Datasets:
CMKL
/

Modalities:
Tabular
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
question
stringlengths
14
220
answer
stringclasses
5 values
hint
stringlengths
19
1.58k
image
stringlengths
2.9k
104k
task
stringclasses
3 values
grade
stringclasses
9 values
subject
stringclasses
3 values
topic
stringclasses
15 values
category
stringclasses
65 values
skill
stringclasses
115 values
lecture
stringclasses
105 values
solution
stringlengths
19
1.91k
split
stringclasses
1 value
A
stringlengths
2
136
B
stringlengths
1
133
C
stringlengths
2
110
index
int64
1
2.02k
D
stringlengths
2
73
E
stringclasses
19 values
group_id
int64
0
1.91k
การทดสอบของกอร์ดอนสามารถแสดงอะไรได้บ้างต่อไปนี้
B
ผู้คนสามารถใช้กระบวนการออกแบบทางวิศวกรรมเพื่อพัฒนาแนวทางแก้ไขปัญหาได้ ขั้นตอนหนึ่งในกระบวนการคือการทดสอบว่าแนวทางแก้ไขที่เป็นไปได้นั้นตรงตามข้อกำหนดของการออกแบบหรือไม่ ข้อความด้านล่างอธิบายวิธีการใช้กระบวนการออกแบบทางวิศวกรรมเพื่อทดสอบแนวทางแก้ไขปัญหา อ่านข้อความแล้วตอบคำถามด้านล่าง กอร์ดอนเป็นวิศวกรด้านการบินและอวกาศที่กำลังพัฒนาชูชีพสำหรับยานอวกาศที่จะลงจอดบนดาวอังคาร เขาจำเป็นต้องเพิ่มช่องระบายอากาศตรงกลางชูชีพเพื่อให้ยานอวกาศลงจอดได้อย่างราบรื่น อย่างไรก็ตาม ยานอวกาศจะต้องเดินทางด้วยความเร็วสูงก่อนลงจอด หากช่องระบายอากาศมีขนาดใหญ่หรือเล็กเกินไป ชูชีพอาจแกว่งอย่างรุนแรงด้วยความเร็วนี้ การเคลื่อนไหวนั้นอาจทำให้ยานอวกาศเสียหายได้ ดังนั้น เพื่อช่วยตัดสินใจว่าช่องระบายอากาศควรมีขนาดเท่าใด กอร์ดอนจึงนำชูชีพที่มีช่องระบายอากาศขนาด 1 เมตร ไปใส่ในอุโมงค์ลม อุโมงค์ลมทำให้ดูเหมือนว่าชูชีพกำลังเคลื่อนที่ด้วยความเร็ว 200 กิโลเมตรต่อชั่วโมง เขาเฝ้าสังเกตชูชีพเพื่อดูว่าแกว่งมากแค่ไหน รูปภาพ: ชูชีพของยานอวกาศในอุโมงค์ลม
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAS4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwB6wxG3hPlJkoCTtHPFRXkcSWikRqCXxkCrEZ/0aH/cH8qr3rFrcA9A9Q9h9TOfATNVXcjPJ6etTyn5QPWqspwG+mKEBUlnkVCRI/T+8aoS3U4LETyj0+c1ZnOUA9qzZjgGkykMe+ugf+Pmb/v4ataZdXDlmkuJmBOOXJAA5/wrLkbtir1nJLBbgKFZG5Kms5XZrFGt9pkK58xgSvAz3Y/0FP8AtD7id7FQS3Xqo4/U1QS5jkYbgUfIPPTOP6VKhwFKtuUYP/AQP61k7l6FoSSEhTK3Zc7j9WP4U8TSMAQzZI3AZ7scKPy5qqj8YbgkYJ+vLH+lTq5PzDG8ncPYn/BaV2VZEplIH32K9M57Dv8AiacHkxgud5BHsCev5VApHVRlRjaPXso/PmnjGMZyoBB9+fmP49KV2FkTCU9RuI6hc8kfwr9T1NO3EDHmHHI3/wDoTf0FRAndycNzz6HufwFKpzgAYyVAB/8AHR+XJoux2RMCxYHJ3Fvu54BPRfwHJpMkr99iuPXkj/FjwPQU0HcO+COD3IPT8z+lPDZfJOOc5HbjGfw6CldjshcNk5c8EnIPHufoPTvSeU+MBn7AfN+Q/qTTxx0AGOx6ADt9B1PvT1PbGc9ieTnn9epo5pDsiDZIBnzGPfP9f/rVLBGw5Yk+gJ/nTxg8knB5BA/DOPU9APTmpVIGQQDkYx2I78+nvQ5yHyoixkd+mOOvP9T29BRjn+meD+Pp71Jgk+pz37n/AOv609IXP3Uc59FNHMx8qIgOeMHPHPU+w/zxThtY4XB47VI0L45jbpj7ppUQA5bg/rReQcq7EQj9aeIwOoFS4+bJ59MU7bSux8q7EWxf7o/Kjyx3UflUu2kI+tHMx8q7DNq9lHHtTSq/3QPwp/T2ppORzRzMXKuwwhfQUhx2AoPP0pCaOZhyrsNOBTc0pNNJp3YuVdgJoByabmhD8xq6bfMjOolys3Iz/osR/wBgfyqreMfKRSMDdnNWkwLSPP8AdX+VVL7hFGf4j/Kup7HF1M9znn0qnOcRt9atv90+9U7gjbigZnzn5j7VnTNmr05BLc1RlXLECpbLiio3MgFaIPyqB24rPcbTuyR3/KnRXbqVDgHjmptoaJmmyqU5XP1qNI2U5jcr7Z/CmrdRuMA4PoamXAGQfypNFDluivyzRbgOrL+lWFKSj9zKCecA8cn/APUaroOc/iKa0as/HBHcVLgugy9uZCBtIOcKfQnp+Qp8bhh8oHbGe3938utUlmuIVAyJV9G6ipknt5TzmJ/Q9D/nFQ4tDuWxg4GMjjr3z0H49TThyMctkEE+uf8AE8VBh05++p7g9z/jwKkSQHryc5PbJ/zwPSpKJs9eSc8nHf1I/kPpmnrwMngDqR/T6dvfmo0OTnPTnI7YGMj6dKmX/vkDuO2P8OlIY4Dkk4GOuegx/MDqfengZGMHPTBPPPb6mkCkfKBjHYc4rbsNORU825AbIBVN3T60rq9iuV2uVLXTri7+dQFQnJduAfcVrQaJboP3haUj1OB+lXA+85wWqVQT/BTHYWG2t4fuW8S8Yzir0JJ+UAAVVV9n3kI98Y/UVPFOh7fj1/XrRcdjQWMEDIz7HrUq2drNxJbo3+8gzUUMo2ZDAr79Pz/x5q9CY2A+bmncVjLuvC+nz8xwtC3qh4/LpWHd+FbqEF7d1nX+791vy713fybME4Pt1pjx7cZPUce9Nq4r2PLpIXhkMUsTJIOqsMEVAw78fhXpl3p9tfweXcRhkPAcjlT7HrXH6z4cuNOR7iHM9svU/wASf7w7j3qLF3OfY4NRlqcee9RscUhCEj3pG5FNJpN+KYDTmmk+tSZB5zUbjP1pCGlqWM5c/SoW3DtToGzKR7VrT+JGVT4GdAD/AKNGP9lf5VUv+XAHQMf5VYZtlrGf9hf5VUuH3cnqSTXWzhW5Tk+ZlUelZ9y3IFXTIFkDegNZkz5ceuM1LLRSnPYd6ps5yx/CrUhy2fxquUBNQzWJVuWBAXHNRJ8xye1Om5mI9KFAxnOPWqWwxygs5B5A9akDTRsSHZR3X/61JbyMkiNtVsMGxye/fHSu28U+OdM8S+H4rb+wbe01BGX/AEmMjAUDGOmfTg0mBycV/gYkTHuKswyJLyrA+vPNZTZBwe3UUL1z0x0pWGmbH3m+lDhW+UgH61nRXUkfU7l9DVmO7jLYc7SfxosO5YQSQYMUhU5zt7GrS3CMv+lJ5fuvIquh39ORUnX5R0FS4plJlyHkAwSLIvB46irEcgHGCGGOOlZYiAIKEo5/umr8bPFEGmzKw444PtXNVfIvd3ZrTXM9dkbemwgSCRuCh5GOvpitiN8kfL09apWyiG3VTkt1O3pn3qxE/wAwG2lTi0tS5STeheGW708DHQofxqNVJ6kU8DHZaoSJFJzwMH/ZNSqwJ+YfmMVCACeQPzqVVHoR9OaQywhKncpOfXrVuJzwQcVQXGflbnPTFW0yOuD9KpCZt20wcKHwGHAbt9D61f2h129CDwM/cb0z6GsCGQ+talpOHKoxIGNoY8/ga0RnIm2gDOOB8wHt3H500p948A9AKlZCASxJP9ahPykZ5A70mhpnI+I/CJlRr3S4j5p+aSAd/dR68dPeuDL5r3CM55FcR428LgJJq9jGABg3EKD/AMfAH6/nU2uVc4Rm4qMtUbORTDJSC5Iz4pBOBw351AzVGzUWFcukqw+U5FJCuJiR0xVESFDlTVy0n82Qgj5sVVNWmjOo/cZtSt+5iHoq5/Kqs5+RPUg1MXLRrnrhR+lVLh+AfQGutnEinIcFj7YrMlb5iavTNgMCazJjyRSZcSvI3NRhhnPTANEhJJ9qrTuy28hB5xtH41Frs0voVfMyTIeec/hT1YFduCDxmoAQAB2x6VNGRu3ZFWB2fg/wzpPiNLmK91uHT7lMeQsoGHzknvx0H59K5zULY2d/cW3nJMI3MYkjOVYAkZHsa6Q6n4Pm8H/Z3027h1yNPlnjYFJXz354GPb8a45pCDgHIqeox5UH1Bo+YDFR+bmlZ+OtOwD1YZJ6U+MMeOueMVApz2qdQ64kUHPAz6UWFcv3Gmahp8EU0tvPBHMu5HZNob6E9aSK9YH5kBB7iti/8ea5qnh1dFu5Ue0TaABEA21RgAnpj9a50uAC3fGRUspG/p+24cvnKqanjxcX8cbRkruAKjv2p1nCLPTUD8Hbvdv1qloUksutRiObgbmLP3GK4aUvaVpSeyOya5Kaj3O1YKpAZgCONq81LG2GG1cf71QoADhFJ9zUu3b94gmtjI0IzxjYpPrUqhzwFT8qrwyRqo+bLAc1bSd8ZXj6CpLFEMwBYx4FSJC+MtHkfWmvcSbMEg59aUXDnG5h7ACgZOICcfu3FT5QkKVwfUHJqt9obHLH8BUkUvrnPqapEMupHkZRww9DwamTjpnFVYzuOAM/hVuMuBtwceh5qhGjb3G9fLkPI6GnN1wev0rNumeK0lkQHcqEj64NYsV7HCUmmmCs5wuWxk+57msK1f2bSaubUaLndrQ66PjmrMLg5wVbnaRkEDP+f1rjPE0+snwpef2Tk36hTtQ4fZuG7bj+LFY3wwh1m41K41Ii4GkTq+8ysT5kuRhhnvwQTWsHzxUkzCr7j5WZ3jTw3/YeqB7dGFhcDdET0U/xL+HUfX2rkWJ7mvf/ABLo8WuaHNZsFE+PMtyTj94On+H414PNH+8eKRSkqMVZT1BHUUSauKDuioXppfNLKhQ4NV2J9aBkharOmnNy3+4f5iqG6rmlnN03P8B/mK0p/EjOp8LN8n5AfRRVOc8gcYq0xxEPpVK4Zdg9cE10HIULhsljWZI3BNXJ2+U+5rOlbANSy4ohZ+cZqveviGNO7Esf6VIcs+Kp3koa6I7INtJbmjIwfmFa2jaDqOvTPDptrJczIu9ljHIXjnH41i571f0zVr/SLgXGn3c1tNjG+J9px+HarJFu7a4srmS2uYnhmjJDRyLgg9cEVXJOScdamvtQudTvJbu9mee5lOXkc5LH1NVt3rUjHrkdadnimgjApwGc+tAy3p9nNfXkNtbjfLKwVFPGSTXoE9/eeDNBl8Oa54ZtHecM0VxJgtuPRgRkED2IrzlJJIXDqSpU9RwQamu9Sur4obu5lmKLsUyuX2r6DPakwshuVIyCPpU1hCLzUbeA9Hfb9B3/AJGqWc9ea3PCkRk1oHGViidz6gYxx75NZ1pctOTNaMeacUdHe/Jbyt5Yfg7Yzxu9fwrB8NyRPrcRlBA2sUAPU46Vv6nG8lpcqkgjfyyWkzgKAOgrldBuUg1m1YqX3NtxjuRgGuDA6wkzrxmk0j0+3h8/eZZVjwMgHiotiqeMEe3NMcbfmmfL9lFSISw6YHauowLFrJGh2lGZjV2QkJ12/Ss+PKtnt7U97uGM43b3/uipnKMfiZcVJ7E+4Z4GfenAn6CqLXszcRqEHsMmmrDPMcsWI9W4rneJT0grmipNfEzTE0QONyk+lTwzKzhQq5qnDYphSxLH0HFaMVuqcKij3PWrh7Vu8tF2FJU0rItARrj5xn0xV62VXHyQSOx6HotVLZ4IWJaPzWHTPSp5rq4eMMfkX+FF6V0XMS84URlZAgyCCqEt+vSuJ1nRobkPaTozqzb4WB+7g9fw6Y710ayMPlzk9zT/AC4512yDIJ49R71hWp+0WmjNqNTkfkJpUwW4hDMWc8cduDXURBEiCIo2joq8YrEsdMgtmMkZct1XewrVhcYANKhCVONmLESVSV0W3jS4j8uTdxyAxx+VeLfEbQv7G11bmEEQXimQMezg/N/MGvaY2LDbu/A1x3xR037d4TN0MmSzkD4/2Sdp/mPyrdJN3OVNxdjxcXAI2yDIPeo5YcDch3J7darz3EVuN0rgZ6DqT+FZz6vMWMcAMY792NUoPcpyLs08cAzKwB7DvU2gXv2nUZEVCFEROT1PIrn2jLsXkOWPPrW14Z/5CEmBgeSf5itoJXMpybR1kjfux9Kzp24/Srkp+UCs+Zs1oc6KNy2OPTis6U/yq1O/H1NU5DyalmsRiYBLHooLGsVpC8hc9ScmtW5by7GVgeW+QCsfuaIIbJg4oVmJyDgVJZx2zTBbx5UhOctEgZh6cEjio5BGkjrG5dASFYrtJHrjt9KoV9bDgSOlOH8qhDfLTw3yigZJmrtrZ3ksTXEFrLLFCQZGWMlV57kZx/WqlvEZ5kjDKpdtoZjgAk9z2FdTdz+IvAbvYW+rRrBeRliLO4WWOQHjt0PvSGVfEHieTxDHaCXS9OtZYFKlrO38tpPTOD2rDD+vSomfPWgNnrQkImz711PgeHzdQumBIdIflPZcnkn8BXI5zwO3U16F4F0+5t0v/tVtJDFLGj+ZIhUlBk8Z4IIz/k1zYzSizpwi/fIvXkUU1rKHBWyUED1kOOTXnltc/ZLqO4gBHlOHBJyeDnn8sV6delZGM8yBIRxDAD2rzbUE2ajcIYvK2yEhMdAT1riy9rWJ1Y5aqR6AbsvtkLbSRnCnNWYtQlx8yL0+8awdDmM2lwszlnUFMt2weM/hWzawfaH3M4wOgzWLlUVRxuXaDgnYlzLdkBnO0np0Fag00wKoPRgDx0pkUccagDGB6cmr1sQxwgx6s1dEcNfWerMpVekdAgtANuFJPQDFaBsjGpLAbx0A5psZVXBBPuzdfwp7zNIdoJVRxz1NdMYRjsYyk2ACocFiT6VZjjJGRGfp2H402OwMal5iUXGVx1NWLq8ZIfs8bfID2ptCTuKJILRAWAeUrx7VSluXkkJ3Zb09KhaQscck55NKBtJbuelSMlQ9Bn61dg5Iqki7Bk5DHpkVctj39Af5UxGrat8wHqKtOCh3DoazbWQhycn5RnH0P+FabfMnJ6HH4Hkf4VI+pJC46Z96i1ezOpaPe2WebiB4snsSpwfzNIpOc9D1q0jlgCfY49aadmTJHyFJG6S/vSTICVb60qrtOOgrW8U2osPE+q2wXy1iu5QB7biR+lZXfcAT7mulGAKQHYAc9cmtjw3k6nLlsnyj/MVjkDKlmyfQVseG/wDkIyYXA8k/zFEdxS+E6GVsK5/Cs2d+D+VXbp8Bh71mzsNorRmKKM7fzqq55x71LKelV/vOBms2aop6rNsWKEH1Y1nqwp2qyiS/fB4UYo02xu9Uv4bKxgae5mYLFGv8TdcVrFWiS2bumeII7DR7vTn0fTrsTgkTzxHzYTjHyuCMeuMVh8Z4NWdZgfT9Sa1l0uTTriHCzW8kjN83Y/N049yKorIMdc0W6he5KTSg9MVHuyOtX9Lhs3u4m1J7mOwziSS3jDMPpkgde1GyGaOiTeH1t7tdZhv3nKf6NJaugCNg/fDdRnH61kM4yR70+/FrFfTRWc8k9srYjklTYzL6kDp9KrbvXrSsFyTdzzTiaiBycCrH2Wc2ZugqmJW2H51zn/dyGoC4wNgA55zXpXg3Wr7UryOy1PVJ5reK0zHHLKSMbh8oz7AfhXmSqZHUD+Ijp+Vdb4au4bHxTayzRs8W/wAnC9QSNorDExcqbijfDyUaikz0C4tmlmNzc4GeI4x0ArivGdjOl7DdMn+ilApYdVPOc/XtXpupJHZxteXXJbiKPvXLX9rZ6payy6t9qCqrSQrblQQ4Bx14/rXnYdxotJ7nfiL1U2tjA8NaXqK6fJqTWkv9nudqy/wGQdR1+g6dq6OC1klxJI+1O2OprzG3vXtLiFl5EciyBCeODn6ev869YsLyHUbVL23fMbjIZuoPcV01MOnP2nc5adZqHKXoYo4UAY9uhOSasJMWYbVGOw7Cq4KbupdqtQxMSNwxnoo71otCWWkQjlskt6d6uo3kwN5qKSfur3FRSSrBH5S4Mg6kdE/xqFQzPlidx6d6YFiSZmyXY5xgYPb0qs2SMnhfSrM0P2YgP97GSKqM7Owx2pMaHrhe2B+tSxsd27oT0FRSSu6rvbOKcrcZ9aljLMjvKQzNuPRfYVNCdiuD124/OoY+QAPoKsErhgAOSBSuOxPaj97yPvZrWiYNEmf4lK/iOlZkJ+eHafmA5rRiXfbnn7r9vegQKxZsd6nVvlKj04FREBS2OCORShv3nFIq2h87/EGFE8d60igsWn3c9sqD/WuXY5jJJ7dBXX/EkgePtSw3B8snHrsWuRUHkKAB610rY5XuKQSu5QFHqa2PDm3+0pMNk+Uf5iscAbSpbcfTtWx4a/4/HG0AeUen1FVHcmWxqXTZlYehNZs7/KPert02JZPXJrMmfgCrZkirIaiQhdzN0VSaWQ1XvH8qwdjxu4qLXdjRaIwZX3zu3qTWjZ6DqN/pdzqNtAJLa1wZmEihl9PlJBP1ANZQz1pcmui2hnce7l2LMxZjySTnNIG4ptOAbGQOMZHHWgCa2gnupVht4XllY/KsaliT6YANaUOt6tpdld6RHdXFvbTnE9qxwGI/vA9xisy2u7myuI7i1nkgnjOUlicqyn2I5FFzczXVxJPcTSSzSHc8kjFmY+pJ60rDuO8wdhxS7+Kr5qaDyWf9/JJGmD8yJuwfcEgfrRYLmvplrHLbXF61/YQva4dLe5Yhrg/3VGCD7jik1nVRrN+10bGytCVAMdnEI0yO+3PX6VjK5FO3n8KXKO5oWID3kSgcA7j+HP8AhV5LqSyvYriMAywOJFz3YHIz+Ro8M20V1dztNeQWiKmwTT52KzdAcAntS3+owPaQ2kdlaLLAx/0qLeXm5+Xdk4I78AHHWs2rtl7JHs9xOdSsoNXvyuZIldEX7vIzwKw5EefdLcDbG38HqMYqD4fXdtf+HXju7nzHtHKJE5yQmOOP89K1bmCa6lMsg8uIdAa+crpwqtM96nadJWPKtbsE0vUTAhJjdfMTdwQDxj36YroPBOt7ZV0mTLJK5MLc53EZK/iOeP61r67pq3to0tvE32i2BlgZfvZHPPbGa86e9u5b77YZj9o3iUyY24Oc5446/hXsYaqq9K3VHlYim6VS/RnuUSJGA3r0qwJXByh2np5h/kKwPCmsjXtJM8hX7TE22bH6MB6EdvWujitnk5OFQfmfYCn1sLzGxcsI4kLyDn2WtSJY7aLzCckHlu7H0HtVeVo7SFII0zMeWx2