Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
48
4.29k
label
class label
46 classes
wnid
stringclasses
46 values
class_name
stringclasses
46 values
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
0tench
n01440764
tench
End of preview. Expand in Data Studio

ImageNet-50 Subset

This dataset contains the first 50 classes from ImageNet-1K with up to 1,000 images per class (where available).

Dataset Statistics

  • Total Classes: 50
  • Total Images: 50000
  • Train/Val Split: 90%/10%
  • Max Images per Class: 1000

Dataset Structure

imagenet-50-subset/
├── train/
│   ├── n01440764/  # tench
│   │   ├── n01440764_1234.JPEG
│   │   └── ...
│   ├── n01443537/  # goldfish
│   └── ...
├── val/
│   ├── n01440764/
│   ├── n01443537/
│   └── ...
├── metadata.json
├── wnid_to_class.txt
└── README.md

Classes Included

WordNet ID Class Name Train Images Val Images Total
n01440764 tench 900 100 1000
n01443537 goldfish 900 100 1000
n01484850 great white shark 900 100 1000
n01491361 tiger shark 900 100 1000
n01494475 hammerhead 900 100 1000
n01496331 electric ray 900 100 1000
n01498041 stingray 900 100 1000
n01514668 cock 900 100 1000
n01514859 hen 900 100 1000
n01518878 ostrich 900 100 1000
n01530575 brambling 900 100 1000
n01531178 goldfinch 900 100 1000
n01532829 house finch 900 100 1000
n01534433 junco 900 100 1000
n01537544 indigo bunting 900 100 1000
n01558993 robin 900 100 1000
n01560419 bulbul 900 100 1000
n01580077 jay 900 100 1000
n01582220 magpie 900 100 1000
n01592084 chickadee 900 100 1000
n01601694 water ouzel 900 100 1000
n01608432 kite 900 100 1000
n01614925 bald eagle 900 100 1000
n01616318 vulture 900 100 1000
n01622779 great grey owl 900 100 1000
n01629819 European fire salamander 900 100 1000
n01630670 common newt 900 100 1000
n01631663 eft 900 100 1000
n01632458 spotted salamander 900 100 1000
n01632777 axolotl 900 100 1000
n01641577 bullfrog 900 100 1000
n01644373 tree frog 900 100 1000
n01644900 tailed frog 900 100 1000
n01664065 loggerhead 900 100 1000
n01665541 leatherback turtle 900 100 1000
n01667114 mud turtle 900 100 1000
n01667778 terrapin 900 100 1000
n01669191 box turtle 900 100 1000
n01675722 banded gecko 900 100 1000
n01677366 common iguana 900 100 1000
n01682714 American chameleon 900 100 1000
n01685808 whiptail 900 100 1000
n01687978 agama 900 100 1000
n01688243 frilled lizard 900 100 1000
n01689811 alligator lizard 900 100 1000
n01692333 Gila monster 900 100 1000
n01693334 green lizard 900 100 1000
n01694178 African chameleon 900 100 1000
n01695060 Komodo dragon 900 100 1000
n01697457 African crocodile 900 100 1000

Usage with Hugging Face Datasets

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("your-username/imagenet-50-subset")

# Access train and validation splits
train_dataset = dataset['train']
val_dataset = dataset['validation']

# Example: Load and display an image
from PIL import Image
import matplotlib.pyplot as plt

sample = train_dataset[0]
image = Image.open(sample['image'])
label = sample['label']
plt.imshow(image)
plt.title(f"Class: {label}")
plt.show()

Usage with PyTorch

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# Define transforms
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                       std=[0.229, 0.224, 0.225])
])

# Load datasets
train_dataset = datasets.ImageFolder('./imagenet-50-subset/train', transform=transform)
val_dataset = datasets.ImageFolder('./imagenet-50-subset/val', transform=transform)

# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

License

This subset inherits the ImageNet license. Please ensure you have the right to use ImageNet data. The original ImageNet dataset is available at http://www.image-net.org/

Citation

If you use this dataset, please cite the original ImageNet paper:

@article{deng2009imagenet,
  title={Imagenet: A large-scale hierarchical image database},
  author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
  journal={2009 IEEE conference on computer vision and pattern recognition},
  pages={248--255},
  year={2009},
  organization={IEEE}
}
Downloads last month
543

Models trained or fine-tuned on Elriggs/imagenet-50-subset