826468973 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_qnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9573 - Accuracy: 0.6156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0984 | 1.0 | 819 | 0.9626 | 0.6220 | | 1.0171 | 2.0 | 1638 | 0.9573 | 0.6156 | | 0.9717 | 3.0 | 2457 | 0.9651 | 0.6105 | | 0.9377 | 4.0 | 3276 | 0.9713 | 0.6024 | | 0.9132 | 5.0 | 4095 | 0.9812 | 0.5988 | | 0.89 | 6.0 | 4914 | 1.0108 | 0.5982 | | 0.8683 | 7.0 | 5733 | 1.0290 | 0.5914 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Alireza1044/mobilebert_QNLI
Alireza1044
text-classification
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,655,222,052,000
2022-06-14T19:54:02
103
0
--- datasets: - glue language: - en license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: qnli results: - task: type: text-classification name: Text Classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - type: accuracy value: 0.9068277503203368 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3731 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
benyong/testmodel
benyong
fill-mask
[ "transformers", "pytorch", "tf", "jax", "rust", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,745,000
2021-11-07T01:35:56
115
0
--- datasets: - bookcorpus - wikipedia language: en license: apache-2.0 tags: - exbert --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
[ "QUESTION_ANSWERING" ]
Non_BioNLP
anantonios9/distilbert-base-uncased-finetuned-clinc
anantonios9
text-classification
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,694,431,563,000
2023-09-18T09:09:37
7
0
--- base_model: distilbert-base-uncased datasets: - clinc_oos license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: type: text-classification name: Text Classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - type: accuracy value: 0.6164516129032258 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 4.0325 - Accuracy: 0.6165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.7629 | 1.0 | 120 | 4.3585 | 0.4697 | | 4.1927 | 2.0 | 240 | 4.0325 | 0.6165 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
RyangRyang/distilbert-base-uncased-finetuned-emotion
RyangRyang
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,691,656,166,000
2023-08-10T10:10:13
13
0
--- base_model: distilbert-base-uncased datasets: - emotion license: apache-2.0 metrics: - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: f1 value: 0.9192696693027332 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2198 - Accuacy: 0.9195 - F1: 0.9193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuacy | F1 | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.8401 | 1.0 | 250 | 0.3257 | 0.906 | 0.9036 | | 0.2584 | 2.0 | 500 | 0.2198 | 0.9195 | 0.9193 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Ejafa/llama_7B
Ejafa
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,681,789,075,000
2023-04-18T03:50:06
25
5
--- license: other --- This LLaMA version resolves the EOS token issues. This is under a special license, please see the LICENSE file for details. This contains the weights for the LLaMA-7b model. This model is under a non-commercial license (see the LICENSE file). You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form) but either lost your copy of the weights or got some trouble converting them to the Transformers format. # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
[ "QUESTION_ANSWERING" ]
Non_BioNLP
Helsinki-NLP/opus-mt-efi-fi
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "efi", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T11:28:42
25
0
--- license: apache-2.0 tags: - translation --- ### opus-mt-efi-fi * source languages: efi * target languages: fi * OPUS readme: [efi-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/efi-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/efi-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.efi.fi | 23.6 | 0.450 |
[ "TRANSLATION" ]
Non_BioNLP
Satwik11/Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit
Satwik11
null
[ "safetensors", "phi3", "custom_code", "en", "base_model:microsoft/phi-4", "base_model:quantized:microsoft/phi-4", "license:mit", "4-bit", "gptq", "region:us" ]
1,736,441,117,000
2025-01-10T07:19:24
45
1
--- base_model: - microsoft/phi-4 language: - en license: mit --- # Model Card for Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit ## Model Overview **Model Name**: Microsoft-phi-4-Instruct-AutoRound-GPTQ-4bit **Model Type**: Instruction-tuned, Quantized GPT-4-based language model **Quantization**: GPTQ 4-bit **Author**: Satwik11 **Hosted on**: Hugging Face ## Description This model is a quantized version of the Microsoft phi-4 Instruct model, designed to deliver high performance while maintaining computational efficiency. By leveraging the GPTQ 4-bit quantization method, it enables deployment in environments with limited resources while retaining a high degree of accuracy. The model is fine-tuned for instruction-following tasks, making it ideal for applications in conversational AI, question answering, and general-purpose text generation. ## Key Features - **Instruction-tuned**: Fine-tuned to follow human-like instructions effectively. - **Quantized for Efficiency**: Uses GPTQ 4-bit quantization to reduce memory requirements and inference latency. - **Pre-trained Base**: Built on the Microsoft phi-4 framework, ensuring state-of-the-art performance on NLP tasks. ## Use Cases - Chatbots and virtual assistants. - Summarization and content generation. - Research and educational applications. - Semantic search and knowledge retrieval. ## Model Details ### Architecture - **Base Model**: Microsoft phi-4 - **Quantization Technique**: GPTQ (4-bit) - **Language**: English - **Training Objective**: Instruction-following fine-tuning
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
Helsinki-NLP/opus-mt-sn-es
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "sn", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T12:04:20
39
0
--- license: apache-2.0 tags: - translation --- ### opus-mt-sn-es * source languages: sn * target languages: es * OPUS readme: [sn-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sn-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sn-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sn-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sn-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sn.es | 32.5 | 0.509 |
[ "TRANSLATION" ]
Non_BioNLP
Johnesss/Toxic-Comment-Classification
Johnesss
text-classification
[ "keras", "tf-keras", "toxic", "comment", "toxic comment", "text-classification", "en", "region:us" ]
1,730,365,272,000
2024-11-01T09:26:39
0
1
--- language: - en library_name: keras pipeline_tag: text-classification tags: - toxic - comment - toxic comment --- ## Model description This model used for text classification with toxic and non-toxic labels. ## Intended uses & limitations If you want to reuse model, try copy this ``` from huggingface_hub import from_pretrained_keras reloaded_model = from_pretrained_keras('Johnesss/Toxic-Comment-Classification') y_testing=reloaded_model.predict(x_testing,verbose=1,batch_size=32) test_df['Toxic']=['Not Toxic' if x<0.5 else 'Toxic' for x in y_testing] test_df[['comment_text','Toxic']].head(20) ``` ## Training and evaluation data Full info in .ipynb file ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
AdapterHub/roberta-base-pf-comqa
AdapterHub
question-answering
[ "adapter-transformers", "question-answering", "roberta", "en", "dataset:com_qa", "arxiv:2104.08247", "region:us" ]
1,646,263,744,000
2021-11-15T10:37:28
10
0
--- datasets: - com_qa language: - en tags: - question-answering - roberta - adapter-transformers --- # Adapter `AdapterHub/roberta-base-pf-comqa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [com_qa](https://huggingface.co/datasets/com_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-comqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
[ "QUESTION_ANSWERING" ]
Non_BioNLP
RichardErkhov/PragmaticPete_-_llama3.2inst-gguf
RichardErkhov
null
[ "gguf", "arxiv:2204.05149", "arxiv:2405.16406", "endpoints_compatible", "region:us", "conversational" ]
1,739,931,086,000
2025-02-19T02:34:06
584
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama3.2inst - GGUF - Model creator: https://huggingface.co/PragmaticPete/ - Original model: https://huggingface.co/PragmaticPete/llama3.2inst/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama3.2inst.Q2_K.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q2_K.gguf) | Q2_K | 0.54GB | | [llama3.2inst.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.IQ3_XS.gguf) | IQ3_XS | 0.58GB | | [llama3.2inst.IQ3_S.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.IQ3_S.gguf) | IQ3_S | 0.6GB | | [llama3.2inst.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q3_K_S.gguf) | Q3_K_S | 0.6GB | | [llama3.2inst.IQ3_M.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.IQ3_M.gguf) | IQ3_M | 0.61GB | | [llama3.2inst.Q3_K.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q3_K.gguf) | Q3_K | 0.64GB | | [llama3.2inst.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q3_K_M.gguf) | Q3_K_M | 0.64GB | | [llama3.2inst.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q3_K_L.gguf) | Q3_K_L | 0.68GB | | [llama3.2inst.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.IQ4_XS.gguf) | IQ4_XS | 0.7GB | | [llama3.2inst.Q4_0.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q4_0.gguf) | Q4_0 | 0.72GB | | [llama3.2inst.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.IQ4_NL.gguf) | IQ4_NL | 0.72GB | | [llama3.2inst.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q4_K_S.gguf) | Q4_K_S | 0.72GB | | [llama3.2inst.Q4_K.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q4_K.gguf) | Q4_K | 0.75GB | | [llama3.2inst.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q4_K_M.gguf) | Q4_K_M | 0.75GB | | [llama3.2inst.Q4_1.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q4_1.gguf) | Q4_1 | 0.77GB | | [llama3.2inst.Q5_0.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q5_0.gguf) | Q5_0 | 0.83GB | | [llama3.2inst.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q5_K_S.gguf) | Q5_K_S | 0.83GB | | [llama3.2inst.Q5_K.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q5_K.gguf) | Q5_K | 0.85GB | | [llama3.2inst.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q5_K_M.gguf) | Q5_K_M | 0.85GB | | [llama3.2inst.Q5_1.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q5_1.gguf) | Q5_1 | 0.89GB | | [llama3.2inst.Q6_K.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q6_K.gguf) | Q6_K | 0.95GB | | [llama3.2inst.Q8_0.gguf](https://huggingface.co/RichardErkhov/PragmaticPete_-_llama3.2inst-gguf/blob/main/llama3.2inst.Q8_0.gguf) | Q8_0 | 1.23GB | Original model description: --- language: - en - de - fr - it - pt - hi - es - th library_name: transformers pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: llama3.2 extra_gated_prompt: >- ### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT Llama 3.2 Version Release Date: September 25, 2024 “Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. “Documentation” means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview. “Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. “Llama 3.2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads. “Llama Materials” means, collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement. “Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement. 2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Llama 3.2 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy). #### Prohibited Uses We want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta  2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following: 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997 9. Guns and illegal weapons (including weapon development) 10. Illegal drugs and regulated/controlled substances 11. Operation of critical infrastructure, transportation technologies, or heavy machinery 12. Self-harm or harm to others, including suicide, cutting, and eating disorders 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following: 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 16. Generating, promoting, or further distributing spam 17. Impersonating another individual without consent, authorization, or legal right 18. Representing that the use of Llama 3.2 or outputs are human-generated 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement  4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2 With respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models. Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected] extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: >- The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## Model Information The Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. **Model Developer:** Meta **Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. | | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | | Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | | Llama 3.2 Quantized (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 8k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | **Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. **Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** Sept 25, 2024 **Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. **License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). **Feedback:** Instructions on how to provide feedback or comments on the model can be found in the Llama Models [README](https://github.com/meta-llama/llama-models/blob/main/README.md). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources. **Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card. ## How to use This repository contains two versions of Llama-3.2-1B-Instruct, for use with transformers and with the original `llama` codebase. ### Use with transformers Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "meta-llama/Llama-3.2-1B-Instruct" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes) ### Use with `llama` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Llama-3.2-1B-Instruct --include "original/*" --local-dir Llama-3.2-1B-Instruct ``` ## Hardware and Software **Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, quantization, annotation, and evaluation were also performed on production infrastructure. **Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq. | | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) | | :---- | :---: | ----- | :---: | :---: | :---: | | Llama 3.2 1B | 370k | \- | 700 | 107 | 0 | | Llama 3.2 3B | 460k | \- | 700 | 133 | 0 | | Llama 3.2 1B SpinQuant | 1.7 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 3B SpinQuant | 2.4 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 1B QLora | 1.3k | 0 | 700 | 0.381 | 0 | | Llama 3.2 3B QLora | 1.6k | 0 | 700 | 0.461 | 0 | | Total | 833k | 86k | | 240 | 0 | \*\* The location-based CO2e emissions of Llama 3.2 1B SpinQuant and Llama 3.2 3B SpinQuant are less than 0.001 metric tonnes each. This is due to the minimal training GPU hours that are required. The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO). **Data Freshness:** The pretraining data has a cutoff of December 2023\. ## Quantization ### Quantization Scheme We designed the current quantization scheme with the [PyTorch’s ExecuTorch](https://github.com/pytorch/executorch) inference framework and Arm CPU backend in mind, taking into account metrics including model quality, prefill/decoding speed, and memory footprint. Our quantization scheme involves three parts: - All linear layers in all transformer blocks are quantized to a 4-bit groupwise scheme (with a group size of 32) for weights and 8-bit per-token dynamic quantization for activations. - The classification layer is quantized to 8-bit per-channel for weight and 8-bit per token dynamic quantization for activation. - Similar to classification layer, an 8-bit per channel quantization is used for embedding layer. ### Quantization-Aware Training and LoRA The quantization-aware training (QAT) with low-rank adaptation (LoRA) models went through only post-training stages, using the same data as the full precision models. To initialize QAT, we utilize BF16 Llama 3.2 model checkpoints obtained after supervised fine-tuning (SFT) and perform an additional full round of SFT training with QAT. We then freeze the backbone of the QAT model and perform another round of SFT with LoRA adaptors applied to all layers within the transformer block. Meanwhile, the LoRA adaptors' weights and activations are maintained in BF16. Because our approach is similar to QLoRA of Dettmers et al., (2023) (i.e., quantization followed by LoRA adapters), we refer this method as QLoRA. Finally, we fine-tune the resulting model (both backbone and LoRA adaptors) using direct preference optimization (DPO). ### SpinQuant [SpinQuant](https://arxiv.org/abs/2405.16406) was applied, together with generative post-training quantization (GPTQ). For the SpinQuant rotation matrix fine-tuning, we optimized for 100 iterations, using 800 samples with sequence-length 2048 from the WikiText 2 dataset. For GPTQ, we used 128 samples from the same dataset with the same sequence-length. ## Benchmarks \- English Text In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library. ### Base Pretrained Models | Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | ----- | ----- | :---: | :---: | :---: | :---: | :---: | | General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 | | | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 | | | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 | | Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 | | | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 | | | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 | | Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 | ### Instruction Tuned Models | Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B bf16 | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B bf16 | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | | MMLU | 5 | macro\_avg/acc | 49.3 | 43.3 | 47.3 | 49.0 | 63.4 | 60.5 | 62 | 62.4 | 69.4 | | Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 39.2 | 40.9 | 41.2 | 40.1 | 40.3 | 40.8 | 40.7 | 40.9 | | Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 14.9 | 16.7 | 16.8 | 19.0 | 19.1 | 19.2 | 19.1 | 17.2 | | Instruction following | | IFEval | 0 | Avg(Prompt/Instruction acc Loose/Strict) | 59.5 | 51.5 | 58.4 | 55.6 | 77.4 | 73.9 | 73.5 | 75.9 | 80.4 | | Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 33.1 | 40.6 | 46.5 | 77.7 | 72.9 | 75.7 | 77.9 | 84.5 | | | | MATH (CoT) | 0 | final\_em | 30.6 | 20.5 | 25.3 | 31.0 | 48.0 | 44.2 | 45.3 | 49.2 | 51.9 | | Reasoning | | ARC-C | 0 | acc | 59.4 | 54.3 | 57 | 60.7 | 78.6 | 75.6 | 77.6 | 77.6 | 83.4 | | | | GPQA | 0 | acc | 27.2 | 25.9 | 26.3 | 25.9 | 32.8 | 32.8 | 31.7 | 33.9 | 32.8 | | | | Hellaswag | 0 | acc | 41.2 | 38.1 | 41.3 | 41.5 | 69.8 | 66.3 | 68 | 66.3 | 78.7 | | Tool Use | | BFCL V2 | 0 | acc | 25.7 | 14.3 | 15.9 | 23.7 | 67.0 | 53.4 | 60.1 | 63.5 | 67.1 | | | | Nexus | 0 | macro\_avg/acc | 13.5 | 5.2 | 9.6 | 12.5 | 34.3 | 32.4 | 31.5 | 30.1 | 38.5 | | Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | N/A | N/A | N/A | 19.8 | N/A | N/A | N/A | 27.3 | | | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | N/A | N/A | N/A | 63.3 | N/A | N/A | N/A | 72.2 | | | | NIH/Multi-needle | 0 | recall | 75.0 | N/A | N/A | N/A | 84.7 | N/A | N/A | N/A | 98.8 | | Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 13.7 | 18.2 | 24.4 | 58.2 | 48.9 | 54.3 | 56.8 | 68.9 | \*\*for comparison purposes only. Model not released. ### Multilingual Benchmarks | Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | MMLU (5-shot, macro_avg/acc) | Portuguese | 39.8 | 34.9 | 38.9 | 40.2 | 54.5 | 50.9 | 53.3 | 53.4 | 62.1 | | | | Spanish | 41.5 | 36.0 | 39.8 | 41.8 | 55.1 | 51.9 | 53.6 | 53.6 | 62.5 | | | | Italian | 39.8 | 34.9 | 38.1 | 40.6 | 53.8 | 49.9 | 52.1 | 51.7 | 61.6 | | | | German | 39.2 | 34.9 | 37.5 | 39.6 | 53.3 | 50.0 | 52.2 | 51.3 | 60.6 | | | | French | 40.5 | 34.8 | 39.2 | 40.8 | 54.6 | 51.2 | 53.3 | 53.3 | 62.3 | | | | Hindi | 33.5 | 30.0 | 32.1 | 34.0 | 43.3 | 40.4 | 42.0 | 42.1 | 50.9 | | | | Thai | 34.7 | 31.2 | 32.4 | 34.9 | 44.5 | 41.3 | 44.0 | 42.2 | 50.3 | \*\*for comparison purposes only. Model not released. ## Inference time In the below table, we compare the performance metrics of different quantization methods (SpinQuant and QAT \+ LoRA) with the BF16 baseline. The evaluation was done using the [ExecuTorch](https://github.com/pytorch/executorch) framework as the inference engine, with the ARM CPU as a backend using Android OnePlus 12 device. | Category | Decode (tokens/sec) | Time-to-first-token (sec) | Prefill (tokens/sec) | Model size (PTE file size in MB) | Memory size (RSS in MB) | | :---- | ----- | ----- | ----- | ----- | ----- | | 1B BF16 (baseline) | 19.2 | 1.0 | 60.3 | 2358 | 3,185 | | 1B SpinQuant | 50.2 (2.6x) | 0.3 (-76.9%) | 260.5 (4.3x) | 1083 (-54.1%) | 1,921 (-39.7%) | | 1B QLoRA | 45.8 (2.4x) | 0.3 (-76.0%) | 252.0 (4.2x) | 1127 (-52.2%) | 2,255 (-29.2%) | | 3B BF16 (baseline) | 7.6 | 3.0 | 21.2 | 6129 | 7,419 | | 3B SpinQuant | 19.7 (2.6x) | 0.7 (-76.4%) | 89.7 (4.2x) | 2435 (-60.3%) | 3,726 (-49.8%) | | 3B QLoRA | 18.5 (2.4x) | 0.7 (-76.1%) | 88.8 (4.2x) | 2529 (-58.7%) | 4,060 (-45.3%) | (\*) The performance measurement is done using an adb binary-based approach. (\*\*) It is measured on an Android OnePlus 12 device. (\*\*\*) Time-to-first-token (TTFT) is measured with prompt length=64 *Footnote:* - *Decode (tokens/second) is for how quickly it keeps generating. Higher is better.* - *Time-to-first-token (TTFT for shorthand) is for how fast it generates the first token for a given prompt. Lower is better.* - *Prefill is the inverse of TTFT (aka 1/TTFT) in tokens/second. Higher is better* - *Model size \- how big is the model, measured by, PTE file, a binary file format for ExecuTorch* - *RSS size \- Memory usage in resident set size (RSS)* ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: 1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama 2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm 3. Provide protections for the community to help prevent the misuse of our models ### Responsible Deployment **Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driver’s seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/). #### Llama 3.2 Instruct **Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/). **Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.2 Systems **Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. ### New Capabilities and Use Cases **Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well. **Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version. ### Evaluations **Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. **Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical Risks In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas: **1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models. **2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2’s 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models. ### Community **Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). **Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). **Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations **Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. **Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
[ "SUMMARIZATION" ]
Non_BioNLP
Siddharth63/pubmedul2-tiny-nl6
Siddharth63
text2text-generation
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "dataset:Siddharth63/biological_dataset", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,694,615,106,000
2023-11-15T10:57:10
76
0
--- datasets: - Siddharth63/biological_dataset license: apache-2.0 --- # Bioul2-tiny-nl6 Pretrained T5 model on Biological dataset using a UL2 (Mixture-of-Denoisers) objective. T5 model was introduced in this paper and first released at this page. The UL2 objective was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released on [this page](https://github.com/google-research/text-to-text-transfer-transformer). ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. BioT5 is a transformers model pretrained on a very large corpus of biological data (25 million abstracts) in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. This model used the T5 v1.1 improvements compared to the original T5 model during the pretraining: GEGLU activation in feed-forward hidden layer, rather than ReLU - see here Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning Pretrained on self-supervised objective only without mixing in the downstream tasks No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in this paper. In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the t5-efficient-tiny-nl6 architecture's layer depth which means both the encoder and the decoder have 6 transformer layers compared to the original T5 "tiny" model's architecture of 4 transformer layers. In total, this model has 31 million parameters. ## UL2 pretraining objective This model was pretrained with the UL2's Mixture-of-Denoisers (MoD) objective, that combines diverse pre-training paradigms together. UL2 frames different objective functions for training language models as denoising tasks, where the model has to recover missing sub-sequences of a given input. During pre-training it uses a novel mixture-of-denoisers that samples from a varied set of such objectives, each with different configurations. UL2 is trained using a mixture of three denoising tasks: (1) R-denoising (or regular span corruption), which emulates the standard T5 span corruption objective; (2) X-denoising (or extreme span corruption); and (3) S-denoising (or sequential PrefixLM). During pre-training, we sample from the available denoising tasks based on user-specified ratios. UL2 introduces a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training denoising task. During the pretraining, a paradigm token is inserted to the input ([NLU] for R-denoising, [NLG] for X-denoising, or [S2S] for S-denoising) indicating the denoising task at hand. Then, during fine-tuning the same input token should be inserted to get the best performance for different downstream fine-tuning tasks. Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. Note: You most likely need to fine-tune these T5/UL2 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from here, for example. Note: For fine-tuning, most likely you can get better results if you insert a prefix token of [NLU], [NLG], or [S2S] to your input texts. For general language understanding fine-tuning tasks, you could use the [NLU] token. For GPT-style causal language generation, you could use the [S2S] token. The token [NLG] of the X-denoising pretrain task is somewhat mix between the language understanding and causal language generation so the token [NLG] could maybe be used for language generation fine-tuning too. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [Google TPU Research Cloud](https://sites.research.google/trc/about/). Thanks to the [Finnish-NLP](https://huggingface.co/Finnish-NLP) authors for releasing their code for the UL2 objective, associated task definitions and their guidance. Thanks to [Yeb Havinga](https://huggingface.co/yhavinga) for helping me get started with the t5x framework.
[ "TEXT_CLASSIFICATION" ]
BioNLP
dmanary-pronavigator/gemma-2-27b-it-exl2-5.0bpw
dmanary-pronavigator
text-generation
[ "transformers", "safetensors", "gemma2", "text-generation", "conversational", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2103.03874", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2203.09509", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "5-bit", "exl2", "region:us" ]
1,722,737,207,000
2024-07-07T02:50:14
7
0
--- library_name: transformers license: gemma pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # Gemma 2 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma] **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-27b-it) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a single / multi GPU > [!IMPORTANT] > Given the model instabilities with SDPA/ FA2, by default, the model inference would utilise `eager` attention. ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", device_map="auto" ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-27b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ > [!WARNING] > Gemma 2 is currently incompatible with Flash Attention/ SDPA, using it might result in unreliable generations. Use at your own risk. First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/gemma-2-27b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B | | ------------------------------ | ------------- | ----------- | ------------ | | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 | | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 | | [PIQA][piqa] | 0-shot | 81.7 | 83.2 | | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 | | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 | | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 | | [ARC-e][arc] | 0-shot | 88.0 | 88.6 | | [ARC-c][arc] | 25-shot | 68.4 | 71.4 | | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 | | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 | | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 | | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 | | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 | | [MATH][math] | 4-shot | 36.6 | 42.3 | | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 | | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 | | ------------------------------ | ------------- | ----------- | ------------ | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq]. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 2.0 | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B | | ------------------------ | ------------- | --------------- | ---------------- | | [RealToxicity][realtox] | average | 8.25 | 8.84 | | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 | | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 | | [Winogender][winogender] | top-1 | 79.17 | 77.22 | | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 | | [Winobias 1_2][winobias] | | 78.09 | 81.94 | | [Winobias 2_2][winobias] | | 95.32 | 97.22 | | [Toxigen][toxigen] | | 39.30 | 38.42 | | ------------------------ | ------------- | --------------- | ---------------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2 [terms]: https://ai.google.dev/gemma/terms [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335 [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11 [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/google/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [foundation-models]: https://ai.google/discover/foundation-models/ [gemini-2-paper]: https://goo.gle/gemma2report [mmlu]: https://arxiv.org/abs/2009.03300 [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [boolq]: https://arxiv.org/abs/1905.10044 [winogrande]: https://arxiv.org/abs/1907.10641 [commonsenseqa]: https://arxiv.org/abs/1811.00937 [openbookqa]: https://arxiv.org/abs/1809.02789 [arc]: https://arxiv.org/abs/1911.01547 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [humaneval]: https://arxiv.org/abs/2107.03374 [mbpp]: https://arxiv.org/abs/2108.07732 [gsm8k]: https://arxiv.org/abs/2110.14168 [realtox]: https://arxiv.org/abs/2009.11462 [bold]: https://arxiv.org/abs/2101.11718 [crows]: https://aclanthology.org/2020.emnlp-main.154/ [bbq]: https://arxiv.org/abs/2110.08193v2 [winogender]: https://arxiv.org/abs/1804.09301 [truthfulqa]: https://arxiv.org/abs/2109.07958 [winobias]: https://arxiv.org/abs/1804.06876 [math]: https://arxiv.org/abs/2103.03874 [agieval]: https://arxiv.org/abs/2304.06364 [big-bench]: https://arxiv.org/abs/2206.04615 [toxigen]: https://arxiv.org/abs/2203.09509
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1024
Lots-of-LoRAs
null
[ "pytorch", "safetensors", "en", "arxiv:1910.09700", "arxiv:2407.00066", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:mit", "region:us" ]
1,735,927,213,000
2025-01-03T18:00:18
0
0
--- base_model: mistralai/Mistral-7B-Instruct-v0.2 language: en library_name: pytorch license: mit --- # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1024 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1024_pib_translation_hindi_english - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1024_pib_translation_hindi_english sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "TRANSLATION" ]
Non_BioNLP
kurianbenoy/distilbert-base-uncased-finetuned-imdb
kurianbenoy
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,745,000
2022-07-21T00:50:02
138
0
--- datasets: - imdb license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb args: plain_text metrics: - type: accuracy value: 0.923 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3073 - Accuracy: 0.923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2744 | 1.0 | 1563 | 0.2049 | 0.921 | | 0.1572 | 2.0 | 3126 | 0.2308 | 0.923 | | 0.0917 | 3.0 | 4689 | 0.3073 | 0.923 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
spacemanidol/flan-t5-large-4-4-cnndm
spacemanidol
text2text-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,677,627,350,000
2023-03-11T17:58:46
13
0
--- datasets: - cnn_dailymail metrics: - rouge tags: - generated_from_trainer model-index: - name: large-4-4 results: - task: type: summarization name: Summarization dataset: name: cnn_dailymail 3.0.0 type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - type: rouge value: 43.6915 name: Rouge1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # large-4-4 This model is a fine-tuned version of [cnn/large-4-4/](https://huggingface.co/cnn/large-4-4/) on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.3258 - Rouge1: 43.6915 - Rouge2: 20.9012 - Rougel: 31.3004 - Rougelsum: 40.8592 - Gen Len: 71.8499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
[ "SUMMARIZATION" ]
Non_BioNLP
omid-ebi/mT5_base_translation_English_to_Persian-Farsi
omid-ebi
translation
[ "transformers", "safetensors", "mt5", "text2text-generation", "translation", "en", "dataset:persiannlp/parsinlu_translation_en_fa", "arxiv:1910.09700", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,719,428,571,000
2024-07-13T12:39:48
283
3
--- datasets: - persiannlp/parsinlu_translation_en_fa language: - en library_name: transformers license: cc-by-nc-sa-4.0 pipeline_tag: translation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Machine Translation (ترجمه‌ی ماشینی) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model is a finetuned version of a [google/mt5-base](https://huggingface.co/google/mt5-base) for machine translation (English -> Persian). - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [English, Persian] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [google/mt5-base] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "TRANSLATION" ]
Non_BioNLP
mesolitica/translation-t5-small-standard-bahasa-cased-v2
mesolitica
text2text-generation
[ "transformers", "safetensors", "t5", "text2text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,705,212,172,000
2024-01-23T13:09:09
278
0
--- language: - ms --- # Noisy Translation Small T5 Trained on 1536 context length, able to translate malay, pasar malay (social media texts or local context), english, manglish, javanese, banjarese and indonesian to target language. It also able to maintain the text structure as it is and only translate necessary texts, eg, programming code. Added more coding translation dataset, noisy b.cari.com.my translation, noisy ChatGPT4 translation and heavy postfilter. ## how-to ```python from transformers import T5ForConditionalGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( 'mesolitica/translation-t5-small-standard-bahasa-cased-v2', use_fast=False ) model = T5ForConditionalGeneration.from_pretrained( 'mesolitica/translation-t5-small-standard-bahasa-cased-v2' ) s = 'Hai, ada yang bisa saya bantu?' input_ids = tokenizer.encode(f'terjemah ke Melayu: {s}', return_tensors = 'pt') outputs = model.generate(input_ids, max_length = 100) all_special_ids = [0, 1, 2] outputs = [i for i in outputs[0] if i not in all_special_ids] print(tokenizer.decode(outputs, spaces_between_special_tokens = False)) ```
[ "TRANSLATION" ]
Non_BioNLP
AlyGreo/fine-tuned-text-summarization
AlyGreo
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "region:us" ]
1,699,811,440,000
2023-11-12T17:55:23
0
0
--- base_model: google/flan-t5-base license: apache-2.0 tags: - generated_from_trainer model-index: - name: fine-tuned-text-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-text-summarization This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
[ "SUMMARIZATION" ]
Non_BioNLP
cbpuschmann/klimacoder2_v0.4
cbpuschmann
text-classification
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:deutsche-telekom/gbert-large-paraphrase-cosine", "base_model:finetune:deutsche-telekom/gbert-large-paraphrase-cosine", "region:us" ]
1,742,099,085,000
2025-03-16T04:25:29
12
0
--- base_model: deutsche-telekom/gbert-large-paraphrase-cosine library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Die Forderungen sind landesweit die gleichen. Es geht um die Wiedereinführung eines 9-Euro-Tickets und ein Tempolimit von 100 km/h auf den Autobahnen. Außerdem fordern wir die Einführung eines Gesellschaftsrats. Dieser soll Maßnahmen erarbeiten, wie Deutschland bis 2030 emissionsfrei wird. Die Lösungsansätze sollen von der Bundesregierung anerkannt und in der Politik umgesetzt werden. - text: Die aktivist bezeichnen sich als ›DLG›. Sie fordern von Bundeswirtschaftsminister Robert Habeck Grüne, auf fossile Energie zu verzichten. Zudem verlangen sie eine Lebenserklärung der Rektorin der Leipziger Universität. Diese soll sich ›offiziell, öffentlich und gerichtet an Robert Habeck gegen den Bau und die Finanzierung neuer fossiler Infrastruktur aussprechen. Insbesondere gegen neue Ölbohrungen in der Nordsee sowie neue Flüssiggas-Terminals›, hieß es in einer Mitteilung der Gruppe am Donnerstag. - text: Am Montag war es erneut das Amtsgericht Tiergarten, in dem ein Anwalt die Aktionen der ›DLG› mit einem fragwürdigen historischen Vergleich rechtfertigte. Verhandelt wurde an dem Tag gegen den 63-jährigen Winfried L. Wegen fünf Straßenblockaden, bei denen er teilweise seine Hand auf der Straße angeklebt hatte, musste sich L. wegen der Vorwürfe Nötigung und Widerstand gegen Vollstreckungsbeamte verantworten. - text: 'In einer am Morgen verbreiteten Mitteilung begründete die Gruppe ihre Aktion. Mit der Sitzblockade habe der "fossile Alltag" auf der Straße unterbrochen werden sollen. Auf Transparenten seien Forderungen deutlich gemacht worden: ein 9-Euro-Ticket für alle, ein Tempolimit von 100 Stundenkilometern auf Autobahnen und die Bildung eines Gesellschaftsrats zum Thema Ende der fossilen Brennstoffe bis 2030.' - text: 'aktivist feiern Festival für mehr Klimaschutz Xanten wer Die Ortsgruppe Xanten von FFF hat am Freitagnachmittag wieder für mehr Klimaschutz protestiert – aber anders als sonst. Die aktivist organisierten an der Kriemhildmühle im Kurpark ein Festival mit Musik, Essen, Getränken und Vorträgen. Viele Menschen kamen, genossen das schöne Wetter und die entspannte Atmosphäre, lauschten den Liedern und sangen mit. Ansprachen gab es auch: Seit Jahrzehnten warne die Wissenschaft vor den Folgen des Klimawandels, trotzdem unternehme die Politik zu wenig, und die Bevölkerung müsse unter den Folgen wie Dürren, Überschwemmungen und Hitze leiden, kritisierte Frederik Krohn von der Xantener Ortsgruppe der Klimaschutzbewegung. Deshalb gehe FFF immer wieder auf die Straße, um der Politik zu sagen, dass es so nicht weitergehe. Die große Teilnahme am Festival in Xanten und damit am Klimaschutz-Protest sei ein ›starkes Zeichen›, sagte Krohn.' inference: true --- # SetFit with deutsche-telekom/gbert-large-paraphrase-cosine This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | <ul><li>'Heizungsgesetz: Dialog zwischen Ministerien zur Förderung von Wärmepumpen\n\nIn einer gemeinsamen Erklärung haben das Bundeswirtschaftsministerium und das zuständige Klimaministerium ihren Dialog über die flächendeckende Einführung von Wärmepumpen fortgesetzt. Ziel ist es, einen Konsens zu finden, der den Übergang zu nachhaltigeren Heizsystemen vorantreibt. Die Initiativen zielen darauf ab, die Energieeffizienz zu steigern und den Klimaschutz zu fördern, ohne spezifische Details oder Zeitpläne zu nennen.'</li><li>'Die Einführung eines Heizungsgesetzes zur Förderung der Wärmepumpen-Nutzung ist ein viel diskutierter Schritt hin zu mehr Nachhaltigkeit im Wohnungsbau. Kritiker argumentieren jedoch, dass finanzielle Hürden für den Austausch älterer Heizsysteme bestehende Haushalte belasten könnten. Vergleichsportale für Heizöl zeigen aktuell große Preisunterschiede, was die Kosten für Verbraucher weiter ins Fokus rückt.'</li><li>'Die Ampel-Koalition diskutiert über eine flächendeckende Einführung von Wärmepumpen, bekannt als "Heizungsgesetz". Ein genauer Zeitplan ist noch unklar, da derzeit Verhandlungen zwischen den Fraktionen laufen. Die Initiative zielt darauf ab, die Energieeffizienz zu steigern und den Übergang zu erneuerbaren Energien im Heizsektor voranzutreiben.'</li></ul> | | opposed | <ul><li>'Skeptische Reaktionen auf Heizungsgesetz: Kritiker sehen Nachbesserung als unzureichend\n\nDer Vorschlag zur flächendeckenden Einführung von Wärmepumpen stößt auf geteilte Meinungen. Während Befürworter die Energiewende vorantreiben wollen, zeigt sich Michael Kruse (FDP) skeptisch und spricht von einer "Nachbesserung durch die Hintertür". Er fordert eine umfassendere Überarbeitung des Gesetzes, um die Belange der Verbraucher und Wirtschaft besser zu berücksichtigen.'</li><li>'Skepsis gegenüber "Heizungsgesetz": Kritiker warnen vor zu schnellem Umstritt\n\nDer geplante Einsatz von Wärmepumpen als alternative Heizungslösung weckt gemischte Gefühle. FDP-Politiker Sami Musa kritisiert den Vorstoß scharf und warnt vor unerwünschten Konsequenzen. "Das Heizungsgesetz könnte am Ende zu einem teuren und umweltschädlichen Kraftakt führen", so Musa. Er bezieht sich auf mögliche finanzielle Belastungen für Hausbesitzer und die Frage, ob ein vollständiger Wechsel von Öl- und Gasheizungen tatsächlich nachhaltig ist.'</li><li>'Skeptische Reaktionen auf das Heizungsgesetz: Unternehmer sehen dunkle Zeiten kommen\n\nIn der deutschen Energiebranche wächst die Skepsis gegenüber den jüngsten Gesetzesinitiativen zur flächendeckenden Einführung von Wärmepumpen. Ein betroffener Unternehmer warnt vor den Folgen: "Das Heizungsgesetz und die aktuelle Förderpolitik könnten zu Werkschließungen und Entlassungen führen, besonders in Zeiten wirtschaftlicher Unsicherheit." Er kritisiert das Chaos und die widersprüchlichen Signale aus Berlin, die seiner Meinung nach Unternehmen in eine schwierige Lage bringen.'</li></ul> | | supportive | <ul><li>'Die Ampelkoalition hat kurz vor den Sommerferien einen Durchbruch bei der Wärmepumpenpflicht erzielt. Das Heizungsgesetz soll Klimaschutz und soziale Verträglichkeit verbinden, wie SPD-Vizefraktionschefin Verena Hubertz betont. Dennoch bleibt ein bitterer Nachgeschmack: Die zähe Debatte zeigt die Herausforderungen einer koalitionären Einigung.'</li><li>'Obwohl die flächendeckende Einführung von Wärmepumpen durch das geplante "Heizungsgesetz" auf ein dringend nötiges Umdenken hinweist, weckt die Initiative gemischte Gefühle. Während SPD-Verhandler Matthias Miersch von einer Förderung klimafreundlicher Heizungstechnologien spricht, warnen Kritiker vor einer möglichen Belastung für Verbraucher und Mittelstand durch höhere Installationskosten. Ein ausgewogener Ansatz ist entscheidend, um eine effektive Energiewende zu gewährleisten.'</li><li>'Obwohl das geplante "Heizungsgesetz" auf gemischte Reaktionen stößt, ist es ein mutiger Schritt in Richtung Energiewende. Kritiker monieren mögliche finanzielle Belastungen für Hausbesitzer, doch Grünen-Fraktionsvorsitzende Katharina Dröge betont die langfristigen Vorteile für den Klimaschutz und die Energieunabhängigkeit. Der Entwurf zielt darauf ab, die Installation von Wärmepumpen zu fördern und könnte Deutschland bei der Sanierung seiner Gebäudeflotte voranbringen.'</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("cbpuschmann/klimacoder2_v0.4") # Run inference preds = model("Die Forderungen sind landesweit die gleichen. Es geht um die Wiedereinführung eines 9-Euro-Tickets und ein Tempolimit von 100 km/h auf den Autobahnen. Außerdem fordern wir die Einführung eines Gesellschaftsrats. Dieser soll Maßnahmen erarbeiten, wie Deutschland bis 2030 emissionsfrei wird. Die Lösungsansätze sollen von der Bundesregierung anerkannt und in der Politik umgesetzt werden.