Dataset Viewer
id
int64 0
910k
| title
stringlengths 1
91
| text
stringlengths 1
24.6k
|
---|---|---|
0 |
수학 상수
|
수학에서 상수(常數, )란 그 값이 변하지 않는 불변량으로, 변수의 반대말이다. 물리 상수와는 달리, 수학 상수는 물리적 측정과는 상관없이 정의된다. 수학 상수는 대개 실수체나 복소수체의 원소이다. 우리가 이야기할 수 있는 상수는 (거의 대부분 계산 가능한) 정의가능한 수이다. 특정 수학 상수, 예를 들면 골롬-딕맨 상수, 프랑세즈-로빈슨 상수, formula_1, 레비 상수와 같은 상수는 다른 수학상수 또는 함수와 약한 상관관계 또는 강한 상관관계를 갖는다.
|
1 |
5월 31일
|
5월 31일은 그레고리력으로 151번째(윤년일 경우 152번째) 날에 해당한다. 이 날은 5월의 마지막 날이며, 5월의 마지막 주 평일은 5월 29일 또는 30일이다.
|
2 |
6월 30일
|
6월 30일은 그레고리력으로 181번째(윤년일 경우 182번째) 날에 해당하며, 이 날은 6월의 마지막 날이다.
|
3 |
지구과학
|
지구과학(地球科學, )은 행성인 지구와 그 주위의 천체를 연구하는 학문들을 묶어 부르는 이름이다. 지구의 환경은 크게 육지, 바다, 대기로 나누어지며, 이러한 환경들은 각각 지구과학의 주요 분야라고 할 수 있는 지질과학, 수문과학, 대기과학 분야의 주요연구대상이 된다. 일반적으로 지구과학으로 불리는 학문들은 대기에서 일어나는 현상을 대상으로 하는 기상학, 지구 표면의 물질을 주로 대상으로 하는 지질학, 바다 현상을 대상으로 하는 해양학, 지구의 깊은 속에서 일어나는 현상을 대상으로 하는 지구물리학과 실용적인 응용분야로서 환경공학 등이 있다. 지구과학에는 많은 전문 분야가 포괄되지만 대체로 여섯 가지로 나뉜다.
|
4 |
문학
|
문학(文學, )은 언어를 예술적 표현의 제재로 삼아 새로운 의미를 창출하여, 인간과 사회를 진실되게 묘사하는 예술의 하위분야이다. 간단하게 설명하면, 언어를 통해 인간의 삶을 미적(美的)으로 형상화한 것이라고 볼 수 있다. 문학은 원래 문예(文藝)라고 부르는 것이 옳으며, 문학을 학문의 대상으로서 탐구하는 학문의 명칭 역시 문예학이다. 문예학은 음악사학, 미술사학 등과 함께 예술학의 핵심분야로서 인문학의 하위범주에 포함된다. 일반적으로 문학의 정의는 텍스트들의 집합이다. 각각의 국가들은 고유한 문학을 가질 수 있으며, 이는 기업이나 철학 조류, 어떤 특정한 역사적 시대도 마찬가지이다. 흔히 한 국가의 문학을 묶어서 분류한다. 예를 들어 고대 그리스어, 성서, 베오울프, 일리아드, 그리고 미국 헌법 등이 그러한 분류의 범주에 들어간다. 좀 더 일반적으로는 문학은 특정한 주제를 가진 이야기, 시, 희곡의 모음이라 할 수 있다. 이 경우, 이야기, 시, 그리고 희곡은 민족주의적인 색채를 띨 수도 아닐 수도 있다. 문학의 한 부분으로서 특정한 아이템을 구분 짓는 일은 매우 어려운 일이다. 어떤 사람들에게 "문학"은 어떠한 상징적인 기록의 형태로도 나타날 수 있는 것이다. (이를테면 이미지나 조각, 또는 문자로도 나타날 수 있다.) 그러나 또다른 사람들에게 있어 문학은 오직 문자로 이루어진 텍스트로 구성된 것만을 포함한다. 좀 더 보수적인 사람들은 그 개념이 꼭 물리적인 형태를 가진 텍스트여야 하고, 대개 그러한 형태는 종이 등의 눈에 보이는 매체에서 디지털 미디어까지 다양할 수 있다.
|
5 |
문학
|
더 나아가 보면, "문학"과 몇몇 인기있는 기록형태의 작업들, 소위 "대중문학" 사이에는 인식가능한 차이점이 존재한다. 이때 "문학적인 허구성"과 "문학적인 재능"이 종종 개별적인 작품들을 구별하는 데에 사용된다. 예를 들어, 찰스 디킨즈의 작품들은 대부분의 사람들에게 "문학적인 것"으로 받아들여지지만, 제프리 아처의 작품들은 영문학이라는 일반적인 범주 아래 두기에는 다소 가치가 떨어지는 것으로 생각된다. 또한 예를 들어 문법과 어법에 서투르거나, 이야기가 혼란스러워 신뢰성을 주지 않거나, 인물들의 성격에 일관성이 없을 경우에도 문학에서 제외될 수 있다. 로맨스, 범죄소설, 과학소설 등의 장르 소설도 때로 "문학"이 아닌 것으로 간주되는 경우도 있다. 이들은 대부분 "대중문학"의 범주에 포함된다. 일반적인 문학의 분류. 문학은 분류하는 방법에 따라 다음과 같이 구분한다. 이 외에도 편의에 따라 발생적으로 대별하기도 한다. 문학은 처음은 유일한 종류, 즉 노래하고, 말하고, 춤춘다는 것이 분화되지 않은 것이었다. 이 춤추는 것을 중심으로 발달한 것이 연극(演劇)이며, 노래하는 것이 발달하여 시(詩), 말하는 것이 발달하여 산문(散文)의 이야기가 되었다. 시는 정형시·자유시·산문시로, 또한 서사시와 서정시로 나뉜다. 산문은 사건을 중심으로 그려진 이야기, 근대 리얼리즘의 수법 이후 인물의 성격을 묘사하는 것을 중심으로 한 소설이 있다.
|
6 |
문학
|
이야기나 소설과 같이 특별한 구상에 의하지 않고, 작자의 흥미에 의해서 씌어지는 것이 잡문(雜文) 또는 수필이며, 이것이 날짜에 따라 씌어지는 것이 일기, 여행의 과정에 따라 씌어지는 것이 기행문이다. 일기와 마찬가지로 발표의 의도가 작은 것에 서간(書簡)이 있다. 이 밖에 사건의 경험에 따른 회고록, 사건 등의 특정시(特定時)에 한정되지 않는 자서전, 제삼자에 의해서 씌어지는 전기(傳記)가 있다. 또한 이것들을 포함하는 예술작품의 가치평가를 시도하는 것이 평론(評論)이다. 대중문학의 분류. 대중문학이란 상업성을 띠며 대중을 겨냥하여 그들의 통속적인 흥미와 욕구를 채워주는 문학을 말한다. 대중문학의 하위장르에는 여러가지가 있다. 문학과 관련된 직업. 문학을 창작하는 예술가를 작가라고 부른다. 문예학을 연구하는 사람을 문예학자라고 부른다. 문학을 창작하는 사람을 따로 저술가라고 한다. 문예학자와 언어학자를 합쳐 어문학자로 칭하기도 한다. 그러나 언어와 언어를 사용한 예술인 문학은 차이가 있다. 문학의 감상. 반영론적 관점에 의한 감상은 작품을 창작된 당시 시대 정황과 연결시켜 감상하는 입장이고, 내재적 관점의 감상은 작품의 형식, 내용에 국한하여 감상하는 것이다. 표현론적 관점의 감상은 작가의 전기적 사실과 작품을 연결시켜 감상하는 것이고, 수용론적 관점의 감상은 독자와 작품을 연결시켜 감상하는 것을 말한다.
|
7 |
귄터 그라스
|
귄터 그라스(, 1927년 10월 16일 ~ 2015년 4월 13일)는 독일의 소설가이자 극작가다. 생애. 독일 단치히 자유시(오늘날 폴란드의 그단스크)에서 식료품 상인이었던 독일계 아버지와 슬라브계 어머니 사이에서 태어났다. 하버드 대학에서 명예박사학위를 받았다. 1999년에 노벨 문학상을 수상하였다. 제2차 세계 대전과 그라스. 제2차 세계 대전 당시 독일 제국노동봉사대(RAD)에서 근무하던 중, 1944년에 무장친위대에 입대하여 10 SS기갑사단 프른즈베르크로 발령받아 참전했다. 징집당한 것이라는 얘기도 있으나, 당시 친위대의 독일인 대원들은 징집 대상이 아니라 자원 입대가 기본이었다(국방군 육군은 징병제였다). 종전후 부상당한 채 미군 포로로 잡혀 1946년까지 포로 수용소에 수감되었다. 이런 사실은 그라스 자신이 최근 발간한 자서전에서 인정했다. 전쟁 후의 그라스. 전후 1947~48년에는 광산에서 일하며 석공 기술 과정을 마친다. 이어 1948년부터 1952년까지는 뒤셀도르프 미술대학에서 그래픽과 조각을, 1953년부터 1956년까지는 베를린 예술대학에서 조각을 배웠다. 작품 활동. 1955년 슈투트가르트 방송국의 서정시 경연대회에 입상하고, 1956~57년에 예술 작품 전시와 별도로 작가 활동을 시작했다. 1958년까지 단문, 시, 희곡 등을 발표한다. 1954년에 결혼을 하고, 1960년부터 계속 베를린에 산다. 1959년에 매우 묘사적인 언어로 나중에 영화화 되기까지 한 《양철북》을 발표했다.
|
8 |
귄터 그라스
|
이 작품으로 그는 제2차 세계 대전 후 처음으로 세계 문학계에 이름을 날린 독일 작가가 된다. 이어 에서도 전쟁 전과 전쟁 후에 걸친 시대의 과오와 대결하고 있으며, 무대는 다같이 단치히이다. 이밖의 작품에 등이 있다. 1996년 유럽문화공로상을 받았다. 희곡. 그는 소설가로 활약하는 한편, 부조리극적인 소품(小品)인 등을 발표한 바 있는데, 현대정치에도 직접 행동으로 참가하여 동·서 독일의 분열이라는 가장 현실적인 문제에 대담하게 도전한 (1965)을 발표했다. 1953년 동독의 폭동 당시 브레히트를 모델로 하여 예술과 정치의 관련을 추구한 작품으로 이 있다. 사회 활동. 그라스는 전후 독일 사회민주당의 주요 지지자가 되어 외국인 혐오증, 신나치주의 등에 반대하는 사회활동에 적극 참여하였다.
|
9 |
프로젝트 구텐베르크
|
프로젝트 구텐베르크(Project Gutenberg, PG)는 인류의 자료를 모아서 전자정보로 저장하고 배포하는 프로젝트로, 1971년 미국인 마이클 하트(Michael Hart)가 시작했다. 인쇄술을 통해 지식의 전달을 급속도로 확장시킨 요하네스 구텐베르크의 이름에서 따온 것으로, 인터넷에 전자화된 문서(e-text)를 저장해 놓고 누구나 무료로 책을 받아 읽을 수 있는 가상 도서관을 만드는 것을 목표로 한다. 수많은 자원봉사자들이 인터넷을 이용해 기여하여 만들어지는 프로젝트로 수많은 고전의 원문이 모여 있다. 2006년 3월 프로젝트 구텐베르크 발표에 따르면, 프로젝트는 18,000개 항목 이상의 전자문서를 보유하고 있으며, 매주 50여개의 새로운 전자책이 새롭게 등록되고 있다고 한다. 프로젝트에 등록된 전자책은 대부분이 서구의 문학작품으로 이루어져 있다. 소설, 시, 단편소설, 드라마 등의 문학작품 외에 요리책, 사전류, 정기간행물이 포함되어 있다. 또한 일부 오디오 파일과 음악 악보 파일도 갖고 있다. 대부분은 영문 서적이지만, 독일어, 프랑스어, 이탈리아어, 에스파냐어, 네덜란드어, 핀란드어, 중국어, 포르투갈어, 라틴어, 스웨덴어, 라틴어, 에스페란토로 된 책도 있으며, 여타 언어 문서도 꾸준히 증가하고 있다. 문서는 주로 아스키 문자 집합, 때때로 ISO-8859-1 문자 집합으로 인코딩된 텍스트문서를 언제나 내려받을 수 있으며, HTML등의 다른 형식의 문서도 받을 수 있다. 편집이 어려운 PDF 등의 문서형식은 프로젝트가 지향하는 바와 맞지 않는 것으로 여겨지지만, PDF형식을 이용할 수 있는 문서도 있다. 최근 수년동안 XML형식을 도입할지에 대한 토론이 있었지만, 토론은 지지부진하다.
|
10 |
프로젝트 구텐베르크
|
기술의 발전. 1990년대 들어 스캐닝과 OCR기술에 힘입어 마이클 하트는 컴퓨터 제조회사에서 스캐닝장비를 기증받아 문서를 스캐닝한후 OCR소프트웨어로 이를 텍스트화하는 작업을 구축하였다. 이러한 형태의 발전된 프로세스는 현재 주요한 작업기술이다. 한편 PG는 다중원본제공을 지원하며 또한 사용자 제공 콘텐츠 절차를 지원한다. 이는 셀프 출판을 의미한다. 라이선스. 프로젝트 구텐베르크 라이선스(The Project Gutenberg License,PGL)는 아래와 같은 2개의 큰 맥락을 갖는다. 이러한 프로젝트 구텐베르크 라이선스는 이후 몇몇 추가된 라이선스를 도입했으며 이전의 라이선스와 추가변형된 라이선스는 '프로젝트 구텐베르크'의 공식웹사이트에서 전문을 확인할 수 있다.
|
11 |
데니스 리치
|
데니스 매캘리스터 리치(, 1941년 9월 9일~2011년 10월 12일)는 미국의 저명한 컴퓨터과학자이자 현대 컴퓨터과학의 선구자이다. 프로그래밍 언어 C와 유닉스의 개발자로 알려져 있다. 생애. 미국의 뉴욕주 브롱크스빌(Bronxville)에서 태어났으며, 1968년 하버드 대학교에서 응용수학 박사학위를 얻었다. 1968년부터 벨 연구소 컴퓨터 연구 센터에서 일했다. 2007년 루슨트 테크놀로지의 시스템 소프트웨어 연구부장으로 은퇴했다. 홀로 살고 있던 그는 미국 시각으로 2011년 10월 12일 뉴저지주 버클리 헤이츠의 자택에서 사망한 채로 발견되었다. (향년 71세) 업적. 켄 톰슨(Ken Thompson) 등과 함께 최초의 유닉스(Unix) 시스템을 개발했고, 1971년 최초의 〈Unix Programmer's Manual〉을 썼다. 또한 C 언어를 개발한 후 브라이언 커니핸과 함께 〈C 프로그래밍 언어〉(The C Programming Language)를 기술했다. 커니핸과 〈C 프로그래밍 언어〉책을 썼기에 커니핸이 C 언어 개발에 참여한 것으로 종종 오해받으나 커니핸의 말에 따르면 자신은 C언어 개발에 참여하지 않았다고 한다. ALTRAN, B언어, BCPL, Multics 등의 개발에도 영향을 끼친 것으로도 알려져 있다. 1983년에 켄 톰프슨과 "범용 운영체제 이론개발, 특히 유닉스 운영체제의 구현에 대한 공로"로 튜링상을 수상했다. 미국의 경제 전문지 '비즈니스 인사이더'에서는 '현재의 애플 컴퓨터는 거의 모두 데니스 리치의 업적에 기반하고 있다'이라며 그의 업적을 평가했다.
|
12 |
데니스 리치
|
현재 애플 매킨토시의 macOS와 아이폰의 iOS는 모두 유닉스 운영체제를 기반으로 만들어져 있다.
|
13 |
가위
|
가위()는 손으로 잡아 종이 등을 쉽게 자를 수 있게 하는 도구이다. 교도(交刀)라고도 한다. 두 장의 얇은 금속 날을 결리지 않도록 엇갈리게 나사로 엮어, 그 두 날이 지레의 원리로 움직이면서 서로 부딪치면 절단력이 발생한다. 플라스틱 판, 얇은 철판, 머리카락, 끈, 종이, 옷감, 강삭 등을 자를 때 쓰인다. 종류. 핑킹가위. 핑킹가위는 무늬를 내며 자를 때 사용하는 가위이다. 무늬의 종류는 여러가지이며 물결무늬 지그재그 톱니모양 등이 있다. 쪽가위. 쪽가위는 실 따위를 자를 때 사용하는 가위이다. 발견된 가위 중 가장 오래된 가위가 쪽가위 형태로 제작되었다. 16세기까지 유럽에서 사용되었으며, 오늘날에도 쪽가위의 형태를 변형한 가위를 찾을 수 있다. X자형 가위. X자 형태의 날을 지닌 가위이다. 서기 100년경 고대 로마에서 쪽가위 디자인을 각색하면서 발명되었다. 지렛대의 원리로 구분. 지렛대의 원리에 바탕을 둔 것으로 지레의 작용점 · 받침점 · 힘점의 상호관계에 의하여, 힘점이 작용점과 받침점 사이에 있는 원지점식(元支點式), 지레의 받침점이 힘점과 작용점의 사이에 있는 중간지점식, 작용점이 힘점과 받침점 사이에 있는 선(先)지점식의 3가지로 구별된다. 따라서 이것을 응용한 가위도 3종으로 대별된다.
|
14 |
가위
|
원지점식에 속하는 것으로서 손자수용 가위 · 잎따기가위 · 망(綱)베기가위 등이 있고, 중간지점식에 속하는 것으로는 재단가위 · 꽃가위 · 전정가위 · 전지가위 · 잔디가위 · 양철가위 · 버튼홀가위 · 의료가위 · 이용(理容)가위 등이 있다. 선지점식에 속하는 것은 눌러서 자르는 가위와 과일따기 가위 등이 있다. 유래와 역사. 지금까지 발견된 세상에서 가장 오래된 가위는 기원전 1000년경 메소포타미아에서 만들어진 가위다. 특히 로마 시대의 유물로 가위가 많이 발견되었으며, 이 시대 가위는 라틴 문화 중기에 중부 및 북유럽 등으로 전해졌다. 라틴 문화의 가위는 남자의 무덤에 부장되어 있는 것으로 보아, 알려져있던 양모를 깎기 위한 것이 아니고 수염을 깎는 데 쓰인 것으로 추측된다. 그리고 로마 시대의 유물에서 발견된 날이 짧고 튼튼하게 만들어진 가위는 철사나 튼튼한 실, 얇은 철판등을 자르는 데 사용된 것으로 보인다. 한국에서 발견된 가장 오래된 가위는 경주 분황사 모전석탑에서 발견된 가위이며, 모양이나 쓰임새가 중국에서 발견된 것과 같은 걸로 보아 중국에서 건너왔을 것이라고 학자들은 말한다. 전 세계에서 발견된 유물을 비교해볼 때 가위는 서양에서 처음 만들어져 사용되다가 중국에 전해졌을 거라고 추측할 수 있다.
|
15 |
가위
|
한국의 가위는 조선 후기 인조 이후 청나라에서 보급되었다는 설이 있었지만 1985년부터 1976년 경상북도 경주 동쪽 안압지 유적을 발굴하던 중 1976년 경주 월지 금동초심지가위(慶州 月池 金銅燭鋏) 혹은 금동촉협(金銅燭鋏)이 발견되어 8세기 경 혹은 그 이전에 가위가 존재한 것이 확인되었다. 이 가위는 후대의 가위와는 다른 손잡이 부분이 길고, 자르는 부분은 짧다. 이는 조선시대 후기의 쪽가위와 유사한 형태의 가위와도 모양이 다르다. 경주 월지 금동초심지가위는 국립경주박물관에 소장되었고 2014년 12월 31일 대한민국 보물 제1844호로 지정됐다.
