Dataset Viewer
before
stringlengths 0
955k
| after
stringlengths 0
877k
| repo
stringlengths 1
74
| type
stringclasses 1
value |
---|---|---|---|
def _malloc(self, size):
i = bisect.bisect_left(self._lengths, size)
if i == len(self._lengths):
<DeepExtract>
mask = mmap.PAGESIZE - 1
length = max(self._size, size) + mask & ~mask
</DeepExtract>
self._size *= 2
info('allocating a new mmap of length %d', length)
arena = Arena(length)
self._arenas.append(arena)
return (arena, 0, length)
else:
length = self._lengths[i]
seq = self._len_to_seq[length]
block = seq.pop()
if not seq:
del self._len_to_seq[length], self._lengths[i]
(arena, start, stop) = block
del self._start_to_block[arena, start]
del self._stop_to_block[arena, stop]
return block | def _malloc(self, size):
i = bisect.bisect_left(self._lengths, size)
if i == len(self._lengths):
mask = mmap.PAGESIZE - 1
length = max(self._size, size) + mask & ~mask
self._size *= 2
info('allocating a new mmap of length %d', length)
arena = Arena(length)
self._arenas.append(arena)
return (arena, 0, length)
else:
length = self._lengths[i]
seq = self._len_to_seq[length]
block = seq.pop()
if not seq:
del self._len_to_seq[length], self._lengths[i]
(arena, start, stop) = block
del self._start_to_block[arena, start]
del self._stop_to_block[arena, stop]
return block | 3DFasterRCNN_LungNoduleDetector | positive |
def build_temp_dir(prefix='test-attributecode-'):
"""
Create and return a new unique empty directory created in base_dir.
"""
location = tempfile.mkdtemp(prefix=prefix)
<DeepExtract>
if not os.path.exists(location):
os.makedirs(location)
os.chmod(location, stat.S_IRWXU | stat.S_IRWXG | stat.S_IROTH | stat.S_IXOTH)
</DeepExtract>
return location | def build_temp_dir(prefix='test-attributecode-'):
"""
Create and return a new unique empty directory created in base_dir.
"""
location = tempfile.mkdtemp(prefix=prefix)
if not os.path.exists(location):
os.makedirs(location)
os.chmod(location, stat.S_IRWXU | stat.S_IRWXG | stat.S_IROTH | stat.S_IXOTH)
return location | aboutcode-toolkit | positive |
def slot_tabview_change(self, index):
if index not in (0, 1):
return
status_prev: str = self.view_status_label.text()
if index == 0:
<DeepExtract>
self.view_status_label.setText(self.view_status_label_analysis_cache)
</DeepExtract>
self.view_status_label_rulegen_cache = status_prev
self.view_reset_button.setText('Reset Selections')
elif index == 1:
<DeepExtract>
self.view_status_label.setText(self.view_status_label_rulegen_cache)
</DeepExtract>
self.view_status_label_analysis_cache = status_prev
self.view_reset_button.setText('Clear') | def slot_tabview_change(self, index):
if index not in (0, 1):
return
status_prev: str = self.view_status_label.text()
if index == 0:
self.view_status_label.setText(self.view_status_label_analysis_cache)
self.view_status_label_rulegen_cache = status_prev
self.view_reset_button.setText('Reset Selections')
elif index == 1:
self.view_status_label.setText(self.view_status_label_rulegen_cache)
self.view_status_label_analysis_cache = status_prev
self.view_reset_button.setText('Clear') | capa | positive |
def read_input():
ncases = int(input())
for case in range(1, ncases + 1):
n = int(input())
way = input()
<DeepExtract>
if way[0] == way[-1]:
if way[0] == 'E':
for (i, char) in enumerate(way):
if way[i] == way[i + 1] and way[i] == 'S':
y = sum((ch == 'S' for ch in way[:i])) + 1
path = 'S' * y + 'E' * n - 1 + 'S' * (n - 1 - y)
elif way[0] == 'S':
for (i, char) in enumerate(way):
if way[i] == way[i + 1] and way[i] == 'E':
y = sum((ch == 'E' for ch in way[:i])) + 1
path = 'E' * y + 'S' * n - 1 + 'E' * (n - 1 - y)
elif way[0] == 'E':
path = 'S' * n - 1 + 'E' * n - 1
elif way[0] == 'S':
path = 'E' * n - 1 + 'S' * n - 1
</DeepExtract>
print('CASE #{}: {}'.format(case, path)) | def read_input():
ncases = int(input())
for case in range(1, ncases + 1):
n = int(input())
way = input()
if way[0] == way[-1]:
if way[0] == 'E':
for (i, char) in enumerate(way):
if way[i] == way[i + 1] and way[i] == 'S':
y = sum((ch == 'S' for ch in way[:i])) + 1
path = 'S' * y + 'E' * n - 1 + 'S' * (n - 1 - y)
elif way[0] == 'S':
for (i, char) in enumerate(way):
if way[i] == way[i + 1] and way[i] == 'E':
y = sum((ch == 'E' for ch in way[:i])) + 1
path = 'E' * y + 'S' * n - 1 + 'E' * (n - 1 - y)
elif way[0] == 'E':
path = 'S' * n - 1 + 'E' * n - 1
elif way[0] == 'S':
path = 'E' * n - 1 + 'S' * n - 1
print('CASE #{}: {}'.format(case, path)) | algorithms | positive |
def _batch_action(self):
async def batch_action(settings: ModelView.schemes.BatchSettings, user: ModelView.schemes.User=Security(utils.authorization.auth_dependency, scopes=self.scopes['batch_action'])):
<DeepExtract>
if settings.command in self.custom_commands:
query = self.custom_commands[settings.command](self.orm_model)
if settings.command == 'delete':
query = self.orm_model.delete
</DeepExtract>
if query is None:
raise HTTPException(status_code=404, detail='Batch command not found')
if self.orm_model != models.User and user:
query = query.where(self.orm_model.user_id == user.id)
query = query.where(self.orm_model.id.in_(settings.ids))
if self.custom_methods.get('batch_action'):
await self.custom_methods['batch_action'](query, settings, user)
else:
await query.gino.status()
return True
return batch_action | def _batch_action(self):
async def batch_action(settings: ModelView.schemes.BatchSettings, user: ModelView.schemes.User=Security(utils.authorization.auth_dependency, scopes=self.scopes['batch_action'])):
if settings.command in self.custom_commands:
query = self.custom_commands[settings.command](self.orm_model)
if settings.command == 'delete':
query = self.orm_model.delete
if query is None:
raise HTTPException(status_code=404, detail='Batch command not found')
if self.orm_model != models.User and user:
query = query.where(self.orm_model.user_id == user.id)
query = query.where(self.orm_model.id.in_(settings.ids))
if self.custom_methods.get('batch_action'):
await self.custom_methods['batch_action'](query, settings, user)
else:
await query.gino.status()
return True
return batch_action | bitcart | positive |
def __init__(self, parameter):
"""
:param parameter: the parts of a tplarg.
"""
<DeepExtract>
sep = '|'
parameters = []
cur = 0
for (s, e) in findMatchingBraces(parameter):
par = parameter[cur:s].split(sep)
if par:
if parameters:
parameters[-1] += par[0]
if len(par) > 1:
parameters.extend(par[1:])
else:
parameters = par
elif not parameters:
parameters = ['']
parameters[-1] += parameter[s:e]
cur = e
par = parameter[cur:].split(sep)
if par:
if parameters:
parameters[-1] += par[0]
if len(par) > 1:
parameters.extend(par[1:])
else:
parameters = par
parts = parameters
</DeepExtract>
self.name = Template.parse(parts[0])
if len(parts) > 1:
self.default = Template.parse(parts[1])
else:
self.default = None | def __init__(self, parameter):
"""
:param parameter: the parts of a tplarg.
"""
sep = '|'
parameters = []
cur = 0
for (s, e) in findMatchingBraces(parameter):
par = parameter[cur:s].split(sep)
if par:
if parameters:
parameters[-1] += par[0]
if len(par) > 1:
parameters.extend(par[1:])
else:
parameters = par
elif not parameters:
parameters = ['']
parameters[-1] += parameter[s:e]
cur = e
par = parameter[cur:].split(sep)
if par:
if parameters:
parameters[-1] += par[0]
if len(par) > 1:
parameters.extend(par[1:])
else:
parameters = par
parts = parameters
self.name = Template.parse(parts[0])
if len(parts) > 1:
self.default = Template.parse(parts[1])
else:
self.default = None | DistillBERT | positive |
def unpack_directory(data):
<DeepExtract>
header = struct_unpack(HEADER_FORMAT, data)[0]
</DeepExtract>
numTables = header['numTables']
data = data[HEADER_SIZE:]
directory = []
for index in range(numTables):
<DeepExtract>
(keys, format_string) = _struct_get_format(DIRECTORY_FORMAT)
size = struct.calcsize(format_string)
values = struct.unpack(format_string, data[:size])
unpacked = {}
for (index, key) in enumerate(keys):
value = values[index]
unpacked[key] = value
(table, data) = (unpacked, data[size:])
</DeepExtract>
directory.append(table)
return directory | def unpack_directory(data):
header = struct_unpack(HEADER_FORMAT, data)[0]
numTables = header['numTables']
data = data[HEADER_SIZE:]
directory = []
for index in range(numTables):
(keys, format_string) = _struct_get_format(DIRECTORY_FORMAT)
size = struct.calcsize(format_string)
values = struct.unpack(format_string, data[:size])
unpacked = {}
for (index, key) in enumerate(keys):
value = values[index]
unpacked[key] = value
(table, data) = (unpacked, data[size:])
directory.append(table)
return directory | django-gateone | positive |
def format_json(lib):
import json
summary = lib.summarize()
non_users = []
for u in summary['non_users']:
non_users.append(u.to_dict())
non_users.sort(key=lambda x: x['path'])
users = []
for (u, usage) in summary['users']:
symbols = [s.to_dict() for s in usage]
symbols.sort(key=lambda x: x['name'])
users.append({'user': u.to_dict(), 'used_symbols': symbols})
users.sort(key=lambda x: x['user']['path'])
unused_symbols = []
for s in summary['unused_symbols']:
unused_symbols.append(s.to_dict())
unused_symbols.sort(key=lambda x: x['name'])
excluded_symbols = []
for s in summary['excluded_symbols']:
excluded_symbols.append(s.to_dict())
excluded_symbols.sort(key=lambda x: x['name'])
used_symbols = {}
for (s, user) in summary['used_symbols'].items():
lst = used_symbols.setdefault(s.name, [])
for u in user:
if isinstance(u, User):
lst.append(('binary', u.path))
elif isinstance(u, tuple):
<DeepExtract>
u[1] = list(u[1])
lines = []
with open(u[0], encoding='utf-8') as f:
for (i, line) in enumerate(f):
if i in u[1]:
lines.append((i, line.strip()))
u[1].remove(i)
if not u[1]:
break
lines = lines
</DeepExtract>
lst.append(('source', lines))
lst.sort()
report = {'non_users': non_users, 'users': users, 'unused_symbols': unused_symbols, 'excluded_symbols': excluded_symbols, 'used_symbols': used_symbols}
json.dump(report, sys.stdout, indent=2, sort_keys=True) | def format_json(lib):
import json
summary = lib.summarize()
non_users = []
for u in summary['non_users']:
non_users.append(u.to_dict())
non_users.sort(key=lambda x: x['path'])
users = []
for (u, usage) in summary['users']:
symbols = [s.to_dict() for s in usage]
symbols.sort(key=lambda x: x['name'])
users.append({'user': u.to_dict(), 'used_symbols': symbols})
users.sort(key=lambda x: x['user']['path'])
unused_symbols = []
for s in summary['unused_symbols']:
unused_symbols.append(s.to_dict())
unused_symbols.sort(key=lambda x: x['name'])
excluded_symbols = []
for s in summary['excluded_symbols']:
excluded_symbols.append(s.to_dict())
excluded_symbols.sort(key=lambda x: x['name'])
used_symbols = {}
for (s, user) in summary['used_symbols'].items():
lst = used_symbols.setdefault(s.name, [])
for u in user:
if isinstance(u, User):
lst.append(('binary', u.path))
elif isinstance(u, tuple):
u[1] = list(u[1])
lines = []
with open(u[0], encoding='utf-8') as f:
for (i, line) in enumerate(f):
if i in u[1]:
lines.append((i, line.strip()))
u[1].remove(i)
if not u[1]:
break
lines = lines
lst.append(('source', lines))
lst.sort()
report = {'non_users': non_users, 'users': users, 'unused_symbols': unused_symbols, 'excluded_symbols': excluded_symbols, 'used_symbols': used_symbols}
json.dump(report, sys.stdout, indent=2, sort_keys=True) | barbieri-playground | positive |
def test_delete_question_with_essay_question(self):
EssayQuestion.objects.create(question_id=1, assignment=Assignment.objects.get(assignment_id=1), title='Evolvers', description='Write an essay about the Evolvers.')
kwargs = {'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}
<DeepExtract>
client = Client()
client.login(username=TEST_USER_USERNAME, password=TEST_USER_PASSWORD)
client = client
</DeepExtract>
response = client.post('/teacher/course/1/assignment/1/delete_question', {'question_id': 1, 'question_type': settings.ESSAY_QUESTION_TYPE}, **kwargs)
self.assertEqual(response.status_code, 200)
json_string = response.content.decode(encoding='UTF-8')
array = json.loads(json_string)
self.assertEqual(array['message'], 'question was deleted')
self.assertEqual(array['status'], 'success') | def test_delete_question_with_essay_question(self):
EssayQuestion.objects.create(question_id=1, assignment=Assignment.objects.get(assignment_id=1), title='Evolvers', description='Write an essay about the Evolvers.')
kwargs = {'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}
client = Client()
client.login(username=TEST_USER_USERNAME, password=TEST_USER_PASSWORD)
client = client
response = client.post('/teacher/course/1/assignment/1/delete_question', {'question_id': 1, 'question_type': settings.ESSAY_QUESTION_TYPE}, **kwargs)
self.assertEqual(response.status_code, 200)
json_string = response.content.decode(encoding='UTF-8')
array = json.loads(json_string)
self.assertEqual(array['message'], 'question was deleted')
self.assertEqual(array['status'], 'success') | academicstoday-django | positive |
def findPathsUtil(maze, m, n, i, j, path, indx):
global allPaths
global storePaths
if i == m - 1:
for k in range(j, n):
path[indx + k - j] = maze[i][k]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
if j == n - 1:
for k in range(i, m):
path[indx + k - i] = maze[k][j]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
path[indx] = maze[i][j]
<DeepExtract>
global allPaths
global storePaths
if i + 1 == m - 1:
for k in range(j, n):
path[indx + 1 + k - j] = maze[i + 1][k]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
if j == n - 1:
for k in range(i + 1, m):
path[indx + 1 + k - i + 1] = maze[k][j]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
path[indx + 1] = maze[i + 1][j]
findPathsUtil(maze, m, n, i + 1 + 1, j, path, indx + 1 + 1)
findPathsUtil(maze, m, n, i + 1, j + 1, path, indx + 1 + 1)
</DeepExtract>
<DeepExtract>
global allPaths
global storePaths
if i == m - 1:
for k in range(j + 1, n):
path[indx + 1 + k - j + 1] = maze[i][k]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
if j + 1 == n - 1:
for k in range(i, m):
path[indx + 1 + k - i] = maze[k][j + 1]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
path[indx + 1] = maze[i][j + 1]
findPathsUtil(maze, m, n, i + 1, j + 1, path, indx + 1 + 1)
findPathsUtil(maze, m, n, i, j + 1 + 1, path, indx + 1 + 1)
</DeepExtract> | def findPathsUtil(maze, m, n, i, j, path, indx):
global allPaths
global storePaths
if i == m - 1:
for k in range(j, n):
path[indx + k - j] = maze[i][k]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
if j == n - 1:
for k in range(i, m):
path[indx + k - i] = maze[k][j]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
path[indx] = maze[i][j]
global allPaths
global storePaths
if i + 1 == m - 1:
for k in range(j, n):
path[indx + 1 + k - j] = maze[i + 1][k]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
if j == n - 1:
for k in range(i + 1, m):
path[indx + 1 + k - i + 1] = maze[k][j]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
path[indx + 1] = maze[i + 1][j]
findPathsUtil(maze, m, n, i + 1 + 1, j, path, indx + 1 + 1)
findPathsUtil(maze, m, n, i + 1, j + 1, path, indx + 1 + 1)
global allPaths
global storePaths
if i == m - 1:
for k in range(j + 1, n):
path[indx + 1 + k - j + 1] = maze[i][k]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
if j + 1 == n - 1:
for k in range(i, m):
path[indx + 1 + k - i] = maze[k][j + 1]
storePaths += ''.join(path) + '|'
allPaths.append(path)
return
path[indx + 1] = maze[i][j + 1]
findPathsUtil(maze, m, n, i + 1, j + 1, path, indx + 1 + 1)
findPathsUtil(maze, m, n, i, j + 1 + 1, path, indx + 1 + 1)
</DeepExtract> | Competitive-Coding-Platforms | positive |
@pytest.mark.parametrize('n, shape, grid', [([0], (1, 1, 1), (3, 4, 1)), ([1, 14], (10, 20, 30), (3, 1, 5)), ([14, 14, 14], (10, 20, 30), (1, 4, 5))])
def test_getDiscretisation_bools(n, shape, grid):
<DeepExtract>
coords = np.concatenate([np.linspace(0, s, len(n)).reshape(-1, 1) for s in shape], axis=1)
species = np.array(n)
(atoms, species) = (coords, species)
</DeepExtract>
x = [np.linspace(0, 0.1, g) for g in grid]
for b1 in (True, False):
for b2 in (True, False):
f = get_discretisation(atoms, species, x, pointwise=b1, FT=b2, **params)
assert f.shape == grid | @pytest.mark.parametrize('n, shape, grid', [([0], (1, 1, 1), (3, 4, 1)), ([1, 14], (10, 20, 30), (3, 1, 5)), ([14, 14, 14], (10, 20, 30), (1, 4, 5))])
def test_getDiscretisation_bools(n, shape, grid):
coords = np.concatenate([np.linspace(0, s, len(n)).reshape(-1, 1) for s in shape], axis=1)
species = np.array(n)
(atoms, species) = (coords, species)
x = [np.linspace(0, 0.1, g) for g in grid]
for b1 in (True, False):
for b2 in (True, False):
f = get_discretisation(atoms, species, x, pointwise=b1, FT=b2, **params)
assert f.shape == grid | diffsims | positive |
def start_lock_delay(self):
"""
Setup the lock delay timer based on user prefs - if there is
no delay, or if idle locking isn't enabled, we run the callback
immediately, or simply return, respectively.
"""
if not settings.get_idle_lock_enabled():
return
if not utils.user_can_lock():
return
lock_delay = settings.get_idle_lock_delay()
if lock_delay == 0:
<DeepExtract>
DEBUG("manager: locking after delay ('lock-delay')")
self.set_locked(True)
return False
</DeepExtract>
else:
trackers.timer_tracker_get().start_seconds('idle-lock-delay', lock_delay, self.on_lock_delay_timeout) | def start_lock_delay(self):
"""
Setup the lock delay timer based on user prefs - if there is
no delay, or if idle locking isn't enabled, we run the callback
immediately, or simply return, respectively.
"""
if not settings.get_idle_lock_enabled():
return
if not utils.user_can_lock():
return
lock_delay = settings.get_idle_lock_delay()
if lock_delay == 0:
DEBUG("manager: locking after delay ('lock-delay')")
self.set_locked(True)
return False
else:
trackers.timer_tracker_get().start_seconds('idle-lock-delay', lock_delay, self.on_lock_delay_timeout) | cinnamon-screensaver | positive |
def __init__(self, data):
"""
Initialise the DataHfProvider class with the `data` being a supported
data container (currently python dictionary or HDF5 file).
Let `nf` denote the number of Fock spin orbitals (i.e. the sum of both
the alpha and the beta orbitals) and `nb` the number of basis functions.
With `array` we indicate either a `np.array` or an HDF5 dataset.
The following keys are required in the container:
1. **restricted** (`bool`): `True` for a restricted SCF calculation,
`False` otherwise
2. **conv_tol** (`float`): Tolerance value used for SCF convergence,
should be roughly equivalent to l2 norm of the Pulay error.
3. **orbcoeff_fb** (`.array` with dtype `float`, size `(nf, nb)`):
SCF orbital coefficients, i.e. the uniform transform from the basis
to the molecular orbitals.
4. **occupation_f** (`array` with dtype `float`, size `(nf, )`:
Occupation number for each SCF orbitals (i.e. diagonal of the HF
density matrix in the SCF orbital basis).
5. **orben_f** (`array` with dtype `float`, size `(nf, )`:
SCF orbital energies
6. **fock_ff** (`array` with dtype `float`, size `(nf, nf)`:
Fock matrix in SCF orbital basis. Notice, the full matrix is expected
also for restricted calculations.
