Dataset Viewer
Auto-converted to Parquet
filename
stringclasses
12 values
image_bytes
unknown
metadata_json
stringclasses
223 values
sha256
stringclasses
232 values
001.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
005.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
009.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
008.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
006.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
011.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
000.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
002.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
004.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
007.png
"iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED)
"{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED)
0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65
End of preview. Expand in Data Studio

This is a curated collection of 3D car models derived from Objaverse-XL described in MeshFleet: Filtered and Annotated 3D Vehicle Dataset for Domain Specific Generative Modeling. The MeshFleet dataset provides metadata for 3D car models, including their SHA256 from Objaverse-XL, vehicle category, and size. The core dataset is available as a CSV file: meshfleet_with_vehicle_categories_df.csv. You can easily load it using pandas:

import pandas as pd

meshfleet_df = pd.read_csv('./data/meshfleet_with_vehicle_categories_df.csv')
print(meshfleet_df.head())

The actual 3D models can be downloaded from Objaverse-XL using their corresponding SHA256 hashes. Pre-rendered images of the MeshFleet models are also available within the Hugging Face repository in the renders directory, organized as renders/{sha256}/00X.png. The code used to generate this dataset can be found at https://github.com/FeMa42/MeshFleet.git.

Downloads last month
703

Models trained or fine-tuned on DamianBoborzi/MeshFleet

Collection including DamianBoborzi/MeshFleet