|
16 |
체첸 공화국
|
체첸 공식적으로 체첸 공화국은 러시아의 공화국이다. 동유럽의 북캅카스, 카스피해와 흑해 사이에 위치한다. 이 공화국은 북캅카스 연방관구의 일부를 형성하고 남쪽으로는 조지아와 국경을 접한다. 동쪽, 북쪽, 서쪽으로는 러시아의 다게스탄 공화국, 인구셰티야 공화국, 북오세티야–알라니야 공화국과 국경을 접한다. 북서쪽으로는 스타브로폴 변경주와 국경을 접한다. 1991년 소련 해체 이후 체첸-인구시 ASSR는 인구셰티야 공화국과 체첸 공화국으로 분열되었다. 후자는 이치케리야 체첸 공화국을 선포하고 독립을 선언했지만, 전자는 러시아편을 들었다. 1994년 ~ 1996년 러시아와의 제1차 체첸 전쟁 이후 체첸은 "사실상" 이치케리아 체첸 공화국으로서 독립을 얻었지만 "법률상" 러시아의 일부로 남았다. 1999년 ~ 2009년 제2차 체첸 전쟁에서 러시아 연방의 통제가 회복되었고, 체첸 정치는 전 이치케리아 무프티인 아흐마트 카디로프와 나중에는 그의 아들 람잔 카디로프가 주도했다. 공화국은 의 지역을 포함한다, 인구 150만명 이상 . 이곳은 나흐족의 일부인 원주민 체첸과 주로 이슬람 신앙의 본거지이다. 그로즈니는 수도이자 가장 큰 도시이다. 언어와 주민. 거의 대부분이 체첸인이다. 일부는 러시아인, 인구시인과 기타 북코카서스계 민족도 섞여있다. 체첸에서는 체첸인들의 토착 언어인 체첸어와 러시아어가 모두 사용된다.
|
17 |
체첸 공화국
|
체첸어는 캅카스 제어 중 북동 캅카스어족으로 불리는 그룹에 속하는데 인근의 인구시인들이 쓰는 인구시어와 밀접한 관계에 있다. 1989년에 행해진 체첸-인구시 자치공화국의 통계에서는 체첸인이 956,879명, 인구시인이 237,438명으로, 269,000명의 러시아인은 인구의 약 23%로 상당한 수의 소수 민족이 있었다. 그 후 서부가 인구시 공화국으로 분리되었기 때문에 인구시인들의 수가 절반 가까이 감소하고, 내전과 사회불안, 민족 대립으로 거의 대부분의 러시아인은 체첸 공화국에서 떠나며 현재 체첸인이 인구 대다수를 차지하게 된 것이다. 1990년대 기준 체첸 공화국에 남아 있던 러시아인은 약 6만 명이었다. 체첸 공화국은 일반적으로 러시아 연방 중에서도 젊은 층이 가장 많은 인구 구성을 가진다. 1990년대에는 몇몇 지방에서 인구증가가 있었다. 종교. 16세기에서 19세기를 기점으로 다게스탄 지역을 통해 이슬람교가 전해져, 체첸인들은 절대다수가 수니파 이슬람교를 믿는데 러시아 정교회 신자도 소수 존재한다. 역사. 크게 체첸인과 인구시인으로 구분되는 바이나흐족은 오래 전부터 캅카스 지역에 거주하던 토착 민족으로, 그 기원에 관해서는 다양한 학설이 있으나 다게스탄의 민족들과 언어가 가깝다는 것 외에 확실히 밝혀진 바가 없다. 중세에 몽골 제국의 침략으로 이들이 속해있던 알라니야 연맹체는 크게 파괴되었으나 일부 부족들은 계속해서 저항하였는데 그 중에 체첸인들이 있었다.
|
18 |
체첸 공화국
|
이후 저지대의 일부 부족들은 몽골 제국에 복속하였으나 다른 체첸 부족들은 고지대에서 성과 벽을 쌓고 농성하며 끝까지 침략에 저항하였다. 티무르와 토흐타미시 등 몽골-타타르 세력과의 빈번한 충돌은 15세기까지도 이어졌다. 러시아와의 접촉은 16세기에 시작되었으며 17세기에는 카바르디인과 아바르인의 침략에 대항하였는데 이 시기에 이슬람교로의 대대적인 개종이 이루어졌다. 1722년에서 1723년 표트르 1세가 카스피해와 캅카스 지역의 지배권을 확립하기 위해 페르시아와 전쟁을 일으켰고, 이때 캅카스와 다게스탄 지역을 점령하게 되면서 체첸인들과 본격적인 충돌이 시작되었다. 1830년에서 1859년에 이르는 동안, 러시아 제국은 오스만 제국과의 접경지역 안보를 이유로 체첸에 진주했고, 캅카스 전쟁이 일어나 체첸인은 주변 민족들과 함께 이에 맞서싸웠으나 1859년 러시아군에 항복하며 완전히 병합되었다. 1917년 러시아의 혼란기에 인근 민족들과 함께 북캅카스 산악공화국을 선포하였으나 1921년 소련에 의해 병합되었고, 이후 체첸인과 인구시인의 자치 정부인 체첸-인구시 자치 소비에트 사회주의 공화국이 수립되었다. 제2차 세계 대전 말기인 1944년 스탈린은 체첸인들이 전쟁 중에 나치군과 협력하여 반란을 꾀했다는 구실을 들어 체첸과 인구셰티야 국민 전체에게 중앙아시아로의 강제이주를 명령했다. 전쟁과 강제이주를 거치며 바이나흐족 인구는 수십만 명이 사망하였다.
|
19 |
체첸 공화국
|
스탈린이 사망한지 4년이 지난 1956년에 이르러서야 흐루쇼프의 탈스탈린 정책 하에 이들의 귀환이 허용되었다. 그러나 체첸-인구시 공화국의 영토가 변화하였을 뿐 아니라 이들의 버려진 고향에 러시아인들이 들어와 살면서 민족구성도 상당히 달라졌다. 체첸 전쟁. 소련 붕괴 이후 체첸인들의 분리주의 운동이 벌어져 조하르 두다예프를 지도자로 하여 이치케리야 체첸 공화국이 수립되었다. 제1차 체첸 전쟁에서 분리주의 반군이 승리하며 사실상 독립을 얻었으나 전쟁의 여파로 치안이 악화되고 심각한 경제난과 난민 문제가 발생하여 사회 혼란이 이어졌으며 여러 군벌 조직이 난립하였다. 대선을 거쳐 아슬란 마스하도프 대통령이 취임하였으나 이러한 내부적 혼란을 잠재우지 못하였다. 1999년 통제를 벗어난 샤밀 바사예프 치하 이슬람주의 군벌이 다게스탄을 침공하고 곧 모스크바 등지에서 일어난 러시아 아파트 폭탄 테러의 사건의 배후로 체첸 세력이 지목되면서 다시 러시아가 체첸을 침공, 제2차 체첸 전쟁이 벌어졌다. 이 때 블라디미르 푸틴 대통령의 강경 대응 명령 하에 러시아군의 엄청난 공세로 체첸 전역은 초토화되었으며, 2000년 그로즈니가 함락되고 반군은 산악 지대로 패퇴하였다. 전후. 이치케리야 정부가 무너진 이후에도 반군의 러시아군에 대한 공격과 테러 공격이 계속되었다. 2002년 10월에는 수십 명의 체첸 반군이 모스크바 극장 인질극을 일으켰고, 진압 과정에서 러시아 특수부대가 살포한 독가스 등으로 117명의 민간인이 사망하는 결과를 내었다.
|
20 |
체첸 공화국
|
2003년 러시아는 친러 정권을 수립하고 체첸을 안정화시키기 위해 친러파 군벌을 이끌던 아흐마트 카디로프를 정부수반으로 하여 러시아 연방 소속의 체첸 공화국을 수립시켰다. 2004년 9월 분리주의 반군이 북오세티야 베슬란의 한 학교를 점령하고 777명의 아동을 포함한 1100명을 인질로 삼은 채 체첸의 독립 승인과 러시아군 철수를 요구하며 농성을 벌인 베슬란 학교 인질사건이 발생하였다. 이는 3일 동안 이어져 최소 331명의 사망자를 내었으며 그 중 과반수가 어린이였다. 이후 푸틴은 반군에 대한 완전한 소탕을 명령하였고 2005년 아슬란 마스하도프, 2006년 샤밀 바사예프가 암살당하며 점차 반군은 세력이 와해되어 갔다. 2007년부터 아흐마트 카디로프의 아들로서 마찬가지 친러 군벌 출신인 람잔 카디로프가 2대 대통령으로 취임하였다. 카디로프 정부 하의 체첸은 연방으로부터 연 수백억 루블에 달하는 원조금을 받으며 빠른 정치적 안정과 경제 발전을 이루었으나, 한편으로 인권 탄압과 독재정치가 강화되었다. 2009년 러시아 정부는 반테러 작전의 종결을 선포하고 군대를 철수하였다. 이후로도 이슬람 지하드주의 무장단체들에 의한 북캅카스 반란이 발생하였으나 2013년 지도자 도카 우마로프가 사살당하고 2017년 사실상 진압되었다.
|
21 |
수학
|
수학(數學, )은 수, 양, 구조, 공간, 변화 등의 개념을 다루는 학문이다. 널리 받아들여지는 명확한 정의는 없으나 현대 수학은 일반적으로 엄밀한 논리에 근거하여 추상적 대상을 탐구하며, 이는 규칙의 발견과 문제의 제시 및 해결의 과정으로 이루어진다. 수학은 그 발전 과정에 있어서 철학, 과학과 깊은 연관을 맺고 있으며, 엄밀한 논리와 특유의 추상성, 보편성에 의해 다른 학문들과 구별된다. 특히 수학은 과학의 여느 분야들과는 달리 자연계에서 관측되지 않는 개념들에 대해서까지 이론을 추상화시키는 특징을 보이는데, 수학자들은 그러한 개념들에 대한 추측을 제시하고 적절하게 선택된 정의와 공리로부터 엄밀한 연역을 거쳐 그 진위를 파악한다. 수학의 개념들은 기원전 600년 경에 활동하며 최초의 수학자로도 여겨지는 탈레스의 기록은 물론, 다른 고대 문명들에서도 찾아볼 수 있으며 인류의 문명과 함께 발전해 왔다. 오늘날 수학은 자연과학, 사회과학, 공학, 의학 등 거의 모든 학문에서도 핵심적인 역할을 하며 다양한 방식으로 응용된다. 수학을 의미하는 mathematics라는 단어는 '아는 모든 것', '배우는 모든 것'이라는 뜻의 고대 그리스어 'máthēma'(μάθημα) 및 그 활용형 mathēmatikós(μαθηματικός)에서 유래되었다. 역사. 역사적으로 고대부터 현대에 이르기까지 문명에 필수적인 건축, 천문학, 정치, 상업 등에 수학적 개념들이 응용되어 왔다. 교역·분배·과세 등 인류의 사회 생활에 필요한 모든 계산에 수학이 관여해 왔고, 농경 생활에 필수적인 천문 관측과 달력의 제정, 토지의 측량 또한 수학이 직접적으로 사용된 분야이다.
|
22 |
수학
|
고대 수학을 크게 발전시킨 문명으로는 메소포타미아, 이집트, 인도, 중국, 그리스 등이 있다. 특히 고대 그리스 문명에서는 처음으로 방정식에서 변수를 문자로 쓰는 등 추상화가 발전하였고 유클리드의 원론에서는 최초로 엄밀한 논증에 근거한 수학이 나타난다. 수학의 발전은 이후로도 계속되어 16세기의 르네상스에 이르러서는 과학적 방법과의 상호 작용을 통해 수학과 자연과학에 있어서 혁명적인 연구들이 진척되었고, 이는 인류 문명 발달에 큰 영향을 미치게 되었다. 세부 분야. 수학의 각 분야들은 상업에 필요한 계산을 하기 위해, 숫자들의 관계를 이해하기 위해, 토지를 측량하기 위해, 그리고 천문학적 사건들을 예견하기 위해 발전되어왔다. 이 네 가지 목적은 대략적으로 수학이 다루는 대상인 양, 구조, 공간 및 변화에 대응되며, 이들을 다루는 수학의 분야를 각각 산술, 대수학, 기하학, 해석학이라 한다. 또한 이 밖에도 근대 이후에 나타난 수학기초론과 이산수학 및 응용수학 등이 있다. 산술. 산술은 자연수와 정수 및 이에 대한 사칙연산에 대한 연구로서 시작했다. 수론은 이런 주제들을 보다 깊게 다루는 학문으로, 그 결과로는 페르마의 마지막 정리 등이 유명하다. 또한 쌍둥이 소수 추측과 골드바흐 추측 등을 비롯해 오랜 세월 동안 해결되지 않고 남아있는 문제들도 여럿 있다. 수의 체계가 보다 발전하면서, 정수의 집합을 유리수의 집합의 부분집합으로 여기게 되었다. 또한 유리수의 집합은 실수의 집합의 부분집합이며, 이는 또다시 복소수 집합의 일부분으로 볼 수 있다. 여기에서 더 나아가면 사원수와 팔원수 등의 개념을 생각할 수도 있다.
|
23 |
수학
|
이와는 약간 다른 방향으로, 자연수를 무한대까지 세어나간다는 개념을 형식화하여 순서수의 개념을 얻으며, 집합의 크기 비교를 이용하여 무한대를 다루기 위한 또다른 방법으로는 기수의 개념도 있다. 대수학. 수 대신 문자를 써서 문제해결을 쉽게 하는 것과, 마찬가지로 수학적 법칙을 일반적이고 간명하게 나타내는 것을 포함한다. 고전대수학은 대수방정식 및 연립방정식의 해법에서 시작하여 군, 환, 체 등의 추상대수학을 거쳐 현대에 와서는 대수계의 구조를 보는 것을 중심으로 하는 선형대수학으로 전개되었다. 수의 집합이나 함수와 같은 많은 수학적 대상들은 내재적인 구조를 보인다. 이러한 대상들의 구조적 특성들이 군론, 환론, 체론 그리고 그 외의 수많은 대수적 구조들을 연구하면서 다루어지며, 그것들 하나하나가 내재적 구조를 지닌 수학적 대상이다. 이 분야에서 중요한 개념은 벡터, 벡터 공간으로의 일반화, 그리고 선형대수학에서의 지식들이다. 벡터의 연구에는 산술, 대수, 기하라는 수학의 중요한 세개의 분야가 조합되어 있다. 벡터 미적분학은 여기에 해석학의 영역이 추가된다. 텐서 미적분학은 대칭성과 회전축의 영향 아래에서 벡터의 움직임을 연구한다. 눈금없는 자와 컴퍼스와 관련된 많은 고대의 미해결 문제들이 갈루아 이론을 사용하여 비로소 해결되었다. 기하학. 공간에 대한 연구는 기하학에서 시작되었고, 특히 유클리드 기하학에서 비롯되었다. 삼각법은 공간과 수들을 결합하였고, 잘 알려진 피타고라스의 정리를 포함한다.
|
24 |
수학
|
현대에 와서 공간에 대한 연구는, 이러한 개념들은 더 높은 차원의 기하학을 다루기 위해 비유클리드 기하학(상대성이론에서 핵심적인 역할을 함)과 위상수학으로 일반화되었다. 수론과 공간에 대한 이해는 모두 해석 기하학, 미분기하학, 대수기하학에 중요한 역할을 한다. 리 군도 공간과 구조, 변화를 다루는데 사용된다. 위상수학은 20세기 수학의 다양한 지류속에서 괄목할만한 성장을 한 분야이며, 푸앵카레 추측과 인간에 의해서 증명되지 못하고 오직 컴퓨터로만 증명된 4색정리를 포함한다. 해석학. 변화에 대한 이해와 묘사는 자연과학에 있어서 일반적인 주제이며, 미적분학은 변화를 탐구하는 강력한 도구로서 발전되었다. 함수는 변화하는 양을 묘사함에 있어서 중추적인 개념으로써 떠오르게 된다. 실수와 실변수로 구성된 함수의 엄밀한 탐구가 실해석학이라는 분야로 알려지게 되었고, 복소수에 대한 이와 같은 탐구 분야는 복소해석학이라고 한다. 함수해석학은 함수의 공간(특히 무한차원)의 탐구에 주목한다. 함수해석학의 많은 응용분야 중 하나가 양자역학이다. 많은 문제들이 자연스럽게 양과 그 양의 변화율의 관계로 귀착되고, 이러한 문제들이 미분방정식으로 다루어진다. 자연의 많은 현상들이 동역학계로 기술될 수 있다. 혼돈 이론은 이러한 예측 불가능한 현상을 탐구하는 데 상당한 기여를 한다. 수학기초론 관련 분야. 수학의 기초를 확실히 세우기 위해, 수리논리학과 집합론이 발전하였고, 이와 더불어 범주론이 최근에도 발전되고 있다.
|
25 |
수학
|
“근본 위기”라는 말은 대략 1900년에서 1930년 사이에 일어난, 수학의 엄밀한 기초에 대한 탐구를 상징적으로 보여주는 말이다. 수학의 엄밀한 기초에 대한 몇 가지 의견 불일치는 오늘날에도 계속되고 있다. 수학의 기초에 대한 위기는 그 당시 수많은 논쟁에 의해 촉발되었으며, 그 논쟁에는 칸토어의 집합론과 브라우어-힐베르트 논쟁이 포함되었다. 영향. 오늘날 수학은 자연과학, 공학뿐만 아니라, 경제학 등의 사회과학에서도 중요한 도구로 사용된다. 예를 들어, 정도의 차이는 있으나, 미적분학과 선형대수학은 자연과학과 공학, 경제학을 하는데에 필수적 과목으로 여겨지며, 확률론은 계량경제학에 응용된다. 통계학은 사회과학 이론에 근거를 마련하는데 필수적이다. 16세기에 갈릴레오 갈릴레이가 "자연이라는 책은 수학이라는 언어로 기록되어 있다."는 주장과 함께 물리학에 수학적 방법을 도입하였고, 17세기에 아이작 뉴턴이 고전 역학의 기본 물리학 법칙들을 수학적으로 기술하고 정립하여 물리학 이론에서 수학적 모델링은 필수적 요소가 되었다. 또한 이 시기는 과학적 방법이 정립되는 시기이기도 한데, 많은 과학적 현상들이 수학적 관계가 있음이 드러나면서 과학적 방법에도 수학은 중요한 역할을 하고 있다. 노벨 물리학상 수상자 유진 위그너는 그의 에세이 "The unreasonable effectiveness of mathematics in natural sciences"에서 인간 세상과 동떨어져있고 현실과 아무 관련이 없다고 여겨지던 수학 중 극히 일부는 뜻밖에도 자연과학과 연관성이 드러나고 과학이론에 효과적인 토대를 마련해 주는데에 대한 놀라움을 표현하였다.
|
26 |
수학
|
예를 들어, 비유클리드 기하학과 3차원 이상의 임의의 차원에서 기하학을 탐구했던 미분 기하학은 당시에는 현실과 연관성을 가지지 않았으나 먼 훗날 일반상대성이론이 4차원 기하학을 필요로 함에 따라, 물리적 세상과 연관이 있음이 밝혀졌다. 또한 게이지이론, 양자장론 등에도 미분 기하학은 필수적이다. 또한 수학은 음악이나 미술 등 예술과도 관련이 있다. 피타고라스는 두 정수의 비율이 듣기 좋은 소리가 난다는 점을 가지고 피타고라스 음계를 만들었다. 중세시대에도 음악과 수학을 밀접하게 연관시켰으며 성 빅토르의 후고는 “음악은 조화다”라고 했고, 성 트론드의 루돌프는 “음악은 조화의 토대(ratio)다”라고 쓴 바 있다. 조화가 반드시 소리로 표현될 필요는 없고 소리의 음악은 음악의 형식 중 하나에 불과했다. 소리에 대해 다루었던 중세의 저술가들이 있는가 하면, 조화와 비례의 추상적 이론만을 다루고 소리에는 거의 관심을 보이지 않았던 저술가들도 있었다. 청각적인 면과 추상적인 면이라는 음악의 이런 이중적 측면은 고대의 음악이론보다는 중세의 음악이론에서 큰 특징이 되었다. 또한 현대 음악을 군(群,group)같은 수학적 대상을 이용해 분석하기도 한다. 원근법은 사영 기하학에 해당한다. 미술 사조 중 하나인 입체파도 기하학의 영향을 받았다.