7. **eri_phys_asym_ffff** (`array` with dtype `float`,
size `(nf, nf, nf, nf)`: Antisymmetrised electron-repulsion integral
tensor in the SCF orbital basis, using the Physicists' indexing
convention, i.e. that the index tuple `(i,j,k,l)` refers to
the integral :math:`\\langle ij || kl \\rangle`, i.e.
.. math::
\\int_\\Omega \\int_\\Omega d r_1 d r_2 \\frac{
\\phi_i(r_1) \\phi_j(r_2)
\\phi_k(r_1) \\phi_l(r_2)}{|r_1 - r_2|}
- \\int_\\Omega \\int_\\Omega d r_1 d r_2 \\frac{
\\phi_i(r_1) \\phi_j(r_2)
\\phi_l(r_1) \\phi_k(r_2)}{|r_1 - r_2|}
The full tensor (including zero blocks) is expected.
As an alternative to `eri_phys_asym_ffff`, the user may provide
8. **eri_ffff** (`array` with dtype `float`, size `(nf, nf, nf, nf)`:
Electron-repulsion integral tensor in chemists' notation.
The index tuple `(i,j,k,l)` thus refers to the integral
:math:`(ij|kl)`, which is
.. math::
\\int_\\Omega \\int_\\Omega d r_1 d r_2
\\frac{\\phi_i(r_1) \\phi_j(r_1)
\\phi_k(r_2) \\phi_l(r_2)}{|r_1 - r_2|}
Notice, that no antisymmetrisation has been applied in this tensor.
The above keys define the least set of quantities to start a calculation
in `adcc`. In order to have access to properties such as dipole moments
or to get the correct state energies, further keys are highly
recommended to be provided as well.
9. **energy_scf** (`float`): Final total SCF energy of both electronic
and nuclear energy terms. (default: `0.0`)
10. **multipoles**: Container with electric and nuclear
multipole moments. Can be another dictionary or simply an HDF5
group.
- **elec_1** (`array`, size `(3, nb, nb)`):
Electric dipole moment integrals in the atomic orbital basis
(i.e. the discretisation basis with `nb` elements). First axis
indicates cartesian component (x, y, z).
- **nuc_0** (`float`): Total nuclear charge
- **nuc_1** (`array` size `(3, )`: Nuclear dipole moment
The defaults for all entries are all-zero multipoles.
11. **spin_multiplicity** (`int`): The spin mulitplicity of the HF
ground state described by the data. A value of `0` (for unknown)
should be supplied for unrestricted calculations.
(default: 1 for restricted and 0 for unrestricted calculations)
A descriptive string for the backend can be supplied optionally as well.
In case of using a python `dict` as the data container, this should be
done using the key `backend`. For an HDF5 file, this should be done
using the attribute `backend`. Defaults based on the filename are
generated.
Parameters
----------
data : dict or h5py.File
Dictionary containing the HartreeFock data to use. For the required
keys see details above.
"""
super().__init__()
self.data = data
if isinstance(data, dict):
self.__backend = data.get('backend', 'dict')
elif isinstance(data, h5py.File):
if 'r' not in data.mode:
raise ValueError('Passed h5py.File stream (filename: {}) not readable.'.format(data.filename))
self.__backend = data.attrs.get('backend', '<HDF5 file "{}">'.format(data.filename))
else:
raise TypeError('Can only deal with data objects of type dict or h5py.File.')
if data['orbcoeff_fb'].shape[0] % 2 != 0:
raise ValueError('orbcoeff_fb first axis should have even length')
<DeepExtract>
nb = self.data['orbcoeff_fb'].shape[1]
</DeepExtract>
nf = 2 * self.get_n_orbs_alpha()
checks = [('orbcoeff_fb', (nf, nb)), ('occupation_f', (nf,)), ('orben_f', (nf,)), ('fock_ff', (nf, nf)), ('eri_ffff', (nf, nf, nf, nf)), ('eri_phys_asym_ffff', (nf, nf, nf, nf))]
for (key, exshape) in checks:
if key not in data:
continue
if data[key].shape != exshape:
raise ValueError('Shape mismatch for key {}: Expected {}, but got {}.'.format(key, exshape, data[key].shape))
opprov = DataOperatorIntegralProvider(self.__backend)
mmp = data.get('multipoles', {})
if 'elec_1' in mmp:
if mmp['elec_1'].shape != (3, nb, nb):
raise ValueError('multipoles/elec_1 is expected to have shape ' + str((3, nb, nb)) + ' not ' + str(mmp['elec_1'].shape))
opprov.electric_dipole = np.asarray(mmp['elec_1'])
magm = data.get('magnetic_moments', {})
if 'mag_1' in magm:
if magm['mag_1'].shape != (3, nb, nb):
raise ValueError('magnetic_moments/mag_1 is expected to have shape ' + str((3, nb, nb)) + ' not ' + str(magm['mag_1'].shape))
opprov.magnetic_dipole = np.asarray(magm['mag_1'])
derivs = data.get('derivatives', {})
if 'nabla' in derivs:
if derivs['nabla'].shape != (3, nb, nb):
raise ValueError('derivatives/nabla is expected to have shape ' + str((3, nb, nb)) + ' not ' + str(derivs['nabla'].shape))
opprov.nabla = np.asarray(derivs['nabla'])
self.operator_integral_provider = opprov | def __init__(self, data):
"""
Initialise the DataHfProvider class with the `data` being a supported
data container (currently python dictionary or HDF5 file).
Let `nf` denote the number of Fock spin orbitals (i.e. the sum of both
the alpha and the beta orbitals) and `nb` the number of basis functions.
With `array` we indicate either a `np.array` or an HDF5 dataset.
The following keys are required in the container:
1. **restricted** (`bool`): `True` for a restricted SCF calculation,
`False` otherwise
2. **conv_tol** (`float`): Tolerance value used for SCF convergence,
should be roughly equivalent to l2 norm of the Pulay error.
3. **orbcoeff_fb** (`.array` with dtype `float`, size `(nf, nb)`):
SCF orbital coefficients, i.e. the uniform transform from the basis
to the molecular orbitals.
4. **occupation_f** (`array` with dtype `float`, size `(nf, )`:
Occupation number for each SCF orbitals (i.e. diagonal of the HF
density matrix in the SCF orbital basis).
5. **orben_f** (`array` with dtype `float`, size `(nf, )`:
SCF orbital energies
6. **fock_ff** (`array` with dtype `float`, size `(nf, nf)`:
Fock matrix in SCF orbital basis. Notice, the full matrix is expected
also for restricted calculations.
7. **eri_phys_asym_ffff** (`array` with dtype `float`,
size `(nf, nf, nf, nf)`: Antisymmetrised electron-repulsion integral
tensor in the SCF orbital basis, using the Physicists' indexing
convention, i.e. that the index tuple `(i,j,k,l)` refers to
the integral :math:`\\langle ij || kl \\rangle`, i.e.
.. math::
\\int_\\Omega \\int_\\Omega d r_1 d r_2 \\frac{
\\phi_i(r_1) \\phi_j(r_2)
\\phi_k(r_1) \\phi_l(r_2)}{|r_1 - r_2|}
- \\int_\\Omega \\int_\\Omega d r_1 d r_2 \\frac{
\\phi_i(r_1) \\phi_j(r_2)
\\phi_l(r_1) \\phi_k(r_2)}{|r_1 - r_2|}
The full tensor (including zero blocks) is expected.
As an alternative to `eri_phys_asym_ffff`, the user may provide
8. **eri_ffff** (`array` with dtype `float`, size `(nf, nf, nf, nf)`:
Electron-repulsion integral tensor in chemists' notation.
The index tuple `(i,j,k,l)` thus refers to the integral
:math:`(ij|kl)`, which is
.. math::
\\int_\\Omega \\int_\\Omega d r_1 d r_2
\\frac{\\phi_i(r_1) \\phi_j(r_1)
\\phi_k(r_2) \\phi_l(r_2)}{|r_1 - r_2|}
Notice, that no antisymmetrisation has been applied in this tensor.
The above keys define the least set of quantities to start a calculation
in `adcc`. In order to have access to properties such as dipole moments
or to get the correct state energies, further keys are highly
recommended to be provided as well.
9. **energy_scf** (`float`): Final total SCF energy of both electronic
and nuclear energy terms. (default: `0.0`)
10. **multipoles**: Container with electric and nuclear
multipole moments. Can be another dictionary or simply an HDF5
group.
- **elec_1** (`array`, size `(3, nb, nb)`):
Electric dipole moment integrals in the atomic orbital basis
(i.e. the discretisation basis with `nb` elements). First axis
indicates cartesian component (x, y, z).
- **nuc_0** (`float`): Total nuclear charge
- **nuc_1** (`array` size `(3, )`: Nuclear dipole moment
The defaults for all entries are all-zero multipoles.
11. **spin_multiplicity** (`int`): The spin mulitplicity of the HF
ground state described by the data. A value of `0` (for unknown)
should be supplied for unrestricted calculations.
(default: 1 for restricted and 0 for unrestricted calculations)
A descriptive string for the backend can be supplied optionally as well.
In case of using a python `dict` as the data container, this should be
done using the key `backend`. For an HDF5 file, this should be done
using the attribute `backend`. Defaults based on the filename are
generated.
Parameters
----------
data : dict or h5py.File
Dictionary containing the HartreeFock data to use. For the required
keys see details above.
"""
super().__init__()
self.data = data
if isinstance(data, dict):
self.__backend = data.get('backend', 'dict')
elif isinstance(data, h5py.File):
if 'r' not in data.mode:
raise ValueError('Passed h5py.File stream (filename: {}) not readable.'.format(data.filename))
self.__backend = data.attrs.get('backend', '<HDF5 file "{}">'.format(data.filename))
else:
raise TypeError('Can only deal with data objects of type dict or h5py.File.')
if data['orbcoeff_fb'].shape[0] % 2 != 0:
raise ValueError('orbcoeff_fb first axis should have even length')
nb = self.data['orbcoeff_fb'].shape[1]
nf = 2 * self.get_n_orbs_alpha()
checks = [('orbcoeff_fb', (nf, nb)), ('occupation_f', (nf,)), ('orben_f', (nf,)), ('fock_ff', (nf, nf)), ('eri_ffff', (nf, nf, nf, nf)), ('eri_phys_asym_ffff', (nf, nf, nf, nf))]
for (key, exshape) in checks:
if key not in data:
continue
if data[key].shape != exshape:
raise ValueError('Shape mismatch for key {}: Expected {}, but got {}.'.format(key, exshape, data[key].shape))
opprov = DataOperatorIntegralProvider(self.__backend)
mmp = data.get('multipoles', {})
if 'elec_1' in mmp:
if mmp['elec_1'].shape != (3, nb, nb):
raise ValueError('multipoles/elec_1 is expected to have shape ' + str((3, nb, nb)) + ' not ' + str(mmp['elec_1'].shape))
opprov.electric_dipole = np.asarray(mmp['elec_1'])
magm = data.get('magnetic_moments', {})
if 'mag_1' in magm:
if magm['mag_1'].shape != (3, nb, nb):
raise ValueError('magnetic_moments/mag_1 is expected to have shape ' + str((3, nb, nb)) + ' not ' + str(magm['mag_1'].shape))
opprov.magnetic_dipole = np.asarray(magm['mag_1'])
derivs = data.get('derivatives', {})
if 'nabla' in derivs:
if derivs['nabla'].shape != (3, nb, nb):
raise ValueError('derivatives/nabla is expected to have shape ' + str((3, nb, nb)) + ' not ' + str(derivs['nabla'].shape))
opprov.nabla = np.asarray(derivs['nabla'])
self.operator_integral_provider = opprov | adcc | positive |
def dpMain(*args):
""" Main function.
Check existen nodes and call the scripted function.
"""
callAction = False
<DeepExtract>
selList = cmds.ls(selection=True)
if selList:
for item in selList:
if self.dpCheckAllGrp(item):
self.allGrp = item
for item in selList:
relativeList = cmds.listRelatives(item, allParents=True, type='transform')
while relativeList:
if self.dpCheckAllGrp(relativeList[0]):
self.allGrp = relativeList[0]
relativeList = cmds.listRelatives(relativeList[0], allParents=True, type='transform')
self.allGrp = False
</DeepExtract>
if self.allGrp:
callAction = True
else:
<DeepExtract>
allGrpNodeList = []
allNodeList = cmds.ls(selection=False, type='transform')
for nodeName in allNodeList:
allGrp = self.dpCheckAllGrp(nodeName)
if allGrp:
allGrpNodeList.append(allGrp)
allGrpList = allGrpNodeList
</DeepExtract>
if allGrpList:
if len(allGrpList) > 1:
self.allGrp = cmds.confirmDialog(title=self.langDic[self.langName]['m166_selAllControls'], message=self.langDic[self.langName]['m168_wichAllGrp'], button=allGrpList)
else:
<DeepExtract>
if cmds.objExists(self.allGrp):
if cmds.objExists(self.allGrp + '.' + self.masterAttr):
if cmds.getAttr(self.allGrp + '.' + self.masterAttr) == 1:
self.allGrp = self.allGrp
self.allGrp = False
</DeepExtract>
if self.allGrp:
callAction = True
else:
<DeepExtract>
allNodeList = cmds.ls(selection=False)
if allNodeList:
for item in allNodeList:
if self.dpCheckAllGrp(item):
self.allGrp = item
self.allGrp = False
</DeepExtract>
if self.allGrp:
callAction = True
if callAction:
<DeepExtract>
ctrlsToSelectList = []
if cmds.objExists(self.allGrp + '.' + self.ctrlsAttr):
ctrlsAttr = cmds.getAttr(self.allGrp + '.' + self.ctrlsAttr)
if ctrlsAttr:
currentNamespace = ''
if ':' in self.allGrp:
currentNamespace = self.allGrp[:self.allGrp.find(':')]
ctrlsList = ctrlsAttr.split(';')
if ctrlsList:
for ctrlName in ctrlsList:
if ctrlName:
if currentNamespace:
ctrlsToSelectList.append(currentNamespace + ':' + ctrlName)
else:
ctrlsToSelectList.append(ctrlName)
cmds.select(ctrlsToSelectList)
print(self.langDic[self.langName]['m169_selectedCtrls'] + str(ctrlsToSelectList))
else:
mel.eval('warning "' + self.langDic[self.langName]['e019_notFoundAllGrp'] + '";')
</DeepExtract>
else:
mel.eval('warning "' + self.langDic[self.langName]['e019_notFoundAllGrp'] + '";') | def dpMain(*args):
""" Main function.
Check existen nodes and call the scripted function.
"""
callAction = False
selList = cmds.ls(selection=True)
if selList:
for item in selList:
if self.dpCheckAllGrp(item):
self.allGrp = item
for item in selList:
relativeList = cmds.listRelatives(item, allParents=True, type='transform')
while relativeList:
if self.dpCheckAllGrp(relativeList[0]):
self.allGrp = relativeList[0]
relativeList = cmds.listRelatives(relativeList[0], allParents=True, type='transform')
self.allGrp = False
if self.allGrp:
callAction = True
else:
allGrpNodeList = []
allNodeList = cmds.ls(selection=False, type='transform')
for nodeName in allNodeList:
allGrp = self.dpCheckAllGrp(nodeName)
if allGrp:
allGrpNodeList.append(allGrp)
allGrpList = allGrpNodeList
if allGrpList:
if len(allGrpList) > 1:
self.allGrp = cmds.confirmDialog(title=self.langDic[self.langName]['m166_selAllControls'], message=self.langDic[self.langName]['m168_wichAllGrp'], button=allGrpList)
else:
if cmds.objExists(self.allGrp):
if cmds.objExists(self.allGrp + '.' + self.masterAttr):
if cmds.getAttr(self.allGrp + '.' + self.masterAttr) == 1:
self.allGrp = self.allGrp
self.allGrp = False
if self.allGrp:
callAction = True
else:
allNodeList = cmds.ls(selection=False)
if allNodeList:
for item in allNodeList:
if self.dpCheckAllGrp(item):
self.allGrp = item
self.allGrp = False
if self.allGrp:
callAction = True
if callAction:
ctrlsToSelectList = []
if cmds.objExists(self.allGrp + '.' + self.ctrlsAttr):
ctrlsAttr = cmds.getAttr(self.allGrp + '.' + self.ctrlsAttr)
if ctrlsAttr:
currentNamespace = ''
if ':' in self.allGrp:
currentNamespace = self.allGrp[:self.allGrp.find(':')]
ctrlsList = ctrlsAttr.split(';')
if ctrlsList:
for ctrlName in ctrlsList:
if ctrlName:
if currentNamespace:
ctrlsToSelectList.append(currentNamespace + ':' + ctrlName)
else:
ctrlsToSelectList.append(ctrlName)
cmds.select(ctrlsToSelectList)
print(self.langDic[self.langName]['m169_selectedCtrls'] + str(ctrlsToSelectList))
else:
mel.eval('warning "' + self.langDic[self.langName]['e019_notFoundAllGrp'] + '";')
else:
mel.eval('warning "' + self.langDic[self.langName]['e019_notFoundAllGrp'] + '";') | dpAutoRigSystem | positive |
def _core_network(self, l_p, h_p, x_t):
"""
Parameters:
x_t - 28x28 image
l_p - 2x1 focus vector
h_p - 256x1 vector
Returns:
h_t, 256x1 vector
"""
<DeepExtract>
sensor_output = self._refined_glimpse_sensor(x_t, l_p)
sensor_output = T.flatten(sensor_output)
h_g = self._relu(T.dot(sensor_output, self.W_g0))
h_l = self._relu(T.dot(l_p, self.W_g1))
g = self._relu(T.dot(h_g, self.W_g2_hg) + T.dot(h_l, self.W_g2_hl))
g_t = g
</DeepExtract>
h_t = self._tanh(T.dot(g_t, self.W_h_g) + T.dot(h_p, self.W_h) + self.B_h)
<DeepExtract>
l_t = T.dot(h_t, self.W_l)
</DeepExtract>
if not self.disable_reinforce:
sampled_l_t = self._sample_gaussian(l_t, self.cov)
<DeepExtract>
norm2d_var = 1.0 / T.sqrt((2 * np.pi) ** 2 * self.cov_det_var) * T.exp(-0.5 * (disconnected_grad(sampled_l_t) - l_t).T.dot(self.cov_inv_var).dot(disconnected_grad(sampled_l_t) - l_t))
sampled_pdf = norm2d_var
</DeepExtract>
wl_grad = T.grad(T.log(sampled_pdf), self.W_l)
else:
sampled_l_t = l_t
wl_grad = self.W_l
if self.random_glimpse and self.disable_reinforce:
sampled_l_t = self.srng.uniform((2,), low=-1.7, high=1.7)
<DeepExtract>
z = self._relu(T.dot(h_t, self.W_a) + self.B_a)
a_t = self._softmax(z)
</DeepExtract>
return (sampled_l_t, h_t, a_t, wl_grad) | def _core_network(self, l_p, h_p, x_t):
"""
Parameters:
x_t - 28x28 image
l_p - 2x1 focus vector
h_p - 256x1 vector
Returns:
h_t, 256x1 vector
"""
sensor_output = self._refined_glimpse_sensor(x_t, l_p)
sensor_output = T.flatten(sensor_output)
h_g = self._relu(T.dot(sensor_output, self.W_g0))
h_l = self._relu(T.dot(l_p, self.W_g1))
g = self._relu(T.dot(h_g, self.W_g2_hg) + T.dot(h_l, self.W_g2_hl))
g_t = g
h_t = self._tanh(T.dot(g_t, self.W_h_g) + T.dot(h_p, self.W_h) + self.B_h)
l_t = T.dot(h_t, self.W_l)
if not self.disable_reinforce:
sampled_l_t = self._sample_gaussian(l_t, self.cov)
norm2d_var = 1.0 / T.sqrt((2 * np.pi) ** 2 * self.cov_det_var) * T.exp(-0.5 * (disconnected_grad(sampled_l_t) - l_t).T.dot(self.cov_inv_var).dot(disconnected_grad(sampled_l_t) - l_t))
sampled_pdf = norm2d_var
wl_grad = T.grad(T.log(sampled_pdf), self.W_l)
else:
sampled_l_t = l_t
wl_grad = self.W_l
if self.random_glimpse and self.disable_reinforce:
sampled_l_t = self.srng.uniform((2,), low=-1.7, high=1.7)
z = self._relu(T.dot(h_t, self.W_a) + self.B_a)
a_t = self._softmax(z)
return (sampled_l_t, h_t, a_t, wl_grad) | deepy | positive |
def check_device_state(self, device_id, state_name):
<DeepExtract>
devices = requests.get('https://{host_uri}/{device_list_endpoint}'.format(host_uri=self.HOST_URI, device_list_endpoint=self.DEVICE_LIST_ENDPOINT), headers={'MyQApplicationId': self.APP_ID, 'SecurityToken': self.myq_security_token})
devices = devices.json()['Devices']
</DeepExtract>
for dev in devices:
if str(dev['MyQDeviceId']) == str(device_id):
for attribute in dev['Attributes']:
if attribute['AttributeDisplayName'] == state_name:
door_state = attribute['Value']
return door_state | def check_device_state(self, device_id, state_name):
devices = requests.get('https://{host_uri}/{device_list_endpoint}'.format(host_uri=self.HOST_URI, device_list_endpoint=self.DEVICE_LIST_ENDPOINT), headers={'MyQApplicationId': self.APP_ID, 'SecurityToken': self.myq_security_token})
devices = devices.json()['Devices']
for dev in devices:
if str(dev['MyQDeviceId']) == str(device_id):
for attribute in dev['Attributes']:
if attribute['AttributeDisplayName'] == state_name:
door_state = attribute['Value']
return door_state | Alexa-MyQGarage | positive |
def test():
<DeepExtract>
cfg = {'out_planes': [200, 400, 800], 'num_blocks': [4, 8, 4], 'groups': 2}
net = ShuffleNet(cfg)
</DeepExtract>
x = torch.randn(1, 3, 32, 32)
y = net(x)
print(y) | def test():
cfg = {'out_planes': [200, 400, 800], 'num_blocks': [4, 8, 4], 'groups': 2}
net = ShuffleNet(cfg)
x = torch.randn(1, 3, 32, 32)
y = net(x)
print(y) | dhp | positive |
def next(self):
"""
Default implementation for built-in backtrader method.