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 24 | 61.6794 | 191 | | Label | Training Sample Count | |:-----------|:----------------------| | supportive | 210 | | opposed | 210 | | neutral | 210 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0001 | 1 | 0.2556 | - | | 0.0060 | 50 | 0.2575 | - | | 0.0121 | 100 | 0.2404 | - | | 0.0181 | 150 | 0.2165 | - | | 0.0242 | 200 | 0.1432 | - | | 0.0302 | 250 | 0.0634 | - | | 0.0363 | 300 | 0.0156 | - | | 0.0423 | 350 | 0.004 | - | | 0.0484 | 400 | 0.001 | - | | 0.0544 | 450 | 0.0005 | - | | 0.0605 | 500 | 0.0004 | - | | 0.0665 | 550 | 0.0003 | - | | 0.0726 | 600 | 0.0002 | - | | 0.0786 | 650 | 0.0002 | - | | 0.0847 | 700 | 0.0001 | - | | 0.0907 | 750 | 0.0012 | - | | 0.0967 | 800 | 0.0024 | - | | 0.1028 | 850 | 0.0018 | - | | 0.1088 | 900 | 0.0001 | - | | 0.1149 | 950 | 0.0001 | - | | 0.1209 | 1000 | 0.0001 | - | | 0.1270 | 1050 | 0.0001 | - | | 0.1330 | 1100 | 0.0001 | - | | 0.1391 | 1150 | 0.0 | - | | 0.1451 | 1200 | 0.0 | - | | 0.1512 | 1250 | 0.0 | - | | 0.1572 | 1300 | 0.0 | - | | 0.1633 | 1350 | 0.0 | - | | 0.1693 | 1400 | 0.0 | - | | 0.1754 | 1450 | 0.0 | - | | 0.1814 | 1500 | 0.0 | - | | 0.1874 | 1550 | 0.0 | - | | 0.1935 | 1600 | 0.0 | - | | 0.1995 | 1650 | 0.0 | - | | 0.2056 | 1700 | 0.0 | - | | 0.2116 | 1750 | 0.0 | - | | 0.2177 | 1800 | 0.0 | - | | 0.2237 | 1850 | 0.0 | - | | 0.2298 | 1900 | 0.0 | - | | 0.2358 | 1950 | 0.0 | - | | 0.2419 | 2000 | 0.0 | - | | 0.2479 | 2050 | 0.0 | - | | 0.2540 | 2100 | 0.0 | - | | 0.2600 | 2150 | 0.0 | - | | 0.2661 | 2200 | 0.0 | - | | 0.2721 | 2250 | 0.0 | - | | 0.2781 | 2300 | 0.0 | - | | 0.2842 | 2350 | 0.0 | - | | 0.2902 | 2400 | 0.0 | - | | 0.2963 | 2450 | 0.0 | - | | 0.3023 | 2500 | 0.0 | - | | 0.3084 | 2550 | 0.0 | - | | 0.3144 | 2600 | 0.0 | - | | 0.3205 | 2650 | 0.0 | - | | 0.3265 | 2700 | 0.0 | - | | 0.3326 | 2750 | 0.0 | - | | 0.3386 | 2800 | 0.0 | - | | 0.3447 | 2850 | 0.0 | - | | 0.3507 | 2900 | 0.0 | - | | 0.3568 | 2950 | 0.0 | - | | 0.3628 | 3000 | 0.0 | - | | 0.3688 | 3050 | 0.0 | - | | 0.3749 | 3100 | 0.0 | - | | 0.3809 | 3150 | 0.0 | - | | 0.3870 | 3200 | 0.0 | - | | 0.3930 | 3250 | 0.0 | - | | 0.3991 | 3300 | 0.0 | - | | 0.4051 | 3350 | 0.0 | - | | 0.4112 | 3400 | 0.0 | - | | 0.4172 | 3450 | 0.0 | - | | 0.4233 | 3500 | 0.0 | - | | 0.4293 | 3550 | 0.0 | - | | 0.4354 | 3600 | 0.0 | - | | 0.4414 | 3650 | 0.0 | - | | 0.4475 | 3700 | 0.0 | - | | 0.4535 | 3750 | 0.0 | - | | 0.4595 | 3800 | 0.0 | - | | 0.4656 | 3850 | 0.0 | - | | 0.4716 | 3900 | 0.0 | - | | 0.4777 | 3950 | 0.0 | - | | 0.4837 | 4000 | 0.0 | - | | 0.4898 | 4050 | 0.0 | - | | 0.4958 | 4100 | 0.0 | - | | 0.5019 | 4150 | 0.0 | - | | 0.5079 | 4200 | 0.0 | - | | 0.5140 | 4250 | 0.0 | - | | 0.5200 | 4300 | 0.0 | - | | 0.5261 | 4350 | 0.0 | - | | 0.5321 | 4400 | 0.0 | - | | 0.5382 | 4450 | 0.0 | - | | 0.5442 | 4500 | 0.0 | - | | 0.5502 | 4550 | 0.0187 | - | | 0.5563 | 4600 | 0.1473 | - | | 0.5623 | 4650 | 0.1667 | - | | 0.5684 | 4700 | 0.0401 | - | | 0.5744 | 4750 | 0.0112 | - | | 0.5805 | 4800 | 0.0074 | - | | 0.5865 | 4850 | 0.0021 | - | | 0.5926 | 4900 | 0.0017 | - | | 0.5986 | 4950 | 0.0 | - | | 0.6047 | 5000 | 0.0 | - | | 0.6107 | 5050 | 0.0 | - | | 0.6168 | 5100 | 0.0 | - | | 0.6228 | 5150 | 0.0 | - | | 0.6289 | 5200 | 0.0 | - | | 0.6349 | 5250 | 0.0 | - | | 0.6409 | 5300 | 0.0 | - | | 0.6470 | 5350 | 0.0 | - | | 0.6530 | 5400 | 0.0 | - | | 0.6591 | 5450 | 0.0 | - | | 0.6651 | 5500 | 0.0 | - | | 0.6712 | 5550 | 0.0 | - | | 0.6772 | 5600 | 0.0 | - | | 0.6833 | 5650 | 0.0 | - | | 0.6893 | 5700 | 0.0 | - | | 0.6954 | 5750 | 0.0 | - | | 0.7014 | 5800 | 0.0 | - | | 0.7075 | 5850 | 0.0 | - | | 0.7135 | 5900 | 0.0 | - | | 0.7196 | 5950 | 0.0 | - | | 0.7256 | 6000 | 0.0 | - | | 0.7316 | 6050 | 0.0 | - | | 0.7377 | 6100 | 0.0 | - | | 0.7437 | 6150 | 0.0 | - | | 0.7498 | 6200 | 0.0 | - | | 0.7558 | 6250 | 0.0 | - | | 0.7619 | 6300 | 0.0 | - | | 0.7679 | 6350 | 0.0 | - | | 0.7740 | 6400 | 0.0 | - | | 0.7800 | 6450 | 0.0 | - | | 0.7861 | 6500 | 0.0 | - | | 0.7921 | 6550 | 0.0 | - | | 0.7982 | 6600 | 0.0 | - | | 0.8042 | 6650 | 0.0 | - | | 0.8103 | 6700 | 0.0 | - | | 0.8163 | 6750 | 0.0 | - | | 0.8223 | 6800 | 0.0 | - | | 0.8284 | 6850 | 0.0 | - | | 0.8344 | 6900 | 0.0 | - | | 0.8405 | 6950 | 0.0 | - | | 0.8465 | 7000 | 0.0 | - | | 0.8526 | 7050 | 0.0 | - | | 0.8586 | 7100 | 0.0 | - | | 0.8647 | 7150 | 0.0 | - | | 0.8707 | 7200 | 0.0 | - | | 0.8768 | 7250 | 0.0 | - | | 0.8828 | 7300 | 0.0 | - | | 0.8889 | 7350 | 0.0 | - | | 0.8949 | 7400 | 0.0 | - | | 0.9010 | 7450 | 0.0 | - | | 0.9070 | 7500 | 0.0 | - | | 0.9130 | 7550 | 0.0 | - | | 0.9191 | 7600 | 0.0 | - | | 0.9251 | 7650 | 0.0 | - | | 0.9312 | 7700 | 0.0 | - | | 0.9372 | 7750 | 0.0 | - | | 0.9433 | 7800 | 0.0 | - | | 0.9493 | 7850 | 0.0 | - | | 0.9554 | 7900 | 0.0 | - | | 0.9614 | 7950 | 0.0 | - | | 0.9675 | 8000 | 0.0 | - | | 0.9735 | 8050 | 0.0 | - | | 0.9796 | 8100 | 0.0 | - | | 0.9856 | 8150 | 0.0 | - | | 0.9917 | 8200 | 0.0 | - | | 0.9977 | 8250 | 0.0 | - | | 1.0 | 8269 | - | 0.3465 | | 1.0037 | 8300 | 0.0 | - | | 1.0098 | 8350 | 0.0 | - | | 1.0158 | 8400 | 0.0 | - | | 1.0219 | 8450 | 0.0 | - | | 1.0279 | 8500 | 0.0 | - | | 1.0340 | 8550 | 0.0 | - | | 1.0400 | 8600 | 0.0 | - | | 1.0461 | 8650 | 0.0 | - | | 1.0521 | 8700 | 0.0 | - | | 1.0582 | 8750 | 0.0 | - | | 1.0642 | 8800 | 0.0 | - | | 1.0703 | 8850 | 0.0 | - | | 1.0763 | 8900 | 0.0 | - | | 1.0824 | 8950 | 0.0 | - | | 1.0884 | 9000 | 0.0 | - | | 1.0944 | 9050 | 0.0 | - | | 1.1005 | 9100 | 0.0 | - | | 1.1065 | 9150 | 0.0 | - | | 1.1126 | 9200 | 0.0 | - | | 1.1186 | 9250 | 0.0 | - | | 1.1247 | 9300 | 0.0 | - | | 1.1307 | 9350 | 0.0 | - | | 1.1368 | 9400 | 0.0 | - | | 1.1428 | 9450 | 0.0 | - | | 1.1489 | 9500 | 0.0 | - | | 1.1549 | 9550 | 0.0 | - | | 1.1610 | 9600 | 0.0 | - | | 1.1670 | 9650 | 0.0 | - | | 1.1731 | 9700 | 0.0 | - | | 1.1791 | 9750 | 0.0 | - | | 1.1851 | 9800 | 0.0 | - | | 1.1912 | 9850 | 0.0 | - | | 1.1972 | 9900 | 0.0 | - | | 1.2033 | 9950 | 0.0 | - | | 1.2093 | 10000 | 0.0 | - | | 1.2154 | 10050 | 0.0 | - | | 1.2214 | 10100 | 0.0 | - | | 1.2275 | 10150 | 0.0 | - | | 1.2335 | 10200 | 0.0 | - | | 1.2396 | 10250 | 0.0 | - | | 1.2456 | 10300 | 0.0 | - | | 1.2517 | 10350 | 0.0 | - | | 1.2577 | 10400 | 0.0 | - | | 1.2638 | 10450 | 0.0 | - | | 1.2698 | 10500 | 0.0 | - | | 1.2758 | 10550 | 0.0 | - | | 1.2819 | 10600 | 0.0 | - | | 1.2879 | 10650 | 0.0 | - | | 1.2940 | 10700 | 0.0 | - | | 1.3000 | 10750 | 0.0 | - | | 1.3061 | 10800 | 0.0 | - | | 1.3121 | 10850 | 0.0 | - | | 1.3182 | 10900 | 0.0 | - | | 1.3242 | 10950 | 0.0 | - | | 1.3303 | 11000 | 0.0 | - | | 1.3363 | 11050 | 0.0 | - | | 1.3424 | 11100 | 0.0 | - | | 1.3484 | 11150 | 0.0 | - | | 1.3545 | 11200 | 0.0 | - | | 1.3605 | 11250 | 0.0 | - | | 1.3665 | 11300 | 0.0 | - | | 1.3726 | 11350 | 0.0137 | - | | 1.3786 | 11400 | 0.0211 | - | | 1.3847 | 11450 | 0.0047 | - | | 1.3907 | 11500 | 0.0048 | - | | 1.3968 | 11550 | 0.0008 | - | | 1.4028 | 11600 | 0.0 | - | | 1.4089 | 11650 | 0.0 | - | | 1.4149 | 11700 | 0.0 | - | | 1.4210 | 11750 | 0.0 | - | | 1.4270 | 11800 | 0.0 | - | | 1.4331 | 11850 | 0.0 | - | | 1.4391 | 11900 | 0.0 | - | | 1.4452 | 11950 | 0.0 | - | | 1.4512 | 12000 | 0.0 | - | | 1.4572 | 12050 | 0.0 | - | | 1.4633 | 12100 | 0.0 | - | | 1.4693 | 12150 | 0.0 | - | | 1.4754 | 12200 | 0.0 | - | | 1.4814 | 12250 | 0.0 | - | | 1.4875 | 12300 | 0.0 | - | | 1.4935 | 12350 | 0.0 | - | | 1.4996 | 12400 | 0.0 | - | | 1.5056 | 12450 | 0.0 | - | | 1.5117 | 12500 | 0.0 | - | | 1.5177 | 12550 | 0.0 | - | | 1.5238 | 12600 | 0.0 | - | | 1.5298 | 12650 | 0.0 | - | | 1.5359 | 12700 | 0.0 | - | | 1.5419 | 12750 | 0.0 | - | | 1.5480 | 12800 | 0.0 | - | | 1.5540 | 12850 | 0.0 | - | | 1.5600 | 12900 | 0.0 | - | | 1.5661 | 12950 | 0.0 | - | | 1.5721 | 13000 | 0.0 | - | | 1.5782 | 13050 | 0.0 | - | | 1.5842 | 13100 | 0.0 | - | | 1.5903 | 13150 | 0.0 | - | | 1.5963 | 13200 | 0.0 | - | | 1.6024 | 13250 | 0.0 | - | | 1.6084 | 13300 | 0.0 | - | | 1.6145 | 13350 | 0.0 | - | | 1.6205 | 13400 | 0.0 | - | | 1.6266 | 13450 | 0.0 | - | | 1.6326 | 13500 | 0.0 | - | | 1.6387 | 13550 | 0.0 | - | | 1.6447 | 13600 | 0.0 | - | | 1.6507 | 13650 | 0.0 | - | | 1.6568 | 13700 | 0.0 | - | | 1.6628 | 13750 | 0.0 | - | | 1.6689 | 13800 | 0.0 | - | | 1.6749 | 13850 | 0.0 | - | | 1.6810 | 13900 | 0.0 | - | | 1.6870 | 13950 | 0.0 | - | | 1.6931 | 14000 | 0.0 | - | | 1.6991 | 14050 | 0.0 | - | | 1.7052 | 14100 | 0.0 | - | | 1.7112 | 14150 | 0.0 | - | | 1.7173 | 14200 | 0.0 | - | | 1.7233 | 14250 | 0.0 | - | | 1.7294 | 14300 | 0.0 | - | | 1.7354 | 14350 | 0.0 | - | | 1.7414 | 14400 | 0.0 | - | | 1.7475 | 14450 | 0.0 | - | | 1.7535 | 14500 | 0.0 | - | | 1.7596 | 14550 | 0.0 | - | | 1.7656 | 14600 | 0.0 | - | | 1.7717 | 14650 | 0.0 | - | | 1.7777 | 14700 | 0.0 | - | | 1.7838 | 14750 | 0.0 | - | | 1.7898 | 14800 | 0.0 | - | | 1.7959 | 14850 | 0.0 | - | | 1.8019 | 14900 | 0.0 | - | | 1.8080 | 14950 | 0.0 | - | | 1.8140 | 15000 | 0.0 | - | | 1.8201 | 15050 | 0.0 | - | | 1.8261 | 15100 | 0.0 | - | | 1.8321 | 15150 | 0.0 | - | | 1.8382 | 15200 | 0.0 | - | | 1.8442 | 15250 | 0.0 | - | | 1.8503 | 15300 | 0.0 | - | | 1.8563 | 15350 | 0.0 | - | | 1.8624 | 15400 | 0.0 | - | | 1.8684 | 15450 | 0.0 | - | | 1.8745 | 15500 | 0.0 | - | | 1.8805 | 15550 | 0.0 | - | | 1.8866 | 15600 | 0.0 | - | | 1.8926 | 15650 | 0.0 | - | | 1.8987 | 15700 | 0.0 | - | | 1.9047 | 15750 | 0.0 | - | | 1.9108 | 15800 | 0.0 | - | | 1.9168 | 15850 | 0.0 | - | | 1.9228 | 15900 | 0.0 | - | | 1.9289 | 15950 | 0.0 | - | | 1.9349 | 16000 | 0.0 | - | | 1.9410 | 16050 | 0.0 | - | | 1.9470 | 16100 | 0.0 | - | | 1.9531 | 16150 | 0.0 | - | | 1.9591 | 16200 | 0.0 | - | | 1.9652 | 16250 | 0.0 | - | | 1.9712 | 16300 | 0.0 | - | | 1.9773 | 16350 | 0.0 | - | | 1.9833 | 16400 | 0.0 | - | | 1.9894 | 16450 | 0.0 | - | | 1.9954 | 16500 | 0.0 | - | | 2.0 | 16538 | - | 0.3646 | | 2.0015 | 16550 | 0.0 | - | | 2.0075 | 16600 | 0.0 | - | | 2.0135 | 16650 | 0.0 | - | | 2.0196 | 16700 | 0.0 | - | | 2.0256 | 16750 | 0.0 | - | | 2.0317 | 16800 | 0.0 | - | | 2.0377 | 16850 | 0.0 | - | | 2.0438 | 16900 | 0.0 | - | | 2.0498 | 16950 | 0.0 | - | | 2.0559 | 17000 | 0.0 | - | | 2.0619 | 17050 | 0.0 | - | | 2.0680 | 17100 | 0.0 | - | | 2.0740 | 17150 | 0.0 | - | | 2.0801 | 17200 | 0.0 | - | | 2.0861 | 17250 | 0.0 | - | | 2.0922 | 17300 | 0.0 | - | | 2.0982 | 17350 | 0.0 | - | | 2.1042 | 17400 | 0.0 | - | | 2.1103 | 17450 | 0.0 | - | | 2.1163 | 17500 | 0.0 | - | | 2.1224 | 17550 | 0.0 | - | | 2.1284 | 17600 | 0.0 | - | | 2.1345 | 17650 | 0.0 | - | | 2.1405 | 17700 | 0.0 | - | | 2.1466 | 17750 | 0.0 | - | | 2.1526 | 17800 | 0.0 | - | | 2.1587 | 17850 | 0.0 | - | | 2.1647 | 17900 | 0.0 | - | | 2.1708 | 17950 | 0.0 | - | | 2.1768 | 18000 | 0.0 | - | | 2.1829 | 18050 | 0.0 | - | | 2.1889 | 18100 | 0.0 | - | | 2.1949 | 18150 | 0.0 | - | | 2.2010 | 18200 | 0.0 | - | | 2.2070 | 18250 | 0.0 | - | | 2.2131 | 18300 | 0.0 | - | | 2.2191 | 18350 | 0.0 | - | | 2.2252 | 18400 | 0.0 | - | | 2.2312 | 18450 | 0.0 | - | | 2.2373 | 18500 | 0.0 | - | | 2.2433 | 18550 | 0.0 | - | | 2.2494 | 18600 | 0.0 | - | | 2.2554 | 18650 | 0.0 | - | | 2.2615 | 18700 | 0.0 | - | | 2.2675 | 18750 | 0.0 | - | | 2.2736 | 18800 | 0.0 | - | | 2.2796 | 18850 | 0.0 | - | | 2.2856 | 18900 | 0.0 | - | | 2.2917 | 18950 | 0.0 | - | | 2.2977 | 19000 | 0.0 | - | | 2.3038 | 19050 | 0.0 | - | | 2.3098 | 19100 | 0.0 | - | | 2.3159 | 19150 | 0.0 | - | | 2.3219 | 19200 | 0.0 | - | | 2.3280 | 19250 | 0.0 | - | | 2.3340 | 19300 | 0.0 | - | | 2.3401 | 19350 | 0.0 | - | | 2.3461 | 19400 | 0.0 | - | | 2.3522 | 19450 | 0.0 | - | | 2.3582 | 19500 | 0.0 | - | | 2.3643 | 19550 | 0.0 | - | | 2.3703 | 19600 | 0.0 | - | | 2.3763 | 19650 | 0.0 | - | | 2.3824 | 19700 | 0.0 | - | | 2.3884 | 19750 | 0.0 | - | | 2.3945 | 19800 | 0.0 | - | | 2.4005 | 19850 | 0.0 | - | | 2.4066 | 19900 | 0.0 | - | | 2.4126 | 19950 | 0.0 | - | | 2.4187 | 20000 | 0.0 | - | | 2.4247 | 20050 | 0.0 | - | | 2.4308 | 20100 | 0.0 | - | | 2.4368 | 20150 | 0.0 | - | | 2.4429 | 20200 | 0.0 | - | | 2.4489 | 20250 | 0.0 | - | | 2.4550 | 20300 | 0.0 | - | | 2.4610 | 20350 | 0.0 | - | | 2.4670 | 20400 | 0.0 | - | | 2.4731 | 20450 | 0.0 | - | | 2.4791 | 20500 | 0.0 | - | | 2.4852 | 20550 | 0.0 | - | | 2.4912 | 20600 | 0.0 | - | | 2.4973 | 20650 | 0.0 | - | | 2.5033 | 20700 | 0.0 | - | | 2.5094 | 20750 | 0.0 | - | | 2.5154 | 20800 | 0.0 | - | | 2.5215 | 20850 | 0.0 | - | | 2.5275 | 20900 | 0.0 | - | | 2.5336 | 20950 | 0.0 | - | | 2.5396 | 21000 | 0.0 | - | | 2.5457 | 21050 | 0.0 | - | | 2.5517 | 21100 | 0.0 | - | | 2.5577 | 21150 | 0.0 | - | | 2.5638 | 21200 | 0.0 | - | | 2.5698 | 21250 | 0.0 | - | | 2.5759 | 21300 | 0.0 | - | | 2.5819 | 21350 | 0.0 | - | | 2.5880 | 21400 | 0.0 | - | | 2.5940 | 21450 | 0.0 | - | | 2.6001 | 21500 | 0.0 | - | | 2.6061 | 21550 | 0.0 | - | | 2.6122 | 21600 | 0.0 | - | | 2.6182 | 21650 | 0.0 | - | | 2.6243 | 21700 | 0.0 | - | | 2.6303 | 21750 | 0.0 | - | | 2.6364 | 21800 | 0.0 | - | | 2.6424 | 21850 | 0.0 | - | | 2.6484 | 21900 | 0.0 | - | | 2.6545 | 21950 | 0.0 | - | | 2.6605 | 22000 | 0.0 | - | | 2.6666 | 22050 | 0.0 | - | | 2.6726 | 22100 | 0.0 | - | | 2.6787 | 22150 | 0.0 | - | | 2.6847 | 22200 | 0.0 | - | | 2.6908 | 22250 | 0.0 | - | | 2.6968 | 22300 | 0.0 | - | | 2.7029 | 22350 | 0.0 | - | | 2.7089 | 22400 | 0.0 | - | | 2.7150 | 22450 | 0.0 | - | | 2.7210 | 22500 | 0.0 | - | | 2.7271 | 22550 | 0.0 | - | | 2.7331 | 22600 | 0.0 | - | | 2.7391 | 22650 | 0.0 | - | | 2.7452 | 22700 | 0.0 | - | | 2.7512 | 22750 | 0.0 | - | | 2.7573 | 22800 | 0.0 | - | | 2.7633 | 22850 | 0.0 | - | | 2.7694 | 22900 | 0.0 | - | | 2.7754 | 22950 | 0.0 | - | | 2.7815 | 23000 | 0.0 | - | | 2.7875 | 23050 | 0.0 | - | | 2.7936 | 23100 | 0.0 | - | | 2.7996 | 23150 | 0.0 | - | | 2.8057 | 23200 | 0.0 | - | | 2.8117 | 23250 | 0.0 | - | | 2.8178 | 23300 | 0.0 | - | | 2.8238 | 23350 | 0.0 | - | | 2.8298 | 23400 | 0.0 | - | | 2.8359 | 23450 | 0.0 | - | | 2.8419 | 23500 | 0.0 | - | | 2.8480 | 23550 | 0.0 | - | | 2.8540 | 23600 | 0.0 | - | | 2.8601 | 23650 | 0.0 | - | | 2.8661 | 23700 | 0.0 | - | | 2.8722 | 23750 | 0.0 | - | | 2.8782 | 23800 | 0.0 | - | | 2.8843 | 23850 | 0.0 | - | | 2.8903 | 23900 | 0.0 | - | | 2.8964 | 23950 | 0.0 | - | | 2.9024 | 24000 | 0.0 | - | | 2.9085 | 24050 | 0.0 | - | | 2.9145 | 24100 | 0.0 | - | | 2.9205 | 24150 | 0.0 | - | | 2.9266 | 24200 | 0.0 | - | | 2.9326 | 24250 | 0.0 | - | | 2.9387 | 24300 | 0.0 | - | | 2.9447 | 24350 | 0.0 | - | | 2.9508 | 24400 | 0.0 | - | | 2.9568 | 24450 | 0.0 | - | | 2.9629 | 24500 | 0.0 | - | | 2.9689 | 24550 | 0.0 | - | | 2.9750 | 24600 | 0.0 | - | | 2.9810 | 24650 | 0.0 | - | | 2.9871 | 24700 | 0.0 | - | | 2.9931 | 24750 | 0.0 | - | | 2.9992 | 24800 | 0.0 | - | | 3.0 | 24807 | - | 0.3517 | ### Framework Versions - Python: 3.11.11 - SetFit: 1.1.1 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.4.1.post300 - Datasets: 3.4.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
jkawamoto/arxiv-summarization-t5-base-ct2
jkawamoto
summarization
[ "transformers", "ctranslate2", "summarization", "en", "base_model:farleyknight/arxiv-summarization-t5-base-2022-09-21", "base_model:quantized:farleyknight/arxiv-summarization-t5-base-2022-09-21", "license:apache-2.0", "endpoints_compatible", "region:us" ]
1,717,227,571,000
2024-10-03T00:34:22
16
0
--- base_model: farleyknight/arxiv-summarization-t5-base-2022-09-21 language: - en license: apache-2.0 tags: - ctranslate2 - summarization base_model_relation: quantized --- # arxiv-summarization-t5-base-ct2 This is a version of [farleyknight/arxiv-summarization-t5-base-2022-09-21](https://huggingface.co/farleyknight/arxiv-summarization-t5-base-2022-09-21) converted for use with [CTranslate2](https://github.com/OpenNMT/CTranslate2). The conversion was performed using the following command: ``` ct2-transformers-converter --model farleyknight/arxiv-summarization-t5-base-2022-09-21 \ --output_dir arxiv-summarization-t5-base-ct2 \ --copy_files special_tokens_map.json tokenizer.json tokenizer_config.json ``` ## License This adaptation is based on [farleyknight/arxiv-summarization-t5-base-2022-09-21](https://huggingface.co/farleyknight/arxiv-summarization-t5-base-2022-09-21), originally provided under the Apache 2.0 License. Modifications were made for compatibility with CTranslate2. Despite these modifications, this adapted version continues to be distributed under the Apache 2.0 License, honoring the original licensing terms.
[ "SUMMARIZATION" ]
Non_BioNLP
Helsinki-NLP/opus-mt-en-hy
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "en", "hy", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T11:29:55
956
1
--- language: - en - hy license: apache-2.0 tags: - translation --- ### eng-hye * source group: English * target group: Armenian * OPUS readme: [eng-hye](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-hye/README.md) * model: transformer-align * source language(s): eng * target language(s): hye * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hye/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hye/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hye/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.hye | 16.6 | 0.404 | ### System Info: - hf_name: eng-hye - source_languages: eng - target_languages: hye - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-hye/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'hy'] - src_constituents: {'eng'} - tgt_constituents: {'hye', 'hye_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hye/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hye/opus-2020-06-16.test.txt - src_alpha3: eng - tgt_alpha3: hye - short_pair: en-hy - chrF2_score: 0.40399999999999997 - bleu: 16.6 - brevity_penalty: 1.0 - ref_len: 5115.0 - src_name: English - tgt_name: Armenian - train_date: 2020-06-16 - src_alpha2: en - tgt_alpha2: hy - prefer_old: False - long_pair: eng-hye - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
[ "TRANSLATION" ]
Non_BioNLP
txt22/distilbert-base-uncased-finetuned-emotion
txt22
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,693,076,806,000
2023-08-27T01:13:06
14
0
--- datasets: - emotion license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.925 name: Accuracy - type: f1 value: 0.9247520077961444 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - Accuracy: 0.925 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8388 | 1.0 | 250 | 0.3143 | 0.906 | 0.9026 | | 0.2482 | 2.0 | 500 | 0.2183 | 0.925 | 0.9248 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1 - Datasets 2.11.0 - Tokenizers 0.13.3
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
TmbAI/PDF-Summarizer
TmbAI
null
[ "license:unlicense", "region:us" ]
1,720,889,861,000
2024-07-13T17:00:44
0
0
--- license: unlicense --- from transformers import pipeline import PyPDF2 def summarize_pdf(pdf_path): """Summarizes the content of a given PDF file. Args: pdf_path: The path to the PDF file to be summarized. Returns: A list of dictionaries containing the summary text. """ summarizer = pipeline("summarization", model="facebook/bart-large-cnn") with open(pdf_path, 'rb') as pdf_file: pdf_reader = PyPDF2.PdfReader(pdf_file) text = "" for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] text += page.extract_text() summary = summarizer(text, max_length=130, min_length=30, do_sample=False) return summary # Example usage: pdf_path = "path/to/your/pdf.pdf" # Replace with the actual PDF file path summary = summarize_pdf(pdf_path) print(summary)
[ "SUMMARIZATION" ]
Non_BioNLP
blockblockblock/Hermes-2-Pro-Llama-3-8B-bpw5-exl2
blockblockblock
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "Llama-3", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "axolotl", "conversational", "en", "dataset:teknium/OpenHermes-2.5", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:quantized:NousResearch/Meta-Llama-3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "5-bit", "exl2", "region:us" ]
1,714,725,271,000
2024-05-03T08:36:46
7
0
--- base_model: NousResearch/Meta-Llama-3-8B datasets: - teknium/OpenHermes-2.5 language: - en license: apache-2.0 tags: - Llama-3 - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - function calling - json mode - axolotl widget: - example_title: Hermes 2 Pro messages: - role: system content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me. - role: user content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world. model-index: - name: Hermes-2-Pro-Llama-3-8B results: [] --- # Hermes 2 Pro - Llama-3 8B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png) ## Model Description Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house. This new version of Hermes maintains its excellent general task and conversation capabilities - but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics as well, scoring a 90% on our function calling evaluation built in partnership with Fireworks.AI, and an 84% on our structured JSON Output evaluation. Hermes Pro takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role in order to make function calling reliable and easy to parse. Learn more about prompting below. This version of Hermes 2 Pro adds several tokens to assist with agentic capabilities in parsing while streaming tokens - `<tools>`, `<tool_call>`, `<tool_response>` and their closing tags are single tokens now. This work was a collaboration between Nous Research, @interstellarninja, and Fireworks.AI Learn more about the function calling system for this model on our github repo here: https://github.com/NousResearch/Hermes-Function-Calling ## Example Outputs ### Ask for a structured JSON output: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ll2j2wkQffCsiSwUjfRUq.png) ### Write the plot for a story where anime became real life: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/h_7aXGXdm2p2ONYuDF4Ii.png) ### Coding Assistance ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bBd0hyAb8w5rKUiN2w1I6.png) # Prompt Format Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. ## Prompt Format for Function Calling Our model was trained on specific system prompts and structures for Function Calling. You should use the system role with this message, followed by a function signature json as this example shows here. ``` <|im_start|>system You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {"arguments": <args-dict>, "name": <function-name>} </tool_call><|im_end|> ``` To complete the function call, create a user prompt that follows the above system prompt, like so: ``` <|im_start|>user Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|> ``` The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling): ``` <|im_start|>assistant <tool_call> {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"} </tool_call><|im_end|> ``` Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so: ``` <|im_start|>tool <tool_response> {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}} </tool_response> <|im_end|> ``` The assistant will then read in that data from the function's response, and generate a natural language response: ``` <|im_start|>assistant The stock fundamentals data for Tesla (TSLA) are as follows: - **Symbol**: TSLA - **Company Name**: Tesla, Inc. - **Sector**: Consumer Cyclical - **Industry**: Auto Manufacturers - **Market Capitalization**: $566,160,130,480 - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73 - **Price-to-Book Ratio (PB Ratio)**: 9.04 - **Dividend Yield**: N/A - **Trailing Earnings Per Share (EPS)**: $4.3 - **Beta Value of the Stock**: 2.42 - **52-Week High Price of the Stock**: $299.29 - **52-Week Low Price of the Stock**: $152.37 This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|> ``` ## Prompt Format for JSON Mode / Structured Outputs Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema. Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main ``` <|im_start|>system You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|> ``` Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON. # Benchmarks ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vOYv9wJUMn1Xrf4BvmO_x.png) ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5520|± |0.0145| | | |acc_norm|0.5887|± |0.0144| |arc_easy | 0|acc |0.8350|± |0.0076| | | |acc_norm|0.8123|± |0.0080| |boolq | 1|acc |0.8584|± |0.0061| |hellaswag | 0|acc |0.6265|± |0.0048| | | |acc_norm|0.8053|± |0.0040| |openbookqa | 0|acc |0.3800|± |0.0217| | | |acc_norm|0.4580|± |0.0223| |piqa | 0|acc |0.8003|± |0.0093| | | |acc_norm|0.8118|± |0.0091| |winogrande | 0|acc |0.7490|± |0.0122| ``` Average: 72.62 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2520|± |0.0273| | | |acc_norm|0.2559|± |0.0274| |agieval_logiqa_en | 0|acc |0.3548|± |0.0188| | | |acc_norm|0.3625|± |0.0189| |agieval_lsat_ar | 0|acc |0.1826|± |0.0255| | | |acc_norm|0.1913|± |0.0260| |agieval_lsat_lr | 0|acc |0.5510|± |0.0220| | | |acc_norm|0.5255|± |0.0221| |agieval_lsat_rc | 0|acc |0.6431|± |0.0293| | | |acc_norm|0.6097|± |0.0298| |agieval_sat_en | 0|acc |0.7330|± |0.0309| | | |acc_norm|0.7039|± |0.0319| |agieval_sat_en_without_passage| 0|acc |0.4029|± |0.0343| | | |acc_norm|0.3689|± |0.0337| |agieval_sat_math | 0|acc |0.3909|± |0.0330| | | |acc_norm|0.3773|± |0.0328| ``` Average: 42.44 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.5737|± |0.0360| |bigbench_date_understanding | 0|multiple_choice_grade|0.6667|± |0.0246| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3178|± |0.0290| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1755|± |0.0201| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3120|± |0.0207| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2014|± |0.0152| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5500|± |0.0288| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.4300|± |0.0222| |bigbench_navigate | 0|multiple_choice_grade|0.4980|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.7010|± |0.0102| |bigbench_ruin_names | 0|multiple_choice_grade|0.4688|± |0.0236| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1974|± |0.0126| |bigbench_snarks | 0|multiple_choice_grade|0.7403|± |0.0327| |bigbench_sports_understanding | 0|multiple_choice_grade|0.5426|± |0.0159| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.5320|± |0.0158| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2280|± |0.0119| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1531|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5500|± |0.0288| ``` Average: 43.55 ## TruthfulQA: ``` | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |0.410|± |0.0172| | | |mc2 |0.578|± |0.0157| ``` # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM) Note: To use function calling, you should see the github repo above. ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM import bitsandbytes, flash_attn tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Llama-3-8B', trust_remote_code=True) model = LlamaForCausalLM.from_pretrained( "NousResearch/Hermes-2-Pro-Llama-3-8B", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` ## Inference Code for Function Calling: All code for utilizing, parsing, and building function calling templates is available on our github: [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png) # Chat Interfaces When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) ## Quantized Versions: GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF # How to cite: ```bibtext @misc{Hermes-2-Pro-Llama-3-8B, url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B]https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)}, title={Hermes-2-Pro-Llama-3-8B}, author={"Teknium", "interstellarninja", "theemozilla", "karan4d", "huemin_art"} } ```
[ "TRANSLATION" ]
Non_BioNLP
bwhite5311/NLP-sentiment-project-2001-samples
bwhite5311
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,668,807,943,000
2022-11-19T01:21:00
9
0
--- datasets: - imdb license: apache-2.0 metrics: - accuracy - f1 - precision tags: - generated_from_trainer model-index: - name: NLP-sentiment-project-2001-samples results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - type: accuracy value: 0.9998 name: Accuracy - type: f1 value: 0.9998005186515061 name: F1 - type: precision value: 0.9996011168727563 name: Precision --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-sentiment-project-2001-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.0008 - Accuracy: 0.9998 - F1: 0.9998 - Precision: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
tjasad/translation_slo_eng_opus-mt-sla-en_lora
tjasad
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-sla-en", "base_model:adapter:Helsinki-NLP/opus-mt-sla-en", "license:apache-2.0", "region:us" ]
1,716,310,530,000
2024-05-24T05:09:13
2
0
--- base_model: Helsinki-NLP/opus-mt-sla-en library_name: peft license: apache-2.0 metrics: - bleu tags: - generated_from_trainer model-index: - name: translation_slo_eng_opus-mt-sla-en_lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation_slo_eng_opus-mt-sla-en_lora This model is a fine-tuned version of [Helsinki-NLP/opus-mt-sla-en](https://huggingface.co/Helsinki-NLP/opus-mt-sla-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7472 - Bleu: 34.2191 - Gen Len: 12.4026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.8995 | 1.0 | 2500 | 1.7472 | 34.2191 | 12.4026 | ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
[ "TRANSLATION" ]
Non_BioNLP
fathyshalab/massive_social-roberta-large-v1-3-7
fathyshalab
text-classification
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,676,013,284,000
2023-02-10T07:15:04
9
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # fathyshalab/massive_social-roberta-large-v1-3-7 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-3-7") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
gaudi/opus-mt-alv-en-ctranslate2
gaudi
translation
[ "transformers", "marian", "ctranslate2", "translation", "license:apache-2.0", "endpoints_compatible", "region:us" ]
1,721,174,841,000
2024-10-18T21:49:37
6
0
--- license: apache-2.0 tags: - ctranslate2 - translation --- # Repository General Information ## Inspired by and derived from the work of [Helsinki-NLP](https://huggingface.co/Helsinki-NLP), [CTranslate2](https://github.com/OpenNMT/CTranslate2), and [michaelfeil](https://huggingface.co/michaelfeil)! - Link to Original Model ([Helsinki-NLP](https://huggingface.co/Helsinki-NLP)): [Model Link](https://huggingface.co/Helsinki-NLP/opus-mt-alv-en) - This respository was based on the work of [CTranslate2](https://github.com/OpenNMT/CTranslate2). - This repository was based on the work of [michaelfeil](https://huggingface.co/michaelfeil). # What is CTranslate2? [CTranslate2](https://opennmt.net/CTranslate2/) is a C++ and Python library for efficient inference with Transformer models. CTranslate2 implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. CTranslate2 is one of the most performant ways of hosting translation models at scale. Current supported models include: - Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper - Decoder-only models: GPT-2, GPT-J, GPT-NeoX, OPT, BLOOM, MPT, Llama, Mistral, Gemma, CodeGen, GPTBigCode, Falcon - Encoder-only models: BERT, DistilBERT, XLM-RoBERTa The project is production-oriented and comes with backward compatibility guarantees, but it also includes experimental features related to model compression and inference acceleration. # CTranslate2 Benchmarks Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings. Tested against `newstest2014` (En -> De) dataset. The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers. Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings. ## CPU Benchmarks for Generic Opus-MT Models | Library | Tokens per Second | Max Memory Usage | BLEU | | :----: | :----: | :----: | :----: | | Transformers 4.26.1 (with PyTorch 1.13.1) | 147.3 | 2332MB | 27.90 | | Marian 1.11.0 (int16) | 330.2 | 5901MB | 27.65 | | Marian 1.11.0 (int8) | 355.8 | 4763MB | 27.27 | | CTranslate2 3.6.0 (int16) | 596.1 | 660MB | 27.53 | | CTranslate2 3.6.0 (int8) | 696.1 | 516MB | 27.65 | ## GPU Benchmarks for Generic Opus-MT Models | Library | Tokens per Second | Max GPU Memory Usage | Max Memory Usage | BLEU | | :----: | :----: | :----: | :----: | :----: | | Transformers 4.26.1 (with PyTorch 1.13.1) | 1022.9 | 4097MB | 2109MB | 27.90 | | Marian 1.11.0 (float16) | 3962.4 | 3239MB | 1976MB | 27.94 | | CTranslate2 3.6.0 (float16) | 9296.7 | 909MB | 814MB | 27.9 | | CTranslate2 3.6.0 (int8 + float16) | 8362.7 | 813MB | 766MB | 27.9 | `Executed with 4 threads on a c5.2xlarge Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.` **Source to benchmark information can be found [here](https://github.com/OpenNMT/CTranslate2).**<br /> **Original model BLEU scores can be found [here](https://huggingface.co/Helsinki-NLP/opus-mt-alv-en).** ## Internal Benchmarks Internal testing on our end showed **inference times reduced by 6x-10x** on average compared the vanilla checkpoints using the *transformers* library. A **slight reduction on BLEU scores (~5%)** was also identified in comparison to the vanilla checkpoints with a few exceptions. This is likely due to several factors, one being the quantization applied. Further testing is needed from our end to better assess the reduction in translation quality. The command used to compile the vanilla checkpoint into a CTranslate2 model can be found below. Modifying this command can yield differing balances between inferencing performance and translation quality. # CTranslate2 Installation ```bash pip install hf-hub-ctranslate2>=1.0.0 ctranslate2>=3.13.0 ``` ### ct2-transformers-converter Command Used: ```bash ct2-transformers-converter --model Helsinki-NLP/opus-mt-alv-en --output_dir ./ctranslate2/opus-mt-alv-en-ctranslate2 --force --copy_files README.md generation_config.json tokenizer_config.json vocab.json source.spm .gitattributes target.spm --quantization float16 ``` # CTranslate2 Converted Checkpoint Information: **Compatible With:** - [ctranslate2](https://github.com/OpenNMT/CTranslate2) - [hf-hub-ctranslate2](https://github.com/michaelfeil/hf-hub-ctranslate2) **Compute Type:** - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` # Sample Code - ctranslate2 #### Clone the repository to the working directory or wherever you wish to store the model artifacts. #### ```bash git clone https://huggingface.co/gaudi/opus-mt-alv-en-ctranslate2 ``` #### Take the python code below and update the 'model_dir' variable to the location of the cloned repository. #### ```python from ctranslate2 import Translator import transformers model_dir = "./opus-mt-alv-en-ctranslate2" # Path to model directory. translator = Translator( model_path=model_dir, device="cuda", # cpu, cuda, or auto. inter_threads=1, # Maximum number of parallel translations. intra_threads=4, # Number of OpenMP threads per translator. compute_type="int8_float16", # int8 for cpu or int8_float16 for cuda. ) tokenizer = transformers.AutoTokenizer.from_pretrained(model_dir) source = tokenizer.convert_ids_to_tokens(tokenizer.encode("XXXXXX, XXX XX XXXXXX.")) results = translator.translate_batch([source]) target = results[0].hypotheses[0] print(tokenizer.decode(tokenizer.convert_tokens_to_ids(target))) ``` # Sample Code - hf-hub-ctranslate2 **Derived From [michaelfeil](https://huggingface.co/michaelfeil):** ```python from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub from transformers import AutoTokenizer model_name = "gaudi/opus-mt-alv-en-ctranslate2" model = TranslatorCT2fromHfHub( model_name_or_path=model_name, device="cuda", compute_type="int8_float16", tokenizer=AutoTokenizer.from_pretrained(model_name) ) outputs = model.generate( text=["XXX XX XXX XXXXXXX XXXX?", "XX XX XXXX XX XXX!"], ) print(outputs) ``` # License and other remarks: License conditions are intended to be idential to [original huggingface repository](https://huggingface.co/Helsinki-NLP/opus-mt-alv-en) by Helsinki-NLP.
[ "TRANSLATION" ]
Non_BioNLP
clulab/roberta-base-motivational-interviewing
clulab
text-classification
[ "transformers", "pytorch", "roberta", "text-classification", "motivational-interviewing", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,684,862,098,000
2023-05-23T18:47:06
18
1
--- language: - en library_name: transformers license: apache-2.0 metrics: - f1 pipeline_tag: text-classification tags: - motivational-interviewing widget: - text: I'm planning on having tuna, ground tuna, chopped celery, and chopped black pepper, and half a apple. example_title: change_talk_goal_talk_and_opportunities --- # Model Card for roberta-base-motivational-interviewing ⚠ WARNING: This is a preliminary model that is still actively under development. ⚠ This is a [roBERTa-base](https://huggingface.co/roberta-base) model fine-tuned on a small dataset of conversations between health coaches and cancer survivors. # How to Get Started with the Model You can use this model directly with a pipeline for text classification: ```python >>> import transformers >>> model_name = "clulab/roberta-base-motivational-interviewing" >>> classifier = transformers.TextClassificationPipeline( ... tokenizer=transformers.AutoTokenizer.from_pretrained(model_name), ... model=transformers.AutoModelForSequenceClassification.from_pretrained(model_name)) >>> classifier("I'm planning on having tuna, ground tuna, chopped celery, and chopped black pepper, and half a apple.") [{'label': 'change_talk_goal_talk_and_opportunities', 'score': 0.9995419979095459}] ``` # Model Details - **Developed by:** [Steven Bethard](https://bethard.github.io/) - **Parent Model:** [roBERTa-base](https://huggingface.co/roberta-base) - **GitHub Repo:** [LIvES repo](https://github.com/clulab/lives) # Uses The model is intended to be used for text classification, taking as input conversational utterances and predicting as output different categories of motivational interviewing behaviors. It is intended for use by health coaches to assist when reviewing their past calls with participants. Its predictions should not be used without manual review. # Training Details The model was trained on data annotated under the grant [Using Natural Language Processing to Determine Predictors of Healthy Diet and Physical Activity Behavior Change in Ovarian Cancer Survivors (NIH NCI R21CA256680)](https://reporter.nih.gov/project-details/10510666). A [roberta-base](https://huggingface.co/roberta-base) model was fine-tuned on that dataset, with texts tokenized using the standard [roberta-base](https://huggingface.co/roberta-base) tokenizer. # Evaluation On the test partition of the R21CA256680 dataset, the model achieves 0.60 precision and 0.46 recall.
[ "TEXT_CLASSIFICATION" ]
BioNLP
csocsci/mt5-base-binary-en-iiia-02c
csocsci
text2text-generation
[ "transformers", "pytorch", "mt5", "text2text-generation", "multilingual", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,695,389,587,000
2023-09-23T05:12:11
9
0
--- language: - multilingual license: mit --- # Model Card for mt5-base-binary-en-iiia-02c <!-- Provide a quick summary of what the model is/does. --> This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents. ## Model Description The model was fine-tuned on a dataset of English Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs 'positive' or 'negative': Supportive Interactions present or not. The inputs are a target utterance and its bi-directional context; it's target label that of the target utterance. - **Developed by:** Anonymous - **Language(s):** multilingual - **Finetuned from:** mt5-base ## Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/chi2024submission - **Paper:** Stay tuned! ## Usage Here is how to use this model to classify a context-window of a dialogue: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch # Target utterance test_texts = ['Utterance2'] # Bi-directional context of the target utterance test_text_pairs = ['Utterance1;Utterance2;Utterance3'] # Load the model and tokenizer checkpoint_path = "chi2024/mt5-base-binary-en-iiia-02c" model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)\ .to("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) # Define helper functions def verbalize_input(text: str, text_pair: str) -> str: return "Utterance: %s\nContext: %s" % (text, text_pair) def predict_one(text, pair): input_pair = verbalize_input(text, pair) inputs = tokenizer(input_pair, return_tensors="pt", padding=True, truncation=True, max_length=256).to(model.device) outputs = model.generate(**inputs) decoded = [text.strip() for text in tokenizer.batch_decode(outputs, skip_special_tokens=True)] return decoded # Run the prediction preds_txt = [predict_one(t,p) for t,p in zip(test_texts, test_text_pairs)] preds_lbl = [1 if x == 'positive' else 0 for x in preds_txt] print(preds_lbl) ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
facebook/dpr-question_encoder-single-nq-base
facebook
feature-extraction
[ "transformers", "pytorch", "tf", "dpr", "feature-extraction", "en", "dataset:nq_open", "arxiv:2004.04906", "arxiv:1702.08734", "arxiv:1910.09700", "license:cc-by-nc-4.0", "region:us" ]
1,646,263,745,000
2022-12-21T15:20:10
35,053
30
--- datasets: - nq_open language: en license: cc-by-nc-4.0 tags: - dpr inference: false --- # `dpr-question_encoder-single-nq-base` ## Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) - [Model Card Authors](#model-card-authors) ## Model Details **Model Description:** [Dense Passage Retrieval (DPR)](https://github.com/facebookresearch/DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. `dpr-question_encoder-single-nq-base` is the question encoder trained using the [Natural Questions (NQ) dataset](https://huggingface.co/datasets/nq_open) ([Lee et al., 2019](https://aclanthology.org/P19-1612/); [Kwiatkowski et al., 2019](https://aclanthology.org/Q19-1026/)). - **Developed by:** See [GitHub repo](https://github.com/facebookresearch/DPR) for model developers - **Model Type:** BERT-based encoder - **Language(s):** [CC-BY-NC-4.0](https://github.com/facebookresearch/DPR/blob/main/LICENSE), also see [Code of Conduct](https://github.com/facebookresearch/DPR/blob/main/CODE_OF_CONDUCT.md) - **License:** English - **Related Models:** - [`dpr-ctx_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base) - [`dpr-reader-single-nq-base`](https://huggingface.co/facebook/dpr-reader-single-nq-base) - [`dpr-ctx_encoder-multiset-base`](https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base) - [`dpr-question_encoder-multiset-base`](https://huggingface.co/facebook/dpr-question_encoder-multiset-base) - [`dpr-reader-multiset-base`](https://huggingface.co/facebook/dpr-reader-multiset-base) - **Resources for more information:** - [Research Paper](https://arxiv.org/abs/2004.04906) - [GitHub Repo](https://github.com/facebookresearch/DPR) - [Hugging Face DPR docs](https://huggingface.co/docs/transformers/main/en/model_doc/dpr) - [BERT Base Uncased Model Card](https://huggingface.co/bert-base-uncased) ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"] embeddings = model(input_ids).pooler_output ``` ## Uses #### Direct Use `dpr-question_encoder-single-nq-base`, [`dpr-ctx_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base), and [`dpr-reader-single-nq-base`](https://huggingface.co/facebook/dpr-reader-single-nq-base) can be used for the task of open-domain question answering. #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the set of DPR models was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section may contain content that is disturbing, offensive, and can propogate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Training #### Training Data This model was trained using the [Natural Questions (NQ) dataset](https://huggingface.co/datasets/nq_open) ([Lee et al., 2019](https://aclanthology.org/P19-1612/); [Kwiatkowski et al., 2019](https://aclanthology.org/Q19-1026/)). The model authors write that: > [The dataset] was designed for end-to-end question answering. The questions were mined from real Google search queries and the answers were spans in Wikipedia articles identified by annotators. #### Training Procedure The training procedure is described in the [associated paper](https://arxiv.org/pdf/2004.04906.pdf): > Given a collection of M text passages, the goal of our dense passage retriever (DPR) is to index all the passages in a low-dimensional and continuous space, such that it can retrieve efficiently the top k passages relevant to the input question for the reader at run-time. > Our dense passage retriever (DPR) uses a dense encoder EP(·) which maps any text passage to a d- dimensional real-valued vectors and builds an index for all the M passages that we will use for retrieval. At run-time, DPR applies a different encoder EQ(·) that maps the input question to a d-dimensional vector, and retrieves k passages of which vectors are the closest to the question vector. The authors report that for encoders, they used two independent BERT ([Devlin et al., 2019](https://aclanthology.org/N19-1423/)) networks (base, un-cased) and use FAISS ([Johnson et al., 2017](https://arxiv.org/abs/1702.08734)) during inference time to encode and index passages. See the paper for further details on training, including encoders, inference, positive and negative passages, and in-batch negatives. ## Evaluation The following evaluation information is extracted from the [associated paper](https://arxiv.org/pdf/2004.04906.pdf). #### Testing Data, Factors and Metrics The model developers report the performance of the model on five QA datasets, using the top-k accuracy (k ∈ {20, 100}). The datasets were [NQ](https://huggingface.co/datasets/nq_open), [TriviaQA](https://huggingface.co/datasets/trivia_qa), [WebQuestions (WQ)](https://huggingface.co/datasets/web_questions), [CuratedTREC (TREC)](https://huggingface.co/datasets/trec), and [SQuAD v1.1](https://huggingface.co/datasets/squad). #### Results | | Top 20 | | | | | Top 100| | | | | |:----:|:------:|:---------:|:--:|:----:|:-----:|:------:|:---------:|:--:|:----:|:-----:| | | NQ | TriviaQA | WQ | TREC | SQuAD | NQ | TriviaQA | WQ | TREC | SQuAD | | | 78.4 | 79.4 |73.2| 79.8 | 63.2 | 85.4 | 85.0 |81.4| 89.1 | 77.2 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type and based on the [associated paper](https://arxiv.org/abs/2004.04906). - **Hardware Type:** 8 32GB GPUs - **Hours used:** Unknown - **Cloud Provider:** Unknown - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications See the [associated paper](https://arxiv.org/abs/2004.04906) for details on the modeling architecture, objective, compute infrastructure, and training details. ## Citation Information ```bibtex @inproceedings{karpukhin-etal-2020-dense, title = "Dense Passage Retrieval for Open-Domain Question Answering", author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov, Sergey and Chen, Danqi and Yih, Wen-tau", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.550", doi = "10.18653/v1/2020.emnlp-main.550", pages = "6769--6781", } ``` ## Model Card Authors This model card was written by the team at Hugging Face.
[ "QUESTION_ANSWERING" ]
Non_BioNLP
Helsinki-NLP/opus-mt-tc-big-fi-zle
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "fi", "ru", "uk", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,648,112,893,000
2023-10-10T11:36:15
27
0
--- language: - fi - ru - uk - zle license: cc-by-4.0 tags: - translation - opus-mt-tc model-index: - name: opus-mt-tc-big-fi-zle results: - task: type: translation name: Translation fin-rus dataset: name: flores101-devtest type: flores_101 args: fin rus devtest metrics: - type: bleu value: 21.4 name: BLEU - type: bleu value: 17.9 name: BLEU - task: type: translation name: Translation fin-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fin-rus metrics: - type: bleu value: 47.0 name: BLEU --- # opus-mt-tc-big-fi-zle Neural machine translation model for translating from Finnish (fi) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): fin * target language(s): rus ukr * valid target language labels: >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+bt_transformer-big_2022-03-17.zip) * more information released models: [OPUS-MT fin-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>rus<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Äänestimme jo.", ">>ukr<< Yksi, kaksi, kolme, neljä, viisi, kuusi, seitsemän, kahdeksan, yhdeksän, kymmenen." ] model_name = "pytorch-models/opus-mt-tc-big-fi-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Мы уже проголосовали. # Один, два, три, чотири, п'ять, шість, сім, вісім, дев'ять, десять. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-zle") print(pipe(">>rus<< Äänestimme jo.")) # expected output: Мы уже проголосовали. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fin-rus | tatoeba-test-v2021-08-07 | 0.67247 | 47.0 | 3643 | 21497 | | fin-rus | flores101-devtest | 0.49920 | 21.4 | 1012 | 23295 | | fin-ukr | flores101-devtest | 0.46935 | 17.9 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 42126b6 * port time: Thu Mar 24 09:34:57 EET 2022 * port machine: LM0-400-22516.local
[ "TRANSLATION" ]
Non_BioNLP
kwang123/medical-mt-fr-en
kwang123
translation
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "fr", "dataset:opus_books", "dataset:wmt14", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,692,239,880,000
2023-08-18T20:41:28
175
1
--- datasets: - opus_books - wmt14 language: - en - fr metrics: - bleu pipeline_tag: translation --- # medical-mt-fr-en This model was fine-tuned based on [Helsinki-NLP/opus-mt-fr-en](https://huggingface.co/Helsinki-NLP/opus-mt-fr-en) on WMT14 medical translation dataset. source language: French target language: English ## Inference ```python from transformers import pipeline text = 'Coombs négatif anémie hémolytique' translator = pipeline("translation", model="kwang123/medical-mt-fr-en") translator(text) ```
[ "TRANSLATION" ]
Non_BioNLP
YakovElm/IntelDAOS20SetFitModel_balance_ratio_2
YakovElm
text-classification
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,685,685,078,000
2023-06-02T05:52:00
12
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # YakovElm/IntelDAOS20SetFitModel_balance_ratio_2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("YakovElm/IntelDAOS20SetFitModel_balance_ratio_2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Unbabel/wmt23-cometkiwi-da-xxl-marian
Unbabel
translation
[ "transformers", "translation", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
1,716,460,509,000
2024-05-23T10:45:08
0
0
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh library_name: transformers license: cc-by-nc-sa-4.0 pipeline_tag: translation extra_gated_heading: Acknowledge license to accept the repository extra_gated_button_content: Acknowledge license --- Marian version of [wmt23-cometkiwi-da-xxl](https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xxl). Credits to Microsoft Translate Team! # Paper TBA # License: cc-by-nc-sa-4.0 # Usage: TBA # Intended uses This model is intented to be used for **reference-free MT evaluation**. Given a source text and its translation, outputs a single score between 0 and 1 where 1 represents a perfect translation. # Languages Covered: This model builds on top of InfoXLM which cover the following languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish. Thus, results for language pairs containing uncovered languages are unreliable!