|
27 |
파이의 날
|
파이의 날()은 원주율을 기념하는 날이다. 파이의 날은 원주율의 근삿값이 3.14이어서 3월 14일에 치러진다. 보통 3.14159에 맞추기 위해 오후 1시 59분에 기념하는데, 오후 1시 59분은 엄밀히 말하면 13시 59분이기 때문에 오전 1시 59분 혹은 15시 9분(오후 3시 9분)에 치러야 한다고 주장하는 사람도 있다. 세계 각국의 수학과에서 기념행사를 연다. 3월 14일은 알베르트 아인슈타인의 생일이면서 스티븐 호킹의 기일이기도 하다. 이 날은 여러 방법으로 기념된다. 사람들이 모여서 원주율이 생활에서 어떤 역할을 했는지 이야기하고 원주율이 없는 세상을 상상해 본다. 모임에서는 보통 파이를 먹는다. 또한 많은 행사에서 원주율을 소수점 아래의 숫자를 얼마나 많이 외우는지 겨루는 대회가 열린다. 분수 3과 7분의 1을 가분수로 나타내면 7분의 22가 되는데, 이를 무한소수로 나타내면 3.142857...로 π의 근삿값이 되므로 7월 22일을 파이 근삿값의 날로 부르기도 한다.
|
28 |
음계
|
음계(音階)는 음악에서 음높이(pitch) 순서로 된 음의 집합을 말한다. 악곡을 주로 구성하는 음을 나타낸 것이며 음계의 종류에 따라 곡의 분위기가 달라진다. 음계의 각각의 음에는 위치에 따라 도수가 붙는다. 음계의 종류. 음계는, 음계가 포함하고 있는 음정(interval)에 따라서 이름을 붙일 수 있다. 또는 음계가 포함하고 있는 서로 다른 피치 클래스의 수에 따라서 이름을 붙일 수 있다. "음계의 음정(interval) 뿐만 아니라 음계를 만드는 음(note)의 수가, 한 문화권의 음악에 독특한 음악적 특징을 지니게 한다" "어떤 음계의 음의 수보다, 음의 거리(interval, pitch distance)가 음악의 소리에 대해서 더 많은 것을 알려준다." 온음계와 반음계. 온음계와 반음계(半音階)는 서양 음악에서 쓰이는 용어이다. 자체로는 음계에 관한 말이지만, 온음계적·반음계적인 선율, 화음, 화성 진행 등의 표현으로도 쓰인다. 대부분의 경우 온음계는 7개 음으로 이루어진 장음계를 말한다. 20세기 음악론에서는 반음계가 아닌 모든 음계(이를테면 팔음음계)를 말할 때 쓰이기도 한다. 반음계는 12개의 반음으로 이루어진 음계를 말한다. 계이름. 계이름은 음계를 기준으로 한 음의 이름이다. 장음계를 이루는 음의 계이름은 으뜸음부터 위로 올라가면서 각각 도, 레, 미, 파, 솔(), 라, 시(), 도가 된다. 한국과 중국의 전통 음계.
|
29 |
음계
|
서양 음악에서는 도·레·미·파·솔·라·시로 된 7음계가 많이 쓰이지만 한국 전통 음악에는 황종(黃鍾)-미♭·태주(太蔟)-파·중려(仲呂)-라♭·임종(林鍾)-시♭·무역(無射)-레♭으로 된 5음계가 많이 쓰이고, 중국 전통 음악에는 궁-도·상-레·각-미·변치(變徵)-올림화(Fa )·치-솔·우-라·변궁(變宮)-시로 7음계를 많이 쓴다. 한국 전통 음악에서는 5음계 외에도 3음계 또는 악계통에서는 7음계 등이 쓰인다.
|
30 |
초월수
|
초월수(超越數, )는 수학에서 대수학적이지 않은 수, 즉 유리수 계수를 가지는 0이 아닌 유한 차수 다항 방정식의 해가 될 수 없는 수를 의미한다. 가장 잘 알려진 초월수는 (원주율)과 (자연로그의 밑)이다. 현재까지는 적은 양의 초월수들만 알려져 있다. 이는 어떤 주어진 수가 초월수인지 보여주는 것은 극히 어려울 수 있기 때문이다. 그러나 초월수들은 드물지 않다. 실제로 대수적 수들이 가산 집합을 구성하는 반면 실수의 집합, 복소수의 집합은 모두 비가산 집합이므로 거의 모든 실수들과 복소수들은 초월적이다. 또한 모든 유리수가 대수학적이기 때문에 모든 초월실수("실제 초월수" 또는 "초월무리수"라고도 함)는 무리수이다. 그러나 모든 무리수가 초월적인 것은 아니다. 따라서 실수의 집합은 겹치지 않는 유리수, 대수적인 무리수, 초월적인 실수로 구성된다. 예를 들어 제곱근 2는 무리수이지만 다항식 의 근인 만큼 초월수는 아니다. 황금비(formula_1 또는 formula_2로 표시됨)은 다항식 의 근으로서 초월적이지 않은 또다른 무리수이다. 역사. "초월적"이라는 이름은 라틴어로 "넘어오거나 넘어서거나"를 뜻하는 '트란스켄데레'(transcendĕre)에서 유래되었다. 고트프리트 빌헬름 라이프니츠는 1682년에 발표한 자신의 논문에서 수학적 개념을 처음 사용했는데 가 의 대수함수가 아니라는 것을 증명했다. 레온하르트 오일러는 18세기에 "초월수"를 현대적 의미로 정의한 최초의 수학자로 여겨지고 있다.
|
31 |
초월수
|
요한 람베르트는 1768년에 발표한 자신의 논문에서 (자연로그의 밑)와 (원주율) 둘 다 초월수라고 추측했고 무리수인 의 초월수 증명에 대한 대략적인 구성을 제안했다. 조제프 리우빌은 1844년에 초월수의 존재를 처음으로 증명했고 1851년에 리우빌 수와 같은 초월수의 사례를 제시했다. 이 ( 계승)인 경우에는 소수점 뒤의 번째 자리가 이고 그렇지 않은 경우에는 이다. 즉 이 숫자 등일 경우에만 이 숫자의 번째 자릿수가 이다. 조제프 리우빌은 이 숫자가 특정한 무리수인 대수적 수보다 유리수에 의해 보다 가깝게 근사할 수 있는 초월수의 종류에 속한다는 것을 보여주었고 이 종류의 숫자는 그의 이름을 따서 리우빌 수라고 불린다. 리우빌은 모든 리우빌 수가 초월수라는 것을 증명했다. 위의 예인 리우빌 수는 초월수의 존재를 증명하기 위한 목적으로 특별히 구성되었는데, 그렇게 구성되지 않고 자연스럽게 등장하는 수학 상수 중 가장 먼저 초월성이 증명된 것은 1873년의 샤를 에르미트가 증명한 이다. 1874년에는 게오르크 칸토어가 대수적 수들은 셀 수 있고 실수는 셀 수 없다는 사실을 증명했다. 그는 또한 초월수를 구성하는 새로운 방법을 제시했다. 비록 이것이 대수적 수의 계산 가능성에 대한 그의 증명에 의해 이미 암시되었지만 칸토어는 실수들만큼 초월수들이 있다는 것을 증명하는 구성을 발표했다. 칸토어의 연구는 초월수의 보편성을 확립했다. 1882년에는 페르디난트 폰 린데만이 의 초월성에 대한 최초의 증명을 담은 책을 출판했다. 그는 먼저 가 0이 아닌 대수적 수일 경우 가 초월수라는 것을 증명했다.
|
32 |
초월수
|
그렇다면 은 대수적이므로(오일러의 항등식 참조), 는 초월수이어야 한다. 그러나 가 대수적 수이기 때문에 는 초월수이어야 한다. 이러한 접근 방식은 카를 바이어슈트라스에 의해 일반화되었는데 오늘날에는 린데만-바이어슈트라스 정리로 알려져 있다. 의 초월은 원적 문제와 같이 가장 유명한 것을 포함하여 컴퍼스와 자 작도를 포함한 여러 고대 기하학 구조들이 갖고 있던 불가능성의 증거를 가능하게 했다. 1900년에는 다비트 힐베르트가 힐베르트 문제 중 7번 문제를 통해 초월수에 대해 영향력 있는 질문을 던졌다. "가 0이나 1이 아닌 대수적 수이고 가 무리수인 대수적 수라면 반드시 은 초월수인가?" 이에 대한 해답은 1934년에 겔폰트-슈나이더 정리를 통해 제공되었다. 이 연구는 1960년대에 앨런 베이커가 진행한 (대수적 수를 밑으로 하는) 로그에서 선형 형식의 하한에 대한 연구를 통해 다변수의 형태로 확장되었다. 특성. 초월수의 집합은 셀 수 없이 무한하다. 유리 계수를 갖는 다항식은 셀 수 있고 각각의 다항식은 유한한 근을 가지기 때문에 대수적 수도 셀 수 있어야 한다. 그러나 칸토어는 대각선 논법을 통해 실수가 (그리고 복소수 또한) 셀 수 없다는 것을 증명했다. 그리고 실수 집합은 대수적 수 집합과 초월수 집합의 합집합이기 때문에, 초월수 집합은 셀 수 없다. 어떠한 유리수도 초월적이지 않고 모든 초월실수는 무리수이다. 무리수는 2차 무리수 및 그 외의 형태를 가진 대수적 무리수를 포함하여 모든 실초월수와 대수적 수의 부분집합을 포함한다.
|
33 |
초월수
|
상수가 아닌 일변수 대수적 함수에 초월수를 대입하면 초월수를 얻는다. 예를 들어 가 초월적이라는 것부터 , 과 같은 숫자들이 초월수임을 알 수 있다. 그러나 다변수 대수적 함수는 초월수를 대입했을 때 대수적 수를 값으로 가질 수도 있다. 예를 들어 와 는 둘 다 초월적이지만 은 그렇지 않다. 예를 들어 가 초월적인지는 알 수 없지만, 와 가운데 적어도 하나는 초월수인 것이 알려져 있다. 더 일반적으로 어떤 두 초월수 와 에 대해, 적어도 와 가운데 하나는 초월수여야 한다. 그 이유는 다항식 을 고려해보면 알 수 있다. 만약 와 가 둘 다 대수적이라면 이것은 대수적 계수를 갖는 다항식이 될 것이다. 대수적 수는 대수적으로 닫힌 체를 형성하기 때문에 다항식의 근인 와 가 대수적이어야 한다는 것을 의미한다. 하지만 이것은 가정과 모순이다. 따라서 적어도 하나의 계수가 초월수라는 것을 알 수 있다. 계산 불가능한 수는 초월수의 진부분집합이다. 모든 리우빌 수는 초월적이지만 그 반대는 아니다. 모든 리우빌 수는 무한 연분수 전개에서 부분적인 몫의 상계가 없어야 한다. 대각선 논법을 사용하면 무한 연분수 전개시 부분적인 몫의 상계가 있는 (따라서 리우빌 수도 아니다.) 초월수가 존재한다는 것을 증명할 수 있다. 의 명시적인 무한 연분수 전개를 사용하여 가 리우빌 수가 아니라는 것을 보일 수 있다. (비록 연분수 전개의 부분적인 몫은 상계가 없지만). 쿠르트 말러는 1953년에 또한 리우빌 수가 아니라는 것을 증명했다.
|
34 |
초월수
|
상계를 갖는 "간단"한 구조의 모든 비주기 무한 연분수는 초월적이라고 추측된다.(주기적인 연분수와 2차 무리수는 동치이다.) 초월수로 입증된 수. 초월수로 입증된 수: 초월수일 가능성이 있는 수. 초월수 또는 대수적 수로 아직 입증되지 않은 수:
|
35 |
우크라이나
|
우크라이나()는 동유럽 국가다. 남쪽과 남동쪽으로는 흑해와 아조프해, 동쪽과 북동쪽으로는 러시아, 북쪽과 북서쪽으로는 벨라루스, 서쪽으로는 폴란드, 슬로바키아, 헝가리, 남서쪽으로는 루마니아, 몰도바와 접한다. 키이우가 수도이며 가장 큰 도시다. 동유럽 평원과 이어져 있으며 기후는 비교적 온화한 편이다. 법적 공용어는 우크라이나어이고, 인구 대부분은 우크라이나어를 사용하지만, 대부분 동부 인구(주로 동부 지역과 동남부 지역, 오데사 지역)는 러시아어 사용자이기도 하다. 주요 도시로는 키이우, 드니프로, 하르키우, 르비우, 오데사가 있다. 2014년 3월 18일 러시아가 크림반도를 강제 병합함에 따라 행정력이 크림반도에 미치지 못하지만, 국제사회는 대체로 크림반도를 우크라이나의 일부라는 태도를 견지하고 있다. 또한 우크라이나는 러시아-우크라이나 전쟁으로 인해 러시아에게 자포리자와 도네츠크 등을 빼앗겼다. 중세 초 루스 카간국으로부터 키예프 루스로 이어진 우크라이나는 오랫동안 투르크족·몽골족 등 지배를 받았다. 19세기까지 대다수 우크라이나 영토가 러시아 제국에 통합되었고, 나머지 부분은 오스트리아-헝가리 통제 아래 있었다. 우크라이나는 러시아 혁명 후 혼란과 끊임 없는 전쟁 속에서 여러 차례 독립을 시도하여 1917년에 민족국가를 건설했으나, 1922년에 소비에트 연방에 합병되었다.
|
36 |
우크라이나
|
1923년 소비에트 연방 헌법 적용을 받으며 우크라이나 소비에트 사회주의 공화국이란 이름의 구성국으로 존재했다, 1991년 소련 해체와 함께 독립하였다. 지하 자원이 풍부하여 도네츠 탄전의 석탄, 크리보이로그의 철광석, 카르파티아 유전과 천연가스, 그 밖에 망간, 우라늄, 식염, 칼리염, 석회석 등을 산출한다. 산업으로는 석탄·철광·선철 생산에서 중요성 있다. 풍부한 수력 전기를 이용하여 기계 제조 공업·화학 공업이 크게 발달했으며 유수 공업 지대를 이루고 있다. 석탄업, 철강업, 기계 제조업, 화학 공업 중심은 돈바스·드니프로 주이며, 드니프로 강 하구에서 키이우 사이 6개 수력 발전소가 단계상(段階狀)으로 건설되어 있다. 우크라이나 경지율은 약 70%에 이르고 있어, 겨울밀·옥수수·보리·사탕무·해바라기·포도의 재배, 가축 사양 등에서는 구 소련 시절 매우 중요한 지위를 차지하고 있었다. 온난한 크림반도 남단과 광천이 솟는 카르파트 지방은 중요한 관광·보양지다. 러시아 작가 니콜라이 고골의 작품 〈타라스 부리바〉 배경으로도 알려졌다. 공용어는 우크라이나어를 쓰고, 우크라이나인 대다수는 우크라이나 정교회를 믿는다. 국호. 우크라이나(Україна)라는 국호는 고대 동슬라브어 표현인 Оукраина/Oukraina에서 유래하였다.
|
37 |
우크라이나
|
우(Оу)는 전치사, 크라이(краи)는 땅 또는 변경, 경계를, 나(на)는 접미사에 해당되는 단어이며, 크라이나(країна)는 러시아어에서 파생된 크라이(край)와 비슷한 어원을 가지며, 우크라이나의 국명 뜻을 풀이하면, "변방의 지대", "변방의 땅"이라는 의미가 있으며, 동슬라브어로 국가, 땅, 영토, 변방, 끝자락 등의 의미를 뜻한다. 역사. 기원. 우크라이나 역사는 중앙아시아에서부터 건너와 동유럽을 정복한 튀르크 민족들의 관계를 빼 놓을 수 없다. 3세기부터 시작한 중앙아시아 투르크 민족들의 유럽 침공과 동슬라브족 정복 그리고 이주는 5세기부터 10세기까지 사바르 카간국에 이어 아바르 카간국 그리고 하자르 카간국까지 이어진다. 동유럽 동슬라브 원주민들은 사바르 카간국에 정복당해 프랑크족들과 대립하기도 하였고 하자르 카간국의 우크라이나 초원 정복으로 인해 동슬라브 문화는 서유럽의 문화와는 조금 이질적인 특징을 가지게 되었다. 하자르 카간국의 영향에 따라 동슬라브족으로서의 정체성이 생기기 시작하였고 8세기에서 9세기에 루스 카간국이라는 고대 투르크어인 군주 칭호인 카간을 자칭하는 북게르만족 루스인의 첫 국가가 등장하였다. 그 전까지는 벨라루스와 우크라이나를 지배했던 중앙아시아 투르크 민족들이 카간을 자칭하였으나 그 지배 아래 동슬라브인들도 완전히 종속과 동화되어 동슬라브인의 정체성이 확립되었고 그 후 동슬라브인들이 카간을 자칭하였다.
|
38 |
우크라이나
|
키예프 루스는 10세기까지 중앙아시아 투르크 민족의 영향을 받았고 이에 따라 류리크 왕조의 시조인 류리크 또한 위대한 카간이자 왕으로 불렸다는 기록이 존재한다. 862년경 전까지는 확실히 카간이라 칭한 루스인들이 페르시아 사서와 동, 서 로마 기록에 남아 있다. 여기에 원초연대기의 기록에서는 루스인들의 카간으로 알려진 류리크가 동슬라브족 지역에 정착하면서 류리크 왕조와 키예프 루스가 나타나며 카간이라는 호칭보다는 크냐지 또는 벨리키 크냐지라는 호칭이 자주 쓰이게 된다. <дека името Украина доаѓа од старословенскиот поим "украина" што значи „гранична област“ или „крајина“
|
39 |
하인리히 뵐
|
하인리히 뵐(Heinrich Böll , 1917년 12월 21일 ~ 1985년 7월 16일)은 독일의 소설가다. 생애. 1917년 쾰른에서 목공예 가문의 여섯 번째 아들로 태어났다. 전후 가장 먼저 두각을 나타낸 독일작가들 중 하나. 청소년기 나치 하에서 히틀러 유겐트의 유혹을 뿌리치고, 참여하지 않는다. 서점의 견습공으로 있다가, 카이저 빌헬름 김나지움을 졸업하고 1939년 쾰른대학교 독문학과에 입학하나 곧 제2차 세계대전에 징집되었다. 프랑스, 루마니아, 헝가리, 러시아 등지에서 복무한다. 4차례 부상당한 후 1945년 4월 미군에게 포로로 잡혀 2년이 지나 그의 나이 30에 전업작가가 된다. 전후 귀향하여 ‘전쟁에서 본 것’과 전후의 ‘폐허’에 대해서 쓰기 시작했다. 1949년 병사들의 절망적인 삶을 묘사한 『열차는 정확했다』를 시작으로, 참혹한 참전 경험과 전후 독일의 참상을 그린 작품들을 주로 발표했다. 1951년 '47그룹 문학상'을 받으면서 문인으로서의 위치를 다졌고, 1953년에 출간한 로 비평가와 독자들 모두로부터 찬사를 받으며 작가로서의 대성공을 거두었다. 이외에도 사회적으로 엄청난 반향을 일으킨 문제작 『카타리나 블룸의 잃어버린 명예』를 비롯해 『9시 반의 당구』, 『어느 광대의 견해』, 『신변 보호』 등의 작품을 집필했다. 1967년에는 독일 최고 권위의 문학상인 "을 수상했다. 1970년대에는 사회 참여가 더욱 적극적이 되었고 이에 따라 독일 사회와의 갈등도 심화되었다.
|
40 |
하인리히 뵐
|
특히 1969년과 1972년 뵐은 귄터 그라스와 함께 사회민주당으로의 정권교체를 위해 선거 유세에 직접 참여하며 빌리 브란트를 적극 지지했다. 또한 1971년 독일인으로서는 최초로 국제 펜클럽 회장으로 선출되어 세계 곳곳에서 탄압받고 있는 작가와 지식인들의 석방을 위해 노력했다. 1971년에는 성취 지향 사회에 대한 저항을 담은 ≪여인과 군상≫을 발표하고 이듬해 노벨문학상을 수상했다. 1929년의 토마스 만 이후 독일이 이 상을 받은 것은 43년 만이었다. 그의 작품은 30개 이상의 언어로 번역되었고, 그는 아직까지 독일에서 가장 많이 읽히는 작가로 알려져 있다. 문학 작품뿐만 아니라 행동으로도 보다 나은 사회를 위한 활동에 진력했던 뵐은 1985년 동맥경화로 세상을 떠났다. 그의 죽음 이후 독일 녹색당은 그의 저항적 삶을 기리기 위하여 당의 정책 연구소 이름을 '하인리히 뵐 연구소'라고 짓기로 결정하였다.