phfo0rcr0UdqdwH3cplcu3yjpiq+cDPQD9aseS/EswC5GVT0HqarHEh3H7nXPrSGhU5OW6dqkzlwB+NRDJHmHp/CKmjRgnmEHLUiizE2Dn0GBTt43ADsagTjvwvU0qN84NSM0rQlrxU/z0NaNk+Yph6EGsqwZhdq/JwGar1oxUXPPbNPoBdlb95H/ALQxUO/CA55wVpssmYoXzzuNV3uEQuzECNG3Mfbv+lRux9Dwbx1OZ/HOquAABNtz/uqBXN8CQgsWJHarep3X2/Urq8YljPM8n5nNVTuDAgBa61scj3FUNnCgKPetbw3galKN2T5ROPxFZDYBBLFj7Vr+HFxqchC4BhP8xVR3IlsW7xv30n+8f51lymr9837+Uf7Z/nWXK3JqmQiFzl8VQ1qQiNIgPer6Dc4rF1SXzLw+i0QWpT2KSkKw3gle4zgn6HBp8zRmVjFG0aHorNuI/GmZx2ozW5mGa6fwXLew6jPLa3DwwrA32ponhEjRdwolO1j7da5nj0pcg0mug0S3RgN1J9maRoNxMbSqAxXPGQOAcelQ/WlxmkxyB3oAM0d896lmkM7A+XGpChf3ahRx3OO9Rd//AK1Ahc1Ys5beK7ie6hae3Vg0kSybGde4DY4P4VcsX0y1tPtMyLe3W5kNlLG4TaRw/mI4OQe2PrWXuB9eaW40dAWiTTWe2iaGK4uHeNHfeVRRgAnAzyW5wOlZbsA3A4ByB9a1VhSQWFpJMkKGNQ8jglVLZJzjnv6VmXKLHcOscizKrlUdQcP6sM4OPTNZrc0Z0/he4XwvrdhfapGGtbmIkCJ0YkHjkBsjn8a9bljfVFSSPKWuNykjBI+lfPMauzrHErNI5HCDJJ7Yr2PwBr11r1h/Y10UjksogOeHdQcAEd8e1ebmOHuvaR36no4CvZ8kvkbPlqrCG2XqeWAzk+1cR438J3QuI7+0iTymQmdUU/I4ydxAGSD3bB5r0s+TbEw2qeZK3BYc4qZLJETfeYfcCGHqD1H5GvIw9eVGpzL5npYijGrDlfyPnvTNXn0TUY7u0kIlRhuGfkI7g+vH+Ne+6Drdl4jsBd6Y5HQSK4+eJj2I7n36V5L4t8D/APCPK2owky6e8myNW4aLPIDHpjr+XbOaz/CviO/8O6s19abXj2bZo5AQjJ6HH3cHpgZ9jX0PNGtBTgeC1KlLkke8yRJbjYiFpW64OSfrTorEQsJbnBbqQeiD1PrSeGtd0rWNEGp27BpAQk0TsA8b+h9j1B79KtS27MGmvSVHUREY/P0+lZXsablO5druQynKxk8AnG6qzAS5bpCn4bqsmJ76VjnZbp95sYzjsKrTsbiXyYflij6t2FMYgcSOzY/dR8Y9ac90fLZmbjoB71C2GYQx/LGg5P8AdqPKySZxiGMZP19KLFFgyMkSRZ+eT5m9hSxv99x/urVVWZg8xHLHCircSfvFj7INzfWlYdzVsm8rzj2WLZn3NW7dv9Fnbpkhazo5Qtplv+Wrbz9BUU17i0ARiMkuRn8BQwRclut4VB0Ddq5/xlq/9l+FLyQHEtx+4iA67mGCfwGavRsWcD05x74wP1rzD4ga6mqamlnbTBrSyBUkd5P4j7+g/GinG8riqSsrHHDJUhcKAaawG05Yk+1OwpZurfSnDO0hVx1611HKNycDavFbPh7d9vkJP/LI8fiKxQCYxuc1r+Gin2+TbyfKPP4iiO5Mth1+2LqX/fP86zJDV+/b/Spv99v51nOeapkxFHyxO+OVFcxNIXnct6kVvahKYrHH97/P9a53rVU0ObHbvalyD2ptKvJAGevatbGdxw2n2zTtq+taGqx/Z47G38sqy26u2+EIxL5fqPvDBXB9KoxIjSBSV5PQsVotqF9BVRCOXxSmKPH+sWujtPD9jcqhaOb/AGmguom4GCflbnpVO78Pi3ityHu1aS3SVhJb8Asu4YKk5G0rRyMXOjG8sDo6n8aCG9j+NRuvlyFQ2fwI/nTeRSsVcl5PUH8qVE3yKgHLMBUW4+tS2pP2gNn7vzUmtAW5r3kgkkJJIXPUdgO316Y+vtVNk5bBAYDDHtGPQetODMR94j3Jxz9f8mhEJdRhTjordB9FGfzNZrRGm5Nb3M0FsY7eJFPmCRbnbiVGHZX7fQVPYTXlnem8juZRcZ3F9xy3OTk9T+NKIyUDMJD6F8IPwqYqqx/ejXjouTWUpX0ZcVbU9o8O+IrLVdPiWwQPelMSoxwQR1NbSW6oftGoTBmHOBwF/CvBtG1m70PUFvLWQh+hBGQw9K9X8Pa7p+u2q3Vy7PdD71sxJx74rxcVhXB80dj18LiVNcr3OilRNbt3tTBG1i42uJEyrjOcY+vNeWeNPAc9nqYbRLcz2DLkRRks0DAc5HXsSD6ZHavTvtN5eHZDD9mgXq78cfSlF7aWA2W5864bjcvJJ/pXPQxE6MrrX1/Q1rYZVVb+vmzwfT9UudFu0ubC4eO4Qg+YrYGAemOmD7/hXsnhzx3YeJ7qCzvz9gumTIjLAJI3+yx6Z9D+Getc9r/gO1kt7rUbMpa3z/vUtyw8rPfHTB/SvO7vTbzTjHLf280RlJKeYMF8dcHPr36+lezSrU8Qrp2f4nlVKM6O607n0VcM1w5tLYeXEn3mxgAen1rNkUO4tbNCEXqx/ma8i0Dx3q+j28sDOt1bS8iOV8lW/wBhhnjHUGu80/x9ot3psMSTizupWCzLMeNx77um30/XmrcGiVNM2JgqEW8GDjlm7e5qIr5hW3i4Qcs3rUrbYQI0AcsNx9Cfc+n86jU/OYY25PLuf1pIoeuA+/GI4hhQe5qWLOFjziSU7nOfur/+qqj3EajIGYY+AO7Gqc941vA8sjATSgqOeg9aJSUVzMpJt2Rq3V6HlZYQMY2R+gA61AJVJZi2VXrmspbz7PZKXGZpOUUdVX/Gua1zxILG3+xWsu+6bcbjHIj9B9aw9o5u0TbkUVzSNXxJ4tNhZ/ZbZ2S+nAYMP+WaE8t/veg/GvNcgscoSR360kkkkkvmOGZyeWY5J/Ght3mnJCgiu2EOVHDOfM7jsvuB4AI+tISMDcwBAycd6YSoUbiWp2cH5Ys59eKskFKBmCrmtjw8xN/INoA8snr7isc+ZvzgLn05rX8PDGpSEtk+UeOPUU47ky2K9+f9Mn/66N/OqRGTj3q5ff8AH9P/ANdG/nUMSbpR6DmmwijJ12TBSEcYrFq7qkvnXzHsKp1rBWRnLVhU9pCbm6jhXbudgg3AkZJAHT61DW14ZXbqgu8PttI5LkmNgGHlqWGM9fmK1Qipq8qTardGMxeV5hRDEx2lR8oxnthafpMUkt0oTeT32kZ/I1ScszZYksepJzk1s6HB5spJVWAxndAXH6U1uJ7HTTwXK6XNvt5pN0RRS9jG/wAzkIMFTwfnXHuR3rP12OGPUbtEjgjSJ/LUC3kg4X5ehPH3e9bkUFslzYI32ONTdRljiWHCx7pGzzwPlUZHcj0rmdSnJt5G3jc+WIW6Lc9e/XrWjehmlqcs7bmJ9ffNNpx5NSW9vJdXCQxLl3OFz0+p9hWTdjWwiW8siGRVyoBJP0ojl8liUCkkYO+r80lpHOsahmtcFcg4JAOCfxPNU7u0e0m2Z3RkbkcdGFStdx27D0vFU/NED7qxH86vW95ZyMFZZkPsA39axupqzajL4qZRViot3OniSxZARcKuf78e3+lWfsqP8sV1A2ewnVf5isRRtReO9Ixrm5X3NuY2JNIugCwjZx6q27+VVRDdWcqSqrJIjBlJJHP5YrODGM5VmQjkEHH8qmGp6gAQl5OB6GTI/WmosOY9E0rx1/aDpbayzwjGPNSTAJ9wQAPrXRw3yrBv0yODaeDOZlY/nmvGRrF6fvNFJ674VJ/QVdtPEt7af6oKozyEyufwya4q+XqesTto4+UNJ6nqUl9FDIHuZWvLgnhF4TP171BfTw6lGF1YRi3BDLBjLEjpj+7XHwePWKrFd2bbe7xSYP4ggZq7Hr2h3cpC3SwvjP8ApCMM/nkVwSwVWm72+47frlOorXIr/wAOWl9eNc20psrX+6csDjsoyCB/nNc/Lo19HHLIY2eKPIyhOGHsCcn8a6pvJuB5iXsEq9P9cv8ALNNe3kBBJVj2IYf410QxNaGklf5HNPD0pax0+ZytpeahpzxzQS3EDFdqEbsEemCeRWlB4u1qOOSITrIXOSXiOf8A9VX5win9/JCMc/O44/WqUuoWUUhbzEkkbqYxuJ/GumOJlL7BhLDxj9s07HXNZvp4kVbYKqkncjAfU+n4VuS3FnFbrLe3Uczj77hiI/YAelcRJq8vKwRKoxwXP9OlUJbi4uHVpZQSBgDsPoO1EqFSt8WiCNaFL4dWdBq3i24uQ0Ono0UWSPM6OR/Suay+TkgZ565owvduhpMLv4TdXVSowpK0Uc9SrOo/eY1mCpzJ+VKzDIfG7tilwxVgEx+NNZW8sfNg9z+FamQu5iuAoH1NKd5QEuBj2pny5y0p/PFJujKevPegB7bcqWcnDY61seHAg1GTb18o9vcVikgodsZ5wRgVs+G2J1CT5cfuj/MUR3FLYhvv+P6c+kjfzqIHy7aaU+mBU96p+1z8dZWP4Zqvqq/Z9E3dCePrRu7FLRHJzOJJmf1JplLtxxRitzEK2tPSOHw9qdw4iLSGK2TfGScs28kHoCBH/wCPGsdV6D1rob7db+FtMttsg+0TTXJ+YYYDEa4Httfr60mx2MHALZwBn1Ndh4ZtVZQ/ynJz/wAfBT/PSuVgXc4A3H6c16F4diEdmm9JApXLfuA3Xg072JaNFhNHM7K10Db6fcS4W6V9rSFbcHntw2e/NcR4gZhb8mXnpv2n+VdrdPEbPVJjGgZpbW1XzLQrgrG0r/Q7pFB7ntxXA+Imj3IibBj0Uj+f1ppuxKWpgng5NaaD+zdL808XV2pVPVI+5+pqHTrRbq5LSnbbxDfK/T5Rzj61DfXbXt285AAPCIP4VHAFS9WabIjmGPLXvtH681bs7qJ4fsV2T5DHKOOsTeo9vUVVuuLllH8ICj8BUPen0FcnurWWyuGilABHQryCPUetSWg+frVi0mjvYFsbp9pX/UTH+E+h9qSK3ktZ2ilXY6nBFRJ6alRWty/jCxgt171Gdozk5HQYqRs4QZ7Z/Woh0rFGjGY70khJTBORnNOIHvSFQRjBq0SRBc04CpNmOKAAO1VcQ3b+dAHORT8CkHFIBoVT1UH8KdsXPKg/hSgU9QM0DQqrg5AA+gp5Hq3apFU46UhzjoKkZKduerHikxwpEf504E4UlwOPSmEqF++Tz24oGL83zcBaQ5ypL9fSk+Td91qQgYG2P9KBDWKfMDIaMlYCeo4A+mad8wbhVFJ85V0bgYyCKAGDIC4Q/Wnru5GB1z1o2vjAYcH0pNp3YMh59BQAoD4xkCtbwzu+3yZbP7o9vcVkbVBILn861vDIUalKAQT5R7+4prcmWxPcRmS/dQP+Wh/LNYvii5O5bUHMaOePoP8AHP5V2UNqv22SVh8qAsx/HP8AKuF1ZWn1GTr8oBP1PJ/nUxfvXNJL3bGLtI4xRtOelXzauAcrk/Smi2bqQRW/MZWK8SjzFyBwdxz7c1q638lxFbEJutraOFsH+LG5v1c/lRpViLzU7e2JwJXVGOM4BIz+gNR6m8lxeTXUgwJ5HdeOxPH6YpX1BkFmm6dV2g89zj/PWvRdJhJgSNVXL4QYmI6gj+ZFcJpke64T5sAd9oruYLoWtu0gnj3QwvPt8sZ+VSw7+qr+dMhjL+dn0u2dd2Lu6ursYlzkNJsX/wAdi/lXAatK0+oFcMzZwFzknn+ddpqpMCWdrhf9Fs4ojhe+zc3/AI85rlbVVtzcatOo2xsRCpH3pD3x7U27IEtbkGpEadZJpcZBlOHumH97sv0FZUa75kX1IFJLI8srSOdzMSWPuafbZ+0oQM7Tu/KhKyG3djZjundh0LGmUUUxCjrW7ZSjUIFimx9oQfu5D/GPQ1hKOa0rNeO/aonsXAuyAq+0ggqOhphAFXsC7BQ8TqOCT98VCsDcgA5B54rFFlbaCelSxQlzwOlWvsZwePxrR07T2kRmwcA0XBIx5IttRFa1bqDaxGKpGPtirQitj60hGKtiE8cVE8Zz0oEQAc9amjQlhSBDVu0i3yqPpSZSQrRkVEy44PWtW5t2jYg8fhWdIuCN3r1pIbVhVBCLhVprb8H7vX1oQqY1yW/OmsU+bgmgAbfu5I/KmEH+/wBPaghSR8h/KmHHPyY/CgQpYDBMn6ihSokI3E7hTS3GFjzjFG4+aGK7cU7ALlDnPXHrTSYwy8fpSZ2SsFBOTzzSFmwfl7+tADiyZyEJ/Ctjw2QdUfC4/cHt/tLWPlvQfnWz4a3HUpMgAeSen1FNbky2PRrjTPsvg2fU54CI5cKWHUg4Xj8ia5rw94Gv/EbzTxQ7gSWY9Bz2rsPFN+02h+H9IiZni8mOe4VSR/DhV498mu+8CIItI8hIDGqnn5s8mojDc1m2lc8j1b4cXunWnnywHaRnOOn1xXF3GkTRuV8l0UHGWTA/UV9A+Ldfmtbt7ZPtypvRS0EAYber8kdfSuQXWRqINtey6zMGkZmVo0+bDZj4x7nPvUXaeg1G61PPLPwxfQ25vVilVFViJFyMHG3r+NcvqVs1tIqbWGFwDjAPqR/L8DX0b4l1ZovCq6fb6XLFCYxmRwAAo5zj8K8b8XWd1qV3aC2hP2a2tI4RuIGX5dz9NzNVKVmS4abHGRFt3VhVxGIhn+Y5kjEXXqGZR/jVw6Uyn5oSv0IoNgAoARhyDnPpW3OjJwZnmS51LUjEkzsZHI3Fugz1P4VX1u6jkmS0tmzbW3yoT/Ee5/OtuFPsaSGFCJXG3dgcD86pHTs+h/AUnU1GoaWObz9alg481v7sbfqMVunTt+RnH04pRYbcgEdMHkc0/aC5Dnfw/Skx7H8q6IWK92GfqKeLBT3X8z/hS9ouw+Q51Rn1FalmFGBgn14rQ+wDs0f51LHpwPp/wEVMpcw1GxXw27KA53DBx0ruvD3hm51pFuBayeXv2PL5ZK59z+Nc3b6cAy5HHuhNeleE9Vj0qwMQkZ1J3GMRYGfU/MP5VHZF2LutfDZtN0l7vKERrlgOTXPaZp8Y0SWTy24JOQvPbFepT66914X8+9jG2Y4+aEFSO3UivLNSvVUvFF5cUbfwoAoP5NRKKT0CN7anJ37xebtVWG7OOKzodssigZ+Y4HFa81tFK+S6jHTEnT9an03SLczoTcIoB4zIBTcg5bs1bTwPfXOkvfxwFolGd1ctNpUpmwkbspONwQ49/qea+h9HVYvBr2qSROAhGRKpzkfSuNsNQvLGNbK2g8yK3ZyuI1lOWbJOCMfjWcm4rRjUbnlsGgXV38kUb7+uFBz60kFq1relZU2lOdp617l4Ukl/4SS5ubizcSyx44iChQAOgArzPxnZwx67c3Kw3ETyMx2lcD+VVFtq4ctmUteiUN5nlhQyI3GO4z61yUsmWdewCkfrW5qGrXM8YR41AWNYwSjZ4GK5+XPmFvYDgGmglqKsnylVI4NKAxOQR+RqFMLn5C2fanK6rj9y/wCVVdEDmD5+8P8AvmmOrHjcv41DP9owPIt2J6kstPjWV4wZIHD+y9qLdbgTsts1mnkI63ChvOd2BVjkbcY6cVCVOQS2R9KUCRFkOx8MpGNp6ZqHDAj5XA/3DTk0xJWJJQd4IbGTTNrY+9n8KSR9wH3gQO4x3qPvguPzNFwJ/mwMN+lbXhnP9pSZJP7k8Y9xXPgqB98f99VueFWDanJ82f3J75/iWmtxS2OnXVL1LzJExWM7VOw9BwOfpXTaf491HTkYRxyYcAH93k5oooa0LU3YwtQ8RarfTNI5mOTn7hFV7TVry3lDvDKyjsEFFFZciH7RieKNe1vWH/0VZY7ZYtnklFyx55zjiucvX1SS13QwTmfIBLQ5yMHJ6ev86KKqMUS6jK8MWqGP/SIJzIT2iPT8qd9lvjyLaf8AFCKKKrlRPMx/2a+7WUnPqppPsd83P2Nh/wAA/wDr0UUuVDUmIbC+brat/wB804adfHpb4/4CaKKXKg5mH9l3+eY/yU04aXfHsR/wE0UU7BzMQaTeKed3/fDGpI9LuAclSfqjUUUWDmJ1sJlH+pP/AHwf8a0LUPDbmJrGF2JzveM5/nRRRyoakzafV/8AQIbcaRYboyMyeSxZuOpyax52llckW8aZ/uwYooo5R87Khgn3ZCuD6iOrNqby3kDJJKvPZKKKTihKTOstPEGqx6bJCdZuIwSD5YjT+fWsM31+Lhn+33jA9iTRRScUVzst2Op3kd3ve/ukB6kO4NZWpS3dzKxYyyjP8RJzRRTUQ53YzHiuCMG3kOP9k1H5M4/5dZP+/Zooo5URzMPJnx/x6y/98Gm+Tcf8+0v/AHwaKKOVBzMDb3B/5d5f++DTfstwf+XeX/vg0UUcqDmG/Y7j/n3l/wC+DSGzuP8An3l/74NFFHKg5mNNlc/8+83/AHwaabC5/wCfaX/vg0UUcocwh0+5/wCfaT/v2a0dEtZYL13eBkBjIyUI7iiiqitSZPQ//9k=
closed choice
grade8
natural science
science-and-engineering-practices
Engineering practices
Evaluate tests of engineering-design solutions
People can use the engineering-design process to develop solutions to problems. One step in the process is testing if a potential solution meets the requirements of the design. How can you determine what a test can show? You need to figure out what was tested and what was measured. Imagine an engineer needs to design a bridge for a windy location. She wants to make sure the bridge will not move too much in high wind. So, she builds a smaller prototype, or model, of a bridge. Then, she exposes the prototype to high winds and measures how much the bridge moves. First, identify what was tested. A test can examine one design, or it may compare multiple prototypes to each other. In the test described above, the engineer tested a prototype of a bridge in high wind. Then, identify what the test measured. One of the criteria for the bridge was that it not move too much in high winds. The test measured how much the prototype bridge moved. Tests can show how well one or more designs meet the criteria. The test described above can show whether the bridge would move too much in high winds.