Defines one step environment routine;
Handles order execution logic according to action received.
Note that orders can only be submitted for data_lines in action_space (assets).
`self.action` attr. is updated by btgym.server._BTgymAnalyzer, and `None` actions
are emitted while doing `skip_frame` loop.
"""
<DeepExtract>
current_value = self.env.broker.get_value()
norm_state = self.get_normalisation()
positions = [self.env.broker.getposition(data) for data in self.datas]
exposure = sum([abs(pos.size) for pos in positions])
self.normalizer = 1 / np.clip(norm_state.up_interval - norm_state.low_interval, 1e-08, None)
for (key, method) in self.collection_get_broker_stat_methods.items():
update = method(current_value=current_value, positions=positions, exposure=exposure, lower_bound=norm_state.low_interval, upper_bound=norm_state.up_interval, normalizer=self.normalizer)
self.broker_stat[key] = np.concatenate([self.broker_stat[key][1:], np.asarray([float(update)])])
self.trade_just_closed = False
self.trade_result = 0
</DeepExtract>
if '_skip_this' in self.action.keys():
if self.action_repeated < self.num_action_repeats:
self.next_process_fn(self.action_to_repeat)
self.action_repeated += 1
else:
self.next_process_fn(self.action)
self.action_repeated = 0
self.action_to_repeat = self.action | def next(self):
"""
Default implementation for built-in backtrader method.
Defines one step environment routine;
Handles order execution logic according to action received.
Note that orders can only be submitted for data_lines in action_space (assets).
`self.action` attr. is updated by btgym.server._BTgymAnalyzer, and `None` actions
are emitted while doing `skip_frame` loop.
"""
current_value = self.env.broker.get_value()
norm_state = self.get_normalisation()
positions = [self.env.broker.getposition(data) for data in self.datas]
exposure = sum([abs(pos.size) for pos in positions])
self.normalizer = 1 / np.clip(norm_state.up_interval - norm_state.low_interval, 1e-08, None)
for (key, method) in self.collection_get_broker_stat_methods.items():
update = method(current_value=current_value, positions=positions, exposure=exposure, lower_bound=norm_state.low_interval, upper_bound=norm_state.up_interval, normalizer=self.normalizer)
self.broker_stat[key] = np.concatenate([self.broker_stat[key][1:], np.asarray([float(update)])])
self.trade_just_closed = False
self.trade_result = 0
if '_skip_this' in self.action.keys():
if self.action_repeated < self.num_action_repeats:
self.next_process_fn(self.action_to_repeat)
self.action_repeated += 1
else:
self.next_process_fn(self.action)
self.action_repeated = 0
self.action_to_repeat = self.action | btgym | positive |
def tree_is_perfect_match(self):
"""
Returns True if self.trees is a singleton that perfectly matches
the words in the utterances (with certain simplifactions to each
to accommodate different notation and information).
"""
if len(self.trees) != 1:
return False
<DeepExtract>
tree_lems = self.tree_lemmas()
tree_lems = [x for x in tree_lems if x[1] not in {'-NONE-', '-DFL-'}]
tree_lems = [(re.sub('-$', '', x[0]), x[1]) for x in tree_lems]
tree_lems = tree_lems
</DeepExtract>
<DeepExtract>
pos_lems = self.pos_lemmas()
pos_lems = [x for x in pos_lems if x and len(x) == 2]
nontree_nodes = ('^PRP^BES', '^FW', '^MD', '^MD^RB', '^PRP^VBZ', '^WP$', '^NN^HVS', 'NN|VBG', '^DT^BES', '^MD^VB', '^DT^JJ', '^PRP^HVS', '^NN^POS', '^WP^BES', '^NN^BES', 'NN|CD', '^WDT', '^VB^PRP')
pos_lems = [x for x in pos_lems if x[1] not in nontree_nodes]
pos_lems = [x for x in pos_lems if x[0] != '--']
pos_lems = [(re.sub('-$', '', x[0]), x[1]) for x in pos_lems]
pos_lems = pos_lems
</DeepExtract>
if pos_lems == tree_lems:
return True
else:
return False | def tree_is_perfect_match(self):
"""
Returns True if self.trees is a singleton that perfectly matches
the words in the utterances (with certain simplifactions to each
to accommodate different notation and information).
"""
if len(self.trees) != 1:
return False
tree_lems = self.tree_lemmas()
tree_lems = [x for x in tree_lems if x[1] not in {'-NONE-', '-DFL-'}]
tree_lems = [(re.sub('-$', '', x[0]), x[1]) for x in tree_lems]
tree_lems = tree_lems
pos_lems = self.pos_lemmas()
pos_lems = [x for x in pos_lems if x and len(x) == 2]
nontree_nodes = ('^PRP^BES', '^FW', '^MD', '^MD^RB', '^PRP^VBZ', '^WP$', '^NN^HVS', 'NN|VBG', '^DT^BES', '^MD^VB', '^DT^JJ', '^PRP^HVS', '^NN^POS', '^WP^BES', '^NN^BES', 'NN|CD', '^WDT', '^VB^PRP')
pos_lems = [x for x in pos_lems if x[1] not in nontree_nodes]
pos_lems = [x for x in pos_lems if x[0] != '--']
pos_lems = [(re.sub('-$', '', x[0]), x[1]) for x in pos_lems]
pos_lems = pos_lems
if pos_lems == tree_lems:
return True
else:
return False | dialog-processing | positive |
def mergeSort(alist):
length = len(alist)
mid = length // 2
if length > 1:
left = alist[:mid]
right = alist[mid:]
<DeepExtract>
length = len(left)
mid = length // 2
if length > 1:
left = left[:mid]
right = left[mid:]
mergeSort(left)
mergeSort(right)
merge(left, left, right)
</DeepExtract>
<DeepExtract>
length = len(right)
mid = length // 2
if length > 1:
left = right[:mid]
right = right[mid:]
mergeSort(left)
mergeSort(right)
merge(right, left, right)
</DeepExtract>
<DeepExtract>
l = 0
r = 0
i = 0
L_len = len(left)
R_len = len(right)
while l < L_len and r < R_len:
if left[l] < right[r]:
alist[i] = left[l]
i += 1
l += 1
else:
alist[i] = right[r]
i += 1
r += 1
while l < L_len:
alist[i] = left[l]
i += 1
l += 1
while r < R_len:
alist[i] = right[r]
i += 1
r += 1
</DeepExtract> | def mergeSort(alist):
length = len(alist)
mid = length // 2
if length > 1:
left = alist[:mid]
right = alist[mid:]
length = len(left)
mid = length // 2
if length > 1:
left = left[:mid]
right = left[mid:]
mergeSort(left)
mergeSort(right)
merge(left, left, right)
length = len(right)
mid = length // 2
if length > 1:
left = right[:mid]
right = right[mid:]
mergeSort(left)
mergeSort(right)
merge(right, left, right)
l = 0
r = 0
i = 0
L_len = len(left)
R_len = len(right)
while l < L_len and r < R_len:
if left[l] < right[r]:
alist[i] = left[l]
i += 1
l += 1
else:
alist[i] = right[r]
i += 1
r += 1
while l < L_len:
alist[i] = left[l]
i += 1
l += 1
while r < R_len:
alist[i] = right[r]
i += 1
r += 1
</DeepExtract> | 168206 | positive |
def test_epoch_end(self, outputs: List[Any]) -> None:
averaged_epoch_loss = sum([output['loss'] for output in outputs]) / len(outputs)
self.log(f'{self.TEST_METRICS_PREFIX}_loss', averaged_epoch_loss, on_step=False, prog_bar=True, on_epoch=True)
<DeepExtract>
metrics = self._head.get_metrics(True)
</DeepExtract>
for (key, val) in metrics.items():
if key.startswith('_'):
metric_name = self.TEST_METRICS_PREFIX + key
else:
metric_name = self.TEST_METRICS_PREFIX + '_' + key
self.log(metric_name, val, on_step=False, prog_bar=not key.startswith('_'), on_epoch=True) | def test_epoch_end(self, outputs: List[Any]) -> None:
averaged_epoch_loss = sum([output['loss'] for output in outputs]) / len(outputs)
self.log(f'{self.TEST_METRICS_PREFIX}_loss', averaged_epoch_loss, on_step=False, prog_bar=True, on_epoch=True)
metrics = self._head.get_metrics(True)
for (key, val) in metrics.items():
if key.startswith('_'):
metric_name = self.TEST_METRICS_PREFIX + key
else:
metric_name = self.TEST_METRICS_PREFIX + '_' + key
self.log(metric_name, val, on_step=False, prog_bar=not key.startswith('_'), on_epoch=True) | biome-text | positive |
@cache_page(1800)
def by_arch(request):
<DeepExtract>
qs = Package.objects.select_related().values('arch__name', 'repo__name').annotate(count=Count('pk'), csize=Sum('compressed_size'), isize=Sum('installed_size'), flagged=Count('flag_date')).order_by()
arches = Arch.objects.values_list('name', flat=True)
repos = Repo.objects.values_list('name', flat=True)
def build_map(name, arch, repo):
key = '%s:%s' % (repo or '', arch or '')
data = {'key': key, 'name': name, 'arch': arch, 'repo': repo, 'data': []}
arch_groups = {a: build_map(a, a, None) for a in arches}
repo_groups = {r: build_map(r, None, r) for r in repos}
for row in qs:
arch = row['arch__name']
repo = row['repo__name']
values = {'arch': arch, 'repo': repo, 'name': '%s (%s)' % (repo, arch), 'key': '%s:%s' % (repo, arch), 'csize': row['csize'], 'isize': row['isize'], 'count': row['count'], 'flagged': row['flagged']}
arch_groups[arch]['data'].append(values)
repo_groups[repo]['data'].append(values)
data = {'by_arch': {'name': 'Architectures', 'data': list(arch_groups.values())}, 'by_repo': {'name': 'Repositories', 'data': list(repo_groups.values())}}
data = data
</DeepExtract>
to_json = json.dumps(data['by_arch'], ensure_ascii=False)
return HttpResponse(to_json, content_type='application/json') | @cache_page(1800)
def by_arch(request):
qs = Package.objects.select_related().values('arch__name', 'repo__name').annotate(count=Count('pk'), csize=Sum('compressed_size'), isize=Sum('installed_size'), flagged=Count('flag_date')).order_by()
arches = Arch.objects.values_list('name', flat=True)
repos = Repo.objects.values_list('name', flat=True)
def build_map(name, arch, repo):
key = '%s:%s' % (repo or '', arch or '')
data = {'key': key, 'name': name, 'arch': arch, 'repo': repo, 'data': []}
arch_groups = {a: build_map(a, a, None) for a in arches}
repo_groups = {r: build_map(r, None, r) for r in repos}
for row in qs:
arch = row['arch__name']
repo = row['repo__name']
values = {'arch': arch, 'repo': repo, 'name': '%s (%s)' % (repo, arch), 'key': '%s:%s' % (repo, arch), 'csize': row['csize'], 'isize': row['isize'], 'count': row['count'], 'flagged': row['flagged']}
arch_groups[arch]['data'].append(values)
repo_groups[repo]['data'].append(values)
data = {'by_arch': {'name': 'Architectures', 'data': list(arch_groups.values())}, 'by_repo': {'name': 'Repositories', 'data': list(repo_groups.values())}}
data = data
to_json = json.dumps(data['by_arch'], ensure_ascii=False)
return HttpResponse(to_json, content_type='application/json') | archweb | positive |
def enum_host_info(self):
<DeepExtract>
try:
ldapConnection = ldap_impacket.LDAPConnection('ldap://%s' % self.host)
resp = ldapConnection.search(scope=ldapasn1_impacket.Scope('baseObject'), attributes=['defaultNamingContext', 'dnsHostName'], sizeLimit=0)
for item in resp:
if isinstance(item, ldapasn1_impacket.SearchResultEntry) is not True:
continue
target = None
targetDomain = None
baseDN = None
try:
for attribute in item['attributes']:
if str(attribute['type']) == 'defaultNamingContext':
baseDN = str(attribute['vals'][0])
targetDomain = sub(',DC=', '.', baseDN[baseDN.lower().find('dc='):], flags=I)[3:]
if str(attribute['type']) == 'dnsHostName':
target = str(attribute['vals'][0])
except Exception as e:
logging.debug('Exception:', exc_info=True)
logging.debug('Skipping item, cannot process due to error %s' % str(e))
except OSError as e:
(self.target, self.targetDomain, self.baseDN) = [None, None, None]
(self.target, self.targetDomain, self.baseDN) = [target, targetDomain, baseDN]
</DeepExtract>
self.hostname = self.target
self.domain = self.targetDomain
if self.args.no_smb:
self.domain = self.args.domain
else:
self.local_ip = self.conn.getSMBServer().get_socket().getsockname()[0]
try:
self.conn.login('', '')
except Exception as e:
if 'STATUS_NOT_SUPPORTED' in str(e):
self.no_ntlm = True
pass
if not self.no_ntlm:
self.domain = self.conn.getServerDNSDomainName()
self.hostname = self.conn.getServerName()
self.server_os = self.conn.getServerOS()
self.signing = self.conn.isSigningRequired() if self.smbv1 else self.conn._SMBConnection._Connection['RequireSigning']
<DeepExtract>
try:
stringBinding = 'ncacn_ip_tcp:{}[135]'.format(self.host)
transport = DCERPCTransportFactory(stringBinding)
transport.set_connect_timeout(5)
dce = transport.get_dce_rpc()
if self.args.kerberos:
dce.set_auth_type(RPC_C_AUTHN_GSS_NEGOTIATE)
dce.connect()
try:
dce.bind(MSRPC_UUID_PORTMAP, transfer_syntax=('71710533-BEBA-4937-8319-B5DBEF9CCC36', '1.0'))
except (DCERPCException, e):
if str(e).find('syntaxes_not_supported') >= 0:
dce.disconnect()
self.os_arch = 32
else:
dce.disconnect()
self.os_arch = 64
except Exception as e:
logging.debug('Error retrieving os arch of {}: {}'.format(self.host, str(e)))
self.os_arch = 0
</DeepExtract>
self.output_filename = os.path.expanduser('~/.cme/logs/{}_{}_{}'.format(self.hostname, self.host, datetime.now().strftime('%Y-%m-%d_%H%M%S')))
self.output_filename = self.output_filename.replace(':', '-')
if not self.domain:
self.domain = self.hostname
try:
"plaintext_login\n DC's seem to want us to logoff first, windows workstations sometimes reset the connection\n (go home Windows, you're drunk)\n "
self.conn.logoff()
except:
pass
if self.args.domain:
self.domain = self.args.domain
if self.args.local_auth:
self.domain = self.hostname
<DeepExtract>
if not self.args.no_smb:
if self.create_smbv1_conn():
return True
elif self.create_smbv3_conn():
return True
return False
else:
return True
</DeepExtract> | def enum_host_info(self):
try:
ldapConnection = ldap_impacket.LDAPConnection('ldap://%s' % self.host)
resp = ldapConnection.search(scope=ldapasn1_impacket.Scope('baseObject'), attributes=['defaultNamingContext', 'dnsHostName'], sizeLimit=0)
for item in resp:
if isinstance(item, ldapasn1_impacket.SearchResultEntry) is not True:
continue
target = None
targetDomain = None
baseDN = None
try:
for attribute in item['attributes']:
if str(attribute['type']) == 'defaultNamingContext':
baseDN = str(attribute['vals'][0])
targetDomain = sub(',DC=', '.', baseDN[baseDN.lower().find('dc='):], flags=I)[3:]
if str(attribute['type']) == 'dnsHostName':
target = str(attribute['vals'][0])
except Exception as e:
logging.debug('Exception:', exc_info=True)
logging.debug('Skipping item, cannot process due to error %s' % str(e))
except OSError as e:
(self.target, self.targetDomain, self.baseDN) = [None, None, None]
(self.target, self.targetDomain, self.baseDN) = [target, targetDomain, baseDN]
self.hostname = self.target
self.domain = self.targetDomain
if self.args.no_smb:
self.domain = self.args.domain
else:
self.local_ip = self.conn.getSMBServer().get_socket().getsockname()[0]
try:
self.conn.login('', '')
except Exception as e:
if 'STATUS_NOT_SUPPORTED' in str(e):
self.no_ntlm = True
pass
if not self.no_ntlm:
self.domain = self.conn.getServerDNSDomainName()
self.hostname = self.conn.getServerName()
self.server_os = self.conn.getServerOS()
self.signing = self.conn.isSigningRequired() if self.smbv1 else self.conn._SMBConnection._Connection['RequireSigning']
try:
stringBinding = 'ncacn_ip_tcp:{}[135]'.format(self.host)
transport = DCERPCTransportFactory(stringBinding)
transport.set_connect_timeout(5)
dce = transport.get_dce_rpc()
if self.args.kerberos:
dce.set_auth_type(RPC_C_AUTHN_GSS_NEGOTIATE)
dce.connect()
try:
dce.bind(MSRPC_UUID_PORTMAP, transfer_syntax=('71710533-BEBA-4937-8319-B5DBEF9CCC36', '1.0'))
except (DCERPCException, e):
if str(e).find('syntaxes_not_supported') >= 0:
dce.disconnect()
self.os_arch = 32
else:
dce.disconnect()
self.os_arch = 64
except Exception as e:
logging.debug('Error retrieving os arch of {}: {}'.format(self.host, str(e)))
self.os_arch = 0
self.output_filename = os.path.expanduser('~/.cme/logs/{}_{}_{}'.format(self.hostname, self.host, datetime.now().strftime('%Y-%m-%d_%H%M%S')))
self.output_filename = self.output_filename.replace(':', '-')
if not self.domain:
self.domain = self.hostname
try:
"plaintext_login\n DC's seem to want us to logoff first, windows workstations sometimes reset the connection\n (go home Windows, you're drunk)\n "
self.conn.logoff()
except:
pass
if self.args.domain:
self.domain = self.args.domain
if self.args.local_auth:
self.domain = self.hostname
if not self.args.no_smb:
if self.create_smbv1_conn():
return True
elif self.create_smbv3_conn():
return True
return False
else:
return True
</DeepExtract> | CrackMapExec | positive |
def run(self):
self.buffer += 'digraph G {'
self.buffer += DOT_STYLE
if isinstance(self.g, DiGraph):
for edge in self.g.edges:
<DeepExtract>
labels = ''
if edge.kind is not None:
data = '' if edge.data is None else str(edge.data)
labels = '[label="%s - %s"]' % (edge.kind, data)
nid1 = self.get_node_id(edge.source)
nid2 = self.get_node_id(edge.dest)
self.buffer += '%s -> %s %s;\n' % (nid1, nid2, labels)
</DeepExtract>
elif isinstance(self.g, Tree):
root = self.g.root
worklist = [root]
while worklist:
current = worklist.pop(0)
if current.has_children():
num_children = current.num_children()
i = 0
while i < num_children:
child = current.children[i]
if child is None:
i += 1
continue
<DeepExtract>
nid1 = self.get_node_id(current)
nid2 = self.get_node_id(child)
self.buffer += '%s -> %s;\n' % (nid1, nid2)
</DeepExtract>
worklist.insert(0, child)
i += 1
else:
<DeepExtract>
if current not in self.node_ids:
self.node_ids[current] = 'node_%d' % current.gid
self.add_node(current, self.node_ids[current])
nid = self.node_ids[current]
</DeepExtract>
self.buffer += '}\n' | def run(self):
self.buffer += 'digraph G {'
self.buffer += DOT_STYLE
if isinstance(self.g, DiGraph):
for edge in self.g.edges:
labels = ''
if edge.kind is not None:
data = '' if edge.data is None else str(edge.data)
labels = '[label="%s - %s"]' % (edge.kind, data)
nid1 = self.get_node_id(edge.source)
nid2 = self.get_node_id(edge.dest)
self.buffer += '%s -> %s %s;\n' % (nid1, nid2, labels)
elif isinstance(self.g, Tree):
root = self.g.root
worklist = [root]
while worklist:
current = worklist.pop(0)
if current.has_children():
num_children = current.num_children()
i = 0
while i < num_children:
child = current.children[i]
if child is None:
i += 1
continue
nid1 = self.get_node_id(current)
nid2 = self.get_node_id(child)
self.buffer += '%s -> %s;\n' % (nid1, nid2)
worklist.insert(0, child)
i += 1
else:
if current not in self.node_ids:
self.node_ids[current] = 'node_%d' % current.gid
self.add_node(current, self.node_ids[current])
nid = self.node_ids[current]
self.buffer += '}\n' | equip | positive |
@force_fp32(apply_to='cls_score')
def _merge_score(self, cls_score):
"""
Do softmax in each bin. Decay the score of normal classes
with the score of fg.