|
41 |
공각기동대
|
공각기동대(攻殻機動隊, Ghost in the Shell)는 시로 마사무네의 원작 만화로부터 파생된 포스트사이버펑크 작품군을 가리킨다. 극장판 영화, 텔레비전 애니메이션, 소설, 비디오 게임 등 다양한 매체로 만들어졌다.
|
42 |
체비쇼프 다항식
|
수학에서 체비쇼프 다항식(Чебышёв多項式, )은 삼각 함수의 항등식에 등장하는 직교 다항식열이다. 정의. 실수 formula_1차 다항식 formula_4에 대하여, 다음 네 조건이 서로 동치이며, 이를 만족시키는 formula_5을 formula_1차 체비쇼프 다항식이라고 한다. 드무아브르의 공식의 실수부를 비교하면 formula_17가 formula_18의 formula_1차 다항식으로 표현된다는 것을 알 수 있다. 좌변의 실수부는 formula_17, 우변의 실수부는, formula_18와 formula_22의 다항식이다. 성질. 직교성. 체비쇼프 다항식들은 다음의 무게 함수에 대해, 구간 formula_14에서 직교한다. 즉, 다음이 성립한다. 대칭. 짝수 차수의 체비쇼프 다항식은 짝함수이며, 홀수 차수의 체비쇼프 다항식은 홀함수이다. 근. formula_1차 체비쇼프 다항식 formula_5은 닫힌구간 formula_14 속에서 formula_1개의 서로 다른 근을 가지며, 이들은 다음과 같다. 분지점. 체비쇼프 다항식을 복소수 함수 로 여길 때, formula_33의 경우 다음이 성립한다. 예를 들어, 의 경우, 이는 분지 지표 2의 두 분지점 formula_39를 가지며, 그 값은 formula_40 및 formula_41이다. 마찬가지로, 의 경우, 분지 지표 2의 두 분지점 formula_43 및 분지 지표 3의 분지점 formula_44를 가지며, 그 값은 각각 formula_45 및 formula_46이다. 이에 따라, formula_32는 벨리 사상을 이루며, 이에 대응하는 데생당팡은 formula_15개의 꼭짓점을 갖는 선형 그래프이다. 예. 낮은 차수의 체비쇼프 다항식들은 다음과 같다. 역사. 파프누티 체비쇼프가 1854년에 도입하였다.
|
43 |
체비쇼프 다항식
|
체비쇼프 다항식의 통상적인 기호 T"n"는 체비쇼프의 이름의 프랑스어 표기 () 또는 독일어 표기 ()에서 딴 것이다.
|
44 |
수론적 함수
|
정수론에서 수론적 함수(數論的函數, )는 모든 양의 정수에 대해 정의된 함수이며 복소수 함수값을 가질 수도 있다. 다시 말하면 수론적 함수는 복소수의 수열에 지나지 않는다. 중요한 수론적 함수로 덧셈적 함수와 곱셈적 함수가 있으며, 수론적 함수 사이의 연산으로는 디리클레 합성곱이 중요하다. 예시. 곱셈적 함수와 덧셈적 함수에 몇몇 수론적 함수의 예가 수록되어 있다. 아래 예들은 곱셈적이지도, 덧셈적이지도 않은 함수들이다.
|
45 |
히라가나
|
히라가나(, )는 일본어에서 사용하는 두 가지 가나 가운데 하나다. 가타카나는 주로 외래어 표기 등에 쓰고, 히라가나는 다음과 같은 용도로 쓴다. 히라가나는 여성이 많이 썼다고 한다. 그래서 온나데()라고 불린 적도 있다. 이런 이유로 히라가나는 여자들만 쓰는 글이라 하여 오랫동안 일본 공용 문서에서 가타카나와 한자(칸지)만 사용했다. 현재 일본 철도 역명판에는 히라가나와 칸지가 적혀 있다. 히라가나는 헤이안 시대부터 썼다고 알려져 있다. 일본 유아들도 가나를 배울 때 히라가나를 먼저 배우고 가타카나를 나중에 배우기 때문에 유아용 그림책 등에는 가타카나로 쓴 단어 위에 히라가나를 후리가나로 덧붙이기도 한다. 음절문자다. 한영 자판 상태에서 히라가나를 입력할 경우 ㄸ+한자 키를 누르면 된다. 가타카나는 장음 등 일부 문자를 제외하면 꼭 ㅃ+한자 조합을 해야 한다. 세로쓰기할 경우 한 줄은 위에서 아래로 쓰고, 줄은 오른쪽에서 왼쪽으로 쓴다. 가로쓰기의 경우 왼쪽에서 오른쪽으로 쓴다. 역사. 히라가나는 만요가나에서 왔다. 메이지 시대 이전에는 히라가나의 모양이 확실히 정해지지 않고, 여러 형태의 문자가 사용되었다. 메이지 시대의 학제 시행 후에야 위와 같은 자형이 표준화되어 쓰이기 시작했다. 위 이외의 구식 자형은 헨타이가나(変体仮名)라고 부른다.
|
46 |
곱셈적 함수
|
수론에서 곱셈적 함수(-的函數, ) 또는 곱산술 함수(-算術函數)는 서로소인 두 정수의 곱셈을 보존하는 수론적 함수이다. 정의. 함수 formula_1가 다음 조건을 만족시키면, 곱셈적 함수라고 한다. 함수 formula_1가 다음 조건을 만족시키면, 완전 곱셈적 함수(完全-的函數, )라고 한다. (완전) 곱셈적 함수의 정의역은 formula_8의 곱셈에 대하여 닫혀있는 부분 집합일 수도 있다. 성질. 연산에 대한 닫힘. 곱셈적 함수 formula_1에 대하여, 다음과 같은 함수들 역시 곱셈적 함수이다. 항등식. 곱셈적 함수 formula_1에 대하여, 만약 formula_13의 소인수 분해가 일 경우, 다음이 성립한다. 만약 추가로 formula_16가 완전 곱셈적 함수일 경우, 다음이 성립한다. 즉, 곱셈적 함수는 소수의 거듭제곱의 상에 의하여 결정되며, 완전 곱셈적 함수는 소수의 상에 의하여 결정된다. 곱셈적 함수 formula_18에 대하여, 다음과 같은 항등식이 성립한다. 여기서 formula_23는 뫼비우스 함수이다. 곱셈적 함수 formula_24의 정의역 formula_25이 formula_26를 만족한다면, 이다. 디리클레 합성곱. 곱셈적 함수는 디리클레 합성곱에 대하여 아벨 군을 이룬다. 즉, 곱셈적 함수 formula_18의 디리클레 합성곱 와 디리클레 역원 은 곱셈적 함수이다. 곱셈적 함수 formula_1에 대하여, 만약 formula_13의 소인수 분해가 일 경우, 다음이 성립한다. 만약 추가로 formula_16가 완전 곱셈적 함수일 경우, 다음이 성립한다.
|
47 |
곱셈적 함수
|
예. 다음과 같은 수론적 함수들은 완전 곱셈적 함수이다. 다음과 같은 수론적 함수들은 곱셈적 함수이나, 완전 곱셈적 함수가 아니다. 양의 정수를 두 정수의 제곱의 합으로 나타내는 방법의 (더하는 순서를 고려한) 가짓수를 구하는 함수 는 곱셈적 함수가 아니다. 예를 들어, 1을 제곱수로 나타내는 방법은 다음과 같이 4가지가 있다. 즉, 이다. 폰 망골트 함수 는 formula_46이 어떤 소수 formula_48의 양의 정수 제곱일 경우 formula_75를, 소수의 거듭제곱이 아닐 경우 0을 값으로 취한다. 이므로, 이는 곱셈적 함수가 아니다.
|
48 |
위키
|
위키(, )는 불특정 다수가 협업을 통해 직접 내용과 구조를 수정할 수 있는 웹사이트를 말한다. 또한 일반적인 위키에서 텍스트는 단순화된 마크업 언어(위키 마크업)를 이용하여 작성되며, 리치 텍스트 에디터의 도움을 받아 편집하기도 한다. 위키는 지식경영이나 기록 등 다양한 용도로 이용된다. 공동체용 웹사이트나 조직 내 인트라넷에 쓰이기도 한다. 그러나 주로 개인적인 용도로 이용되는 위키도 있는데, 이를 개인 위키라고 한다. 최초의 위키 소프트웨어인 위키위키웹(WikiWikiWeb)을 만든 워드 커닝엄은 위키를 “동작하는 가장 단순한 온라인 데이터베이스”라고 설명했다. "위키"는 "빠른"을 뜻하는 하와이어 "wiki"(발음은 위티[ˈwiti]나 비티[ˈviti])에서 따왔다. 특징. 워드 커닝엄이 보 뢰프와 같이 쓴 《위키 방식: 웹 상의 빠른 협업("The Wiki Way: Quick Collaboration on the Web")》이라는 책에서, 위키의 가장 핵심적인 개념을 다음과 같이 꼽았다. 위키는 간단한 마크업 언어와 웹 브라우저를 이용, 함께 문서를 작성하는 공동체를 가능케 한다. 위키 웹사이트의 한 문서는 "위키 문서"라 부르며, 하이퍼링크로 서로 연결된 전체 문서를 "위키"라 한다. 위키는 본질적으로 정보를 만들고, 찾아보고, 검색하기 위한 데이터베이스다. 위키는 비선형적인, 진화하는, 복잡하게 얽힌 문서, 토론, 상호 작용을 할 수 있게 돕는다. 위키 기술을 정의하는 특징은 문서를 간단히 만들고 고칠 수 있다는 점이다. 일반적으로 수정이 반영되기 전에 승인이나 검토의 과정이 없다. 대부분의 위키는 사용자 등록을 요구하지 않고, 일반에게 공개되어 있다. 많은 편집자가 실시간으로 만들며, 즉시 온라인으로 배포된다.
|
49 |
위키
|
단 이는 시스템의 남용을 유발할 수 있지만 주로 장점이 더 많다. 개인 위키는 문서를 고치거나 읽기 위해 사용자 인증을 요구하기도 한다. 위키 문서 편집하기. 일반적으로 위키 문서는 위키 마크업이라 불리는 간단한 마크업 언어로 이뤄져 있다. 예를 들어 별표(*)로 시작하는 줄은 목록을 표시하는데 사용된다. 위키 마크업의 문법은 위키 소프트웨어마다 다르며, 일부는 HTML을 직접 사용할 수 있도록 하기도 한다. 점차 사용자가 위지위그(WYSIWYG) 편집을 할 수 있도록 지원하는 위키가 늘고 있다. 위지위그 편집은 위키 마크업의 모든 기능을 제공하지 못하므로, 이들 사이트에서는 편집자가 위키 문서를 직접 수정하는 방법을 제공하기도 한다. 대부분의 위키는 위키 문서의 변경 이력을 보존하고 있다. 편집자는 쉽게 문서를 예전 판의 내용으로 되돌릴 수 있으며, 이는 사용자의 실수나 고의적 훼손 때문에 필요한 기능이기도 하다. 미디어위키를 비롯한 많은 위키 소프트웨어는 문서를 편집할 때, "편집 요약"을 남길 수 있도록 한다. 이 편집 요약은 문서 본문에는 남지 않으나, 문서의 이력에서 편집 이유를 설명할 수 있도록 지원한다. 둘러보기. 대부분의 문서는 다른 문서를 가리키는 수많은 하이퍼링크를 포함하고 있다. 사용자는 필요에 따라 다른 문서의 목차나 색인을 따로 구축할 수도 있다. 여러 편집자가 임의로 문서를 만들고 삭제하기 때문에 수동으로 이런 목차나 색인을 유지하는 것은 쉬운 일은 아니다. 위키 소프트웨어는 이를 돕기 위해 분류나 태그 기능을 제공한다. 대부분의 위키는 현 문서를 가리키는 다른 문서를 찾는 백링크 기능을 제공한다. 위키에서 존재하지 않는 문서를 가리키는 링크를 만드는 것은 일반적인 일로, 다른 사용자가 자신이 아는 내용을 채울 수 있도록 유도한다.
|
50 |
위키
|
위키의 문서는 문서의 제목과 표기는 다르지만 발음이 같은 등의 경우에 해당되면 그 문서의 제목과 거의 같은 명칭, 혹은 그 문서의 제목과 같은 명칭이 아니지만 그 문서가 설명하는 대상을 가리키는 또 다른 명칭이 있는 경우 넘겨주기를 이용해서 넘겨주기 문서를 만들어 그 명칭으로도 그 문서가 설명하는 대상의 원래 제목과 같은 내용의 문서에 들어갈 수 있다. 문서를 연결하고 만들기. 다른 문서에 대한 링크는 "링크 패턴"이라는 문법을 통해 지원된다. 원래 대부분의 위키는 낙타 표기법(CamelCase) 방식으로 문서를 만들고 연결했다. 단어의 첫 글자를 대문자로 하고, 사이의 공백을 지워서 만들 수 있다. 이 방식은 로마자를 쓰는 경우, 쉽게 링크를 만들 수 있다. 한 단어로 되어 있는 문서를 만들 경우, 단어 중간의 한 글자를 임의로 대문자로 만들어서 이용한다. (예를 들어 "wiki"라는 문서를 "WiKi"로 표기한다거나 한다.) 낙타 표기법을 쓰는 위키는 "TableOfContents" 등을 링크로 사용하므로 쉽게 알아챌 수 있다. 일부 소프트웨어는 두 단어 사이에 다시 공백을 넣어서 사용자가 보기 좋게 표시해주기도 한다. 그러나 대문자 표기를 되돌리는 건 쉽지 않다. 예를 들어 "RichardWagner"는 "Richard Wagner"처럼 각 단어가 대문자로 표시되어야 하나, "PopularMusic"은 소문자인 "popular music"로 표시되어야 한다. 일부 위키는 괄호를 이용한 자유 링크 기능을 지원하기도 하며, 일부는 낙타 표기법 링크 기능을 막기도 한다. 검색. 대부분의 위키는 문서 제목을 이용한 검색을 지원하며, 일부 위키는 본문 검색을 지원하기도 한다. 검색의 확장성은 위키 엔진이 사용하는 데이터베이스에 따라 좌우된다. 일부 위키는 일반 파일을 사용하기도 한다.
|
51 |
위키
|
미디어위키도 초기 버전에서는 일반 파일을 저장용으로 사용하기도 했으나, 2000년대 초에 데이터베이스를 사용하도록 다시 작성되었다. 데이터베이스의 색인 기능은 대형 위키에서 빠른 검색을 위해 필요하다. 대안으로 일부 위키는 구글 검색 등 외부의 웹 검색 엔진을 이용하기도 한다. 역사. 최초의 위키 소프트웨어는 위키위키웹(WikiWikiWeb)으로, 워드 커닝엄이 창안했다. 커닝엄은 1995년에 위키위키웹을 만들기 시작하면서 처음으로 위키의 개념을 고안했고, 위키라는 이름도 지었다. 또한 최초의 위키 서버를 만들기까지 했다. 위키 소프트웨어는 디자인 패턴 모임에서 패턴 언어를 쓰면서 생겼으며, Portland Pattern Repository(PPR)가 최초의 위키였었다. 공동체. 참가자. 위키에 참가하는 사용자에는 4가지 종류가 있다: 독자, 저자, 위키 관리자, 시스템 관리자. 시스템 관리자는 위키 엔진과 컨테이너 웹 서버의 설치와 유지보수를 책임지는 일을 맡는다. 위키 관리자는 위키의 내용을 유지보수하며 문서에 관한 추가 기능(문서 생성 및 삭제)을 제공받으며 사용자의 접근 권한을 조정(예: 편집 차단)할 수 있다.
|
52 |
가수
|
가수(歌手, )는 목소리를 이용해서 음악을 만들고 부르는 사람을 말한다. 고전음악이나 오페라에서 목소리는 악기와 동일한 용법으로 사용되었다.
|
53 |
방정식
|
방정식(方程式, )은 미지수의 값에 따라 참, 거짓이 결정되는 등식이다. 방정식을 참이 되게 하는(성립하게 하는) 미지수의 값을 해(解, solution) 또는 근(根, root)이라 한다. 방정식의 해는 없을 수도 있고, 여러 개일 수도 있고, 모든 값일 수도 있다. 첫 번째의 경우는 불능이라고 하고, 마지막의 경우는 항등식(부정)이라 한다. 예를 들어 은 미지수 formula_2의 값에 따라 등식의 참과 거짓이 결정되므로 방정식이고, 그 해는 formula_3와 formula_4이다. 한편 은 문자 formula_2가 어떤 값이든 항상 등호가 성립하므로 항등식이다. 그리고 는 formula_2가 어떤 값이든 항상 등호가 성립하지 못하므로 불능이다. 방정식의 방정(方程)은 고대 중국의 산학서인 구장산술의 여덟 번째 장의 제목인 方程에서 유래하였다. 여기서 方은 연립방정식의 계수를 직사각형 모양으로 배열한다는 뜻이고, 程은 이렇게 배열한 계수를 조작하여 해를 구하는 과정을 뜻한다. 이 해법은 약 1500년 뒤에 등장하는 가우스 소거법에 해당한다. 고대 중국의 수학자들은 이 과정에서 음수의 계산도 자유자재로 할 수 있었다. 방정식에서 미지수를 나타내는 문자로 보통 로마자의 뒤쪽 문자인 formula_9 등을 사용한다. 이는 프랑스의 수학자 겸 철학자인 르네 데카르트가 시초이다. 방정식은 다양한 종류가 존재한다. 예시. 다항 방정식. 유리수, 실수, 복소수 등 체의 원소를 계수로 가지는 다항식 formula_10와 formula_11에 대해 로 표현되는 식을 다항 방정식(多項方程式, ) 또는 대수방정식(代數方程式, ))이라고 한다. 차수가 인 다항식으로 이루어진 다항 방정식을 차 방정식이라고 한다.
|
54 |
방정식
|
즉 차수가 1인 방정식을 일차 방정식, 2인 방정식을 이차 방정식과 같이 부른다. 예를 들어 은 일차 방정식이고, 은 이차 방정식이다. 다항 방정식은 여러 개의 미지수를 가질 수도 있다. 예를 들어 는 미지수가 formula_2 하나인 정수계수 다항 방정식이고, 는 미지수가 formula_19 두 개인 유리수계수 다항 방정식이다. 어떤 유리수계수 다항 방정식은 계수들의 사칙연산과 거듭제곱근만을 이용해 근을 표현할 수 있다. 특히 사차 이하의 다항 방정식은 항상 이러한 방식으로 근을 표현할 수 있다. 즉, 근의 공식이 존재한다. 흔히 근의 공식이라고 하면 이차 방정식의 근의 공식()을 의미한다. 예를 들어 이차 방정식 은 을 두 근으로 가지며, 따라서 계수들의 사칙연산과 거듭제곱근만으로 근이 표현된다. 그러나 아벨-루피니 정리에 의하면 오차 이상의 다항방정식은 이러한 방식으로 표현할 수 없는 근이 존재한다. 한편 대수학의 기본 정리에 따르면 모든 복소계수 다항 방정식은 하나 이상의 복소수 근을 가진다. 무리 방정식. 방정식의 항에 무리식(루트)을 포함하는 다항식으로 이루어진 방정식을 무리 방정식이라 한다. 예를 들어 는 무리 방정식이다. 위 방정식을 풀면 가 되어 formula_27이 된다. 그런데 무리 방정식에는 위처럼 유도과정을 거쳐 찾은 값이 방정식에 대입했을 때는 성립하지 않는 무연근이 존재할 수 있다. 따라서 앞에서 얻은 값이 무리방정식의 근이 되는지 검산하는 과정이 필요하다. 예시의 방정식에서 formula_28을 대입하면 식이 성립하지만, formula_29을 대입하면 성립하지 않음을 알 수 있다.