null
test
หากยานอวกาศได้รับความเสียหายเมื่อใช้ร่มชูชีพที่มีช่องระบายอากาศขนาด 1 เมตร ด้วยความเร็ว 200 กิโลเมตรต่อชั่วโมง
ความมั่นคงของร่มชูชีพที่มีช่องระบายอากาศขนาด 1 เมตร ที่ความเร็ว 200 กิโลเมตรต่อชั่วโมงเป็นอย่างไร
ร่มชูชีพที่มีช่องระบายอากาศขนาด 1 เมตร จะแกว่งมากเกินไปที่ความเร็ว 400 กิโลเมตรต่อชั่วโมงหรือไม่
1
null
null
0
ชื่อของอาณานิคมที่แสดงคืออะไร
B
null
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJTAcQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1a7u5J5mJY4zwPSq+9vWh/vmm16dOnDkWh51SpLmeo7e3rRvb1ptFX7OHZE+0n3ZLZP5k08UvLKQy/wC6R/iDVzyk/u/rWWWaGZLhFLFMhlHVlPXHvkA/h71qRSpNEskbBkYZBHevPr0+SfkdtGfNHzDyk/u/rR5Sf3f1pxIAySAPekV0cZRlYexzWJsJ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v60+igBnlJ/d/Wjyk/u/rT6KAGeUn939aPKT+7+tPooAZ5Sf3f1o8pP7v604MDnBBwcHFLQAzyk/u/rR5Sf3f1p9FADPKT+7+tAiQHOP1p9FAE0WpNApjYb8Hgn0oqhL/AKw0UAVn++abTn++abXrU/gXoeZU+N+oUUUVZAVQN1F5x8tpV3NtPlS4JOcZ2g5/TNX6MVEo8xUZcpCbWFyGlXzWH8Up3kfnVjSokWS6lSNVBYICBjoOmPqTz3/Km02KaSyDbV8yDJYqPvLnk49fXH/6qyrwbhaKNaM0p3kzWopsciSxrJGwZGGQQeDTq847wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqeo6ilhEvymWeTIihU4LkdT7AZGT2+pAKbSV2DdtWWZporeJpZ5UijX7zuwUD6k1jz+IFmGzTI/PY/8tnBWJfx6t9B+Yqg0L3My3F84nmHKjHyR/7o7fXr79qnrzK2Y9Ka+ZyTxPSJWktGuTuvLq4uHP8A00KKPoqkAfz96a+nW8gCymeVB0SS4kdfyLYq3RXnuvVe8n95zOpN9SXwzFHB/accUaxxrdDCqMAfuo+1b1Ynh7/Wap/19D/0THW3Xv0P4UfRfkejT+BBRRRWpYUUUUAVpf8AWGiiX/WGigCjcpC7bUjLTH7zMW2r+GRzjsKbBEYUKly2Tnnt9KdLcxLM6s2CpGcj2zTlZXXcrBge4Oa9KhGKimnqefWk3JroLRRRW5iFFFFABTJpPKhdxyVBIHqewp9NdFkQowyDSe2gLzNC1hFvbJH3Ay2e7Hkn8yamrChlkXVI7db188NtlbO5ecqBjrgdTzzW7XlTi4uzPUhJSV0FFFFQUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIAJJwB3oACQBk8CuTs5WvFbUJcmS5+YZP3Y8nYo9sfmST3qzdapPqkbxWqiKykBUzk/PIv+yP4Qf7x5weAODSIqoiogCqowAOwrycfiIyXs4v1OPEVE/dQtFFFeWcgUUUUAWfD339U/6+x/6JjrarF8Pfe1T/r7H/omOtqvpaH8KPovyPUp/AvQKKKK1LCiiigCtL/rDRRL/rDRQBNF/qxVW7sxjzreNRKpywXjzB6f1/CrUX+rFPpxk4u6E0pKzMlXDLuHT34xTgQRkcirhsbVpGdoELMcnIyCfpUb6dExYo0keeQEbAB9cf06V2rFrqjkeFfRlRpFVgnLOeiKMk/hTxBeNyIY0/35Of0Bq/BbpbptQHJ5Zj1Y+pqWs54qTfu6GkMNFL3jM+y3v923Ht5h/wDiaJbR4reSaa5YbFLFYlA6DPcGtOkZVdSrAFSMEHvWbr1H1LVGC6GJD59vMrtGJ5NgVXJwFPOSf6Y/TvdtLueS7aGUJym8bM/LzjGe/wCnSn/2bDk/vJ9vYeYePx61TvdHga2aWaSWZolLAM2AR1IwMdcVVSdOV2k7kwhUjZdDYormLaVY0QNJdxhhvTLn5UyBlu3fHt7VoK10vC3shHoyqf6Ulh5PYHXitzXorDmkkf5ZNSkRlw52FVwM/Tp9ajMqRTq41GcOwxzJuXnkZB4H6U/q0/IPrEToKK5q5vNT85Yba4YhvuyMi4JB5Gcdvan6Tf6qIpDdRxzoXPlsJOcDj05B69qj2M+hftY9ToqKyoNRvTH+/s0D5OdsnGM8Y9ePpVuyvVvEbKGOWM7ZIyc7T169xiplTlFXaKjOMnZMtUUUVBQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWV4gn26XJaxt+/ugYkXvg8M30AJOfp3IrVrk7eT7XcXV6zb/NmZY3P/PNThQPQcE/jnvXPia3safMtzKrU5I3LCqFUKowAMAUtFFfOnmhRRRQAUUUUAWPD3+t1Uf8AT0v/AKKjrbrC8Pf8fGrD/p5X/wBFJW7X0tD+FH0X5HqU/gXoFFFFalhRRRQBWl/1hool/wBYaKAJov8AVin0yL/Vin0AFIrq4JVgcEg4Peq19O0cJjjP76QEL/s+/wCFZLwyLZ+VsUpGzMgXJJJJwT9AegrWFKU1dGc6sYuzN15o0iMjONg6kc+386rf2lB/cm9v3R5/z71QhjP2eOPlIVO4JgZJznLe/sOnvU9bwwt1eRjPE2dokkl9JKNsCNH6vIP5CmC5vE/ihkHoVKn88n+VVEWU6g8h3BAu3BPB6YOPXO6rDMEXJ+nHUn0rWNCnbVGUq076Mml1WOO1aTYTKpAMXOck+w5HuKQaik0Pz2rvG687SrA5/HpUf9lvcxA3TqGxkKEB2/X1/D8+9BhuIAENvuUDAMWMY+naueMKTbTZvKVVJNIpiBVnkS18+KCYfOuMYPOeSDkH68Z/Jg00iNE8xRsXblVI3e556+9X1YOoZTkGlrqjRgkc0qsmzOnsmkRVSCKNkOQ8MhUn8CDjt3qzpxtrOwNpdRlULEEtEMFT03FeOnc+lWKKmWHi1oVHESRFqyWsejpBG/zZCwBfmZmB6DvUdkirExjLeSzkxqxBwPw9Tk/jTZdNtpCzpGscuCFdRgjIxUkPk2saweaMqOjNz+tKlRdOV2wq1VNWSJ6jJlhmWeEBmA2sh/jX/H0pySJKu6N1demVORTq3lFSVmYxk4u6LtncNdWiSsgRjkMoOQCDg4PpkVPXM39nKscj2jOpdt8iB8BjjGeh5H8wK3rKZbiyikWQyZXBYjBJHB4+tebVpODPRp1FNFiiiisjQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEYblIyRkYyK5LSv+QTaDGAIVA/AVu6xei3t/s8YLXNwjLGBxjjlifQZHvzWVDEIII4l6IoUfgMV5eZTVox6nJimtEPoooryTjCiiigAooooAm8Og/adVb+E3CgH38pM1u1zGn3j6RJOs1u80E8xl82H5mUkAYK46ADqCfpXQWl3DfWy3FuxaNiQMqVOQSCCDyCCCK+jw04ypxUXeyR6dKScVZk9FFFbmgUUUUAVpf9YaKJf9YaKAJov9WKc7qiM7kKqjJJ7Cmxf6sVRvZ1nkSCMlgj5kI6cDge/OD+FVCLlKyJnJRV2QtJvlkuJPlBwFDdl7fjUUM8stxIvl4hX7r9CTxxj65/KlcCTLkbgG8uNSSAz9ST7AD+dSxoI41Qc7RjPrXo0/5Y7I4J/wA0t2OoopjyJHjceT0AGSfoK2bsZbj6j8ua7QiBOAeJGO0ZB7dSeR6VDdAQvbTXDMu5zsj54GOpA75I+n51qabn+z4c+nH0zxXJVr+77p00qPve8TxeZ5S+aFEmPm2HjPtT6KK4TtKsmnwO7OA8bscko5HPrjp+lVZoJrVGkZ1khUZZsYZR6+h/StSobuTybSWQoHAXlT0I9/atIVZxejM504yWqKNFRwh1jxIADk4AbdgZ4GT14qSvUWqPNejCq7QJFObpY/MPV4yM7xgdM9DwMVYopSipKzHGTi7opveQWzPKdy2kjFkkKEAN0KnuDkHr9KtRuJY1dc4YZGRikgWRpLi1ilEe8CRCRnac4bA/zyc1FDBOJri2tjmO3IVXlHX5Qdoxj1/D3rnhV5G4T6HRKlzrnj1LFVItRTTnZFbzLZesY6x467fUAkZHb9KlFzGCFlPlSd0k+U/r1HvUllBFI8trIiywoFdFcbtpO7OKeIacL7k0E1O2xpQSieCOZQQsihgCORkZqSmxxpFGscaKiKMBVGAPwp1eed4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzWq+NNP0u8+zkGUjhip6H245/wA++NHWrt4oUtIHKXFxkbl6xoPvN/ID3Irx7V7v7ZqMjqpWJP3cSH+FRwBWFStyy5UcOOxn1eN1qz0i3vv7ZddUI2qyGOGPOdi55z7kgZ+g9ybVYvhR9/h+D2Zh+tbVeFiJOVWTZzubn7z6hRRRWIgooooAKKKKACrnhoqmhW0eVBDSKo4yQHYZPv6++c1TrJ1O0sba2uLvZHDcNyk3OVk/hIxyDnHTr3rtwVdUpNNXub0KnI/U7mioLKVp7C3lcOGeJWIddrZIB5HY+1T17p6AUU13WNSzsFUdycCmyzxQRmSWRET+8xwKAIpf9YaKjWdLgebHko3QkYzjiijYAupzDaIqttaQlQ390ckn9KgtbVbn5mDC3UYUAld59fXH881cNtDcJGZUDFDlc/55pL92jsZWU4YjaD6Z4z+Ga0jNqPLHdmcoJy5n0M9Ej8xvKUCFGIjA6e5/PP4CpaRVCqFUYAGAKWvThFRjY8+cuZ3A8CpdPhJ/0xtuZUUKo7L16+vNV5WKxNt+8eFHqT0rTgj8m3jiH8ChfyFc2KlZKJ0YaOrkVb/TUvnjZpWQpxx3BIz9Dxj8auqoRQqgBQMADsKWiuG52BRRRQAUEAggjINFMkljhTfI6ovqxxQBlQjaHjBysbsin2B/yPwqSo4AfLywwWZmI+pJ/rUlevC/KrnlztzOwUjMqIXYgKBkk9qWopk84pbjrK2OewHJ/QGiUuVNiiuZ2LmnwuBJPKm15CNoPVUA4B9DnJ/GrtFFeTKTk7s9SKUVZDWRXGGUMPcZpsMENupWGJIwTkhRjmpKKQwooooAKKKKACiiigAooooAKKRmVfvMB9TVSTUoQP3IM/8AtIRtH4/4ZpqLk7ITaWrLlFZtv597cx3EnyQx5KqrEhjjr7/X8vWtKhq2gJ31CiiikMKKKQsAQCQCegz1oAWiiigAqjd6tZ2bmJpRJcAZEEfzOfTjt9Tge9Gr3j2VgzREefIwihyM/Me+O4Ayx9gaxP3NlbM7ttRQWd2OST3JPcmuTE4r2Nkldsxq1vZ6dSK++1SwXl0GUXkkZCYOQgAOFB49zn1JPtXlRzk5611ms+LhcW7W9gjoHBV5HAzj0A/rXJ1yUlPWU92fN4+tGo0k7s9A8HNnQsf3ZWH8q6Cua8FODpUy/wB2Y/yFdLXDX/iM76TvTj6L8gooorE0CiisfUjc3BbyTlIpU2gLnkcknuce1dGHw88RPlh2uNK5sUVmLcyX0rCC4VFjAztXO7I/THb6c0NBdRuscE8uxhlndgxUj69c+nTiuyllGJqU1US3DROzZekuYo42cuCFOCF5OemMDvyKpPcfbonjNjviY4XzgMZHdlPv/LtUsVnBEEIjUugADkc8d/rU9exh8hpx1qyu/LQnnS2G2Bm02JEt5mKr/BISVP4dvw/Wrx1e9PSO3X67j/hVOivXeGpPoUsRUStcdPNPdkG5kDgdEUYUfh3/ABqFbeFG3LEit6hRmpKa7BF3EE9gB3NaxhCC0Whm5ym9WbFn/wAeifj/ADop1tFJDbpHKFDjqFOQKK8So05truevTTUEmXov9WKpX8hll+yg4TaGk9Tk8D9DV2L/AFYrOn/5CMuOfkTPseeKuhFSqJMms2oNoKKKK9M84dbIJrz5jgRYYL/eJzz9B/P9dKs6zUvfNIv3Y0KN7kkEfoP1rRrzMQ71GejQVoIKKKKxNQooooAZLKkEZkkOFHtms6aUXU6OFYRxg43rjLHvj6fzqfUgQkUh/wBXG+5/bgjP0Gf69qqjfOdlvgk4y/ZR6/X2rqoRil7ST2OatKTfIluKGd3KQxtIw644A+p/yaCZEcJNE0Zb7pyCD9CK04okhjWOMYUVBqKg6fM3eNTIp9COaFipc3kH1aPL5lWopTtltn7rMv6nb/WpagvDttHkHWPEg+qnd/SuyavFo5IO0kzboooryT1AooooAKKKinuI7dNz554VQMlj6ChK4bEtNeRI1LO6qB1JOKzpZ5LrjDxRemcM31I6CoVt4FORCgPrtGa6YYaUld6HPPERTstTQbULRekyufSPLn9M1GdSj/gimc9vk2/zxVcADoAKWtVhI9WZPFS6Iie7e6k23DzWUW04CkZc57sOQfYfnWZdW8f2OCe3vvtAjfLu8xGSeAAO314OB1HWtiovs0OW+Thm3Fc/KT646Z4oeF191jWJ/mRFaxLJaxtM63DFR85O4fhntT4XjOoLBcRO+5vkP8AGMjI7ng1OBgYFFsF/tJdwyWjJXP8ACQR0/BjV1opU9CKUr1NTUooorzjvCiiqOoaklliJE865cZSIHHHqx7D3/IGlKSirsTaSuyW+vY7GDe4LOxxHGvVz6D/HtXPyQm6kM90Q1wejrx5foEPbHr1708K7zNcTyebOwwWxgKP7qjsP8nNPrxcVjHUdoaI4atdydo7GrpN295YhpSPPjYxy4GMsO/4jB/Gr1c/ps32XVyh4ju1A9hIuf5r/AOgit9mVELsQqqMknoBXq0KntKakdlOXNFMwNUl+0aykQ+5ax7j6b3/qFH/j9YPiu5SDQZkY/NMQij8cn9BWpasZhLdsMNcyGXnrtPC5/wCAhRXCeKtTF9qfkxnMVvlB7t3P9Pwry5P22Jcui/Q8rG1lFSl8kYNFFFdJ84dr4HbNpeL6SKfzH/1q6uuP8DNxeLn+6cfnXYV5uJ/iM96g70o+gUhYKMsQB6mqbF7p3HmvEiNtCocEkdz/AEHp65qCKxMkbLeEy4O1cuTuUYxn8ea9GhkterGM20kza6W5M2poHaMQzE7iiELw5HofqD+WelSW8ZigRGxuA+Yjue5/OnRxpFGsaDCqMAU6vo8Dl1PCXcXdsiUr6IKKKK9AkKKKKACiiigCNXE83kxtuk3bRGp+Zj9f4VHc89DgV0EOk2cMokWMsw5Xe5YKfUZNVdDt1CS3RUBmcopx/COv5kH8hWvXjYirKU2r6Hq0KcYwTtqVpf8AWGiiX/WGiuc3JUYLDuY4ABJNZkbGQvMRgytux6DoP0Aq/Ku+wlUZ+aNhwOehqhEd0KNxyoPFdeESu2cuKbskPoooruOMW2fyb4Z+7MNv/Ahkj9M/kK06x5lLRNtOGHzKfQjkfrWrDIJoI5R0dQ35ivPxMLSv3O7DyvG3YfRRRXMdAUUUUAFNREjGEVVGc4UY5p1FABTZI1lieNuVdSp+hp1FAGPAxaBN33gMH6jg06KE3zMvS3U7XPdyOqj29T+HuFhsmlmuFaZliSVsLHwTn5uT+Pb061poixoqIoVVGAB2rrqYi8bROWFC0ryHUUUVyHUFFFFABWSZftMxnPAGURfQZ5z7n+la1V5bG3mcu0eGPVlYqT9cda1pTUJXaM6sHONkzLlMkdwsjTKluFwQcDn/ADj8vepBLv8A9XHK/usZx+fSlv4otP8As9wIg4WTLySSHK8HHJzjn/PNayncobBGRnB6it5Yl7xRjHDr7TMr9/2tJv8Ax3/GkLun+sgmQdyUyB+Wa16Kj61Mr6tAyGljVAzSKFPQk8U0XVuc4njOBnhhWmlrbxyNIkEau3VgozUpVWIJUEjkZHSr+tvsR9VXcy4kku8iI7E7yMv8h3+vT61dgs4oH3qXZsYBds4+lWKKwqVZT3N4Uow2CiiisjQoapqBso0jhCtczZEat0GOrH2GR9SQOM5rIjj8vcxZpJHO55H+859T/h0HQcUSS/a9Turk8ojeRF/ur94/i2fyFPrxMdXc58i2RwYio5S5eiCiiiuA5xskayoUcZB/Q9iPQ+9MZLmZPKuL6aeD/nm4UA+zEAEj69e+alorSFWcE1F2uUpyirJlXUp/s2mXUwOCkTEH3xxXlNek+J5kh0C5D/8ALQBFHqSa82rswq9xs8vMH8KCiiiuk806fwVcxRX08LsFeVRsyepGeP1rsLuU7Tbx7vOkU4I/h9ye1eWQStBcRzKMtG4YD