From v1.
"""
num_proposals = cls_score.shape[0]
<DeepExtract>
new_preds = []
num_bins = self.pred_slice.shape[0]
for i in range(num_bins):
start = self.pred_slice[i, 0]
length = self.pred_slice[i, 1]
sliced_pred = cls_score.narrow(1, start, length)
new_preds.append(sliced_pred)
new_preds = new_preds
</DeepExtract>
new_scores = [F.softmax(pred, dim=1) for pred in new_preds]
bg_score = new_scores[0]
fg_score = new_scores[1:]
fg_merge = torch.zeros((num_proposals, self.num_classes)).cuda()
merge = torch.zeros((num_proposals, self.num_classes)).cuda()
for (i, split) in enumerate(self.fg_splits):
fg_merge[:, split] = fg_score[i][:, 1:]
weight = bg_score.narrow(1, 1, 1)
fg_merge = weight * fg_merge
merge[:, 0] = bg_score[:, 0]
merge[:, 1:] = fg_merge[:, 1:]
return merge | @force_fp32(apply_to='cls_score')
def _merge_score(self, cls_score):
"""
Do softmax in each bin. Decay the score of normal classes
with the score of fg.
From v1.
"""
num_proposals = cls_score.shape[0]
new_preds = []
num_bins = self.pred_slice.shape[0]
for i in range(num_bins):
start = self.pred_slice[i, 0]
length = self.pred_slice[i, 1]
sliced_pred = cls_score.narrow(1, start, length)
new_preds.append(sliced_pred)
new_preds = new_preds
new_scores = [F.softmax(pred, dim=1) for pred in new_preds]
bg_score = new_scores[0]
fg_score = new_scores[1:]
fg_merge = torch.zeros((num_proposals, self.num_classes)).cuda()
merge = torch.zeros((num_proposals, self.num_classes)).cuda()
for (i, split) in enumerate(self.fg_splits):
fg_merge[:, split] = fg_score[i][:, 1:]
weight = bg_score.narrow(1, 1, 1)
fg_merge = weight * fg_merge
merge[:, 0] = bg_score[:, 0]
merge[:, 1:] = fg_merge[:, 1:]
return merge | BalancedGroupSoftmax | positive |
def __init__(self, kvs, delete_on_exit=True):
<DeepExtract>
(fd, fname) = tempfile.mkstemp('.mat', prefix='ao_', dir=dir)
os.close(fd)
if contents is not None:
make_file(fname, contents)
self.fname = os.path.abspath(fname)
</DeepExtract>
self.delete_on_exit = delete_on_exit
scipy.io.savemat(self.fname, kvs) | def __init__(self, kvs, delete_on_exit=True):
(fd, fname) = tempfile.mkstemp('.mat', prefix='ao_', dir=dir)
os.close(fd)
if contents is not None:
make_file(fname, contents)
self.fname = os.path.abspath(fname)
self.delete_on_exit = delete_on_exit
scipy.io.savemat(self.fname, kvs) | avobjects | positive |
def train_step(self, data):
"""One training step
Arguments:
data {dict of data} -- required keys and values:
'X' {LongTensor [batch_size, history_len, max_x_sent_len]} -- token ids of sentences
'X_floor' {LongTensor [batch_size, history_len]} -- floors of sentences
'Y' {LongTensor [batch_size, max_sent_len]} -- label ids of corresponding tokens
Returns:
dict of data -- returned keys and values
'loss' {FloatTensor []} -- loss to backword
dict of statistics -- returned keys and values
'loss' {float} -- batch loss
"""
(X, Y) = (data['X'], data['Y'])
X_floor = data['X_floor']
Y_in = Y[:, :-1].contiguous()
Y_out = Y[:, 1:].contiguous()
batch_size = X.size(0)
max_y_len = Y_out.size(1)
<DeepExtract>
(batch_size, history_len, max_sent_len) = X.size()
input_lens = (X != self.pad_token_id).sum(-1)
dial_lens = (input_lens > 0).long().sum(1)
flat_inputs = X.view(batch_size * history_len, max_sent_len)
flat_input_lens = input_lens.view(batch_size * history_len)
(word_encodings, _, sent_encodings) = self.sent_encoder(flat_inputs, flat_input_lens)
word_encodings = word_encodings.view(batch_size, history_len, max_sent_len, -1)
sent_encodings = sent_encodings.view(batch_size, history_len, -1)
tgt_floors = []
tgt_word_encodings = []
for (dial_idx, dial_len) in enumerate(dial_lens):
tgt_floors.append(X_floor[dial_idx, dial_len - 1])
tgt_word_encodings.append(word_encodings[dial_idx, dial_len - 1, :, :])
tgt_floors = torch.stack(tgt_floors, 0)
tgt_word_encodings = torch.stack(tgt_word_encodings, 0)
src_floors = X_floor.view(-1)
tgt_floors = tgt_floors.unsqueeze(1).repeat(1, history_len).view(-1)
sent_encodings = sent_encodings.view(batch_size * history_len, -1)
sent_encodings = self.floor_encoder(sent_encodings, src_floors=src_floors, tgt_floors=tgt_floors)
sent_encodings = sent_encodings.view(batch_size, history_len, -1)
(_, _, dial_encodings) = self.dial_encoder(sent_encodings, dial_lens)
(word_encodings, sent_encodings, dial_encodings, tgt_word_encodings) = (word_encodings, sent_encodings, dial_encodings, tgt_word_encodings)
</DeepExtract>
if self.attention_type == 'word':
attn_keys = word_encodings.view(batch_size, -1, word_encodings.size(-1))
attn_mask = self._get_attn_mask(X).view(batch_size, -1)
elif self.attention_type == 'sent':
attn_keys = sent_encodings.view(batch_size, -1, sent_encodings.size(-1))
attn_mask = (X != self.pad_token_id).sum(-1) > 0
decoder_ret_dict = self._decode(dec_inputs=Y_in, word_encodings=tgt_word_encodings, sent_encodings=dial_encodings, attn_ctx=attn_keys, attn_mask=attn_mask)
loss = 0
logits = decoder_ret_dict['logits']
label_losses = F.cross_entropy(logits.view(-1, self.label_vocab_size), Y_out.view(-1), ignore_index=self.pad_label_id, reduction='none').view(batch_size, max_y_len)
sent_loss = label_losses.sum(1).mean(0)
loss += sent_loss
ret_data = {'loss': loss}
ret_stat = {'loss': loss.item()}
return (ret_data, ret_stat) | def train_step(self, data):
"""One training step
Arguments:
data {dict of data} -- required keys and values:
'X' {LongTensor [batch_size, history_len, max_x_sent_len]} -- token ids of sentences
'X_floor' {LongTensor [batch_size, history_len]} -- floors of sentences
'Y' {LongTensor [batch_size, max_sent_len]} -- label ids of corresponding tokens
Returns:
dict of data -- returned keys and values
'loss' {FloatTensor []} -- loss to backword
dict of statistics -- returned keys and values
'loss' {float} -- batch loss
"""
(X, Y) = (data['X'], data['Y'])
X_floor = data['X_floor']
Y_in = Y[:, :-1].contiguous()
Y_out = Y[:, 1:].contiguous()
batch_size = X.size(0)
max_y_len = Y_out.size(1)
(batch_size, history_len, max_sent_len) = X.size()
input_lens = (X != self.pad_token_id).sum(-1)
dial_lens = (input_lens > 0).long().sum(1)
flat_inputs = X.view(batch_size * history_len, max_sent_len)
flat_input_lens = input_lens.view(batch_size * history_len)
(word_encodings, _, sent_encodings) = self.sent_encoder(flat_inputs, flat_input_lens)
word_encodings = word_encodings.view(batch_size, history_len, max_sent_len, -1)
sent_encodings = sent_encodings.view(batch_size, history_len, -1)
tgt_floors = []
tgt_word_encodings = []
for (dial_idx, dial_len) in enumerate(dial_lens):
tgt_floors.append(X_floor[dial_idx, dial_len - 1])
tgt_word_encodings.append(word_encodings[dial_idx, dial_len - 1, :, :])
tgt_floors = torch.stack(tgt_floors, 0)
tgt_word_encodings = torch.stack(tgt_word_encodings, 0)
src_floors = X_floor.view(-1)
tgt_floors = tgt_floors.unsqueeze(1).repeat(1, history_len).view(-1)
sent_encodings = sent_encodings.view(batch_size * history_len, -1)
sent_encodings = self.floor_encoder(sent_encodings, src_floors=src_floors, tgt_floors=tgt_floors)
sent_encodings = sent_encodings.view(batch_size, history_len, -1)
(_, _, dial_encodings) = self.dial_encoder(sent_encodings, dial_lens)
(word_encodings, sent_encodings, dial_encodings, tgt_word_encodings) = (word_encodings, sent_encodings, dial_encodings, tgt_word_encodings)
if self.attention_type == 'word':
attn_keys = word_encodings.view(batch_size, -1, word_encodings.size(-1))
attn_mask = self._get_attn_mask(X).view(batch_size, -1)
elif self.attention_type == 'sent':
attn_keys = sent_encodings.view(batch_size, -1, sent_encodings.size(-1))
attn_mask = (X != self.pad_token_id).sum(-1) > 0
decoder_ret_dict = self._decode(dec_inputs=Y_in, word_encodings=tgt_word_encodings, sent_encodings=dial_encodings, attn_ctx=attn_keys, attn_mask=attn_mask)
loss = 0
logits = decoder_ret_dict['logits']
label_losses = F.cross_entropy(logits.view(-1, self.label_vocab_size), Y_out.view(-1), ignore_index=self.pad_label_id, reduction='none').view(batch_size, max_y_len)
sent_loss = label_losses.sum(1).mean(0)
loss += sent_loss
ret_data = {'loss': loss}
ret_stat = {'loss': loss.item()}
return (ret_data, ret_stat) | dialog-processing | positive |
def metadata_action(args: argparse.Namespace) -> int:
try:
r = acd_client.get_metadata(args.node, args.assets)
<DeepExtract>
print(json.dumps(r, indent=4, sort_keys=True))
</DeepExtract>
except RequestError as e:
print(e)
return INVALID_ARG_RETVAL | def metadata_action(args: argparse.Namespace) -> int:
try:
r = acd_client.get_metadata(args.node, args.assets)
print(json.dumps(r, indent=4, sort_keys=True))
except RequestError as e:
print(e)
return INVALID_ARG_RETVAL | acd_cli | positive |
def scalar_jacfunc(vs, obj, obj_scalar, free_variables):
if not hasattr(scalar_jacfunc, 'vs'):
scalar_jacfunc.vs = vs * 0 + 1e+16
if np.max(np.abs(vs - scalar_jacfunc.vs)) == 0:
return scalar_jacfunc.J
<DeepExtract>
cur = 0
changed = False
for (idx, freevar) in enumerate(free_variables):
sz = freevar.r.size
newvals = vs[cur:cur + sz].copy().reshape(free_variables[idx].shape)
if np.max(np.abs(newvals - free_variables[idx]).ravel()) > 0:
free_variables[idx][:] = newvals
changed = True
cur += sz
methods_without_callback = ('anneal', 'powell', 'cobyla', 'slsqp')
if callback is not None and changed and (method.lower() in methods_without_callback):
callback(None)
return changed
</DeepExtract>
if True:
result = np.concatenate([np.array(obj_scalar.lop(wrt, np.array([[1]]))).ravel() for wrt in free_variables])
else:
jacs = [obj_scalar.dr_wrt(wrt) for wrt in free_variables]
for (idx, jac) in enumerate(jacs):
if sp.issparse(jac):
jacs[idx] = jacs[idx].todense()
result = np.concatenate([jac.ravel() for jac in jacs])
scalar_jacfunc.J = result
scalar_jacfunc.vs = vs
return result.ravel() | def scalar_jacfunc(vs, obj, obj_scalar, free_variables):
if not hasattr(scalar_jacfunc, 'vs'):
scalar_jacfunc.vs = vs * 0 + 1e+16
if np.max(np.abs(vs - scalar_jacfunc.vs)) == 0:
return scalar_jacfunc.J
cur = 0
changed = False
for (idx, freevar) in enumerate(free_variables):
sz = freevar.r.size
newvals = vs[cur:cur + sz].copy().reshape(free_variables[idx].shape)
if np.max(np.abs(newvals - free_variables[idx]).ravel()) > 0:
free_variables[idx][:] = newvals
changed = True
cur += sz
methods_without_callback = ('anneal', 'powell', 'cobyla', 'slsqp')
if callback is not None and changed and (method.lower() in methods_without_callback):
callback(None)
return changed
if True:
result = np.concatenate([np.array(obj_scalar.lop(wrt, np.array([[1]]))).ravel() for wrt in free_variables])
else:
jacs = [obj_scalar.dr_wrt(wrt) for wrt in free_variables]
for (idx, jac) in enumerate(jacs):
if sp.issparse(jac):
jacs[idx] = jacs[idx].todense()
result = np.concatenate([jac.ravel() for jac in jacs])
scalar_jacfunc.J = result
scalar_jacfunc.vs = vs
return result.ravel() | chumpy | positive |
def dispatch_admin_message(self, msg):
"""Dispatches a message originating from an admin to all handlers."""
if msg.command == 'PRIVMSG':
<DeepExtract>
pass
</DeepExtract>
if self.is_command(msg):
<DeepExtract>
cmd_name = msg.params[-1].split(' ')[0]
cmd_name = cmd_name.strip(self.get_command_prefix())
cmd_name = cmd_name
</DeepExtract>
<DeepExtract>
handler_name = self.admin_handler_prefix + cmd_name
func = getattr(self, handler_name, None)
</DeepExtract>
if func is not None:
func(msg) | def dispatch_admin_message(self, msg):
"""Dispatches a message originating from an admin to all handlers."""
if msg.command == 'PRIVMSG':
pass
if self.is_command(msg):
cmd_name = msg.params[-1].split(' ')[0]
cmd_name = cmd_name.strip(self.get_command_prefix())
cmd_name = cmd_name
handler_name = self.admin_handler_prefix + cmd_name
func = getattr(self, handler_name, None)
if func is not None:
func(msg) | botnet | positive |
def _init_modules(self):
assert cfg.RESNETS.FREEZE_AT in [0, 2, 3, 4, 5]
assert cfg.RESNETS.FREEZE_AT <= self.convX
for i in range(1, cfg.RESNETS.FREEZE_AT + 1):
<DeepExtract>
for p in getattr(self, 'res%d' % i).parameters():
p.requires_grad = False
</DeepExtract>
self.apply(lambda m: freeze_params(m) if isinstance(m, mynn.AffineChannel2d) else None) | def _init_modules(self):
assert cfg.RESNETS.FREEZE_AT in [0, 2, 3, 4, 5]
assert cfg.RESNETS.FREEZE_AT <= self.convX
for i in range(1, cfg.RESNETS.FREEZE_AT + 1):
for p in getattr(self, 'res%d' % i).parameters():
p.requires_grad = False
self.apply(lambda m: freeze_params(m) if isinstance(m, mynn.AffineChannel2d) else None) | DIoU-pytorch-detectron | positive |
def forward_train(self):
<DeepExtract>
self.d0 = self.net.forward(self.var_ref, self.var_p0, retPerLayer=retPerLayer)
</DeepExtract>
<DeepExtract>
self.d1 = self.net.forward(self.var_ref, self.var_p1, retPerLayer=retPerLayer)
</DeepExtract>
<DeepExtract>
d1_lt_d0 = (self.d1 < self.d0).cpu().data.numpy().flatten()
judge_per = self.input_judge.cpu().numpy().flatten()
self.acc_r = d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per)
</DeepExtract>
self.var_judge = Variable(1.0 * self.input_judge).view(self.d0.size())
self.loss_total = self.rankLoss.forward(self.d0, self.d1, self.var_judge * 2.0 - 1.0)
return self.loss_total | def forward_train(self):
self.d0 = self.net.forward(self.var_ref, self.var_p0, retPerLayer=retPerLayer)
self.d1 = self.net.forward(self.var_ref, self.var_p1, retPerLayer=retPerLayer)
d1_lt_d0 = (self.d1 < self.d0).cpu().data.numpy().flatten()
judge_per = self.input_judge.cpu().numpy().flatten()
self.acc_r = d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per)
self.var_judge = Variable(1.0 * self.input_judge).view(self.d0.size())
self.loss_total = self.rankLoss.forward(self.d0, self.d1, self.var_judge * 2.0 - 1.0)
return self.loss_total | DASR | positive |
def load_by_order(self, path):
hdf5_dict = read_hdf5(path)
assigned_params = 0
kernel_idx = 0
sigma_idx = 0
mu_idx = 0
gamma_idx = 0
beta_idx = 0
for (k, v) in self.state.model.named_parameters():
if k in hdf5_dict:
value = hdf5_dict[k]
else:
if 'conv.weight' in k:
order_key = 'kernel{}'.format(kernel_idx)
kernel_idx += 1
elif 'bn.weight' in k:
order_key = 'gamma{}'.format(gamma_idx)
gamma_idx += 1
elif 'bn.bias' in k:
order_key = 'beta{}'.format(beta_idx)
beta_idx += 1
else:
order_key = None
value = None if order_key is None else hdf5_dict[order_key]
if value is not None:
<DeepExtract>
v.data = torch.from_numpy(value).cuda().type(torch.cuda.FloatTensor)
</DeepExtract>
assigned_params += 1
for (k, v) in self.state.model.named_buffers():
if k in hdf5_dict:
value = hdf5_dict[k]
else:
if 'bn.running_mean' in k:
order_key = 'mu{}'.format(mu_idx)
mu_idx += 1
elif 'bn.running_var' in k:
order_key = 'sigma{}'.format(sigma_idx)
sigma_idx += 1
else:
order_key = None
value = None if order_key is None else hdf5_dict[order_key]
if value is not None:
<DeepExtract>
v.data = torch.from_numpy(value).cuda().type(torch.cuda.FloatTensor)
</DeepExtract>
assigned_params += 1
msg = 'Assigned {} params '.format(assigned_params)
if path is not None:
msg += ' from hdf5: {}'.format(path)
<DeepExtract>
if self.local_rank == 0:
print(msg)
</DeepExtract> | def load_by_order(self, path):
hdf5_dict = read_hdf5(path)
assigned_params = 0
kernel_idx = 0
sigma_idx = 0
mu_idx = 0
gamma_idx = 0
beta_idx = 0
for (k, v) in self.state.model.named_parameters():
if k in hdf5_dict:
value = hdf5_dict[k]
else:
if 'conv.weight' in k:
order_key = 'kernel{}'.format(kernel_idx)
kernel_idx += 1
elif 'bn.weight' in k:
order_key = 'gamma{}'.format(gamma_idx)
gamma_idx += 1
elif 'bn.bias' in k:
order_key = 'beta{}'.format(beta_idx)
beta_idx += 1
else:
order_key = None
value = None if order_key is None else hdf5_dict[order_key]
if value is not None:
v.data = torch.from_numpy(value).cuda().type(torch.cuda.FloatTensor)
assigned_params += 1
for (k, v) in self.state.model.named_buffers():
if k in hdf5_dict:
value = hdf5_dict[k]
else:
if 'bn.running_mean' in k:
order_key = 'mu{}'.format(mu_idx)
mu_idx += 1
elif 'bn.running_var' in k:
order_key = 'sigma{}'.format(sigma_idx)
sigma_idx += 1
else:
order_key = None
value = None if order_key is None else hdf5_dict[order_key]
if value is not None:
v.data = torch.from_numpy(value).cuda().type(torch.cuda.FloatTensor)
assigned_params += 1
msg = 'Assigned {} params '.format(assigned_params)
if path is not None:
msg += ' from hdf5: {}'.format(path)
if self.local_rank == 0:
print(msg)
</DeepExtract> | AOFP | positive |
def forward(self, output, mask, ind, rotbin, rotres):
pred = _tranpose_and_gather_feat(output, ind)
<DeepExtract>
pred = pred.view(-1, 8)
rotbin = rotbin.view(-1, 2)
rotres = rotres.view(-1, 2)
mask = mask.view(-1, 1)
loss_bin1 = compute_bin_loss(pred[:, 0:2], rotbin[:, 0], mask)
loss_bin2 = compute_bin_loss(pred[:, 4:6], rotbin[:, 1], mask)
loss_res = torch.zeros_like(loss_bin1)
if rotbin[:, 0].nonzero().shape[0] > 0:
idx1 = rotbin[:, 0].nonzero()[:, 0]
valid_output1 = torch.index_select(pred, 0, idx1.long())