|
55 |
방정식
|
따라서 formula_30은 무연근이고, formula_31만이 무리 방정식의 근이다. 연립 방정식. 연립 방정식은 서로 다른 2개의 미지수가 주어진 방정식들에 모두 적합할 때 이 방정식의 쌍을 의미한다. 연립 방정식도 미지수의 차수에 따라 연립 일차 방정식, 연립 이차 방정식 등으로 나뉜다. 연립 일차 방정식에선 formula_32와 같이 한 미지수를 어떠한 값으로 나타내어 이 값을 그 미지수에 대입하는 방법인 대입법과 미지수의 계수를 같게 곱하여 둘을 더하거나 빼서 그 미지수를 없애는 가감법, 그리고 행렬을 이용한 가우스 소거법이 주로 사용된다. 미분방정식. 미분방정식은 함수와 그 도함수들로 표현되는 방정식이다. 일반적으로 어떤 물리적 대상을 표현하는 함수에 대해 그 도함수는 대상의 변화율을 의미하며, 따라서 물리적 대상과 그 변화율 간의 관계는 미분 방정식으로 표현된다. 미분 방정식은 공학, 물리학, 화학, 생물학, 경제학 등 수학 외의 학문에서도 중요한 역할을 차지한다. 상미분방정식. 상미분방정식은 하나의 독립 변수만을 가지는 미분 방정식이다. 편미분방정식. 편미분방정식은 여러 개의 독립 변수를 가지는 미분 방정식이다.
|
56 |
아오조라 문고
|
아오조라 문고()는 ‘일본어판 구텐베르크 프로젝트’로 불리는 일본의 인터넷 전자도서관으로, 저작권이 풀린 문학작품을 수집, 전자문서화해서 인터넷에 공개하고 있다. 저자 사후 50년이 지난 메이지, 쇼와 시대 초기의 일본 문학 작품이 그 대부분을 차지하고 있고, 일본어 외 문학 작품의 일본어 번역 작품도 다수 있다. 1997년 2월 도미타 미치오, 노구치 에이치, 야마키 미에, 란무로 사테이 등 4명이 창설하여 시작되었다. 2016년 연간 방문객수는 940만 건 이상이다. 아오조라 문고에 수록된 작품은 JIS X 0208에 해당되는 한자 범위 내에서 자원봉사자에 의해 아오조라 문고 형식 텍스트파일이나 HTML 파일로 전자화된다. 또 아오조라 문고 수록파일 취급기준에 따라 자유롭게 이용할 수 있기 때문에, 수록된 작품을 PC는 물론 PDA와 휴대전화로도 볼 수 있다. 텍스트 파일을 큰 글자로 인쇄하거나 전용 소프트웨어에 불러들여 시각장애인용으로 이용하는 방안도 기대되고 있다. 아오조라 문고의 열람 소프트웨어는 따로 개발 및 제공되고 있는 것은 없지만, 전자사전이나 아이폰용 어플리케이션 등은 타사에서 개발하여 출시되어 있다. 개요. 저자 사망 이후 50년이 지나 저작권이 소멸한 메이지 시대부터 쇼와 시대 초기까지의 서적 대부분이 존재한다. 외국 번역작품이나 저자가 무료보기를 인정한 현대작품도 포함된다. 장르는 정치부터 취미까지 다양하지만, 비교적 문학작품(시대소설, 추리소설등의 오락작품 포함)이 많다. 유명작가의 작품이 모두 갖춰져있진 않지만 그래도 일본어작품에 관련해서는 충실하게 갖춰진 편이다.
|
57 |
아오조라 문고
|
(번역작품의 경우 번역저작권을 문제로 수가 많지 않다.) 잘 알려지지 않은 작품을 보존, 소개하는 장점도 있다. 작품 텍스트화는 지금도 현재진행형이며 2011년 3월 15일 현재 등록작품수가 1만권이 넘었다. 고전작가인 모리 오가이, 나츠메 소세키, 아쿠타가와 류노스케, 최근의 작가로는 나카지마 아츠시, 다자이 오사무, 하야시 후미코, 미야모토 유리코, 호리 다쓰오, 사카구치 안고, 다카무라 고타로, 나가이 가후, 요시카와 에이지 등 인물의 작품이 있다. 운영. 아오조라 문고는 자원봉사로 운영되며 열람 역시 무료이다. 서비스 개시 초반에는 보이저 사에서 서버를 제공하였다. 1998년부터 1999년까지는 토미타가 작업 수칙과 매뉴얼을 만들었다. 자원봉사로 운영되기 때문에 작품의 입력과 교정 역시 자원봉사자가 한다. 입력은 원본을 보면서 타자입력이나 스캐너로 입력하는 방법으로 이뤄진다. 또 작품을 입력하는 '입력자'와 입력된 작품을 교정하는 '교정자'는 별도의 자원봉사자가 담당한다. 따라서 작품이 공개되기 전까지는 작품을 입력한 뒤 교정자가 교정을 예약할 때까지 '교정대기' (校正待ち)가 되고, 작업을 멈추게 된다. 즉, 입력하는 자원봉사자가 작품을 입력해 교정을 맡은 자원봉사자가 교정예약을 해서, 교정작업을 완료하기 전까지는 작품을 공개할 수 없다. 때문에 입력이 완료되어도 작업 상태가 '교정대기' 상태인 작품이 증가하고 있다. 이는 입력에 비해 교정 작업이 부족하기 때문으로, 아오조라 문고 출범 당시부터 안고 있는 문제점이기도 하다.
|
58 |
아오조라 문고
|
이 문제에 대해서는 작품의 교정작업을 하지 않고 공개하는 방안과 입력자가 교정한 것도 인정하자는 방안이 제기된 적이 있지만 현재까지도 이 방안은 채택되지 못하고 있다. 대신 2011년 12월 16일 공개분부터는 기부금을 재원으로 삼은 '유상교정' 서비스가 진행되고 있다. 2013년 8월 아오조라 문고의 설립자인 토미타가 사망한 것을 계기로, 아오조라 문고에 지속적인 지원을 해줄 '책의 미래 기금' (本の未来基金)이 설립됐다. 하지만 2015년부터는 엔지니어가 없는 상태로 서버를 강제로 돌리고 있으며, 서버 자체도 노후화되고 있다는 점이 문제되고 있다. 이 때문에 2015년 5월 "'Code for 아오조라 문고' 아이디어 송"이 개최되어 향후 시스템 운용에 대한 의견 교환이 이뤄졌다. 그 이후에는 해당 모임을 바탕으로 시스템 관리와 코드수정 등을 맡는 'aozorahack' 프로젝트가 진행되고 있다. 형식. 텍스트 파일을 아오조라 문고에 수록할 때, 텍스트 파일이 갖추어야 할 서식을 '아오조라 문고' 형식이라 부른다. 아오조라 문고 형식은 텍스트 파일로서 많은 환경에서 읽을 수 있도록 규격화되어있다. 때문에 가능한 한 원본의 충실한 재현을 목표로 삼고 있지만, 줄 바꿈이나 삽화 등의 정보는 원칙적으로 포함되지 않는다. 아오조라 문고 형식에 대응하는 텍스트 뷰어와 텍스트 편집기도 존재하며, 올림문자와 방점 등도 재현할 수 있다. 또 이러한 텍스트 뷰어에서는 본래 아오조라 문고 형식에 포함되지 않았던 삽화 정보를 삽입하거나 세로쓰기로 표시할 수 있으며, 텍스트를 읽기 쉽도록 만드는 다양한 기능이 포함되어 있다. 이러한 소프트웨어는 유료와 무료를 불문하고 종류가 다양하다.
|
59 |
아오조라 문고
|
올림문자. 일본어 표기에 많이 쓰이는 올림문자 (후리가나)는 그대로 올려쓰지 않고 '|'나 '《》'로 표시한다. 올림문자를 《》 로 묶거나 |로 올릴 문자열을 특정하는 방식은 일본 시각장애인 독서지원협회 (BBA)의 원문입력 수칙에 따른 것이다. 이 같은 방식을 예시로 들자면 다음과 같다. 라고 표기했다면 'ぶんこ' (분코)라는 올림표기가 '文庫' 부분에 걸려 있는 것이다. 다만, 처럼 올림표기를 쓸 한자가 가나로 충분히 구분된다면 |를 써서 분리할 필요가 없으므로 쓰지 않는다. 또한, 처럼 가나에 올림표기를 강제로 쓰는 것도 가능하다.
|
60 |
물리 상수
|
물리 상수(物理常數, )는 물리학에 나오는 값이 변하지 않는 물리량을 말한다. 물리 상수는 실제적인 물리적 측정과는 관계없이 고정된 값을 갖는 수학 상수와 대비되어, 대부분 그 값이 실험을 통한 측정을 통해 얻어진다. 물리 상수들 중에 특히 유명한 것으로는 플랑크 상수, 중력 상수, 아보가드로 상수 등이 있다. 물리 상수는 여러 가지 양을 의미한다. 플랑크 길이는 자연의 기본적인 거리, 광속은 가능한 최고 속력, 미세 구조 상수는 차원이 없는 양으로 전자와 광자 사이의 상호작용의 정도를 각각 의미한다. 물리 상수 일람. 유효자리는 굵게 표시했다.
|
61 |
펜로즈 삼각형
|
펜로즈 삼각형( 또는 )은 불가능한 물체의 일종이다. 1934년 스웨덴의 화가 오스카르 레우테르스베르드가 처음 쓰기 시작했고, 1950년대에 영국의 수학자 로저 펜로즈가 그와는 독자적으로 고안하여, 널리 알렸다. 그 후에도 펜로즈 삼각형은 마우리츠 코르넬리스 에셔의 판화에서 쓰이기 시작하여, 그의 작품 속에 등장하는 불가능한 물체에 영향을 주었다. 이 삼각형은 단면이 사각형인 입체인 것처럼 보이지만, 2차원 그림으로만 가능하다. 왜냐하면, 삼각형의 각 변을 이루는 평행한 면들은 각 꼭짓점에 이르면, 서로 다른 위치에서 본 직각의 모서리이기 때문이다. 각 변을 이루는 막대는 모두 서로 직각을 이루며, 그럼에도 불구하고 삼각형을 만든다. 이 방법을 일반화 시켜서 펜로즈 다각형으로 확대할 수 있다. 하지만 펜로즈 사각형은 그 시각적 효과가 삼각형만큼 충격적이진 않다. 펜로즈 삼각형처럼 보이는 입체를 만들 수는 있다. 하지만 이 때에 각 변은 꼬이거나, 끊어져야 한다.
|
62 |
푸리에 급수
|
수학에서 푸리에 급수(Fourier級數, )는 주기 함수를 삼각함수의 가중치로 분해한 급수다. 대부분의 경우, 급수의 계수는 본래 함수와 일대일로 대응한다. 함수의 푸리에 계수는 본래 함수보다 다루기 쉽기 때문에 유용하게 쓰인다. 푸리에 급수는 전자 공학, 진동 해석, 음향학, 광학, 신호 처리와 영상 처리, 데이터 압축 등에 쓰인다. 천문학에서는 분광기를 통해 별빛의 진동수를 분해하여 별을 이루는 화학 물질을 알아내는 데 쓰이고, 통신 공학에서는 전송해야 하는 데이터 신호의 스펙트럼을 이용하여 통신 시스템 설계를 최적화하는 데 쓰인다. 역사. 프랑스의 과학자이자 수학자인 조제프 푸리에가 열 방정식을 풀기 위하여 도입하였다. 프랑스 혁명에 참가했다. 정의. 푸리에 급수는 주기함수를 기본적인 조화함수인 삼각함수 또는 복소 지수 함수의 급수로 나타낸 것이다. 주기함수 formula_1가 formula_2의 주기를 가진다고 하자. 즉, 라고 하자. 또한, formula_4가 모든 유한 구간()에서 제곱적분 가능하다고 하자. 즉, 임의의 formula_5에 대하여, 가 유한한 값으로 존재한다고 하자. 그렇다면 formula_4의 푸리에 계수() formula_8을 다음과 같이 정의한다. 그렇다면 다음이 성립한다. 임의의 formula_10에 대하여, 다음 식이 성립하지 않는 formula_11의 집합은 르베그 측도 0을 가진다. 만약 formula_4가 연속미분가능 (formula_14) 함수라면 (즉, formula_4의 도함수가 존재하고 연속적인 경우) formula_4의 푸리에 급수는 모든 formula_11에서 formula_18로 수렴한다.
|
63 |
백남준
|
백남준(白南準, 1932년 7월 20일~2006년 1월 29일)은 한국 태생의 세계적인 비디오 아트 예술가, 작곡가, 전위 예술가다. 본관은 수원(水原)이다. 개요. 생전에 미국 뉴욕주 뉴욕, 독일 노르트라인베스트팔렌주 쾰른, 일본 도쿄, 미국 플로리다주 마이애미와 대한민국 서울에 주로 거주한 그는 여러 가지 매체로 예술 활동을 하였다. 특히 비디오 아트라는 새로운 예술의 범주를 발전시켰다는 평가를 받는 예술가로서 '비디오 아트의 창시자'로 알려져 있다. 생애. 현 서울특별시 종로구 서린동 (구 일제 강점기 경기도 경성부 서린정) 출신이다. 아버지 백낙승과 어머니 조종희 사이의 3남 2녀 중 막내로 태어났다. 그후 종로구 창신동 197번지 소위 "큰대문집"에서 18세까지 살았다. 수송국민학교와 경기제1고등보통학교를 다니면서 피아니스트 신재덕에게 피아노 연주를, 이건우에게 작곡을 각각 배웠다. 이때 한국이 낳은 작곡가 김순남을 사사했다. 1949년 그는 홍콩 로이덴 스쿨로 전학했으며, 한국 전쟁이 발발하기 이전 가족이 일본으로 이주했다. 그 후 일본으로 건너가 1952년 도쿄 대학교 문과부에 입학했다. 2년 후 미술사학 및 미학으로 전공을 정했지만, 실제로는 일본 당대의 작곡가 모로이 사부로, 미학자 노무라 요시오 등에게서 작곡과, 음악사학을 공부했다. 졸업 논문은 ‘아르놀트 쇤베르크 연구’이다.
|
64 |
백남준
|
1956년 백남준은 졸업과 함께 독일로 유학을 떠나 뮌헨 대학교 및 쾰른 대학교 등에서 서양의 건축, 음악사, 철학 등을 공부하였다. 뮌헨 대학교 입학 1년 후에는 프라이부르크 국립 음악 대학교로 옮겨 볼프강 포르트너 교수에게 배우지만, 곧 쇤베르크 이후 현대음악의 실험이 활발히 진행되던 다름슈타트 하기 강좌에 참여했다. 1958년 그 곳에서 현대음악가 존 케이지를 만나 그의 음악에 대한 파괴적 접근과 자유정신으로부터 깊은 영감을 얻었다. 이 영감은 "세계의 역사는 우리에게 알려준다. 주어진 게임에서 이길 수 없다면 규칙을 바꿔라"라는 것으로 규정된다. 이후 1950년대부터 활발해지기 시작한 독일 라인 지역의 액션뮤직의 현장에서 백남준은 ‘아시아에서 온 문화테러리스트’(앨런 카프로)라고 불릴 정도의 탁월한 퍼포먼스 아티스트로 활약했다. 1959년 ‘존 케이지에게 보내는 경의’에서 음악적 콜라주와 함께 피아노를 부수는 퍼포먼스를 선보이는 것을 시작으로, 바이올린을 단숨에 파괴하거나(바이올린 솔로) 존 케이지가 착용한 넥타이를 잘라버리는 퍼포먼스(피아노 포르테를 위한 연습곡)가 특히 유명하다. 이 초기 퍼포먼스에 대해 백남준은 스스로 "충격, 표현주의, 낭만주의, 클라이맥스, 놀라움, 기타 등등을 보여준 것"이라고 표현한 바 있다. 1961년 카를하인츠 슈토크하우젠의 음악 퍼포먼스 ‘오리기날레’에서 머리와 넥타이로 잉크를 묻혀 두루마리에 흔적을 남기는 독특한 퍼포먼스 심플 머리를 위한 선율을 보여주기도 했다.
|
65 |
백남준
|
1960년대 초반 조지 마키우나스, 요셉 보이스 등과 의기투합하여 플럭서스 활동을 함께 전개했다. 다다이즘에 영향을 받은 플럭서스는 헤라클레이투스가 주장한 ‘변화 생성의 흐름’이라는 개념을 받아들여 "목적이 없는 자유, 실험을 위한 실험"이라는 명목 하에 이벤트와 퍼포먼스 그리고 전위음악에 주력했고, 곧 유럽과 아시아 및 미국 등 세계로 퍼져나갔다. 1961년 백남준은 작곡가 슈토크하우젠이 중심이 된 쾰른의 WDR 전자음악 스튜디오에 출입했으며, 이때 1950년대부터 노버트 위너에 의해 제안된 '사이버네틱스' 개념 하에서 전자공학을 공부한 것으로 알려져 있다. 특히 레이다와 TV 작업에 몰두했던 독일 작가 칼 오토 괴츠의 실패를 거울 삼아서 2년여 동안 홀로 TV를 활용한 미디어 아트로서의 가능성을 탐문하고 실험했다. 그 성과를 바탕으로 1963년 독일 부퍼탈 파르나스 갤러리에서 자신의 첫 번째 전시 ‘음악의 전시-전자 텔레비전’을 열었으며, 13대의 실험적인 TV를 통해 훗날 비디오 아트라고 불리게 되는 초기 형태를 보여주었다. 이 전시는 백남준이 자신의 즉흥음악 또는 무음악의 발상에 기초한 실제 퍼포먼스, 그 흔적과 결과물처럼 유럽에서 자신이 진행해온 작업의 성과와 함께 TV를 비롯한 미디어로 새로운 예술의 형태를 시도하는 작업이 공존하고 있었다.
|
66 |
백남준
|
‘적분된 피아노’, ‘랜덤 액세스 뮤직’, ‘레코드 샤슐릭’같은 20세기 전위음악에 젖줄을 대고 있는 실험적 음악의 시도와 ‘잘린 소머리’, ‘파괴된 누드 마네킹’, ‘보이스의 피아노 파괴 퍼포먼스’'걸음을 위한 선' '바람을 위한 선' 같은 우상파괴적 설치 작업 및 참여예술 형태의 퍼포먼스가 함께 펼쳐졌다. 청년 백남준은 이러한 전시 내용을 ‘동시성’, ‘참여’, ‘임의접속’ 등등에 관한 16개의 테마로써 정리하는 종합적인 큐레이팅 전시로 보여주었기 때문에 최근 독일, 오스트리아 등지의 연구자들 사이에서 이 전시의 중요성을 재평가하면서 아카이빙 작업과 연구가 점차 활발해지는 추세에 있다. 1964년 백남준은 일본으로 건너가 '로봇 K-456'을 제작했으며, 곧 세계 예술의 중심지 뉴욕으로 이주했다. 뉴욕 언더그라운드 필름 운동의 중심지 중 하나였던 시네마테크 필름메이커스에 관여했으며, 스스로 영상 작업을 진행하기도 했다. 1965년 소니의 포타팩(세계 최초의 휴대용 비디오카메라)으로 미국 뉴욕을 첫 방문 중이던 교황 요한 바오로 6세를 촬영하여 곧바로 그 영상을 ‘카페 오 고고’에서 방영했다. 이것이 미술사에서는 한동안 공식적인 비디오 아트의 시작으로 기록되어 있었다. 지금은 1963년 첫번째 전시를 비디오아트의 기점으로 보고 있다. 또한 첼로 연주자이자 뉴욕 아방가르드 페스티벌의 기획자였던 샬럿 무어먼과 함께 비디오 아트와 음악을 혼합한 퍼포먼스 작업을 활발히 펼쳤다.