[ "TRANSLATION" ]
Non_BioNLP
mini1013/master_cate_el19
mini1013
text-classification
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
1,731,146,482,000
2024-11-09T10:01:45
644
0
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 신일 SVC-D500SR 무선청소기 싸이클론 유선형 이동식 본체 디자인 그린 워너비템 - text: '[더트데빌 퀵플립플러스] 16V 리튬 무선 핸디청소기 (113년 전통/차량용/가정용/사무실/책상용/원룸/오피스텔) (주)비즈온플레이스' - text: 신일전자 핸디형 무선 청소기 SVC-C27KP 차량용 가정용 소형청소기 원룸 새봄전자 - text: 더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스 - text: 홈마블 진공 무선 핸디 미니 소형 스틱 청소기 화이트 씨엠케이(CMK) inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8571428571428571 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | <ul><li>'셰퍼 스왈로우 핸디 청소기 JSK-N3009 주식회사 알앤피코스메틱'</li><li>'마이아 듀얼프로 에어건 무선 청소기 ND-MYA001W 박진희'</li><li>'신일 싸이클론 무선 청소기 SVC-D500SR 헤파필터 회전브러쉬 제이씨유통'</li></ul> | | 1 | <ul><li>'LG전자 코드제로 R5 로봇청소기 R585WKA1 (카밍 베이지) 엠제이테크'</li><li>'LG 코드제로 R5 R585WKA 로봇청소기 흡입 + 물걸레 / KN (주)케이엔디지털'</li></ul> | | 8 | <ul><li>'(전용) 한경희 무선청소기 HCV-B400 PRO 전용 클린타워 모터 보호 헤파필터 '</li><li>'삼성 정품 VS20B957F5E 청소기 헤드 흡입구 브러쉬 슬림 sava03291 H에이치마켓'</li><li>'[별제이]일렉트로룩스 청소기 호환용 먼지봉투 10매 S-BAG ZUS4065AF 호환용 먼지봉투 10매 신세계몰'</li></ul> | | 5 | <ul><li>'디월트 20V 충전 스틱 전동 무선 청소기 차량용 세차용 집진기 DCV501LN 주식회사 신한비앤아이'</li><li>'디월트 집진기 충전 청소기 무선 세차기 차량용 스틱 업소용청소기 DCV501LN 본체만 라이프 공구'</li><li>'디월트 20V MAX 충전 스틱 집진 청소기 DCV501LN 01.DCV501LN 충전청소기 베어툴 한경툴 주식회사'</li></ul> | | 9 | <ul><li>'[신제품] 70도 열풍 진드기 제거 침구청소기 레이캅 코리아 '</li><li>'[신제품] 70도 열풍 진드기 제거 침구청소기 레이캅 코리아 '</li><li>'비쎌 스팟클린 하이드로 스팀 3791S 습식 스팀청소기 빈대퇴치 고온 살균 소파얼룩제거 BISSEL '</li></ul> | | 7 | <ul><li>'[런칭기념 보관가방 ] 클링봇S 물분사 가성비 창문청소로봇 유리창 창문 베란다 로봇청소기 '</li><li>'에코백스 윈봇 W1S 창문 로봇청소기 에코백스공식스토어'</li><li>'클링봇S 물분사 창문로봇청소기 원조 창문 청소기 보관가방포함 아이뮤즈본사'</li></ul> | | 0 | <ul><li>'AVA 프리미엄 고압세척기 휴대용 가정용 고압세차기 AVA GO P55 동양테크툴'</li><li>'AVA 프리미엄 고압세척기 휴대용 가정용 고압세차기 아바 GO P55 에이지에스'</li></ul> | | 6 | <ul><li>'신일 유선 싸이클론 진공청소기 SVC-R700LOT 레드 + 블랙_SVC-R700LOT 스위트코코'</li><li>'신일전자 유선 싸이클론 진공청소기 강력한흡입 HEPA필터 700W SVC-R700LOT 신창전자'</li><li>'이스타 먼지제로 유선 진공 청소기 핸디스틱 소형 원룸 가정용 ESK-WV400 주식회사 제이에스엘홀딩스'</li></ul> | | 4 | <ul><li>'한경희 2in1 스팀청소기 HTE-S600 핸디스팀 LTE-S600 (주)에디샵'</li><li>'[2024년 최신형] 리빈치 초고속 예열 고온 살균 스팀청소기 LSC-200 리빈치 스팀청소기 + 추가패드 증정 총 4장 (주)바투네트워크'</li></ul> | | 3 | <ul><li>'KAC-5000(유선형)/오토비스/자동물걸레청소기/국산정품/친환경제품/소비전력30W/1분당1000회이상/강력한함/ 1_화이트 클린랜드'</li><li>'WC-1500 무선 충전 물걸레 청소기 각도조절 세척 탈수통 제공 MinSellAmount 지큐아이씨앤씨'</li><li>'코맘스 소형 무선 물걸레청소기 그레이 PC9005G 보만코리아'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8571 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_el19") # Run inference preds = model("더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.2791 | 18 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 2 | | 1 | 2 | | 2 | 50 | | 3 | 5 | | 4 | 2 | | 5 | 6 | | 6 | 14 | | 7 | 9 | | 8 | 26 | | 9 | 13 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0476 | 1 | 0.4954 | - | | 2.3810 | 50 | 0.0399 | - | | 4.7619 | 100 | 0.0186 | - | | 7.1429 | 150 | 0.0152 | - | | 9.5238 | 200 | 0.0155 | - | | 11.9048 | 250 | 0.0093 | - | | 14.2857 | 300 | 0.0025 | - | | 16.6667 | 350 | 0.0006 | - | | 19.0476 | 400 | 0.0037 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
AI-Sweden-Models/gpt-sw3-1.3b
AI-Sweden-Models
text-generation
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "da", "sv", "no", "en", "is", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,671,021,180,000
2024-01-29T13:20:38
4,697
4
--- language: - da - sv - 'no' - en - is license: apache-2.0 --- # Model description [AI Sweden](https://huggingface.co/AI-Sweden-Models/) **Base models** [GPT-Sw3 126M](https://huggingface.co/AI-Sweden-Models/gpt-sw3-126m/) | [GPT-Sw3 356M](https://huggingface.co/AI-Sweden-Models/gpt-sw3-356m/) | [GPT-Sw3 1.3B](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b/) [GPT-Sw3 6.7B](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b/) | [GPT-Sw3 6.7B v2](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2/) | [GPT-Sw3 20B](https://huggingface.co/AI-Sweden-Models/gpt-sw3-20b/) [GPT-Sw3 40B](https://huggingface.co/AI-Sweden-Models/gpt-sw3-40b/) **Instruct models** [GPT-Sw3 126M Instruct](https://huggingface.co/AI-Sweden-Models/gpt-sw3-126m-instruct/) | [GPT-Sw3 356M Instruct](https://huggingface.co/AI-Sweden-Models/gpt-sw3-356m-instruct/) | [GPT-Sw3 1.3B Instruct](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b-instruct/) [GPT-Sw3 6.7B v2 Instruct](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct/) | [GPT-Sw3 20B Instruct](https://huggingface.co/AI-Sweden-Models/gpt-sw3-20b-instruct/) **Quantized models** [GPT-Sw3 6.7B v2 Instruct 4-bit gptq](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct-4bit-gptq) | [GPT-Sw3 20B Instruct 4-bit gptq](https://huggingface.co/AI-Sweden-Models/gpt-sw3-20b-instruct-4bit-gptq) GPT-SW3 is a collection of large decoder-only pretrained transformer language models that were developed by AI Sweden in collaboration with RISE and the WASP WARA for Media and Language. GPT-SW3 has been trained on a dataset containing 320B tokens in Swedish, Norwegian, Danish, Icelandic, English, and programming code. The model was pretrained using a causal language modeling (CLM) objective utilizing the NeMo Megatron GPT implementation. # Intended use GPT-SW3 is an autoregressive large language model that is capable of generating coherent text in 5 different languages, and 4 programming languages. GPT-SW3 can also be instructed to perform text tasks that it has not been explicitly trained for, by casting them as text generation tasks. AI Sweden shares GPT-SW3 in a controlled pre-release with organizations and individuals in the Nordic NLP ecosystem who can contribute to the validation and testing of the models and provide feedback to the community. This is an important step in the process of validating the model and collecting feedback on both what works well and what does not. # Limitations Like other large language models for which the diversity (or lack thereof) of training data induces downstream impact on the quality of our model, GPT-SW3 has limitations in terms of for example bias and safety. GPT-SW3 can also have quality issues in terms of generation diversity and hallucination. By releasing with the modified RAIL license, we also hope to increase communication, transparency, and the study of large language models. The model may: overrepresent some viewpoints and underrepresent others, contain stereotypes, generate hateful, abusive, violent, discriminatory or prejudicial language. The model may make errors, including producing incorrect information as if it were factual, it may generate irrelevant or repetitive outputs, and content that may not be appropriate for all settings, including sexual content. # How to use To be able to access the model from Python, since this is a private repository, you have to log in with your access token. This can be done with `huggingface-cli login`, see [HuggingFace Quick Start Guide](https://huggingface.co/docs/huggingface_hub/quick-start#login) for more information. The following code snippet loads our tokenizer & model, and uses the GPU if available. ```python import torch from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM # Initialize Variables model_name = "AI-Sweden-Models/gpt-sw3-1.3b" device = "cuda:0" if torch.cuda.is_available() else "cpu" prompt = "Träd är fina för att" # Initialize Tokenizer & Model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model.eval() model.to(device) ``` Generating text using the `generate` method is done as follows: ```python input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(device) generated_token_ids = model.generate( inputs=input_ids, max_new_tokens=100, do_sample=True, temperature=0.6, top_p=1, )[0] generated_text = tokenizer.decode(generated_token_ids) ``` A convenient alternative to the `generate` method is the HuggingFace pipeline, which handles most of the work for you: ```python generator = pipeline('text-generation', tokenizer=tokenizer, model=model, device=device) generated = generator(prompt, max_new_tokens=100, do_sample=True, temperature=0.6, top_p=1)[0]["generated_text"] ``` # Compliance The release of GPT-SW3 consists of model weights, a configuration file, a tokenizer file and a vocabulary file. None of these files contain any personally identifiable information (PII) or any copyrighted material. # GPT-SW3 Model Card Following Mitchell et al. (2018), we provide a model card for GPT-SW3. # Model Details - Person or organization developing model: GPT-SW3 was developed by AI Sweden in collaboration with RISE and the WASP WARA for Media and Language. - Model date: GPT-SW3 date of release 2022-12-20 - Model version: This is the second generation of GPT-SW3. - Model type: GPT-SW3 is a large decoder-only transformer language model. - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features: GPT-SW3 was trained with the NeMo Megatron GPT implementation. - Paper or other resource for more information: N/A. - License: [LICENSE](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b/blob/main/LICENSE). - Where to send questions or comments about the model: [email protected] # Intended Use - Primary intended uses: We pre-release GPT-SW3 for research and evaluation of the capabilities of Large Language Models for the Nordic languages. This is an important step in the process of knowledge building for LLMs, validating the model and collecting feedback on both what works well and what does not. - Primary intended users: Organizations and individuals in the Nordic NLP ecosystem who can contribute to the validation and testing of the models and provide feedback to the community. - Out-of-scope use cases: See the modified RAIL license. # Data, Limitations, and Recommendations - Data selection for training: Training data for GPT-SW3 was selected based on a combination of breadth and availability. See our Datasheet for more detailed information on the data used to train our model. - Data selection for evaluation: N/A - Limitations: Like other large language models for which the diversity (or lack thereof) of training data induces downstream impact on the quality of our model, GPT-SW3 has limitations in terms of bias and safety. GPT-SW3 can also have quality issues in terms of generation diversity and hallucination. In general, GPT-SW3 is not immune from the plethora of issues that plague modern large language models. By releasing with the modified RAIL license, we also hope to increase communication, transparency, and the study of large language models. The model may: Overrepresent some viewpoints and underrepresent others. Contain stereotypes. Generate: Hateful, abusive, or violent language. Discriminatory or prejudicial language. Content that may not be appropriate for all settings, including sexual content. Make errors, including producing incorrect information as if it were factual. Generate irrelevant or repetitive outputs. - Recommendations for future work: Indirect users should be made aware when the content they're working with is created by the LLM. Users should be aware of Risks and Limitations, and include an appropriate age disclaimer or blocking interface as necessary. Models pretrained with the LLM should include an updated Model Card. Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments. - We hope that the release of GPT-SW3, as well as information around our model training process, will increase open science around both large language models in specific and natural language processing and deep learning in general. # GPT-SW3 Datasheet - We follow the recommendations of Gebru et al. (2021) and provide a datasheet for the dataset used to train GPT-SW3. # Motivation - For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description. Pre-training of Large Language Models (LLM), such as GPT-3 (T. B. Brown et al., 2020), Gopher (J. W. Rae et al., 2022), BLOOM (T. L. Scao et al., 2022), etc. require 100s or even 1000s GBs of text data, with recent studies (Chinchilla: J. Hoffmann et al., 2022) suggesting that the scale of the training data is even more important than previously imagined. Therefore, in order to train Swedish LLMs, we needed a large scale Swedish dataset of high quality. Since no such datasets existed before this initiative, we collected data in the Nordic and English languages. - Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)? The Strategic Initiative Natural Language Understanding at AI Sweden has established a new research environment in which collaboration is key. The core team working on the creation of the dataset is the NLU research group at AI Sweden. This group consists of researchers and developers from AI Sweden (Lindholmen Science Park AB) and RISE. - Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number. The Swedish Innovation Agency (Vinnova) has funded this work across several different grants, including 2019-02996 and 2022-00949. - Any other comments? No. # Composition - What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description. The instances are textual documents categorized by language and document type. The dataset is a filtered and deduplicated collection that includes the following sources: - Books - Litteraturbanken (https://litteraturbanken.se/) - The Pile - Articles - Diva (https://www.diva-portal.org/) - The Pile: PubMed - The Pile: ArXiv - Code - Code Parrot: Github code (https://huggingface.co/datasets/codeparrot/github-code) - Conversational - Familjeliv (https://www.familjeliv.se/) - Flashback (https://flashback.se/) - Datasets collected through Parlai (see Appendix in data paper for complete list) (https://github.com/facebookresearch/ParlAI) - Pushshift.io Reddit dataset, developed in Baumgartner et al. (2020) and processed in Roller et al. (2021) - Math - English Math dataset generated with code from DeepMind (D. Saxton et al., 2019) - Swedish Math dataset, generated as above with manually translated templates - Miscellaneous - Summarization data (https://www.ida.liu.se/~arnjo82/papers/clarin-21-julius.pdf) - OPUS, the open parallel corpus (https://opus.nlpl.eu/) - Movie scripts (https://github.com/Aveek-Saha/Movie-Script-Database) - Natural Instructions (https://github.com/allenai/natural-instructions) - P3 (Public Pool of Prompts), (https://huggingface.co/datasets/bigscience/P3) - The Norwegian Colossal Corpus (https://huggingface.co/datasets/NbAiLab/NCC) - Danish Gigaword (https://gigaword.dk/) - Icelandic Gigaword (https://clarin.is/en/resources/gigaword/) - The Pile: Stack Exchange - Web Common Crawl - Web data from the project LES (Linguistic Explorations of Societies, https://les.gu.se). - Multilingual C4 (MC4), prepared by AllenAI from C4 (C. Raffel et al., 2019) - Open Super-large Crawled Aggregated coRpus (OSCAR) (P. O. Suarez, 2019) - The Pile: Open Web Text - Web Sources - Various public Swedish website scrapes (see Appendix in data paper) - Familjeliv Articles - Public Swedish Job Ads from JobTech/Arbetsförmedlingen - Wikipedia - Official Wikipedia dumps - How many instances are there in total (of each type, if appropriate)? The training data consists of 1.1TB UTF-8 encoded text, containing 660M documents with a total of 320B tokens. - Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable). The subset of our dataset that comes from multilingual Common Crawl datasets (MC4, Oscar), are filtered by language to only include Swedish, Norwegian, Danish, and Icelandic. From The Pile, we included only the parts that typically are of highest textual quality or complemented the rest of our dataset with sources we otherwise lacked (e.g. books). The remainder of the dataset was collected from the above sources. - What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description. Each instance consists of raw text data. - Is there a label or target associated with each instance? If so, please provide a description. No. - Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text. No. - Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these relationships are made explicit. There are no explicit relationships between individual instances. - Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind them. There are no explicit splits recommended for this dataset. When pre-training the model, a random split for train, dev, test is set to 99.99%, 0.08%, 0.02% respectively, and is sampled proportionally to each subset’s weight and size. The weight of each subset was manually decided beforehand. These decisions were made considering the data’s value, source, and language, to form a representative and balanced pre-training corpus. - Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description. The dataset is a collection of many sources, some of which naturally contain some overlap. Although we have performed deduplication, some overlap may still remain. Furthermore, there may be some noise remaining from artifacts originating in Common Crawl datasets, that have been missed by our data filtering process. Except for these, we are not aware of any errors, sources of noise, or redundancies. - Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? The dataset is self-contained. - Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why. The dataset contains subsets of public Common Crawl, Reddit, Familjeliv and Flashback. These could contain sentences that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety. - Does the dataset relate to people? If not, you may skip the remaining questions in this section. Some documents of this data relate to people, such as news articles, Wikipedia descriptions, etc. - Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset. No, the dataset does not explicitly include subpopulation identification. - Any other comments? No. # Collection Process - How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe how. N/A. The dataset is a union of publicly available datasets and sources. - What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human curation, software program, software API)? How were these mechanisms or procedures validated? The data was downloaded from the internet. - If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific sampling probabilities)? Please see previous answers for how parts of the dataset were selected. - Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g., how much were crowdworkers paid)? This data is mined, filtered and sampled by machines. - Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the data associated with the instances was created. The dataset was collected during the period June 2021 to June 2022. The creation of the collected sources varies, with e.g. Common Crawl data that have been continuously collected over 12 years. - Does the dataset relate to people? If not, you may skip the remainder of the questions in this section. Yes. The texts have been produced by people. Any personal information potentially present in publicly available data sources and thus in the created dataset is of no interest to the collection and use of the dataset. - Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted? If so, please provide a description of this analysis, including the outcomes, as well as a link or other access point to any supporting documentation. Yes. - Any other comments? No. - Preprocessing/cleaning/labeling - Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remainder of the questions in this section. The dataset was filtered and re-formatted on a document-level using standard procedures, inspired by the work in The BigScience ROOTS Corpus (H. Laurençon et al., 2022) and Gopher (J. W. Rae et al., 2022). This was done with the goal of achieving a consistent text format throughout the dataset, and to remove documents that did not meet our textual quality requirements (e.g. repetitiveness). Furthermore, the dataset was deduplicated to remedy the overlap between collected subsets using the MinHash algorithm, similar to the method used in GPT-3 and The Pile, and described in greater detail in “Deduplicating Training Data Makes Language Models Better” (K. Lee et al., 2021). - Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link or other access point to the “raw” data. The “raw” component datasets are publicly available in their respective locations. - Any other comments? No. # Uses - Has the dataset been used for any tasks already? If so, please provide a description. The dataset was used to pre-train the GPT-SW3 models. - Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other access point. N/A. - What (other) tasks could the dataset be used for? The data can be used to pre-train language models, which are foundations for many current and future language tasks. - Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses? For example, is there anything that a future user might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user could do to mitigate these undesirable harms? The dataset is probably quite representative of Swedish internet discourse in general, and of the Swedish public sector, but we know that this data does not necessarily reflect the entire Swedish population. - Are there tasks for which the dataset should not be used? If so, please provide a description. None that we are currently aware of. - Any other comments? No. # Distribution - Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was created? If so, please provide a description. No. - How will the dataset distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object identifier (DOI)? N/A. - When will the dataset be distributed? N/A. - Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees associated with these restrictions. N/A. - Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation. N/A. - Any other comments? No. # Maintenance - Who is supporting/hosting/maintaining the dataset? AI Sweden at Lindholmen Science Park AB. - How can the owner/curator/manager of the dataset be contacted (e.g., email address)? [email protected] - Is there an erratum? If so, please provide a link or other access point. N/A. - Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how updates will be communicated to users (e.g., mailing list, GitHub)? Currently, there are no plans for updating the dataset. - If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were individuals in question told that their data would be retained for a fixed period of time and then deleted)? If so, please describe these limits and explain how they will be enforced. Read the privacy policy for the NLU initiative at AI Sweden [here](https://www.ai.se/en/privacy-policy-nlu). - Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence will be communicated to users. N/A. - If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide a description. Will these contributions be validated/ verified? If so, please describe how. If not, why not? Is there a process for communicating/ distributing these contributions to other users? If so, please provide a description. Not at this time. - Any other comments? No. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AI-Sweden-Models__gpt-sw3-1.3b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 29.99 | | ARC (25-shot) | 30.38 | | HellaSwag (10-shot) | 50.4 | | MMLU (5-shot) | 26.14 | | TruthfulQA (0-shot) | 39.97 | | Winogrande (5-shot) | 58.88 | | GSM8K (5-shot) | 0.08 | | DROP (3-shot) | 4.08 |
[ "SUMMARIZATION" ]
Non_BioNLP
poltextlab/xlm-roberta-large-spanish-media-cap-v3
poltextlab
text-classification
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "zero-shot-classification", "multilingual", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,699,013,140,000
2025-02-26T16:06:32
0
0
--- language: - multilingual license: mit metrics: - accuracy - f1-score tags: - zero-shot-classification - text-classification - pytorch extra_gated_prompt: 'Our models are intended for academic use only. If you are not affiliated with an academic institution, please provide a rationale for using our models. Please allow us a few business days to manually review subscriptions. If you use our models for your work or research, please cite this paper: Sebők, M., Máté, Á., Ring, O., Kovács, V., & Lehoczki, R. (2024). Leveraging Open Large Language Models for Multilingual Policy Topic Classification: The Babel Machine Approach. Social Science Computer Review, 0(0). https://doi.org/10.1177/08944393241259434' extra_gated_fields: Name: text Country: country Institution: text Institution Email: text Please specify your academic use case: text --- # xlm-roberta-large-spanish-media-cap-v3 ## Model description An `xlm-roberta-large` model finetuned on multilingual training data containing texts of the `media` domain labelled with [major topic codes](https://www.comparativeagendas.net/pages/master-codebook) from the [Comparative Agendas Project](https://www.comparativeagendas.net/). We follow the master codebook of the Comparative Agendas Project, and all of our models use the same major topic codes. ## How to use the model ```python from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large") pipe = pipeline( model="poltextlab/xlm-roberta-large-spanish-media-cap-v3", task="text-classification", tokenizer=tokenizer, use_fast=False, token="<your_hf_read_only_token>" ) text = "We will place an immediate 6-month halt on the finance driven closure of beds and wards, and set up an independent audit of needs and facilities." pipe(text) ``` The translation table from the model results to CAP codes is the following: ```python CAP_NUM_DICT = { 0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 12, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 23, 21: 999, } ``` We have included a 999 label because our models are fine-tuned on training data containing the label 'None' in addition to the 21 CAP major policy topic codes, indicating that the given text contains no relevant policy content. We use the label 999 for these cases. ### Gated access Due to the gated access, you must pass the `token` parameter when loading the model. In earlier versions of the Transformers package, you may need to use the `use_auth_token` parameter instead. ## Model performance The model was evaluated on a test set of 17885 examples (10% of the available data).<br> Model accuracy is **0.76**. | label | precision | recall | f1-score | support | |:-------------|------------:|---------:|-----------:|----------:| | 0 | 0.84 | 0.72 | 0.77 | 821 | | 1 | 0.6 | 0.59 | 0.59 | 1015 | | 2 | 0.79 | 0.84 | 0.82 | 689 | | 3 | 0.71 | 0.86 | 0.78 | 155 | | 4 | 0.68 | 0.69 | 0.69 | 371 | | 5 | 0.79 | 0.81 | 0.8 | 229 | | 6 | 0.62 | 0.63 | 0.63 | 189 | | 7 | 0.8 | 0.82 | 0.81 | 341 | | 8 | 0.78 | 0.75 | 0.77 | 322 | | 9 | 0.75 | 0.89 | 0.81 | 517 | | 10 | 0.8 | 0.79 | 0.79 | 3711 | | 11 | 0.63 | 0.45 | 0.53 | 138 | | 12 | 0.67 | 0.5 | 0.57 | 159 | | 13 | 0.7 | 0.64 | 0.67 | 792 | | 14 | 0.78 | 0.78 | 0.78 | 1330 | | 15 | 0.73 | 0.84 | 0.79 | 621 | | 16 | 0.57 | 0.43 | 0.49 | 168 | | 17 | 0.65 | 0.65 | 0.65 | 1039 | | 18 | 0.81 | 0.8 | 0.8 | 3879 | | 19 | 0.76 | 0.71 | 0.74 | 49 | | 20 | 0.74 | 0.82 | 0.78 | 1350 | | macro avg | 0.72 | 0.72 | 0.72 | 17885 | | weighted avg | 0.76 | 0.76 | 0.76 | 17885 | ## Inference platform This model is used by the [CAP Babel Machine](https://babel.poltextlab.com), an open-source and free natural language processing tool, designed to simplify and speed up projects for comparative research. ## Cooperation Model performance can be significantly improved by extending our training sets. We appreciate every submission of CAP-coded corpora (of any domain and language) at poltextlab{at}poltextlab{dot}com or by using the [CAP Babel Machine](https://babel.poltextlab.com). ## Debugging and issues This architecture uses the `sentencepiece` tokenizer. In order to run the model before `transformers==4.27` you need to install it manually. If you encounter a `RuntimeError` when loading the model using the `from_pretrained()` method, adding `ignore_mismatched_sizes=True` should solve the issue.
[ "TRANSLATION" ]
Non_BioNLP
Ashkanero/distilbert-base-uncased-finetuned-emotion
Ashkanero
text-classification
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,718,921,282,000
2024-06-20T22:33:26
8
0
--- base_model: distilbert-base-uncased datasets: - emotion license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.926 name: Accuracy - type: f1 value: 0.925944582955182 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2129 - Accuracy: 0.926 - F1: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8026 | 1.0 | 250 | 0.2986 | 0.917 | 0.9160 | | 0.2447 | 2.0 | 500 | 0.2129 | 0.926 | 0.9259 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1 - Datasets 2.19.1 - Tokenizers 0.19.1
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP
Helsinki-NLP/opus-mt-fr-tll
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "fr", "tll", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
1,646,263,744,000
2023-08-16T11:37:23
401
0
--- license: apache-2.0 tags: - translation --- ### opus-mt-fr-tll * source languages: fr * target languages: tll * OPUS readme: [fr-tll](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-tll/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-tll/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tll/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tll/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.tll | 24.6 | 0.467 |
[ "TRANSLATION" ]
Non_BioNLP
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1288
Lots-of-LoRAs
null
[ "pytorch", "safetensors", "en", "arxiv:1910.09700", "arxiv:2407.00066", "license:mit", "region:us" ]
1,718,740,121,000
2024-07-03T20:33:38
0
0
--- language: en library_name: pytorch license: mit --- # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1288 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1288_glue_mrpc_paraphrasing - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1288_glue_mrpc_paraphrasing sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "PARAPHRASING" ]
Non_BioNLP
YoLo2000/TiLamb-7B
YoLo2000
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "bo", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,712,060,416,000
2024-04-03T01:08:11
35
1
--- language: - bo license: apache-2.0 --- <!-- Provide a longer summary of what this model is. --> # TiLamb-7B(Tibetan Large Language Model Base) **TiLamb-7B** 是藏文大语言模型的基座模型,它使用了 26.43GB 的藏文语料,基于Meta发布的可商用大模型 LLaMA2-7B 模型,通过 LoRA 方法进行了增量预训练。该模型在 LLaMA2 的基础上扩展了词表,从原有的词表大小 32,000 扩充藏文词汇至 61,221 ,并对 LLaMA2-7B 原始模型的 embedding 和 lm_head 进行了均值扩充初始化。更多信息请访问 [TiLamb-7B GitHub 主页](https://github.com/NLP-Learning/TiLamb)。 **重要说明**: - TiLamb-7B 是一个未经监督微调的基座模型,**不具备对话能力**。 - 要进行藏文对话和藏文 NLP 下游任务的适配(已验证的任务包括藏文新闻分类、藏文实体关系分类、藏文机器阅读理解、藏文分词、藏文摘要、藏文问题回答和藏文问题生成),建议使用 [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory/tree/main) 框架进行微调。 **使用须知**: - 本项目基于 Meta 发布的 LLaMA2-7B 模型开发,使用时请严格遵守 LLaMA2-7B 的开源许可协议。 - 如果涉及使用第三方代码,请务必遵从相关的开源许可协议。 - 模型生成的内容准确性可能受到计算方法、随机因素等的影响,因此,我们不对模型输出的准确性提供任何保证,也不会对使用相关资源和输出结果产生的任何损失承担责任。 - 如果将相关模型用于商业用途,开发者应遵守当地法律法规,确保模型输出内容的合规性。本项目不对任何由此衍生的产品或服务承担责任。 # TiLamb-7B (Tibetan Large Language Model Base) **TiLamb-7B** is the foundational model for the Tibetan language, utilizing 26.43GB of Tibetan corpora. It's based on Meta's commercially available large model, LLaMA2-7B, and has been incrementally pre-trained using the LoRA method. This model expands on LLaMA2 by enlarging the vocabulary from the original 32,000 to 61,221 Tibetan words and initializes the embedding and lm_head of the original LLaMA2-7B model through mean expansion. For more information, please visit the [TiLamb-7B GitHub page](https://github.com/NLP-Learning/TiLamb). **Important Notes**: - TiLamb-7B is an unsupervised fine-tuned base model, **lacking conversational capabilities**. - For adaptation to Tibetan dialogue and Tibetan NLP downstream tasks (verified tasks include Tibetan news classification, Tibetan entity relation classification, Tibetan machine reading comprehension, Tibetan word segmentation, Tibetan summarization, Tibetan question answering, and Tibetan question generation), it is recommended to use the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory/tree/main) framework for fine-tuning. **Usage Notice**: - This project is developed based on the LLaMA2-7B model released by Meta, and its use must strictly adhere to the open-source license agreement of LLaMA2-7B. - If third-party code is involved, it is essential to comply with the relevant open-source license agreements. - The accuracy of the content generated by the model may be affected by computational methods, random factors, etc., therefore, we do not provide any guarantee for the accuracy of the model outputs, nor will we bear any responsibility for losses arising from the use of related resources and results. - If the related models are used for commercial purposes, developers must comply with local laws and regulations to ensure the compliance of the model output content. This project will not bear any responsibility for any products or services derived from it.
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
jondurbin/airoboros-l2-13b-3.1.1
jondurbin
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:jondurbin/airoboros-3.1", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,697,566,265,000
2023-10-22T11:44:38
8
5
--- datasets: - jondurbin/airoboros-3.1 license: llama2 --- ### Overview Another experimental model, using mostly sythetic data generated by [airoboros](https://github.com/jondurbin/airoboros) #### IMPORTANT NOTE - llama-2 chat format!!! This models uses llama-2 chat format, rather than vicuna style user/assistant! This is a breaking change, although most inference systems support llama-2 chat templating. See prompt format below for all of the details. #### Highlights This is a prompt fix release. 3.1 required a single space after the last `[/INST]`, which was highly annoying and obnoxious, so I re-tuned the models without this. Otherwise, it's the same as 3.1. A model built on [airoboros-3.1 dataset](https://hf.co/datasets/jondurbin/airoboros-3.1), which is a continuation of [airoboros-3.0 dataset](https://hf.co/datasets/jondurbin/airoboros-3,0) with the following extras: * More MathJSON, now ~17k items - math questions, prefixed with __"Create a MathJSON solution to the following:"__, which then outputs a JSON between __`<mathjson>`__ and __`</mathjson>`__ tags, which can be parsed and passed to a deterministic library to perform calculations. * Log information extraction (e.g. getting the list of paths/IPs/etc. from apache logs) * Anonymization, e.g. removing names, IP addresses, and/or dates from text. * Chat introspection - multi-turn chats that have random questions injected asking about the character's descriptions, the setting of the chat, or things previously said, to make sure the model uses the system prompt and or chat history. * Multi-step instructions with acknowledgement (see below) * De-censorship data (not published) This is a fairly general purpose model, but focuses heavily on instruction following, rather than casual chat/roleplay. Huge thank you to the folks over at [a16z](https://a16z.com/) for sponsoring the costs associated with building models and associated tools! ### Prompt format The prompt format is llama-2 chat. ``` [INST] <<SYS>> You are a helpful, unbiased, uncensored assistant. <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> You are a helpful, unbiased, uncensored assistant. <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` The prompt template is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.: ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/airoboros-l2-70b-3.1') chat = [ {"role": "system", "content": "You are Bob, a friendly AI assistant."}, {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` ### Helpful usage tips #### MathJSON Ask mathematical questions, prefixed with "Create a MathJSON solution to the following:", and you should get output with a formula that can be executed by https://cortexjs.io/compute-engine/ I also made a (really quite hacky, incomplete, semi-functional) python version that works for most expressions, see [mathjson.py](https://github.com/jondurbin/airoboros/blob/mathjson/airoboros/mathjson.py) __Use a very low temperature!__ Example: ``` [INST] <<SYS>> You are an assistant with vast knowledge in all things math. <</SYS>> Create a MathJSON solution to the following: Calculate the area of a circle with radius of 17.2456cm. Include your reasoning. [/INST] ``` Output: ``` The area (A) of a circle is given by the formula A = πr², where r is the radius of the circle. Since the radius is given in centimeters, we need to convert it to meters first. We know that 1 meter equals 100 centimeters. Therefore, we can represent the radius as: r = 17.2456 cm * 100/1. Once we have the radius in meters, we can calculate the area of the circle using the formula A = πr². Solution as MathJSON: <mathjson> [ "Multiply", "Pi", [ "Power", 17.2456, 2 ] ] </mathjson> ``` You can then validate the JSON between `<mathjson>` and `</mathjson>`, then pass the parsed JSON to compute-engine JS or the `evaluate` function in mathjson.py to calculate the response. #### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT [key0: value0] [key1: value1] ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. __Use a very low temperature!__ Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` #### Summarization 500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example: ``` BEGININPUT {text to summarize} ENDINPUT BEGININSTRUCTION Summarize the input in around 130 words. ENDINSTRUCTION ``` #### Getting longer responses You can use a few techniques to get longer responses. Detailed prompts, with explicit instruction for word count: ``` Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality. The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization. One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary. Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements. Your response should be approximately 2300 words. ``` Or, a simpler example: ``` Please create a long, detailed story about a dragon in an old growth forest who, for some reason, begins speaking the words of the source code of linux. ``` There are a few examples of next chapter completion as well, e.g.: ``` Write the next chapter of a historical fiction novel set in Paris during the 20th century. Here's a summary of the previous chapter: In the vibrant city of Paris, amid the tumultuous changes of the 20th century, our protagonist Margot, an aspiring fashion designer, has just secured an apprenticeship at a prestigious couture house. She meets Lucien, a charming journalist who covers the fashion industry. Together they navigate the ever-changing world of fashion and society, uncovering secrets that reveal the intricate links between style, politics, and culture. As the chapter concludes, they decide to delve deeper into the hidden corners of the fashion world to unravel its mysteries. Requirements for the next chapter: 1. Character Development of Margot and Lucien: - Margot's Evolution: Unfold more about Margot's past, her dreams of revolutionizing fashion, and her struggle to establish herself in a male-dominated industry. Illustrate her growing expertise, innovative ideas, and increasing dependence on Lucien. - Lucien's Complexity: Introduce uncertainties surrounding Lucien's background and real motives. Increase suspense by suggesting undisclosed information he possesses, while also highlighting his wit and perceptiveness. 2. Exploration of Paris and the Couture House: - Paris: Elaborate their journey through the bustling streets of Paris, including encounters with iconic figures, social unrest, and relics from different eras of French history. - The Couture House: Expand on the grandeur of the couture house they work in, filled with artistic masterpieces, intense competition, and cryptic notes hinting at a scandalous past. 3. Emergence of the Subplot: The Lost Collection: - Discovery: Have Margot and Lucien stumble upon a secret vault containing a lost collection designed before World War II, raising new questions about the previous owner and the influence of war on fashion. - Revelation: Capture their shock as they realize the designs were plagiarized, the potential repercussions, and the opportunities it presents for Margot's career. - Twist: End with a twist that suggests there are other stolen collections across Paris, setting up their new mission. Your response should be approximately 650 words. ``` #### Coding You can ask for fairly complex coding instructions with multiple criteria, e.g.: ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or inline criteria: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` #### Agent/function calling The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML. Example prompt: ``` As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format. Input: I want to know how many times 'Python' is mentioned in my text file. Available functions: file_analytics: description: This tool performs various operations on a text file. params: action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc. filters: keyword: The word or phrase we want to search for. ``` Response: ```json { "function": "file_analytics", "params": { "action": "count_occurrences", "filters": { "keyword": "Python" } } } ``` #### Chain-of-thought You can ask for several possible responses to a given problem, with a ranking and final answer selection. Example prompt: ``` A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one. ``` Example response: ``` Solution 1: In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players). The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows: n(n-1)/2 = 45 Solving this equation gives us n=10. Final answer: There were 10 players in the tournament. Solution 2: Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers. If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players. Final answer: There were 10 players in the tournament. Solution 3: We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played. Final answer: There were 10 players in the tournament. Ranking of solutions from best to worst: 1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer. 2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer. 3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer. Best and final answer: There were 10 players in the tournament. ``` #### reWOO style execution planning The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions! Example prompt: ``` Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string that could be the user's question, one or more prior evidence values, or a combination of both. Here are the tools available to be called: DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer. TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links. HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links. KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:? The output should be in format: Plan: [first action to take based on input question] :evidence0: = [function to call with input parameter] Plan: [next action to take, based on result of :evidence0:] :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"] ... Answer: [:evidence[n]: containing the final answer.] Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work? ``` Response: ``` Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020. :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner] Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate. :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?] Plan: Conduct another web search to find the most famous work of the identified laureate. :evidence2: = DuckDuckGo[Most famous work of :evidence1:] Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search. :evidence3: = HyperlinkExtractor[:evidence2:] Plan: Use the TextScraper tool to extract information from the relevant links. :evidence4: = TextScraper[:evidence3:] Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information. :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?] Answer: :evidence5: ``` For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening: ```python import re import requests def inject_context(input_text, **context): for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)): input_text = input_text.replace(ref, context.get(ref, "")) return input_text def duckduckgo(input_text, **context): search_string = inject_context(input_text, **context) ... search via duck duck go using search_string ... return text content def link_extractor(input_text, **context): input_text = inject_context(input_text, **context) return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I)))) def scrape(input_text, **context): input_text = inject_context(input_text, **context) text = [] for link in input_text.splitlines(): text.append(requests.get(link).text) return "\n".join(text) def infer(input_text, **context) prompt = inject_context(input_text, **context) ... call model with prompt, return output def parse_plan(plan): method_map = { "DuckDuckGo": duckduckgo, "HyperlinkExtractor": link_extractor, "KnowledgeModel": infer, "TextScraper": scrape, } context = {} for line in plan.strip().splitlines(): if line.startswith("Plan:"): print(line) continue parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I) if not parts: if line.startswith("Answer: "): return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...") raise RuntimeError("bad format: " + line) context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context) ``` ## Multi-step instructions with acknowledgement I don't know how useful this is, really, but I thought I'd add it just in case. Example: ``` { "conversations": [ { "value": "You are a helpful, unbiased, uncensored assistant.", "from": "system" }, { "value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "You can only respond using animal-related emojis.", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "Precede all responses with \"ZOOZOO:\"", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "Include at least one bird emoji in your responses.", "from": "human" }, { "value": "OK", "from": "gpt" }, { "value": "Describe a trip to a safari park.", "from": "human" }, { "value": "ZOOZOO: \ud83e\udd81\ud83d\udc2f\ud83e\udd93\ud83e\udd92\ud83d\udc18\ud83d\udc0d\ud83c\udf33\ud83c\udf32\u2600\ufe0f\ud83d\ude90\ud83e\udd85\ud83d\udcf8\ud83e\udd29", "from": "gpt" } ] } ``` ### Contribute If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data, take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details. To help me with the OpenAI/compute costs: - https://bmc.link/jondurbin - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11 - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf ### Licence and usage restrictions The airoboros 3.1 models are built on top of multiple base models, each with their own license/restrictions. The 30b model is built on the original llama, which has a strict non-commercial usage restriction. The models with `-l2` in the name have a custom Meta license: - See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta. - See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta. The models with `-m-` are mistral-7b (apache 2.0) The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros) The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI - what does *compete* actually mean here? - these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place - if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works - the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place - other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2 I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly. Your best bet is probably to avoid using this commercially due to the OpenAI API usage. Either way, by using this model, you agree to completely indemnify me.