valid_target_res1 = torch.index_select(rotres, 0, idx1.long())
loss_sin1 = compute_res_loss(valid_output1[:, 2], torch.sin(valid_target_res1[:, 0]))
loss_cos1 = compute_res_loss(valid_output1[:, 3], torch.cos(valid_target_res1[:, 0]))
loss_res += loss_sin1 + loss_cos1
if rotbin[:, 1].nonzero().shape[0] > 0:
idx2 = rotbin[:, 1].nonzero()[:, 0]
valid_output2 = torch.index_select(pred, 0, idx2.long())
valid_target_res2 = torch.index_select(rotres, 0, idx2.long())
loss_sin2 = compute_res_loss(valid_output2[:, 6], torch.sin(valid_target_res2[:, 1]))
loss_cos2 = compute_res_loss(valid_output2[:, 7], torch.cos(valid_target_res2[:, 1]))
loss_res += loss_sin2 + loss_cos2
loss = loss_bin1 + loss_bin2 + loss_res
</DeepExtract>
return loss | def forward(self, output, mask, ind, rotbin, rotres):
pred = _tranpose_and_gather_feat(output, ind)
pred = pred.view(-1, 8)
rotbin = rotbin.view(-1, 2)
rotres = rotres.view(-1, 2)
mask = mask.view(-1, 1)
loss_bin1 = compute_bin_loss(pred[:, 0:2], rotbin[:, 0], mask)
loss_bin2 = compute_bin_loss(pred[:, 4:6], rotbin[:, 1], mask)
loss_res = torch.zeros_like(loss_bin1)
if rotbin[:, 0].nonzero().shape[0] > 0:
idx1 = rotbin[:, 0].nonzero()[:, 0]
valid_output1 = torch.index_select(pred, 0, idx1.long())
valid_target_res1 = torch.index_select(rotres, 0, idx1.long())
loss_sin1 = compute_res_loss(valid_output1[:, 2], torch.sin(valid_target_res1[:, 0]))
loss_cos1 = compute_res_loss(valid_output1[:, 3], torch.cos(valid_target_res1[:, 0]))
loss_res += loss_sin1 + loss_cos1
if rotbin[:, 1].nonzero().shape[0] > 0:
idx2 = rotbin[:, 1].nonzero()[:, 0]
valid_output2 = torch.index_select(pred, 0, idx2.long())
valid_target_res2 = torch.index_select(rotres, 0, idx2.long())
loss_sin2 = compute_res_loss(valid_output2[:, 6], torch.sin(valid_target_res2[:, 1]))
loss_cos2 = compute_res_loss(valid_output2[:, 7], torch.cos(valid_target_res2[:, 1]))
loss_res += loss_sin2 + loss_cos2
loss = loss_bin1 + loss_bin2 + loss_res
return loss | centerNet-deep-sort | positive |
def test_clean(self):
<DeepExtract>
self.project.item.allow_overlapping = False
self.project.item.save()
</DeepExtract>
self.spans.clean(self.project.item)
self.assertEqual(len(self.spans), 2) | def test_clean(self):
self.project.item.allow_overlapping = False
self.project.item.save()
self.spans.clean(self.project.item)
self.assertEqual(len(self.spans), 2) | doccano | positive |
def put(self, put_data, resource=None, id=None):
url = '%s://%s/%s' % (self._module.params['nitro_protocol'], self._module.params['nsip'], self.api_path)
if resource is not None:
url = '%s/%s' % (url, resource)
if id is not None:
url = '%s/%s' % (url, id)
data = self._module.jsonify(put_data)
(r, info) = fetch_url(self._module, url=url, headers=self._headers, data=data, method='PUT')
result = {}
<DeepExtract>
self.r = r
self.info = info
if r is not None:
result['http_response_body'] = codecs.decode(r.read(), 'utf-8')
elif 'body' in info:
result['http_response_body'] = codecs.decode(info['body'], 'utf-8')
del info['body']
else:
result['http_response_body'] = ''
result['http_response_data'] = info
result['nitro_errorcode'] = None
result['nitro_message'] = None
result['nitro_severity'] = None
if result['http_response_body'] != '':
try:
data = self._module.from_json(result['http_response_body'])
del result['http_response_body']
except ValueError:
data = {}
result['data'] = data
result['nitro_errorcode'] = data.get('errorcode')
result['nitro_message'] = data.get('message')
result['nitro_severity'] = data.get('severity')
</DeepExtract>
return result | def put(self, put_data, resource=None, id=None):
url = '%s://%s/%s' % (self._module.params['nitro_protocol'], self._module.params['nsip'], self.api_path)
if resource is not None:
url = '%s/%s' % (url, resource)
if id is not None:
url = '%s/%s' % (url, id)
data = self._module.jsonify(put_data)
(r, info) = fetch_url(self._module, url=url, headers=self._headers, data=data, method='PUT')
result = {}
self.r = r
self.info = info
if r is not None:
result['http_response_body'] = codecs.decode(r.read(), 'utf-8')
elif 'body' in info:
result['http_response_body'] = codecs.decode(info['body'], 'utf-8')
del info['body']
else:
result['http_response_body'] = ''
result['http_response_data'] = info
result['nitro_errorcode'] = None
result['nitro_message'] = None
result['nitro_severity'] = None
if result['http_response_body'] != '':
try:
data = self._module.from_json(result['http_response_body'])
del result['http_response_body']
except ValueError:
data = {}
result['data'] = data
result['nitro_errorcode'] = data.get('errorcode')
result['nitro_message'] = data.get('message')
result['nitro_severity'] = data.get('severity')
return result | citrix-adc-ansible-modules | positive |
def forward(self, x):
<DeepExtract>
kernel_size_effective = self.kernel_size + (self.kernel_size - 1) * (self.dilation - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = F.pad(x, (pad_beg, pad_end, pad_beg, pad_end))
x_pad = padded_inputs
</DeepExtract>
if self.use_res_connect:
x = x + self.conv(x_pad)
else:
x = self.conv(x_pad)
return x | def forward(self, x):
kernel_size_effective = self.kernel_size + (self.kernel_size - 1) * (self.dilation - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = F.pad(x, (pad_beg, pad_end, pad_beg, pad_end))
x_pad = padded_inputs
if self.use_res_connect:
x = x + self.conv(x_pad)
else:
x = self.conv(x_pad)
return x | CVPR2020_MANet | positive |
def accuracy(predict, label, pre_pro):
predict = np.array(predict)
label = np.array(label)
if len(predict) == 0:
return None
if pre_pro == 'sm':
<DeepExtract>
orig_shape = predict.shape
if len(predict.shape) > 1:
exp_minmax = lambda x: np.exp(predict - np.max(predict))
denom = lambda x: 1.0 / np.sum(predict)
predict = np.apply_along_axis(exp_minmax, 1, predict)
denominator = np.apply_along_axis(denom, 1, predict)
if len(denominator.shape) == 1:
denominator = denominator.reshape((denominator.shape[0], 1))
predict = predict * denominator
else:
x_max = np.max(predict)
predict = predict - x_max
numerator = np.exp(predict)
denominator = 1.0 / np.sum(numerator)
predict = numerator.dot(denominator)
assert predict.shape == orig_shape
predict = predict
</DeepExtract>
if pre_pro == 'Lsm':
predict = np.power(math.e, predict)
total = len(predict)
true = 0
for i in range(total):
result = np.argmax(predict[i])
if result == label[i]:
true += 1
return float(true) / float(total) | def accuracy(predict, label, pre_pro):
predict = np.array(predict)
label = np.array(label)
if len(predict) == 0:
return None
if pre_pro == 'sm':
orig_shape = predict.shape
if len(predict.shape) > 1:
exp_minmax = lambda x: np.exp(predict - np.max(predict))
denom = lambda x: 1.0 / np.sum(predict)
predict = np.apply_along_axis(exp_minmax, 1, predict)
denominator = np.apply_along_axis(denom, 1, predict)
if len(denominator.shape) == 1:
denominator = denominator.reshape((denominator.shape[0], 1))
predict = predict * denominator
else:
x_max = np.max(predict)
predict = predict - x_max
numerator = np.exp(predict)
denominator = 1.0 / np.sum(numerator)
predict = numerator.dot(denominator)
assert predict.shape == orig_shape
predict = predict
if pre_pro == 'Lsm':
predict = np.power(math.e, predict)
total = len(predict)
true = 0
for i in range(total):
result = np.argmax(predict[i])
if result == label[i]:
true += 1
return float(true) / float(total) | Deep-RNN-Framework | positive |
def test(self):
benji_obj = self.benji_open()
store = BenjiStore(benji_obj)
addr = ('127.0.0.1', self.SERVER_PORT)
read_only = False
discard_changes = False
self.nbd_server = NbdServer(addr, store, read_only, discard_changes)
logger.info('Starting to serve NBD on %s:%s' % (addr[0], addr[1]))
<DeepExtract>
completed = subprocess.run(args=['sudo', 'modprobe', 'nbd'], stdin=subprocess.DEVNULL, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, encoding='utf-8', errors='ignore')
if check and completed.returncode != 0:
self.fail('command {} failed: {}'.format(' '.join(['sudo', 'modprobe', 'nbd']), completed.stdout.replace('\n', '|')))
if success_regexp:
if not re.match(success_regexp, completed.stdout, re.I | re.M | re.S):
self.fail('command {} failed: {}'.format(' '.join(['sudo', 'modprobe', 'nbd']), completed.stdout.replace('\n', '|')))
</DeepExtract>
self.nbd_client_thread = threading.Thread(target=self.nbd_client, daemon=True, args=(self.version_uid,))
self.nbd_client_thread.start()
self.nbd_server.serve_forever()
self.nbd_client_thread.join()
self.assertEqual({self.version_uid[0]}, {version.uid for version in benji_obj.find_versions_with_filter()})
benji_obj.close() | def test(self):
benji_obj = self.benji_open()
store = BenjiStore(benji_obj)
addr = ('127.0.0.1', self.SERVER_PORT)
read_only = False
discard_changes = False
self.nbd_server = NbdServer(addr, store, read_only, discard_changes)
logger.info('Starting to serve NBD on %s:%s' % (addr[0], addr[1]))
completed = subprocess.run(args=['sudo', 'modprobe', 'nbd'], stdin=subprocess.DEVNULL, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, encoding='utf-8', errors='ignore')
if check and completed.returncode != 0:
self.fail('command {} failed: {}'.format(' '.join(['sudo', 'modprobe', 'nbd']), completed.stdout.replace('\n', '|')))
if success_regexp:
if not re.match(success_regexp, completed.stdout, re.I | re.M | re.S):
self.fail('command {} failed: {}'.format(' '.join(['sudo', 'modprobe', 'nbd']), completed.stdout.replace('\n', '|')))
self.nbd_client_thread = threading.Thread(target=self.nbd_client, daemon=True, args=(self.version_uid,))
self.nbd_client_thread.start()
self.nbd_server.serve_forever()
self.nbd_client_thread.join()
self.assertEqual({self.version_uid[0]}, {version.uid for version in benji_obj.find_versions_with_filter()})
benji_obj.close() | benji | positive |
def one_hot(x, num_classes, *, dtype=None, axis=-1):
"""One-hot encodes the given indicies.
Each index in the input ``x`` is encoded as a vector of zeros of length
``num_classes`` with the element at ``index`` set to one::
>>> import jax.numpy as jnp
>>> one_hot(jnp.array([0, 1, 2]), 3)
Array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]], dtype=float32)
Indicies outside the range [0, num_classes) will be encoded as zeros::
>>> import jax.numpy as jnp
>>> one_hot(jnp.array([-1, 3]), 3)
Array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
Args:
x: A tensor of indices.
num_classes: Number of classes in the one-hot dimension.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
axis: the axis or axes along which the function should be
computed.
"""
num_classes = jax.core.concrete_or_error(int, num_classes, 'The error arose in jax.nn.one_hot argument `num_classes`.')
dtype = jax.dtypes.canonicalize_dtype(jnp.float64 if dtype is None else dtype)
x = jnp.asarray(x.value if isinstance(x, Array) else x)
try:
<DeepExtract>
axis = operator.index(axis)
if not -x.ndim + 1 <= axis < x.ndim + 1:
raise ValueError('axis {} is out of bounds for array of dimension {}'.format(axis, x.ndim + 1))
if axis < 0:
axis = axis + x.ndim + 1
output_pos_axis = axis
</DeepExtract>
except TypeError:
axis_size = jax.lax.psum(1, axis)
if num_classes != axis_size:
raise ValueError(f'Expected num_classes to match the size of axis {axis}, but {num_classes} != {axis_size}') from None
axis_idx = jax.lax.axis_index(axis)
return jnp.asarray(x == axis_idx, dtype=dtype)
axis = operator.index(axis)
lhs = jax.lax.expand_dims(x, (axis,))
rhs_shape = [1] * x.ndim
rhs_shape.insert(output_pos_axis, num_classes)
rhs = jax.lax.broadcast_in_dim(jnp.arange(num_classes, dtype=x.dtype), rhs_shape, (output_pos_axis,))
return jnp.asarray(lhs == rhs, dtype=dtype) | def one_hot(x, num_classes, *, dtype=None, axis=-1):
"""One-hot encodes the given indicies.
Each index in the input ``x`` is encoded as a vector of zeros of length
``num_classes`` with the element at ``index`` set to one::
>>> import jax.numpy as jnp
>>> one_hot(jnp.array([0, 1, 2]), 3)
Array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]], dtype=float32)
Indicies outside the range [0, num_classes) will be encoded as zeros::
>>> import jax.numpy as jnp
>>> one_hot(jnp.array([-1, 3]), 3)
Array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
Args:
x: A tensor of indices.
num_classes: Number of classes in the one-hot dimension.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
axis: the axis or axes along which the function should be
computed.
"""
num_classes = jax.core.concrete_or_error(int, num_classes, 'The error arose in jax.nn.one_hot argument `num_classes`.')
dtype = jax.dtypes.canonicalize_dtype(jnp.float64 if dtype is None else dtype)
x = jnp.asarray(x.value if isinstance(x, Array) else x)
try:
axis = operator.index(axis)
if not -x.ndim + 1 <= axis < x.ndim + 1:
raise ValueError('axis {} is out of bounds for array of dimension {}'.format(axis, x.ndim + 1))
if axis < 0:
axis = axis + x.ndim + 1
output_pos_axis = axis
except TypeError:
axis_size = jax.lax.psum(1, axis)
if num_classes != axis_size:
raise ValueError(f'Expected num_classes to match the size of axis {axis}, but {num_classes} != {axis_size}') from None
axis_idx = jax.lax.axis_index(axis)
return jnp.asarray(x == axis_idx, dtype=dtype)
axis = operator.index(axis)
lhs = jax.lax.expand_dims(x, (axis,))
rhs_shape = [1] * x.ndim
rhs_shape.insert(output_pos_axis, num_classes)
rhs = jax.lax.broadcast_in_dim(jnp.arange(num_classes, dtype=x.dtype), rhs_shape, (output_pos_axis,))
return jnp.asarray(lhs == rhs, dtype=dtype) | BrainPy | positive |
def got_ops_callback(self, ops):
for (op, blockheader, block_index, txs) in ops:
if op == 'add':
<DeepExtract>
with self._lock:
self.set_last_block_index(block_index)
for tx in txs:
self._process_confirmed_tx(tx, blockheader, block_index)
</DeepExtract>
elif op == 'remove':
<DeepExtract>
with self._lock:
self.set_last_block_index(block_index - 1)
self.persistence.invalidate_block_index_for_spendables(block_index)
</DeepExtract>
else:
raise Exception('unknown op: %s' % op) | def got_ops_callback(self, ops):
for (op, blockheader, block_index, txs) in ops:
if op == 'add':
with self._lock:
self.set_last_block_index(block_index)
for tx in txs:
self._process_confirmed_tx(tx, blockheader, block_index)
elif op == 'remove':
with self._lock:
self.set_last_block_index(block_index - 1)
self.persistence.invalidate_block_index_for_spendables(block_index)
else:
raise Exception('unknown op: %s' % op) | dashman | positive |
def autojoin_cb(data, buffer, args):
"""Old behaviour: doesn't save empty channel list"""
"In fact should also save open buffers with a /part'ed channel"
"But I can't believe somebody would want that behaviour"
<DeepExtract>
items = {}
infolist = w.infolist_get('irc_server', '', '')
while w.infolist_next(infolist):
items[w.infolist_string(infolist, 'name')] = ''
w.infolist_free(infolist)
for server in items.keys():
keys = []
channels = []
items[server] = ''
infolist = w.infolist_get('irc_channel', '', server)
while w.infolist_next(infolist):
if w.infolist_integer(infolist, 'nicks_count') == 0:
continue
if w.infolist_integer(infolist, 'type') == 0:
channels.append(w.infolist_string(infolist, 'name'))
key = w.infolist_string(infolist, 'key')
if len(key) > 0:
keys.append(key)
items[server] = ','.join(channels)
if len(keys) > 0:
items[server] += ' %s' % ','.join(keys)
w.infolist_free(infolist)
items = items
</DeepExtract>
for (server, channels) in items.iteritems():
channels = channels.rstrip(',')
if not channels:
continue
command = '/set irc.server.%s.autojoin %s' % (server, channels)
if args == '--run':
w.command('', command)
else:
w.prnt('', command)
return w.WEECHAT_RC_OK | def autojoin_cb(data, buffer, args):
"""Old behaviour: doesn't save empty channel list"""
"In fact should also save open buffers with a /part'ed channel"
"But I can't believe somebody would want that behaviour"
items = {}
infolist = w.infolist_get('irc_server', '', '')
while w.infolist_next(infolist):
items[w.infolist_string(infolist, 'name')] = ''
w.infolist_free(infolist)
for server in items.keys():
keys = []
channels = []
items[server] = ''
infolist = w.infolist_get('irc_channel', '', server)
while w.infolist_next(infolist):
if w.infolist_integer(infolist, 'nicks_count') == 0:
continue
if w.infolist_integer(infolist, 'type') == 0:
channels.append(w.infolist_string(infolist, 'name'))
key = w.infolist_string(infolist, 'key')
if len(key) > 0:
keys.append(key)
items[server] = ','.join(channels)
if len(keys) > 0:
items[server] += ' %s' % ','.join(keys)
w.infolist_free(infolist)
items = items
for (server, channels) in items.iteritems():
channels = channels.rstrip(',')
if not channels:
continue
command = '/set irc.server.%s.autojoin %s' % (server, channels)
if args == '--run':
w.command('', command)
else:
w.prnt('', command)
return w.WEECHAT_RC_OK | dotfiles | positive |
def simple_test(self, img, img_meta, rescale=True):
"""Simple test with single image."""
