Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError Exception: CastError Message: Couldn't cast id: int64 task: string smiles: string image: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 691 to {'task': Value(dtype='string', id=None), 'id': Value(dtype='int64', id=None), 'smiles': Value(dtype='string', id=None), 'image_path': Value(dtype='string', id=None)} because column names don't match Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2285, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1879, in _iter_arrow for key, pa_table in self.ex_iterable._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 476, in _iter_arrow for key, pa_table in iterator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 323, in _iter_arrow for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast id: int64 task: string smiles: string image: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 691 to {'task': Value(dtype='string', id=None), 'id': Value(dtype='int64', id=None), 'smiles': Value(dtype='string', id=None), 'image_path': Value(dtype='string', id=None)} because column names don't match
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
ToxiMol: A Benchmark for Structure-Level Molecular Detoxification
Overview
ToxiMol is the first comprehensive benchmark for molecular toxicity repair tailored to general-purpose Multimodal Large Language Models (MLLMs). This is the dataset repository for the paper "Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?".
Key Features
𧬠Comprehensive Dataset
- 560 representative toxic molecules spanning diverse toxicity mechanisms and varying granularities
- 11 primary toxicity repair tasks based on Therapeutics Data Commons (TDC) platform
- Multi-granular coverage: Tox21 (12 sub-tasks), ToxCast (10 sub-tasks), and 9 additional datasets
- Multimodal inputs: SMILES strings + 2D molecular structure images rendered using RDKit
π― Challenging Task Definition
The molecular toxicity repair task requires models to:
- Identify potential toxicity endpoints from molecular structures
- Interpret semantic constraints from natural language descriptions
- Generate structurally similar substitute molecules that eliminate toxic fragments
- Satisfy drug-likeness and synthetic feasibility requirements
π Systematic Evaluation
- ToxiEval framework: Automated evaluation integrating toxicity prediction, synthetic accessibility, drug-likeness, and structural similarity
- Comprehensive analysis: Evaluation of ~30 mainstream MLLMs with ablation studies
- Multi-dimensional metrics: Success rate analysis across different evaluation criteria and failure modes
Dataset Structure
Task Overview
Dataset | Task Type | # Molecules | Description |
---|---|---|---|
AMES | Binary Classification | 50 | Mutagenicity testing |
Carcinogens | Binary Classification | 50 | Carcinogenicity prediction |
ClinTox | Binary Classification | 50 | Clinical toxicity data |
DILI | Binary Classification | 50 | Drug-induced liver injury |
hERG | Binary Classification | 50 | hERG channel inhibition |
hERG_Central | Binary Classification | 50 | Large-scale hERG database with integrated cardiac safety profiles |
hERG_Karim | Binary Classification | 50 | hERG data from Karim et al. |
LD50_Zhu | Regression (log(LD50) < 2) | 50 | Acute toxicity |
Skin_Reaction | Binary Classification | 50 | Adverse skin reactions |
Tox21 | Binary Classification (12 sub-tasks) | 60 | Nuclear receptors, stress response pathways, and cellular toxicity mechanisms (ARE, p53, ER, AR, etc.) |
ToxCast | Binary Classification (10 sub-tasks) | 50 | Diverse toxicity pathways including mitochondrial dysfunction, immunosuppression, and neurotoxicity |
Data Structure
Each entry contains:
{
"task": "string", // Toxicity task identifier
"id": "int", // Molecule ID
"smiles": "string", // SMILES representation
"image": "binary" // 2D molecular structure image binary
}
Available Subdatasets
subdatasets = [
"ames", "carcinogens_lagunin", "clintox", "dili",
"herg", "herg_central", "herg_karim", "ld50_zhu",
"skin_reaction", "tox21", "toxcast"
]
# Load all datasets
datasets = {}
for name in subdatasets:
datasets[name] = load_dataset("DeepYoke/ToxiMol-benchmark", data_dir=name)
Experimental Results
Our systematic evaluation of ~30 mainstream MLLMs reveals:
- Current limitations: Overall success rates remain relatively low across models
- Emerging capabilities: Models demonstrate initial potential in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing
- Key challenges: Structural validity, multi-dimensional constraint satisfaction, and failure mode attribution
Citation
If you use this dataset in your research, please cite:
@misc{lin2025breakingbadmoleculesmllms,
title={Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?},
author={Fei Lin and Ziyang Gong and Cong Wang and Yonglin Tian and Tengchao Zhang and Xue Yang and Gen Luo and Fei-Yue Wang},
year={2025},
eprint={2506.10912},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2506.10912},
}
License
This project is licensed under the MIT License - see the LICENSE file for details.
- Downloads last month
- 618