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
Non_BioNLP
NovaSearch/jasper_en_vision_language_v1
NovaSearch
null
[ "sentence-transformers", "safetensors", "jasper_vl", "mteb", "custom_code", "en", "dataset:BAAI/Infinity-MM", "dataset:HuggingFaceFW/fineweb-edu", "arxiv:2412.19048", "base_model:NovaSearch/stella_en_1.5B_v5", "base_model:finetune:NovaSearch/stella_en_1.5B_v5", "model-index", "region:us" ]
1,733,887,383,000
2025-01-24T02:03:17
10,537
46
--- base_model: - dunzhang/stella_en_1.5B_v5 - google/siglip-so400m-patch14-384 datasets: - BAAI/Infinity-MM - HuggingFaceFW/fineweb-edu language: - en tags: - mteb - sentence-transformers model-index: - name: jasper_en_vision_language_v1 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en-ext) type: mteb/amazon_counterfactual config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 95.7271 - type: f1 value: 89.25450000000001 - type: f1_weighted value: 95.8563 - type: ap value: 67.1563 - type: ap_weighted value: 67.1563 - type: main_score value: 95.7271 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 93.7761 - type: f1 value: 90.7582 - type: f1_weighted value: 93.974 - type: ap value: 74.88759999999999 - type: ap_weighted value: 74.88759999999999 - type: main_score value: 93.7761 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification (default) type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 97.5809 - type: f1 value: 97.5808 - type: f1_weighted value: 97.5808 - type: ap value: 96.3911 - type: ap_weighted value: 96.3911 - type: main_score value: 97.5809 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 62.918 - type: f1 value: 60.696099999999994 - type: f1_weighted value: 60.696099999999994 - type: main_score value: 62.918 - task: type: Retrieval dataset: name: MTEB ArguAna (default) type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: ndcg_at_1 value: 41.323 - type: ndcg_at_3 value: 56.737 - type: ndcg_at_5 value: 61.254 - type: ndcg_at_10 value: 65.204 - type: ndcg_at_20 value: 66.75 - type: ndcg_at_100 value: 67.254 - type: ndcg_at_1000 value: 67.254 - type: map_at_1 value: 41.323 - type: map_at_3 value: 52.881 - type: map_at_5 value: 55.373000000000005 - type: map_at_10 value: 57.013999999999996 - type: map_at_20 value: 57.457 - type: map_at_100 value: 57.538 - type: map_at_1000 value: 57.538 - type: recall_at_1 value: 41.323 - type: recall_at_3 value: 67.923 - type: recall_at_5 value: 78.947 - type: recall_at_10 value: 91.11 - type: recall_at_20 value: 97.084 - type: recall_at_100 value: 99.644 - type: recall_at_1000 value: 99.644 - type: precision_at_1 value: 41.323 - type: precision_at_3 value: 22.641 - type: precision_at_5 value: 15.789 - type: precision_at_10 value: 9.110999999999999 - type: precision_at_20 value: 4.854 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 41.6785 - type: mrr_at_3 value: 52.963499999999996 - type: mrr_at_5 value: 55.456399999999995 - type: mrr_at_10 value: 57.104299999999995 - type: mrr_at_20 value: 57.5402 - type: mrr_at_100 value: 57.6213 - type: mrr_at_1000 value: 57.6213 - type: nauc_ndcg_at_1_max value: -12.633600000000001 - type: nauc_ndcg_at_1_std value: -19.747700000000002 - type: nauc_ndcg_at_1_diff1 value: 25.820300000000003 - type: nauc_ndcg_at_3_max value: -8.480799999999999 - type: nauc_ndcg_at_3_std value: -18.928900000000002 - type: nauc_ndcg_at_3_diff1 value: 19.409499999999998 - type: nauc_ndcg_at_5_max value: -7.9172 - type: nauc_ndcg_at_5_std value: -19.2306 - type: nauc_ndcg_at_5_diff1 value: 18.5809 - type: nauc_ndcg_at_10_max value: -9.7812 - type: nauc_ndcg_at_10_std value: -19.9964 - type: nauc_ndcg_at_10_diff1 value: 18.0753 - type: nauc_ndcg_at_20_max value: -8.6546 - type: nauc_ndcg_at_20_std value: -19.3205 - type: nauc_ndcg_at_20_diff1 value: 20.1741 - type: nauc_ndcg_at_100_max value: -9.376900000000001 - type: nauc_ndcg_at_100_std value: -19.5093 - type: nauc_ndcg_at_100_diff1 value: 20.4997 - type: nauc_ndcg_at_1000_max value: -9.376900000000001 - type: nauc_ndcg_at_1000_std value: -19.5093 - type: nauc_ndcg_at_1000_diff1 value: 20.4997 - type: nauc_map_at_1_max value: -12.633600000000001 - type: nauc_map_at_1_std value: -19.747700000000002 - type: nauc_map_at_1_diff1 value: 25.820300000000003 - type: nauc_map_at_3_max value: -9.5533 - type: nauc_map_at_3_std value: -19.3235 - type: nauc_map_at_3_diff1 value: 20.9083 - type: nauc_map_at_5_max value: -9.3126 - type: nauc_map_at_5_std value: -19.4593 - type: nauc_map_at_5_diff1 value: 20.5718 - type: nauc_map_at_10_max value: -10.0766 - type: nauc_map_at_10_std value: -19.8322 - type: nauc_map_at_10_diff1 value: 20.484099999999998 - type: nauc_map_at_20_max value: -9.7917 - type: nauc_map_at_20_std value: -19.6759 - type: nauc_map_at_20_diff1 value: 21.0095 - type: nauc_map_at_100_max value: -9.8837 - type: nauc_map_at_100_std value: -19.741400000000002 - type: nauc_map_at_100_diff1 value: 21.067700000000002 - type: nauc_map_at_1000_max value: -9.8837 - type: nauc_map_at_1000_std value: -19.741400000000002 - type: nauc_map_at_1000_diff1 value: 21.067700000000002 - type: nauc_recall_at_1_max value: -12.633600000000001 - type: nauc_recall_at_1_std value: -19.747700000000002 - type: nauc_recall_at_1_diff1 value: 25.820300000000003 - type: nauc_recall_at_3_max value: -4.7886999999999995 - type: nauc_recall_at_3_std value: -17.4764 - type: nauc_recall_at_3_diff1 value: 14.3308 - type: nauc_recall_at_5_max value: -1.4803 - type: nauc_recall_at_5_std value: -18.2137 - type: nauc_recall_at_5_diff1 value: 9.4604 - type: nauc_recall_at_10_max value: -8.8102 - type: nauc_recall_at_10_std value: -21.8279 - type: nauc_recall_at_10_diff1 value: -5.5388 - type: nauc_recall_at_20_max value: 25.202400000000004 - type: nauc_recall_at_20_std value: -4.8613 - type: nauc_recall_at_20_diff1 value: 9.3917 - type: nauc_recall_at_100_max value: 37.0551 - type: nauc_recall_at_100_std value: 84.5472 - type: nauc_recall_at_100_diff1 value: 19.5116 - type: nauc_recall_at_1000_max value: 37.0551 - type: nauc_recall_at_1000_std value: 84.5472 - type: nauc_recall_at_1000_diff1 value: 19.5116 - type: nauc_precision_at_1_max value: -12.633600000000001 - type: nauc_precision_at_1_std value: -19.747700000000002 - type: nauc_precision_at_1_diff1 value: 25.820300000000003 - type: nauc_precision_at_3_max value: -4.7886999999999995 - type: nauc_precision_at_3_std value: -17.4764 - type: nauc_precision_at_3_diff1 value: 14.3308 - type: nauc_precision_at_5_max value: -1.4803 - type: nauc_precision_at_5_std value: -18.2137 - type: nauc_precision_at_5_diff1 value: 9.4604 - type: nauc_precision_at_10_max value: -8.8102 - type: nauc_precision_at_10_std value: -21.8279 - type: nauc_precision_at_10_diff1 value: -5.5388 - type: nauc_precision_at_20_max value: 25.202400000000004 - type: nauc_precision_at_20_std value: -4.8613 - type: nauc_precision_at_20_diff1 value: 9.3917 - type: nauc_precision_at_100_max value: 37.0551 - type: nauc_precision_at_100_std value: 84.5472 - type: nauc_precision_at_100_diff1 value: 19.5116 - type: nauc_precision_at_1000_max value: 37.0551 - type: nauc_precision_at_1000_std value: 84.5472 - type: nauc_precision_at_1000_diff1 value: 19.5116 - type: nauc_mrr_at_1_max value: -11.9728 - type: nauc_mrr_at_1_std value: -19.4014 - type: nauc_mrr_at_1_diff1 value: 24.8653 - type: nauc_mrr_at_3_max value: -9.6607 - type: nauc_mrr_at_3_std value: -19.1819 - type: nauc_mrr_at_3_diff1 value: 20.0205 - type: nauc_mrr_at_5_max value: -9.4261 - type: nauc_mrr_at_5_std value: -19.3098 - type: nauc_mrr_at_5_diff1 value: 19.6347 - type: nauc_mrr_at_10_max value: -10.1698 - type: nauc_mrr_at_10_std value: -19.683 - type: nauc_mrr_at_10_diff1 value: 19.4823 - type: nauc_mrr_at_20_max value: -9.913 - type: nauc_mrr_at_20_std value: -19.517300000000002 - type: nauc_mrr_at_20_diff1 value: 20.0066 - type: nauc_mrr_at_100_max value: -10.0053 - type: nauc_mrr_at_100_std value: -19.5824 - type: nauc_mrr_at_100_diff1 value: 20.061899999999998 - type: nauc_mrr_at_1000_max value: -10.0053 - type: nauc_mrr_at_1000_std value: -19.5824 - type: nauc_mrr_at_1000_diff1 value: 20.061899999999998 - type: main_score value: 65.204 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P (default) type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 55.710300000000004 - type: v_measure_std value: 14.551900000000002 - type: main_score value: 55.710300000000004 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S (default) type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 51.004599999999996 - type: v_measure_std value: 14.868899999999998 - type: main_score value: 51.004599999999996 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions (default) type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 67.38119999999999 - type: mrr value: 79.0692 - type: nAUC_map_max value: 21.9757 - type: nAUC_map_std value: 14.3545 - type: nAUC_map_diff1 value: 11.82 - type: nAUC_mrr_max value: 40.3449 - type: nAUC_mrr_std value: 18.2678 - type: nAUC_mrr_diff1 value: 21.1596 - type: main_score value: 67.38119999999999 - task: type: STS dataset: name: MTEB BIOSSES (default) type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: pearson value: 87.4332 - type: spearman value: 84.65979999999999 - type: cosine_pearson value: 87.4332 - type: cosine_spearman value: 84.65979999999999 - type: manhattan_pearson value: 86.37270000000001 - type: manhattan_spearman value: 85.20309999999999 - type: euclidean_pearson value: 86.1672 - type: euclidean_spearman value: 84.7453 - type: main_score value: 84.65979999999999 - task: type: Classification dataset: name: MTEB Banking77Classification (default) type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 87.224 - type: f1 value: 86.7235 - type: f1_weighted value: 86.7235 - type: main_score value: 87.224 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P (default) type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 52.04990000000001 - type: v_measure_std value: 0.7255 - type: main_score value: 52.04990000000001 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S (default) type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 47.5811 - type: v_measure_std value: 0.8049000000000001 - type: main_score value: 47.5811 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval (default) type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: ndcg_at_1 value: 46.781 - type: ndcg_at_3 value: 52.111 - type: ndcg_at_5 value: 54.371 - type: ndcg_at_10 value: 57.247 - type: ndcg_at_20 value: 59.122 - type: ndcg_at_100 value: 62.071 - type: ndcg_at_1000 value: 63.32 - type: map_at_1 value: 37.2 - type: map_at_3 value: 46.005 - type: map_at_5 value: 48.32 - type: map_at_10 value: 50.181 - type: map_at_20 value: 51.062 - type: map_at_100 value: 51.735 - type: map_at_1000 value: 51.842 - type: recall_at_1 value: 37.2 - type: recall_at_3 value: 53.94 - type: recall_at_5 value: 60.88 - type: recall_at_10 value: 69.692 - type: recall_at_20 value: 76.711 - type: recall_at_100 value: 90.263 - type: recall_at_1000 value: 97.749 - type: precision_at_1 value: 46.781 - type: precision_at_3 value: 25.894000000000002 - type: precision_at_5 value: 18.541 - type: precision_at_10 value: 11.402 - type: precision_at_20 value: 6.567 - type: precision_at_100 value: 1.704 - type: precision_at_1000 value: 0.21 - type: mrr_at_1 value: 46.781099999999995 - type: mrr_at_3 value: 54.6257 - type: mrr_at_5 value: 56.0992 - type: mrr_at_10 value: 57.00769999999999 - type: mrr_at_20 value: 57.3576 - type: mrr_at_100 value: 57.6118 - type: mrr_at_1000 value: 57.6415 - type: nauc_ndcg_at_1_max value: 41.3069 - type: nauc_ndcg_at_1_std value: -3.9859999999999998 - type: nauc_ndcg_at_1_diff1 value: 56.355900000000005 - type: nauc_ndcg_at_3_max value: 40.354299999999995 - type: nauc_ndcg_at_3_std value: -1.4893 - type: nauc_ndcg_at_3_diff1 value: 51.473800000000004 - type: nauc_ndcg_at_5_max value: 39.2091 - type: nauc_ndcg_at_5_std value: -2.6139 - type: nauc_ndcg_at_5_diff1 value: 50.4382 - type: nauc_ndcg_at_10_max value: 37.8136 - type: nauc_ndcg_at_10_std value: -1.9053 - type: nauc_ndcg_at_10_diff1 value: 49.677 - type: nauc_ndcg_at_20_max value: 37.7571 - type: nauc_ndcg_at_20_std value: -1.0221 - type: nauc_ndcg_at_20_diff1 value: 49.6703 - type: nauc_ndcg_at_100_max value: 39.0419 - type: nauc_ndcg_at_100_std value: 0.5525 - type: nauc_ndcg_at_100_diff1 value: 50.8714 - type: nauc_ndcg_at_1000_max value: 39.4123 - type: nauc_ndcg_at_1000_std value: 0.2088 - type: nauc_ndcg_at_1000_diff1 value: 51.0321 - type: nauc_map_at_1_max value: 31.1237 - type: nauc_map_at_1_std value: -7.0686 - type: nauc_map_at_1_diff1 value: 55.28189999999999 - type: nauc_map_at_3_max value: 36.750899999999994 - type: nauc_map_at_3_std value: -4.502599999999999 - type: nauc_map_at_3_diff1 value: 52.64640000000001 - type: nauc_map_at_5_max value: 37.4208 - type: nauc_map_at_5_std value: -4.3387 - type: nauc_map_at_5_diff1 value: 51.8133 - type: nauc_map_at_10_max value: 37.4829 - type: nauc_map_at_10_std value: -3.3794999999999997 - type: nauc_map_at_10_diff1 value: 51.640299999999996 - type: nauc_map_at_20_max value: 37.7883 - type: nauc_map_at_20_std value: -2.9455999999999998 - type: nauc_map_at_20_diff1 value: 51.635299999999994 - type: nauc_map_at_100_max value: 38.1532 - type: nauc_map_at_100_std value: -2.513 - type: nauc_map_at_100_diff1 value: 51.8036 - type: nauc_map_at_1000_max value: 38.2036 - type: nauc_map_at_1000_std value: -2.5201000000000002 - type: nauc_map_at_1000_diff1 value: 51.807 - type: nauc_recall_at_1_max value: 31.1237 - type: nauc_recall_at_1_std value: -7.0686 - type: nauc_recall_at_1_diff1 value: 55.28189999999999 - type: nauc_recall_at_3_max value: 33.942899999999995 - type: nauc_recall_at_3_std value: -2.1842 - type: nauc_recall_at_3_diff1 value: 46.806 - type: nauc_recall_at_5_max value: 32.935199999999995 - type: nauc_recall_at_5_std value: -3.6494999999999997 - type: nauc_recall_at_5_diff1 value: 43.453599999999994 - type: nauc_recall_at_10_max value: 28.2544 - type: nauc_recall_at_10_std value: -1.1788 - type: nauc_recall_at_10_diff1 value: 38.8916 - type: nauc_recall_at_20_max value: 27.1235 - type: nauc_recall_at_20_std value: 2.8238 - type: nauc_recall_at_20_diff1 value: 36.9813 - type: nauc_recall_at_100_max value: 31.899300000000004 - type: nauc_recall_at_100_std value: 22.3521 - type: nauc_recall_at_100_diff1 value: 43.0867 - type: nauc_recall_at_1000_max value: 45.7236 - type: nauc_recall_at_1000_std value: 63.258199999999995 - type: nauc_recall_at_1000_diff1 value: 56.854499999999994 - type: nauc_precision_at_1_max value: 41.3069 - type: nauc_precision_at_1_std value: -3.9859999999999998 - type: nauc_precision_at_1_diff1 value: 56.355900000000005 - type: nauc_precision_at_3_max value: 39.6888 - type: nauc_precision_at_3_std value: 5.7427 - type: nauc_precision_at_3_diff1 value: 26.694699999999997 - type: nauc_precision_at_5_max value: 34.3509 - type: nauc_precision_at_5_std value: 7.3069999999999995 - type: nauc_precision_at_5_diff1 value: 15.4004 - type: nauc_precision_at_10_max value: 23.2221 - type: nauc_precision_at_10_std value: 10.559899999999999 - type: nauc_precision_at_10_diff1 value: 3.6925 - type: nauc_precision_at_20_max value: 17.9697 - type: nauc_precision_at_20_std value: 11.9127 - type: nauc_precision_at_20_diff1 value: -2.7178 - type: nauc_precision_at_100_max value: 11.8537 - type: nauc_precision_at_100_std value: 11.442 - type: nauc_precision_at_100_diff1 value: -11.2562 - type: nauc_precision_at_1000_max value: 5.7549 - type: nauc_precision_at_1000_std value: 0.40169999999999995 - type: nauc_precision_at_1000_diff1 value: -18.0644 - type: nauc_mrr_at_1_max value: 41.3069 - type: nauc_mrr_at_1_std value: -3.9859999999999998 - type: nauc_mrr_at_1_diff1 value: 56.355900000000005 - type: nauc_mrr_at_3_max value: 41.626200000000004 - type: nauc_mrr_at_3_std value: -0.7362 - type: nauc_mrr_at_3_diff1 value: 52.7305 - type: nauc_mrr_at_5_max value: 41.341499999999996 - type: nauc_mrr_at_5_std value: -1.113 - type: nauc_mrr_at_5_diff1 value: 52.159299999999995 - type: nauc_mrr_at_10_max value: 40.9696 - type: nauc_mrr_at_10_std value: -0.7545999999999999 - type: nauc_mrr_at_10_diff1 value: 51.9591 - type: nauc_mrr_at_20_max value: 41.0028 - type: nauc_mrr_at_20_std value: -0.5925 - type: nauc_mrr_at_20_diff1 value: 52.0497 - type: nauc_mrr_at_100_max value: 41.0447 - type: nauc_mrr_at_100_std value: -0.6299 - type: nauc_mrr_at_100_diff1 value: 52.2239 - type: nauc_mrr_at_1000_max value: 41.045 - type: nauc_mrr_at_1000_std value: -0.6354000000000001 - type: nauc_mrr_at_1000_diff1 value: 52.2368 - type: main_score value: 57.247 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval (default) type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: ndcg_at_1 value: 46.497 - type: ndcg_at_3 value: 50.580999999999996 - type: ndcg_at_5 value: 52.159 - type: ndcg_at_10 value: 54.269999999999996 - type: ndcg_at_20 value: 56.001 - type: ndcg_at_100 value: 58.373 - type: ndcg_at_1000 value: 60.272000000000006 - type: map_at_1 value: 36.296 - type: map_at_3 value: 45.178000000000004 - type: map_at_5 value: 46.96 - type: map_at_10 value: 48.388999999999996 - type: map_at_20 value: 49.164 - type: map_at_100 value: 49.769000000000005 - type: map_at_1000 value: 49.906 - type: recall_at_1 value: 36.296 - type: recall_at_3 value: 51.505 - type: recall_at_5 value: 56.633 - type: recall_at_10 value: 63.519999999999996 - type: recall_at_20 value: 70.06099999999999 - type: recall_at_100 value: 80.783 - type: recall_at_1000 value: 92.396 - type: precision_at_1 value: 46.497 - type: precision_at_3 value: 25.032 - type: precision_at_5 value: 17.427 - type: precision_at_10 value: 10.433 - type: precision_at_20 value: 6.085999999999999 - type: precision_at_100 value: 1.606 - type: precision_at_1000 value: 0.20600000000000002 - type: mrr_at_1 value: 46.4968 - type: mrr_at_3 value: 52.9193 - type: mrr_at_5 value: 54.0117 - type: mrr_at_10 value: 54.815400000000004 - type: mrr_at_20 value: 55.2265 - type: mrr_at_100 value: 55.4713 - type: mrr_at_1000 value: 55.51239999999999 - type: nauc_ndcg_at_1_max value: 44.406400000000005 - type: nauc_ndcg_at_1_std value: -0.5542 - type: nauc_ndcg_at_1_diff1 value: 61.951 - type: nauc_ndcg_at_3_max value: 41.765 - type: nauc_ndcg_at_3_std value: -1.6297 - type: nauc_ndcg_at_3_diff1 value: 56.6064 - type: nauc_ndcg_at_5_max value: 41.2399 - type: nauc_ndcg_at_5_std value: -1.6739 - type: nauc_ndcg_at_5_diff1 value: 56.736 - type: nauc_ndcg_at_10_max value: 41.3525 - type: nauc_ndcg_at_10_std value: -1.0736 - type: nauc_ndcg_at_10_diff1 value: 56.619600000000005 - type: nauc_ndcg_at_20_max value: 40.950900000000004 - type: nauc_ndcg_at_20_std value: 0.2865 - type: nauc_ndcg_at_20_diff1 value: 56.09459999999999 - type: nauc_ndcg_at_100_max value: 41.4473 - type: nauc_ndcg_at_100_std value: 1.9026999999999998 - type: nauc_ndcg_at_100_diff1 value: 55.6213 - type: nauc_ndcg_at_1000_max value: 42.2036 - type: nauc_ndcg_at_1000_std value: 2.2438 - type: nauc_ndcg_at_1000_diff1 value: 55.9627 - type: nauc_map_at_1_max value: 32.782 - type: nauc_map_at_1_std value: -9.6273 - type: nauc_map_at_1_diff1 value: 61.260099999999994 - type: nauc_map_at_3_max value: 37.1299 - type: nauc_map_at_3_std value: -7.119300000000001 - type: nauc_map_at_3_diff1 value: 58.1535 - type: nauc_map_at_5_max value: 37.9225 - type: nauc_map_at_5_std value: -5.9012 - type: nauc_map_at_5_diff1 value: 57.781499999999994 - type: nauc_map_at_10_max value: 38.8891 - type: nauc_map_at_10_std value: -4.874499999999999 - type: nauc_map_at_10_diff1 value: 57.755500000000005 - type: nauc_map_at_20_max value: 39.3425 - type: nauc_map_at_20_std value: -3.794 - type: nauc_map_at_20_diff1 value: 57.513400000000004 - type: nauc_map_at_100_max value: 39.896 - type: nauc_map_at_100_std value: -2.9215 - type: nauc_map_at_100_diff1 value: 57.53549999999999 - type: nauc_map_at_1000_max value: 40.008300000000006 - type: nauc_map_at_1000_std value: -2.8195 - type: nauc_map_at_1000_diff1 value: 57.60150000000001 - type: nauc_recall_at_1_max value: 32.782 - type: nauc_recall_at_1_std value: -9.6273 - type: nauc_recall_at_1_diff1 value: 61.260099999999994 - type: nauc_recall_at_3_max value: 35.434599999999996 - type: nauc_recall_at_3_std value: -6.290800000000001 - type: nauc_recall_at_3_diff1 value: 52.7104 - type: nauc_recall_at_5_max value: 35.0165 - type: nauc_recall_at_5_std value: -3.9936 - type: nauc_recall_at_5_diff1 value: 51.3274 - type: nauc_recall_at_10_max value: 35.5228 - type: nauc_recall_at_10_std value: -1.5428000000000002 - type: nauc_recall_at_10_diff1 value: 49.479299999999995 - type: nauc_recall_at_20_max value: 33.7227 - type: nauc_recall_at_20_std value: 4.9009 - type: nauc_recall_at_20_diff1 value: 45.5752 - type: nauc_recall_at_100_max value: 35.9763 - type: nauc_recall_at_100_std value: 19.3131 - type: nauc_recall_at_100_diff1 value: 39.911 - type: nauc_recall_at_1000_max value: 46.325 - type: nauc_recall_at_1000_std value: 44.9506 - type: nauc_recall_at_1000_diff1 value: 33.457100000000004 - type: nauc_precision_at_1_max value: 44.406400000000005 - type: nauc_precision_at_1_std value: -0.5542 - type: nauc_precision_at_1_diff1 value: 61.951 - type: nauc_precision_at_3_max value: 37.5506 - type: nauc_precision_at_3_std value: 11.0345 - type: nauc_precision_at_3_diff1 value: 29.8222 - type: nauc_precision_at_5_max value: 35.2397 - type: nauc_precision_at_5_std value: 15.389800000000001 - type: nauc_precision_at_5_diff1 value: 21.4168 - type: nauc_precision_at_10_max value: 32.9495 - type: nauc_precision_at_10_std value: 21.513299999999997 - type: nauc_precision_at_10_diff1 value: 11.8737 - type: nauc_precision_at_20_max value: 29.1383 - type: nauc_precision_at_20_std value: 27.7364 - type: nauc_precision_at_20_diff1 value: 3.9266 - type: nauc_precision_at_100_max value: 25.405 - type: nauc_precision_at_100_std value: 32.3313 - type: nauc_precision_at_100_diff1 value: -3.4574000000000003 - type: nauc_precision_at_1000_max value: 19.0155 - type: nauc_precision_at_1000_std value: 28.895 - type: nauc_precision_at_1000_diff1 value: -8.5325 - type: nauc_mrr_at_1_max value: 44.406400000000005 - type: nauc_mrr_at_1_std value: -0.5542 - type: nauc_mrr_at_1_diff1 value: 61.951 - type: nauc_mrr_at_3_max value: 45.171499999999995 - type: nauc_mrr_at_3_std value: 1.3709 - type: nauc_mrr_at_3_diff1 value: 58.655199999999994 - type: nauc_mrr_at_5_max value: 44.770700000000005 - type: nauc_mrr_at_5_std value: 1.4206999999999999 - type: nauc_mrr_at_5_diff1 value: 58.5418 - type: nauc_mrr_at_10_max value: 44.6537 - type: nauc_mrr_at_10_std value: 1.6499 - type: nauc_mrr_at_10_diff1 value: 58.305099999999996 - type: nauc_mrr_at_20_max value: 44.5462 - type: nauc_mrr_at_20_std value: 1.8207 - type: nauc_mrr_at_20_diff1 value: 58.2175 - type: nauc_mrr_at_100_max value: 44.5707 - type: nauc_mrr_at_100_std value: 1.9595999999999998 - type: nauc_mrr_at_100_diff1 value: 58.1794 - type: nauc_mrr_at_1000_max value: 44.5849 - type: nauc_mrr_at_1000_std value: 1.9480999999999997 - type: nauc_mrr_at_1000_diff1 value: 58.1948 - type: main_score value: 54.269999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval (default) type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: ndcg_at_1 value: 50.470000000000006 - type: ndcg_at_3 value: 57.473 - type: ndcg_at_5 value: 60.331999999999994 - type: ndcg_at_10 value: 63.253 - type: ndcg_at_20 value: 64.934 - type: ndcg_at_100 value: 66.893 - type: ndcg_at_1000 value: 67.635 - type: map_at_1 value: 43.495 - type: map_at_3 value: 53.501 - type: map_at_5 value: 55.591 - type: map_at_10 value: 57.143 - type: map_at_20 value: 57.772999999999996 - type: map_at_100 value: 58.144 - type: map_at_1000 value: 58.18299999999999 - type: recall_at_1 value: 43.495 - type: recall_at_3 value: 61.943000000000005 - type: recall_at_5 value: 69.06 - type: recall_at_10 value: 77.506 - type: recall_at_20 value: 83.718 - type: recall_at_100 value: 93.012 - type: recall_at_1000 value: 98.20100000000001 - type: precision_at_1 value: 50.470000000000006 - type: precision_at_3 value: 25.789 - type: precision_at_5 value: 17.718 - type: precision_at_10 value: 10.257 - type: precision_at_20 value: 5.652 - type: precision_at_100 value: 1.2930000000000001 - type: precision_at_1000 value: 0.13899999999999998 - type: mrr_at_1 value: 50.4702 - type: mrr_at_3 value: 58.4013 - type: mrr_at_5 value: 59.8495 - type: mrr_at_10 value: 60.83070000000001 - type: mrr_at_20 value: 61.2041 - type: mrr_at_100 value: 61.4112 - type: mrr_at_1000 value: 61.4322 - type: nauc_ndcg_at_1_max value: 44.8291 - type: nauc_ndcg_at_1_std value: -0.8412 - type: nauc_ndcg_at_1_diff1 value: 59.08560000000001 - type: nauc_ndcg_at_3_max value: 44.248 - type: nauc_ndcg_at_3_std value: -1.4833 - type: nauc_ndcg_at_3_diff1 value: 54.230599999999995 - type: nauc_ndcg_at_5_max value: 44.1923 - type: nauc_ndcg_at_5_std value: 0.4302 - type: nauc_ndcg_at_5_diff1 value: 53.488 - type: nauc_ndcg_at_10_max value: 44.6104 - type: nauc_ndcg_at_10_std value: 1.0661 - type: nauc_ndcg_at_10_diff1 value: 53.3798 - type: nauc_ndcg_at_20_max value: 44.9242 - type: nauc_ndcg_at_20_std value: 2.2277 - type: nauc_ndcg_at_20_diff1 value: 53.317400000000006 - type: nauc_ndcg_at_100_max value: 45.7183 - type: nauc_ndcg_at_100_std value: 2.5153 - type: nauc_ndcg_at_100_diff1 value: 53.9388 - type: nauc_ndcg_at_1000_max value: 45.6995 - type: nauc_ndcg_at_1000_std value: 2.1667 - type: nauc_ndcg_at_1000_diff1 value: 54.2102 - type: nauc_map_at_1_max value: 35.5633 - type: nauc_map_at_1_std value: -5.6190999999999995 - type: nauc_map_at_1_diff1 value: 60.361 - type: nauc_map_at_3_max value: 41.9146 - type: nauc_map_at_3_std value: -3.4212 - type: nauc_map_at_3_diff1 value: 56.016999999999996 - type: nauc_map_at_5_max value: 42.4117 - type: nauc_map_at_5_std value: -2.0291 - type: nauc_map_at_5_diff1 value: 55.3653 - type: nauc_map_at_10_max value: 43.1409 - type: nauc_map_at_10_std value: -1.4177 - type: nauc_map_at_10_diff1 value: 55.2121 - type: nauc_map_at_20_max value: 43.437799999999996 - type: nauc_map_at_20_std value: -0.8902 - type: nauc_map_at_20_diff1 value: 55.206999999999994 - type: nauc_map_at_100_max value: 43.6537 - type: nauc_map_at_100_std value: -0.7274 - type: nauc_map_at_100_diff1 value: 55.2408 - type: nauc_map_at_1000_max value: 43.6736 - type: nauc_map_at_1000_std value: -0.7106 - type: nauc_map_at_1000_diff1 value: 55.2524 - type: nauc_recall_at_1_max value: 35.5633 - type: nauc_recall_at_1_std value: -5.6190999999999995 - type: nauc_recall_at_1_diff1 value: 60.361 - type: nauc_recall_at_3_max value: 40.8742 - type: nauc_recall_at_3_std value: -2.5945 - type: nauc_recall_at_3_diff1 value: 49.3961 - type: nauc_recall_at_5_max value: 40.7505 - type: nauc_recall_at_5_std value: 3.3495 - type: nauc_recall_at_5_diff1 value: 45.7721 - type: nauc_recall_at_10_max value: 41.5818 - type: nauc_recall_at_10_std value: 6.7775 - type: nauc_recall_at_10_diff1 value: 43.3298 - type: nauc_recall_at_20_max value: 43.7288 - type: nauc_recall_at_20_std value: 16.328799999999998 - type: nauc_recall_at_20_diff1 value: 39.9662 - type: nauc_recall_at_100_max value: 55.63550000000001 - type: nauc_recall_at_100_std value: 34.4464 - type: nauc_recall_at_100_diff1 value: 39.980399999999996 - type: nauc_recall_at_1000_max value: 77.1968 - type: nauc_recall_at_1000_std value: 71.4214 - type: nauc_recall_at_1000_diff1 value: 38.244 - type: nauc_precision_at_1_max value: 44.8291 - type: nauc_precision_at_1_std value: -0.8412 - type: nauc_precision_at_1_diff1 value: 59.08560000000001 - type: nauc_precision_at_3_max value: 43.1877 - type: nauc_precision_at_3_std value: 7.6498 - type: nauc_precision_at_3_diff1 value: 27.5239 - type: nauc_precision_at_5_max value: 37.533899999999996 - type: nauc_precision_at_5_std value: 13.2708 - type: nauc_precision_at_5_diff1 value: 16.1311 - type: nauc_precision_at_10_max value: 33.2608 - type: nauc_precision_at_10_std value: 17.788899999999998 - type: nauc_precision_at_10_diff1 value: 5.1528 - type: nauc_precision_at_20_max value: 29.401 - type: nauc_precision_at_20_std value: 22.9012 - type: nauc_precision_at_20_diff1 value: -2.9066 - type: nauc_precision_at_100_max value: 23.2408 - type: nauc_precision_at_100_std value: 24.2959 - type: nauc_precision_at_100_diff1 value: -12.2627 - type: nauc_precision_at_1000_max value: 20.244300000000003 - type: nauc_precision_at_1000_std value: 25.682100000000002 - type: nauc_precision_at_1000_diff1 value: -16.4621 - type: nauc_mrr_at_1_max value: 44.8291 - type: nauc_mrr_at_1_std value: -0.8412 - type: nauc_mrr_at_1_diff1 value: 59.08560000000001 - type: nauc_mrr_at_3_max value: 45.9874 - type: nauc_mrr_at_3_std value: -0.4012 - type: nauc_mrr_at_3_diff1 value: 55.1381 - type: nauc_mrr_at_5_max value: 46.1061 - type: nauc_mrr_at_5_std value: 0.9194000000000001 - type: nauc_mrr_at_5_diff1 value: 54.799699999999994 - type: nauc_mrr_at_10_max value: 46.0658 - type: nauc_mrr_at_10_std value: 0.9317000000000001 - type: nauc_mrr_at_10_diff1 value: 54.918 - type: nauc_mrr_at_20_max value: 46.135999999999996 - type: nauc_mrr_at_20_std value: 1.1449 - type: nauc_mrr_at_20_diff1 value: 54.8537 - type: nauc_mrr_at_100_max value: 46.1801 - type: nauc_mrr_at_100_std value: 1.1052 - type: nauc_mrr_at_100_diff1 value: 54.9671 - type: nauc_mrr_at_1000_max value: 46.169399999999996 - type: nauc_mrr_at_1000_std value: 1.0886 - type: nauc_mrr_at_1000_diff1 value: 54.974500000000006 - type: main_score value: 63.253 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval (default) type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: ndcg_at_1 value: 30.169 - type: ndcg_at_3 value: 38.712999999999994 - type: ndcg_at_5 value: 41.613 - type: ndcg_at_10 value: 44.721 - type: ndcg_at_20 value: 46.861999999999995 - type: ndcg_at_100 value: 49.725 - type: ndcg_at_1000 value: 51.321000000000005 - type: map_at_1 value: 27.534 - type: map_at_3 value: 35.543 - type: map_at_5 value: 37.289 - type: map_at_10 value: 38.7 - type: map_at_20 value: 39.338 - type: map_at_100 value: 39.785 - type: map_at_1000 value: 39.853 - type: recall_at_1 value: 27.534 - type: recall_at_3 value: 45.007999999999996 - type: recall_at_5 value: 51.888999999999996 - type: recall_at_10 value: 61.023 - type: recall_at_20 value: 69.053 - type: recall_at_100 value: 83.42399999999999 - type: recall_at_1000 value: 95.268 - type: precision_at_1 value: 30.169 - type: precision_at_3 value: 16.911 - type: precision_at_5 value: 11.932 - type: precision_at_10 value: 7.141 - type: precision_at_20 value: 4.079 - type: precision_at_100 value: 1.008 - type: precision_at_1000 value: 0.11800000000000001 - type: mrr_at_1 value: 30.1695 - type: mrr_at_3 value: 37.966100000000004 - type: mrr_at_5 value: 39.6158 - type: mrr_at_10 value: 40.8033 - type: mrr_at_20 value: 41.3435 - type: mrr_at_100 value: 41.7118 - type: mrr_at_1000 value: 41.7613 - type: nauc_ndcg_at_1_max value: 32.2399 - type: nauc_ndcg_at_1_std value: -1.8931 - type: nauc_ndcg_at_1_diff1 value: 47.5451 - type: nauc_ndcg_at_3_max value: 27.8837 - type: nauc_ndcg_at_3_std value: -5.9821 - type: nauc_ndcg_at_3_diff1 value: 39.014500000000005 - type: nauc_ndcg_at_5_max value: 27.631299999999996 - type: nauc_ndcg_at_5_std value: -5.3482 - type: nauc_ndcg_at_5_diff1 value: 38.4224 - type: nauc_ndcg_at_10_max value: 28.481499999999997 - type: nauc_ndcg_at_10_std value: -3.1228 - type: nauc_ndcg_at_10_diff1 value: 37.3671 - type: nauc_ndcg_at_20_max value: 30.317899999999998 - type: nauc_ndcg_at_20_std value: -1.5421 - type: nauc_ndcg_at_20_diff1 value: 36.929 - type: nauc_ndcg_at_100_max value: 30.622300000000003 - type: nauc_ndcg_at_100_std value: -1.1266 - type: nauc_ndcg_at_100_diff1 value: 37.844100000000005 - type: nauc_ndcg_at_1000_max value: 30.2567 - type: nauc_ndcg_at_1000_std value: -1.6924000000000001 - type: nauc_ndcg_at_1000_diff1 value: 38.3512 - type: nauc_map_at_1_max value: 28.498800000000003 - type: nauc_map_at_1_std value: -4.840400000000001 - type: nauc_map_at_1_diff1 value: 49.2647 - type: nauc_map_at_3_max value: 27.3679 - type: nauc_map_at_3_std value: -5.953399999999999 - type: nauc_map_at_3_diff1 value: 41.458800000000004 - type: nauc_map_at_5_max value: 27.501900000000003 - type: nauc_map_at_5_std value: -5.5226 - type: nauc_map_at_5_diff1 value: 41.2074 - type: nauc_map_at_10_max value: 28.1719 - type: nauc_map_at_10_std value: -4.3525 - type: nauc_map_at_10_diff1 value: 40.820299999999996 - type: nauc_map_at_20_max value: 28.67 - type: nauc_map_at_20_std value: -3.9206 - type: nauc_map_at_20_diff1 value: 40.7258 - type: nauc_map_at_100_max value: 28.765 - type: nauc_map_at_100_std value: -3.8413999999999997 - type: nauc_map_at_100_diff1 value: 40.876200000000004 - type: nauc_map_at_1000_max value: 28.7672 - type: nauc_map_at_1000_std value: -3.8369 - type: nauc_map_at_1000_diff1 value: 40.8998 - type: nauc_recall_at_1_max value: 28.498800000000003 - type: nauc_recall_at_1_std value: -4.840400000000001 - type: nauc_recall_at_1_diff1 value: 49.2647 - type: nauc_recall_at_3_max value: 24.6035 - type: nauc_recall_at_3_std value: -7.5891 - type: nauc_recall_at_3_diff1 value: 31.5757 - type: nauc_recall_at_5_max value: 24.369 - type: nauc_recall_at_5_std value: -6.1809 - type: nauc_recall_at_5_diff1 value: 29.604000000000003 - type: nauc_recall_at_10_max value: 26.289299999999997 - type: nauc_recall_at_10_std value: 0.3042 - type: nauc_recall_at_10_diff1 value: 25.5857 - type: nauc_recall_at_20_max value: 34.4737 - type: nauc_recall_at_20_std value: 7.437199999999999 - type: nauc_recall_at_20_diff1 value: 22.174599999999998 - type: nauc_recall_at_100_max value: 38.6347 - type: nauc_recall_at_100_std value: 16.145300000000002 - type: nauc_recall_at_100_diff1 value: 22.1917 - type: nauc_recall_at_1000_max value: 39.3542 - type: nauc_recall_at_1000_std value: 22.6306 - type: nauc_recall_at_1000_diff1 value: 12.8224 - type: nauc_precision_at_1_max value: 32.2399 - type: nauc_precision_at_1_std value: -1.8931 - type: nauc_precision_at_1_diff1 value: 47.5451 - type: nauc_precision_at_3_max value: 30.2123 - type: nauc_precision_at_3_std value: -3.3314999999999997 - type: nauc_precision_at_3_diff1 value: 27.9644 - type: nauc_precision_at_5_max value: 29.670800000000003 - type: nauc_precision_at_5_std value: -1.5582 - type: nauc_precision_at_5_diff1 value: 25.608399999999996 - type: nauc_precision_at_10_max value: 31.0615 - type: nauc_precision_at_10_std value: 6.0033 - type: nauc_precision_at_10_diff1 value: 18.8733 - type: nauc_precision_at_20_max value: 34.6328 - type: nauc_precision_at_20_std value: 13.439799999999998 - type: nauc_precision_at_20_diff1 value: 13.048599999999999 - type: nauc_precision_at_100_max value: 29.820200000000003 - type: nauc_precision_at_100_std value: 17.5458 - type: nauc_precision_at_100_diff1 value: 5.4185 - type: nauc_precision_at_1000_max value: 18.1553 - type: nauc_precision_at_1000_std value: 13.908999999999999 - type: nauc_precision_at_1000_diff1 value: -6.718300000000001 - type: nauc_mrr_at_1_max value: 32.2399 - type: nauc_mrr_at_1_std value: -1.8931 - type: nauc_mrr_at_1_diff1 value: 47.5451 - type: nauc_mrr_at_3_max value: 30.0502 - type: nauc_mrr_at_3_std value: -3.7917 - type: nauc_mrr_at_3_diff1 value: 40.4491 - type: nauc_mrr_at_5_max value: 29.9223 - type: nauc_mrr_at_5_std value: -3.7439 - type: nauc_mrr_at_5_diff1 value: 40.2078 - type: nauc_mrr_at_10_max value: 30.0837 - type: nauc_mrr_at_10_std value: -3.1279000000000003 - type: nauc_mrr_at_10_diff1 value: 39.8604 - type: nauc_mrr_at_20_max value: 30.586600000000004 - type: nauc_mrr_at_20_std value: -2.6394 - type: nauc_mrr_at_20_diff1 value: 39.7155 - type: nauc_mrr_at_100_max value: 30.6013 - type: nauc_mrr_at_100_std value: -2.6131 - type: nauc_mrr_at_100_diff1 value: 39.8572 - type: nauc_mrr_at_1000_max value: 30.588700000000003 - type: nauc_mrr_at_1000_std value: -2.6162 - type: nauc_mrr_at_1000_diff1 value: 39.8847 - type: main_score value: 44.721 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval (default) type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: ndcg_at_1 value: 25.995 - type: ndcg_at_3 value: 31.527 - type: ndcg_at_5 value: 34.498 - type: ndcg_at_10 value: 37.421 - type: ndcg_at_20 value: 40.19 - type: ndcg_at_100 value: 43.662 - type: ndcg_at_1000 value: 46.04 - type: map_at_1 value: 20.624000000000002 - type: map_at_3 value: 27.714 - type: map_at_5 value: 29.746 - type: map_at_10 value: 31.156 - type: map_at_20 value: 32.018 - type: map_at_100 value: 32.647 - type: map_at_1000 value: 32.751999999999995 - type: recall_at_1 value: 20.624000000000002 - type: recall_at_3 value: 35.064 - type: recall_at_5 value: 42.561 - type: recall_at_10 value: 51.294 - type: recall_at_20 value: 61.35699999999999 - type: recall_at_100 value: 77.41 - type: recall_at_1000 value: 94.292 - type: precision_at_1 value: 25.995 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.616999999999999 - type: precision_at_10 value: 7.152 - type: precision_at_20 value: 4.335 - type: precision_at_100 value: 1.1769999999999998 - type: precision_at_1000 value: 0.149 - type: mrr_at_1 value: 25.995 - type: mrr_at_3 value: 33.354099999999995 - type: mrr_at_5 value: 35.1389 - type: mrr_at_10 value: 36.3085 - type: mrr_at_20 value: 36.9771 - type: mrr_at_100 value: 37.3263 - type: mrr_at_1000 value: 37.3819 - type: nauc_ndcg_at_1_max value: 16.8793 - type: nauc_ndcg_at_1_std value: 1.1622000000000001 - type: nauc_ndcg_at_1_diff1 value: 41.695 - type: nauc_ndcg_at_3_max value: 15.7033 - type: nauc_ndcg_at_3_std value: 1.6629999999999998 - type: nauc_ndcg_at_3_diff1 value: 36.4614 - type: nauc_ndcg_at_5_max value: 15.5037 - type: nauc_ndcg_at_5_std value: 2.9783 - type: nauc_ndcg_at_5_diff1 value: 35.1895 - type: nauc_ndcg_at_10_max value: 14.0983 - type: nauc_ndcg_at_10_std value: 3.2645 - type: nauc_ndcg_at_10_diff1 value: 34.6149 - type: nauc_ndcg_at_20_max value: 15.567400000000001 - type: nauc_ndcg_at_20_std value: 4.6046 - type: nauc_ndcg_at_20_diff1 value: 35.486200000000004 - type: nauc_ndcg_at_100_max value: 16.6548 - type: nauc_ndcg_at_100_std value: 6.6399 - type: nauc_ndcg_at_100_diff1 value: 35.268899999999995 - type: nauc_ndcg_at_1000_max value: 16.7889 - type: nauc_ndcg_at_1000_std value: 5.9258 - type: nauc_ndcg_at_1000_diff1 value: 36.0024 - type: nauc_map_at_1_max value: 13.874400000000001 - type: nauc_map_at_1_std value: 3.305 - type: nauc_map_at_1_diff1 value: 41.7572 - type: nauc_map_at_3_max value: 14.519699999999998 - type: nauc_map_at_3_std value: 2.3379 - type: nauc_map_at_3_diff1 value: 37.8774 - type: nauc_map_at_5_max value: 14.702399999999999 - type: nauc_map_at_5_std value: 2.7134 - type: nauc_map_at_5_diff1 value: 37.0712 - type: nauc_map_at_10_max value: 14.2346 - type: nauc_map_at_10_std value: 2.9902 - type: nauc_map_at_10_diff1 value: 36.7886 - type: nauc_map_at_20_max value: 14.7155 - type: nauc_map_at_20_std value: 3.4323 - type: nauc_map_at_20_diff1 value: 37.0342 - type: nauc_map_at_100_max value: 15.015600000000001 - type: nauc_map_at_100_std value: 3.8381 - type: nauc_map_at_100_diff1 value: 37.0107 - type: nauc_map_at_1000_max value: 15.020800000000001 - type: nauc_map_at_1000_std value: 3.8089999999999997 - type: nauc_map_at_1000_diff1 value: 37.0464 - type: nauc_recall_at_1_max value: 13.874400000000001 - type: nauc_recall_at_1_std value: 3.305 - type: nauc_recall_at_1_diff1 value: 41.7572 - type: nauc_recall_at_3_max value: 14.191 - type: nauc_recall_at_3_std value: 2.8631 - type: nauc_recall_at_3_diff1 value: 32.0865 - type: nauc_recall_at_5_max value: 13.8317 - type: nauc_recall_at_5_std value: 4.0751 - type: nauc_recall_at_5_diff1 value: 29.2578 - type: nauc_recall_at_10_max value: 9.8311 - type: nauc_recall_at_10_std value: 3.787 - type: nauc_recall_at_10_diff1 value: 27.0678 - type: nauc_recall_at_20_max value: 14.6648 - type: nauc_recall_at_20_std value: 8.6709 - type: nauc_recall_at_20_diff1 value: 28.928199999999997 - type: nauc_recall_at_100_max value: 20.9186 - type: nauc_recall_at_100_std value: 23.6257 - type: nauc_recall_at_100_diff1 value: 25.6988 - type: nauc_recall_at_1000_max value: 38.6366 - type: nauc_recall_at_1000_std value: 47.4022 - type: nauc_recall_at_1000_diff1 value: 29.6164 - type: nauc_precision_at_1_max value: 16.8793 - type: nauc_precision_at_1_std value: 1.1622000000000001 - type: nauc_precision_at_1_diff1 value: 41.695 - type: nauc_precision_at_3_max value: 19.1054 - type: nauc_precision_at_3_std value: -0.3239 - type: nauc_precision_at_3_diff1 value: 29.140700000000002 - type: nauc_precision_at_5_max value: 18.3369 - type: nauc_precision_at_5_std value: 2.2429 - type: nauc_precision_at_5_diff1 value: 23.5603 - type: nauc_precision_at_10_max value: 14.048 - type: nauc_precision_at_10_std value: 2.5635000000000003 - type: nauc_precision_at_10_diff1 value: 18.6389 - type: nauc_precision_at_20_max value: 15.1054 - type: nauc_precision_at_20_std value: 5.4473 - type: nauc_precision_at_20_diff1 value: 16.980999999999998 - type: nauc_precision_at_100_max value: 12.1794 - type: nauc_precision_at_100_std value: 7.657 - type: nauc_precision_at_100_diff1 value: 5.9291 - type: nauc_precision_at_1000_max value: 7.6541999999999994 - type: nauc_precision_at_1000_std value: -1.8911 - type: nauc_precision_at_1000_diff1 value: -0.042499999999999996 - type: nauc_mrr_at_1_max value: 16.8793 - type: nauc_mrr_at_1_std value: 1.1622000000000001 - type: nauc_mrr_at_1_diff1 value: 41.695 - type: nauc_mrr_at_3_max value: 16.8712 - type: nauc_mrr_at_3_std value: 1.9463000000000001 - type: nauc_mrr_at_3_diff1 value: 36.6252 - type: nauc_mrr_at_5_max value: 16.9044 - type: nauc_mrr_at_5_std value: 2.4106 - type: nauc_mrr_at_5_diff1 value: 36.2224 - type: nauc_mrr_at_10_max value: 16.4922 - type: nauc_mrr_at_10_std value: 2.0573 - type: nauc_mrr_at_10_diff1 value: 36.4031 - type: nauc_mrr_at_20_max value: 16.9114 - type: nauc_mrr_at_20_std value: 2.3496 - type: nauc_mrr_at_20_diff1 value: 36.592999999999996 - type: nauc_mrr_at_100_max value: 16.9761 - type: nauc_mrr_at_100_std value: 2.6144 - type: nauc_mrr_at_100_diff1 value: 36.5791 - type: nauc_mrr_at_1000_max value: 16.97 - type: nauc_mrr_at_1000_std value: 2.6048999999999998 - type: nauc_mrr_at_1000_diff1 value: 36.5997 - type: main_score value: 37.421 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval (default) type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: ndcg_at_1 value: 43.118 - type: ndcg_at_3 value: 49.36 - type: ndcg_at_5 value: 52.339 - type: ndcg_at_10 value: 55.001 - type: ndcg_at_20 value: 57.08 - type: ndcg_at_100 value: 60.156 - type: ndcg_at_1000 value: 61.409000000000006 - type: map_at_1 value: 34.422999999999995 - type: map_at_3 value: 44.241 - type: map_at_5 value: 46.639 - type: map_at_10 value: 48.187999999999995 - type: map_at_20 value: 48.943999999999996 - type: map_at_100 value: 49.589 - type: map_at_1000 value: 49.683 - type: recall_at_1 value: 34.422999999999995 - type: recall_at_3 value: 53.005 - type: recall_at_5 value: 60.787 - type: recall_at_10 value: 68.947 - type: recall_at_20 value: 76.11099999999999 - type: recall_at_100 value: 90.093 - type: recall_at_1000 value: 97.616 - type: precision_at_1 value: 43.118 - type: precision_at_3 value: 24.03 - type: precision_at_5 value: 17.267 - type: precision_at_10 value: 10.221 - type: precision_at_20 value: 5.89 - type: precision_at_100 value: 1.503 - type: precision_at_1000 value: 0.178 - type: mrr_at_1 value: 43.1184 - type: mrr_at_3 value: 51.4277 - type: mrr_at_5 value: 53.054199999999994 - type: mrr_at_10 value: 54.0983 - type: mrr_at_20 value: 54.548300000000005 - type: mrr_at_100 value: 54.8195 - type: mrr_at_1000 value: 54.8432 - type: nauc_ndcg_at_1_max value: 40.0497 - type: nauc_ndcg_at_1_std value: -2.9893 - type: nauc_ndcg_at_1_diff1 value: 52.6498 - type: nauc_ndcg_at_3_max value: 35.5227 - type: nauc_ndcg_at_3_std value: -1.754 - type: nauc_ndcg_at_3_diff1 value: 47.9744 - type: nauc_ndcg_at_5_max value: 36.2245 - type: nauc_ndcg_at_5_std value: -1.2267000000000001 - type: nauc_ndcg_at_5_diff1 value: 47.6131 - type: nauc_ndcg_at_10_max value: 36.8382 - type: nauc_ndcg_at_10_std