<DeepExtract>
assert self.test_cfg.mode in ['slide', 'whole']
ori_shape = img_meta[0]['ori_shape']
assert all((_['ori_shape'] == ori_shape for _ in img_meta))
if self.test_cfg.mode == 'slide':
seg_logit = self.slide_inference(img, img_meta, rescale)
else:
seg_logit = self.whole_inference(img, img_meta, rescale)
output = F.softmax(seg_logit, dim=1)
flip = img_meta[0]['flip']
if flip:
flip_direction = img_meta[0]['flip_direction']
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
output = output.flip(dims=(3,))
elif flip_direction == 'vertical':
output = output.flip(dims=(2,))
seg_logit = output
</DeepExtract>
seg_pred = seg_logit.argmax(dim=1)
if torch.onnx.is_in_onnx_export():
seg_pred = seg_pred.unsqueeze(0)
return seg_pred
seg_pred = seg_pred.cpu().numpy()
seg_pred = list(seg_pred)
return seg_pred | def simple_test(self, img, img_meta, rescale=True):
"""Simple test with single image."""
assert self.test_cfg.mode in ['slide', 'whole']
ori_shape = img_meta[0]['ori_shape']
assert all((_['ori_shape'] == ori_shape for _ in img_meta))
if self.test_cfg.mode == 'slide':
seg_logit = self.slide_inference(img, img_meta, rescale)
else:
seg_logit = self.whole_inference(img, img_meta, rescale)
output = F.softmax(seg_logit, dim=1)
flip = img_meta[0]['flip']
if flip:
flip_direction = img_meta[0]['flip_direction']
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
output = output.flip(dims=(3,))
elif flip_direction == 'vertical':
output = output.flip(dims=(2,))
seg_logit = output
seg_pred = seg_logit.argmax(dim=1)
if torch.onnx.is_in_onnx_export():
seg_pred = seg_pred.unsqueeze(0)
return seg_pred
seg_pred = seg_pred.cpu().numpy()
seg_pred = list(seg_pred)
return seg_pred | BPR | positive |
def test_geo_value(self):
"""test whether geo values are valid for specific geo types"""
<DeepExtract>
rows = [CovidcastTestRow.make_default_row(geo_type='msa', geo_value=MSA[i - 1], value=i * 1.0, stderr=i * 10.0, sample_size=i * 100.0) for i in [1, 2, 3]] + [CovidcastTestRow.make_default_row(geo_type='fips', geo_value=FIPS[i - 4], value=i * 1.0, stderr=i * 10.0, sample_size=i * 100.0) for i in [4, 5, 6]]
self._insert_rows(rows)
rows = rows
</DeepExtract>
expected = [row.as_api_compatibility_row_dict() for row in rows[:3]]
def fetch(geo_value):
<DeepExtract>
params = self.params_from_row(rows[0], endpoint='covidcast', **kwargs)
Epidata.BASE_URL = BASE_URL
response = Epidata.covidcast(**params)
response = response
</DeepExtract>
return response
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value=MSA[0])
r = response
</DeepExtract>
self.assertEqual(r['message'], 'success')
self.assertEqual(r['epidata'], expected[0:1])
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value='11111')
r = response
</DeepExtract>
self.assertEqual(r['message'], 'Invalid geo_value(s) 11111 for the requested geo_type msa')
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value=f'{MSA[0]},{MSA[1]}')
r = response
</DeepExtract>
self.assertEqual(r['message'], 'success')
self.assertEqual(r['epidata'], expected[0:2])
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value=f'{MSA[0]},{MSA[2]}')
r = response
</DeepExtract>
self.assertEqual(r['message'], 'success')
self.assertEqual(r['epidata'], [expected[0], expected[2]])
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value=f'{MSA[0]},11111')
r = response
</DeepExtract>
self.assertEqual(r['message'], 'Invalid geo_value(s) 11111 for the requested geo_type msa')
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value='')
r = response
</DeepExtract>
self.assertEqual(r['message'], 'geo_value is empty for the requested geo_type msa!')
<DeepExtract>
response = self.request_based_on_row(rows[0], geo_value=MSA[3])
r = response
</DeepExtract>
self.assertEqual(r['message'], 'no results') | def test_geo_value(self):
"""test whether geo values are valid for specific geo types"""
rows = [CovidcastTestRow.make_default_row(geo_type='msa', geo_value=MSA[i - 1], value=i * 1.0, stderr=i * 10.0, sample_size=i * 100.0) for i in [1, 2, 3]] + [CovidcastTestRow.make_default_row(geo_type='fips', geo_value=FIPS[i - 4], value=i * 1.0, stderr=i * 10.0, sample_size=i * 100.0) for i in [4, 5, 6]]
self._insert_rows(rows)
rows = rows
expected = [row.as_api_compatibility_row_dict() for row in rows[:3]]
def fetch(geo_value):
params = self.params_from_row(rows[0], endpoint='covidcast', **kwargs)
Epidata.BASE_URL = BASE_URL
response = Epidata.covidcast(**params)
response = response
return response
response = self.request_based_on_row(rows[0], geo_value=MSA[0])
r = response
self.assertEqual(r['message'], 'success')
self.assertEqual(r['epidata'], expected[0:1])
response = self.request_based_on_row(rows[0], geo_value='11111')
r = response
self.assertEqual(r['message'], 'Invalid geo_value(s) 11111 for the requested geo_type msa')
response = self.request_based_on_row(rows[0], geo_value=f'{MSA[0]},{MSA[1]}')
r = response
self.assertEqual(r['message'], 'success')
self.assertEqual(r['epidata'], expected[0:2])
response = self.request_based_on_row(rows[0], geo_value=f'{MSA[0]},{MSA[2]}')
r = response
self.assertEqual(r['message'], 'success')
self.assertEqual(r['epidata'], [expected[0], expected[2]])
response = self.request_based_on_row(rows[0], geo_value=f'{MSA[0]},11111')
r = response
self.assertEqual(r['message'], 'Invalid geo_value(s) 11111 for the requested geo_type msa')
response = self.request_based_on_row(rows[0], geo_value='')
r = response
self.assertEqual(r['message'], 'geo_value is empty for the requested geo_type msa!')
response = self.request_based_on_row(rows[0], geo_value=MSA[3])
r = response
self.assertEqual(r['message'], 'no results') | delphi-epidata | positive |
def build_fasttree(aln_file, out_file, clean_up=True, nthreads=1, tree_builder_args=None):
"""
build tree using fasttree
"""
log_file = out_file + '.log'
<DeepExtract>
exe = next(filter(shutil.which, ['FastTreeDblMP', 'FastTreeDbl', 'FastTreeMP', 'fasttreeMP', 'FastTree', 'fasttree']), default)
if exe is None:
print('Unable to find any of %s in PATH=%s' % (['FastTreeDblMP', 'FastTreeDbl', 'FastTreeMP', 'fasttreeMP', 'FastTree', 'fasttree'], os.environ['PATH']))
print('\nHint: You can install the missing program using conda or homebrew or apt-get.\n')
raise Exception
fasttree = exe
</DeepExtract>
extra_env = {'OMP_NUM_THREADS': str(nthreads)}
call = [fasttree, tree_builder_args, shquote(aln_file), '1>', shquote(out_file), '2>', shquote(log_file)]
cmd = ' '.join(call)
print('Building a tree via:\n\t' + cmd + '\n\tPrice et al: FastTree 2 - Approximately Maximum-Likelihood Trees for Large Alignments.' + '\n\tPLoS ONE 5(3): e9490. https://doi.org/10.1371/journal.pone.0009490\n')
try:
run_shell_command(cmd, raise_errors=True, extra_env=extra_env)
T = Phylo.read(out_file, 'newick')
except Exception as error:
print('ERROR: TREE BUILDING FAILED')
print(f'ERROR: {error}')
if os.path.isfile(log_file):
print('Please see the log file for more details: {}'.format(log_file))
T = None
return T | def build_fasttree(aln_file, out_file, clean_up=True, nthreads=1, tree_builder_args=None):
"""
build tree using fasttree
"""
log_file = out_file + '.log'
exe = next(filter(shutil.which, ['FastTreeDblMP', 'FastTreeDbl', 'FastTreeMP', 'fasttreeMP', 'FastTree', 'fasttree']), default)
if exe is None:
print('Unable to find any of %s in PATH=%s' % (['FastTreeDblMP', 'FastTreeDbl', 'FastTreeMP', 'fasttreeMP', 'FastTree', 'fasttree'], os.environ['PATH']))
print('\nHint: You can install the missing program using conda or homebrew or apt-get.\n')
raise Exception
fasttree = exe
extra_env = {'OMP_NUM_THREADS': str(nthreads)}
call = [fasttree, tree_builder_args, shquote(aln_file), '1>', shquote(out_file), '2>', shquote(log_file)]
cmd = ' '.join(call)
print('Building a tree via:\n\t' + cmd + '\n\tPrice et al: FastTree 2 - Approximately Maximum-Likelihood Trees for Large Alignments.' + '\n\tPLoS ONE 5(3): e9490. https://doi.org/10.1371/journal.pone.0009490\n')
try:
run_shell_command(cmd, raise_errors=True, extra_env=extra_env)
T = Phylo.read(out_file, 'newick')
except Exception as error:
print('ERROR: TREE BUILDING FAILED')
print(f'ERROR: {error}')
if os.path.isfile(log_file):
print('Please see the log file for more details: {}'.format(log_file))
T = None
return T | augur | positive |
def get_query_model(name, *args, random_state=None, **kwargs):
"""Get an instance of the query strategy.
Arguments
---------
name: str
Name of the query strategy.
*args:
Arguments for the model.
**kwargs:
Keyword arguments for the model.
Returns
-------
asreview.query.base.BaseQueryModel
Initialized instance of query strategy.
"""
<DeepExtract>
try:
query_class = _model_class_from_entry_point(name, entry_name='asreview.models.query')
except ValueError:
raise ValueError(f"Error: query name '{name}' is not implemented.")
</DeepExtract>
try:
return query_class(*args, random_state=random_state, **kwargs)
except TypeError:
return query_class(*args, **kwargs) | def get_query_model(name, *args, random_state=None, **kwargs):
"""Get an instance of the query strategy.
Arguments
---------
name: str
Name of the query strategy.
*args:
Arguments for the model.
**kwargs:
Keyword arguments for the model.
Returns
-------
asreview.query.base.BaseQueryModel
Initialized instance of query strategy.
"""
try:
query_class = _model_class_from_entry_point(name, entry_name='asreview.models.query')
except ValueError:
raise ValueError(f"Error: query name '{name}' is not implemented.")
try:
return query_class(*args, random_state=random_state, **kwargs)
except TypeError:
return query_class(*args, **kwargs) | asreview | positive |
def _install_tools(env, tools_conf=None):
"""
Install tools needed for Galaxy along with tool configuration
directories needed by Galaxy.
"""
if not tools_conf:
<DeepExtract>
with open(_tools_conf_path(env)) as in_handle:
full_data = yaml.safe_load(in_handle)
tools_conf = full_data
</DeepExtract>
if _read_boolean(env, 'galaxy_install_dependencies', False):
<DeepExtract>
if not env.safe_exists(env.galaxy_tools_dir):
env.safe_sudo('mkdir -p %s' % env.galaxy_tools_dir)
_chown_galaxy(env, env.galaxy_tools_dir)
bin_dir = os.path.join(env.galaxy_tools_dir, 'bin')
if not env.safe_exists(bin_dir):
env.safe_sudo('mkdir -p %s' % bin_dir)
_chown_galaxy(env, bin_dir)
line = 'export PATH={0}:$PATH'.format(bin_dir)
_add_to_profiles(line)
if not env.safe_exists(env.galaxy_jars_dir):
env.safe_sudo('mkdir -p %s' % env.galaxy_jars_dir)
_chown_galaxy(env, env.galaxy_jars_dir)
</DeepExtract>
<DeepExtract>
applications = tools_conf['applications'] or {}
defer_errors = env.get('galaxy_tool_defer_errors', True)
exceptions = {}
for (name, tool_conf) in applications.iteritems():
if not __check_conditional(tool_conf):
continue
try:
_install_application(name, tool_conf)
except BaseException as e:
exceptions[name] = e
if not defer_errors:
break
if exceptions:
for (name, exception) in exceptions.iteritems():
env.logger.warn(FAILED_INSTALL_MESSAGE % name)
first_exception = list(exceptions.values())[0]
raise first_exception
</DeepExtract>
_chown_galaxy(env, env.galaxy_tools_dir)
_chown_galaxy(env, env.galaxy_jars_dir)
if _read_boolean(env, 'galaxy_install_r_packages', False):
_install_r_packages(tools_conf) | def _install_tools(env, tools_conf=None):
"""
Install tools needed for Galaxy along with tool configuration
directories needed by Galaxy.
"""
if not tools_conf:
with open(_tools_conf_path(env)) as in_handle:
full_data = yaml.safe_load(in_handle)
tools_conf = full_data
if _read_boolean(env, 'galaxy_install_dependencies', False):
if not env.safe_exists(env.galaxy_tools_dir):
env.safe_sudo('mkdir -p %s' % env.galaxy_tools_dir)
_chown_galaxy(env, env.galaxy_tools_dir)
bin_dir = os.path.join(env.galaxy_tools_dir, 'bin')
if not env.safe_exists(bin_dir):
env.safe_sudo('mkdir -p %s' % bin_dir)
_chown_galaxy(env, bin_dir)
line = 'export PATH={0}:$PATH'.format(bin_dir)
_add_to_profiles(line)
if not env.safe_exists(env.galaxy_jars_dir):
env.safe_sudo('mkdir -p %s' % env.galaxy_jars_dir)
_chown_galaxy(env, env.galaxy_jars_dir)
applications = tools_conf['applications'] or {}
defer_errors = env.get('galaxy_tool_defer_errors', True)
exceptions = {}
for (name, tool_conf) in applications.iteritems():
if not __check_conditional(tool_conf):
continue
try:
_install_application(name, tool_conf)
except BaseException as e:
exceptions[name] = e
if not defer_errors:
break
if exceptions:
for (name, exception) in exceptions.iteritems():
env.logger.warn(FAILED_INSTALL_MESSAGE % name)
first_exception = list(exceptions.values())[0]
raise first_exception
_chown_galaxy(env, env.galaxy_tools_dir)
_chown_galaxy(env, env.galaxy_jars_dir)
if _read_boolean(env, 'galaxy_install_r_packages', False):
_install_r_packages(tools_conf) | cloudbiolinux | positive |
def gather_options(self):
if not self.initialized:
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
<DeepExtract>
parser.add_argument('--dataroot', type=str, default='.', help='path to images (should have subfolders train, test etc)')
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
parser.add_argument('--loadSize', type=int, default=512, help='scale images to this size')
parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size')
parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels')
parser.add_argument('--output_nc', type=int, default=1, help='# of output image channels')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--netD', type=str, default='basic', help='selects model to use for netD')
parser.add_argument('--netG', type=str, default='unet_256', help='selects model to use for netG')
parser.add_argument('--nnG', type=int, default=9, help='specify nblock for resnet_nblocks, ndown for unet for unet_ndown')
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--dataset_mode', type=str, default='aligned', help='chooses how datasets are loaded. [aligned | single]')
parser.add_argument('--model', type=str, default='apdrawing_gan', help='chooses which model to use. [apdrawing_gan | test]')
parser.add_argument('--use_local', action='store_true', help='use local part network')
parser.add_argument('--comb_op', type=int, default=1, help='use min-pooling(1) or max-pooling(0) for overlapping regions')
parser.add_argument('--lm_dir', type=str, default='dataset/landmark/ALL', help='path to facial landmarks')
parser.add_argument('--bg_dir', type=str, default='dataset/mask/ALL', help='path to background masks')
parser.add_argument('--soft_border', type=int, default=0, help='use mask with soft border')
parser.add_argument('--EYE_H', type=int, default=40, help='EYE_H')
parser.add_argument('--EYE_W', type=int, default=56, help='EYE_W')
parser.add_argument('--NOSE_H', type=int, default=48, help='NOSE_H')
parser.add_argument('--NOSE_W', type=int, default=48, help='NOSE_W')
parser.add_argument('--MOUTH_H', type=int, default=40, help='MOUTH_H')
parser.add_argument('--MOUTH_W', type=int, default=64, help='MOUTH_W')
parser.add_argument('--which_direction', type=str, default='AtoB', help='AtoB or BtoA')
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
parser.add_argument('--auxiliary_root', type=str, default='auxiliary', help='auxiliary model folder')
parser.add_argument('--norm', type=str, default='batch', help='instance normalization or batch normalization')
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--display_winsize', type=int, default=256, help='display window size')
parser.add_argument('--display_id', type=int, default=1, help='window id of the web display')
parser.add_argument('--display_server', type=str, default='http://localhost', help='visdom server of the web display')
parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")')
parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
parser.add_argument('--max_dataset_size', type=int, default=float('inf'), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
parser.add_argument('--resize_or_crop', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{loadSize}')
self.initialized = True
parser = parser
</DeepExtract>
(opt, _) = parser.parse_known_args()
if UseTest:
opt.model = 'test'
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
(opt, _) = parser.parse_known_args()
dataset_name = opt.dataset_mode
dataset_option_setter = data.get_option_setter(dataset_name)
parser = dataset_option_setter(parser, self.isTrain)
self.parser = parser
return parser.parse_args() | def gather_options(self):
if not self.initialized:
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataroot', type=str, default='.', help='path to images (should have subfolders train, test etc)')
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
parser.add_argument('--loadSize', type=int, default=512, help='scale images to this size')
parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size')
parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels')
parser.add_argument('--output_nc', type=int, default=1, help='# of output image channels')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--netD', type=str, default='basic', help='selects model to use for netD')
parser.add_argument('--netG', type=str, default='unet_256', help='selects model to use for netG')
parser.add_argument('--nnG', type=int, default=9, help='specify nblock for resnet_nblocks, ndown for unet for unet_ndown')
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--dataset_mode', type=str, default='aligned', help='chooses how datasets are loaded. [aligned | single]')
parser.add_argument('--model', type=str, default='apdrawing_gan', help='chooses which model to use. [apdrawing_gan | test]')
parser.add_argument('--use_local', action='store_true', help='use local part network')
parser.add_argument('--comb_op', type=int, default=1, help='use min-pooling(1) or max-pooling(0) for overlapping regions')
parser.add_argument('--lm_dir', type=str, default='dataset/landmark/ALL', help='path to facial landmarks')
parser.add_argument('--bg_dir', type=str, default='dataset/mask/ALL', help='path to background masks')
parser.add_argument('--soft_border', type=int, default=0, help='use mask with soft border')
parser.add_argument('--EYE_H', type=int, default=40, help='EYE_H')
parser.add_argument('--EYE_W', type=int, default=56, help='EYE_W')
parser.add_argument('--NOSE_H', type=int, default=48, help='NOSE_H')
parser.add_argument('--NOSE_W', type=int, default=48, help='NOSE_W')
parser.add_argument('--MOUTH_H', type=int, default=40, help='MOUTH_H')
parser.add_argument('--MOUTH_W', type=int, default=64, help='MOUTH_W')
parser.add_argument('--which_direction', type=str, default='AtoB', help='AtoB or BtoA')
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
parser.add_argument('--auxiliary_root', type=str, default='auxiliary', help='auxiliary model folder')
parser.add_argument('--norm', type=str, default='batch', help='instance normalization or batch normalization')
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--display_winsize', type=int, default=256, help='display window size')
parser.add_argument('--display_id', type=int, default=1, help='window id of the web display')
parser.add_argument('--display_server', type=str, default='http://localhost', help='visdom server of the web display')
parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")')
parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
parser.add_argument('--max_dataset_size', type=int, default=float('inf'), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
parser.add_argument('--resize_or_crop', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{loadSize}')
self.initialized = True
parser = parser
(opt, _) = parser.parse_known_args()
if UseTest:
opt.model = 'test'
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
(opt, _) = parser.parse_known_args()
dataset_name = opt.dataset_mode
dataset_option_setter = data.get_option_setter(dataset_name)
parser = dataset_option_setter(parser, self.isTrain)
self.parser = parser
return parser.parse_args() | dualFace | positive |
def esd_pnms(esd, pnms_thresh):
scores = []
dets = []
for ele in esd:
score = ele['score']
quad = ele['ke_quad']
det = np.array([[quad[0][0], quad[0][1]], [quad[1][0], quad[1][1]], [quad[2][0], quad[2][1]], [quad[3][0], quad[3][1]]])
scores.append(score)
dets.append(det)
scores = np.array(scores)
dets = np.array(dets)
<DeepExtract>
pts = []
for det in dets:
pts.append([[det[i][0], det[i][1]] for i in range(len(det))])
order = scores.argsort()[::-1]
areas = np.zeros(scores.shape)
order = scores.argsort()[::-1]
inter_areas = np.zeros((scores.shape[0], scores.shape[0]))
for il in range(len(pts)):
poly = Polygon(pts[il])
areas[il] = poly.area
for jl in range(il, len(pts)):
polyj = Polygon(pts[jl])
try:
inS = poly.intersection(polyj)
except:
print(poly, polyj)
inter_areas[il][jl] = inS.area
inter_areas[jl][il] = inS.area
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = inter_areas[i][order[1:]] / (areas[i] + areas[order[1:]] - inter_areas[i][order[1:]])
inds = np.where(ovr <= pnms_thresh)[0]
order = order[inds + 1]
keep = keep
</DeepExtract>
return keep | def esd_pnms(esd, pnms_thresh):
scores = []
dets = []
for ele in esd:
score = ele['score']
quad = ele['ke_quad']
det = np.array([[quad[0][0], quad[0][1]], [quad[1][0], quad[1][1]], [quad[2][0], quad[2][1]], [quad[3][0], quad[3][1]]])
scores.append(score)
dets.append(det)
scores = np.array(scores)
dets = np.array(dets)
pts = []
for det in dets:
pts.append([[det[i][0], det[i][1]] for i in range(len(det))])
order = scores.argsort()[::-1]
areas = np.zeros(scores.shape)
order = scores.argsort()[::-1]
inter_areas = np.zeros((scores.shape[0], scores.shape[0]))
for il in range(len(pts)):
poly = Polygon(pts[il])
areas[il] = poly.area
for jl in range(il, len(pts)):
polyj = Polygon(pts[jl])
try:
inS = poly.intersection(polyj)
except:
print(poly, polyj)
inter_areas[il][jl] = inS.area
inter_areas[jl][il] = inS.area
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = inter_areas[i][order[1:]] / (areas[i] + areas[order[1:]] - inter_areas[i][order[1:]])
inds = np.where(ovr <= pnms_thresh)[0]
order = order[inds + 1]
keep = keep
return keep | Box_Discretization_Network | positive |
def Max(self, k):
"""Computes the CDF of the maximum of k selections from this dist.