|
67 |
백남준
|
특히 1967년 음악에 성적인 코드를 집어넣은 백남준의 ‘오페라 섹스트로니크’에서 샬럿 무어먼은 누드 상태의 첼로 연주를 시도하다가 뉴욕 경찰에 체포되어 큰 사회적 파장을 불러일으켰다. 그 결과로 인해 예술 현장에서 누드를 처벌할 수 없다는 뉴욕의 법 개정이 이루어지는 획기적인 진전이 일어난다. 이후에도 미디어 아트가 미국 뉴욕을 중심으로 서서히 득세해가는 시대적 조류 속에서 두 사람은 ‘살아있는 조각을 위한 TV 브라’, ‘TV 첼로’, ‘TV 침대’ 등등 미디어 테크놀로지와 퍼포먼스를 결합한 많은 예술활동을 전개했다. 1974년부터 백남준은 영상으로서의 비디오 아트를 새로운 미술적 방법인 설치 미술로 변환하여 다양하게 진행했으며, 그에 따라 ‘TV 붓다’, ‘달은 가장 오래된 TV다’, ‘TV 정원’, ‘TV 물고기’ 등등 많은 대표작을 선보였다. 이 작품들은 비디오 아트와 생명의 상징을 전자적으로 결합하여 테크놀로지로 물든 현대 사회의 새로운 합성적 생명력을 추구했다는 평판을 얻었다. 특히 'TV 붓다'는 그의 초기 비디오 설치의 경향을 잘 보여주는 대표작으로서 가장 널리 알려졌다. 1960년대 후반부터 미국의 문화적 환경이 미디어 테크놀로지에 호의적으로 변화하면서 폭발적인 수준의 미디어 전시가 빈발했고, 백남준의 비디오 아트는 그룹전 형태로 수많은 전시에 활발하게 참여했다.
|
68 |
백남준
|
1974년 뉴욕 에버슨 미술관 개인전과 함께 이라는 예술과 기술을 교차시키는 하이브리드에 관한 저작을 내놓아 미디아 아트의 이해를 도왔으며, 1982년 뉴욕 휘트니 미술관에서 개최된 ‘백남준 회고전’을 통해 그의 예술 세계가 뉴욕을 중심으로 미국 사회에 많이 알려지는 계기가 되었다. 1970년대 중반부터는 뉴욕 WNET 방송국, 보스턴 WGBH 방송국과 협력하여 자신의 비디오 아트를 공중파 TV에서 방송했고, 이는 네트워크 방송을 끌어들여 예술 세계의 영역 확장을 꾀한 놀라운 시도였다. 나아가 1984년 1월 1일 ‘굿모닝 미스터 오웰’은 세계적인 아티스트들의 퍼포먼스를 뉴욕 WNET 방송국과 파리 퐁피두 센터를 연결한 실시간 위성 생중계로 방송하여 전 세계적 반향을 불러일으켰다. 샌프란시스코와 서울까지 연결된 이 국제적인 규모의 위성 아트에는 로리 앤더슨, 피터 가브리엘, 오잉고 보잉고, 존 케이지, 요셉 보이스, 앨런 긴즈버그, 이브 몽탕 등의 예술가과 대중문화의 스타가 다수 참여했으며, 전 세계 2천 5백만명(재방송 포함)이 시청하였다. 이로써 전세계적인 차원의 대중적 각인이 이루어졌고, 마치 대중스타처럼 성가를 높였다. 이후에도 ‘위성 아트’ 3부작으로 명명된 ‘바이 바이 키플링’(1986), ‘손에 손잡고’(1988) 등이 이어져 위성 연결을 통한 전세계의 네트워크가 어떻게 새로운 부족사회를 낳는지 실감시켰다.
|
69 |
백남준
|
1984년 일본 도쿄 소게쓰[草月]홀에서 백남준과 요셉 보이스가 공동으로 참여한 퍼포먼스 '코요테 콘서트 II'가 펼쳐졌으며, 이들이 각각 몽골의 늑대 울음소리와 초원의 달빛을 음악적으로 표현한 것을 통해 1961년 첫 만남부터 계속 이어온 공동의 관심사가 무엇인지 알려지기 시작했다. 그러나 이들의 이후 퍼포먼스 계획은 요셉 보이스의 죽음과 함께 미완으로 끝났다. 1992년 '비디오 때, 비디오 땅' 전시는 독일 쿤스트 할레와 스위스 쮜리히에서 진행된 전시의 서울 투어전시로서 당시 과천 막계동에 자리잡은 지 몇 년 되지 않았던 국립현대미술관 과천관에 총 관람 인원 20만명이 찾은 첫번째 전시로 기록되었다. 이 전시의 주요한 작품은 '나의 파우스트' 시리즈이다. 1993년 백남준은 독일 작가 한스 하케와 함께 베니스 비엔날레 독일관 작가로 초대되어 국가전시관 부문에서 황금사자상을 수상했다. '문명의 동서남북'이라는 주제의 이 전시에서 그는 북방 유라시아의 유목 문화를 배경으로 전자적 소통을 시도하는 비디오 로봇 형태의‘칭기스칸의 복권’, ‘마르크폴로’, ‘훈족의 왕 아틸라’,‘스키타이의 왕 단군’, ‘로봇 전사’, ‘고대기마인물상’ 같은 작품들을 중심으로 다수의 작품을 내놓았다. 1995년 백남준은 제1회 광주 비엔날레 태동의 산파 역할을 하며, 한국 미술이 국제적으로 진출할 수 있도록 조력자 역할을 수행했다. 제1회 광주 비엔날레는 국내외 총 관람객이 160만 명에 달하는 성공을 거두었고, 특히 백남준이 직접 관여한 ‘INFO Art’전이 주목받았다.
|
70 |
백남준
|
또한 백남준은 같은 해 베니스 비엔날레 국가전시관 부문에 한국관을 설치하는 일에 결정적인 역할을 했다. 이로써 한국 미술이 세계 미술계에 진출하는 교두보가 마련되었다고 하겠다. 같은 해 그의 예술적 정수가 담긴 일렉트로닉 수퍼하이웨이 전시를 진행했다. 2000년 뉴욕 구겐하임 미술관에서 ‘백남준의 세계’ 라는 대규모 회고전이 열렸으며, 이때 백남준은 레이저 아트 ‘야곱의 사다리’, ‘삼원소’ 등을 전시한 바 있다. 2006년 1월 29일, 미국 마이애미의 자택에서 노환으로 별세, 유해가 서울, 뉴욕, 독일에 나눠서 안치되었다.
|
71 |
삼각 함수 항등식
|
수학에서 삼각함수 항등식(三角函數恒等式, )은 삼각함수가 나오는 항등식을 말한다. 이 공식들은 삼각함수가 나오는 복잡한 식을 간단히 정리하는 데 유용하며, 특히 치환적분에서 매우 자주 쓰이기 때문에 중요하다. 참고로 아래에서 formula_1, formula_2 등의 함수는 formula_3와 같이 정의된다. 주기성, 대칭성, 이동(Shifts). 다음 관계는 단위원을 사용하면 쉽게 보일 수 있다. 다음 식은 삼각함수의 주기성을 나타낸다. 다음 식은 삼각함수의 대칭성을 나타낸다. 다음은 삼각함수의 이동 성질을 나타낸다. 또한, 주기가 같지만, 상(phase)이 다른 사인파들의 선형결합은 또 다른 상의 동일주기의 사인파가 된다. 즉, 다음과 같다. 여기서 피타고라스 정리. 다음 식들은 삼각함수의 정의와 피타고라스 정리를 이용하면 쉽게 보일 수 있다. 덧셈 정리. 다음의 삼각함수의 덧셈정리를 증명하는 가장 쉬운 방법은 오일러의 공식을 이용하는 것이다. 탄젠트 공식은 위의 둘을 결합하여 얻는다. 여기서 두배각 공식. 다음 공식은 바로 위 덧셈 공식에서 formula_22로 놓으면 바로 얻어진다. 피타고라스의 식을 쓰면 변형을 얻는다. 또한 드무아브르의 공식에서 formula_23로 놓아도 된다. 세배각 공식. 아래 공식들은 덧셈정리에서 한 각을 2x, 다른 한 각을 x로 놓고 전개하면 얻을 수 있다. 네배각 공식. 아래 공식들은 배각의 공식에서 x를 2x로 두고 전개하여 풀면 얻을 수 있다.
|
72 |
삼각 함수 항등식
|
n배각 공식. formula_40이 formula_41번째 체비쇼프 다항식일 때, 드무아브르의 공식: 디리클레 핵formula_44 은 다음의 항등식의 양변에서 도출되는 함수이다. : 디리클레 핵을 갖는 2n차의 어떤 제곱적분 가능함수의 합성곱(convolution)은 함수의 n차 푸리에 근사와 함께 동시에 일어난다. 차수 줄이기. n차 제곱한 삼각함수를 일차식의 삼각함수 식으로 바꾼다. 이차식 공식. 두배각 공식의 코사인 공식을 formula_46 과 formula_47으로 푼다. 반각 공식. 차수 줄이기 이차식 공식에서 formula_58에 formula_59을 대입하고, formula_60 과 formula_61으로 푼다. 또한, formula_65는 formula_66과 같고, 여기에 분자 분모에 같은 formula_67을 곱한다. 그러면, 분자는 사인의 두배각 공식에 의해 formula_68이 되고, 분모는 formula_69 이므로 코사인 두배각 공식을 쓰면 formula_70 이 된다. 두 번째 식은 분자와 분모에 다시 formula_68를 곱하고, 피타고라스 공식으로 간단히 하면 얻어진다. 곱을 합으로 바꾸는 공식. 우변을 덧셈정리로 전개하면 증명된다. 합을 곱으로 바꾸는 공식. 위 식의 formula_58를 formula_78로, formula_79를 formula_80 로 바꾼다. 그리고 또 다른 식들로 다음과 같이 있다. 다음 식들은 아마 변수가 있는 일반화된 식을 찾기가 위 보다 어려울 것이다. 21을 택해서 각을 나누면, 도로 표현한 각이 더 이상 깔끔하지 않다. 다음 식을 보자. 1, 2, 4, 5, 8, 10 이란 인자를 보면 차츰 답이 드러난다. 이 수들은 모두 보다 작고, 21과의 공약수가 1인 수 들이다.
|
73 |
삼각 함수 항등식
|
사실 위 세 가지 예는 더 인수분해되지 않는 원분다항식(cyclotomic polynomial)에 대한 기본정리의 따름정리이다. 코사인값은 다항식의 영(zero)들의 실수부이고, 그들의 합은 21(가장 마지막 예)의 뫼비우스 함수값이다. (식에선 값의 반만이 나타난다.) 미적분학. 미적분학의 삼각함수에선 각을 라디안(radian)으로 써야 한다. 그렇지 않으면, 다음 관계식들은 성립하지 않는다. 우선 삼각함수가 기하학적으로 정의된 후에 함수들의 미분을 구하기 위해선 우선: 과 을 증명한다. 그리고, 미분의 극한 정의와 덧셈정리를 이용한다. 삼각함수가 테일러 급수로 정의되었다면, 각 항을 미분하여 알아낼 수 있다. (참고 formula_92 나머지 삼각함수의 미분은 위 항등식과 미분법칙으로 얻어진다. 적분식은 적분표를 참고하라.
|
74 |
토마스 만
|
토마스 만(, 1875년 6월 6일 ~ 1955년 8월 12일)은 독일의 평론가이자 소설가이다. 사상적인 깊이, 높은 식견, 연마된 언어 표현, 짜임새 있는 구성 등에 있어서 20세기 독일 제일의 작가로 알려져 있다. 1929년 노벨 문학상을 비롯, 괴테 상 등 많은 상을 받았다. 토마스 만의 형은 급진적인 작가 하인리히 만이다. 그리고 6명의 자식 중 3명인 Erika Mann, 클라우스 만, Golo Mann들도 또한 독일의 중요한 작가로 성장했다. 생애. 문학입문. 토마스 만은 평의원이며 곡물 상인이었던 토마스 요한 하인리히 만과 율리아 다 실바 브룬스 부부 사이에서 두 번째 아들로 독일의 뤼베크에서 태어났다. 어머니 율리아는 7살 때 독일로 망명한 부분적 독일계 브라질리안이다. 토마스 만의 아버지가 1891년에 돌아가시면서 회사는 청산되었다. 1893년 뮌헨으로 이주하여 보험 회사의 견습 사원이 되었다. 이때 첫 작품 가 잡지에 실리면서 문단에 데뷔하였다. 첫 번째 소설. 토마스 만은 뤼베크 체육관 기술 분야에 참가하면서, 뮌헨 대학과 기술대학에서 시간을 보내게 된다. 그 당시 그는 역사, 경제학, 미술역사, 문학등을 공부하게 되면서 언론계로 커리어를 준비하게 된다. 그는 이탈리아 팔레스트리나에서 살았던 1년을 제외하면 1891년부터 1933년까지 형이자 소설가인 하인리히와 함께 뮌헨에 거주하게 된다. 토마스 만은 보험회사에서 1894년에서 1895년까지 일을 하게 된다. 그가 Simplicissimus에서 글을 쓰기 시작하면서 작가로서의 커리어를 시작하게 된다.
|
75 |
토마스 만
|
토마스 만의 첫 번째 소설은 1898년에 출판된 "꼬마 프리데만 씨"이다. 1901년 부유한 상인의 집안이 4대에 걸쳐 몰락하는 과정을 그린 장편 을 발표하여 문단에서의 자리를 굳혔다. 그가 동성애 관계를 가졌다는 여러 정황이 있으나 종국에는 카티아 프링스하임과 사랑에 빠졌다. 1905년, 그는 그녀와 결혼을 하며, 6명의 아이들을 낳았다. 제1차 세계대전. 제1차 세계 대전이 일어나자 등 정치적 논설을 발표하고, 점차 구낭만주의적인 반지성주의를 벗어나, 새로운 휴머니즘을 품기 시작하였다. 1924년 12년간의 노력의 결정인 장편소설 을 발표하였는데, 이 소설은 손꼽히는 발전 소설로서 독일 문학사상 중요한 위치를 차지하고 있다. 요셉과 그 형제들. 1929년 토마스 만은 Nidden(, 리투아니아)에 있는 어촌에 오두막을 가진다. 그 곳에는 독일 예술 공동체가 있었으며, 1930년에서 1932년 여름에는 "요셉과 그의 형제들("Joseph and his Brothers")"을 집필한다. 현재 이 오두막은 소규모 전시를 하면서 토마스 만에 대한 문화적인 중심이 됐다. 나치의 박해. 1933년 나치스 정권 성립으로 조국을 떠나, 남프랑스·스위스 등을 거쳐, 1938년 미국에 이르렀다. 그 곳에서 프린스턴 대학에서 수업을 한다. 제2차 세계 대전 때는 높은 휴머니즘의 입장에서 민주주의 옹호를 위해 싸웠다. 스위스. 1942년 그의 가족들은 캘리포니아 로스엔젤레스에 있는 로 이사를 한다. 그 곳에서 제2차 세계 대전이 끝날 때까지 살게 된다.
|
76 |
토마스 만
|
1944년 6월 23일, 토마스 만은 미국 시민권을 받게 된다. 1952년에 스위스, 취리히 근처에 있는 에서 살게 된다. 그는 독일을 규칙적으로 여행하긴 했지만, 그 후로 살지 않았다. 가장 유명한 독일 방문은 1949년 요한 볼프강 폰 괴테의 200주년이다. 별세. 1955년 취리히에 있는 한 병원에서 아테롬선 동맥 경화증으로 죽고, Kilchberg에 묻힌다. 많은 협회들이 그의 이름을 기린다. 토마스 만의 작품은 처음으로 H. T. Lowe-Porter가 번역했다. 그녀는 토마스 만의 작품을 영어권 사회에 크게 전파시켰다. 정치적인 관점. 제1차 세계 대전 동안, 토마스 만은 카이저의 (독일의 빌헬름 2세) 보수주의를 지지하고 진보주의를 공격한다. 1930년 토마스 만은 베를린에서 "An Appeal to Reason"라는 연설을 한다. 그는 강하게 나치중심 사회주의를 비난하고 운동권들에 의한 반대를 격려한다. 이것은 그가 집필한 수많은 평론과 문학에서 나치를 공격한 것에서 알 수 있다. 동시에 그는 사회주의자들의 생각에 대해서 늘어나는 동정을 표현했다. 1933년 나치가 집권을 했을 당시, 토마스 만과 아내는 스위스에서 주말을 보냈다. 나치 정책에 대한 그의 매우 강력한 비난 때문에, 아들 클라우스는 돌아가지 말자고 권했다. 하지만 토마스 만의 책은 하인리히나 클라우스의 책들과는 달리, 히틀러 정권에 의해서 태워지지 않았다. 물론 그것은 그가 1929년 노벨상을 받았기 때문이다. 결국 1936년 나치 정권이 공식적으로 토마스 만의 독일 시민권을 빼앗아간다.
|
77 |
토마스 만
|
몇 달 후, 그는 캘리포니아로 이사를 가게 된다. 그러나 1933년 8월 26일이라고 기록된 개인적인 편지(그러나 2007년 8월 30일에 공개됐다)에서, 이미, 토마스 만은 나치즘에 대한 견해를 표현하고 있었고, 이것은 후에 "파우스투스 박사(Doktor Faustus)"와 일치한다. 이 소설에서, 토마스 만은 2차 대전에서 모든 잔인함에 대한 독일 국민에 대한 역사적인 책임감을 가진 몇몇 지역들을 언급한다. 전쟁 동안, 토마스 만은 반-나치 라디오 연설 시리즈()를 만든다. 이것은 미국에서 녹음돼서 영국에 전해지고, BBC가 방송을 하게 되면서 독일 청취자들이 듣기를 원한다. 사회 비판가 의 컬렉션 "The Accidental Century"에 있는 "Images of Disorder"는 토마스 만의 정치적 성형이 바뀌는 것을 설명한다.
|
78 |
주기율표
|
주기율(週期律表, , ) 또는 주기표(週期表)는 원소를 구분하기 쉽게 성질에 따라 배열한 표로, 러시아의 드미트리 멘델레예프가 처음 제안했다. 1915년 헨리 모즐리는 멘델레예프의 주기율표를 개량시켜서 원자번호순으로 배열했는데, 이는 현대의 원소 주기율표와 유사하다. 원자 번호가 커짐에 따라 성질이 비슷한 원소가 주기적으로 나타나는 성질인 주기성을 기준으로 원소들을 배열하였다. 주기율표의 가로행은 주기라 부르고, 세로열은 족이라 부른다. 주기마다 같은 성질의 원소가 반복적으로 나타나기 때문에, 같은 족의 원소들은 서로 유사한 화학적 특성을 보인다. 전자를 가지고 있으려 하는 비금속성은 대체로 오른쪽이 더 높으며, 반대로 전자를 주려고 하는 금속성은 대체로 왼쪽이 더 높다. 이러한 화학적 성질은 각 원소의 전자 배치에 기인한다. 1869년 러시아의 화학자 드미트리 멘델레예프가 원자 질량에 따라 원소의 화학적 성질이 주기적으로 변화하는 것에 착안하여 주기율표를 처음으로 만들었다. 당시에는 모든 원소가 발견되지 않았기 때문에 원소 사이에 공백이 남아있었는데, 멘델레예프는 원소의 주기성에 착안하여 원소를 새로 발견하기도 하였다. 원소의 주기성은 19세기 후반에 사실로 인식되었으며, 원자 번호가 발견되고 20세기 초에 양자역학을 통해 원자의 내부 구조를 탐구하며 재확인되었다. 글렌 T. 시보그가 1945년에 악티늄족이 d-블록 원소가 아닌 f-블록 원소라는 사실을 발견함으로써 현대의 주기율표 틀이 완성되었다. 주기율표는 과학의 발전에 따라 계속 개정되고 있다.