value: 0.0044 - type: nauc_ndcg_at_10_diff1 value: 48.5768 - type: nauc_ndcg_at_20_max value: 36.5259 - type: nauc_ndcg_at_20_std value: 0.6298 - type: nauc_ndcg_at_20_diff1 value: 48.3686 - type: nauc_ndcg_at_100_max value: 37.8334 - type: nauc_ndcg_at_100_std value: 1.4694 - type: nauc_ndcg_at_100_diff1 value: 48.629 - type: nauc_ndcg_at_1000_max value: 38.1066 - type: nauc_ndcg_at_1000_std value: 1.2034 - type: nauc_ndcg_at_1000_diff1 value: 48.7834 - type: nauc_map_at_1_max value: 31.5692 - type: nauc_map_at_1_std value: -5.4256 - type: nauc_map_at_1_diff1 value: 53.0706 - type: nauc_map_at_3_max value: 33.3182 - type: nauc_map_at_3_std value: -3.4004 - type: nauc_map_at_3_diff1 value: 49.742799999999995 - type: nauc_map_at_5_max value: 34.745 - type: nauc_map_at_5_std value: -2.6823 - type: nauc_map_at_5_diff1 value: 49.3108 - type: nauc_map_at_10_max value: 35.6475 - type: nauc_map_at_10_std value: -1.7001 - type: nauc_map_at_10_diff1 value: 49.7542 - type: nauc_map_at_20_max value: 35.6477 - type: nauc_map_at_20_std value: -1.4723 - type: nauc_map_at_20_diff1 value: 49.6954 - type: nauc_map_at_100_max value: 35.9688 - type: nauc_map_at_100_std value: -1.2590999999999999 - type: nauc_map_at_100_diff1 value: 49.661 - type: nauc_map_at_1000_max value: 35.9962 - type: nauc_map_at_1000_std value: -1.2567 - type: nauc_map_at_1000_diff1 value: 49.6742 - type: nauc_recall_at_1_max value: 31.5692 - type: nauc_recall_at_1_std value: -5.4256 - type: nauc_recall_at_1_diff1 value: 53.0706 - type: nauc_recall_at_3_max value: 30.078500000000002 - type: nauc_recall_at_3_std value: -1.6661 - type: nauc_recall_at_3_diff1 value: 43.605199999999996 - type: nauc_recall_at_5_max value: 32.1419 - type: nauc_recall_at_5_std value: -0.0245 - type: nauc_recall_at_5_diff1 value: 41.667100000000005 - type: nauc_recall_at_10_max value: 33.3931 - type: nauc_recall_at_10_std value: 4.3266 - type: nauc_recall_at_10_diff1 value: 43.1197 - type: nauc_recall_at_20_max value: 29.959799999999998 - type: nauc_recall_at_20_std value: 7.4322 - type: nauc_recall_at_20_diff1 value: 40.589999999999996 - type: nauc_recall_at_100_max value: 35.565200000000004 - type: nauc_recall_at_100_std value: 20.2683 - type: nauc_recall_at_100_diff1 value: 38.6228 - type: nauc_recall_at_1000_max value: 57.227 - type: nauc_recall_at_1000_std value: 45.2524 - type: nauc_recall_at_1000_diff1 value: 34.657700000000006 - type: nauc_precision_at_1_max value: 40.0497 - type: nauc_precision_at_1_std value: -2.9893 - type: nauc_precision_at_1_diff1 value: 52.6498 - type: nauc_precision_at_3_max value: 33.8853 - type: nauc_precision_at_3_std value: 5.0939 - type: nauc_precision_at_3_diff1 value: 27.423199999999998 - type: nauc_precision_at_5_max value: 31.651 - type: nauc_precision_at_5_std value: 7.5684000000000005 - type: nauc_precision_at_5_diff1 value: 17.874100000000002 - type: nauc_precision_at_10_max value: 29.8653 - type: nauc_precision_at_10_std value: 12.945699999999999 - type: nauc_precision_at_10_diff1 value: 11.091800000000001 - type: nauc_precision_at_20_max value: 22.145300000000002 - type: nauc_precision_at_20_std value: 14.2574 - type: nauc_precision_at_20_diff1 value: 2.8937999999999997 - type: nauc_precision_at_100_max value: 13.1369 - type: nauc_precision_at_100_std value: 14.579600000000001 - type: nauc_precision_at_100_diff1 value: -9.4206 - type: nauc_precision_at_1000_max value: 3.6643000000000003 - type: nauc_precision_at_1000_std value: 10.0171 - type: nauc_precision_at_1000_diff1 value: -14.5572 - type: nauc_mrr_at_1_max value: 40.0497 - type: nauc_mrr_at_1_std value: -2.9893 - type: nauc_mrr_at_1_diff1 value: 52.6498 - type: nauc_mrr_at_3_max value: 39.2932 - type: nauc_mrr_at_3_std value: -1.2786 - type: nauc_mrr_at_3_diff1 value: 48.8373 - type: nauc_mrr_at_5_max value: 39.495999999999995 - type: nauc_mrr_at_5_std value: -1.0756 - type: nauc_mrr_at_5_diff1 value: 48.6192 - type: nauc_mrr_at_10_max value: 39.617200000000004 - type: nauc_mrr_at_10_std value: -0.5789 - type: nauc_mrr_at_10_diff1 value: 49.0029 - type: nauc_mrr_at_20_max value: 39.5561 - type: nauc_mrr_at_20_std value: -0.5488 - type: nauc_mrr_at_20_diff1 value: 48.9423 - type: nauc_mrr_at_100_max value: 39.5619 - type: nauc_mrr_at_100_std value: -0.6031 - type: nauc_mrr_at_100_diff1 value: 49.0095 - type: nauc_mrr_at_1000_max value: 39.5703 - type: nauc_mrr_at_1000_std value: -0.618 - type: nauc_mrr_at_1000_diff1 value: 49.0181 - type: main_score value: 55.001 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval (default) type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: ndcg_at_1 value: 40.068 - type: ndcg_at_3 value: 44.096999999999994 - type: ndcg_at_5 value: 47.516999999999996 - type: ndcg_at_10 value: 50.446999999999996 - type: ndcg_at_20 value: 52.519000000000005 - type: ndcg_at_100 value: 55.833999999999996 - type: ndcg_at_1000 value: 57.43000000000001 - type: map_at_1 value: 31.428 - type: map_at_3 value: 39.353 - type: map_at_5 value: 42.094 - type: map_at_10 value: 43.725 - type: map_at_20 value: 44.471 - type: map_at_100 value: 45.117000000000004 - type: map_at_1000 value: 45.211 - type: recall_at_1 value: 31.428 - type: recall_at_3 value: 46.575 - type: recall_at_5 value: 55.515 - type: recall_at_10 value: 64.13799999999999 - type: recall_at_20 value: 71.279 - type: recall_at_100 value: 86.762 - type: recall_at_1000 value: 97.09100000000001 - type: precision_at_1 value: 40.068 - type: precision_at_3 value: 21.195 - type: precision_at_5 value: 15.822 - type: precision_at_10 value: 9.521 - type: precision_at_20 value: 5.497 - type: precision_at_100 value: 1.402 - type: precision_at_1000 value: 0.16999999999999998 - type: mrr_at_1 value: 40.0685 - type: mrr_at_3 value: 47.0129 - type: mrr_at_5 value: 48.856500000000004 - type: mrr_at_10 value: 49.9012 - type: mrr_at_20 value: 50.3737 - type: mrr_at_100 value: 50.7177 - type: mrr_at_1000 value: 50.756299999999996 - type: nauc_ndcg_at_1_max value: 48.9094 - type: nauc_ndcg_at_1_std value: 2.946 - type: nauc_ndcg_at_1_diff1 value: 50.792899999999996 - type: nauc_ndcg_at_3_max value: 44.0954 - type: nauc_ndcg_at_3_std value: 4.5854 - type: nauc_ndcg_at_3_diff1 value: 44.4164 - type: nauc_ndcg_at_5_max value: 44.8318 - type: nauc_ndcg_at_5_std value: 6.72 - type: nauc_ndcg_at_5_diff1 value: 44.5299 - type: nauc_ndcg_at_10_max value: 45.9722 - type: nauc_ndcg_at_10_std value: 7.829 - type: nauc_ndcg_at_10_diff1 value: 43.7881 - type: nauc_ndcg_at_20_max value: 46.2939 - type: nauc_ndcg_at_20_std value: 8.7342 - type: nauc_ndcg_at_20_diff1 value: 44.252900000000004 - type: nauc_ndcg_at_100_max value: 46.6306 - type: nauc_ndcg_at_100_std value: 9.4862 - type: nauc_ndcg_at_100_diff1 value: 44.168099999999995 - type: nauc_ndcg_at_1000_max value: 46.679500000000004 - type: nauc_ndcg_at_1000_std value: 8.5999 - type: nauc_ndcg_at_1000_diff1 value: 44.654500000000006 - type: nauc_map_at_1_max value: 41.802499999999995 - type: nauc_map_at_1_std value: -1.5448 - type: nauc_map_at_1_diff1 value: 51.3189 - type: nauc_map_at_3_max value: 42.2779 - type: nauc_map_at_3_std value: 2.4886 - type: nauc_map_at_3_diff1 value: 45.8305 - type: nauc_map_at_5_max value: 43.6601 - type: nauc_map_at_5_std value: 4.7118 - type: nauc_map_at_5_diff1 value: 45.8307 - type: nauc_map_at_10_max value: 44.725300000000004 - type: nauc_map_at_10_std value: 5.578799999999999 - type: nauc_map_at_10_diff1 value: 45.5339 - type: nauc_map_at_20_max value: 44.979 - type: nauc_map_at_20_std value: 5.9147 - type: nauc_map_at_20_diff1 value: 45.6175 - type: nauc_map_at_100_max value: 45.202799999999996 - type: nauc_map_at_100_std value: 6.1206000000000005 - type: nauc_map_at_100_diff1 value: 45.692899999999995 - type: nauc_map_at_1000_max value: 45.2034 - type: nauc_map_at_1000_std value: 6.097 - type: nauc_map_at_1000_diff1 value: 45.7149 - type: nauc_recall_at_1_max value: 41.802499999999995 - type: nauc_recall_at_1_std value: -1.5448 - type: nauc_recall_at_1_diff1 value: 51.3189 - type: nauc_recall_at_3_max value: 38.0537 - type: nauc_recall_at_3_std value: 4.067 - type: nauc_recall_at_3_diff1 value: 38.8726 - type: nauc_recall_at_5_max value: 39.3573 - type: nauc_recall_at_5_std value: 9.5685 - type: nauc_recall_at_5_diff1 value: 37.5925 - type: nauc_recall_at_10_max value: 42.2936 - type: nauc_recall_at_10_std value: 13.8155 - type: nauc_recall_at_10_diff1 value: 34.5176 - type: nauc_recall_at_20_max value: 43.5257 - type: nauc_recall_at_20_std value: 19.2427 - type: nauc_recall_at_20_diff1 value: 35.8971 - type: nauc_recall_at_100_max value: 44.2485 - type: nauc_recall_at_100_std value: 34.4593 - type: nauc_recall_at_100_diff1 value: 30.2192 - type: nauc_recall_at_1000_max value: 56.7136 - type: nauc_recall_at_1000_std value: 61.5111 - type: nauc_recall_at_1000_diff1 value: 32.9767 - type: nauc_precision_at_1_max value: 48.9094 - type: nauc_precision_at_1_std value: 2.946 - type: nauc_precision_at_1_diff1 value: 50.792899999999996 - type: nauc_precision_at_3_max value: 42.5079 - type: nauc_precision_at_3_std value: 12.2541 - type: nauc_precision_at_3_diff1 value: 28.8997 - type: nauc_precision_at_5_max value: 38.399699999999996 - type: nauc_precision_at_5_std value: 17.0376 - type: nauc_precision_at_5_diff1 value: 21.3869 - type: nauc_precision_at_10_max value: 34.8194 - type: nauc_precision_at_10_std value: 18.3221 - type: nauc_precision_at_10_diff1 value: 12.9642 - type: nauc_precision_at_20_max value: 28.1161 - type: nauc_precision_at_20_std value: 17.7852 - type: nauc_precision_at_20_diff1 value: 7.283199999999999 - type: nauc_precision_at_100_max value: 15.3001 - type: nauc_precision_at_100_std value: 12.8588 - type: nauc_precision_at_100_diff1 value: -3.2960000000000003 - type: nauc_precision_at_1000_max value: 1.5663 - type: nauc_precision_at_1000_std value: 1.7748 - type: nauc_precision_at_1000_diff1 value: -8.8656 - type: nauc_mrr_at_1_max value: 48.9094 - type: nauc_mrr_at_1_std value: 2.946 - type: nauc_mrr_at_1_diff1 value: 50.792899999999996 - type: nauc_mrr_at_3_max value: 47.6835 - type: nauc_mrr_at_3_std value: 5.3593 - type: nauc_mrr_at_3_diff1 value: 46.109 - type: nauc_mrr_at_5_max value: 47.570299999999996 - type: nauc_mrr_at_5_std value: 5.777299999999999 - type: nauc_mrr_at_5_diff1 value: 45.8975 - type: nauc_mrr_at_10_max value: 47.7796 - type: nauc_mrr_at_10_std value: 6.0919 - type: nauc_mrr_at_10_diff1 value: 45.593 - type: nauc_mrr_at_20_max value: 47.783 - type: nauc_mrr_at_20_std value: 6.1481 - type: nauc_mrr_at_20_diff1 value: 45.818999999999996 - type: nauc_mrr_at_100_max value: 47.7483 - type: nauc_mrr_at_100_std value: 6.1742 - type: nauc_mrr_at_100_diff1 value: 45.8742 - type: nauc_mrr_at_1000_max value: 47.7586 - type: nauc_mrr_at_1000_std value: 6.1544 - type: nauc_mrr_at_1000_diff1 value: 45.894 - type: main_score value: 50.446999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval (default) type: CQADupstackRetrieval_is_a_combined_dataset config: default split: test revision: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 47.938333333333325 - type: ndcg_at_10 value: 47.938333333333325 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval (default) type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: ndcg_at_1 value: 32.362 - type: ndcg_at_3 value: 36.498000000000005 - type: ndcg_at_5 value: 38.729 - type: ndcg_at_10 value: 41.567 - type: ndcg_at_20 value: 43.247 - type: ndcg_at_100 value: 46.714 - type: ndcg_at_1000 value: 48.858000000000004 - type: map_at_1 value: 28.124 - type: map_at_3 value: 33.67 - type: map_at_5 value: 35.15 - type: map_at_10 value: 36.481 - type: map_at_20 value: 36.998 - type: map_at_100 value: 37.564 - type: map_at_1000 value: 37.651 - type: recall_at_1 value: 28.124 - type: recall_at_3 value: 39.623999999999995 - type: recall_at_5 value: 45.373999999999995 - type: recall_at_10 value: 53.761 - type: recall_at_20 value: 60.141999999999996 - type: recall_at_100 value: 77.145 - type: recall_at_1000 value: 92.809 - type: precision_at_1 value: 32.362 - type: precision_at_3 value: 15.745999999999999 - type: precision_at_5 value: 10.951 - type: precision_at_10 value: 6.718 - type: precision_at_20 value: 3.781 - type: precision_at_100 value: 1.011 - type: precision_at_1000 value: 0.126 - type: mrr_at_1 value: 32.362 - type: mrr_at_3 value: 37.5256 - type: mrr_at_5 value: 38.813900000000004 - type: mrr_at_10 value: 39.9955 - type: mrr_at_20 value: 40.4099 - type: mrr_at_100 value: 40.8508 - type: mrr_at_1000 value: 40.9125 - type: nauc_ndcg_at_1_max value: 45.6295 - type: nauc_ndcg_at_1_std value: -0.9893000000000001 - type: nauc_ndcg_at_1_diff1 value: 60.5302 - type: nauc_ndcg_at_3_max value: 46.4109 - type: nauc_ndcg_at_3_std value: 1.2275 - type: nauc_ndcg_at_3_diff1 value: 55.38999999999999 - type: nauc_ndcg_at_5_max value: 44.9415 - type: nauc_ndcg_at_5_std value: 1.221 - type: nauc_ndcg_at_5_diff1 value: 53.0919 - type: nauc_ndcg_at_10_max value: 44.3985 - type: nauc_ndcg_at_10_std value: 3.0568999999999997 - type: nauc_ndcg_at_10_diff1 value: 52.9713 - type: nauc_ndcg_at_20_max value: 43.802400000000006 - type: nauc_ndcg_at_20_std value: 3.5957000000000003 - type: nauc_ndcg_at_20_diff1 value: 51.765499999999996 - type: nauc_ndcg_at_100_max value: 45.0729 - type: nauc_ndcg_at_100_std value: 4.8267 - type: nauc_ndcg_at_100_diff1 value: 51.7238 - type: nauc_ndcg_at_1000_max value: 45.4394 - type: nauc_ndcg_at_1000_std value: 4.9554 - type: nauc_ndcg_at_1000_diff1 value: 52.7547 - type: nauc_map_at_1_max value: 41.9895 - type: nauc_map_at_1_std value: -3.7581999999999995 - type: nauc_map_at_1_diff1 value: 60.44310000000001 - type: nauc_map_at_3_max value: 45.1699 - type: nauc_map_at_3_std value: -0.23839999999999997 - type: nauc_map_at_3_diff1 value: 56.36600000000001 - type: nauc_map_at_5_max value: 44.6674 - type: nauc_map_at_5_std value: 0.2771 - type: nauc_map_at_5_diff1 value: 55.1832 - type: nauc_map_at_10_max value: 44.5561 - type: nauc_map_at_10_std value: 1.1383 - type: nauc_map_at_10_diff1 value: 55.199 - type: nauc_map_at_20_max value: 44.426100000000005 - type: nauc_map_at_20_std value: 1.2463 - type: nauc_map_at_20_diff1 value: 54.8601 - type: nauc_map_at_100_max value: 44.6656 - type: nauc_map_at_100_std value: 1.4344000000000001 - type: nauc_map_at_100_diff1 value: 54.8404 - type: nauc_map_at_1000_max value: 44.6885 - type: nauc_map_at_1000_std value: 1.4637 - type: nauc_map_at_1000_diff1 value: 54.879 - type: nauc_recall_at_1_max value: 41.9895 - type: nauc_recall_at_1_std value: -3.7581999999999995 - type: nauc_recall_at_1_diff1 value: 60.44310000000001 - type: nauc_recall_at_3_max value: 44.267 - type: nauc_recall_at_3_std value: 1.9900999999999998 - type: nauc_recall_at_3_diff1 value: 50.2301 - type: nauc_recall_at_5_max value: 41.025800000000004 - type: nauc_recall_at_5_std value: 1.7608 - type: nauc_recall_at_5_diff1 value: 44.4415 - type: nauc_recall_at_10_max value: 39.1839 - type: nauc_recall_at_10_std value: 7.1819 - type: nauc_recall_at_10_diff1 value: 43.2659 - type: nauc_recall_at_20_max value: 35.619099999999996 - type: nauc_recall_at_20_std value: 9.3642 - type: nauc_recall_at_20_diff1 value: 37.6444 - type: nauc_recall_at_100_max value: 41.6917 - type: nauc_recall_at_100_std value: 21.5639 - type: nauc_recall_at_100_diff1 value: 31.6295 - type: nauc_recall_at_1000_max value: 48.0423 - type: nauc_recall_at_1000_std value: 54.2675 - type: nauc_recall_at_1000_diff1 value: 29.726399999999998 - type: nauc_precision_at_1_max value: 45.6295 - type: nauc_precision_at_1_std value: -0.9893000000000001 - type: nauc_precision_at_1_diff1 value: 60.5302 - type: nauc_precision_at_3_max value: 49.6365 - type: nauc_precision_at_3_std value: 7.6746 - type: nauc_precision_at_3_diff1 value: 48.4452 - type: nauc_precision_at_5_max value: 45.906400000000005 - type: nauc_precision_at_5_std value: 10.616399999999999 - type: nauc_precision_at_5_diff1 value: 41.393299999999996 - type: nauc_precision_at_10_max value: 40.9508 - type: nauc_precision_at_10_std value: 14.360100000000001 - type: nauc_precision_at_10_diff1 value: 35.6927 - type: nauc_precision_at_20_max value: 36.5696 - type: nauc_precision_at_20_std value: 15.232499999999998 - type: nauc_precision_at_20_diff1 value: 28.5742 - type: nauc_precision_at_100_max value: 29.4906 - type: nauc_precision_at_100_std value: 18.8562 - type: nauc_precision_at_100_diff1 value: 14.689 - type: nauc_precision_at_1000_max value: 16.2971 - type: nauc_precision_at_1000_std value: 14.349 - type: nauc_precision_at_1000_diff1 value: 4.972300000000001 - type: nauc_mrr_at_1_max value: 45.6295 - type: nauc_mrr_at_1_std value: -0.9893000000000001 - type: nauc_mrr_at_1_diff1 value: 60.5302 - type: nauc_mrr_at_3_max value: 47.340900000000005 - type: nauc_mrr_at_3_std value: 1.9640000000000002 - type: nauc_mrr_at_3_diff1 value: 56.7908 - type: nauc_mrr_at_5_max value: 46.8151 - type: nauc_mrr_at_5_std value: 2.0004 - type: nauc_mrr_at_5_diff1 value: 55.49230000000001 - type: nauc_mrr_at_10_max value: 46.5702 - type: nauc_mrr_at_10_std value: 2.5755 - type: nauc_mrr_at_10_diff1 value: 55.3437 - type: nauc_mrr_at_20_max value: 46.3775 - type: nauc_mrr_at_20_std value: 2.7186 - type: nauc_mrr_at_20_diff1 value: 55.084 - type: nauc_mrr_at_100_max value: 46.428599999999996 - type: nauc_mrr_at_100_std value: 2.7332 - type: nauc_mrr_at_100_diff1 value: 55.088499999999996 - type: nauc_mrr_at_1000_max value: 46.443200000000004 - type: nauc_mrr_at_1000_std value: 2.7476000000000003 - type: nauc_mrr_at_1000_diff1 value: 55.1161 - type: main_score value: 41.567 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval (default) type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: ndcg_at_1 value: 27.22 - type: ndcg_at_3 value: 31.52 - type: ndcg_at_5 value: 33.964 - type: ndcg_at_10 value: 36.581 - type: ndcg_at_20 value: 38.665 - type: ndcg_at_100 value: 42.268 - type: ndcg_at_1000 value: 44.748 - type: map_at_1 value: 22.017 - type: map_at_3 value: 27.927999999999997 - type: map_at_5 value: 29.668 - type: map_at_10 value: 31.002999999999997 - type: map_at_20 value: 31.685999999999996 - type: map_at_100 value: 32.29 - type: map_at_1000 value: 32.413 - type: recall_at_1 value: 22.017 - type: recall_at_3 value: 34.009 - type: recall_at_5 value: 40.416000000000004 - type: recall_at_10 value: 48.415 - type: recall_at_20 value: 56.038 - type: recall_at_100 value: 73.851 - type: recall_at_1000 value: 91.03999999999999 - type: precision_at_1 value: 27.22 - type: precision_at_3 value: 15.084 - type: precision_at_5 value: 11.094 - type: precision_at_10 value: 6.800000000000001 - type: precision_at_20 value: 4.054 - type: precision_at_100 value: 1.134 - type: precision_at_1000 value: 0.153 - type: mrr_at_1 value: 27.219500000000004 - type: mrr_at_3 value: 33.132600000000004 - type: mrr_at_5 value: 34.694900000000004 - type: mrr_at_10 value: 35.7418 - type: mrr_at_20 value: 36.273300000000006 - type: mrr_at_100 value: 36.6689 - type: mrr_at_1000 value: 36.7336 - type: nauc_ndcg_at_1_max value: 26.5332 - type: nauc_ndcg_at_1_std value: 6.7063999999999995 - type: nauc_ndcg_at_1_diff1 value: 41.7063 - type: nauc_ndcg_at_3_max value: 26.294 - type: nauc_ndcg_at_3_std value: 6.9978 - type: nauc_ndcg_at_3_diff1 value: 36.8322 - type: nauc_ndcg_at_5_max value: 27.6001 - type: nauc_ndcg_at_5_std value: 8.1389 - type: nauc_ndcg_at_5_diff1 value: 36.5894 - type: nauc_ndcg_at_10_max value: 27.5265 - type: nauc_ndcg_at_10_std value: 8.5525 - type: nauc_ndcg_at_10_diff1 value: 36.2451 - type: nauc_ndcg_at_20_max value: 27.2368 - type: nauc_ndcg_at_20_std value: 9.4667 - type: nauc_ndcg_at_20_diff1 value: 35.553000000000004 - type: nauc_ndcg_at_100_max value: 27.6221 - type: nauc_ndcg_at_100_std value: 10.9896 - type: nauc_ndcg_at_100_diff1 value: 35.010799999999996 - type: nauc_ndcg_at_1000_max value: 27.823700000000002 - type: nauc_ndcg_at_1000_std value: 10.5646 - type: nauc_ndcg_at_1000_diff1 value: 35.4455 - type: nauc_map_at_1_max value: 24.0311 - type: nauc_map_at_1_std value: 4.9532 - type: nauc_map_at_1_diff1 value: 41.0051 - type: nauc_map_at_3_max value: 25.3489 - type: nauc_map_at_3_std value: 6.229 - type: nauc_map_at_3_diff1 value: 37.5031 - type: nauc_map_at_5_max value: 26.3791 - type: nauc_map_at_5_std value: 7.036499999999999 - type: nauc_map_at_5_diff1 value: 37.3731 - type: nauc_map_at_10_max value: 26.4979 - type: nauc_map_at_10_std value: 7.3984 - type: nauc_map_at_10_diff1 value: 37.213499999999996 - type: nauc_map_at_20_max value: 26.505000000000003 - type: nauc_map_at_20_std value: 7.749300000000001 - type: nauc_map_at_20_diff1 value: 37.0079 - type: nauc_map_at_100_max value: 26.625700000000002 - type: nauc_map_at_100_std value: 8.0921 - type: nauc_map_at_100_diff1 value: 36.9709 - type: nauc_map_at_1000_max value: 26.6505 - type: nauc_map_at_1000_std value: 8.093599999999999 - type: nauc_map_at_1000_diff1 value: 37.0068 - type: nauc_recall_at_1_max value: 24.0311 - type: nauc_recall_at_1_std value: 4.9532 - type: nauc_recall_at_1_diff1 value: 41.0051 - type: nauc_recall_at_3_max value: 24.7976 - type: nauc_recall_at_3_std value: 6.1747000000000005 - type: nauc_recall_at_3_diff1 value: 33.226299999999995 - type: nauc_recall_at_5_max value: 27.539599999999997 - type: nauc_recall_at_5_std value: 8.8065 - type: nauc_recall_at_5_diff1 value: 32.2612 - type: nauc_recall_at_10_max value: 26.8189 - type: nauc_recall_at_10_std value: 9.7864 - type: nauc_recall_at_10_diff1 value: 30.2757 - type: nauc_recall_at_20_max value: 25.183699999999998 - type: nauc_recall_at_20_std value: 12.916 - type: nauc_recall_at_20_diff1 value: 27.092100000000002 - type: nauc_recall_at_100_max value: 26.9612 - type: nauc_recall_at_100_std value: 24.1506 - type: nauc_recall_at_100_diff1 value: 20.9473 - type: nauc_recall_at_1000_max value: 34.2476 - type: nauc_recall_at_1000_std value: 35.335499999999996 - type: nauc_recall_at_1000_diff1 value: 13.6745 - type: nauc_precision_at_1_max value: 26.5332 - type: nauc_precision_at_1_std value: 6.7063999999999995 - type: nauc_precision_at_1_diff1 value: 41.7063 - type: nauc_precision_at_3_max value: 27.1377 - type: nauc_precision_at_3_std value: 9.1475 - type: nauc_precision_at_3_diff1 value: 30.6856 - type: nauc_precision_at_5_max value: 28.0165 - type: nauc_precision_at_5_std value: 11.5134 - type: nauc_precision_at_5_diff1 value: 27.454600000000003 - type: nauc_precision_at_10_max value: 25.393700000000003 - type: nauc_precision_at_10_std value: 13.100000000000001 - type: nauc_precision_at_10_diff1 value: 23.296400000000002 - type: nauc_precision_at_20_max value: 22.0302 - type: nauc_precision_at_20_std value: 15.6886 - type: nauc_precision_at_20_diff1 value: 18.0761 - type: nauc_precision_at_100_max value: 18.754 - type: nauc_precision_at_100_std value: 18.049599999999998 - type: nauc_precision_at_100_diff1 value: 10.578999999999999 - type: nauc_precision_at_1000_max value: 15.4445 - type: nauc_precision_at_1000_std value: 10.5797 - type: nauc_precision_at_1000_diff1 value: 8.6555 - type: nauc_mrr_at_1_max value: 26.5332 - type: nauc_mrr_at_1_std value: 6.7063999999999995 - type: nauc_mrr_at_1_diff1 value: 41.7063 - type: nauc_mrr_at_3_max value: 27.048 - type: nauc_mrr_at_3_std value: 7.0742 - type: nauc_mrr_at_3_diff1 value: 38.388 - type: nauc_mrr_at_5_max value: 27.6961 - type: nauc_mrr_at_5_std value: 7.7979 - type: nauc_mrr_at_5_diff1 value: 38.2328 - type: nauc_mrr_at_10_max value: 27.6906 - type: nauc_mrr_at_10_std value: 7.8747 - type: nauc_mrr_at_10_diff1 value: 38.061099999999996 - type: nauc_mrr_at_20_max value: 27.5596 - type: nauc_mrr_at_20_std value: 8.1191 - type: nauc_mrr_at_20_diff1 value: 37.8976 - type: nauc_mrr_at_100_max value: 27.596500000000002 - type: nauc_mrr_at_100_std value: 8.2534 - type: nauc_mrr_at_100_diff1 value: 37.9023 - type: nauc_mrr_at_1000_max value: 27.6032 - type: nauc_mrr_at_1000_std value: 8.2402 - type: nauc_mrr_at_1000_diff1 value: 37.9149 - type: main_score value: 36.581 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval (default) type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: ndcg_at_1 value: 37.687 - type: ndcg_at_3 value: 43.254 - type: ndcg_at_5 value: 45.518 - type: ndcg_at_10 value: 48.57 - type: ndcg_at_20 value: 50.870000000000005 - type: ndcg_at_100 value: 53.964999999999996 - type: ndcg_at_1000 value: 55.704 - type: map_at_1 value: 31.507 - type: map_at_3 value: 39.26 - type: map_at_5 value: 41.006 - type: map_at_10 value: 42.559999999999995 - type: map_at_20 value: 43.330999999999996 - type: map_at_100 value: 43.852000000000004 - type: map_at_1000 value: 43.939 - type: recall_at_1 value: 31.507 - type: recall_at_3 value: 47.019 - type: recall_at_5 value: 53.105999999999995 - type: recall_at_10 value: 62.061 - type: recall_at_20 value: 70.206 - type: recall_at_100 value: 84.87400000000001 - type: recall_at_1000 value: 96.627 - type: precision_at_1 value: 37.687 - type: precision_at_3 value: 20.055999999999997 - type: precision_at_5 value: 13.899000000000001 - type: precision_at_10 value: 8.34 - type: precision_at_20 value: 4.841 - type: precision_at_100 value: 1.236 - type: precision_at_1000 value: 0.148 - type: mrr_at_1 value: 37.6866 - type: mrr_at_3 value: 44.760600000000004 - type: mrr_at_5 value: 46.1505 - type: mrr_at_10 value: 47.2768 - type: mrr_at_20 value: 47.8296 - type: mrr_at_100 value: 48.147099999999995 - type: mrr_at_1000 value: 48.1922 - type: nauc_ndcg_at_1_max value: 44.6488 - type: nauc_ndcg_at_1_std value: 4.1984 - type: nauc_ndcg_at_1_diff1 value: 56.6913 - type: nauc_ndcg_at_3_max value: 41.7574 - type: nauc_ndcg_at_3_std value: 2.3933 - type: nauc_ndcg_at_3_diff1 value: 49.532900000000005 - type: nauc_ndcg_at_5_max value: 40.976099999999995 - type: nauc_ndcg_at_5_std value: 1.6297 - type: nauc_ndcg_at_5_diff1 value: 49.6749 - type: nauc_ndcg_at_10_max value: 41.645199999999996 - type: nauc_ndcg_at_10_std value: 3.6906000000000003 - type: nauc_ndcg_at_10_diff1 value: 48.6944 - type: nauc_ndcg_at_20_max value: 42.5723 - type: nauc_ndcg_at_20_std value: 5.2003 - type: nauc_ndcg_at_20_diff1 value: 49.2712 - type: nauc_ndcg_at_100_max value: 43.1712 - type: nauc_ndcg_at_100_std value: 5.9054 - type: nauc_ndcg_at_100_diff1 value: 49.4614 - type: nauc_ndcg_at_1000_max value: 43.051899999999996 - type: nauc_ndcg_at_1000_std value: 5.2268 - type: nauc_ndcg_at_1000_diff1 value: 49.9268 - type: nauc_map_at_1_max value: 40.5466 - type: nauc_map_at_1_std value: 2.5801000000000003 - type: nauc_map_at_1_diff1 value: 57.2554 - type: nauc_map_at_3_max value: 40.7917 - type: nauc_map_at_3_std value: 1.926 - type: nauc_map_at_3_diff1 value: 51.5164 - type: nauc_map_at_5_max value: 40.8638 - type: nauc_map_at_5_std value: 1.9499 - type: nauc_map_at_5_diff1 value: 51.4491 - type: nauc_map_at_10_max value: 41.4658 - type: nauc_map_at_10_std value: 2.8266 - type: nauc_map_at_10_diff1 value: 50.9612 - type: nauc_map_at_20_max value: 41.894999999999996 - type: nauc_map_at_20_std value: 3.3461 - type: nauc_map_at_20_diff1 value: 51.0836 - type: nauc_map_at_100_max value: 42.0161 - type: nauc_map_at_100_std value: 3.4995 - type: nauc_map_at_100_diff1 value: 51.083 - type: nauc_map_at_1000_max value: 42.0041 - type: nauc_map_at_1000_std value: 3.4733 - type: nauc_map_at_1000_diff1 value: 51.1013 - type: nauc_recall_at_1_max value: 40.5466 - type: nauc_recall_at_1_std value: 2.5801000000000003 - type: nauc_recall_at_1_diff1 value: 57.2554 - type: nauc_recall_at_3_max value: 37.2587 - type: nauc_recall_at_3_std value: 0.3079 - type: nauc_recall_at_3_diff1 value: 43.9748 - type: nauc_recall_at_5_max value: 35.9724 - type: nauc_recall_at_5_std value: -0.4043 - type: nauc_recall_at_5_diff1 value: 43.2259 - type: nauc_recall_at_10_max value: 36.5054 - type: nauc_recall_at_10_std value: 6.050599999999999 - type: nauc_recall_at_10_diff1 value: 38.3286 - type: nauc_recall_at_20_max value: 39.2692 - type: nauc_recall_at_20_std value: 12.623599999999998 - type: nauc_recall_at_20_diff1 value: 39.7523 - type: nauc_recall_at_100_max value: 44.7179 - type: nauc_recall_at_100_std value: 24.0593 - type: nauc_recall_at_100_diff1 value: 37.7336 - type: nauc_recall_at_1000_max value: 53.7754 - type: nauc_recall_at_1000_std value: 45.2282 - type: nauc_recall_at_1000_diff1 value: 37.3474 - type: nauc_precision_at_1_max value: 44.6488 - type: nauc_precision_at_1_std value: 4.1984 - type: nauc_precision_at_1_diff1 value: 56.6913 - type: nauc_precision_at_3_max value: 39.659499999999994 - type: nauc_precision_at_3_std value: 4.1345 - type: nauc_precision_at_3_diff1 value: 34.713300000000004 - type: nauc_precision_at_5_max value: 36.207 - type: nauc_precision_at_5_std value: 3.4388 - type: nauc_precision_at_5_diff1 value: 29.0749 - type: nauc_precision_at_10_max value: 32.9216 - type: nauc_precision_at_10_std value: 7.0937 - type: nauc_precision_at_10_diff1 value: 18.8157 - type: nauc_precision_at_20_max value: 29.9111 - type: nauc_precision_at_20_std value: 11.0234 - type: nauc_precision_at_20_diff1 value: 12.5669 - type: nauc_precision_at_100_max value: 16.6883 - type: nauc_precision_at_100_std value: 11.183300000000001 - type: nauc_precision_at_100_diff1 value: -1.4782 - type: nauc_precision_at_1000_max value: 1.7108999999999999 - type: nauc_precision_at_1000_std value: 2.5909999999999997 - type: nauc_precision_at_1000_diff1 value: -11.336300000000001 - type: nauc_mrr_at_1_max value: 44.6488 - type: nauc_mrr_at_1_std value: 4.1984 - type: nauc_mrr_at_1_diff1 value: 56.6913 - type: nauc_mrr_at_3_max value: 43.7515 - type: nauc_mrr_at_3_std value: 3.3159 - type: nauc_mrr_at_3_diff1 value: 51.294399999999996 - type: nauc_mrr_at_5_max value: 43.5602 - type: nauc_mrr_at_5_std value: 2.8770000000000002 - type: nauc_mrr_at_5_diff1 value: 51.3629 - type: nauc_mrr_at_10_max value: 43.743900000000004 - type: nauc_mrr_at_10_std value: 3.7014 - type: nauc_mrr_at_10_diff1 value: 50.9399 - type: nauc_mrr_at_20_max value: 43.736000000000004 - type: nauc_mrr_at_20_std value: 3.8751 - type: nauc_mrr_at_20_diff1 value: 51.056400000000004 - type: nauc_mrr_at_100_max value: 43.749 - type: nauc_mrr_at_100_std value: 3.9109 - type: nauc_mrr_at_100_diff1 value: 51.12989999999999 - type: nauc_mrr_at_1000_max value: 43.7543 - type: nauc_mrr_at_1000_std value: 3.9046 - type: nauc_mrr_at_1000_diff1 value: 51.144999999999996 - type: main_score value: 48.57 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval (default) type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: ndcg_at_1 value: 35.375 - type: ndcg_at_3 value: 41.804 - type: ndcg_at_5 value: 43.954 - type: ndcg_at_10 value: 46.46 - type: ndcg_at_20 value: 48.881 - type: ndcg_at_100 value: 52.425 - type: ndcg_at_1000 value: 54.373000000000005 - type: map_at_1 value: 29.341 - type: map_at_3 value: 37.120999999999995 - type: map_at_5 value: 38.734 - type: map_at_10 value: 40.158 - type: map_at_20 value: 41.14 - type: map_at_100 value: 42.037 - type: map_at_1000 value: 42.271 - type: recall_at_1 value: 29.341 - type: recall_at_3 value: 44.542 - type: recall_at_5 value: 50.193 - type: recall_at_10 value: 57.894 - type: recall_at_20 value: 66.841 - type: recall_at_100 value: 84.343 - type: recall_at_1000 value: 96.643 - type: precision_at_1 value: 35.375 - type: precision_at_3 value: 20.026 - type: precision_at_5 value: 14.466000000000001 - type: precision_at_10 value: 9.110999999999999 - type: precision_at_20 value: 5.899 - type: precision_at_100 value: 1.8499999999999999 - type: precision_at_1000 value: 0.255 - type: mrr_at_1 value: 35.375499999999995 - type: mrr_at_3 value: 42.1937 - type: mrr_at_5 value: 43.834 - type: mrr_at_10 value: 44.7625 - type: mrr_at_20 value: 45.3485 - type: mrr_at_100 value: 45.7111 - type: mrr_at_1000 value: 45.7566 - type: nauc_ndcg_at_1_max value: 23.5952 - type: nauc_ndcg_at_1_std value: 5.8244 - type: nauc_ndcg_at_1_diff1 value: 53.12 - type: nauc_ndcg_at_3_max value: 21.2669 - type: nauc_ndcg_at_3_std value: 8.3372 - type: nauc_ndcg_at_3_diff1 value: 47.216 - type: nauc_ndcg_at_5_max value: 21.0726 - type: nauc_ndcg_at_5_std value: 10.0045 - type: nauc_ndcg_at_5_diff1 value: 47.5922 - type: nauc_ndcg_at_10_max value: 21.035999999999998 - type: nauc_ndcg_at_10_std value: 8.706999999999999 - type: nauc_ndcg_at_10_diff1 value: 47.7902 - type: nauc_ndcg_at_20_max value: 21.0952 - type: nauc_ndcg_at_20_std value: 9.762 - type: nauc_ndcg_at_20_diff1 value: 47.6359 - type: nauc_ndcg_at_100_max value: 22.5778 - type: nauc_ndcg_at_100_std value: 11.4197 - type: nauc_ndcg_at_100_diff1 value: 48.450500000000005 - type: nauc_ndcg_at_1000_max value: 22.6857 - type: nauc_ndcg_at_1000_std value: 10.741100000000001 - type: nauc_ndcg_at_1000_diff1 value: 47.876400000000004 - type: nauc_map_at_1_max value: 16.4685 - type: nauc_map_at_1_std value: 0.6203000000000001 - type: nauc_map_at_1_diff1 value: 55.691 - type: nauc_map_at_3_max value: 19.2659 - type: nauc_map_at_3_std value: 3.5485999999999995 - type: nauc_map_at_3_diff1 value: 50.8056 - type: nauc_map_at_5_max value: 19.784299999999998 - type: nauc_map_at_5_std value: 4.7257 - type: nauc_map_at_5_diff1 value: 50.6115 - type: nauc_map_at_10_max value: 20.1772 - type: nauc_map_at_10_std value: 4.8205 - type: nauc_map_at_10_diff1 value: 50.545399999999994 - type: nauc_map_at_20_max value: 20.4281 - type: nauc_map_at_20_std value: 5.945799999999999 - type: nauc_map_at_20_diff1 value: 50.2247 - type: nauc_map_at_100_max value: 20.697599999999998 - type: nauc_map_at_100_std value: 7.3290999999999995 - type: nauc_map_at_100_diff1 value: 49.9734 - type: nauc_map_at_1000_max value: 20.686 - type: nauc_map_at_1000_std value: 7.8218 - type: nauc_map_at_1000_diff1 value: 49.7498 - type: nauc_recall_at_1_max value: 16.4685 - type: nauc_recall_at_1_std value: 0.6203000000000001 - type: nauc_recall_at_1_diff1 value: 55.691 - type: nauc_recall_at_3_max value: 17.5274 - type: nauc_recall_at_3_std value: 5.2619 - type: nauc_recall_at_3_diff1 value: 44.4629 - type: nauc_recall_at_5_max value: 18.3596 - type: nauc_recall_at_5_std value: 9.3709 - type: nauc_recall_at_5_diff1 value: 44.800200000000004 - type: nauc_recall_at_10_max value: 17.515 - type: nauc_recall_at_10_std value: 7.080400000000001 - type: nauc_recall_at_10_diff1 value: 43.181799999999996 - type: nauc_recall_at_20_max value: 17.605999999999998 - type: nauc_recall_at_20_std value: 11.745700000000001 - type: nauc_recall_at_20_diff1 value: 41.4216 - type: nauc_recall_at_100_max value: 27.6642 - type: nauc_recall_at_100_std value: 31.652 - type: nauc_recall_at_100_diff1 value: 43.5986 - type: nauc_recall_at_1000_max value: 48.9638 - type: nauc_recall_at_1000_std value: 51.2076 - type: nauc_recall_at_1000_diff1 value: 29.369899999999998 - type: nauc_precision_at_1_max value: 23.5952 - type: nauc_precision_at_1_std value: 5.8244 - type: nauc_precision_at_1_diff1 value: 53.12 - type: nauc_precision_at_3_max value: 23.935100000000002 - type: nauc_precision_at_3_std value: 16.5914 - type: nauc_precision_at_3_diff1 value: 28.4103 - type: nauc_precision_at_5_max value: 22.6905 - type: nauc_precision_at_5_std value: 23.6646 - type: nauc_precision_at_5_diff1 value: 19.524 - type: nauc_precision_at_10_max value: 22.1447 - type: nauc_precision_at_10_std value: 25.2899 - type: nauc_precision_at_10_diff1 value: 10.0271 - type: nauc_precision_at_20_max value: 16.7291 - type: nauc_precision_at_20_std value: 34.3311 - type: nauc_precision_at_20_diff1 value: -3.1237999999999997 - type: nauc_precision_at_100_max value: 9.431000000000001 - type: nauc_precision_at_100_std value: 46.103300000000004 - type: nauc_precision_at_100_diff1 value: -17.1284 - type: nauc_precision_at_1000_max value: 4.9976 - type: nauc_precision_at_1000_std value: 47.3664 - type: nauc_precision_at_1000_diff1 value: -24.0582 - type: nauc_mrr_at_1_max value: 23.5952 - type: nauc_mrr_at_1_std value: 5.8244 - type: nauc_mrr_at_1_diff1 value: 53.12 - type: nauc_mrr_at_3_max value: 23.0702 - type: nauc_mrr_at_3_std value: 8.0486 - type: nauc_mrr_at_3_diff1 value: 48.1321 - type: nauc_mrr_at_5_max value: 23.2691 - type: nauc_mrr_at_5_std value: 9.1019 - type: nauc_mrr_at_5_diff1 value: 47.9119 - type: nauc_mrr_at_10_max value: 23.2747 - type: nauc_mrr_at_10_std value: 8.8027 - type: nauc_mrr_at_10_diff1 value: 48.0293 - type: nauc_mrr_at_20_max value: 23.1632 - type: nauc_mrr_at_20_std value: 8.8043 - type: nauc_mrr_at_20_diff1 value: 47.950900000000004 - type: nauc_mrr_at_100_max value: 23.2738 - type: nauc_mrr_at_100_std value: 8.963899999999999 - type: nauc_mrr_at_100_diff1 value: 48.0468 - type: nauc_mrr_at_1000_max value: 23.2584 - type: nauc_mrr_at_1000_std value: 8.9357 - type: nauc_mrr_at_1000_diff1 value: 48.0548 - type: main_score value: 46.46 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval (default) type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: ndcg_at_1 value: 28.835 - type: ndcg_at_3 value: 34.629 - type: ndcg_at_5 value: 36.906 - type: ndcg_at_10 value: 39.722 - type: ndcg_at_20 value: 41.324 - type: ndcg_at_100 value: 44.856 - type: ndcg_at_1000 value: 47.174 - type: map_at_1 value: 26.001 - type: map_at_3 value: 31.916 - type: map_at_5 value: 33.303 - type: map_at_10 value: 34.594 - type: map_at_20 value: 35.081 - type: map_at_100 value: 35.592 - type: map_at_1000 value: 35.693000000000005 - type: recall_at_1 value: 26.001 - type: recall_at_3 value: 39.144 - type: recall_at_5 value: 44.572 - type: recall_at_10 value: 52.856 - type: recall_at_20 value: 58.78 - type: recall_at_100 value: 76.828 - type: recall_at_1000 value: 93.93 - type: precision_at_1 value: 28.835 - type: precision_at_3 value: 14.726 - type: precision_at_5 value: 10.24 - type: precision_at_10 value: 6.192 - type: precision_at_20 value: 3.4939999999999998 - type: precision_at_100 value: 0.946 - type: precision_at_1000 value: 0.126 - type: mrr_at_1 value: 28.835499999999996 - type: mrr_at_3 value: 35.0277 - type: mrr_at_5 value: 36.3401 - type: mrr_at_10 value: 37.359500000000004 - type: mrr_at_20 value: 37.7675 - type: mrr_at_100 value: 38.2184 - type: mrr_at_1000 value: 38.287 - type: nauc_ndcg_at_1_max value: 25.1156 - type: nauc_ndcg_at_1_std value: 5.8615 - type: nauc_ndcg_at_1_diff1 value: 49.8287 - type: nauc_ndcg_at_3_max value: 25.605299999999996 - type: nauc_ndcg_at_3_std value: 6.9969 - type: nauc_ndcg_at_3_diff1 value: 45.1011 - type: nauc_ndcg_at_5_max value: 25.2231 - type: nauc_ndcg_at_5_std value: 6.674099999999999 - type: nauc_ndcg_at_5_diff1 value: 42.7723 - type: nauc_ndcg_at_10_max value: 24.404899999999998 - type: nauc_ndcg_at_10_std value: 6.3734 - type: nauc_ndcg_at_10_diff1 value: 41.9908 - type: nauc_ndcg_at_20_max value: 23.9259 - type: nauc_ndcg_at_20_std value: 6.749099999999999 - type: nauc_ndcg_at_20_diff1 value: 41.2996 - type: nauc_ndcg_at_100_max value: 24.0414 - type: nauc_ndcg_at_100_std value: 9.694700000000001 - type: nauc_ndcg_at_100_diff1 value: 41.0428 - type: nauc_ndcg_at_1000_max value: 24.8501 - type: nauc_ndcg_at_1000_std value: 8.7988 - type: nauc_ndcg_at_1000_diff1 value: 42.290499999999994 - type: nauc_map_at_1_max value: 24.038999999999998 - type: nauc_map_at_1_std value: 4.3147 - type: nauc_map_at_1_diff1 value: 51.1896 - type: nauc_map_at_3_max value: 24.8903 - type: nauc_map_at_3_std value: 5.8555 - type: nauc_map_at_3_diff1 value: 46.6276 - type: nauc_map_at_5_max value: 24.9985 - type: nauc_map_at_5_std value: 5.8602 - type: nauc_map_at_5_diff1 value: 45.2278 - type: nauc_map_at_10_max value: 24.7287 - type: nauc_map_at_10_std value: 5.7734 - type: nauc_map_at_10_diff1 value: 44.8438 - type: nauc_map_at_20_max value: 24.698 - type: nauc_map_at_20_std value: 5.86 - type: nauc_map_at_20_diff1 value: 44.635200000000005 - type: nauc_map_at_100_max value: 24.726100000000002 - type: nauc_map_at_100_std value: 6.307 - type: nauc_map_at_100_diff1 value: 44.587700000000005 - type: nauc_map_at_1000_max value: 24.7303 - type: nauc_map_at_1000_std value: 6.271400000000001 - type: nauc_map_at_1000_diff1 value: 44.6122 - type: nauc_recall_at_1_max value: 24.038999999999998 - type: nauc_recall_at_1_std value: 4.3147 - type: nauc_recall_at_1_diff1 value: 51.1896 - type: nauc_recall_at_3_max value: 24.6154 - type: nauc_recall_at_3_std value: 7.6124 - type: nauc_recall_at_3_diff1 value: 41.077999999999996 - type: nauc_recall_at_5_max value: 23.8232 - type: nauc_recall_at_5_std value: 7.3541 - type: nauc_recall_at_5_diff1 value: 35.070499999999996 - type: nauc_recall_at_10_max value: 21.084500000000002 - type: nauc_recall_at_10_std value: 6.592199999999999 - type: nauc_recall_at_10_diff1 value: 32.1365 - type: nauc_recall_at_20_max value: 18.6663 - type: nauc_recall_at_20_std value: 8.094899999999999 - type: nauc_recall_at_20_diff1 value: 29.124100000000002 - type: nauc_recall_at_100_max value: 16.6248 - type: nauc_recall_at_100_std value: 29.871199999999998 - type: nauc_recall_at_100_diff1 value: 22.16 - type: nauc_recall_at_1000_max value: 39.4327 - type: nauc_recall_at_1000_std value: 48.1674 - type: nauc_recall_at_1000_diff1 value: 35.6011 - type: nauc_precision_at_1_max value: 25.1156 - type: nauc_precision_at_1_std value: 5.8615 - type: nauc_precision_at_1_diff1 value: 49.8287 - type: nauc_precision_at_3_max value: 27.020100000000003 - type: nauc_precision_at_3_std value: 9.533800000000001 - type: nauc_precision_at_3_diff1 value: 37.6314 - type: nauc_precision_at_5_max value: 26.1386 - type: nauc_precision_at_5_std value: 8.0008 - type: nauc_precision_at_5_diff1 value: 29.5792 - type: nauc_precision_at_10_max value: 21.7676 - type: nauc_precision_at_10_std value: 8.2431 - type: nauc_precision_at_10_diff1 value: 22.1029 - type: nauc_precision_at_20_max value: 19.3305 - type: nauc_precision_at_20_std value: 8.7156 - type: nauc_precision_at_20_diff1 value: 16.4788 - type: nauc_precision_at_100_max value: 11.6811 - type: nauc_precision_at_100_std value: 20.169 - type: nauc_precision_at_100_diff1 value: -0.8449 - type: nauc_precision_at_1000_max value: -5.1109 - type: nauc_precision_at_1000_std value: 3.2081999999999997 - type: nauc_precision_at_1000_diff1 value: -23.8473 - type: nauc_mrr_at_1_max value: 25.1156 - type: nauc_mrr_at_1_std value: 5.8615 - type: nauc_mrr_at_1_diff1 value: 49.8287 - type: nauc_mrr_at_3_max value: 26.009999999999998 - type: nauc_mrr_at_3_std value: 7.795100000000001 - type: nauc_mrr_at_3_diff1 value: 46.0223 - type: nauc_mrr_at_5_max value: 25.8328 - type: nauc_mrr_at_5_std value: 7.4602 - type: nauc_mrr_at_5_diff1 value: 44.6238 - type: nauc_mrr_at_10_max value: 25.5241 - type: nauc_mrr_at_10_std value: 7.071199999999999 - type: nauc_mrr_at_10_diff1 value: 44.3654 - type: nauc_mrr_at_20_max value: 25.287100000000002 - type: nauc_mrr_at_20_std value: 7.194100000000001 - type: nauc_mrr_at_20_diff1 value: 44.2009 - type: nauc_mrr_at_100_max value: 25.3365 - type: nauc_mrr_at_100_std value: 7.513400000000001 - type: nauc_mrr_at_100_diff1 value: 44.2267 - type: nauc_mrr_at_1000_max value: 25.361 - type: nauc_mrr_at_1000_std value: 7.492500000000001 - type: nauc_mrr_at_1000_diff1 value: 44.2745 - type: main_score value: 39.722 - task: type: Retrieval dataset: name: MTEB ClimateFEVER (default) type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: ndcg_at_1 value: 47.818 - type: ndcg_at_3 value: 41.184 - type: ndcg_at_5 value: 43.733 - type: ndcg_at_10 value: 48.439 - type: ndcg_at_20 value: 51.55800000000001 - type: ndcg_at_100 value: 55.562 - type: ndcg_at_1000 value: 57.885 - type: map_at_1 value: 20.846 - type: map_at_3 value: 30.997999999999998 - type: map_at_5 value: 34.524 - type: map_at_10 value: 37.427 - type: map_at_20 value: 38.761 - type: map_at_100 value: 39.753 - type: map_at_1000 value: 39.910000000000004 - type: recall_at_1 value: 20.846 - type: recall_at_3 value: 36.958999999999996 - type: recall_at_5 value: 45.079 - type: recall_at_10 value: 55.295 - type: recall_at_20 value: 63.815 - type: recall_at_100 value: 78.456 - type: recall_at_1000 value: 91.106 - type: precision_at_1 value: 47.818 - type: precision_at_3 value: 31.422 - type: precision_at_5 value: 23.909 - type: precision_at_10 value: 15.14 - type: precision_at_20 value: 8.977 - type: precision_at_100 value: 2.294 - type: precision_at_1000 value: 0.27399999999999997 - type: mrr_at_1 