k: int
returns: new Cdf
"""
<DeepExtract>
new = copy.copy(self)
new.d = copy.copy(self.d)
new.label = label if label is not None else self.label
cdf = new
</DeepExtract>
cdf.ps **= k
return cdf | def Max(self, k):
"""Computes the CDF of the maximum of k selections from this dist.
k: int
returns: new Cdf
"""
new = copy.copy(self)
new.d = copy.copy(self.d)
new.label = label if label is not None else self.label
cdf = new
cdf.ps **= k
return cdf | data-science-ipython-notebooks | positive |
def __init__(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None):
data = [] if data is None else data
files = [] if files is None else files
headers = {} if headers is None else headers
params = {} if params is None else params
hooks = {} if hooks is None else hooks
self.hooks = default_hooks()
for (k, v) in list(hooks.items()):
<DeepExtract>
if k not in self.hooks:
raise ValueError('Unsupported event specified, with event name "%s"' % k)
if isinstance(v, Callable):
self.hooks[k].append(v)
elif hasattr(v, '__iter__'):
self.hooks[k].extend((h for h in v if isinstance(h, Callable)))
</DeepExtract>
self.method = method
self.url = url
self.headers = headers
self.files = files
self.data = data
self.json = json
self.params = params
self.auth = auth
self.cookies = cookies | def __init__(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None):
data = [] if data is None else data
files = [] if files is None else files
headers = {} if headers is None else headers
params = {} if params is None else params
hooks = {} if hooks is None else hooks
self.hooks = default_hooks()
for (k, v) in list(hooks.items()):
if k not in self.hooks:
raise ValueError('Unsupported event specified, with event name "%s"' % k)
if isinstance(v, Callable):
self.hooks[k].append(v)
elif hasattr(v, '__iter__'):
self.hooks[k].extend((h for h in v if isinstance(h, Callable)))
self.method = method
self.url = url
self.headers = headers
self.files = files
self.data = data
self.json = json
self.params = params
self.auth = auth
self.cookies = cookies | alexa-sky-hd | positive |
def flatten_sequence(self, sequence, gold_snippets=False):
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
if gold_snippets:
no_snippets_sequence = self.interaction.expand_snippets(sequence)
else:
<DeepExtract>
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
no_snippets_sequence = self.interaction.expand_snippets(sequence)
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
no_snippets_sequence = no_snippets_sequence
</DeepExtract>
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
deanon_sequence = self.interaction.deanonymize(no_snippets_sequence, 'sql')
return deanon_sequence | def flatten_sequence(self, sequence, gold_snippets=False):
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
if gold_snippets:
no_snippets_sequence = self.interaction.expand_snippets(sequence)
else:
if sequence[-1] == vocab.EOS_TOK:
sequence = sequence[:-1]
no_snippets_sequence = self.interaction.expand_snippets(sequence)
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
no_snippets_sequence = no_snippets_sequence
no_snippets_sequence = sql_util.fix_parentheses(no_snippets_sequence)
deanon_sequence = self.interaction.deanonymize(no_snippets_sequence, 'sql')
return deanon_sequence | editsql | positive |
def get_children(parent, tag_name):
if parent is None:
return []
<DeepExtract>
if parent is None:
parent = self.root
ret = parent.findall('.//' + self.ns + tag_name)
</DeepExtract>
if not ret:
<DeepExtract>
if parent is None:
parent = self.root
ret_list = parent.findall('.//' + self.ns + tag_name + '-REF')
</DeepExtract>
ret = [self.get_short_name_path(item.text) for item in ret_list]
if len(ret) > 0:
raise 'use follow_all_ref!'
return ret | def get_children(parent, tag_name):
if parent is None:
return []
if parent is None:
parent = self.root
ret = parent.findall('.//' + self.ns + tag_name)
if not ret:
if parent is None:
parent = self.root
ret_list = parent.findall('.//' + self.ns + tag_name + '-REF')
ret = [self.get_short_name_path(item.text) for item in ret_list]
if len(ret) > 0:
raise 'use follow_all_ref!'
return ret | canmatrix | positive |
@ddt.data(*CourseSamples.course_ids)
def test_any_activity(self, course_id):
<DeepExtract>
raise NotImplementedError
</DeepExtract>
<DeepExtract>
response = self.authenticated_get('/api/v0/courses/{}/recent_activity?activity_type={}'.format(course_id, 'ANY'))
self.assertEqual(response.status_code, 200)
self.assertEqual(response.data, self.get_activity_record(course_id=course_id, activity_type='ANY', count=300))
</DeepExtract>
<DeepExtract>
response = self.authenticated_get('/api/v0/courses/{}/recent_activity?activity_type={}'.format(course_id, 'any'))
self.assertEqual(response.status_code, 200)
self.assertEqual(response.data, self.get_activity_record(course_id=course_id, activity_type='any', count=300))
</DeepExtract> | @ddt.data(*CourseSamples.course_ids)
def test_any_activity(self, course_id):
raise NotImplementedError
response = self.authenticated_get('/api/v0/courses/{}/recent_activity?activity_type={}'.format(course_id, 'ANY'))
self.assertEqual(response.status_code, 200)
self.assertEqual(response.data, self.get_activity_record(course_id=course_id, activity_type='ANY', count=300))
response = self.authenticated_get('/api/v0/courses/{}/recent_activity?activity_type={}'.format(course_id, 'any'))
self.assertEqual(response.status_code, 200)
self.assertEqual(response.data, self.get_activity_record(course_id=course_id, activity_type='any', count=300))
</DeepExtract> | edx-analytics-data-api | positive |
def regularization(self, train_targets, train_features, coef=None, featselect_featvar=False):
"""Generate the omgea2 and coef value's.
Parameters
----------
train_targets : array
Dependent data used for training.
train_features : array
Independent data used for training.
coef : int
List of indices in the feature database.
"""
reg_data = {'result': None}
if coef is None:
<DeepExtract>
omega2_min = float('inf')
omega2_list = []
epe_list = []
if self.W2 is None or self.Vh is None:
(V, self.W2, self.Vh) = np.linalg.svd(np.dot(train_features.T, train_features), full_matrices=True)
if self.cv is 'loocv':
(U, W, Vh) = np.linalg.svd(train_features, full_matrices=False)
(whigh, wlow) = (np.log(self.W2[0] * 2.0), np.log(self.W2[-1] * 0.5))
basesearchwidth = whigh - wlow
omega2_range = [1e-06 * np.exp(wlow)]
for pp in np.linspace(wlow, whigh, self.wsteps):
omega2_range.append(np.exp(pp))
omega2_range.append(1000000.0 * np.exp(whigh))
for s in range(self.rsteps):
if self.cv is 'bootstrap':
BS_res = self._bootstrap_master(train_features, train_targets, p, omega2_range, self.Ns)
(_, _, epe_list_i, _) = BS_res
if self.cv is 'loocv':
epe_list_i = self._LOOCV_l(train_features, train_targets, p, omega2_range, U, W)
omega2_list += omega2_range
epe_list += epe_list_i.tolist()
epe_ind = np.argmin(epe_list)
omega2_min = omega2_list[epe_ind]
if s is 0 and epe_ind is 0 or epe_ind is len(omega2_list) - 1:
b = omega2_min
logmin_epe = np.log(omega2_min)
basesearchwidth = 2 * basesearchwidth / (self.wsteps - 1)
wlow = logmin_epe - basesearchwidth * 0.5
whigh = logmin_epe + basesearchwidth * 0.5
omega2_range = []
for pp in np.linspace(wlow, whigh, self.wsteps):
omega2_range.append(np.exp(pp))
b = omega2_min
</DeepExtract>
coef = self.RR(train_features, train_targets, omega2=b, featselect_featvar=featselect_featvar)[0]
reg_data['result'] = (coef, b)
return reg_data | def regularization(self, train_targets, train_features, coef=None, featselect_featvar=False):
"""Generate the omgea2 and coef value's.
Parameters
----------
train_targets : array
Dependent data used for training.
train_features : array
Independent data used for training.
coef : int
List of indices in the feature database.
"""
reg_data = {'result': None}
if coef is None:
omega2_min = float('inf')
omega2_list = []
epe_list = []
if self.W2 is None or self.Vh is None:
(V, self.W2, self.Vh) = np.linalg.svd(np.dot(train_features.T, train_features), full_matrices=True)
if self.cv is 'loocv':
(U, W, Vh) = np.linalg.svd(train_features, full_matrices=False)
(whigh, wlow) = (np.log(self.W2[0] * 2.0), np.log(self.W2[-1] * 0.5))
basesearchwidth = whigh - wlow
omega2_range = [1e-06 * np.exp(wlow)]
for pp in np.linspace(wlow, whigh, self.wsteps):
omega2_range.append(np.exp(pp))
omega2_range.append(1000000.0 * np.exp(whigh))
for s in range(self.rsteps):
if self.cv is 'bootstrap':
BS_res = self._bootstrap_master(train_features, train_targets, p, omega2_range, self.Ns)
(_, _, epe_list_i, _) = BS_res
if self.cv is 'loocv':
epe_list_i = self._LOOCV_l(train_features, train_targets, p, omega2_range, U, W)
omega2_list += omega2_range
epe_list += epe_list_i.tolist()
epe_ind = np.argmin(epe_list)
omega2_min = omega2_list[epe_ind]
if s is 0 and epe_ind is 0 or epe_ind is len(omega2_list) - 1:
b = omega2_min
logmin_epe = np.log(omega2_min)
basesearchwidth = 2 * basesearchwidth / (self.wsteps - 1)
wlow = logmin_epe - basesearchwidth * 0.5
whigh = logmin_epe + basesearchwidth * 0.5
omega2_range = []
for pp in np.linspace(wlow, whigh, self.wsteps):
omega2_range.append(np.exp(pp))
b = omega2_min
coef = self.RR(train_features, train_targets, omega2=b, featselect_featvar=featselect_featvar)[0]
reg_data['result'] = (coef, b)
return reg_data | CatLearn | positive |
def main():
parser = argparse.ArgumentParser(description='PyTorch Object Detection Training')
parser.add_argument('--config-file', default='', metavar='FILE', help='path to config file', type=str)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--skip-test', dest='skip_test', help='Do not test the final model', action='store_true')
parser.add_argument('opts', help='Modify config options using the command-line', default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger('maskrcnn_benchmark', output_dir, get_rank())
logger.info('Using {} GPUs'.format(num_gpus))
logger.info(args)
logger.info('Collecting env info (might take some time)')
logger.info('\n' + collect_env_info())
logger.info('Loaded configuration file {}'.format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = '\n' + cf.read()
logger.info(config_str)
logger.info('Running with config:\n{}'.format(cfg))
<DeepExtract>
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizers = make_optimizer(cfg, model)
schedulers = make_lr_scheduler(cfg, optimizers)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, broadcast_buffers=False)
arguments = {}
arguments['iteration'] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(cfg, model, optimizers, schedulers, output_dir, save_to_disk)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(cfg, is_train=True, is_distributed=args.distributed, start_iter=arguments['iteration'])
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(model, data_loader, optimizers, schedulers, checkpointer, device, checkpoint_period, arguments)
model = model
</DeepExtract>
if not args.skip_test:
<DeepExtract>
if args.distributed:
model = model.module
torch.cuda.empty_cache()
iou_types = ('bbox',)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ('segm',)
if cfg.MODEL.KEYPOINT_ON:
iou_types = iou_types + ('keypoints',)
output_folders = [None] * len(cfg.DATASETS.TEST)
dataset_names = cfg.DATASETS.TEST
if cfg.OUTPUT_DIR:
for (idx, dataset_name) in enumerate(dataset_names):
output_folder = os.path.join(cfg.OUTPUT_DIR, 'inference', dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=args.distributed)
for (output_folder, dataset_name, data_loader_val) in zip(output_folders, dataset_names, data_loaders_val):
inference(model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder)
synchronize()
</DeepExtract> | def main():
parser = argparse.ArgumentParser(description='PyTorch Object Detection Training')
parser.add_argument('--config-file', default='', metavar='FILE', help='path to config file', type=str)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--skip-test', dest='skip_test', help='Do not test the final model', action='store_true')
parser.add_argument('opts', help='Modify config options using the command-line', default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger('maskrcnn_benchmark', output_dir, get_rank())
logger.info('Using {} GPUs'.format(num_gpus))
logger.info(args)
logger.info('Collecting env info (might take some time)')
logger.info('\n' + collect_env_info())
logger.info('Loaded configuration file {}'.format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = '\n' + cf.read()
logger.info(config_str)
logger.info('Running with config:\n{}'.format(cfg))
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizers = make_optimizer(cfg, model)
schedulers = make_lr_scheduler(cfg, optimizers)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, broadcast_buffers=False)
arguments = {}
arguments['iteration'] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(cfg, model, optimizers, schedulers, output_dir, save_to_disk)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(cfg, is_train=True, is_distributed=args.distributed, start_iter=arguments['iteration'])
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(model, data_loader, optimizers, schedulers, checkpointer, device, checkpoint_period, arguments)
model = model
if not args.skip_test:
if args.distributed:
model = model.module
torch.cuda.empty_cache()
iou_types = ('bbox',)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ('segm',)
if cfg.MODEL.KEYPOINT_ON:
iou_types = iou_types + ('keypoints',)
output_folders = [None] * len(cfg.DATASETS.TEST)
dataset_names = cfg.DATASETS.TEST
if cfg.OUTPUT_DIR:
for (idx, dataset_name) in enumerate(dataset_names):
output_folder = os.path.join(cfg.OUTPUT_DIR, 'inference', dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=args.distributed)
for (output_folder, dataset_name, data_loader_val) in zip(output_folders, dataset_names, data_loaders_val):
inference(model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder)
synchronize()
</DeepExtract> | AE-WTN | positive |
def start_proxy_process(self):
<DeepExtract>
out = [_PROXY_EXE, '-address', self.address, '-tcp-address', self.tcp_address, '-api-url', self.gateway_url + '/api/v1/routes', '-log-level', self.log_level]
if is_child_process:
out.append('-is-child-process')
if bool(self.tls_cert) != bool(self.tls_key):
raise ValueError('Must set both tls_cert and tls_key')
if self.tls_cert:
out.extend(['-tls-cert', self.tls_cert, '-tls-key', self.tls_key])
command = out
</DeepExtract>
<DeepExtract>
env = os.environ.copy()
env['DASK_GATEWAY_PROXY_TOKEN'] = self.api_token
env = env
</DeepExtract>
self.log.info('Starting the Dask gateway proxy...')
proc = subprocess.Popen(command, env=env, stdin=subprocess.PIPE, stdout=None, stderr=None, start_new_session=True)
self.proxy_process = proc
self.log.info('Dask gateway proxy started')
self.log.info('- %s routes listening at %s://%s', 'HTTPS' if self.tls_cert else 'HTTP', 'https' if self.tls_cert else 'http', self.address)
self.log.info('- Scheduler routes listening at gateway://%s', self.tcp_address) | def start_proxy_process(self):
out = [_PROXY_EXE, '-address', self.address, '-tcp-address', self.tcp_address, '-api-url', self.gateway_url + '/api/v1/routes', '-log-level', self.log_level]
if is_child_process:
out.append('-is-child-process')
if bool(self.tls_cert) != bool(self.tls_key):
raise ValueError('Must set both tls_cert and tls_key')
if self.tls_cert:
out.extend(['-tls-cert', self.tls_cert, '-tls-key', self.tls_key])
command = out
env = os.environ.copy()
env['DASK_GATEWAY_PROXY_TOKEN'] = self.api_token
env = env
self.log.info('Starting the Dask gateway proxy...')