|
79 |
주기율표
|
자연계에서는 원자 번호 94까지 존재하는 원소들만 존재하는데, 과학자들은 실험실에서 원자번호 94보다 더 무거운 원소들을 합성하고 있다. 현재에는 118개의 원소들이 알려져 있으며 표의 처음 일곱 주기를 빈틈 없이 채우고 있다. 이 일곱 줄을 넘어서 표가 얼마나 뻗어나갈지, 표의 알려진 부분의 주기율이 언제까지 이어질지는 아직 알려지지 않았다. 또한 일부 원소가 주기율표에 올바르게 배치되었는지에 대한 과학적 논의가 계속되고 있다. 역사. 되베라이너의 세 쌍 원소. 주기율표의 역사는 요한 볼프강 되베라이너의 "세 쌍 원소"로부터 시작된다. 그는 실험을 통해 세 개의 원소로 이루어진 무리 중 어떤 원소들은 첫 번째 원소와 세 번째 원소의 물리량 평균이 두 번째 원소의 물리량과 같음을 확인했다. 그 구체적인 예로는 '칼슘(Ca), 스트론튬(Sr), 바륨(Ba)'의 세 원소가 있다 여기서 스트론튬(Sr)의 물리량은 칼슘(Ca)과 바륨(Ba) 원소의 물리량을 합하여 2로 나눈 평균값과 비슷하거나 같다. 되베라이너는 이들을 세 쌍의 원소라고 불렀다. 이러한 세 쌍 원소 관계를 만족하는 원소들은 칼슘-스트론튬-바륨, 염소-브로민-아이오딘, 그리고 리튬-나트륨-칼륨이 대표적인데 이를 만족하는 원소수가 적어 인정받지 못하였다. 세 쌍 원소는 현대 주기율표에서 같은 족에 해당된다. 뉴랜즈의 옥타브 설.
|
80 |
주기율표
|
영국의 과학자 존 뉴랜즈는 원소들을 원자량의 순으로 배열하면 8번째 원소마다 비슷한 성질의 원소가 나타나는 것을 발견하였고, 이를 피아노의 개념에 대입하였지만 이 대응성은 3번째 줄에서부터 어긋나기 시작했고, 처음 이 이론이 발표되었을 때만 해도 그는 웃음거리가 되었으나 이후 여러 가지 실험이 뉴랜즈의 법칙의 중요성을 보였다. 현대 주기율표에서 주기개념의 시초가 되었다. 드미트리 멘델레예프(1834~1907). 드미트리 멘델레예프는 화학 교수였다. 멘델레예프는 원소의 규칙을 밝히기 위해 이런저런 시도를 하다가 결국 원소들을 원자량순으로 나열하면 되베라이너의 세쌍원소, 뉴랜즈의 옥타브 법칙을 만족하게 된다는 것을 알게 되었다. 그는 원소가 어떤 함수의 결과라는 것을 확실히 믿었지만 비활성 기체가 발견되면서 그의 주기율표는 바뀌기 시작했다. 멘델레예프가 만든 주기율표에는 빈자리가 있었다. 그리고 그 빈자리에 언젠가는 빈 칸을 채울 원소가 발견될 것이라고 주장했다. 멘델레예프의 주기율표는 양성자의 수의 순서로 첫 칸부터 118번째 칸까지 채워지게 된다. 모즐리의 법칙. 멘델레예프의 문제는 영국의 모즐리에 의해 풀렸다. 그는 음극선관을 이용하여 생성되는 X선의 파장을 연구하여 양성자 수에 따라 화학적 성질이 달라진다는 것을 밝혀냈다. 이를 모즐리의 법칙이라하며, 이것을 기본으로 현대적 의미의 주기율표가 탄생하였다. 원소의 분류. 유사한 성질을 가지는 원소들의 집합을 일컫는 용어가 여럿 있다.
|
81 |
주기율표
|
그중 IUPAC이 인정하는 것은 알칼리 금속, 알칼리 토금속, 질소족, 칼코젠, 할로젠, 비활성 기체가 있다. 원소의 성질이 주기적으로 반복되기 때문에, 각 집합은 각각 하나의 족에 대응된다. 대응되는 이름이 없는 족의 경우, 가장 첫 번째 원소의 이름을 따 부르기도 한다. 예를 들어 6족 원소의 경우 크롬으로부터 따와 크롬족(chromium group)이라고 부르기도 한다. 이와는 반대로 IUPAC이 깔끔히 정의내리지는 않았지만 통용되는 원소의 분류로는 금속, 비금속, 준금속의 분류가 있다. 이에 대해 일치된 견해는 없다. 전이 금속의 뒤를 잇는 금속들을 부르는 용어 역시 제대로 된 합의가 이루어지지 않았기 때문에 전이후(post-transition) 금속 또는 불량(poor) 금속이라고 불린다. 일부 논문에서는 상당히 다른 화학적 특성을 간혹 보인다는 이유로 12족 원소를 전이 금속에서 제외하지만, 보편적인 인식은 아니다. 란타넘족은 란타넘 (57번, La)에서 루테튬 (71번, Lu)까지의 희토류 원소이다. 란타넘족은 원자번호가 늘어나면서 4f 오비탈을 채운다. 과거에는 세륨(Ce)부터 루테늄까지를 한묶음으로 분류했지만, 현대에는 란타넘까지 묶는 표기가 일반적으로 사용되고 있다. 여기에 스칸듐과 이트륨을 더해 희토류 원소라고 부른다. 이와 마찬가지로 악티늄족은 악티늄(89번, Ac)에서 로렌슘(103번, Lr)까지의 원소를 가리킨다. 악티늄족은 원자번호가 늘어나면서 5f 오비탈을 채운다.
|
82 |
주기율표
|
이 역시 과거에는 토륨(Th)부터 로렌슘까지를 한묶음으로 분류했지만, 현대에는 악티늄까지 묶는 표기가 일반적으로 사용되고 있다. 란타넘족 원소보다는 같은 족 원소끼리의 성질차이가 훨씬 크다. IUPAC는 -ide 접미사가 일반적으로 음이온을 나타내므로 모호성을 피하기 위해 란타노이드와 액티노이드라 부를 것을 권고한다. 루테튬과 로렌슘을 3족 원소로 생각하는 일부 학자들은 란타넘족 원소를 란타넘에서 이터븀(Yb)까지로 정의하고, 악티늄족 원소를 악티늄에서 노벨륨(No)까지로 정의하여 f-블록과 일치시키기도 한다. 위에 나열한 분류 외에도 분야에 따라서 여러 분류를 사용한다. 천체물리학에서는 원자 번호가 2보다 큰 원소, 즉 수소와 헬륨을 제외한 모든 원소를 금속이라 부른다. 반금속이라는 분류도 물리학에서 화학에서 서로 다르게 분류한다. 예를 들어 비스무트는 물리학의 정의에서는 반금속이지만, 대부분의 화학자들은 금속으로 간주한다. 중금속처럼 널리 사용되지만, 실제로는 엄밀하게 정의되지 않은 분류도 존재한다. 학자들마다 사용하는 용어에도 차이가 있다. 예를 들어, IUPAC는 매우 방사성이 강한 초중금속 오가네손을 포함한 모든 18족 원소를 비활성 기체로 분류한다. 그러나 오가네손의 실제 화학적 성질을 계산한 결과는, 오가네손이 상대론적 효과로 인해 비활성이 아닐 것이며 심지어는 상온에서 기체도 아닐 수 있다고 예측한다.
|
83 |
주기율표
|
일본의 학자들은 알칼리 토금속에 베릴륨과 마그네슘을 포함시키지 않는 경우가 있는데, 이는 마그네슘보다 더 무거운 2족 원소들과 성질에 차이가 있기 때문이다. 논쟁거리. 주기율표에는 현대에도 여러 논쟁거리가 남아있다. 주기율표 전체를 외울 필요가 있냐는 목소리가 있지만, 대학교에서 전이금속을 배우는 것이 아니라면 원자번호 1번부터 20번까지만 외우면 충분하다. 수소의 위치. 수소와 헬륨의 위치에 대한 논쟁이 이어지고 있다. 현재의 주기율표에서는 수소를 알칼리 금속과 마찬가지로 가장 바깥쪽 껍질에 전자를 하나 가진 리튬 위에 배열한다. 그러나 일부에서는 수소는 금속 원소가 아니며 수소가 전자의 구조 면에서는 알칼리 금속이 아닌 할로겐에게 가깝고 할로젠 원소와 성질이 비슷하다고 주장하며, 수소의 위치를 17족 원소로 옮겨야 한다고 주장한다. 마찬가지로 생각해서, 수소가 1족 원소라면 헬륨도 베릴륨 위에 2족 원소로 배치해야 한다는 설이 있다. 그러나 헬륨은 비활성 기체이므로 현재처럼 네온 위인 18족 원소가 가장 적당하다고 한다.
|
84 |
맥스웰 방정식
|
맥스웰 방정식(-方程式, s)은 전기와 자기의 발생, 전기장과 자기장, 전하 밀도와 전류 밀도의 형성을 나타내는 4개의 편미분 방정식이다. 맥스웰 방정식은 빛 역시 전자기파의 하나임을 보여준다. 각각의 방정식은 가우스 법칙, 가우스 자기 법칙, 패러데이 전자기 유도 법칙, 앙페르 회로 법칙으로 불린다. 각각의 방정식을 제임스 클러크 맥스웰이 종합한 이후 맥스웰 방정식으로 불리게 되었다. 전자기역학은 맥스웰 방정식과 로런츠 힘 법칙으로 요약된다. 로랜츠 힘은 맥스웰 방정식으로부터 유도될 수 있다. 개요. 맥스웰의 방정식은 네 개의 법칙을 모아 종합하여 구성한 것이다. 맥스웰의 방정식은 빛과 같은 전자기파의 특성을 설명한다. 각 방정식의 수학적 표현은 공식 부분에서 다루기로 하고 우선은 방정식의 의미를 살펴보면 다음과 같다. 역사. 맥스웰의 방정식에 나타난 각 식은 오랜 시간에 걸쳐 연구된 전기와 자기의 특성을 종합한 것이다. 인류는 고대 시대부터 이미 정전기에 의한 인력과 방전 현상을 알고 있었고 자석의 특징을 이용한 나침반을 만들어 사용해 왔다. 근대에 이르러 전기와 자기에 대한 많은 연구가 진행되었으며 그 결과 쿨롱 법칙, 패러데이 전자기 유도 법칙, 앙페르 회로 법칙과 같은 법칙들이 발견되었다. 맥스웰은 이러한 기존의 연구 성과를 종합하여 전기와 자기가 하나의 상호작용, 즉 전자기력에 의한 것임을 증명하면서 빛역시 전자기파라는 것을 밝혔고, 전자기 복사의 발견을 예언하였다.
|
85 |
맥스웰 방정식
|
맥스웰 이전의 연구 성과. 쿨롱 힘. 앞서 밝힌 바와 같이 두 전하 사이에 인력과 척력이 작용한다는 것은 고대 이후 잘 알려진 사실이었다. 그러나 이렇게 두 전하 사이에 작용하는 힘의 관계와 크기는 측정하기 매우 어려웠는데, 그 까닭은 작용하는 힘의 크기가 매우 작기 때문이었다. 1784년 샤를 드 쿨롱은 비틀림 저울을 이용한 실험장치를 고안하여 대전된 두 전하 사이에 작용하는 힘의 크기를 측정할 수 있었다. 샤를 드 쿨롱은 금속공과 비틀림 저울을 이용하여 두 점전하 사이에 작용하는 힘을 측정하고, 두 전하 사이에서 작용하는 힘은 두전하 크기의 곱에 비례하고 거리의 제곱에 반비례한다는 쿨롱 법칙을 발견하였다. 쿨롱 법칙을 식으로 나타내면 다음과 같다. 한편, 쿨롱 힘은 전하 사이의 작용뿐만 아니라 자계에도 적용될 수 있다. 두 자극의 세기를 각각 mA, mB라 할 때, 이 두 자극 사이에 작용하는 힘은 다음과 같이 정리된다. 자극의 세기 단위는 웨버(Wb)로 쿨롱은 세기가 같은 두 개의 자극을 1m 떨어뜨려 놓았을 때 작용하는 힘의 세기가 formula_5인 경우를 1Wb로 정의했다. 따라서 상수 k의 값은 다음과 같다. 자극 사이에 작용하는 힘의 크기는 전하 사이에 작용하는 힘의 크기와 같은 방식으로 계산할 수 있으나 둘 사이에는 분명한 차이가 있다. 즉, 전하는 양전하이든 음전하이든 단독으로 존재할 수 있는 데 반해 자극은 홀극으로 존재할 수 없고, N극과 S극이 언제나 쌍으로 존재하여야 한다는 것이다.
|
86 |
맥스웰 방정식
|
맥스웰의 연구. 제임스 클러크 맥스웰은 각각 독립적으로 다루어져 오던 전기와 자기의 법칙들을 종합하여 맥스웰 방정식을 수립하였다. 맥스웰은 마이클 패러데이의 "역선"(力線) 개념과 앙드레마리 앙페르의 회로 이론을 근간으로 방정식을 정리하였다. 1861년 맥스웰은 논문 《물리적인 역선에 대해》를 발표하여 모두 4개의 방정식으로 구성된 맥스웰 방정식을 소개하였다. 이 방정식은 1865년 발표된 논문 《전자기장의 역학 이론》과 1873년 출간된 《전기와 자기에 관한 논문집》제2권의 9장에서 다시 소개되었다. 물리학자 리처드 파인먼은 "이 방정식에 비하면 남북전쟁조차 큰 의미없는 지엽적인 사건이라고 할 수 있다"라고 맥스웰 방정식의 중요성을 강조하였다. 맥스웰 방정식의 정리. 1865년 맥스웰 자신에 의해 발표된 맥스웰 방정식의 원래 형태는 8개의 방정식으로 이루어진 것이었다. 그러나, 오늘날에는 1884년 올리버 헤비사이드가 4개의 방정식으로 정리한 형태가 일반적으로 사용된다. 조사이어 윌러드 기브스와 하인리히 루돌프 헤르츠 역시 헤비사이드와 동일한 작업을 한 바 있다. 이 때문에 맥스웰 방정식은 헤르츠-헤비사이드 방정식으로 불리기도 한다. 그러나 "맥스웰 방정식"이란 이름이 더 폭넓게 쓰이고 있다. 1861년 맥스웰은 《물리적인 역선에 대해》에서 앙페르 회로 법칙을 설명하기 위해 방정식들을 열거하였다. 맥스웰은 이 논문에서 앙페르 회로 법칙에 치환 전류를 덧붙였다.
|
87 |
맥스웰 방정식
|
1865년 발표한 《전자기장의 역학 이론》에서는 전자기파 방정식을 기술하면서 빛이 전자기파임을 제시하였다. 맥스웰의 이론은 1887년 하인리히 루돌프 헤르츠의 실험에 의해 증명되었다. "장"(場)이란 개념은 마이클 패러데이가 도입하였다. 알베르트 아인슈타인은 맥스웰이 장 개념을 도입한 것에 대해 다음과 같이 평가하였다. 당시 이 방정식은 헤르츠-헤비사이드 방정식 또는 멕스웰-헤비사이드 방정식이라고 불렸다. 그러나 아인슈타인은 사이언스에의 기고문에서 이를 "맥스웰 방정식"이라 부르며, 이 방정식들이 이론물리학의 기초라고 설명하였다. 맥스웰은 방정식을 정리하면서 헤비사이드의 전위와 벡터 위치 등 위치 요소를 중요한 개념으로 도입하였다. 1884년 맥스웰은 전자기파의 전달을 중력과 같이 원격에서 상호작용하는 힘이 아닌 전자기장에서 빛의 속도로 전파되는 전위로 파악하였다. 라디오 안테나에 대한 현대의 분석에서도 맥스웰의 백터와 스칼라 위키에 대한 수식만으로 서로 떨어져 있는 안테나 사이에 작용하는 전파의 영향을 모두 설명할 수 있다. 맥스웰 방정식과 관련한 헤비사이드의 업적은 맥스웰이 여러 논문과 책에서 서술한 맥스웰 방정식을 오늘날과 같은 4개의 방정식으로 정리하였다는 것이다. 《물리적 역선에 대해》 (1861년). 오늘날 4개의 방정식으로 정리된 맥스웰의 방정식은 1861년 발표된 논문인 《물리적 역선에 대해》에 기반한 것이다. 이 논문에는 전자기장에 대한 다수의 방정식이 실려있다.
|
88 |
맥스웰 방정식
|
1855년 맥스웰은 케임브리지 철학 학회에서 《패러데이의 역선》을 발표하면서 formula_8와 formula_9 벡터의 차이점을 설명하였다. 이 논문은 오늘날에도 패러데이 전자기 유도 법칙에 대한 가장 간결한 모형으로 인정받고 있다. 여기서 맥스웰은 전류에 관한 모든 지식을 미분 방정식으로 나타내었다. 1855년 맥스웰이 제안한 분자 와동의 바다란 개념은 1861년 《물리 역선에 대해》에서 보다 분명하게 소개되었다. 이 논문에서는 자기장이 형성되는 분자 규모의 와동에서 formula_8의 밀도에 따라 formula_9의 순 와동 운동이 결정된다고 보았다. 맥스웰은 와동의 밀도를 측정하기 위한 값으로 투자율 µ 을 정의하였다. 이 논문에서 밝힌 맥스웰의 개념은 다음과 같다. 이 때 formula_14는 전하 밀도이다. formula_8는 축을 이루어 회전하는 자기 전류이고 formula_9는 그 주위를 돌게 되는 자기력선의 자기 선속이다. 투자율 µ는 결국 자기장 formula_8에 의해 유도되는 자기 선속 formula_9의 비가 된다. 전류 방정식은 전하의 대류 전류가 선형적으로 움직이는 것을 보여준다. 한편, 자기 방정식은 유도 전류의 회전에 의해 발생하는 자기를 나타내는 것으로 formula_8 벡터의 방향성으로 인해 비선형 방정식이 된다. 따라서 자기 유도 전류는 역선으로 표현된다. 자기력선은 역제곱 법칙에 의해 전류에서 멀어질수록 약해지게 된다. 《전자기장의 역학이론》 (1864년). 1864년 맥스웰은 《전자기장의 역학이론》을 출간하였다. 맥스웰은 이 책에서 빛이 전자기파임을 제시하였다.
|
89 |
맥스웰 방정식
|
이 책에서 맥스웰은 8개의 방정식을 전자기장에 대한 일반적인 방정식으로 제시하였다. 이 때문에 훗날 "맥스웰 방정식"이라는 표현이 오늘날의 4개의 방정식을 가리키는 것인지 1864년 제시된 8개의 방정식을 가리키는 것인지를 혼동하기도 한다. 따라서 오늘날의 4개로 구성된 방정식을 분명히 하기 위해 헤비사이드가 정리한 맥스웰 방정식(맥스웰-헤비사이드 방정식)이라는 표현이 사용된다. 현대 벡터 표기를 사용하여 정리한 멕스웰의 8개 방정식은 다음과 같다. 이 책에서 표현된 방정식 D는 로런츠 힘의 효과를 나타낸 것으로 1861년 논문의 방정식 77번을 보다 간략하게 표현한 것이다. 또한, 맥스웰은 1865년 논문에서 전자기파 방정식을 정의하였는데 이 책의 방정식 D를 전자기 유도를 설명하기 위해 사용하였다. 오늘날에는 방정식 D 대신 패러데이 전자기 유도 법칙이 쓰인다. 맥스웰은 전자기파 방정식을 연구하는 과정에서 방정식 D의 formula_36를 버렸다. 《전기와 자기에 관한 논문집》 (1873년). 1873년 맥스웰이 출간한 《전기와 자기에 관한 논문집》에서 방정식은 두 개의 묶음으로 나뉘었다. 수식. 다음은 국제단위계를 사용하여 수식으로 표현한 맥스웰 방정식이다. 발산정리와 스토크스의 정리를 이용하면 미분형과 적분형 방정식이 같음을 알 수 있다. 아래 표는 각 기호의 뜻과 단위를 나타낸다. formula_41는 발산 연산자(단위: 1 / 미터), formula_42는 회전 연산자(단위: 1 / 미터)이다.
