Datasets:
filename
stringclasses 12
values | image_bytes
unknown | metadata_json
stringclasses 223
values | sha256
stringclasses 232
values |
---|---|---|---|
001.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
005.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
009.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
008.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
006.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
011.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
000.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
002.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
004.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
007.png | "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAYAAAB/HSuDAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAD3RFWHRGaWxlADx1bnRpdGx(...TRUNCATED) | "{\n \"aabb\": [\n [\n -0.5,\n -0.5,\n -0.5\n ],\n(...TRUNCATED) | 0075272ea45f9d49edd2caaead93b29cac046ec537ef8c59344ca5ec4c827a65 |
This is a curated collection of 3D car models derived from Objaverse-XL described in MeshFleet: Filtered and Annotated 3D Vehicle Dataset for Domain Specific Generative Modeling. The MeshFleet dataset provides metadata for 3D car models, including their SHA256 from Objaverse-XL, vehicle category, and size. The core dataset is available as a CSV file: meshfleet_with_vehicle_categories_df.csv
. You can easily load it using pandas:
import pandas as pd
meshfleet_df = pd.read_csv('./data/meshfleet_with_vehicle_categories_df.csv')
print(meshfleet_df.head())
The actual 3D models can be downloaded from Objaverse-XL using their corresponding SHA256 hashes. Pre-rendered images of the MeshFleet models are also available within the Hugging Face repository in the renders
directory, organized as renders/{sha256}/00X.png
. The code used to generate this dataset can be found at https://github.com/FeMa42/MeshFleet.git.
- Downloads last month
- 703