proc = subprocess.Popen(command, env=env, stdin=subprocess.PIPE, stdout=None, stderr=None, start_new_session=True)
self.proxy_process = proc
self.log.info('Dask gateway proxy started')
self.log.info('- %s routes listening at %s://%s', 'HTTPS' if self.tls_cert else 'HTTP', 'https' if self.tls_cert else 'http', self.address)
self.log.info('- Scheduler routes listening at gateway://%s', self.tcp_address) | dask-gateway | positive |
@model.methodwrap(va=SVa, pid=SPid)
def munmap(self, va, pid):
<DeepExtract>
if str(pid).startswith('a.'):
simsym.assume(pid == False)
</DeepExtract>
del self.getproc(pid).va_map[va]
return {'r': 0} | @model.methodwrap(va=SVa, pid=SPid)
def munmap(self, va, pid):
if str(pid).startswith('a.'):
simsym.assume(pid == False)
del self.getproc(pid).va_map[va]
return {'r': 0} | commuter | positive |
def testBatchGradientDescentNormalizedBacktrackF7PL0(self):
epsilon = 12
attack = attacks.batch_gradient_descent.BatchGradientDescent()
attack.max_iterations = 10
attack.base_lr = 100
attack.momentum = 0
attack.c = 0
attack.lr_factor = 1.5
attack.normalized = True
attack.backtrack = True
attack.initialization = attacks.initializations.L0UniformNormInitialization(epsilon)
attack.projection = attacks.projections.SequentialProjections([attacks.projections.L0Projection(epsilon), attacks.projections.BoxProjection()])
attack.norm = attacks.norms.L0Norm()
<DeepExtract>
for (b, (images, labels)) in enumerate(self.adversarialloader):
break
images = common.torch.as_variable(images, self.cuda).permute(0, 3, 1, 2)
labels = common.torch.as_variable(labels, self.cuda)
success_rate = 0
for t in range(5):
attacks.objectives.UntargetedF7PObjective().set(labels)
(perturbations, errors) = attack.run(self.model, images, attacks.objectives.UntargetedF7PObjective())
perturbations = numpy.array([numpy.transpose(perturbations, (0, 2, 3, 1))])
success_rate += self.successRate(numpy.transpose(images.cpu().numpy(), (0, 2, 3, 1)), perturbations, labels.cpu().numpy())
success_rate /= 5
success_rate = success_rate
</DeepExtract>
self.assertGreaterEqual(success_rate, 0.95) | def testBatchGradientDescentNormalizedBacktrackF7PL0(self):
epsilon = 12
attack = attacks.batch_gradient_descent.BatchGradientDescent()
attack.max_iterations = 10
attack.base_lr = 100
attack.momentum = 0
attack.c = 0
attack.lr_factor = 1.5
attack.normalized = True
attack.backtrack = True
attack.initialization = attacks.initializations.L0UniformNormInitialization(epsilon)
attack.projection = attacks.projections.SequentialProjections([attacks.projections.L0Projection(epsilon), attacks.projections.BoxProjection()])
attack.norm = attacks.norms.L0Norm()
for (b, (images, labels)) in enumerate(self.adversarialloader):
break
images = common.torch.as_variable(images, self.cuda).permute(0, 3, 1, 2)
labels = common.torch.as_variable(labels, self.cuda)
success_rate = 0
for t in range(5):
attacks.objectives.UntargetedF7PObjective().set(labels)
(perturbations, errors) = attack.run(self.model, images, attacks.objectives.UntargetedF7PObjective())
perturbations = numpy.array([numpy.transpose(perturbations, (0, 2, 3, 1))])
success_rate += self.successRate(numpy.transpose(images.cpu().numpy(), (0, 2, 3, 1)), perturbations, labels.cpu().numpy())
success_rate /= 5
success_rate = success_rate
self.assertGreaterEqual(success_rate, 0.95) | confidence-calibrated-adversarial-training | positive |
def __init__(self, path, conf):
self.filename = path
self.tzinfo = conf.get('tzinfo', None)
self.defaultcopywildcard = conf.get('copy_wildcard', '_[0-9]*.*')
with io.open(path, 'r', encoding='utf-8', errors='replace') as fp:
peak = lchop(fp.read(512), BOM_UTF8)
fp.seek(0)
if peak.startswith('---\n'):
<DeepExtract>
head = []
i = 0
while True:
line = fp.readline()
i += 1
if i == 1 and (not line.startswith('---')):
raise AcrylamidException('no meta information in %r found' % fp.name)
elif i > 1 and (not line.startswith('---')):
head.append(line)
elif i > 1 and line.startswith('---') or not line:
break
if yaml:
try:
(i, meta) = (i, yaml.load(''.join(head)))
except yaml.YAMLError as e:
raise AcrylamidException('YAMLError: %s' % str(e))
else:
props = {}
for (j, line) in enumerate(head):
if line[0] == '#' or not line.strip():
continue
try:
(key, value) = [x.strip() for x in line.split(':', 1)]
except ValueError:
raise AcrylamidException('%s:%i ValueError: %s\n%s' % (fp.name, j, line.strip('\n'), 'Either your YAML is malformed or our naïve parser is to dumb \nto read it. Revalidate your YAML or install PyYAML parser with \n> easy_install -U pyyaml'))
props[key] = distinguish(value)
if 'title' not in props:
raise AcrylamidException('No title given in %r' % fp.name)
(i, meta) = (i, props)
</DeepExtract>
elif isrest(peak):
<DeepExtract>
import docutils
from docutils.core import publish_doctree
title = fp.readline().strip('\n')
dash = fp.readline().strip('\n')
if not title or not dash:
raise AcrylamidException('No title given in %r' % fp.name)
if len(dash) < len(title) or dash.count(dash[0]) < len(dash):
raise AcrylamidException('title line does not match second line %r' % fp.name)
i = 2
meta = []
while True:
line = fp.readline()
i += 1
if not line.strip() and i == 3:
continue
elif not line.strip():
break
else:
meta.append(line)
document = publish_doctree(''.join(meta))
meta = dict(title=title)
for docinfo in document.traverse(docutils.nodes.docinfo):
for element in docinfo.children:
if element.tagname == 'field':
(name_elem, body_elem) = element.children
name = name_elem.astext()
value = body_elem.astext()
else:
name = element.tagname
value = element.astext()
name = name.lower()
if '\n\n' in value:
value = value.split('\n\n')
elif '\n' in value:
value = value.replace('\n', ' ')
meta[name] = distinguish(value.split('\n\n') if '\n\n' in value else value)
(i, meta) = (i, meta)
</DeepExtract>
elif peak.startswith('% '):
<DeepExtract>
meta_pan_re = re.compile('^[ ]{0,3}%+\\s*(?P<value>.*)')
meta_pan_more_re = re.compile('^\\s*(?P<value>.*)')
meta_pan_authsplit = re.compile(';+\\s*')
(i, j) = (0, 0)
(meta, key) = ({}, None)
poss_keys = ['title', 'author', 'date']
while True:
line = fp.readline()
i += 1
if line.strip() == '':
break
if j + 1 > len(poss_keys):
raise AcrylamidException('%r has too many items in the Pandoc title block.' % fp.name)
m1 = meta_pan_re.match(line)
if m1:
key = poss_keys[j]
j += 1
valstrip = m1.group('value').strip()
if not valstrip:
continue
value = distinguish(m1.group('value').strip())
if key == 'author':
value = value.strip(';')
value = meta_pan_authsplit.split(value)
meta.setdefault(key, []).append(value)
else:
m2 = meta_pan_more_re.match(line)
if m2 and key:
value = m2.group('value').strip()
if key == 'author':
value = value.strip(';')
value = meta_pan_authsplit.split(value)
meta[key].append(value)
else:
break
if 'title' not in meta:
raise AcrylamidException('No title given in %r' % fp.name)
if len(meta['title']) > 1:
meta['title'] = ' '.join(meta['title'])
if 'author' in meta:
meta['author'] = sum(meta['author'], [])
else:
log.warn('%s does not have an Author in the Pandoc title block.' % fp.name)
for (key, values) in iteritems(meta):
if len(values) == 1:
meta[key] = values[0]
(i, meta) = (i, meta)
</DeepExtract>
else:
<DeepExtract>
meta_re = re.compile('^[ ]{0,3}(?P<key>[A-Za-z0-9._-]+):\\s*(?P<value>.*)')
meta_more_re = re.compile('^[ ]{4,}(?P<value>.*)')
i = 0
(meta, key) = ({}, None)
while True:
line = fp.readline()
i += 1
if line.strip() == '':
break
m1 = meta_re.match(line)
if m1:
key = m1.group('key').lower().strip()
value = distinguish(m1.group('value').strip())
meta.setdefault(key, []).append(value)
else:
m2 = meta_more_re.match(line)
if m2 and key:
meta[key].append(m2.group('value').strip())
else:
break
if not meta:
raise AcrylamidException('no meta information in %r found' % fp.name)
for (key, values) in iteritems(meta):
if len(values) == 1:
meta[key] = values[0]
(i, meta) = (i, meta)
</DeepExtract>
meta['title'] = str(meta['title'])
meta['category'] = lchop(dirname(path) + '/', conf['content_dir']).split('/')
jekyll = '(?:(.+?)/)?(\\d{4}-\\d{2}-\\d{2})-(.+)'
m = re.match('^' + conf['content_dir'] + jekyll + '$', splitext(path)[0])
if m:
meta.setdefault('date', m.group(2))
meta.setdefault('slug', m.group(3))
if m.group(1) is not None:
meta['category'] = m.group(1).split('/')
self.offset = i
Reader.__init__(self, conf, meta)
(path, ext) = os.path.splitext(path)
self.path = lchop(path, conf['content_dir'])
self.extension = ext[1:] | def __init__(self, path, conf):
self.filename = path
self.tzinfo = conf.get('tzinfo', None)
self.defaultcopywildcard = conf.get('copy_wildcard', '_[0-9]*.*')
with io.open(path, 'r', encoding='utf-8', errors='replace') as fp:
peak = lchop(fp.read(512), BOM_UTF8)
fp.seek(0)
if peak.startswith('---\n'):
head = []
i = 0
while True:
line = fp.readline()
i += 1
if i == 1 and (not line.startswith('---')):
raise AcrylamidException('no meta information in %r found' % fp.name)
elif i > 1 and (not line.startswith('---')):
head.append(line)
elif i > 1 and line.startswith('---') or not line:
break
if yaml:
try:
(i, meta) = (i, yaml.load(''.join(head)))
except yaml.YAMLError as e:
raise AcrylamidException('YAMLError: %s' % str(e))
else:
props = {}
for (j, line) in enumerate(head):
if line[0] == '#' or not line.strip():
continue
try:
(key, value) = [x.strip() for x in line.split(':', 1)]
except ValueError:
raise AcrylamidException('%s:%i ValueError: %s\n%s' % (fp.name, j, line.strip('\n'), 'Either your YAML is malformed or our naïve parser is to dumb \nto read it. Revalidate your YAML or install PyYAML parser with \n> easy_install -U pyyaml'))
props[key] = distinguish(value)
if 'title' not in props:
raise AcrylamidException('No title given in %r' % fp.name)
(i, meta) = (i, props)
elif isrest(peak):
import docutils
from docutils.core import publish_doctree
title = fp.readline().strip('\n')
dash = fp.readline().strip('\n')
if not title or not dash:
raise AcrylamidException('No title given in %r' % fp.name)
if len(dash) < len(title) or dash.count(dash[0]) < len(dash):
raise AcrylamidException('title line does not match second line %r' % fp.name)
i = 2
meta = []
while True:
line = fp.readline()
i += 1
if not line.strip() and i == 3:
continue
elif not line.strip():
break
else:
meta.append(line)
document = publish_doctree(''.join(meta))
meta = dict(title=title)
for docinfo in document.traverse(docutils.nodes.docinfo):
for element in docinfo.children:
if element.tagname == 'field':
(name_elem, body_elem) = element.children
name = name_elem.astext()
value = body_elem.astext()
else:
name = element.tagname
value = element.astext()
name = name.lower()
if '\n\n' in value:
value = value.split('\n\n')
elif '\n' in value:
value = value.replace('\n', ' ')
meta[name] = distinguish(value.split('\n\n') if '\n\n' in value else value)
(i, meta) = (i, meta)
elif peak.startswith('% '):
meta_pan_re = re.compile('^[ ]{0,3}%+\\s*(?P<value>.*)')
meta_pan_more_re = re.compile('^\\s*(?P<value>.*)')
meta_pan_authsplit = re.compile(';+\\s*')
(i, j) = (0, 0)
(meta, key) = ({}, None)
poss_keys = ['title', 'author', 'date']
while True:
line = fp.readline()
i += 1
if line.strip() == '':
break
if j + 1 > len(poss_keys):
raise AcrylamidException('%r has too many items in the Pandoc title block.' % fp.name)
m1 = meta_pan_re.match(line)
if m1:
key = poss_keys[j]
j += 1
valstrip = m1.group('value').strip()
if not valstrip:
continue
value = distinguish(m1.group('value').strip())
if key == 'author':
value = value.strip(';')
value = meta_pan_authsplit.split(value)
meta.setdefault(key, []).append(value)
else:
m2 = meta_pan_more_re.match(line)
if m2 and key:
value = m2.group('value').strip()
if key == 'author':
value = value.strip(';')
value = meta_pan_authsplit.split(value)
meta[key].append(value)
else:
break
if 'title' not in meta:
raise AcrylamidException('No title given in %r' % fp.name)
if len(meta['title']) > 1:
meta['title'] = ' '.join(meta['title'])
if 'author' in meta:
meta['author'] = sum(meta['author'], [])
else:
log.warn('%s does not have an Author in the Pandoc title block.' % fp.name)
for (key, values) in iteritems(meta):
if len(values) == 1:
meta[key] = values[0]
(i, meta) = (i, meta)
else:
meta_re = re.compile('^[ ]{0,3}(?P<key>[A-Za-z0-9._-]+):\\s*(?P<value>.*)')
meta_more_re = re.compile('^[ ]{4,}(?P<value>.*)')
i = 0
(meta, key) = ({}, None)
while True:
line = fp.readline()
i += 1
if line.strip() == '':
break
m1 = meta_re.match(line)
if m1:
key = m1.group('key').lower().strip()
value = distinguish(m1.group('value').strip())
meta.setdefault(key, []).append(value)
else:
m2 = meta_more_re.match(line)
if m2 and key:
meta[key].append(m2.group('value').strip())
else:
break
if not meta:
raise AcrylamidException('no meta information in %r found' % fp.name)
for (key, values) in iteritems(meta):
if len(values) == 1:
meta[key] = values[0]
(i, meta) = (i, meta)
meta['title'] = str(meta['title'])
meta['category'] = lchop(dirname(path) + '/', conf['content_dir']).split('/')
jekyll = '(?:(.+?)/)?(\\d{4}-\\d{2}-\\d{2})-(.+)'
m = re.match('^' + conf['content_dir'] + jekyll + '$', splitext(path)[0])
if m:
meta.setdefault('date', m.group(2))
meta.setdefault('slug', m.group(3))
if m.group(1) is not None:
meta['category'] = m.group(1).split('/')
self.offset = i
Reader.__init__(self, conf, meta)
(path, ext) = os.path.splitext(path)
self.path = lchop(path, conf['content_dir'])
self.extension = ext[1:] | acrylamid | positive |
def __call__(self, batch, output, attns, normalization=1.0, shard_size=0, trunc_start=0, trunc_size=None):
"""Compute the forward loss, possibly in shards in which case this
method also runs the backward pass and returns ``None`` as the loss
value.
Also supports truncated BPTT for long sequences by taking a
range in the decoder output sequence to back propagate in.
Range is from `(trunc_start, trunc_start + trunc_size)`.
Note sharding is an exact efficiency trick to relieve memory
required for the generation buffers. Truncation is an
approximate efficiency trick to relieve the memory required
in the RNN buffers.
Args:
batch (batch) : batch of labeled examples
output (:obj:`FloatTensor`) :
output of decoder model `[tgt_len x batch x hidden]`
attns (dict) : dictionary of attention distributions
`[tgt_len x batch x src_len]`
normalization: Optional normalization factor.
shard_size (int) : maximum number of examples in a shard
trunc_start (int) : starting position of truncation window
trunc_size (int) : length of truncation window
Returns:
A tuple with the loss and a :obj:`onmt.utils.Statistics` instance.
"""
if trunc_size is None:
trunc_size = batch.tgt.size(0) - trunc_start
trunc_range = (trunc_start, trunc_start + trunc_size)
<DeepExtract>
shard_state = NotImplementedError
</DeepExtract>
if shard_size == 0:
<DeepExtract>
(loss, stats) = NotImplementedError
</DeepExtract>
return (loss / float(normalization), stats)
batch_stats = onmt.utils.Statistics()
for shard in shards(shard_state, shard_size):
<DeepExtract>
(loss, stats) = NotImplementedError
</DeepExtract>
loss.div(float(normalization)).backward()
batch_stats.update(stats)
return (None, batch_stats) | def __call__(self, batch, output, attns, normalization=1.0, shard_size=0, trunc_start=0, trunc_size=None):
"""Compute the forward loss, possibly in shards in which case this
method also runs the backward pass and returns ``None`` as the loss
value.
Also supports truncated BPTT for long sequences by taking a
range in the decoder output sequence to back propagate in.
Range is from `(trunc_start, trunc_start + trunc_size)`.
Note sharding is an exact efficiency trick to relieve memory
required for the generation buffers. Truncation is an
approximate efficiency trick to relieve the memory required
in the RNN buffers.
Args:
batch (batch) : batch of labeled examples
output (:obj:`FloatTensor`) :
output of decoder model `[tgt_len x batch x hidden]`
attns (dict) : dictionary of attention distributions
`[tgt_len x batch x src_len]`
normalization: Optional normalization factor.
shard_size (int) : maximum number of examples in a shard
trunc_start (int) : starting position of truncation window
trunc_size (int) : length of truncation window
Returns:
A tuple with the loss and a :obj:`onmt.utils.Statistics` instance.
"""
if trunc_size is None:
trunc_size = batch.tgt.size(0) - trunc_start
trunc_range = (trunc_start, trunc_start + trunc_size)
shard_state = NotImplementedError
if shard_size == 0:
(loss, stats) = NotImplementedError
return (loss / float(normalization), stats)
batch_stats = onmt.utils.Statistics()
for shard in shards(shard_state, shard_size):
(loss, stats) = NotImplementedError
loss.div(float(normalization)).backward()
batch_stats.update(stats)
return (None, batch_stats) | DDAMS | positive |
def _get_connection_spec(self):
if self._connection_addr is None:
<DeepExtract>
pidfile = os.path.join(self._data_dir, 'postmaster.pid')
try:
with open(pidfile, 'rt') as f:
piddata = f.read()
except FileNotFoundError:
self._connection_addr = None
lines = piddata.splitlines()
if len(lines) < 6:
self._connection_addr = None
pmpid = int(lines[0])
if self._daemon_pid and pmpid != self._daemon_pid:
self._connection_addr = None
portnum = lines[3]
sockdir = lines[4]
hostaddr = lines[5]
if sockdir:
if sockdir[0] != '/':
sockdir = os.path.normpath(os.path.join(self._data_dir, sockdir))
host_str = sockdir
else:
host_str = hostaddr
if host_str == '*':
host_str = 'localhost'
elif host_str == '0.0.0.0':
host_str = '127.0.0.1'
elif host_str == '::':
host_str = '::1'
self._connection_addr = {'host': host_str, 'port': portnum}
</DeepExtract>
if self._connection_addr is not None:
if self._connection_spec_override:
args = self._connection_addr.copy()
args.update(self._connection_spec_override)
return args
else:
return self._connection_addr | def _get_connection_spec(self):
if self._connection_addr is None:
pidfile = os.path.join(self._data_dir, 'postmaster.pid')
try:
with open(pidfile, 'rt') as f:
piddata = f.read()
except FileNotFoundError:
self._connection_addr = None
lines = piddata.splitlines()
if len(lines) < 6:
self._connection_addr = None
pmpid = int(lines[0])
if self._daemon_pid and pmpid != self._daemon_pid:
self._connection_addr = None
portnum = lines[3]
sockdir = lines[4]
hostaddr = lines[5]
if sockdir:
if sockdir[0] != '/':
sockdir = os.path.normpath(os.path.join(self._data_dir, sockdir))
host_str = sockdir
else:
host_str = hostaddr
if host_str == '*':
host_str = 'localhost'
elif host_str == '0.0.0.0':
host_str = '127.0.0.1'
elif host_str == '::':
host_str = '::1'
self._connection_addr = {'host': host_str, 'port': portnum}
if self._connection_addr is not None:
if self._connection_spec_override:
args = self._connection_addr.copy()
args.update(self._connection_spec_override)
return args
else:
return self._connection_addr | asyncpg | positive |
def createFolders(uid):
"""Create the folder structure and copy code files"""
<DeepExtract>
src = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'html')
</DeepExtract>
<DeepExtract>
safeFolder = self.model.outputFolder
if self.isWindows() == True:
safeFolder = self.model.outputFolder.encode('ascii', 'ignore')
dest = os.path.join(safeFolder, uid)
</DeepExtract>
try:
if os.path.isdir(dest):
self.log.info('delete previous folder ' + dest)
shutil.rmtree(dest)
shutil.copytree(src, dest, ignore=self.excludeFiles)
except OSError as e:
self.__logger.error(e.args[1]) | def createFolders(uid):
"""Create the folder structure and copy code files"""
src = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'html')
safeFolder = self.model.outputFolder
if self.isWindows() == True:
safeFolder = self.model.outputFolder.encode('ascii', 'ignore')
dest = os.path.join(safeFolder, uid)
try:
if os.path.isdir(dest):
self.log.info('delete previous folder ' + dest)
shutil.rmtree(dest)
shutil.copytree(src, dest, ignore=self.excludeFiles)
except OSError as e:
self.__logger.error(e.args[1]) | d3MapRenderer | positive |
def test_exists_non_existent(self):
<DeepExtract>
filename = ''.join([random.choice(string.ascii_uppercase + string.digits) for x in range(length)]).lower()
</DeepExtract>
assert not self._storage.exists(filename) | def test_exists_non_existent(self):
filename = ''.join([random.choice(string.ascii_uppercase + string.digits) for x in range(length)]).lower()
assert not self._storage.exists(filename) | docker-registry | positive |
def _get_description(ioc: Element) -> Optional[str]:
<DeepExtract>
tag = _tag(_NS_OPENIOC, 'description')
</DeepExtract>
description = ioc.find(tag)
if description is None:
return None
return description.text | def _get_description(ioc: Element) -> Optional[str]:
tag = _tag(_NS_OPENIOC, 'description')
description = ioc.find(tag)
if description is None:
return None
return description.text | connectors | positive |
def test_eval_files(self):
run_predict(predict_args(data=FileDataParams(images=sorted(glob_all([os.path.join(this_dir, 'data', 'uw3_50lines', 'test', '*.png')])))))
r = run_eval(eval_args(gt_data=FileDataParams(texts=sorted(glob_all([os.path.join(this_dir, 'data', 'uw3_50lines', 'test', '*.gt.txt')])))))
self.assertLess(r['avg_ler'], 0.0009, msg='Current best model yields about 0.09% CER')
<DeepExtract>
args = EvalArgs(gt=FileDataParams(texts=sorted(glob_all([os.path.join(this_dir, 'data', 'uw3_50lines', 'test', '*.gt.txt')]))), pred=pred_data, checkpoint=checkpoint)
</DeepExtract>
with tempfile.TemporaryDirectory() as d:
args.xlsx_output = os.path.join(d, 'output.xlsx')
run_eval(args) | def test_eval_files(self):
run_predict(predict_args(data=FileDataParams(images=sorted(glob_all([os.path.join(this_dir, 'data', 'uw3_50lines', 'test', '*.png')])))))
r = run_eval(eval_args(gt_data=FileDataParams(texts=sorted(glob_all([os.path.join(this_dir, 'data', 'uw3_50lines', 'test', '*.gt.txt')])))))
self.assertLess(r['avg_ler'], 0.0009, msg='Current best model yields about 0.09% CER')
args = EvalArgs(gt=FileDataParams(texts=sorted(glob_all([os.path.join(this_dir, 'data', 'uw3_50lines', 'test', '*.gt.txt')]))), pred=pred_data, checkpoint=checkpoint)
with tempfile.TemporaryDirectory() as d:
args.xlsx_output = os.path.join(d, 'output.xlsx')
run_eval(args) | calamari | positive |
def _init_sem_data_gen(graph: nx.DiGraph, schema: Dict, n_samples: int, default_type: str, distributions: Dict[str, str], seed: int):
np.random.seed(seed)
if not nx.algorithms.is_directed_acyclic_graph(graph):
raise ValueError('Provided graph is not a DAG.')
<DeepExtract>
default_distributions = {'continuous': 'gaussian', 'binary': 'logit', 'categorical': 'logit', 'weight': 'uniform', 'intercept': 'uniform', 'count': 0.05}
if distributions is None:
distributions = default_distributions
default_distributions.update(distributions)
distributions = default_distributions
</DeepExtract>
validated_schema = validate_schema(nodes=graph.nodes(), schema=schema, default_type=default_type)
var_fte_mapper = VariableFeatureMapper(validated_schema)
n_columns = var_fte_mapper.n_features
x_mat = np.empty([n_samples, n_columns])
return (distributions, var_fte_mapper, x_mat) | def _init_sem_data_gen(graph: nx.DiGraph, schema: Dict, n_samples: int, default_type: str, distributions: Dict[str, str], seed: int):
np.random.seed(seed)
if not nx.algorithms.is_directed_acyclic_graph(graph):
raise ValueError('Provided graph is not a DAG.')
default_distributions = {'continuous': 'gaussian', 'binary': 'logit', 'categorical': 'logit', 'weight': 'uniform', 'intercept': 'uniform', 'count': 0.05}
if distributions is None:
distributions = default_distributions
default_distributions.update(distributions)
distributions = default_distributions
validated_schema = validate_schema(nodes=graph.nodes(), schema=schema, default_type=default_type)
var_fte_mapper = VariableFeatureMapper(validated_schema)
n_columns = var_fte_mapper.n_features
x_mat = np.empty([n_samples, n_columns])
return (distributions, var_fte_mapper, x_mat) | causalnex | positive |
End of preview. Expand
in Data Studio
- Downloads last month
- 10