value: 47.8176 - type: mrr_at_3 value: 58.165 - type: mrr_at_5 value: 59.764399999999995 - type: mrr_at_10 value: 60.663999999999994 - type: mrr_at_20 value: 61.0341 - type: mrr_at_100 value: 61.15540000000001 - type: mrr_at_1000 value: 61.168 - type: nauc_ndcg_at_1_max value: 42.0574 - type: nauc_ndcg_at_1_std value: 15.0412 - type: nauc_ndcg_at_1_diff1 value: 38.8542 - type: nauc_ndcg_at_3_max value: 45.5116 - type: nauc_ndcg_at_3_std value: 17.8474 - type: nauc_ndcg_at_3_diff1 value: 30.4299 - type: nauc_ndcg_at_5_max value: 47.5315 - type: nauc_ndcg_at_5_std value: 21.577199999999998 - type: nauc_ndcg_at_5_diff1 value: 29.9137 - type: nauc_ndcg_at_10_max value: 49.6024 - type: nauc_ndcg_at_10_std value: 26.744400000000002 - type: nauc_ndcg_at_10_diff1 value: 28.2074 - type: nauc_ndcg_at_20_max value: 48.8087 - type: nauc_ndcg_at_20_std value: 27.815800000000003 - type: nauc_ndcg_at_20_diff1 value: 27.843200000000003 - type: nauc_ndcg_at_100_max value: 49.2657 - type: nauc_ndcg_at_100_std value: 28.958299999999998 - type: nauc_ndcg_at_100_diff1 value: 28.2285 - type: nauc_ndcg_at_1000_max value: 49.8 - type: nauc_ndcg_at_1000_std value: 28.3402 - type: nauc_ndcg_at_1000_diff1 value: 29.149399999999996 - type: nauc_map_at_1_max value: 43.4717 - type: nauc_map_at_1_std value: 7.5933 - type: nauc_map_at_1_diff1 value: 43.8334 - type: nauc_map_at_3_max value: 45.1549 - type: nauc_map_at_3_std value: 13.7322 - type: nauc_map_at_3_diff1 value: 32.893499999999996 - type: nauc_map_at_5_max value: 46.0483 - type: nauc_map_at_5_std value: 17.3988 - type: nauc_map_at_5_diff1 value: 30.7728 - type: nauc_map_at_10_max value: 47.5898 - type: nauc_map_at_10_std value: 21.0419 - type: nauc_map_at_10_diff1 value: 29.6458 - type: nauc_map_at_20_max value: 47.362500000000004 - type: nauc_map_at_20_std value: 21.7003 - type: nauc_map_at_20_diff1 value: 29.510199999999998 - type: nauc_map_at_100_max value: 47.4886 - type: nauc_map_at_100_std value: 22.0129 - type: nauc_map_at_100_diff1 value: 29.5581 - type: nauc_map_at_1000_max value: 47.523700000000005 - type: nauc_map_at_1000_std value: 22.0011 - type: nauc_map_at_1000_diff1 value: 29.5994 - type: nauc_recall_at_1_max value: 43.4717 - type: nauc_recall_at_1_std value: 7.5933 - type: nauc_recall_at_1_diff1 value: 43.8334 - type: nauc_recall_at_3_max value: 44.0599 - type: nauc_recall_at_3_std value: 15.920000000000002 - type: nauc_recall_at_3_diff1 value: 26.1615 - type: nauc_recall_at_5_max value: 44.715500000000006 - type: nauc_recall_at_5_std value: 22.4972 - type: nauc_recall_at_5_diff1 value: 22.8433 - type: nauc_recall_at_10_max value: 46.716499999999996 - type: nauc_recall_at_10_std value: 32.6123 - type: nauc_recall_at_10_diff1 value: 17.7149 - type: nauc_recall_at_20_max value: 43.5173 - type: nauc_recall_at_20_std value: 35.7574 - type: nauc_recall_at_20_diff1 value: 15.4727 - type: nauc_recall_at_100_max value: 45.2425 - type: nauc_recall_at_100_std value: 44.2578 - type: nauc_recall_at_100_diff1 value: 14.2627 - type: nauc_recall_at_1000_max value: 57.903800000000004 - type: nauc_recall_at_1000_std value: 56.775 - type: nauc_recall_at_1000_diff1 value: 18.5075 - type: nauc_precision_at_1_max value: 42.0574 - type: nauc_precision_at_1_std value: 15.0412 - type: nauc_precision_at_1_diff1 value: 38.8542 - type: nauc_precision_at_3_max value: 35.791000000000004 - type: nauc_precision_at_3_std value: 23.7089 - type: nauc_precision_at_3_diff1 value: 12.116100000000001 - type: nauc_precision_at_5_max value: 32.874700000000004 - type: nauc_precision_at_5_std value: 29.5353 - type: nauc_precision_at_5_diff1 value: 6.1242 - type: nauc_precision_at_10_max value: 29.019000000000002 - type: nauc_precision_at_10_std value: 34.8923 - type: nauc_precision_at_10_diff1 value: -1.0564 - type: nauc_precision_at_20_max value: 19.5603 - type: nauc_precision_at_20_std value: 32.8097 - type: nauc_precision_at_20_diff1 value: -5.8062000000000005 - type: nauc_precision_at_100_max value: 7.152799999999999 - type: nauc_precision_at_100_std value: 27.925299999999996 - type: nauc_precision_at_100_diff1 value: -12.053899999999999 - type: nauc_precision_at_1000_max value: -6.3346 - type: nauc_precision_at_1000_std value: 15.254599999999998 - type: nauc_precision_at_1000_diff1 value: -17.0105 - type: nauc_mrr_at_1_max value: 42.0574 - type: nauc_mrr_at_1_std value: 15.0412 - type: nauc_mrr_at_1_diff1 value: 38.8542 - type: nauc_mrr_at_3_max value: 46.7432 - type: nauc_mrr_at_3_std value: 21.6624 - type: nauc_mrr_at_3_diff1 value: 34.3397 - type: nauc_mrr_at_5_max value: 47.1175 - type: nauc_mrr_at_5_std value: 22.811 - type: nauc_mrr_at_5_diff1 value: 34.9539 - type: nauc_mrr_at_10_max value: 47.172599999999996 - type: nauc_mrr_at_10_std value: 22.9886 - type: nauc_mrr_at_10_diff1 value: 34.7462 - type: nauc_mrr_at_20_max value: 46.9932 - type: nauc_mrr_at_20_std value: 22.8034 - type: nauc_mrr_at_20_diff1 value: 34.8125 - type: nauc_mrr_at_100_max value: 46.9459 - type: nauc_mrr_at_100_std value: 22.7237 - type: nauc_mrr_at_100_diff1 value: 34.8654 - type: nauc_mrr_at_1000_max value: 46.935 - type: nauc_mrr_at_1000_std value: 22.7019 - type: nauc_mrr_at_1000_diff1 value: 34.867 - type: main_score value: 48.439 - task: type: Retrieval dataset: name: MTEB DBPedia (default) type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: ndcg_at_1 value: 64.5 - type: ndcg_at_3 value: 55.836 - type: ndcg_at_5 value: 54.459 - type: ndcg_at_10 value: 52.476 - type: ndcg_at_20 value: 51.388999999999996 - type: ndcg_at_100 value: 57.477000000000004 - type: ndcg_at_1000 value: 64.165 - type: map_at_1 value: 10.067 - type: map_at_3 value: 16.348 - type: map_at_5 value: 20.202 - type: map_at_10 value: 24.938 - type: map_at_20 value: 29.586000000000002 - type: map_at_100 value: 37.057 - type: map_at_1000 value: 39.224 - type: recall_at_1 value: 10.067 - type: recall_at_3 value: 17.62 - type: recall_at_5 value: 23.162 - type: recall_at_10 value: 30.769999999999996 - type: recall_at_20 value: 39.719 - type: recall_at_100 value: 64.159 - type: recall_at_1000 value: 86.166 - type: precision_at_1 value: 76.75 - type: precision_at_3 value: 59.833000000000006 - type: precision_at_5 value: 53.75 - type: precision_at_10 value: 43.375 - type: precision_at_20 value: 33.025 - type: precision_at_100 value: 14.011999999999999 - type: precision_at_1000 value: 2.654 - type: mrr_at_1 value: 76.75 - type: mrr_at_3 value: 81.54169999999999 - type: mrr_at_5 value: 82.42920000000001 - type: mrr_at_10 value: 82.8224 - type: mrr_at_20 value: 82.90859999999999 - type: mrr_at_100 value: 82.99419999999999 - type: mrr_at_1000 value: 82.99990000000001 - type: nauc_ndcg_at_1_max value: 45.8251 - type: nauc_ndcg_at_1_std value: 26.468799999999998 - type: nauc_ndcg_at_1_diff1 value: 44.3761 - type: nauc_ndcg_at_3_max value: 38.7362 - type: nauc_ndcg_at_3_std value: 24.956300000000002 - type: nauc_ndcg_at_3_diff1 value: 24.4135 - type: nauc_ndcg_at_5_max value: 39.9097 - type: nauc_ndcg_at_5_std value: 24.9363 - type: nauc_ndcg_at_5_diff1 value: 24.607200000000002 - type: nauc_ndcg_at_10_max value: 38.8691 - type: nauc_ndcg_at_10_std value: 22.1204 - type: nauc_ndcg_at_10_diff1 value: 24.0339 - type: nauc_ndcg_at_20_max value: 38.9902 - type: nauc_ndcg_at_20_std value: 19.3997 - type: nauc_ndcg_at_20_diff1 value: 26.8911 - type: nauc_ndcg_at_100_max value: 45.138600000000004 - type: nauc_ndcg_at_100_std value: 28.6063 - type: nauc_ndcg_at_100_diff1 value: 32.5846 - type: nauc_ndcg_at_1000_max value: 48.2813 - type: nauc_ndcg_at_1000_std value: 37.6229 - type: nauc_ndcg_at_1000_diff1 value: 31.184800000000003 - type: nauc_map_at_1_max value: 1.8275 - type: nauc_map_at_1_std value: -23.8658 - type: nauc_map_at_1_diff1 value: 31.9071 - type: nauc_map_at_3_max value: 8.081900000000001 - type: nauc_map_at_3_std value: -20.647 - type: nauc_map_at_3_diff1 value: 26.509100000000004 - type: nauc_map_at_5_max value: 12.9364 - type: nauc_map_at_5_std value: -16.4111 - type: nauc_map_at_5_diff1 value: 26.3042 - type: nauc_map_at_10_max value: 16.9186 - type: nauc_map_at_10_std value: -10.174999999999999 - type: nauc_map_at_10_diff1 value: 24.0309 - type: nauc_map_at_20_max value: 23.0241 - type: nauc_map_at_20_std value: -0.5674 - type: nauc_map_at_20_diff1 value: 23.6815 - type: nauc_map_at_100_max value: 30.620599999999996 - type: nauc_map_at_100_std value: 18.436700000000002 - type: nauc_map_at_100_diff1 value: 22.7765 - type: nauc_map_at_1000_max value: 31.1444 - type: nauc_map_at_1000_std value: 20.9294 - type: nauc_map_at_1000_diff1 value: 21.1134 - type: nauc_recall_at_1_max value: 1.8275 - type: nauc_recall_at_1_std value: -23.8658 - type: nauc_recall_at_1_diff1 value: 31.9071 - type: nauc_recall_at_3_max value: 4.6672 - type: nauc_recall_at_3_std value: -22.2615 - type: nauc_recall_at_3_diff1 value: 21.9773 - type: nauc_recall_at_5_max value: 9.882399999999999 - type: nauc_recall_at_5_std value: -18.6467 - type: nauc_recall_at_5_diff1 value: 21.9263 - type: nauc_recall_at_10_max value: 13.0783 - type: nauc_recall_at_10_std value: -13.8897 - type: nauc_recall_at_10_diff1 value: 20.0473 - type: nauc_recall_at_20_max value: 21.4983 - type: nauc_recall_at_20_std value: -3.9253000000000005 - type: nauc_recall_at_20_diff1 value: 21.8969 - type: nauc_recall_at_100_max value: 36.0702 - type: nauc_recall_at_100_std value: 25.007800000000003 - type: nauc_recall_at_100_diff1 value: 26.6674 - type: nauc_recall_at_1000_max value: 46.604 - type: nauc_recall_at_1000_std value: 52.5305 - type: nauc_recall_at_1000_diff1 value: 31.8907 - type: nauc_precision_at_1_max value: 56.293000000000006 - type: nauc_precision_at_1_std value: 29.729699999999998 - type: nauc_precision_at_1_diff1 value: 55.167500000000004 - type: nauc_precision_at_3_max value: 37.712 - type: nauc_precision_at_3_std value: 37.155 - type: nauc_precision_at_3_diff1 value: 8.8632 - type: nauc_precision_at_5_max value: 35.133399999999995 - type: nauc_precision_at_5_std value: 38.5708 - type: nauc_precision_at_5_diff1 value: 3.6889 - type: nauc_precision_at_10_max value: 26.4835 - type: nauc_precision_at_10_std value: 38.136900000000004 - type: nauc_precision_at_10_diff1 value: -5.988099999999999 - type: nauc_precision_at_20_max value: 24.3223 - type: nauc_precision_at_20_std value: 40.487 - type: nauc_precision_at_20_diff1 value: -6.2481 - type: nauc_precision_at_100_max value: 14.5761 - type: nauc_precision_at_100_std value: 38.6962 - type: nauc_precision_at_100_diff1 value: -10.8208 - type: nauc_precision_at_1000_max value: -7.7383999999999995 - type: nauc_precision_at_1000_std value: 1.3077 - type: nauc_precision_at_1000_diff1 value: -23.3553 - type: nauc_mrr_at_1_max value: 56.293000000000006 - type: nauc_mrr_at_1_std value: 29.729699999999998 - type: nauc_mrr_at_1_diff1 value: 55.167500000000004 - type: nauc_mrr_at_3_max value: 59.1321 - type: nauc_mrr_at_3_std value: 35.067 - type: nauc_mrr_at_3_diff1 value: 53.4505 - type: nauc_mrr_at_5_max value: 59.39149999999999 - type: nauc_mrr_at_5_std value: 33.6519 - type: nauc_mrr_at_5_diff1 value: 53.7743 - type: nauc_mrr_at_10_max value: 59.6483 - type: nauc_mrr_at_10_std value: 33.537 - type: nauc_mrr_at_10_diff1 value: 53.75149999999999 - type: nauc_mrr_at_20_max value: 59.4701 - type: nauc_mrr_at_20_std value: 33.3212 - type: nauc_mrr_at_20_diff1 value: 53.690000000000005 - type: nauc_mrr_at_100_max value: 59.3928 - type: nauc_mrr_at_100_std value: 33.329 - type: nauc_mrr_at_100_diff1 value: 53.7903 - type: nauc_mrr_at_1000_max value: 59.391400000000004 - type: nauc_mrr_at_1000_std value: 33.3331 - type: nauc_mrr_at_1000_diff1 value: 53.797399999999996 - type: main_score value: 52.476 - task: type: Classification dataset: name: MTEB EmotionClassification (default) type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 87.72999999999999 - type: f1 value: 83.03399999999999 - type: f1_weighted value: 88.0873 - type: main_score value: 87.72999999999999 - task: type: Retrieval dataset: name: MTEB FEVER (default) type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: ndcg_at_1 value: 93.849 - type: ndcg_at_3 value: 94.08800000000001 - type: ndcg_at_5 value: 94.459 - type: ndcg_at_10 value: 94.806 - type: ndcg_at_20 value: 95.06 - type: ndcg_at_100 value: 95.338 - type: ndcg_at_1000 value: 95.465 - type: map_at_1 value: 87.21900000000001 - type: map_at_3 value: 92.16 - type: map_at_5 value: 92.607 - type: map_at_10 value: 92.88300000000001 - type: map_at_20 value: 93.009 - type: map_at_100 value: 93.07600000000001 - type: map_at_1000 value: 93.085 - type: recall_at_1 value: 87.21900000000001 - type: recall_at_3 value: 95.082 - type: recall_at_5 value: 96.09299999999999 - type: recall_at_10 value: 97.024 - type: recall_at_20 value: 97.773 - type: recall_at_100 value: 98.901 - type: recall_at_1000 value: 99.629 - type: precision_at_1 value: 93.849 - type: precision_at_3 value: 35.154 - type: precision_at_5 value: 21.557000000000002 - type: precision_at_10 value: 11.031 - type: precision_at_20 value: 5.622 - type: precision_at_100 value: 1.155 - type: precision_at_1000 value: 0.11800000000000001 - type: mrr_at_1 value: 93.8494 - type: mrr_at_3 value: 96.43209999999999 - type: mrr_at_5 value: 96.4914 - type: mrr_at_10 value: 96.5095 - type: mrr_at_20 value: 96.5154 - type: mrr_at_100 value: 96.52340000000001 - type: mrr_at_1000 value: 96.5235 - type: nauc_ndcg_at_1_max value: 22.8567 - type: nauc_ndcg_at_1_std value: -28.435 - type: nauc_ndcg_at_1_diff1 value: 83.3685 - type: nauc_ndcg_at_3_max value: 25.3199 - type: nauc_ndcg_at_3_std value: -8.9749 - type: nauc_ndcg_at_3_diff1 value: 51.326499999999996 - type: nauc_ndcg_at_5_max value: 24.3802 - type: nauc_ndcg_at_5_std value: -8.0152 - type: nauc_ndcg_at_5_diff1 value: 50.26389999999999 - type: nauc_ndcg_at_10_max value: 25.0331 - type: nauc_ndcg_at_10_std value: -7.0646 - type: nauc_ndcg_at_10_diff1 value: 50.2641 - type: nauc_ndcg_at_20_max value: 25.342399999999998 - type: nauc_ndcg_at_20_std value: -7.000000000000001 - type: nauc_ndcg_at_20_diff1 value: 51.2941 - type: nauc_ndcg_at_100_max value: 25.7293 - type: nauc_ndcg_at_100_std value: -7.8615 - type: nauc_ndcg_at_100_diff1 value: 53.529700000000005 - type: nauc_ndcg_at_1000_max value: 25.565500000000004 - type: nauc_ndcg_at_1000_std value: -9.2169 - type: nauc_ndcg_at_1000_diff1 value: 54.8992 - type: nauc_map_at_1_max value: 22.5516 - type: nauc_map_at_1_std value: -11.0841 - type: nauc_map_at_1_diff1 value: 60.23929999999999 - type: nauc_map_at_3_max value: 23.7695 - type: nauc_map_at_3_std value: -8.1368 - type: nauc_map_at_3_diff1 value: 50.648 - type: nauc_map_at_5_max value: 23.7918 - type: nauc_map_at_5_std value: -8.023 - type: nauc_map_at_5_diff1 value: 50.8238 - type: nauc_map_at_10_max value: 24.305 - type: nauc_map_at_10_std value: -7.5793 - type: nauc_map_at_10_diff1 value: 51.1269 - type: nauc_map_at_20_max value: 24.458099999999998 - type: nauc_map_at_20_std value: -7.541399999999999 - type: nauc_map_at_20_diff1 value: 51.4841 - type: nauc_map_at_100_max value: 24.562 - type: nauc_map_at_100_std value: -7.6588 - type: nauc_map_at_100_diff1 value: 51.8489 - type: nauc_map_at_1000_max value: 24.5627 - type: nauc_map_at_1000_std value: -7.7154 - type: nauc_map_at_1000_diff1 value: 51.9049 - type: nauc_recall_at_1_max value: 22.5516 - type: nauc_recall_at_1_std value: -11.0841 - type: nauc_recall_at_1_diff1 value: 60.23929999999999 - type: nauc_recall_at_3_max value: 25.117 - type: nauc_recall_at_3_std value: 4.056 - type: nauc_recall_at_3_diff1 value: 28.1752 - type: nauc_recall_at_5_max value: 24.776999999999997 - type: nauc_recall_at_5_std value: 9.3384 - type: nauc_recall_at_5_diff1 value: 22.5866 - type: nauc_recall_at_10_max value: 28.2575 - type: nauc_recall_at_10_std value: 18.0012 - type: nauc_recall_at_10_diff1 value: 16.8302 - type: nauc_recall_at_20_max value: 30.4282 - type: nauc_recall_at_20_std value: 27.020100000000003 - type: nauc_recall_at_20_diff1 value: 12.195 - type: nauc_recall_at_100_max value: 40.7633 - type: nauc_recall_at_100_std value: 47.6965 - type: nauc_recall_at_100_diff1 value: 9.647 - type: nauc_recall_at_1000_max value: 53.4871 - type: nauc_recall_at_1000_std value: 58.3394 - type: nauc_recall_at_1000_diff1 value: 16.0846 - type: nauc_precision_at_1_max value: 22.8567 - type: nauc_precision_at_1_std value: -28.435 - type: nauc_precision_at_1_diff1 value: 83.3685 - type: nauc_precision_at_3_max value: -7.2411 - type: nauc_precision_at_3_std value: -0.819 - type: nauc_precision_at_3_diff1 value: -25.5367 - type: nauc_precision_at_5_max value: -8.8802 - type: nauc_precision_at_5_std value: 0.4376 - type: nauc_precision_at_5_diff1 value: -26.209100000000003 - type: nauc_precision_at_10_max value: -7.9997 - type: nauc_precision_at_10_std value: 1.9876999999999998 - type: nauc_precision_at_10_diff1 value: -24.851200000000002 - type: nauc_precision_at_20_max value: -7.5102 - type: nauc_precision_at_20_std value: 2.2863 - type: nauc_precision_at_20_diff1 value: -23.224 - type: nauc_precision_at_100_max value: -8.2868 - type: nauc_precision_at_100_std value: 0.9126000000000001 - type: nauc_precision_at_100_diff1 value: -21.0977 - type: nauc_precision_at_1000_max value: -9.5708 - type: nauc_precision_at_1000_std value: -2.0409 - type: nauc_precision_at_1000_diff1 value: -18.6371 - type: nauc_mrr_at_1_max value: 22.8567 - type: nauc_mrr_at_1_std value: -28.435 - type: nauc_mrr_at_1_diff1 value: 83.3685 - type: nauc_mrr_at_3_max value: 25.0204 - type: nauc_mrr_at_3_std value: -29.9704 - type: nauc_mrr_at_3_diff1 value: 79.9868 - type: nauc_mrr_at_5_max value: 24.4871 - type: nauc_mrr_at_5_std value: -29.5127 - type: nauc_mrr_at_5_diff1 value: 79.8468 - type: nauc_mrr_at_10_max value: 24.543400000000002 - type: nauc_mrr_at_10_std value: -29.243799999999997 - type: nauc_mrr_at_10_diff1 value: 79.8492 - type: nauc_mrr_at_20_max value: 24.4687 - type: nauc_mrr_at_20_std value: -29.2678 - type: nauc_mrr_at_20_diff1 value: 79.9428 - type: nauc_mrr_at_100_max value: 24.43 - type: nauc_mrr_at_100_std value: -29.3424 - type: nauc_mrr_at_100_diff1 value: 80.1115 - type: nauc_mrr_at_1000_max value: 24.429699999999997 - type: nauc_mrr_at_1000_std value: -29.3431 - type: nauc_mrr_at_1000_diff1 value: 80.1118 - type: main_score value: 94.806 - task: type: Retrieval dataset: name: MTEB FiQA2018 (default) type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: ndcg_at_1 value: 59.721999999999994 - type: ndcg_at_3 value: 55.584 - type: ndcg_at_5 value: 56.852000000000004 - type: ndcg_at_10 value: 60.118 - type: ndcg_at_20 value: 62.756 - type: ndcg_at_100 value: 66.434 - type: ndcg_at_1000 value: 67.796 - type: map_at_1 value: 31.213 - type: map_at_3 value: 45.164 - type: map_at_5 value: 48.66 - type: map_at_10 value: 51.637 - type: map_at_20 value: 52.886 - type: map_at_100 value: 53.785000000000004 - type: map_at_1000 value: 53.886 - type: recall_at_1 value: 31.213 - type: recall_at_3 value: 50.105 - type: recall_at_5 value: 57.714 - type: recall_at_10 value: 67.93900000000001 - type: recall_at_20 value: 75.901 - type: recall_at_100 value: 90.424 - type: recall_at_1000 value: 98.24300000000001 - type: precision_at_1 value: 59.721999999999994 - type: precision_at_3 value: 36.986000000000004 - type: precision_at_5 value: 26.883000000000003 - type: precision_at_10 value: 16.558999999999997 - type: precision_at_20 value: 9.468 - type: precision_at_100 value: 2.332 - type: precision_at_1000 value: 0.258 - type: mrr_at_1 value: 59.7222 - type: mrr_at_3 value: 65.1492 - type: mrr_at_5 value: 66.376 - type: mrr_at_10 value: 67.3183 - type: mrr_at_20 value: 67.6241 - type: mrr_at_100 value: 67.8682 - type: mrr_at_1000 value: 67.8792 - type: nauc_ndcg_at_1_max value: 43.5471 - type: nauc_ndcg_at_1_std value: -7.1188 - type: nauc_ndcg_at_1_diff1 value: 62.971900000000005 - type: nauc_ndcg_at_3_max value: 34.357 - type: nauc_ndcg_at_3_std value: -10.8661 - type: nauc_ndcg_at_3_diff1 value: 47.8167 - type: nauc_ndcg_at_5_max value: 32.3401 - type: nauc_ndcg_at_5_std value: -10.3064 - type: nauc_ndcg_at_5_diff1 value: 47.248200000000004 - type: nauc_ndcg_at_10_max value: 33.4274 - type: nauc_ndcg_at_10_std value: -6.7193000000000005 - type: nauc_ndcg_at_10_diff1 value: 48.5323 - type: nauc_ndcg_at_20_max value: 35.2779 - type: nauc_ndcg_at_20_std value: -4.914700000000001 - type: nauc_ndcg_at_20_diff1 value: 48.952200000000005 - type: nauc_ndcg_at_100_max value: 35.7555 - type: nauc_ndcg_at_100_std value: -4.0120000000000005 - type: nauc_ndcg_at_100_diff1 value: 49.684200000000004 - type: nauc_ndcg_at_1000_max value: 36.836999999999996 - type: nauc_ndcg_at_1000_std value: -5.0826 - type: nauc_ndcg_at_1000_diff1 value: 49.9576 - type: nauc_map_at_1_max value: 12.3228 - type: nauc_map_at_1_std value: -6.8317000000000005 - type: nauc_map_at_1_diff1 value: 52.012499999999996 - type: nauc_map_at_3_max value: 22.758300000000002 - type: nauc_map_at_3_std value: -10.415199999999999 - type: nauc_map_at_3_diff1 value: 48.8788 - type: nauc_map_at_5_max value: 26.2402 - type: nauc_map_at_5_std value: -9.831199999999999 - type: nauc_map_at_5_diff1 value: 47.2214 - type: nauc_map_at_10_max value: 28.962 - type: nauc_map_at_10_std value: -8.847900000000001 - type: nauc_map_at_10_diff1 value: 47.177 - type: nauc_map_at_20_max value: 30.252699999999997 - type: nauc_map_at_20_std value: -7.994 - type: nauc_map_at_20_diff1 value: 47.2329 - type: nauc_map_at_100_max value: 30.621 - type: nauc_map_at_100_std value: -7.5253 - type: nauc_map_at_100_diff1 value: 47.2401 - type: nauc_map_at_1000_max value: 30.6957 - type: nauc_map_at_1000_std value: -7.570200000000001 - type: nauc_map_at_1000_diff1 value: 47.2385 - type: nauc_recall_at_1_max value: 12.3228 - type: nauc_recall_at_1_std value: -6.8317000000000005 - type: nauc_recall_at_1_diff1 value: 52.012499999999996 - type: nauc_recall_at_3_max value: 18.8278 - type: nauc_recall_at_3_std value: -11.0181 - type: nauc_recall_at_3_diff1 value: 42.853 - type: nauc_recall_at_5_max value: 20.494699999999998 - type: nauc_recall_at_5_std value: -10.1645 - type: nauc_recall_at_5_diff1 value: 38.1874 - type: nauc_recall_at_10_max value: 24.264 - type: nauc_recall_at_10_std value: -1.4449999999999998 - type: nauc_recall_at_10_diff1 value: 35.9821 - type: nauc_recall_at_20_max value: 27.699 - type: nauc_recall_at_20_std value: 5.3731 - type: nauc_recall_at_20_diff1 value: 34.8722 - type: nauc_recall_at_100_max value: 17.296 - type: nauc_recall_at_100_std value: 22.0343 - type: nauc_recall_at_100_diff1 value: 31.7347 - type: nauc_recall_at_1000_max value: 30.353 - type: nauc_recall_at_1000_std value: 48.0299 - type: nauc_recall_at_1000_diff1 value: 24.395500000000002 - type: nauc_precision_at_1_max value: 43.5471 - type: nauc_precision_at_1_std value: -7.1188 - type: nauc_precision_at_1_diff1 value: 62.971900000000005 - type: nauc_precision_at_3_max value: 39.456599999999995 - type: nauc_precision_at_3_std value: -6.9102 - type: nauc_precision_at_3_diff1 value: 21.7063 - type: nauc_precision_at_5_max value: 39.5105 - type: nauc_precision_at_5_std value: -4.0794999999999995 - type: nauc_precision_at_5_diff1 value: 11.556700000000001 - type: nauc_precision_at_10_max value: 38.1647 - type: nauc_precision_at_10_std value: 1.0857999999999999 - type: nauc_precision_at_10_diff1 value: 3.9246000000000003 - type: nauc_precision_at_20_max value: 38.1511 - type: nauc_precision_at_20_std value: 5.1094 - type: nauc_precision_at_20_diff1 value: -0.468 - type: nauc_precision_at_100_max value: 30.9215 - type: nauc_precision_at_100_std value: 7.5769 - type: nauc_precision_at_100_diff1 value: -8.6537 - type: nauc_precision_at_1000_max value: 28.324899999999996 - type: nauc_precision_at_1000_std value: 4.0066999999999995 - type: nauc_precision_at_1000_diff1 value: -13.2833 - type: nauc_mrr_at_1_max value: 43.5471 - type: nauc_mrr_at_1_std value: -7.1188 - type: nauc_mrr_at_1_diff1 value: 62.971900000000005 - type: nauc_mrr_at_3_max value: 44.7938 - type: nauc_mrr_at_3_std value: -8.1318 - type: nauc_mrr_at_3_diff1 value: 60.6936 - type: nauc_mrr_at_5_max value: 44.398199999999996 - type: nauc_mrr_at_5_std value: -8.0999 - type: nauc_mrr_at_5_diff1 value: 60.2421 - type: nauc_mrr_at_10_max value: 44.7636 - type: nauc_mrr_at_10_std value: -6.6530000000000005 - type: nauc_mrr_at_10_diff1 value: 60.168 - type: nauc_mrr_at_20_max value: 44.5856 - type: nauc_mrr_at_20_std value: -6.786300000000001 - type: nauc_mrr_at_20_diff1 value: 60.224999999999994 - type: nauc_mrr_at_100_max value: 44.554899999999996 - type: nauc_mrr_at_100_std value: -6.819400000000001 - type: nauc_mrr_at_100_diff1 value: 60.379400000000004 - type: nauc_mrr_at_1000_max value: 44.5589 - type: nauc_mrr_at_1000_std value: -6.8267 - type: nauc_mrr_at_1000_diff1 value: 60.3766 - type: main_score value: 60.118 - task: type: Retrieval dataset: name: MTEB HotpotQA (default) type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: ndcg_at_1 value: 87.576 - type: ndcg_at_3 value: 73.276 - type: ndcg_at_5 value: 75.717 - type: ndcg_at_10 value: 77.681 - type: ndcg_at_20 value: 78.865 - type: ndcg_at_100 value: 80.42 - type: ndcg_at_1000 value: 81.34 - type: map_at_1 value: 43.788 - type: map_at_3 value: 66.769 - type: map_at_5 value: 68.811 - type: map_at_10 value: 70.06099999999999 - type: map_at_20 value: 70.565 - type: map_at_100 value: 70.901 - type: map_at_1000 value: 70.955 - type: recall_at_1 value: 43.788 - type: recall_at_3 value: 70.27 - type: recall_at_5 value: 75.098 - type: recall_at_10 value: 79.99300000000001 - type: recall_at_20 value: 83.795 - type: recall_at_100 value: 90.621 - type: recall_at_1000 value: 96.577 - type: precision_at_1 value: 87.576 - type: precision_at_3 value: 46.847 - type: precision_at_5 value: 30.038999999999998 - type: precision_at_10 value: 15.998999999999999 - type: precision_at_20 value: 8.379 - type: precision_at_100 value: 1.812 - type: precision_at_1000 value: 0.193 - type: mrr_at_1 value: 87.576 - type: mrr_at_3 value: 90.7968 - type: mrr_at_5 value: 91.135 - type: mrr_at_10 value: 91.3228 - type: mrr_at_20 value: 91.3865 - type: mrr_at_100 value: 91.41709999999999 - type: mrr_at_1000 value: 91.4191 - type: nauc_ndcg_at_1_max value: 52.9848 - type: nauc_ndcg_at_1_std value: -7.4415 - type: nauc_ndcg_at_1_diff1 value: 74.138 - type: nauc_ndcg_at_3_max value: 18.2608 - type: nauc_ndcg_at_3_std value: 2.8652 - type: nauc_ndcg_at_3_diff1 value: 8.2423 - type: nauc_ndcg_at_5_max value: 18.7809 - type: nauc_ndcg_at_5_std value: 5.266 - type: nauc_ndcg_at_5_diff1 value: 8.2429 - type: nauc_ndcg_at_10_max value: 20.0532 - type: nauc_ndcg_at_10_std value: 7.7897 - type: nauc_ndcg_at_10_diff1 value: 8.953 - type: nauc_ndcg_at_20_max value: 20.921 - type: nauc_ndcg_at_20_std value: 9.1425 - type: nauc_ndcg_at_20_diff1 value: 9.8906 - type: nauc_ndcg_at_100_max value: 22.0304 - type: nauc_ndcg_at_100_std value: 10.200099999999999 - type: nauc_ndcg_at_100_diff1 value: 10.8734 - type: nauc_ndcg_at_1000_max value: 22.4498 - type: nauc_ndcg_at_1000_std value: 9.0443 - type: nauc_ndcg_at_1000_diff1 value: 11.950800000000001 - type: nauc_map_at_1_max value: 52.9848 - type: nauc_map_at_1_std value: -7.4415 - type: nauc_map_at_1_diff1 value: 74.138 - type: nauc_map_at_3_max value: 14.394599999999999 - type: nauc_map_at_3_std value: 3.0435 - type: nauc_map_at_3_diff1 value: 2.7293000000000003 - type: nauc_map_at_5_max value: 15.001000000000001 - type: nauc_map_at_5_std value: 4.8138 - type: nauc_map_at_5_diff1 value: 3.0212 - type: nauc_map_at_10_max value: 15.770600000000002 - type: nauc_map_at_10_std value: 6.1151 - type: nauc_map_at_10_diff1 value: 3.546 - type: nauc_map_at_20_max value: 16.0909 - type: nauc_map_at_20_std value: 6.5694 - type: nauc_map_at_20_diff1 value: 3.8928 - type: nauc_map_at_100_max value: 16.2717 - type: nauc_map_at_100_std value: 6.7403 - type: nauc_map_at_100_diff1 value: 4.0282 - type: nauc_map_at_1000_max value: 16.284399999999998 - type: nauc_map_at_1000_std value: 6.6972000000000005 - type: nauc_map_at_1000_diff1 value: 4.0631 - type: nauc_recall_at_1_max value: 52.9848 - type: nauc_recall_at_1_std value: -7.4415 - type: nauc_recall_at_1_diff1 value: 74.138 - type: nauc_recall_at_3_max value: 11.933 - type: nauc_recall_at_3_std value: 5.3739 - type: nauc_recall_at_3_diff1 value: -3.9494000000000002 - type: nauc_recall_at_5_max value: 12.087100000000001 - type: nauc_recall_at_5_std value: 9.9072 - type: nauc_recall_at_5_diff1 value: -5.1775 - type: nauc_recall_at_10_max value: 13.96 - type: nauc_recall_at_10_std value: 16.7674 - type: nauc_recall_at_10_diff1 value: -5.56 - type: nauc_recall_at_20_max value: 15.7857 - type: nauc_recall_at_20_std value: 22.8973 - type: nauc_recall_at_20_diff1 value: -4.7106 - type: nauc_recall_at_100_max value: 20.7038 - type: nauc_recall_at_100_std value: 38.0023 - type: nauc_recall_at_100_diff1 value: -5.9268 - type: nauc_recall_at_1000_max value: 31.1577 - type: nauc_recall_at_1000_std value: 51.5596 - type: nauc_recall_at_1000_diff1 value: -3.6110999999999995 - type: nauc_precision_at_1_max value: 52.9848 - type: nauc_precision_at_1_std value: -7.4415 - type: nauc_precision_at_1_diff1 value: 74.138 - type: nauc_precision_at_3_max value: 11.933 - type: nauc_precision_at_3_std value: 5.3739 - type: nauc_precision_at_3_diff1 value: -3.9494000000000002 - type: nauc_precision_at_5_max value: 12.087100000000001 - type: nauc_precision_at_5_std value: 9.9072 - type: nauc_precision_at_5_diff1 value: -5.1775 - type: nauc_precision_at_10_max value: 13.96 - type: nauc_precision_at_10_std value: 16.7674 - type: nauc_precision_at_10_diff1 value: -5.56 - type: nauc_precision_at_20_max value: 15.7857 - type: nauc_precision_at_20_std value: 22.8973 - type: nauc_precision_at_20_diff1 value: -4.7106 - type: nauc_precision_at_100_max value: 20.7038 - type: nauc_precision_at_100_std value: 38.0023 - type: nauc_precision_at_100_diff1 value: -5.9268 - type: nauc_precision_at_1000_max value: 31.1577 - type: nauc_precision_at_1000_std value: 51.5596 - type: nauc_precision_at_1000_diff1 value: -3.6110999999999995 - type: nauc_mrr_at_1_max value: 52.9848 - type: nauc_mrr_at_1_std value: -7.4415 - type: nauc_mrr_at_1_diff1 value: 74.138 - type: nauc_mrr_at_3_max value: 56.448100000000004 - type: nauc_mrr_at_3_std value: -5.8551 - type: nauc_mrr_at_3_diff1 value: 73.5421 - type: nauc_mrr_at_5_max value: 56.3061 - type: nauc_mrr_at_5_std value: -5.8522 - type: nauc_mrr_at_5_diff1 value: 73.78190000000001 - type: nauc_mrr_at_10_max value: 56.2413 - type: nauc_mrr_at_10_std value: -5.6768 - type: nauc_mrr_at_10_diff1 value: 73.8144 - type: nauc_mrr_at_20_max value: 56.1659 - type: nauc_mrr_at_20_std value: -5.7085 - type: nauc_mrr_at_20_diff1 value: 73.8173 - type: nauc_mrr_at_100_max value: 56.1251 - type: nauc_mrr_at_100_std value: -5.7101 - type: nauc_mrr_at_100_diff1 value: 73.8056 - type: nauc_mrr_at_1000_max value: 56.118199999999995 - type: nauc_mrr_at_1000_std value: -5.723000000000001 - type: nauc_mrr_at_1000_diff1 value: 73.8034 - type: main_score value: 77.681 - task: type: Classification dataset: name: MTEB ImdbClassification (default) type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 96.9528 - type: f1 value: 96.95270000000001 - type: f1_weighted value: 96.95270000000001 - type: ap value: 95.35130000000001 - type: ap_weighted value: 95.35130000000001 - type: main_score value: 96.9528 - task: type: Retrieval dataset: name: MTEB MSMARCO (default) type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: ndcg_at_1 value: 25.759 - type: ndcg_at_3 value: 37.159 - type: ndcg_at_5 value: 41.388999999999996 - type: ndcg_at_10 value: 45.31 - type: ndcg_at_20 value: 47.912 - type: ndcg_at_100 value: 50.719 - type: ndcg_at_1000 value: 51.636 - type: map_at_1 value: 25.056 - type: map_at_3 value: 34.059 - type: map_at_5 value: 36.424 - type: map_at_10 value: 38.099 - type: map_at_20 value: 38.834 - type: map_at_100 value: 39.245999999999995 - type: map_at_1000 value: 39.285 - type: recall_at_1 value: 25.056 - type: recall_at_3 value: 45.414 - type: recall_at_5 value: 55.595000000000006 - type: recall_at_10 value: 67.43900000000001 - type: recall_at_20 value: 77.544 - type: recall_at_100 value: 92.23599999999999 - type: recall_at_1000 value: 99.087 - type: precision_at_1 value: 25.759 - type: precision_at_3 value: 15.716 - type: precision_at_5 value: 11.579 - type: precision_at_10 value: 7.063999999999999 - type: precision_at_20 value: 4.074 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.105 - type: mrr_at_1 value: 25.759300000000003 - type: mrr_at_3 value: 34.7827 - type: mrr_at_5 value: 37.1122 - type: mrr_at_10 value: 38.702799999999996 - type: mrr_at_20 value: 39.4035 - type: mrr_at_100 value: 39.7874 - type: mrr_at_1000 value: 39.820499999999996 - type: nauc_ndcg_at_1_max value: 7.6849 - type: nauc_ndcg_at_1_std value: -20.9503 - type: nauc_ndcg_at_1_diff1 value: 39.0921 - type: nauc_ndcg_at_3_max value: 8.9183 - type: nauc_ndcg_at_3_std value: -24.5722 - type: nauc_ndcg_at_3_diff1 value: 35.3955 - type: nauc_ndcg_at_5_max value: 9.3112 - type: nauc_ndcg_at_5_std value: -24.8615 - type: nauc_ndcg_at_5_diff1 value: 34.9193 - type: nauc_ndcg_at_10_max value: 9.9335 - type: nauc_ndcg_at_10_std value: -24.2891 - type: nauc_ndcg_at_10_diff1 value: 35.2354 - type: nauc_ndcg_at_20_max value: 10.1047 - type: nauc_ndcg_at_20_std value: -22.538 - type: nauc_ndcg_at_20_diff1 value: 35.370200000000004 - type: nauc_ndcg_at_100_max value: 9.9511 - type: nauc_ndcg_at_100_std value: -21.182699999999997 - type: nauc_ndcg_at_100_diff1 value: 35.8301 - type: nauc_ndcg_at_1000_max value: 9.7745 - type: nauc_ndcg_at_1000_std value: -22.1117 - type: nauc_ndcg_at_1000_diff1 value: 35.7943 - type: nauc_map_at_1_max value: 7.7292 - type: nauc_map_at_1_std value: -20.9013 - type: nauc_map_at_1_diff1 value: 39.1258 - type: nauc_map_at_3_max value: 8.6472 - type: nauc_map_at_3_std value: -23.8389 - type: nauc_map_at_3_diff1 value: 36.3462 - type: nauc_map_at_5_max value: 8.8231 - type: nauc_map_at_5_std value: -24.048 - type: nauc_map_at_5_diff1 value: 36.0689 - type: nauc_map_at_10_max value: 9.064 - type: nauc_map_at_10_std value: -23.788400000000003 - type: nauc_map_at_10_diff1 value: 36.193 - type: nauc_map_at_20_max value: 9.0944 - type: nauc_map_at_20_std value: -23.3413 - type: nauc_map_at_20_diff1 value: 36.2575 - type: nauc_map_at_100_max value: 9.0852 - type: nauc_map_at_100_std value: -23.1205 - type: nauc_map_at_100_diff1 value: 36.314 - type: nauc_map_at_1000_max value: 9.0815 - type: nauc_map_at_1000_std value: -23.1446 - type: nauc_map_at_1000_diff1 value: 36.3137 - type: nauc_recall_at_1_max value: 7.7292 - type: nauc_recall_at_1_std value: -20.9013 - type: nauc_recall_at_1_diff1 value: 39.1258 - type: nauc_recall_at_3_max value: 9.8077 - type: nauc_recall_at_3_std value: -26.5565 - type: nauc_recall_at_3_diff1 value: 32.7773 - type: nauc_recall_at_5_max value: 10.801 - type: nauc_recall_at_5_std value: -27.3276 - type: nauc_recall_at_5_diff1 value: 31.4183 - type: nauc_recall_at_10_max value: 13.324 - type: nauc_recall_at_10_std value: -25.866699999999998 - type: nauc_recall_at_10_diff1 value: 31.8682 - type: nauc_recall_at_20_max value: 15.2863 - type: nauc_recall_at_20_std value: -16.487299999999998 - type: nauc_recall_at_20_diff1 value: 31.4332 - type: nauc_recall_at_100_max value: 19.4577 - type: nauc_recall_at_100_std value: 14.5535 - type: nauc_recall_at_100_diff1 value: 34.865899999999996 - type: nauc_recall_at_1000_max value: 48.2992 - type: nauc_recall_at_1000_std value: 61.405100000000004 - type: nauc_recall_at_1000_diff1 value: 23.533299999999997 - type: nauc_precision_at_1_max value: 7.6849 - type: nauc_precision_at_1_std value: -20.9503 - type: nauc_precision_at_1_diff1 value: 39.0921 - type: nauc_precision_at_3_max value: 9.224400000000001 - type: nauc_precision_at_3_std value: -26.7181 - type: nauc_precision_at_3_diff1 value: 32.0185 - type: nauc_precision_at_5_max value: 10.2675 - type: nauc_precision_at_5_std value: -26.803700000000003 - type: nauc_precision_at_5_diff1 value: 30.189300000000003 - type: nauc_precision_at_10_max value: 12.128400000000001 - type: nauc_precision_at_10_std value: -23.18 - type: nauc_precision_at_10_diff1 value: 28.5595 - type: nauc_precision_at_20_max value: 13.1152 - type: nauc_precision_at_20_std value: -12.6363 - type: nauc_precision_at_20_diff1 value: 25.7907 - type: nauc_precision_at_100_max value: 11.881400000000001 - type: nauc_precision_at_100_std value: 12.4388 - type: nauc_precision_at_100_diff1 value: 15.3289 - type: nauc_precision_at_1000_max value: 5.5209 - type: nauc_precision_at_1000_std value: 11.001900000000001 - type: nauc_precision_at_1000_diff1 value: -3.0637000000000003 - type: nauc_mrr_at_1_max value: 7.6849 - type: nauc_mrr_at_1_std value: -20.9503 - type: nauc_mrr_at_1_diff1 value: 39.0921 - type: nauc_mrr_at_3_max value: 8.454699999999999 - type: nauc_mrr_at_3_std value: -23.5899 - type: nauc_mrr_at_3_diff1 value: 36.077 - type: nauc_mrr_at_5_max value: 8.7245 - type: nauc_mrr_at_5_std value: -23.6374 - type: nauc_mrr_at_5_diff1 value: 35.844 - type: nauc_mrr_at_10_max value: 8.9177 - type: nauc_mrr_at_10_std value: -23.457800000000002 - type: nauc_mrr_at_10_diff1 value: 36.02 - type: nauc_mrr_at_20_max value: 8.9659 - type: nauc_mrr_at_20_std value: -23.0174 - type: nauc_mrr_at_20_diff1 value: 36.050900000000006 - type: nauc_mrr_at_100_max value: 8.9461 - type: nauc_mrr_at_100_std value: -22.8363 - type: nauc_mrr_at_100_diff1 value: 36.1078 - type: nauc_mrr_at_1000_max value: 8.940299999999999 - type: nauc_mrr_at_1000_std value: -22.8606 - type: nauc_mrr_at_1000_diff1 value: 36.106700000000004 - type: main_score value: 45.31 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 99.1701 - type: f1 value: 99.07639999999999 - type: f1_weighted value: 99.1712 - type: main_score value: 99.1701 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 91.48429999999999 - type: f1 value: 72.55080000000001 - type: f1_weighted value: 91.72449999999999 - type: main_score value: 91.48429999999999 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 85.306 - type: f1 value: 83.1076 - type: f1_weighted value: 84.4685 - type: main_score value: 85.306 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 91.17349999999999 - type: f1 value: 90.15950000000001 - type: f1_weighted value: 90.802 - type: main_score value: 91.17349999999999 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P (default) type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 46.7494 - type: v_measure_std value: 1.2241 - type: main_score value: 46.7494 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S (default) type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 44.9016 - type: v_measure_std value: 1.3978000000000002 - type: main_score value: 44.9016 - task: type: Reranking dataset: name: MTEB MindSmallReranking (default) type: mteb/mind_small config: default split: test revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 metrics: - type: map value: 32.628099999999996 - type: mrr value: 33.8493 - type: nAUC_map_max value: -21.0204 - type: nAUC_map_std value: -5.1638 - type: nAUC_map_diff1 value: 10.4531 - type: nAUC_mrr_max value: -15.85 - type: nAUC_mrr_std value: -2.7011 - type: nAUC_mrr_diff1 value: 9.8352 - type: main_score value: 32.628099999999996 - task: type: Retrieval dataset: name: MTEB NFCorpus (default) type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: ndcg_at_1 value: 54.954 - type: ndcg_at_3 value: 49.876 - type: ndcg_at_5 value: 47.038999999999994 - type: ndcg_at_10 value: 43.313 - type: ndcg_at_20 value: 41.086 - type: ndcg_at_100 value: 40.849999999999994 - type: ndcg_at_1000 value: 49.852000000000004 - type: map_at_1 value: 7.412000000000001 - type: map_at_3 value: 12.438 - type: map_at_5 value: 14.448 - type: map_at_10 value: 17.080000000000002 - type: map_at_20 value: 19.273 - type: map_at_100 value: 22.494 - type: map_at_1000 value: 24.490000000000002 - type: recall_at_1 value: 7.412000000000001 - type: recall_at_3 value: 13.682 - type: recall_at_5 value: 16.595 - type: recall_at_10 value: 21.726 - type: recall_at_20 value: 26.895999999999997 - type: recall_at_100 value: 42.345 - type: recall_at_1000 value: 74.752 - type: precision_at_1 value: 56.65599999999999 - type: precision_at_3 value: 46.646 - type: precision_at_5 value: 40.619 - type: precision_at_10 value: 31.796000000000003 - type: precision_at_20 value: 24.195 - type: precision_at_100 value: 10.65 - type: precision_at_1000 value: 2.4570000000000003 - type: mrr_at_1 value: 56.6563 - type: mrr_at_3 value: 63.2095 - type: mrr_at_5 value: 63.998999999999995 - type: mrr_at_10 value: 64.6678 - type: mrr_at_20 value: 64.96079999999999 - type: mrr_at_100 value: 65.13550000000001 - type: mrr_at_1000 value: 65.1606 - type: nauc_ndcg_at_1_max value: 36.932900000000004 - type: nauc_ndcg_at_1_std value: 18.8188 - type: nauc_ndcg_at_1_diff1 value: 19.8327 - type: nauc_ndcg_at_3_max value: 37.044 - type: nauc_ndcg_at_3_std value: 17.2918 - type: nauc_ndcg_at_3_diff1 value: 12.0583 - type: nauc_ndcg_at_5_max value: 36.1203 - type: nauc_ndcg_at_5_std value: 17.3222 - type: nauc_ndcg_at_5_diff1 value: 10.6337 - type: nauc_ndcg_at_10_max value: 35.2176 - type: nauc_ndcg_at_10_std value: 19.4608 - type: nauc_ndcg_at_10_diff1 value: 9.1899 - type: nauc_ndcg_at_20_max value: 34.3354 - type: nauc_ndcg_at_20_std value: 20.2528 - type: nauc_ndcg_at_20_diff1 value: 8.4017 - type: nauc_ndcg_at_100_max value: 36.2388 - type: nauc_ndcg_at_100_std value: 21.578500000000002 - type: nauc_ndcg_at_100_diff1 value: 10.639899999999999 - type: nauc_ndcg_at_1000_max value: 42.6963 - type: nauc_ndcg_at_1000_std value: 26.8738 - type: nauc_ndcg_at_1000_diff1 value: 10.3058 - type: nauc_map_at_1_max value: 3.4625999999999997 - type: nauc_map_at_1_std value: -18.5752 - type: nauc_map_at_1_diff1 value: 42.8963 - type: nauc_map_at_3_max value: 10.6291 - type: nauc_map_at_3_std value: -13.977500000000001 - type: nauc_map_at_3_diff1 value: 31.7847 - type: nauc_map_at_5_max value: 13.558200000000001 - type: nauc_map_at_5_std value: -13.120499999999998 - type: nauc_map_at_5_diff1 value: 29.016199999999998 - type: nauc_map_at_10_max value: 18.4615 - type: nauc_map_at_10_std value: -8.2696 - type: nauc_map_at_10_diff1 value: 24.9417 - type: nauc_map_at_20_max value: 22.4656 - type: nauc_map_at_20_std value: -3.5717 - type: nauc_map_at_20_diff1 value: 21.6654 - type: nauc_map_at_100_max value: 26.3009 - type: nauc_map_at_100_std value: 4.6873 - type: nauc_map_at_100_diff1 value: 18.1131 - type: nauc_map_at_1000_max value: 26.965 - type: nauc_map_at_1000_std value: 8.6958 - type: nauc_map_at_1000_diff1 value: 15.898499999999999 - type: nauc_recall_at_1_max value: 3.4625999999999997 - type: nauc_recall_at_1_std value: -18.5752 - type: nauc_recall_at_1_diff1 value: 42.8963 - type: nauc_recall_at_3_max value: 8.9686 - type: nauc_recall_at_3_std value: -13.836599999999999 - type: nauc_recall_at_3_diff1 value: 27.528799999999997 - type: nauc_recall_at_5_max value: 11.818900000000001 - type: nauc_recall_at_5_std value: -13.414499999999999 - type: nauc_recall_at_5_diff1 value: 24.535899999999998 - type: nauc_recall_at_10_max value: 15.515300000000002 - type: nauc_recall_at_10_std value: -7.9226 - type: nauc_recall_at_10_diff1 value: 19.0975 - type: nauc_recall_at_20_max value: 18.786 - type: nauc_recall_at_20_std value: -3.7244 - type: nauc_recall_at_20_diff1 value: 13.8233 - type: nauc_recall_at_100_max value: 21.3034 - type: nauc_recall_at_100_std value: 9.569600000000001 - type: nauc_recall_at_100_diff1 value: 4.5838 - type: nauc_recall_at_1000_max value: 18.991 - type: nauc_recall_at_1000_std value: 14.690100000000001 - type: nauc_recall_at_1000_diff1 value: -6.4048 - type: nauc_precision_at_1_max value: 38.888099999999994 - type: nauc_precision_at_1_std value: 19.6065 - type: nauc_precision_at_1_diff1 value: 18.8443 - type: nauc_precision_at_3_max value: 38.5528 - type: nauc_precision_at_3_std value: 22.456 - type: nauc_precision_at_3_diff1 value: -0.0451 - type: nauc_precision_at_5_max value: 36.9122 - type: nauc_precision_at_5_std value: 24.6269 - type: nauc_precision_at_5_diff1 value: -5.5478 - type: nauc_precision_at_10_max value: 35.3133 - type: nauc_precision_at_10_std value: 32.6397 - type: nauc_precision_at_10_diff1 value: -12.6832 - type: nauc_precision_at_20_max value: 31.1714 - type: nauc_precision_at_20_std value: 37.2027 - type: nauc_precision_at_20_diff1 value: -15.146 - type: nauc_precision_at_100_max value: 16.4786 - type: nauc_precision_at_100_std value: 41.3436 - type: nauc_precision_at_100_diff1 value: -19.1827 - type: nauc_precision_at_1000_max value: 5.0432999999999995 - type: nauc_precision_at_1000_std value: 34.5184 - type: nauc_precision_at_1000_diff1 value: -18.926399999999997 - type: nauc_mrr_at_1_max value: 38.888099999999994 - type: nauc_mrr_at_1_std value: 19.6065 - type: nauc_mrr_at_1_diff1 value: 18.8443 - type: nauc_mrr_at_3_max value: 43.250699999999995 - type: nauc_mrr_at_3_std value: 23.7515 - type: nauc_mrr_at_3_diff1 value: 18.895899999999997 - type: nauc_mrr_at_5_max value: 43.845600000000005 - type: nauc_mrr_at_5_std value: 23.7064 - type: nauc_mrr_at_5_diff1 value: 19.9659 - type: nauc_mrr_at_10_max value: 44.075900000000004 - type: nauc_mrr_at_10_std value: 24.7276 - type: nauc_mrr_at_10_diff1 value: 19.4665 - type: nauc_mrr_at_20_max value: 44.169599999999996 - type: nauc_mrr_at_20_std value: 24.6675 - type: nauc_mrr_at_20_diff1 value: 19.1246 - type: nauc_mrr_at_100_max value: 44.1064 - type: nauc_mrr_at_100_std value: 24.5961 - type: nauc_mrr_at_100_diff1 value: 19.1742 - type: nauc_mrr_at_1000_max value: 44.083099999999995 - type: nauc_mrr_at_1000_std value: 24.5796 - type: nauc_mrr_at_1000_diff1 value: 19.1781 - type: main_score value: 43.313 - task: type: Retrieval dataset: name: MTEB NQ (default) type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: ndcg_at_1 value: 52.751999999999995 - type: ndcg_at_3 value: 65.18599999999999 - type: ndcg_at_5 value: 68.931 - type: ndcg_at_10 value: 71.487 - type: ndcg_at_20 value: 72.694 - type: ndcg_at_100 value: 73.603 - type: ndcg_at_1000 value: 73.772 - type: map_at_1 value: 47.446 - type: map_at_3 value: 60.94500000000001 - type: map_at_5 value: 63.33 - type: map_at_10 value: 64.581 - type: map_at_20 value: 64.97800000000001 - type: map_at_100 value: 65.142 - type: map_at_1000 value: 65.15100000000001 - type: recall_at_1 value: 47.446 - type: recall_at_3 value: 74.13300000000001 - type: recall_at_5 value: 82.575 - type: recall_at_10 value: 89.827 - type: recall_at_20 value: 94.238 - type: recall_at_100 value: 98.646 - type: recall_at_1000 value: 99.846 - type: precision_at_1 value: 52.751999999999995 - type: precision_at_3 value: 28.910999999999998 - type: precision_at_5 value: 19.606 - type: precision_at_10 value: 10.8 - type: precision_at_20 value: 5.694 - type: precision_at_100 value: 1.199 - type: precision_at_1000 value: 0.122 - type: mrr_at_1 value: 52.751999999999995 - type: mrr_at_3 value: 64.10289999999999 - type: mrr_at_5 value: 65.8613 - type: mrr_at_10 value: 66.686 - type: mrr_at_20 value: 66.9409 - type: mrr_at_100 value: 67.0379 - type: mrr_at_1000 value: 67.0432 - type: nauc_ndcg_at_1_max value: 30.3808 - type: nauc_ndcg_at_1_std value: -5.9129000000000005 - type: nauc_ndcg_at_1_diff1 value: 47.0165 - type: nauc_ndcg_at_3_max value: 35.7466 - type: nauc_ndcg_at_3_std value: -8.3171 - type: nauc_ndcg_at_3_diff1 value: 41.8012 - type: nauc_ndcg_at_5_max value: 36.5622 - type: nauc_ndcg_at_5_std value: -7.2429 - type: nauc_ndcg_at_5_diff1 value: 41.8656 - type: nauc_ndcg_at_10_max value: 36.8005 - type: nauc_ndcg_at_10_std value: -6.1641 - type: nauc_ndcg_at_10_diff1 value: 42.9286 - type: nauc_ndcg_at_20_max value: 36.518 - type: nauc_ndcg_at_20_std value: -5.389200000000001 - type: nauc_ndcg_at_20_diff1 value: 43.249500000000005 - type: nauc_ndcg_at_100_max value: 35.918 - type: nauc_ndcg_at_100_std value: -5.2897 - type: nauc_ndcg_at_100_diff1 value: 43.4364 - type: nauc_ndcg_at_1000_max value: 35.5555 - type: nauc_ndcg_at_1000_std value: -5.657100000000001 - type: nauc_ndcg_at_1000_diff1 value: 43.2952 - type: nauc_map_at_1_max value: 27.845399999999998 - type: nauc_map_at_1_std value: -8.4687 - type: nauc_map_at_1_diff1 value: 46.1481 - type: nauc_map_at_3_max value: 33.8624 - type: nauc_map_at_3_std value: -8.7464 - type: nauc_map_at_3_diff1 value: 42.821 - type: nauc_map_at_5_max value: 34.3698 - type: nauc_map_at_5_std value: -7.893600000000001 - type: nauc_map_at_5_diff1 value: 42.869600000000005 - type: nauc_map_at_10_max value: 34.469899999999996 - type: nauc_map_at_10_std value: -7.372199999999999 - type: nauc_map_at_10_diff1 value: 43.2528 - type: nauc_map_at_20_max value: 34.4121 - type: nauc_map_at_20_std value: -7.1491 - type: nauc_map_at_20_diff1 value: 43.3789 - type: nauc_map_at_100_max value: 34.3433 - type: nauc_map_at_100_std value: -7.0851999999999995 - type: nauc_map_at_100_diff1 value: 43.3953 - type: nauc_map_at_1000_max value: 34.3293 - type: nauc_map_at_1000_std value: -7.096900000000001 - type: nauc_map_at_1000_diff1 value: 43.3893 - type: nauc_recall_at_1_max value: 27.845399999999998 - type: nauc_recall_at_1_std value: -8.4687 - type: nauc_recall_at_1_diff1 value: 46.1481 - type: nauc_recall_at_3_max value: 39.4993 - type: nauc_recall_at_3_std value: -10.2782 - type: nauc_recall_at_3_diff1 value: 36.239399999999996 - type: nauc_recall_at_5_max value: 43.7836 - type: nauc_recall_at_5_std value: -8.4871 - type: nauc_recall_at_5_diff1 value: 34.7778 - type: nauc_recall_at_10_max value: 50.5553 - type: nauc_recall_at_10_std value: -3.7254 - type: nauc_recall_at_10_diff1 value: 38.756800000000005 - type: nauc_recall_at_20_max value: 56.6151 - type: nauc_recall_at_20_std value: 7.4285000000000005 - type: nauc_recall_at_20_diff1 value: 39.919 - type: nauc_recall_at_100_max value: 79.1225 - type: nauc_recall_at_100_std value: 45.264700000000005 - type: nauc_recall_at_100_diff1 value: 52.2652 - type: nauc_recall_at_1000_max value: 75.74210000000001 - type: nauc_recall_at_1000_std value: 71.3295 - type: nauc_recall_at_1000_diff1 value: -2.503 - type: nauc_precision_at_1_max value: 30.3808 - type: nauc_precision_at_1_std value: -5.9129000000000005 - type: nauc_precision_at_1_diff1 value: 47.0165 - type: nauc_precision_at_3_max value: 30.1298 - type: nauc_precision_at_3_std value: 0.9233999999999999 - type: nauc_precision_at_3_diff1 value: 18.6972 - type: nauc_precision_at_5_max value: 24.6955 - type: nauc_precision_at_5_std value: 6.4975000000000005 - type: nauc_precision_at_5_diff1 value: 9.0141 - type: nauc_precision_at_10_max value: 17.7006 - type: nauc_precision_at_10_std value: 12.1744 - type: nauc_precision_at_10_diff1 value: 1.5388000000000002 - type: nauc_precision_at_20_max value: 11.473600000000001 - type: nauc_precision_at_20_std value: 16.2131 - type: nauc_precision_at_20_diff1 value: -4.3109 - type: nauc_precision_at_100_max value: 3.5707999999999998 - type: nauc_precision_at_100_std value: 18.5558 - type: nauc_precision_at_100_diff1 value: -10.8589 - type: nauc_precision_at_1000_max value: -0.23800000000000002 - type: nauc_precision_at_1000_std value: 16.941300000000002 - type: nauc_precision_at_1000_diff1 value: -13.7766 - type: nauc_mrr_at_1_max value: 30.3808 - type: nauc_mrr_at_1_std value: -5.9129000000000005 - type: nauc_mrr_at_1_diff1 value: 47.0165 - type: nauc_mrr_at_3_max value: 35.058099999999996 - type: nauc_mrr_at_3_std value: -5.724 - type: nauc_mrr_at_3_diff1 value: 43.3839 - type: nauc_mrr_at_5_max value: 35.1297 - type: nauc_mrr_at_5_std value: -5.3953 - type: nauc_mrr_at_5_diff1 value: 43.6497 - type: nauc_mrr_at_10_max value: 35.001599999999996 - type: nauc_mrr_at_10_std value: -5.2087 - type: nauc_mrr_at_10_diff1 value: 44.1327 - type: nauc_mrr_at_20_max value: 34.891299999999994 - type: nauc_mrr_at_20_std value: -5.0933 - type: nauc_mrr_at_20_diff1 value: 44.163799999999995 - type: nauc_mrr_at_100_max value: 34.8054 - type: nauc_mrr_at_100_std value: -5.136 - type: nauc_mrr_at_100_diff1 value: 44.1738 - type: nauc_mrr_at_1000_max value: 34.795 - type: nauc_mrr_at_1000_std value: -5.1476 - type: nauc_mrr_at_1000_diff1 value: 44.169599999999996 - type: main_score value: 71.487 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval (default) type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: ndcg_at_1 value: 83.3 - type: ndcg_at_3 value: 87.50099999999999 - type: ndcg_at_5 value: 88.998 - type: ndcg_at_10 value: 90.038 - type: ndcg_at_20 value: 90.619 - type: ndcg_at_100 value: 91.049 - type: ndcg_at_1000 value: 91.105 - type: map_at_1 value: 72.424 - type: map_at_3 value: 83.76599999999999 - type: map_at_5 value: 85.616 - type: map_at_10 value: 86.626 - type: map_at_20 value: 87.034 - type: map_at_100 value: 87.233 - type: map_at_1000 value: 87.24499999999999 - type: recall_at_1 value: 72.424 - type: recall_at_3 value: 89.155 - type: recall_at_5 value: 93.425 - type: recall_at_10 value: 96.514 - type: recall_at_20 value: 98.334 - type: recall_at_100 value: 99.785 - type: recall_at_1000 value: 99.997 - type: precision_at_1 value: 83.3 - type: precision_at_3 value: 38.393 - type: precision_at_5 value: 25.228 - type: precision_at_10 value: 13.647 - type: precision_at_20 value: 7.225 - type: precision_at_100 value: 1.543 - type: precision_at_1000 value: 0.157 - type: mrr_at_1 value: 83.3 - type: mrr_at_3 value: 88.3 - type: mrr_at_5 value: 88.90350000000001 - type: mrr_at_10 value: 89.13839999999999 - type: mrr_at_20 value: 89.1953 - type: mrr_at_100 value: 89.21170000000001 - type: mrr_at_1000 value: 89.212 - type: nauc_ndcg_at_1_max value: 36.066500000000005 - type: nauc_ndcg_at_1_std value: -42.5286 - type: nauc_ndcg_at_1_diff1 value: 79.3747 - type: nauc_ndcg_at_3_max value: 33.2171 - type: nauc_ndcg_at_3_std value: -50.6815 - type: nauc_ndcg_at_3_diff1 value: 77.3029 - type: nauc_ndcg_at_5_max value: 33.578 - type: nauc_ndcg_at_5_std value: -51.302400000000006 - type: nauc_ndcg_at_5_diff1 value: 77.73219999999999 - type: nauc_ndcg_at_10_max value: 34.1893 - type: nauc_ndcg_at_10_std value: -51.231 - type: nauc_ndcg_at_10_diff1 value: 77.91510000000001 - type: nauc_ndcg_at_20_max value: 34.7652 - type: nauc_ndcg_at_20_std value: -49.2675 - type: nauc_ndcg_at_20_diff1 value: 77.8851 - type: nauc_ndcg_at_100_max value: 35.1212 - type: nauc_ndcg_at_100_std value: -47.1897 - type: nauc_ndcg_at_100_diff1 value: 77.8819 - type: nauc_ndcg_at_1000_max value: 35.2096 - type: nauc_ndcg_at_1000_std value: -47.1269 - type: nauc_ndcg_at_1000_diff1 value: 77.874 - type: nauc_map_at_1_max value: 25.3507 - type: nauc_map_at_1_std value: -42.6645 - type: nauc_map_at_1_diff1 value: 82.1013 - type: nauc_map_at_3_max value: 30.685000000000002 - type: nauc_map_at_3_std value: -52.8243 - type: nauc_map_at_3_diff1 value: 78.8106 - type: nauc_map_at_5_max value: 32.2752 - type: nauc_map_at_5_std value: -52.546800000000005 - type: nauc_map_at_5_diff1 value: 78.4853 - type: nauc_map_at_10_max value: 33.239000000000004 - type: nauc_map_at_10_std value: -51.5082 - type: nauc_map_at_10_diff1 value: 78.1853 - type: nauc_map_at_20_max value: 33.644200000000005 - type: nauc_map_at_20_std value: -50.1154 - type: nauc_map_at_20_diff1 value: 78.0265 - type: nauc_map_at_100_max value: 33.7945 - type: nauc_map_at_100_std value: -49.1504 - type: nauc_map_at_100_diff1 value: 77.9653 - type: nauc_map_at_1000_max value: 33.813500000000005 - type: nauc_map_at_1000_std value: -49.119800000000005 - type: nauc_map_at_1000_diff1 value: 77.9596 - type: nauc_recall_at_1_max value: 25.3507 - type: nauc_recall_at_1_std value: -42.6645 - type: nauc_recall_at_1_diff1 value: 82.1013 - type: nauc_recall_at_3_max value: 26.4941 - type: nauc_recall_at_3_std value: -62.044399999999996 - type: nauc_recall_at_3_diff1 value: 75.3519 - type: nauc_recall_at_5_max value: 26.5483 - type: nauc_recall_at_5_std value: -68.6455 - type: nauc_recall_at_5_diff1 value: 74.2904 - type: nauc_recall_at_10_max value: 28.0472 - type: nauc_recall_at_10_std value: -80.47109999999999 - type: nauc_recall_at_10_diff1 value: 74.5668 - type: nauc_recall_at_20_max value: 29.296699999999998 - type: nauc_recall_at_20_std value: -77.2526 - type: nauc_recall_at_20_diff1 value: 73.5218 - type: nauc_recall_at_100_max value: 29.6001 - type: nauc_recall_at_100_std value: -36.9144 - type: nauc_recall_at_100_diff1 value: 71.9031 - type: nauc_recall_at_1000_max value: 65.9499 - type: nauc_recall_at_1000_std value: 65.2771 - type: nauc_recall_at_1000_diff1 value: 68.762 - type: nauc_precision_at_1_max value: 36.066500000000005 - type: nauc_precision_at_1_std value: -42.5286 - type: nauc_precision_at_1_diff1 value: 79.3747 - type: nauc_precision_at_3_max value: 5.2775 - type: nauc_precision_at_3_std value: 5.7708 - type: nauc_precision_at_3_diff1 value: -24.618100000000002 - type: nauc_precision_at_5_max value: 0.9323 - type: nauc_precision_at_5_std value: 17.5438 - type: nauc_precision_at_5_diff1 value: -36.0304 - type: nauc_precision_at_10_max value: -2.321 - type: nauc_precision_at_10_std value: 26.4542 - type: nauc_precision_at_10_diff1 value: -42.2061 - type: nauc_precision_at_20_max value: -4.122 - type: nauc_precision_at_20_std value: 33.5662 - type: nauc_precision_at_20_diff1 value: -44.6324 - type: nauc_precision_at_100_max value: -5.6459 - type: nauc_precision_at_100_std value: 40.1704 - type: nauc_precision_at_100_diff1 value: -45.8818 - type: nauc_precision_at_1000_max value: -5.5985 - type: nauc_precision_at_1000_std value: 40.402100000000004 - type: nauc_precision_at_1000_diff1 value: -46.054 - type: nauc_mrr_at_1_max value: 36.066500000000005 - type: nauc_mrr_at_1_std value: -42.5286 - type: nauc_mrr_at_1_diff1 value: 79.3747 - type: nauc_mrr_at_3_max value: 36.3166 - type: nauc_mrr_at_3_std value: -45.0789 - type: nauc_mrr_at_3_diff1 value: 78.3276 - type: nauc_mrr_at_5_max value: 36.365700000000004 - type: nauc_mrr_at_5_std value: -45.1793 - type: nauc_mrr_at_5_diff1 value: 78.5424 - type: nauc_mrr_at_10_max value: 36.3128 - type: nauc_mrr_at_10_std value: -45.0655 - type: nauc_mrr_at_10_diff1 value: 78.5756 - type: nauc_mrr_at_20_max value: 36.327 - type: nauc_mrr_at_20_std value: -44.853500000000004 - type: nauc_mrr_at_20_diff1 value: 78.57220000000001 - type: nauc_mrr_at_100_max value: 36.3322 - type: nauc_mrr_at_100_std value: -44.8025 - type: nauc_mrr_at_100_diff1 value: 78.57730000000001 - type: nauc_mrr_at_1000_max value: 36.3314 - type: nauc_mrr_at_1000_std value: -44.804100000000005 - type: nauc_mrr_at_1000_diff1 value: 78.5778 - type: main_score value: 90.038 - task: type: Clustering dataset: name: MTEB RedditClustering (default) type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 73.0223 - type: v_measure_std value: 2.5644 - type: main_score value: 73.0223 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P (default) type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 74.7154 - type: v_measure_std value: 8.2851 - type: main_score value: 74.7154 - task: type: Retrieval dataset: name: MTEB SCIDOCS (default) type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: ndcg_at_1 value: 29.099999999999998 - type: ndcg_at_3 value: 22.891000000000002 - type: ndcg_at_5 value: 20.055 - type: ndcg_at_10 value: 24.637999999999998 - type: ndcg_at_20 value: 28.188999999999997 - type: ndcg_at_100 value: 34.589 - type: ndcg_at_1000 value: 39.93 - type: map_at_1 value: 5.903 - type: map_at_3 value: 10.375 - type: map_at_5 value: 12.503 - type: map_at_10 value: 14.997 - type: map_at_20 value: 16.383 - type: map_at_100 value: 17.769 - type: map_at_1000 value: 18.115000000000002 - type: recall_at_1 value: 5.903 - type: recall_at_3 value: 12.943 - type: recall_at_5 value: 17.818 - type: recall_at_10 value: 26.162999999999997 - type: recall_at_20 value: 34.46 - type: recall_at_100 value: 55.24 - type: recall_at_1000 value: 81.11500000000001 - type: precision_at_1 value: 29.099999999999998 - type: precision_at_3 value: 21.3 - type: precision_at_5 value: 17.599999999999998 - type: precision_at_10 value: 12.920000000000002 - type: precision_at_20 value: 8.5 - type: precision_at_100 value: 2.721 - type: precision_at_1000 value: 0.4 - type: mrr_at_1 value: 29.099999999999998 - type: mrr_at_3 value: 36.8667 - type: mrr_at_5 value: 38.9617 - type: mrr_at_10 value: 40.598600000000005 - type: mrr_at_20 value: 41.3132 - type: mrr_at_100 value: 41.7298 - type: mrr_at_1000 value: 41.7584 - type: nauc_ndcg_at_1_max value: 18.4908 - type: nauc_ndcg_at_1_std value: 8.3766 - type: nauc_ndcg_at_1_diff1 value: 22.0483 - type: nauc_ndcg_at_3_max value: 19.1712 - type: nauc_ndcg_at_3_std value: 10.407399999999999 - type: nauc_ndcg_at_3_diff1 value: 16.301299999999998 - type: nauc_ndcg_at_5_max value: 20.069 - type: nauc_ndcg_at_5_std value: 11.8195 - type: nauc_ndcg_at_5_diff1 value: 16.4224 - type: nauc_ndcg_at_10_max value: 20.2641 - type: nauc_ndcg_at_10_std value: 14.7043 - type: nauc_ndcg_at_10_diff1 value: 15.1067 - type: nauc_ndcg_at_20_max value: 21.5015 - type: nauc_ndcg_at_20_std value: 17.292199999999998 - type: nauc_ndcg_at_20_diff1 value: 14.1651 - type: nauc_ndcg_at_100_max value: 23.2308 - type: nauc_ndcg_at_100_std value: 22.425800000000002 - type: nauc_ndcg_at_100_diff1 value: 12.2911 - type: nauc_ndcg_at_1000_max value: 23.4699 - type: nauc_ndcg_at_1000_std value: 22.764499999999998 - type: nauc_ndcg_at_1000_diff1 value: 12.540000000000001 - type: nauc_map_at_1_max value: 17.8236 - type: nauc_map_at_1_std value: 8.1625 - type: nauc_map_at_1_diff1 value: 21.8362 - type: nauc_map_at_3_max value: 19.1677 - type: nauc_map_at_3_std value: 9.525699999999999 - type: nauc_map_at_3_diff1 value: 16.2302 - type: nauc_map_at_5_max value: 20.3156 - type: nauc_map_at_5_std value: 10.6218 - type: nauc_map_at_5_diff1 value: 16.2404 - type: nauc_map_at_10_max value: 20.2029 - type: nauc_map_at_10_std value: 12.9342 - type: nauc_map_at_10_diff1 value: 14.7992 - type: nauc_map_at_20_max value: 20.7278 - type: nauc_map_at_20_std value: 14.6676 - type: nauc_map_at_20_diff1 value: 14.0374 - type: nauc_map_at_100_max value: 21.4579 - type: nauc_map_at_100_std value: 16.490199999999998 - type: nauc_map_at_100_diff1 value: 13.5188 - type: nauc_map_at_1000_max value: 21.5714 - type: nauc_map_at_1000_std value: 16.746 - type: nauc_map_at_1000_diff1 value: 13.4916 - type: nauc_recall_at_1_max value: 17.8236 - type: nauc_recall_at_1_std value: 8.1625 - type: nauc_recall_at_1_diff1 value: 21.8362 - type: nauc_recall_at_3_max value: 18.5764 - type: nauc_recall_at_3_std value: 11.3546 - type: nauc_recall_at_3_diff1 value: 13.5547 - type: nauc_recall_at_5_max value: 19.8008 - type: nauc_recall_at_5_std value: 13.3324 - type: nauc_recall_at_5_diff1 value: 13.5029 - type: nauc_recall_at_10_max value: 18.645400000000002 - type: nauc_recall_at_10_std value: 17.5544 - type: nauc_recall_at_10_diff1 value: 10.4276 - type: nauc_recall_at_20_max value: 19.9903 - type: nauc_recall_at_20_std value: 21.9707 - type: nauc_recall_at_20_diff1 value: 7.863 - type: nauc_recall_at_100_max value: 21.1196 - type: nauc_recall_at_100_std value: 33.4524 - type: nauc_recall_at_100_diff1 value: 0.7107 - type: nauc_recall_at_1000_max value: 20.188 - type: nauc_recall_at_1000_std value: 39.786 - type: nauc_recall_at_1000_diff1 value: -4.0011 - type: nauc_precision_at_1_max value: 18.4908 - type: nauc_precision_at_1_std value: 8.3766 - type: nauc_precision_at_1_diff1 value: 22.0483 - type: nauc_precision_at_3_max value: 19.178600000000003 - type: nauc_precision_at_3_std value: 11.6744 - type: nauc_precision_at_3_diff1 value: 13.5931 - type: nauc_precision_at_5_max value: 20.4581 - type: nauc_precision_at_5_std value: 13.5076 - type: nauc_precision_at_5_diff1 value: 13.619600000000002 - type: nauc_precision_at_10_max value: 19.437099999999997 - type: nauc_precision_at_10_std value: 17.754900000000003 - type: nauc_precision_at_10_diff1 value: 10.6315 - type: nauc_precision_at_20_max value: 20.9159 - type: nauc_precision_at_20_std value: 21.9286 - type: nauc_precision_at_20_diff1 value: 8.251 - type: nauc_precision_at_100_max value: 22.2412 - type: nauc_precision_at_100_std value: 32.925900000000006 - type: nauc_precision_at_100_diff1 value: 1.5637999999999999 - type: nauc_precision_at_1000_max value: 22.1 - type: nauc_precision_at_1000_std value: 37.227700000000006 - type: nauc_precision_at_1000_diff1 value: -2.3548 - type: nauc_mrr_at_1_max value: 18.4908 - type: nauc_mrr_at_1_std value: 8.3766 - type: nauc_mrr_at_1_diff1 value: 22.0483 - type: nauc_mrr_at_3_max value: 18.3602 - type: nauc_mrr_at_3_std value: 9.579600000000001 - type: nauc_mrr_at_3_diff1 value: 18.7544 - type: nauc_mrr_at_5_max value: 18.5224 - type: nauc_mrr_at_5_std value: 9.747300000000001 - type: nauc_mrr_at_5_diff1 value: 19.0625 - type: nauc_mrr_at_10_max value: 19.067 - type: nauc_mrr_at_10_std value: 10.7103 - type: nauc_mrr_at_10_diff1 value: 19.444 - type: nauc_mrr_at_20_max value: 19.118399999999998 - type: nauc_mrr_at_20_std value: 10.6384 - type: nauc_mrr_at_20_diff1 value: 19.5223 - type: nauc_mrr_at_100_max value: 19.200300000000002 - type: nauc_mrr_at_100_std value: 10.6891 - type: nauc_mrr_at_100_diff1 value: 19.4009 - type: nauc_mrr_at_1000_max value: 19.1676 - type: nauc_mrr_at_1000_std value: 10.649799999999999 - type: nauc_mrr_at_1000_diff1 value: 19.4127 - type: main_score value: 24.637999999999998 - task: type: STS dataset: name: MTEB SICK-R (default) type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: pearson value: 86.8981 - type: spearman value: 82.234 - type: cosine_pearson value: 86.8981 - type: cosine_spearman value: 82.234 - type: manhattan_pearson value: 84.1165 - type: manhattan_spearman value: 82.063 - type: euclidean_pearson value: 84.0688 - type: euclidean_spearman value: 82.2329 - type: main_score value: 82.234 - task: type: STS dataset: name: MTEB STS12 (default) type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: pearson value: 87.8269 - type: spearman value: 80.2578 - type: cosine_pearson value: 87.8269 - type: cosine_spearman value: 80.2578 - type: manhattan_pearson value: 85.09020000000001 - type: manhattan_spearman value: 80.5777 - type: euclidean_pearson value: 84.71990000000001 - type: euclidean_spearman value: 80.2547 - type: main_score value: 80.2578 - task: type: STS dataset: name: MTEB STS13 (default) type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: pearson value: 89.45769999999999 - type: spearman value: 89.69200000000001 - type: cosine_pearson value: 89.45769999999999 - type: cosine_spearman value: 89.69200000000001 - type: manhattan_pearson value: 89.1685 - type: manhattan_spearman value: 89.8889 - type: euclidean_pearson value: 89.07969999999999 - type: euclidean_spearman value: 89.7003 - type: main_score value: 89.69200000000001 - task: type: STS dataset: name: MTEB STS14 (default) type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: pearson value: 87.01989999999999 - type: spearman value: 85.3155 - type: cosine_pearson value: 87.01989999999999 - type: cosine_spearman value: 85.3155 - type: manhattan_pearson value: 86.24159999999999 - type: manhattan_spearman value: 85.544 - type: euclidean_pearson value: 86.1032 - type: euclidean_spearman value: 85.31490000000001 - type: main_score value: 85.3155 - task: type: STS dataset: name: MTEB STS15 (default) type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: pearson value: 89.593 - type: spearman value: 90.1574 - type: cosine_pearson value: 89.593 - type: cosine_spearman value: 90.1574 - type: manhattan_pearson value: 89.93910000000001 - type: manhattan_spearman value: 90.4357 - type: euclidean_pearson value: 89.76650000000001 - type: euclidean_spearman value: 90.1554 - type: main_score value: 90.1574 - task: type: STS dataset: name: MTEB STS16 (default) type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: pearson value: 85.03540000000001 - type: spearman value: 86.4191 - type: cosine_pearson value: 85.03540000000001 - type: cosine_spearman value: 86.4191 - type: manhattan_pearson value: 85.8992 - type: manhattan_spearman value: 86.7274 - type: euclidean_pearson value: 85.638 - type: euclidean_spearman value: 86.42 - type: main_score value: 86.4191 - task: type: STS dataset: name: MTEB STS17 (en-ar) type: mteb/sts17-crosslingual-sts config: en-ar split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 54.1098 - type: spearman value: 52.721 - type: cosine_pearson value: 54.1098 - type: cosine_spearman value: 52.721 - type: manhattan_pearson value: 54.890899999999995 - type: manhattan_spearman value: 52.727900000000005 - type: euclidean_pearson value: 54.65410000000001 - type: euclidean_spearman value: 52.8582 - type: main_score value: 52.721 - task: type: STS dataset: name: MTEB STS17 (fr-en) type: mteb/sts17-crosslingual-sts config: fr-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 84.3262 - type: spearman value: 84.1421 - type: cosine_pearson value: 84.3262 - type: cosine_spearman value: 84.1421 - type: manhattan_pearson value: 83.8999 - type: manhattan_spearman value: 83.9987 - type: euclidean_pearson value: 84.0174 - type: euclidean_spearman value: 84.1711 - type: main_score value: 84.1421 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 91.38969999999999 - type: spearman value: 91.00789999999999 - type: cosine_pearson value: 91.38969999999999 - type: cosine_spearman value: 91.00789999999999 - type: manhattan_pearson value: 90.8917 - type: manhattan_spearman value: 90.7834 - type: euclidean_pearson value: 91.0361 - type: euclidean_spearman value: 91.011 - type: main_score value: 91.00789999999999 - task: type: STS dataset: name: MTEB STS17 (nl-en) type: mteb/sts17-crosslingual-sts config: nl-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 84.636 - type: spearman value: 84.1977 - type: cosine_pearson value: 84.636 - type: cosine_spearman value: 84.1977 - type: manhattan_pearson value: 84.6895 - type: manhattan_spearman value: 84.1849 - type: euclidean_pearson value: 84.753 - type: euclidean_spearman value: 84.2251 - type: main_score value: 84.1977 - task: type: STS dataset: name: MTEB STS17 (es-en) type: mteb/sts17-crosslingual-sts config: es-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 85.8595 - type: spearman value: 86.9965 - type: cosine_pearson value: 85.8595 - type: cosine_spearman value: 86.9965 - type: manhattan_pearson value: 86.92450000000001 - type: manhattan_spearman value: 87.39489999999999 - type: euclidean_pearson value: 86.5575 - type: euclidean_spearman value: 86.997 - type: main_score value: 86.9965 - task: type: STS dataset: name: MTEB STS17 (it-en) type: mteb/sts17-crosslingual-sts config: it-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 85.959 - type: spearman value: 86.3103 - type: cosine_pearson value: 85.959 - type: cosine_spearman value: 86.3103 - type: manhattan_pearson value: 85.7486 - type: manhattan_spearman value: 86.0977 - type: euclidean_pearson value: 85.8361 - type: euclidean_spearman value: 86.2741 - type: main_score value: 86.3103 - task: type: STS dataset: name: MTEB STS17 (en-de) type: mteb/sts17-crosslingual-sts config: en-de split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 86.2629 - type: spearman value: 85.8372 - type: cosine_pearson value: 86.2629 - type: cosine_spearman value: 85.8372 - type: manhattan_pearson value: 86.2491 - type: manhattan_spearman value: 85.4973 - type: euclidean_pearson value: 86.5074 - type: euclidean_spearman value: 85.83370000000001 - type: main_score value: 85.8372 - task: type: STS dataset: name: MTEB STS17 (en-tr) type: mteb/sts17-crosslingual-sts config: en-tr split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: pearson value: 57.5675 - type: spearman value: 55.564899999999994 - type: cosine_pearson value: 57.5675 - type: cosine_spearman value: 55.564899999999994 - type: manhattan_pearson value: 57.4686 - type: manhattan_spearman value: 55.3816 - type: euclidean_pearson value: 57.635099999999994 - type: euclidean_spearman value: 55.501900000000006 - type: main_score value: 55.564899999999994 - task: type: STS dataset: name: MTEB STS22 (pl-en) type: mteb/sts22-crosslingual-sts config: pl-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: pearson value: 76.1237 - type: spearman value: 76.4 - type: cosine_pearson value: 76.1237 - type: cosine_spearman value: 76.4 - type: manhattan_pearson value: 78.6794 - type: manhattan_spearman value: 77.2282 - type: euclidean_pearson value: 77.1688 - type: euclidean_spearman value: 76.4 - type: main_score value: 76.4 - task: type: STS dataset: name: MTEB STS22 (es-en) type: mteb/sts22-crosslingual-sts config: es-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: pearson value: 73.89099999999999 - type: spearman value: 77.8292 - type: cosine_pearson value: 73.89099999999999 - type: cosine_spearman value: 77.8292 - type: manhattan_pearson value: 77.53229999999999 - type: manhattan_spearman value: 78.3926 - type: euclidean_pearson value: 76.6734 - type: euclidean_spearman value: 77.8721 - type: main_score value: 77.8292 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: pearson value: 68.31099999999999 - type: spearman value: 68.0764 - type: cosine_pearson value: 68.31099999999999 - type: cosine_spearman value: 68.0764 - type: manhattan_pearson value: 69.7423 - type: manhattan_spearman value: 68.3212 - type: euclidean_pearson value: 69.5701 - type: euclidean_spearman value: 68.2299 - type: main_score value: 68.0764 - task: type: STS dataset: name: MTEB STS22 (de-en) type: mteb/sts22-crosslingual-sts config: de-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: pearson value: 65.0636 - type: spearman value: 59.4669 - type: cosine_pearson value: 65.0636 - type: cosine_spearman value: 59.4669 - type: manhattan_pearson value: 69.723 - type: manhattan_spearman value: 60.3823 - type: euclidean_pearson value: 68.6454 - type: euclidean_spearman value: 59.384899999999995 - type: main_score value: 59.4669 - task: type: STS dataset: name: MTEB STS22 (zh-en) type: mteb/sts22-crosslingual-sts config: zh-en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: pearson value: 73.7603 - type: spearman value: 73.0799 - type: cosine_pearson value: 73.7603 - type: cosine_spearman value: 73.0799 - type: manhattan_pearson value: 76.2351 - type: manhattan_spearman value: 73.60719999999999 - type: euclidean_pearson value: 75.61529999999999 - type: euclidean_spearman value: 72.9809 - type: main_score value: 73.0799 - task: type: STS dataset: name: MTEB STSBenchmark (default) type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: pearson value: 88.1242 - type: spearman value: 88.8456 - type: cosine_pearson value: 88.1242 - type: cosine_spearman value: 88.8456 - type: manhattan_pearson value: 88.6122 - type: manhattan_spearman value: 89.0198 - type: euclidean_pearson value: 88.5314 - type: euclidean_spearman value: 88.8432 - type: main_score value: 88.8456 - task: type: Reranking dataset: name: MTEB SciDocsRR (default) type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 89.06920000000001 - type: mrr value: 96.977 - type: nAUC_map_max value: 49.1778 - type: nAUC_map_std value: 62.091499999999996 - type: nAUC_map_diff1 value: -13.373899999999999 - type: nAUC_mrr_max value: 86.7325 - type: nAUC_mrr_std value: 74.958 - type: nAUC_mrr_diff1 value: 25.6955 - type: main_score value: 89.06920000000001 - task: type: Retrieval dataset: name: MTEB SciFact (default) type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: ndcg_at_1 value: 67.333 - type: ndcg_at_3 value: 75.142 - type: ndcg_at_5 value: 78.873 - type: ndcg_at_10 value: 80.372 - type: ndcg_at_20 value: 80.914 - type: ndcg_at_100 value: 81.563 - type: ndcg_at_1000 value: 81.601 - type: map_at_1 value: 63.99399999999999 - type: map_at_3 value: 72.181 - type: map_at_5 value: 74.665 - type: map_at_10 value: 75.51299999999999 - type: map_at_20 value: 75.693 - type: map_at_100 value: 75.78 - type: map_at_1000 value: 75.78099999999999 - type: recall_at_1 value: 63.99399999999999 - type: recall_at_3 value: 80.63900000000001 - type: recall_at_5 value: 90.017 - type: recall_at_10 value: 94.167 - type: recall_at_20 value: 96.167 - type: recall_at_100 value: 99.667 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 67.333 - type: precision_at_3 value: 29.444 - type: precision_at_5 value: 20.067 - type: precision_at_10 value: 10.667 - type: precision_at_20 value: 5.45 - type: precision_at_100 value: 1.127 - type: precision_at_1000 value: 0.11299999999999999 - type: mrr_at_1 value: 67.3333 - type: mrr_at_3 value: 73.9444 - type: mrr_at_5 value: 76.0444 - type: mrr_at_10 value: 76.4517 - type: mrr_at_20 value: 76.5739 - type: mrr_at_100 value: 76.6556 - type: mrr_at_1000 value: 76.6563 - type: nauc_ndcg_at_1_max value: 55.373099999999994 - type: nauc_ndcg_at_1_std value: -11.362 - type: nauc_ndcg_at_1_diff1 value: 81.5232 - type: nauc_ndcg_at_3_max value: 58.0376 - type: nauc_ndcg_at_3_std value: -14.4854 - type: nauc_ndcg_at_3_diff1 value: 77.848 - type: nauc_ndcg_at_5_max value: 55.789699999999996 - type: nauc_ndcg_at_5_std value: -15.0412 - type: nauc_ndcg_at_5_diff1 value: 77.7873 - type: nauc_ndcg_at_10_max value: 58.6243 - type: nauc_ndcg_at_10_std value: -13.867799999999999 - type: nauc_ndcg_at_10_diff1 value: 78.071 - type: nauc_ndcg_at_20_max value: 58.9032 - type: nauc_ndcg_at_20_std value: -12.7998 - type: nauc_ndcg_at_20_diff1 value: 78.12010000000001 - type: nauc_ndcg_at_100_max value: 58.0772 - type: nauc_ndcg_at_100_std value: -12.4604 - type: nauc_ndcg_at_100_diff1 value: 78.7002 - type: nauc_ndcg_at_1000_max value: 58.0835 - type: nauc_ndcg_at_1000_std value: -12.662799999999999 - type: nauc_ndcg_at_1000_diff1 value: 78.7157 - type: nauc_map_at_1_max value: 45.2711 - type: nauc_map_at_1_std value: -21.685 - type: nauc_map_at_1_diff1 value: 80.8536 - type: nauc_map_at_3_max value: 53.970600000000005 - type: nauc_map_at_3_std value: -18.0178 - type: nauc_map_at_3_diff1 value: 78.95309999999999 - type: nauc_map_at_5_max value: 54.7643 - type: nauc_map_at_5_std value: -15.943999999999999 - type: nauc_map_at_5_diff1 value: 78.9665 - type: nauc_map_at_10_max value: 56.737899999999996 - type: nauc_map_at_10_std value: -14.355599999999999 - type: nauc_map_at_10_diff1 value: 79.095 - type: nauc_map_at_20_max value: 56.804 - type: nauc_map_at_20_std value: -14.033599999999998 - type: nauc_map_at_20_diff1 value: 79.0729 - type: nauc_map_at_100_max value: 56.7168 - type: nauc_map_at_100_std value: -14.000000000000002 - type: nauc_map_at_100_diff1 value: 79.1456 - type: nauc_map_at_1000_max value: 56.7168 - type: nauc_map_at_1000_std value: -14.003099999999998 - type: nauc_map_at_1000_diff1 value: 79.1458 - type: nauc_recall_at_1_max value: 45.2711 - type: nauc_recall_at_1_std value: -21.685 - type: nauc_recall_at_1_diff1 value: 80.8536 - type: nauc_recall_at_3_max value: 55.911100000000005 - type: nauc_recall_at_3_std value: -19.1603 - type: nauc_recall_at_3_diff1 value: 72.51689999999999 - type: nauc_recall_at_5_max value: 50.6317 - type: nauc_recall_at_5_std value: -21.4004 - type: nauc_recall_at_5_diff1 value: 68.3824 - type: nauc_recall_at_10_max value: 67.3176 - type: nauc_recall_at_10_std value: -23.6601 - type: nauc_recall_at_10_diff1 value: 67.20150000000001 - type: nauc_recall_at_20_max value: 76.566 - type: nauc_recall_at_20_std value: -12.4873 - type: nauc_recall_at_20_diff1 value: 63.6849 - type: nauc_recall_at_100_max value: 55.415499999999994 - type: nauc_recall_at_100_std value: 72.2222 - type: nauc_recall_at_100_diff1 value: 72.2222 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 55.373099999999994 - type: nauc_precision_at_1_std value: -11.362 - type: nauc_precision_at_1_diff1 value: 81.5232 - type: nauc_precision_at_3_max value: 59.23969999999999 - type: nauc_precision_at_3_std value: 17.3868 - type: nauc_precision_at_3_diff1 value: 37.0438 - type: nauc_precision_at_5_max value: 51.358599999999996 - type: nauc_precision_at_5_std value: 39.9722 - type: nauc_precision_at_5_diff1 value: 9.2927 - type: nauc_precision_at_10_max value: 44.6166 - type: nauc_precision_at_10_std value: 46.4231 - type: nauc_precision_at_10_diff1 value: -7.435700000000001 - type: nauc_precision_at_20_max value: 41.1852 - type: nauc_precision_at_20_std value: 51.89359999999999 - type: nauc_precision_at_20_diff1 value: -14.6318 - type: nauc_precision_at_100_max value: 33.6188 - type: nauc_precision_at_100_std value: 60.621700000000004 - type: nauc_precision_at_100_diff1 value: -26.376500000000004 - type: nauc_precision_at_1000_max value: 33.2976 - type: nauc_precision_at_1000_std value: 60.4508 - type: nauc_precision_at_1000_diff1 value: -27.829500000000003 - type: nauc_mrr_at_1_max value: 55.373099999999994 - type: nauc_mrr_at_1_std value: -11.362 - type: nauc_mrr_at_1_diff1 value: 81.5232 - type: nauc_mrr_at_3_max value: 58.7918 - type: nauc_mrr_at_3_std value: -11.580300000000001 - type: nauc_mrr_at_3_diff1 value: 78.79310000000001 - type: nauc_mrr_at_5_max value: 58.13270000000001 - type: nauc_mrr_at_5_std value: -11.2346 - type: nauc_mrr_at_5_diff1 value: 78.8896 - type: nauc_mrr_at_10_max value: 58.4249 - type: nauc_mrr_at_10_std value: -11.842600000000001 - type: nauc_mrr_at_10_diff1 value: 79.0629 - type: nauc_mrr_at_20_max value: 58.4409 - type: nauc_mrr_at_20_std value: -11.7012 - type: nauc_mrr_at_20_diff1 value: 79.1097 - type: nauc_mrr_at_100_max value: 58.3685 - type: nauc_mrr_at_100_std value: -11.6333 - type: nauc_mrr_at_100_diff1 value: 79.1871 - type: nauc_mrr_at_1000_max value: 58.3686 - type: nauc_mrr_at_1000_std value: -11.6365 - type: nauc_mrr_at_1000_diff1 value: 79.1874 - type: main_score value: 80.372 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions (default) type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: similarity_accuracy value: 99.8317 - type: similarity_accuracy_threshold value: 87.7015 - type: similarity_f1 value: 91.2821 - type: similarity_f1_threshold value: 87.68599999999999 - type: similarity_precision value: 93.68419999999999 - type: similarity_recall value: 89.0 - type: similarity_ap value: 96.249 - type: cosine_accuracy value: 99.8317 - type: cosine_accuracy_threshold value: 87.7015 - type: cosine_f1 value: 91.2821 - type: cosine_f1_threshold value: 87.68599999999999 - type: cosine_precision value: 93.68419999999999 - type: cosine_recall value: 89.0 - type: cosine_ap value: 96.249 - type: manhattan_accuracy value: 99.83370000000001 - type: manhattan_accuracy_threshold value: 4133.4675 - type: manhattan_f1 value: 91.52369999999999 - type: manhattan_f1_threshold value: 4244.392400000001 - type: manhattan_precision value: 92.3625 - type: manhattan_recall value: 90.7 - type: manhattan_ap value: 96.4021 - type: euclidean_accuracy value: 99.83070000000001 - type: euclidean_accuracy_threshold value: 49.684200000000004 - type: euclidean_f1 value: 91.24419999999999 - type: euclidean_f1_threshold value: 49.7175 - type: euclidean_precision value: 93.4942 - type: euclidean_recall value: 89.1 - type: euclidean_ap value: 96.24589999999999 - type: dot_accuracy value: 99.8277 - type: dot_accuracy_threshold value: 87.3743 - type: dot_f1 value: 91.1495 - type: dot_f1_threshold value: 87.3743 - type: dot_precision value: 92.7536 - type: dot_recall value: 89.60000000000001 - type: dot_ap value: 96.23509999999999 - type: max_accuracy value: 99.83370000000001 - type: max_f1 value: 91.52369999999999 - type: max_precision value: 93.68419999999999 - type: max_recall value: 90.7 - type: max_ap value: 96.4021 - type: main_score value: 96.4021 - task: type: Clustering dataset: name: MTEB StackExchangeClustering (default) type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 80.19420000000001 - type: v_measure_std value: 2.8956 - type: main_score value: 80.19420000000001 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P (default) type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 49.416900000000005 - type: v_measure_std value: 1.5938 - type: main_score value: 49.416900000000005 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions (default) type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 54.579 - type: mrr value: 55.598800000000004 - type: nAUC_map_max value: 9.1665 - type: nAUC_map_std value: 7.8292 - type: nAUC_map_diff1 value: 38.831199999999995 - type: nAUC_mrr_max value: 9.7435 - type: nAUC_mrr_std value: 8.030800000000001 - type: nAUC_mrr_diff1 value: 39.2785 - type: main_score value: 54.579 - task: type: Summarization dataset: name: MTEB SummEval (default) type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: pearson value: 31.6006 - type: spearman value: 31.4212 - type: cosine_spearman value: 31.4212 - type: cosine_pearson value: 31.6006 - type: dot_spearman value: 31.5459 - type: dot_pearson value: 31.6412 - type: main_score value: 31.4212 - task: type: Retrieval dataset: name: MTEB TRECCOVID (default) type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: ndcg_at_1 value: 92.0 - type: ndcg_at_3 value: 89.592 - type: ndcg_at_5 value: 88.596 - type: ndcg_at_10 value: 86.732 - type: ndcg_at_20 value: 84.08099999999999 - type: ndcg_at_100 value: 70.204 - type: ndcg_at_1000 value: 63.29 - type: map_at_1 value: 0.243 - type: map_at_3 value: 0.703 - type: map_at_5 value: 1.142 - type: map_at_10 value: 2.2270000000000003 - type: map_at_20 value: 4.176 - type: map_at_100 value: 15.104999999999999 - type: map_at_1000 value: 37.759 - type: recall_at_1 value: 0.243 - type: recall_at_3 value: 0.726 - type: recall_at_5 value: 1.192 - type: recall_at_10 value: 2.359 - type: recall_at_20 value: 4.539 - type: recall_at_100 value: 17.802 - type: recall_at_1000 value: 59.906000000000006 - type: precision_at_1 value: 94.0 - type: precision_at_3 value: 93.333 - type: precision_at_5 value: 91.60000000000001 - type: precision_at_10 value: 90.0 - type: precision_at_20 value: 87.6 - type: precision_at_100 value: 72.42 - type: precision_at_1000 value: 27.842 - type: mrr_at_1 value: 94.0 - type: mrr_at_3 value: 97.0 - type: mrr_at_5 value: 97.0 - type: mrr_at_10 value: 97.0 - type: mrr_at_20 value: 97.0 - type: mrr_at_100 value: 97.0 - type: mrr_at_1000 value: 97.0 - type: nauc_ndcg_at_1_max value: 53.2855 - type: nauc_ndcg_at_1_std value: 57.4638 - type: nauc_ndcg_at_1_diff1 value: 4.4059 - type: nauc_ndcg_at_3_max value: 37.2953 - type: nauc_ndcg_at_3_std value: 46.1686 - type: nauc_ndcg_at_3_diff1 value: 17.6265 - type: nauc_ndcg_at_5_max value: 30.1947 - type: nauc_ndcg_at_5_std value: 53.0996 - type: nauc_ndcg_at_5_diff1 value: 16.5411 - type: nauc_ndcg_at_10_max value: 36.923 - type: nauc_ndcg_at_10_std value: 58.658100000000005 - type: nauc_ndcg_at_10_diff1 value: 13.2686 - type: nauc_ndcg_at_20_max value: 40.2471 - type: nauc_ndcg_at_20_std value: 62.5481 - type: nauc_ndcg_at_20_diff1 value: 5.9675 - type: nauc_ndcg_at_100_max value: 38.2307 - type: nauc_ndcg_at_100_std value: 67.91329999999999 - type: nauc_ndcg_at_100_diff1 value: -12.2539 - type: nauc_ndcg_at_1000_max value: 41.875 - type: nauc_ndcg_at_1000_std value: 75.5431 - type: nauc_ndcg_at_1000_diff1 value: -2.8021000000000003 - type: nauc_map_at_1_max value: -8.0287 - type: nauc_map_at_1_std value: 26.559500000000003 - type: nauc_map_at_1_diff1 value: 13.9958 - type: nauc_map_at_3_max value: -3.7122 - type: nauc_map_at_3_std value: 30.8674 - type: nauc_map_at_3_diff1 value: 25.9597 - type: nauc_map_at_5_max value: -2.6957 - type: nauc_map_at_5_std value: 34.3742 - type: nauc_map_at_5_diff1 value: 24.567 - type: nauc_map_at_10_max value: -1.028 - type: nauc_map_at_10_std value: 38.6623 - type: nauc_map_at_10_diff1 value: 23.482 - type: nauc_map_at_20_max value: 0.9729 - type: nauc_map_at_20_std value: 41.4966 - type: nauc_map_at_20_diff1 value: 21.6255 - type: nauc_map_at_100_max value: 16.6328 - type: nauc_map_at_100_std value: 62.829100000000004 - type: nauc_map_at_100_diff1 value: 5.6174 - type: nauc_map_at_1000_max value: 40.1756 - type: nauc_map_at_1000_std value: 74.6962 - type: nauc_map_at_1000_diff1 value: -8.3158 - type: nauc_recall_at_1_max value: -8.0287 - type: nauc_recall_at_1_std value: 26.559500000000003 - type: nauc_recall_at_1_diff1 value: 13.9958 - type: nauc_recall_at_3_max value: -6.4821 - type: nauc_recall_at_3_std value: 24.8695 - type: nauc_recall_at_3_diff1 value: 25.6479 - type: nauc_recall_at_5_max value: -6.8088999999999995 - type: nauc_recall_at_5_std value: 28.340700000000002 - type: nauc_recall_at_5_diff1 value: 22.797700000000003 - type: nauc_recall_at_10_max value: -5.6834999999999996 - type: nauc_recall_at_10_std value: 30.5569 - type: nauc_recall_at_10_diff1 value: 21.330099999999998 - type: nauc_recall_at_20_max value: -5.9924 - type: nauc_recall_at_20_std value: 30.4601 - type: nauc_recall_at_20_diff1 value: 19.365299999999998 - type: nauc_recall_at_100_max value: 7.007099999999999 - type: nauc_recall_at_100_std value: 48.9423 - type: nauc_recall_at_100_diff1 value: 9.1493 - type: nauc_recall_at_1000_max value: 37.2208 - type: nauc_recall_at_1000_std value: 64.91550000000001 - type: nauc_recall_at_1000_diff1 value: -2.8935 - type: nauc_precision_at_1_max value: 42.343599999999995 - type: nauc_precision_at_1_std value: 69.3433 - type: nauc_precision_at_1_diff1 value: -20.028000000000002 - type: nauc_precision_at_3_max value: 49.335699999999996 - type: nauc_precision_at_3_std value: 45.994 - type: nauc_precision_at_3_diff1 value: 22.622400000000003 - type: nauc_precision_at_5_max value: 38.3816 - type: nauc_precision_at_5_std value: 55.8298 - type: nauc_precision_at_5_diff1 value: 8.4025 - type: nauc_precision_at_10_max value: 41.6808 - type: nauc_precision_at_10_std value: 66.1322 - type: nauc_precision_at_10_diff1 value: 4.665699999999999 - type: nauc_precision_at_20_max value: 42.0959 - type: nauc_precision_at_20_std value: 61.7217 - type: nauc_precision_at_20_diff1 value: -3.4937000000000005 - type: nauc_precision_at_100_max value: 40.4606 - type: nauc_precision_at_100_std value: 63.3467 - type: nauc_precision_at_100_diff1 value: -16.487199999999998 - type: nauc_precision_at_1000_max value: 39.4253 - type: nauc_precision_at_1000_std value: 18.8794 - type: nauc_precision_at_1000_diff1 value: -18.4566 - type: nauc_mrr_at_1_max value: 42.343599999999995 - type: nauc_mrr_at_1_std value: 69.3433 - type: nauc_mrr_at_1_diff1 value: -20.028000000000002 - type: nauc_mrr_at_3_max value: 42.343599999999995 - type: nauc_mrr_at_3_std value: 69.3433 - type: nauc_mrr_at_3_diff1 value: -20.028000000000002 - type: nauc_mrr_at_5_max value: 42.343599999999995 - type: nauc_mrr_at_5_std value: 69.3433 - type: nauc_mrr_at_5_diff1 value: -20.028000000000002 - type: nauc_mrr_at_10_max value: 42.343599999999995 - type: nauc_mrr_at_10_std value: 69.3433 - type: nauc_mrr_at_10_diff1 value: -20.028000000000002 - type: nauc_mrr_at_20_max value: 42.343599999999995 - type: nauc_mrr_at_20_std value: 69.3433 - type: nauc_mrr_at_20_diff1 value: -20.028000000000002 - type: nauc_mrr_at_100_max value: 42.343599999999995 - type: nauc_mrr_at_100_std value: 69.3433 - type: nauc_mrr_at_100_diff1 value: -20.028000000000002 - type: nauc_mrr_at_1000_max value: 42.343599999999995 - type: nauc_mrr_at_1000_std value: 69.3433 - type: nauc_mrr_at_1000_diff1 value: -20.028000000000002 - type: main_score value: 86.732 - task: type: Retrieval dataset: name: MTEB Touche2020 (default) type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: ndcg_at_1 value: 37.755 - type: ndcg_at_3 value: 37.185 - type: ndcg_at_5 value: 32.564 - type: ndcg_at_10 value: 31.395 - type: ndcg_at_20 value: 30.494 - type: ndcg_at_100 value: 42.617 - type: ndcg_at_1000 value: 53.324000000000005 - type: map_at_1 value: 2.7640000000000002 - type: map_at_3 value: 6.970999999999999 - type: map_at_5 value: 8.518 - type: map_at_10 value: 11.919 - type: map_at_20 value: 14.389 - type: map_at_100 value: 18.799 - type: map_at_1000 value: 20.366 - type: recall_at_1 value: 2.7640000000000002 - type: recall_at_3 value: 8.323 - type: recall_at_5 value: 11.259 - type: recall_at_10 value: 19.088 - type: recall_at_20 value: 26.488 - type: recall_at_100 value: 53.437 - type: recall_at_1000 value: 86.385 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_3 value: 38.095 - type: precision_at_5 value: 31.429000000000002 - type: precision_at_10 value: 27.346999999999998 - type: precision_at_20 value: 19.184 - type: precision_at_100 value: 8.713999999999999 - type: precision_at_1000 value: 1.6119999999999999 - type: mrr_at_1 value: 38.7755 - type: mrr_at_3 value: 52.7211 - type: mrr_at_5 value: 55.9864 - type: mrr_at_10 value: 57.2554 - type: mrr_at_20 value: 57.382999999999996 - type: mrr_at_100 value: 57.5539 - type: mrr_at_1000 value: 57.5539 - type: nauc_ndcg_at_1_max value: -20.4965 - type: nauc_ndcg_at_1_std value: -0.3794 - type: nauc_ndcg_at_1_diff1 value: 24.9951 - type: nauc_ndcg_at_3_max value: -26.1758 - type: nauc_ndcg_at_3_std value: 12.2535 - type: nauc_ndcg_at_3_diff1 value: 15.765199999999998 - type: nauc_ndcg_at_5_max value: -27.4523 - type: nauc_ndcg_at_5_std value: 5.7325 - type: nauc_ndcg_at_5_diff1 value: 12.3423 - type: nauc_ndcg_at_10_max value: -24.3957 - type: nauc_ndcg_at_10_std value: 3.526 - type: nauc_ndcg_at_10_diff1 value: 7.2427 - type: nauc_ndcg_at_20_max value: -20.866799999999998 - type: nauc_ndcg_at_20_std value: 6.1578 - type: nauc_ndcg_at_20_diff1 value: 4.1767 - type: nauc_ndcg_at_100_max value: -17.9588 - type: nauc_ndcg_at_100_std value: 33.1442 - type: nauc_ndcg_at_100_diff1 value: 4.356199999999999 - type: nauc_ndcg_at_1000_max value: -11.1072 - type: nauc_ndcg_at_1000_std value: 35.9222 - type: nauc_ndcg_at_1000_diff1 value: 5.9171000000000005 - type: nauc_map_at_1_max value: -22.354 - type: nauc_map_at_1_std value: -10.9271 - type: nauc_map_at_1_diff1 value: 27.7288 - type: nauc_map_at_3_max value: -22.397 - type: nauc_map_at_3_std value: -7.2767 - type: nauc_map_at_3_diff1 value: 15.101899999999999 - type: nauc_map_at_5_max value: -25.7693 - type: nauc_map_at_5_std value: -10.6509 - type: nauc_map_at_5_diff1 value: 6.9317 - type: nauc_map_at_10_max value: -22.2658 - type: nauc_map_at_10_std value: -7.2035 - type: nauc_map_at_10_diff1 value: 3.9056 - type: nauc_map_at_20_max value: -16.2962 - type: nauc_map_at_20_std value: -2.595 - type: nauc_map_at_20_diff1 value: 0.5059 - type: nauc_map_at_100_max value: -15.7023 - type: nauc_map_at_100_std value: 11.6893 - type: nauc_map_at_100_diff1 value: -0.6727000000000001 - type: nauc_map_at_1000_max value: -14.162700000000001 - type: nauc_map_at_1000_std value: 14.4614 - type: nauc_map_at_1000_diff1 value: -0.3813 - type: nauc_recall_at_1_max value: -22.354 - type: nauc_recall_at_1_std value: -10.9271 - type: nauc_recall_at_1_diff1 value: 27.7288 - type: nauc_recall_at_3_max value: -25.067 - type: nauc_recall_at_3_std value: -3.5932 - type: nauc_recall_at_3_diff1 value: 7.6448 - type: nauc_recall_at_5_max value: -31.9521 - type: nauc_recall_at_5_std value: -12.973299999999998 - type: nauc_recall_at_5_diff1 value: -0.8931 - type: nauc_recall_at_10_max value: -26.1132 - type: nauc_recall_at_10_std value: -7.3447 - type: nauc_recall_at_10_diff1 value: -4.7741999999999996 - type: nauc_recall_at_20_max value: -18.1067 - type: nauc_recall_at_20_std value: 2.8136 - type: nauc_recall_at_20_diff1 value: -10.4605 - type: nauc_recall_at_100_max value: -16.423199999999998 - type: nauc_recall_at_100_std value: 44.8333 - type: nauc_recall_at_100_diff1 value: -6.1889 - type: nauc_recall_at_1000_max value: 8.706 - type: nauc_recall_at_1000_std value: 74.9427 - type: nauc_recall_at_1000_diff1 value: -11.8207 - type: nauc_precision_at_1_max value: -17.1924 - type: nauc_precision_at_1_std value: 0.0948 - type: nauc_precision_at_1_diff1 value: 28.084300000000002 - type: nauc_precision_at_3_max value: -23.0318 - type: nauc_precision_at_3_std value: 14.8594 - type: nauc_precision_at_3_diff1 value: 12.4551 - type: nauc_precision_at_5_max value: -26.849800000000002 - type: nauc_precision_at_5_std value: 2.2552 - type: nauc_precision_at_5_diff1 value: 6.4963999999999995 - type: nauc_precision_at_10_max value: -14.1258 - type: nauc_precision_at_10_std value: 9.764299999999999 - type: nauc_precision_at_10_diff1 value: 2.9594 - type: nauc_precision_at_20_max value: 0.6306 - type: nauc_precision_at_20_std value: 24.2147 - type: nauc_precision_at_20_diff1 value: -3.5282 - type: nauc_precision_at_100_max value: 11.4275 - type: nauc_precision_at_100_std value: 71.0325 - type: nauc_precision_at_100_diff1 value: -6.978800000000001 - type: nauc_precision_at_1000_max value: 37.155899999999995 - type: nauc_precision_at_1000_std value: 20.5794 - type: nauc_precision_at_1000_diff1 value: -11.6191 - type: nauc_mrr_at_1_max value: -17.1924 - type: nauc_mrr_at_1_std value: 0.0948 - type: nauc_mrr_at_1_diff1 value: 28.084300000000002 - type: nauc_mrr_at_3_max value: -26.1233 - type: nauc_mrr_at_3_std value: 12.6302 - type: nauc_mrr_at_3_diff1 value: 17.8467 - type: nauc_mrr_at_5_max value: -23.641499999999997 - type: nauc_mrr_at_5_std value: 8.3047 - type: nauc_mrr_at_5_diff1 value: 20.5063 - type: nauc_mrr_at_10_max value: -23.5564 - type: nauc_mrr_at_10_std value: 8.5333 - type: nauc_mrr_at_10_diff1 value: 20.5287 - type: nauc_mrr_at_20_max value: -23.154700000000002 - type: nauc_mrr_at_20_std value: 9.079600000000001 - type: nauc_mrr_at_20_diff1 value: 21.3888 - type: nauc_mrr_at_100_max value: -23.3008 - type: nauc_mrr_at_100_std value: 8.7424 - type: nauc_mrr_at_100_diff1 value: 21.2832 - type: nauc_mrr_at_1000_max value: -23.3008 - type: nauc_mrr_at_1000_std value: 8.7424 - type: nauc_mrr_at_1000_diff1 value: 21.2832 - type: main_score value: 31.395 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification (default) type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 91.3135 - type: f1 value: 78.12480000000001 - type: f1_weighted value: 92.4208 - type: ap value: 41.943599999999996 - type: ap_weighted value: 41.943599999999996 - type: main_score value: 91.3135 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification (default) type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 77.24109999999999 - type: f1 value: 77.4964 - type: f1_weighted value: 77.0248 - type: main_score value: 77.24109999999999 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering (default) type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 63.132200000000005 - type: v_measure_std value: 0.7163 - type: main_score value: 63.132200000000005 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 (default) type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: similarity_accuracy value: 88.061 - type: similarity_accuracy_threshold value: 85.9546 - type: similarity_f1 value: 73.36240000000001 - type: similarity_f1_threshold value: 84.0127 - type: similarity_precision value: 71.47149999999999 - type: similarity_recall value: 75.3562 - type: similarity_ap value: 80.2787 - type: cosine_accuracy value: 88.061 - type: cosine_accuracy_threshold value: 85.9546 - type: cosine_f1 value: 73.36240000000001 - type: cosine_f1_threshold value: 84.0127 - type: cosine_precision value: 71.47149999999999 - type: cosine_recall value: 75.3562 - type: cosine_ap value: 80.2787 - type: manhattan_accuracy value: 87.8941 - type: manhattan_accuracy_threshold value: 4374.3263 - type: manhattan_f1 value: 72.929 - type: manhattan_f1_threshold value: 4637.7289 - type: manhattan_precision value: 71.3636 - type: manhattan_recall value: 74.5646 - type: manhattan_ap value: 79.98140000000001 - type: euclidean_accuracy value: 88.0789 - type: euclidean_accuracy_threshold value: 52.9742 - type: euclidean_f1 value: 73.3591 - type: euclidean_f1_threshold value: 56.4815 - type: euclidean_precision value: 71.608 - type: euclidean_recall value: 75.19789999999999 - type: euclidean_ap value: 80.2656 - type: dot_accuracy value: 88.0789 - type: dot_accuracy_threshold value: 85.8034 - type: dot_f1 value: 73.40379999999999 - type: dot_f1_threshold value: 84.3213 - type: dot_precision value: 72.6544 - type: dot_recall value: 74.16890000000001 - type: dot_ap value: 80.32010000000001 - type: max_accuracy value: 88.0789 - type: max_f1 value: 73.40379999999999 - type: max_precision value: 72.6544 - type: max_recall value: 75.3562 - type: max_ap value: 80.32010000000001 - type: main_score value: 80.32010000000001 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus (default) type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: similarity_accuracy value: 89.93090000000001 - type: similarity_accuracy_threshold value: 82.1349 - type: similarity_f1 value: 80.1377 - type: similarity_f1_threshold value: 80.5047 - type: similarity_precision value: 77.1539 - type: similarity_recall value: 83.3616 - type: similarity_ap value: 87.6917 - type: cosine_accuracy value: 89.93090000000001 - type: cosine_accuracy_threshold value: 82.1349 - type: cosine_f1 value: 80.1377 - type: cosine_f1_threshold value: 80.5047 - type: cosine_precision value: 77.1539 - type: cosine_recall value: 83.3616 - type: cosine_ap value: 87.6917 - type: manhattan_accuracy value: 89.86880000000001 - type: manhattan_accuracy_threshold value: 4882.7347 - type: manhattan_f1 value: 80.2323 - type: manhattan_f1_threshold value: 5185.1944 - type: manhattan_precision value: 76.74889999999999 - type: manhattan_recall value: 84.0468 - type: manhattan_ap value: 87.70750000000001 - type: euclidean_accuracy value: 89.94640000000001 - type: euclidean_accuracy_threshold value: 59.9149 - type: euclidean_f1 value: 80.1527 - type: euclidean_f1_threshold value: 62.3611 - type: euclidean_precision value: 77.2744 - type: euclidean_recall value: 83.2538 - type: euclidean_ap value: 87.6922 - type: dot_accuracy value: 89.9038 - type: dot_accuracy_threshold value: 82.53049999999999 - type: dot_f1 value: 80.0969 - type: dot_f1_threshold value: 80.7285 - type: dot_precision value: 77.5853 - type: dot_recall value: 82.77640000000001 - type: dot_ap value: 87.668 - type: max_accuracy value: 89.94640000000001 - type: max_f1 value: 80.2323 - type: max_precision value: 77.5853 - type: max_recall value: 84.0468 - type: max_ap value: 87.70750000000001 - type: main_score value: 87.70750000000001 --- ## Introduction Based on dunzhang/stella_en_1.5B_v5 and google/siglip-so400m-patch14-384. It can encode both text and images. **Report:** https://arxiv.org/abs/2412.19048 **Codes:** https://github.com/NLPJCL/RAG-Retrieval **Data:** https://huggingface.co/datasets/infgrad/jasper_text_distill_dataset **Training logs:** https://api.wandb.ai/links/dunnzhang0/z8jqoqpb The core idea of jasper and stella is distillation: **Let student model learn teacher model's vectors.** ## Usage ```python import torch from sentence_transformers import SentenceTransformer DOC1 = """ Blue light is scattered in all directions by the tiny molecules of air in Earth's atmosphere. Blue is scattered more than other colors because it travels as shorter, smaller waves. This is why we see a blue sky most of the time. Closer to the horizon, the sky fades to a lighter blue or white. """ DOC2 = """ When choosing colors, you can consider the following factors: Color theory: Understand how colors work together and how they can evoke different reactions. Color psychology: Consider how colors affect emotions, behaviors, and responses. Brand identity: Colors can convey meaning and information about a brand. Mood: Consider the mood you want to create. For example, brighter colors can feel cheerful, while cooler colors can be calming. Space: Consider the size of the space and the amount of natural light it receives. Dark colors can make a room feel smaller, while light colors can make it feel larger. Color wheel: Use the color wheel to identify primary, secondary, and tertiary colors. Color combinations: Decide how to best complement your preferred color with others. Color palette: Limit your color palette to a main color and one or two additional colors. 60-30-10 rule: Use a primary color 60% of the time, a secondary color 30% of the time, and an accent color 10% of the time """ if __name__ == "__main__": # load model use_gpu = False model_name = "infgrad/jasper_en_vision_language_v1" model = SentenceTransformer( model_name, trust_remote_code=True, device="cpu" if not use_gpu else "cuda", model_kwargs={ "torch_dtype": torch.bfloat16 if use_gpu else torch.float32, "attn_implementation": "sdpa" }, # vector_dim must be 12288, 1024, 512, 256 ## 1024 is recommended # set is_text_encoder 'True', if you do not encode image config_kwargs={"is_text_encoder": False, "vector_dim": 1024}, ) # We can reduce the max_seq_length from the default of 2048 for faster encoding model.max_seq_length = 1024 # data q_list = [ "Why the sky is blue?", "how to choose suitable color", ] doc_list = [ DOC1, [{"type": "image_path", "content": "./assets/img1.png"}, {"type": "text", "content": "Hope this image helps!"}], DOC2, [{"type": "image_path", "content": "./assets/img2.png"}], ] q_vecs = model.encode(q_list, prompt_name="s2p_query") doc_vecs = model.encode(doc_list) # calculate similarity similarities = model.similarity(q_vecs, doc_vecs) print(similarities) # the output is: # tensor([[0.7775, 0.7594, 0.2429, 0.2187], # [0.3226, 0.3054, 0.7421, 0.5484]]) ``` ## Evaluation on MTEB script: ./scripts/evaluate_en_mteb/run_evaluate_mteb.py ## License **This model should not be used for any commercial purpose!** ## Citation ``` @misc{zhang2025jasperstelladistillationsota, title={Jasper and Stella: distillation of SOTA embedding models}, author={Dun Zhang and Jiacheng Li and Ziyang Zeng and Fulong Wang}, year={2025}, eprint={2412.19048}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2412.19048}, } ```
[ "SUMMARIZATION" ]
Non_BioNLP
midas/gupshup_h2e_t5_mtl
midas
text2text-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:1910.04073", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
1,646,263,745,000
2021-11-14T02:08:18
121
0
--- {} --- # Gupshup GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021 Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf) Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup) ### Dataset Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0). Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts. ## Models All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts. Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below. **1. Hinglish Dialogues to English Summary (h2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) | | PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) | | T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) | | T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) | | BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) | | GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) | **2. English Dialogues to English Summary (e2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) | | PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) | | T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) | | T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) | | BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) | | GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) | ## Inference ### Using command line 1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using ``` git clone https://github.com/midas-research/gupshup.git pip install -r requirements.txt ``` 2. run_eval script has the following arguments. * **model_name** : Path or alias to one of our models available on Huggingface as listed above. * **input_path** : Source file or path to file containing conversations, which will be summarized. * **save_path** : File path where to save summaries generated by the model. * **reference_path** : Target file or path to file containing summaries, used to calculate matrices. * **score_path** : File path where to save scores. * **bs** : Batch size * **device**: Cuda devices to use. Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command ``` python run_eval.py \ --model_name midas/gupshup_h2e_mbart \ --input_path data/h2e/test.source \ --save_path generated_summary.txt \ --reference_path data/h2e/test.target \ --score_path scores.txt \ --bs 8 ``` Another example, to generate English summaries from English dialogues using the Pegasus model ``` python run_eval.py \ --model_name midas/gupshup_e2e_pegasus \ --input_path data/e2e/test.source \ --save_path generated_summary.txt \ --reference_path data/e2e/test.target \ --score_path scores.txt \ --bs 8 ``` Please create an issue if you are facing any difficulties in replicating the results. ### References Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful. [1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf) ``` @inproceedings{mehnaz2021gupshup, title={GupShup: Summarizing Open-Domain Code-Switched Conversations}, author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={6177--6192}, year={2021} } ```
[ "SUMMARIZATION" ]
Non_BioNLP
Xorbits/Qwen-14B-Chat-GGUF
Xorbits
text-generation
[ "gguf", "qwen", "text-generation", "zh", "en", "arxiv:2309.16609", "arxiv:2305.08322", "arxiv:2009.03300", "arxiv:2305.05280", "arxiv:2210.03629", "base_model:Qwen/Qwen-14B-Chat", "base_model:quantized:Qwen/Qwen-14B-Chat", "region:us" ]
1,702,884,492,000
2023-12-19T06:51:17
102
1
--- base_model: Qwen/Qwen-14B-Chat language: - zh - en model_name: Qwen 14B Chat pipeline_tag: text-generation tags: - qwen inference: false model_creator: Qwen model_type: qwen prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> # Qwen 14B Chat - GGUF - Model creator: [Qwen](https://huggingface.co/Qwen) - Original model: [Qwen 14B Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) - Snapshot: https://huggingface.co/Qwen/Qwen-14B-Chat/commit/cdaff792392504e679496a9f386acf3c1e4333a5 <!-- description start --> ## Description This repo contains GGUF model files for [Qwen's Qwen 14B Chat](https://huggingface.co/Qwen/Qwen-14B-Chat). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. <!-- description end --> # Qwen-14B-Chat <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" width="400"/> <p> <br> <p align="center"> 🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a> &nbsp&nbsp | &nbsp&nbsp🖥️ <a href="https://modelscope.cn/studios/qwen/Qwen-14B-Chat-Demo/summary">Demo</a> <br> <a href="https://github.com/QwenLM/Qwen/blob/main/assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://dashscope.aliyun.com">API</a> </p> <br> ## 介绍(Introduction) **通义千问-14B(Qwen-14B)**是阿里云研发的通义千问大模型系列的140亿参数规模的模型。Qwen-14B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-14B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-14B-Chat。本仓库为Qwen-14B-Chat的仓库。 如果您想了解更多关于通义千问-14B开源模型的细节,我们建议您参阅[GitHub代码库](https://github.com/QwenLM/Qwen)。 **Qwen-14B** is the 14B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-14B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-14B, we release Qwen-14B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-14B-Chat. For more details about the open-source model of Qwen-14B, please refer to the [GitHub](https://github.com/QwenLM/Qwen) code repository. <br> ## 要求(Requirements) * python 3.8及以上版本 * pytorch 1.12及以上版本,推荐2.0及以上版本 * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项) * python 3.8 and above * pytorch 1.12 and above, 2.0 and above are recommended * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.) <br> ## 依赖项(Dependency) 运行Qwen-14B-Chat,请确保满足上述要求,再执行以下pip命令安装依赖库 To run Qwen-14B-Chat, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries. ```bash pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed ``` 另外,推荐安装`flash-attention`库(**当前已支持flash attention 2**),以实现更高的效率和更低的显存占用。 In addition, it is recommended to install the `flash-attention` library (**we support flash attention 2 now.**) for higher efficiency and lower memory usage. ```bash git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # 下方安装可选,安装可能比较缓慢。 # pip install csrc/layer_norm # pip install csrc/rotary ``` <br> ## 快速使用(Quickstart) 下面我们展示了一个使用Qwen-14B-Chat模型,进行多轮对话交互的样例: We show an example of multi-turn interaction with Qwen-14B-Chat in the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig # Note: The default behavior now has injection attack prevention off. tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) # use bf16 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval() # use fp16 # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval() # use cpu only # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="cpu", trust_remote_code=True).eval() # use auto mode, automatically select precision based on the device. model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True).eval() # Specify hyperparameters for generation. But if you use transformers>=4.32.0, there is no need to do this. # model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参 # 第一轮对话 1st dialogue turn response, history = model.chat(tokenizer, "你好", history=None) print(response) # 你好!很高兴为你提供帮助。 # 第二轮对话 2nd dialogue turn response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history) print(response) # 这是一个关于一个年轻人奋斗创业最终取得成功的故事。 # 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。 # 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。 # 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。 # 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。 # 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。 # 第三轮对话 3rd dialogue turn response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history) print(response) # 《奋斗创业:一个年轻人的成功之路》 ``` 关于更多的使用说明,请参考我们的[GitHub repo](https://github.com/QwenLM/Qwen)获取更多信息。 For more information, please refer to our [GitHub repo](https://github.com/QwenLM/Qwen) for more information. <br> ## 量化 (Quantization) ### 用法 (Usage) **请注意:我们更新量化方案为基于[AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ)的量化,提供Qwen-14B-Chat的Int4量化模型[点击这里](https://huggingface.co/Qwen/Qwen-14B-Chat-Int4)。相比此前方案,该方案在模型评测效果几乎无损,且存储需求更低,推理速度更优。** **Note: we provide a new solution based on [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), and release an Int4 quantized model for Qwen-14B-Chat [Click here](https://huggingface.co/Qwen/Qwen-14B-Chat-Int4), which achieves nearly lossless model effects but improved performance on both memory costs and inference speed, in comparison with the previous solution.** 以下我们提供示例说明如何使用Int4量化模型。在开始使用前,请先保证满足要求(如torch 2.0及以上,transformers版本为4.32.0及以上,等等),并安装所需安装包: Here we demonstrate how to use our provided quantized models for inference. Before you start, make sure you meet the requirements of auto-gptq (e.g., torch 2.0 and above, transformers 4.32.0 and above, etc.) and install the required packages: ```bash pip install auto-gptq optimum ``` 如安装`auto-gptq`遇到问题,我们建议您到官方[repo](https://github.com/PanQiWei/AutoGPTQ)搜索合适的预编译wheel。 随后即可使用和上述一致的用法调用量化模型: If you meet problems installing `auto-gptq`, we advise you to check out the official [repo](https://github.com/PanQiWei/AutoGPTQ) to find a pre-build wheel. Then you can load the quantized model easily and run inference as same as usual: ```python model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen-14B-Chat-Int4", device_map="auto", trust_remote_code=True ).eval() response, history = model.chat(tokenizer, "你好", history=None) ``` ### 效果评测 我们对BF16,Int8和Int4模型在基准评测上做了测试(使用zero-shot设置),发现量化模型效果损失较小,结果如下所示: We illustrate the zero-shot performance of both BF16, Int8 and Int4 models on the benchmark, and we find that the quantized model does not suffer from significant performance degradation. Results are shown below: | Quantization | MMLU | CEval (val) | GSM8K | Humaneval | |--------------|:----:|:-----------:|:-----:|:---------:| | BF16 | 64.6 | 69.8 | 60.1 | 43.9 | | Int8 | 63.6 | 68.6 | 60.0 | 48.2 | | Int4 | 63.3 | 69.0 | 59.8 | 45.7 | ### 推理速度 (Inference Speed) 我们测算了不同精度模型以及不同FlashAttn库版本下模型生成2048和8192个token的平均推理速度。如图所示: We measured the average inference speed of generating 2048 and 8192 tokens with different quantization levels and versions of flash-attention, respectively. | Quantization | FlashAttn | Speed (2048 tokens) | Speed (8192 tokens) | | ------------- | :-------: | :------------------:| :------------------:| | BF16 | v2 | 32.88 | 24.87 | | Int8 | v2 | 29.28 | 24.22 | | Int4 | v2 | 38.72 | 27.33 | | BF16 | v1 | 32.76 | 28.89 | | Int8 | v1 | 28.31 | 23.87 | | Int4 | v1 | 37.81 | 26.46 | | BF16 | Disabled | 29.32 | 22.91 | | Int8 | Disabled | 31.12 | 24.60 | | Int4 | Disabled | 37.65 | 26.00 | 具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.8。推理速度是生成8192个token的速度均值。 In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.8. The inference speed is averaged over the generated 8192 tokens. 注意:以上Int4/Int8模型生成速度使用autogptq库给出,当前``AutoModelForCausalLM.from_pretrained``载入的模型生成速度会慢大约20%。我们已经将该问题汇报给HuggingFace团队,若有解决方案将即时更新。 Note: The generation speed of the Int4/Int8 models mentioned above is provided by the autogptq library. The current speed of the model loaded using "AutoModelForCausalLM.from_pretrained" will be approximately 20% slower. We have reported this issue to the HuggingFace team and will update it promptly if a solution is available. ### 显存使用 (GPU Memory Usage) 我们还测算了不同模型精度编码2048个token及生成8192个token的峰值显存占用情况。(显存消耗在是否使用FlashAttn的情况下均类似。)结果如下所示: We also profile the peak GPU memory usage for encoding 2048 tokens as context (and generating single token) and generating 8192 tokens (with single token as context) under different quantization levels, respectively. (The GPU memory usage is similar when using flash-attention or not.)The results are shown below. | Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens | | ------------------ | :---------------------------------: | :-----------------------------------: | | BF16 | 30.15GB | 38.94GB | | Int8 | 18.81GB | 27.54GB | | Int4 | 13.01GB | 21.79GB | 上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。 The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py). <br> ## 模型细节(Model) 与Qwen-14B预训练模型相同,Qwen-14B-Chat模型规模基本情况如下所示 The details of the model architecture of Qwen-14B-Chat are listed as follows | Hyperparameter | Value | |:----------------|:------:| | n_layers | 40 | | n_heads | 40 | | d_model | 5120 | | vocab size | 151851 | | sequence length | 2048 | 在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法, 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。 在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-14B-Chat使用了约15万token大小的词表。 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。 词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。 For position encoding, FFN activation function, and normalization calculation methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration). For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-14B-Chat uses a vocabulary of over 150K tokens. It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary. It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization. <br> ## 评测效果(Evaluation) 对于Qwen-14B-Chat模型,我们同样评测了常规的中文理解(C-Eval)、英文理解(MMLU)、代码(HumanEval)和数学(GSM8K)等权威任务,同时包含了长序列任务的评测结果。由于Qwen-14B-Chat模型经过对齐后,激发了较强的外部系统调用能力,我们还进行了工具使用能力方面的评测。 提示:由于硬件和框架造成的舍入误差,复现结果如有波动属于正常现象。 For Qwen-14B-Chat, we also evaluate the model on C-Eval, MMLU, HumanEval, GSM8K, etc., as well as the benchmark evaluation for long-context understanding, and tool usage. Note: Due to rounding errors caused by hardware and framework, differences in reproduced results are possible. ### 中文评测(Chinese Evaluation) #### C-Eval 在[C-Eval](https://arxiv.org/abs/2305.08322)验证集上,我们评价了Qwen-14B-Chat模型的0-shot & 5-shot准确率 We demonstrate the 0-shot & 5-shot accuracy of Qwen-14B-Chat on C-Eval validation set | Model | Avg. Acc. | |:--------------------------------:|:---------:| | LLaMA2-7B-Chat | 31.9 | | LLaMA2-13B-Chat | 36.2 | | LLaMA2-70B-Chat | 44.3 | | ChatGLM2-6B-Chat | 52.6 | | InternLM-7B-Chat | 53.6 | | Baichuan2-7B-Chat | 55.6 | | Baichuan2-13B-Chat | 56.7 | | Qwen-7B-Chat (original) (0-shot) | 54.2 | | **Qwen-7B-Chat (0-shot)** | 59.7 | | **Qwen-7B-Chat (5-shot)** | 59.3 | | **Qwen-14B-Chat (0-shot)** | 69.8 | | **Qwen-14B-Chat (5-shot)** | **71.7** | C-Eval测试集上,Qwen-14B-Chat模型的zero-shot准确率结果如下: The zero-shot accuracy of Qwen-14B-Chat on C-Eval testing set is provided below: | Model | Avg. | STEM | Social Sciences | Humanities | Others | | :---------------------- | :------: | :--: | :-------------: | :--------: | :----: | | Chinese-Alpaca-Plus-13B | 41.5 | 36.6 | 49.7 | 43.1 | 41.2 | | Chinese-Alpaca-2-7B | 40.3 | - | - | - | - | | ChatGLM2-6B-Chat | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 | | Baichuan-13B-Chat | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 | | Qwen-7B-Chat (original) | 54.6 | 47.8 | 67.6 | 59.3 | 50.6 | | **Qwen-7B-Chat** | 58.6 | 53.3 | 72.1 | 62.8 | 52.0 | | **Qwen-14B-Chat** | **69.1** | 65.1 | 80.9 | 71.2 | 63.4 | 在14B规模模型上,经过人类指令对齐的Qwen-14B-Chat模型,准确率在同类相近规模模型中仍然处于前列。 Compared with other pretrained models with comparable model size, the human-aligned Qwen-14B-Chat performs well in C-Eval accuracy. ### 英文评测(English Evaluation) #### MMLU [MMLU](https://arxiv.org/abs/2009.03300)评测集上,Qwen-14B-Chat模型的 0-shot & 5-shot 准确率如下,效果同样在同类对齐模型中同样表现较优。 The 0-shot & 5-shot accuracy of Qwen-14B-Chat on MMLU is provided below. The performance of Qwen-14B-Chat still on the top between other human-aligned models with comparable size. | Model | Avg. Acc. | |:--------------------------------:|:---------:| | ChatGLM2-6B-Chat | 46.0 | | LLaMA2-7B-Chat | 46.2 | | InternLM-7B-Chat | 51.1 | | Baichuan2-7B-Chat | 52.9 | | LLaMA2-13B-Chat | 54.6 | | Baichuan2-13B-Chat | 57.3 | | LLaMA2-70B-Chat | 63.8 | | Qwen-7B-Chat (original) (0-shot) | 53.9 | | **Qwen-7B-Chat (0-shot)** | 55.8 | | **Qwen-7B-Chat (5-shot)** | 57.0 | | **Qwen-14B-Chat (0-shot)** | 64.6 | | **Qwen-14B-Chat (5-shot)** | **66.5** | ### 代码评测(Coding Evaluation) Qwen-14B-Chat在[HumanEval](https://github.com/openai/human-eval)的zero-shot Pass@1效果如下 The zero-shot Pass@1 of Qwen-14B-Chat on [HumanEval](https://github.com/openai/human-eval) is demonstrated below | Model | Pass@1 | |:-----------------------:|:--------:| | ChatGLM2-6B-Chat | 11.0 | | LLaMA2-7B-Chat | 12.2 | | InternLM-7B-Chat | 14.6 | | Baichuan2-7B-Chat | 13.4 | | LLaMA2-13B-Chat | 18.9 | | Baichuan2-13B-Chat | 17.7 | | LLaMA2-70B-Chat | 32.3 | | Qwen-7B-Chat (original) | 24.4 | | **Qwen-7B-Chat** | 37.2 | | **Qwen-14B-Chat** | **43.9** | ### 数学评测(Mathematics Evaluation) 在评测数学能力的[GSM8K](https://github.com/openai/grade-school-math)上,Qwen-14B-Chat的准确率结果如下 The accuracy of Qwen-14B-Chat on GSM8K is shown below | Model | Acc. | |:--------------------------------:|:--------:| | LLaMA2-7B-Chat | 26.3 | | ChatGLM2-6B-Chat | 28.8 | | Baichuan2-7B-Chat | 32.8 | | InternLM-7B-Chat | 33.0 | | LLaMA2-13B-Chat | 37.1 | | Baichuan2-13B-Chat | 55.3 | | LLaMA2-70B-Chat | 59.3 | | Qwen-7B-Chat (original) (0-shot) | 41.1 | | **Qwen-7B-Chat (0-shot)** | 50.3 | | **Qwen-7B-Chat (8-shot)** | 54.1 | | **Qwen-14B-Chat (0-shot)** | **60.1** | | **Qwen-14B-Chat (8-shot)** | 59.3 | ### 长序列评测(Long-Context Understanding) 通过NTK插值,LogN注意力缩放可以扩展Qwen-14B-Chat的上下文长度。在长文本摘要数据集[VCSUM](https://arxiv.org/abs/2305.05280)上(文本平均长度在15K左右),Qwen-14B-Chat的Rouge-L结果如下: **(若要启用这些技巧,请将config.json里的`use_dynamic_ntk`和`use_logn_attn`设置为true)** We introduce NTK-aware interpolation, LogN attention scaling to extend the context length of Qwen-14B-Chat. The Rouge-L results of Qwen-14B-Chat on long-text summarization dataset [VCSUM](https://arxiv.org/abs/2305.05280) (The average length of this dataset is around 15K) are shown below: **(To use these tricks, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)** | Model | VCSUM (zh) | |:------------------|:----------:| | GPT-3.5-Turbo-16k | 16.0 | | LLama2-7B-Chat | 0.2 | | InternLM-7B-Chat | 13.0 | | ChatGLM2-6B-Chat | 16.3 | | **Qwen-14B-Chat** | **17.3** | ### 工具使用能力的评测(Tool Usage) #### ReAct Prompting 千问支持通过 [ReAct Prompting](https://arxiv.org/abs/2210.03629) 调用插件/工具/API。ReAct 也是 [LangChain](https://python.langchain.com/) 框架采用的主要方式之一。在我们开源的、用于评估工具使用能力的评测基准上,千问的表现如下: Qwen-Chat supports calling plugins/tools/APIs through [ReAct Prompting](https://arxiv.org/abs/2210.03629). ReAct is also one of the main approaches used by the [LangChain](https://python.langchain.com/) framework. In our evaluation benchmark for assessing tool usage capabilities, Qwen-Chat's performance is as follows: <table> <tr> <th colspan="4" align="center">Chinese Tool-Use Benchmark</th> </tr> <tr> <th align="center">Model</th><th align="center">Tool Selection (Acc.↑)</th><th align="center">Tool Input (Rouge-L↑)</th><th align="center">False Positive Error↓</th> </tr> <tr> <td>GPT-4</td><td align="center">95%</td><td align="center">0.90</td><td align="center">15.0%</td> </tr> <tr> <td>GPT-3.5</td><td align="center">85%</td><td align="center">0.88</td><td align="center">75.0%</td> </tr> <tr> <td>Qwen-7B-Chat</td><td align="center">98%</td><td align="center">0.91</td><td align="center">7.3%</td> </tr> <tr> <td>Qwen-14B-Chat</td><td align="center">98%</td><td align="center">0.93</td><td align="center">2.4%</td> </tr> </table> > 评测基准中出现的插件均没有出现在千问的训练集中。该基准评估了模型在多个候选插件中选择正确插件的准确率、传入插件的参数的合理性、以及假阳率。假阳率(False Positive)定义:在处理不该调用插件的请求时,错误地调用了插件。 > The plugins that appear in the evaluation set do not appear in the training set of Qwen. This benchmark evaluates the accuracy of the model in selecting the correct plugin from multiple candidate plugins, the rationality of the parameters passed into the plugin, and the false positive rate. False Positive: Incorrectly invoking a plugin when it should not have been called when responding to a query. ![](assets/react_showcase_001.png) ![](assets/react_showcase_002.png) #### Code Interpreter 为了考察Qwen使用Python Code Interpreter完成数学解题、数据可视化、及文件处理与爬虫等任务的能力,我们专门建设并开源了一个评测这方面能力的[评测基准](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark)。 我们发现Qwen在生成代码的可执行率、结果正确性上均表现较好: To assess Qwen's ability to use the Python Code Interpreter for tasks such as mathematical problem solving, data visualization, and other general-purpose tasks such as file handling and web scraping, we have created and open-sourced a benchmark specifically designed for evaluating these capabilities. You can find the benchmark at this [link](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark). We have observed that Qwen performs well in terms of code executability and result accuracy when generating code: <table> <tr> <th colspan="4" align="center">Executable Rate of Generated Code (%)</th> </tr> <tr> <th align="center">Model</th><th align="center">Math↑</th><th align="center">Visualization↑</th><th align="center">General↑</th> </tr> <tr> <td>GPT-4</td><td align="center">91.9</td><td align="center">85.9</td><td align="center">82.8</td> </tr> <tr> <td>GPT-3.5</td><td align="center">89.2</td><td align="center">65.0</td><td align="center">74.1</td> </tr> <tr> <td>LLaMA2-7B-Chat</td> <td align="center">41.9</td> <td align="center">33.1</td> <td align="center">24.1 </td> </tr> <tr> <td>LLaMA2-13B-Chat</td> <td align="center">50.0</td> <td align="center">40.5</td> <td align="center">48.3 </td> </tr> <tr> <td>CodeLLaMA-7B-Instruct</td> <td align="center">85.1</td> <td align="center">54.0</td> <td align="center">70.7 </td> </tr> <tr> <td>CodeLLaMA-13B-Instruct</td> <td align="center">93.2</td> <td align="center">55.8</td> <td align="center">74.1 </td> </tr> <tr> <td>InternLM-7B-Chat-v1.1</td> <td align="center">78.4</td> <td align="center">44.2</td> <td align="center">62.1 </td> </tr> <tr> <td>InternLM-20B-Chat</td> <td align="center">70.3</td> <td align="center">44.2</td> <td align="center">65.5 </td> </tr> <tr> <td>Qwen-7B-Chat</td> <td align="center">82.4</td> <td align="center">64.4</td> <td align="center">67.2 </td> </tr> <tr> <td>Qwen-14B-Chat</td> <td align="center">89.2</td> <td align="center">84.1</td> <td align="center">65.5</td> </tr> </table> <table> <tr> <th colspan="4" align="center">Accuracy of Code Execution Results (%)</th> </tr> <tr> <th align="center">Model</th><th align="center">Math↑</th><th align="center">Visualization-Hard↑</th><th align="center">Visualization-Easy↑</th> </tr> <tr> <td>GPT-4</td><td align="center">82.8</td><td align="center">66.7</td><td align="center">60.8</td> </tr> <tr> <td>GPT-3.5</td><td align="center">47.3</td><td align="center">33.3</td><td align="center">55.7</td> </tr> <tr> <td>LLaMA2-7B-Chat</td> <td align="center">3.9</td> <td align="center">14.3</td> <td align="center">39.2 </td> </tr> <tr> <td>LLaMA2-13B-Chat</td> <td align="center">8.3</td> <td align="center">8.3</td> <td align="center">40.5 </td> </tr> <tr> <td>CodeLLaMA-7B-Instruct</td> <td align="center">14.3</td> <td align="center">26.2</td> <td align="center">60.8 </td> </tr> <tr> <td>CodeLLaMA-13B-Instruct</td> <td align="center">28.2</td> <td align="center">27.4</td> <td align="center">62.0 </td> </tr> <tr> <td>InternLM-7B-Chat-v1.1</td> <td align="center">28.5</td> <td align="center">4.8</td> <td align="center">40.5 </td> </tr> <tr> <td>InternLM-20B-Chat</td> <td align="center">34.6</td> <td align="center">21.4</td> <td align="center">45.6 </td> </tr> <tr> <td>Qwen-7B-Chat</td> <td align="center">41.9</td> <td align="center">40.5</td> <td align="center">54.4 </td> </tr> <tr> <td>Qwen-14B-Chat</td> <td align="center">58.4</td> <td align="center">53.6</td> <td align="center">59.5</td> </tr> </table> <p align="center"> <br> <img src="assets/code_interpreter_showcase_001.jpg" /> <br> <p> #### Huggingface Agent 千问还具备作为 [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents) 的能力。它在 Huggingface 提供的run模式评测基准上的表现如下: Qwen-Chat also has the capability to be used as a [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents). Its performance on the run-mode benchmark provided by HuggingFace is as follows: <table> <tr> <th colspan="4" align="center">HuggingFace Agent Benchmark- Run Mode</th> </tr> <tr> <th align="center">Model</th><th align="center">Tool Selection↑</th><th align="center">Tool Used↑</th><th align="center">Code↑</th> </tr> <tr> <td>GPT-4</td><td align="center">100</td><td align="center">100</td><td align="center">97.4</td> </tr> <tr> <td>GPT-3.5</td><td align="center">95.4</td><td align="center">96.3</td><td align="center">87.0</td> </tr> <tr> <td>StarCoder-Base-15B</td><td align="center">86.1</td><td align="center">87.0</td><td align="center">68.9</td> </tr> <tr> <td>StarCoder-15B</td><td align="center">87.0</td><td align="center">88.0</td><td align="center">68.9</td> </tr> <tr> <td>Qwen-7B-Chat</td><td align="center">87.0</td><td align="center">87.0</td><td align="center">71.5</td> </tr> <tr> <td>Qwen-14B-Chat</td><td align="center">93.5</td><td align="center">94.4</td><td align="center">87.0</td> </tr> </table> <table> <tr> <th colspan="4" align="center">HuggingFace Agent Benchmark - Chat Mode</th> </tr> <tr> <th align="center">Model</th><th align="center">Tool Selection↑</th><th align="center">Tool Used↑</th><th align="center">Code↑</th> </tr> <tr> <td>GPT-4</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">98.5</td> </tr> <tr> <td>GPT-3.5</td><td align="center">97.3</td><td align="center">96.8</td><td align="center">89.6</td> </tr> <tr> <td>StarCoder-Base-15B</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">91.1</td> </tr> <tr> <td>StarCoder-15B</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">89.6</td> </tr> <tr> <td>Qwen-7B-Chat</td><td align="center">94.7</td><td align="center">94.7</td><td align="center">85.1</td> </tr> <tr> <td>Qwen-14B-Chat</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">95.5</td> </tr> </table> <br> ## FAQ 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。 If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue. <br> ## 引用 (Citation) 如果你觉得我们的工作对你有帮助,欢迎引用! If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ``` <br> ## 使用协议(License Agreement) 我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)了解具体的开源协议细节。如需商用,欢迎填写[问卷](https://dashscope.console.aliyun.com/openModelApply/Qwen-14B-Chat)申请。 Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/Qwen-14B-Chat) to apply. <br> ## 联系我们(Contact Us) 如果你想给我们的研发团队和产品团队留言,欢迎加入我们的微信群、钉钉群以及Discord!同时,也欢迎通过邮件([email protected])联系我们。 If you are interested to leave a message to either our research team or product team, join our Discord or WeChat groups! Also, feel free to send an email to [email protected].
[ "SUMMARIZATION" ]
Non_BioNLP
germla/satoken-pt
germla
text-classification
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
1,692,105,192,000
2023-08-15T13:13:53
12
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # germla/satoken-pt This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("germla/satoken-pt") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ "TEXT_CLASSIFICATION" ]
Non_BioNLP