EOC-Bench / README.md
CircleRadon's picture
Add task_categories to metadata (#2)
2c81099 verified
metadata
dataset_info:
  features:
    - name: idx
      dtype: int64
    - name: video_path
      dtype: string
    - name: question
      dtype: string
    - name: choices
      struct:
        - name: a
          dtype: string
        - name: b
          dtype: string
        - name: c
          dtype: string
        - name: d
          dtype: string
    - name: answer
      sequence: string
    - name: choice_type
      dtype: string
    - name: video_source
      dtype: string
    - name: video_type
      dtype: string
    - name: frame_number
      dtype: int64
    - name: video_time
      dtype: float64
    - name: fps
      dtype: float64
    - name: box
      sequence:
        sequence: int64
    - name: mask
      list:
        - name: counts
          dtype: string
        - name: size
          sequence: int64
    - name: point
      sequence:
        sequence: int64
  splits:
    - name: test
      num_bytes: 4578328
      num_examples: 3277
  download_size: 2933575
  dataset_size: 4578328
configs:
  - config_name: default
    data_files:
      - split: test
        path: data/test-*
task_categories:
  - video-text-to-text

EOC-Bench : Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?

arXiv preprint GitHub Project Page Learderboard

πŸ” Overview

we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation.

πŸ“š Tasks Definition

EOC-Bench structures questions into three temporally grounded categories: Past, Present, and Future, with a total of 11 categories.

data.png

πŸ“ˆ Evaluation

Please see our GitHub.