|
90 |
맥스웰 방정식
|
두 번째 방정식은 자기 홀극이 없음을 뜻한다. 전기장과 자기장이 대전된 입자에 미치는 힘은 리엑턴스 힘에 따라 국제단위계에서 다음과 같다. 여기서 formula_44는 입자의 전하량이고 formula_45는 입자의 속도다. (CGS 단위계에서는 자기장을 다르게 정의하므로, formula_45 대신 formula_47를 쓴다.) CGS 단위계. 위의 수식은 국제단위계로 표현되었지만, 다른 단위계에서도 맥스웰 방정식은 변하지 않거나, 약간의 상수 변화만이 있을 뿐이다. 물리학과 공학에서 일반적으로 가장 널리 쓰이는 국제단위계 이외에도 특수한 경우 CGS 단위계가 쓰인다.
|
91 |
코사인 법칙
|
기하학에서 코사인 법칙(cosine法則, )은 삼각형의 세 변과 한 각의 코사인 사이에 성립하는 정리이다. 이에 따르면, 삼각형의 두 변의 제곱합에서 사잇각의 코사인과 그 두 변의 곱의 2배를 빼면, 남은 변의 제곱과 같아진다. 삼각형의 두 변의 직각 삼각형에 대한 피타고라스의 정리에 대한 일반화이다. 코사인 법칙은 삼각형의 두 변과 그 사잇각을 알 때 남은 한 변을 구하거나, 세 변을 알 때 세 각을 구하는 데 사용될 수 있다. 정의. 삼각형 formula_1의 세 각 formula_2가 마주하는 변이 각각 formula_3라고 하면, 다음이 성립한다. 여기서 formula_5은 삼각 함수의 하나인 코사인이다. 이를 코사인 법칙이라고 한다. 코사인 법칙을 통해 삼각형의 두 변과 그 사잇각으로부터 제3의 변을 구할 수 있다. 또한, 삼각형의 세 변으로부터 세 각을 다음과 같이 구할 수 있다. 코사인 법칙에서 formula_7가 직각일 경우, formula_8이므로, 다음과 같은 피타고라스의 정리를 얻는다. 역사. 유클리드의 《원론》 2권 명제12 및 명제 13은 코사인 법칙과 동치인 명제를 서술한다. 레기오몬타누스는 1462~3년에 작성한 《삼각형에 대하여》()에서 (제1) 구면 코사인 법칙을 제시하였다. 프랑수아 비에트는 1579년 저서 《표준 수학》()에서 제2 구면 코사인 법칙을 제시하였다. 증명. 유클리드의 《원론》에서의 증명. 그림과 같이, formula_7를 둔각으로 하는 둔각 삼각형 formula_1의 높이선 formula_12를 긋자.
|
92 |
코사인 법칙
|
그렇다면, formula_13는 formula_14를 직각으로 하는 직각 삼각형이므로, 피타고라스의 정리에 따라 다음이 성립한다. 또한, formula_16이므로, 다음이 성립한다. 마지막 두 항을 직각 삼각형 formula_18에 대한 피타고라스의 정리를 통해 정리하면 다음을 얻는다. 이로써 유클리드의 《원론》 2권 명제12가 증명된다. 코사인의 정의에 따라 이므로, 코사인 법칙 이 formula_7가 둔각일 경우 성립함을 알 수 있다. formula_7가 예각일 경우의 증명은 이와 비슷하다. 삼각법을 통한 증명. 삼각형의 세 변을 각각 높이선으로 안에서 또는 밖에서 나누면 다음을 얻는다. 세 등식의 양변에 각각 formula_3를 곱하면 다음을 얻는다. 이제 첫째 등식에 둘째 등식을 더한 뒤 셋째 등식을 빼면 다음을 얻는다. 이로써 코사인 법칙이 증명된다. 벡터와 스칼라곱을 사용한 증명. 다음과 같은 세 벡터를 정의하자. 그렇다면, 벡터 formula_33의 길이는 각각 formula_3이며, 벡터 formula_35와 formula_36 사이의 각도는 formula_7이다. 따라서, 코사인 법칙을 벡터의 스칼라곱의 성질에 따라 다음과 같이 간단히 증명할 수 있다. 비유클리드 기하학의 경우. 구면 코사인 법칙. 단위 구면 위의 구면 삼각형 formula_1의 세 각 formula_2가 마주하는 세 변이 각각 formula_3라고 하면, 다음이 성립한다. 여기서 formula_43은 각각 코사인, 사인이다. 이를 (제1) 구면 코사인 법칙(第一球面cosine法則, )이라고 한다. 이에 대한 쌍대 명제는 다음과 같다.
|
93 |
코사인 법칙
|
이를 제2 구면 코사인 법칙(第二球面cosine法則, )이라고 한다. 이 둘은 각각 다음과 같이 쓸 수 있다. 제1 구면 코사인 법칙의 증명 (법벡터 사용). 다음과 같은 벡터들을 정의하자. 즉, formula_48는 각각 formula_7에서 formula_50를 향하는 구면의 단위 접벡터이다. 그렇다면, formula_48 사이의 각도는 formula_7이다. 또한, formula_53는 각각 평면 formula_54의 정규 직교 기저를 이루므로, formula_55를 각각 다음과 같이 분해할 수 있다. 따라서, 다음이 성립한다. 제1 구면 코사인 법칙의 증명 (비네-코시 항등식 사용). 단위 구면의 중심을 formula_59라고 하자. 또한, 다음과 같은 세 벡터를 정의하자. 그렇다면, formula_33의 길이는 모두 1이며, formula_62 사이의 각도는 formula_63이며, formula_64 사이의 각도는 formula_65이며, formula_66 사이의 각도는 formula_67이다. 따라서, 벡터곱 formula_68, formula_69, formula_70의 길이는 각각 formula_71, formula_72, formula_73이다. 또한, formula_68와 formula_69 사이의 각도는 formula_76이며, formula_77와 formula_70 사이의 각도는 formula_79이며, formula_80와 formula_81 사이의 각도는 formula_7이다. 이제, 비네-코시 항등식에 따라 다음이 성립함에 주의하자. 여기에 위의 결과들을 대입하면 다음을 얻는다. 이로써 제1 구면 코사인 법칙이 증명된다. 제2 구면 코사인 법칙의 증명. 구면 삼각형 formula_1의 극삼각형을 formula_86라고 하자. 그렇다면, 다음이 성립한다.
|
94 |
코사인 법칙
|
따라서 제1 구면 코사인 법칙을 극삼각형 formula_86에 적용하면, 구면 삼각형 formula_1에 대한 제2 구면 코사인 법칙을 얻는다. 쌍곡 코사인 법칙. 가우스 곡률 -1의 쌍곡면 위의 쌍곡 삼각형 formula_1의 세 각 formula_2이 마주하는 변이 각각 formula_3라고 하면, 다음이 성립한다. 여기서 formula_95는 각각 쌍곡 코사인, 쌍곡 사인이다. 이를 (제1) 쌍곡 코사인 법칙((第一)雙曲cosine法則, )이라고 한다. 마찬가지로, 다음이 성립한다. 이를 제2 쌍곡 코사인 법칙(第二雙曲cosine法則, )이라고 한다. 이 두 법칙은 각각 다음과 같이 다시 쓸 수 있다. 특히, formula_7가 직각일 경우의 제1 쌍곡 코사인 법칙은 쌍곡 피타고라스 정리가 된다. 제1 쌍곡 코사인 법칙의 증명. 복소 평면 formula_101 위의 열린 단위 원판 formula_102 위에서 푸앵카레 원판 모형을 취하자. 쌍곡 삼각형 formula_103의 세 각의 크기를 formula_2, 세 변의 길이를 formula_3라고 하자. formula_106 위에 적절한 등거리 변환을 가하여 formula_107을 각각 원점 0, 양의 실수 formula_108, 허수부 formula_109가 0보다 큰 복소수 formula_110로 옮길 수 있다. 등거리 변환의 성질에 따라 새로운 삼각형 formula_111의 세 변 및 세 각은 원래의 삼각형 formula_103와 같으므로, 새로운 삼각형 formula_111에 대하여 증명하는 것으로 족하다. 쌍곡 거리의 정의에 따라, 세 변은 다음과 같다. 여기서 formula_117은 자연 로그이며, formula_118은 복소수의 절댓값이다. 이 셋을 다음과 같이 변형할 수 있다.
|
95 |
코사인 법칙
|
여기서 formula_122는 쌍곡 탄젠트이다. 쌍곡선 함수의 항등식을 사용한 뒤 위의 결과를 대입하여 정리하면 다음을 얻는다. 제2 쌍곡 코사인 법칙의 증명. 쌍곡 사인 법칙에 나오는 비율의 구체적인 값은 다음과 같다. 이에 따라 각 formula_2의 사인 값은 다음과 같다. 또한, 제1 쌍곡 코사인 법칙에 따라 formula_2의 코사인 값은 다음과 같다. 따라서, 다음이 성립한다. 마지막 등호에는 항등식 formula_135이 사용되었다. 이로써 제2 쌍곡 코사인 법칙이 증명된다. 평면 코사인 법칙과의 관계. 평면 코사인 법칙은 제1 구면 및 쌍곡 코사인 법칙의 극한이다. 예를 들어, 평면 코사인 법칙이 제1 쌍곡 코사인 법칙의 극한임을 다음과 같이 보일 수 있다. 푸앵카레 원판의 반지름이 formula_136일 경우, 제1 쌍곡 코사인 법칙은 다음과 같이 된다. 이 경우, formula_138일 때 쌍곡 거리 formula_139는 유클리드 거리의 2배 formula_140로 수렴하며, 쌍곡각 formula_141은 유클리드 각 formula_142로 수렴한다. 테일러 정리에 따라 다음이 성립한다. 이를 법칙에 대입하면 다음을 얻는다. 다음에 주의하여, 양변에 formula_147을 곱한 뒤 극한 formula_138을 취하고 다시 양변에 4를 나누자. 그러면 평면 코사인 법칙을 얻는다. 제2 쌍곡 코사인 법칙 에 극한 formula_138을 취하면 다음과 같은 자명한 항등식이 된다. 이는 formula_156이므로 자명하다. 따라서 유클리드 기하학에는 제2 코사인 법칙이 존재하지 않는다.
|
96 |
겐지모노가타리
|
《겐지모노가타리》()는 일본 헤이안 시대 중기에 성립한 일본의 모노가타리계 장편이야기이자 소설이다. 문헌으로 처음 나온 게 1008년 (간코 5년)이다. 작가는 무라사키 시키부이며, 그녀 생애 유일한 모노가타리 작품이다. 주인공인 히카루 겐지를 통해 연애, 영광과 몰락, 정치적 욕망, 권력투쟁 등 헤이안 시대 귀족사회를 그렸다. 하급 귀족 출신인 무라사키 시키부는 20대 후반에 후지와라노 노부타카와 결혼해 1녀를 두었으나, 결혼 후 3년만에 남편과 사별하면서 현실을 잊기 위해 이야기를 쓰기 시작했다. 이것이 《겐지모노가타리》 시작이다. 당시에는 종이가 귀했기 때문에 종이 제공자가 있으면 그때마다 쓰고, 동료끼리 서로 비평하는 등 즐거워했다. 그 이야기 평판에 후지와라노 미치나가의 딸인 중궁 후지와라노 쇼시(아키코)의 가정교사로 무라사키 시키부를 불렀다. 이를 계기로 궁중에 들어간 무라사키 시키부는 궁에서 근무하며 후지와라노 미치나가 지원 아래 이야기를 계속 썼고, 54첩 《겐지모노가타리》를 완성했다. 또한, 겐지모노가타리는 문헌이 처음 나온지 약 150년 만인 헤이안 시대 말기에, 〈겐지모노가타리 에마키〉로 회화화되었다. 현존하는 에마키 중, 도쿠가와 미술관과 고토 미술관 소장품은 국보로 지정되어있다. 또, 현재 《겐지모노가타리》는 일본 뿐아니라, 20개 언어 이상의 번역을 통해, 세계 각국에서 읽히고 있다.
|
97 |
겐지모노가타리
|
제목. 고사본은 제목이 적혀 있지 않은 것도 많고, 기록되어 있는 경우에도 내용은 다양하다. 《겐지모노가타리》의 경우에는 책자의 표제로써 《겐지모노가타리》 내지 그에 해당하는 이야기 전체의 표제가 적혀 있는 경우보다 각각의 첩명이 적혀 있는 경우가 적지 않다. 이러한 경위로 보아, 현재 일반적으로 《겐지모노가타리》라고 불리는 이 이야기가 쓰여질 당시의 제목이 무엇이었는지는 분명치 않다. 옛 사본이나 주석서 등의 문헌에 나와 있는 명칭은 크게 다음과 같은 계통으로 나뉜다. 이들은 모두 겐지(源氏 (光源氏) 또는 무라사키노우에(紫の上)라는 주인공의 이름을 그대로 이야기 제목으로 한 것이어서 이야기의 고유한 명칭이라고 보기는 어렵다. 또한, 집필 시 저자가 명명했다면 이처럼 다양한 제목이 생겨날 것으로 보기 어렵기 때문에, 이들이 작자에 의한 것이 아닐 가능성이 높다고 본다. 『무라사키 시키부 일기』, 『사라시나 일기』, 『미즈가카미』 등, 이 이야기의 성립 시기에 가까운 주요 문헌에 《겐지모노가타리》라고 되어 있는 점 등으로 말미암아, 이야기의 성립 초기부터 이 이름으로 불렸다고 생각되지만, 작가의 일반적인 통칭인 「무라사키 시키부」가 《겐지모노가타리》 (=《무라사키노모노가타리》)의 작자라는 데서 유래한다면, 그 바탕이 된 《무라사키노모노가타리》나 《무라사키노유카리노모노가타리》라는 명칭은 상당히 이른 시기부터 존재했을 것으로 보이며, 「겐지(源氏)」를 표제로 내세운 제목보다 오래되었다는 견해도 있다.
|
98 |
겐지모노가타리
|
《무라사키노모노가타리》라고 부르는 경우에는, 현재의 《겐지모노가타리》 54첩 전체를 가리키는 것이 아니라, 「와카무라사키(若紫)」를 비롯한 무라사키노우에가 등장하는 권 (이른바 《무라사키노우에모노가타리》)만을 지칭한다는 설도 있다. 『카카이쇼(河海抄)』 등의 고전승에는 「源氏の物語」라고 불리는 이야기가 여러 개 존재하고, 그 중에서 가장 뛰어난 것이 「光源氏物語」라고 하는 것이 있다. 그러나, 현재 《겐지모노가타리》라고 불리는 이야기 이외의 《겐지모노가타리》의 존재를 확인할 수 없기 때문에, 이케다 키칸 등은 이 전승을 다루기에 부족한 기괴한 설에 불과하다며, 사실이 아니라고 밝혔다. 이에 대해 와츠지 테츠로는 현재의 《겐지모노가타리》에는 독자들에게 현재 알려지지 않은 히카루 겐지에 대한 모종의 주지의 이야기가 존재하는 것을 전제로 처음 이해할 수 있는 부분이 존재한다며, "이것은 갑자기 척척 해야할 설이 아닐라고 생각한다"고 말했다. 이 밖에, 「원어 (源語/げんご)」, 「자문 (紫文/しぶん)」, 「자사 (紫史/しし)」 등의 한자어풍 명칭으로 불리기도 하지만, 이들은 한어의 영향을 받은 것으로, 그다지 오래된 것은 아닌 것으로 보인다. 이케다에 의하면, 그 사용은 에도 시대를 거슬러 올라가지 않는다고 여겼다. 줄거리. 겐지가 세 살 때 그의 어머니가 죽고, 천황은 그녀를 잊지 못한다. 이후 기리쓰보 천황은 선대 천황의 공주였던 한 여인(후지쓰보)이 자신의 죽은 후궁과 닮았다는 소문을 듣고, 그를 후궁으로 맞이한다.
|
99 |
겐지모노가타리
|
겐지는 처음에는 계모로서 후지쓰보를 사랑하지만, 후에 여인으로서 사랑하게 되어 둘은 서로 사랑에 빠진다. 겐지는 후지쓰보에 대한 금지된 사랑으로 괴로워하며, 자신의 아내(아오이노 우에)와도 사이가 좋지 않다. 그는 여러 여인들과 연애를 이어가지만, 대부분의 경우 그의 구애가 거절당하거나, 연인이 갑자기 죽거나, 혹은 그가 싫증을 내게 되어 만족스럽지 못하다. 겐지는 교토 북쪽의 시골 구릉 지대인 기타야마를 방문하던 중 아름다운 열 살 소녀를 발견한다. 그는 이 어린 소녀(무라사키노 우에)에게 매료되어, 그가 후지쓰보의 조카라는 사실을 알게 된다. 결국 그는 소녀를 납치하여 자신의 궁으로 데려와 자신의 여인상인 후지쓰보를 닮도록 교육시킨다. 이 시기에 겐지는 또한 후지쓰보와 은밀히 만나 아들 레이제이를 낳게 된다. 두 연인을 제외한 모든 이들은 이 아이의 아버지가 기리쓰보 천황이라고 믿는다. 후에 이 아들은 황태자가 되고 후지쓰보는 황후가 되지만, 겐지와 후지쓰보는 아이의 진정한 혈통을 비밀로 하기로 맹세한다. 겐지는 아내 아오이노 우에와 화해한다. 아오이는 아들을 낳지만 곧 세상을 떠난다. 겐지는 슬퍼하지만 이후 아내로 맞이한 무라사키에게서 위안을 찾는다. 겐지의 아버지인 기리쓰보 천황이 승하하고, 그의 아들 스자쿠가 뒤를 잇는다. 스자쿠의 어머니(고키덴)는 기리쓰보의 정적들과 함께 조정의 실권을 장악한다. 이때 겐지의 또 다른 비밀스러운 연애가 발각된다. 겐지와 스자쿠 천황의 후궁이 은밀히 만나다가 발각된 것이다.
|
End of preview. Expand
in Data Studio
license: cc-by-sa-4.0 language: - ko
ko-wiki-250611
데이터셋 요약 (Dataset Summary)
본 데이터셋은 위키미디어(Wikimedia)에서 제공하는 한국어 위키피디아(Wikipedia)의 최신 덤프 파일(2025년 6월 11일 기준)을 기반으로 구축되었습니다. 최신 정보가 반영된 한국어 자연어 처리(NLP) 연구 및 모델 학습을 위해 문장 단위로 분할하고, 일정 길이의 세그먼트로 재구성하여 사용 편의성을 높였습니다.
- 데이터 소스: 한국어 위키피디아 덤프
- 지식 기준일 (Knowledge Cutoff): 2025년 6월 11일 05:00 (KST)
- 언어: 한국어 (ko)
데이터셋 구축 (Dataset Creation)
최신 한국어 위키피디아 데이터를 활용하고자 하는 필요성에 의해 직접 데이터를 정제하고 분할하여 본 데이터셋을 구축했습니다. 위키미디어의 원본 덤프 데이터를 다운로드하여 불필요한 마크업과 태그를 제거한 후, 자연어 문장을 기준으로 텍스트를 분할했습니다.
전처리 (Preprocessing)
- 분할 단위 (Chunking Strategy): 문장 (sentence)
- 세그먼트 크기 (Segment Size): 10개 문장 (
--seg_size 10
) - 스트라이드 (Stride): 1개 문장 (
--stride 1
)
각 데이터 샘플은 10개의 연속된 문장으로 구성되며, 다음 샘플은 1개 문장씩 겹치도록 구성하여 문맥 정보의 손실을 최소화하고 데이터의 양을 증강했습니다.
데이터 구조 (Data Structure)
데이터 필드 (Data Fields)
text
(string): 전처리 과정을 거친 텍스트 데이터. 10개의 문장으로 구성된 하나의 문자열입니다.
사용 방법 (How to Use)
from datasets import load_dataset
dataset = load_dataset("Chang-Su/ko-wiki-250611")
print(dataset['train'][0])
라이선스 (License)
원본 위키피디아 데이터는 국제 라이선스(CC BY-SA 4.0)를 따릅니다. 본 데이터셋 또한 동일한 라이선스 정책을 준수합니다.
인용 정보 (Citation)
본 데이터셋을 연구에 사용하실 경우, 다음과 같이 인용을 부탁드립니다.
@dataset{
author = "ChangSu Choi",
title = "ko-wiki-250611",
year = "2025",
url = "https://huggingface.co/datasets/Chang-Su/ko-wiki-250611"
}
- Downloads last month
- 236