1wc16baF5UN1KoV5gp2gn5Rjgc/U/nWmGwCxOITl8K3/Q9jB1b0rdUTRQxwptjUKOpx3PrT6KK+tSSVkbhRRRTAKKKKACiiigAooooA2NEI/stR3EkgP/fZNaNczb3ctgzOjboS2+SMj25IPrgV0qsGUMpyCMg14telKE3fqetRqKcdOhXl/wBYaKa0iSMzIwZckZHqOD+tFYGxYi/1YrKhGwPGOQjsoPrzWrF/qxWVB9xsdPMfH03GurCfEzmxPwokooorvOIKtaawbTbfBBAQAYPpxVGdisDkfexhfcnp+tasMYigjjHRFC/lXFi3sjrwq3Y+iiiuM6wooooAKKKKACqd5qMdm+wqXcJ5jAEDC+tSXd5DZQ+bMTyQqqoyzE9gO5rJ8zzGnkuIJo/PbOxo2yBgDGR9M/jWlKClKzM6knFXRrWQP2VWIILsz8jB5Yn+tWKoacZWMu55GiGAhkHOec9eT25NWri4jtovMkOBnAHdj2A96lxs7Fp3VyRmVFLMwVR1JOAKq/2laf8APXj12nH54qo+64cSTgEj7qDkL/8AX96dXVDC3V5M5pYmz91GhDcQ3AJilR8ddp6VBcXojcwwhXmAyQTwo9/8KpvEkhBZfmHRgcEfiKrtYIXLpNcRsxyxWQ8/XNCwtnq7oTxN15lxri8fjzI4x/sJk/mT/Smlrg8G7lx7BR/SkjQxxqpdnI/ibqaMtJJ5UIDSd8nhR6n/ADzW/sqUVdox9pUk7JkM6u6eQ8s8yy5XyQR83rz2GPfFatnE8FlBDIwZ0QKSOnApttZrbu0jOZJWGCxGAB6AdhVmuGrOMn7qsjtpxlFe89QooorI0CgkAEk4A6miuYnm/tdzLMN1sGIiiP3SAfvMO5OMj0GPcnGvXjRjzSIqVFBXZ0qSJIu6N1dfVTkU6uTFjbo/mQp5En/PSA7G/MdfoatxajqdsMExXiD/AJ6fu3/MDB/IVz08fSlpLQyjiIPfQ6Gqep3ZstOlmQAy42xKf4nPCj86pDxAejaZehv9kxkfnvqpNNPfzxzXCCNYyTFCDu2nBG4n1wSPbJ65rSri6cINppsudaMVdMZbwrb28cKkkIoGT396koorwG7u7PNCiiikBFczGCHeE3sWCqucZJOKi868/wCfRP8Av9/9aiX95fwR9owZT9eg/mfyq1V6JLQexz+v6fe6vZpFHb7HR9wzKMHiubbwlq4/5Yxn6SCvRKK1hiJRVkkYVaFOq7yR5x/wi2rj/l2H/fY/xpY/CurO4UwKo9S4xXo1FV9bn2RmsHR7HPDwxY2doGSFp5kdX3MckgMCRjp0zWyjrIgdDlTyDUU7G4nMAcpHGw3lWIZjjOBjtgg1KiLGgRAAo6Cvp8lp1o0nOptLVd/+GN5KMVZDqKKK9okKKKKACiiigAooooAKKKKADrVm31K5trVbcRxybFCo5YjAHTI7/pmq1FZ1KUKnxF06sqfwmpp6eXYxLknAPJ6nk80U6z/49E/H+dFeNVVqkvVnrU9YL0NCL/Vis1ozbTmE/dbLxn2zyPwz+WK0ov8AViq1/EzCKVVLeWTuA67SOf6VVCfJNE1oc0CvRTd6hN5YbcZ3Z4ojElz/AKgfJ3lYcD6ev8q9GU4xV2zgjBydkSW0fn3O4/6uE/m//wBb+o9K0qjhhWCJY0zgdz1J7k1JXl1Jucrno04KEbBRRRUFhRRRQAUUVWv3mS0YwIzNkZ29QM8kepxQtQehRuphJrEMgDPHa5DbOfmYEEfgMfnVw6lagja5cdyikgfU9qo27wtFiHGF4I7g+/vUtdywsWlqcX1mSb0HS3ck7EQOEiBI3gZLY4OOwFVzawl1dk3upyGY5OfXmpI40hjEcahUXoB2p1bQpRgtjKdWUnuFFIzBVLMQAOpNIgnm/wBTCdv9+T5R/ifyq5TjH4mTGEpbIdTHlCHaAXkI+WNfvH/Pr0qwunM3M87n/Zj+Ufn1/WrcMEUCkRRqgPXA6/WuaeKX2UdEMM/tFGCzuJkVrgiDI5jQ7m+hb/D86vxRRwoEjQKo7Cn0VyTqSn8TOqMIx2QUUUVBQUUUUAFceksOnSSWEzhGgYquR1Q8qfyIH1BrsCQASTgCubuZorvVnubdg8IiWIyDo5BJ4PcDPX3PvXFj4xdK8uhhiEnC7K39o2n/AD3X9aP7RtP+ewP0Bq1RXiXj2/r7jg0Kv9o2n/PXH1U/4U5L62kdUWZSzHA+tWKZLGs0TRuMqwweafu9g0H0VXhkdZ2t5G3sFDK+MEjpz71YqWrCaCiiikBnR3QW9unMUz4YRgpGSMAZ/mTU/wBvQDLQ3IA/6YtRY/6uY+s8n/oRH9KtVpJxvaxTtcqi/iYZWOdlPRhC2D9OKPtyf88bj/vw3+FWqKV49haFT+0rfeUImVsZ2mF84/KpYrmOZyi7wwGcOhXI9siox/yFX/64L/6EaLjet1HLCEeRUYNGWwSpxyPxH60+WOyHZD5bO3nkEksSswGMmoLWUuJIyxcxOU3kfeqytxG1sLjO2Mpvyewxmqe/fM11DC2QNkqHCsehB5OOh/WvVyjFSoVffb5Nn2T6CabVhWvRHd+TLE6KSAkh6MfSrVZV7Il1EUdoodvzKWlBf6AD1+v4VpxNviRjg5UHjpX1GHxMK0pRg7pfqRKNkmOooorqICiiigAooooAKKKKACiiigDWs/8Aj0T8f50UWf8Ax6J+P86K8Kt/El6s9il8EfRGhF/qxT6ZF/qxT6zNCAWdsJfM8iPfnOdo61PRRQAUUUUAFFFFABRRRQAUUUUAUdRtmePzbeAPcg4DBgrY+p6j2P8AOsyFNTgfddQM0R6lSCVPrgc4/PtXQ0VpCrKGxnOnGW5jrI0pxDFJJ6ELhfzPFSGK7XrbA/7kgI/XFalFaPFTb0M1hoWKdvZncJbjBccqg+6v+J9//wBdXKKKxlJyd2bxioqyCiiipGFFFFABRRRQAVDdXMdnbSXEpOxBk4GSfQD3J4qaudu7r+0rkFf+PSFj5f8A00fpu+g5x69fQ1lWrRpQcmRUmoRuyOcy6g2+8J2dRbg5Rfr/AHj9ePSngADAGBRRXz1SrOo7yZ5spuTuwooorMkKKKKAK80UgmW4hCs4Uqyscbh16+v+NFtdpc7lGFkQkMmQSP8AEUXDtJm3hJEjD5mH8A9fr6U57WF4kjKYCDCEHBX6HtWmlveK6ak1FVs3Nv1/0iP1AAcf0P6fjSTXiLaGeIqwyFJbgLk4y3cYzU8jewrC2Bza7v70jt+bE1ZrPt5ike23UTgsSXzsQEnoOvFOa3a4Ia6fcVPyCMlQvv1zn/P19KhlWIxEuZKyfV/1cJNJ6l6mmRB1dRxnr2rMnW1hViWldgPurMxP86Zb/YhDulhtlPYKN2B6Z9fpXUskaladRIXS5Mt9bf2jM/nIQqKnyncSck8AdeoqEi6luWuoItpJKqJhgjgDJ9uvFXbd4pY/MiXAbjO3GcVLXp4fJqMLylLmurfITqW2RRW0WGINdTb0jyQuMKuTnp39B7VDG0ctzgh3jlbdsDAgH/aGP6mtMgMCCAQeoNL0rv8AqkFyqCSine1ri531K84torZlmVFhb5SMcc8VYAAGAMAVBPaQ3Dq0qksvQhiMflU4AAAAwBXSr3d9iXsFFFFUIKKKKACiiigAooooAKKKKANaz/49E/H+dFFn/wAeifj/ADorwq38SXqz2KXwR9EaEX+rFPpkX+rFPrM0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxtZumkddOiJG9d87DsnQL9W5/AH2qoAFAAAAHAAqNGMl9fytyzXDL+CgKP0FS14GNqudVrojzq83KduwUUUVyGIUUUUAFFFFAFW1+eaeZeI2baB6leCf0x+FWqpxj7HclPmFvJjYSchXJOR7ZyMVcq57jYyaVIIWkc/Koz9axbJdQu2eWSJEikfzF3HvgAcd8AcfnVu+hmkuQXiMtsExtQAsD36nj6jn6VHaWyyBZ0luEUrs8stgrjgjPXtXr5fg51I81KS5vPp8v69B3UUWXtoYQXluZsk8EyY59gOP0qpNd6ZEQotzK56KEyW9+ev1q6ttChJWNckYJIyT+NENtDbjEMSIP9kda9WOUVJfxqrZHOij5Mt2EZbUWoU/dZsgr/ujofy4q6LdWwZSZCOgIwo+g6VNRXoUcDQpWsr276kubYUUUV2EhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBrWf/Hon4/zoos/+PRPx/nRXhVv4kvVnsUvgj6I0Iv8AVin0yL/Vin1maBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUActHxeagB/wA/TfyBqaqQvrWO9v8AzLmJWN0/DMB04/pT/wC0bL/n6h/77FfPYiMnVlZdTzKqfOy1RVb+0bP/AJ+Y/wDvqj+0bP8A5+Y/zrDkl2I5WWaKrf2jZ/8APzH+dJ/aNn/z8R/nRyS7BystUVUOpWxISN/MkY4VF6k0n2i684wiGIvt3EiQ4Uds8d/6U+SQcrJrh4ljKygsH4CAZLfQUWolEAEwIbJxk5OO2feiGFkZpZWDTN1IHCj0Ht/OpqTaSsg8hCQqknoOap2Y/wBEjY9XBc/8COf61DriST2It4RmSVgAM46c/wBKtogSNUHRQAK+l4fo2Uqr66Ez+EdRRRX0hmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/x6J+P86KLP/j0T8f50V4Vb+JL1Z7FL4I+iNCL/AFYp9Mi/1Yp9ZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzzR28Ek8rBY41Lux7ADJNSVg6ldi/c2sR/0aN/3rj/AJaMD90ewPX6Y9azq1Y0ouUiZzUFdmXaWStbiS6UvLKWldHJKhmJYjb07+lLKklm8UiSSNCGCsjMMKDxnpng+tXqa6LIhRwCpGCD3r511HKV5dTzHJt3Y6iqSutndNG8nlwFQV8xuC3fBPT6e/1q7UyVhNWCq15dLbQkhk8w8IpPU/Si+M6Wxkt3VXj+YhhwwHUVlxR2u+2kmBc3HztJsJMjZGB7DnPpwK7MLhVUjKrJ6R3XV/13GkTW1zPcTQNKoKrcOiyDGHG1+3boKl05vLubuKQ/O0zMu7qfx+mPzqe6RY/soRQqrOOAMDkEf1pl7ErT25OQWYqWBx0BI59Qf606SjXqezStzaLy10G2i9SEhQSSABySe1UzcT2wzIqyRghdwOGOTgcdO+KV2+1Ssv8AyxjbBH99h/Qfz+lXDK8Q66oyVv8ALuR0uNty85+0S4ySRGAOAuf64BqxRRX2lCjGjTVOGyM27u4UUUVqIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1rP/j0T8f50UWf/AB6J+P8AOivCrfxJerPYpfBH0RoRf6sU+mRf6sU+szQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/W55LfSJmiYpI5WJWBwVLsFyPcZzWVHGkMSRxqFRAFVR2Aq94hP+gwJ/euYh+TZ/pVOvIzKXvRRxYp6pBRRRXmHKIQGBBAIPY1WjH2a5SBSTE6EqCfukEcD256dsVNPKILeSUjIRS2PXFQxBIJk86XNzOO5645IX2GauN7DWwt+zrZuI22u2EBHUZOOPfmqa7I7i2tVUskJG88YBIOO+euPzqxqMqiIQHIeTlDjgsCDjPr6VVmhOoXcRhdAqIJN5UZU54xkc9OnFexgnGOCqtuzf5bfmNLa5evuIEb+7LGf/HxUlzCZ4GQEBuCpPYg5FR3yO1i4UFnGGwo64IPA/Ck+3R/88rn/AL8P/hXkxclaUd0/8g1toRNi6HlkvDLGQxGOR6H0IqeONYkCKOBVCzB/tGdnZ3kZQ25o2TAyeMH6dfrWjX3eDn7alGtJLmaM56OwUUUV1kBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBrWf/AB6J+P8AOiiz/wCPRPx/nRXhVv4kvVnsUvgj6I0Iv9WKfTIv9WKfWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUdYuns9JuJoiBLt2xk9mYhQfzIobtqBn6vMt3eQW8ZyLaTzJW7btpAX6/Nn8qipkMSwRLGg+VR36n3PvT6+cxFZ1p8x5lWpzyuFFFFYGYhAZSrAEEYIPes+50xCiyW4Kzochi3J9snP4Vo0yaITQvEWZQwIypwR9DWlOo4STQ07GQZZVgFrdxSTIw28qQ59Dn7pP4/n0p2nqs1oChdJoXYbm5IJOcH168j/wDXViGUvusL3/WjhX6eYB0YehpIt0N69uuXTaGZ2ABB7ZPfp+nevoMtnSnVdOcbOS2WsWu/l/Ww5N2IbGaaDUXtbmd5SyjyyykcgZPtjn9PatOeZbeFpX6KOnr7Vm6irI6zxzhJgpWMbAxJPpnp7/hUN7YG4ljiiZnZP9dI7k4J9M8dMnHuPasMZl3+2KEFo+i/rQFaVmy1YStdI1267DLgBR2A4/nmrlMijSGJY41CoowAO1Pr6mhSVGnGnHoYyd3cKKKK1EFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGtZ/8eifj/Oiiz/49E/H+dFeFW/iS9WexS+CPojQi/wBWKfTIv9WKfWZoFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZHiBw9vBaDl5ZkfHoqMGJ/MKPxrTuJ47W3knlbbHGpZj7CucUyTyvdXAxNL/D/cXsv4Z59Tk1y4uuqVPzZjWqckfUkooor5884KKKKACiiorgzLA5gVWlx8oY4FNK7sBWnWLUlkhBZJoH7jlT2PXoetV9NebzJ0uAwlyDlyMsOnbtx6mojLPJcxK0TwXwXAcgbZcDJBx2P6U/S7ZYSxcsJ0G10IwBnn8ScDnvX0WTwlGta62/4ez7FzVossCYLcSTMCwT93EijJZupx+g9sH3qWCNo48OQXYlmI9Sc//WqtaBnmbzFIMTNnI6uSef8AvnGPY1er2MHQftJ4ifxSbXolsZTdvdCiiivQICiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1rP/AI9E/H+dFFn/AMeifj/OivCrfxJerPYpfBH0RoRf6sU+mRf6sU+szQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAx/EEm6O1tAf9dMGYf7KfN/MKPxqpUOoXjz61LIlvLLDbp5CMhXG7OX6kdwo+qmo/tcn/Plc/8Ajn/xVeJjpOdWy6HBiHzT9C1RVY3Uo62Vx+BQ/wDs1J9rk/58rn/xz/4quLkZhZlqiq32tv8AnzuM/Rf8aPtUuM/YrjH1T/4qjkYWZZoqt9qlPSxuPzT/AOKo+0zf8+M//fSf/FUcrCwXlmt1H12uv3T/AEPt0/KqsFtfBzPIUL7Qu12ycd+QAB+R+tWvtM//AD4zf99p/wDFUhuZwP8Ajxm/76T/AOKrqo4mtRtyNabbaenqPW1hIZGcOrqFkRtrAHI6Z/kRUtZGn38tzqswkhMSvEGUEenH49f0rXr7bCVJVKMZT36mU48rsFFFFdJIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGtZ/8AHon4/wA6KLP/AI9E/H+dFeFW/iS9WexS+CPojQi/1Yp9Mi/1Yp9ZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFVL7UIbBF37nkf8A1cScs/09vc8CsWea9vv+PiYwRH/lhAxH/fT9T+GB9awrYinSXvMznVjDc2brVbCyfZcXUaSdfLzlz/wEc1n3Gsy3SNFYxSxA8G4lTbgf7KnnP1AH16VUhght12wxJGO+0YzUledUzGTVoKxzSxLfwoZHGsMaxoMKowOc/wD66fRRXnN31ZyhRRRSAKKKKACiiigCskztqEsOQY1RTyOQTTLnUIogyxyRtKvVWOOnXn1pJ7aZrszQkLlAu7eR39MHPakitJYxtHkpj+IKWLfn/wDXzXoUqWGlaVSdtNrNu/8AXmVpuYs1x5etx3Bi8oFsHjAIPVv17V0VZkjG9tFlkiTywOZO6k9x7DvmrGnSvJa7JARLExjfPqP/AK2K+qwLpwvSpu6X59v68xVNUn2LdFFFeiYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/x6J+P86KLP/j0T8f50V4Vb+JL1Z7FL4I+iNCL/AFYp9Mi/1Yp9ZmgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVV1C9WwtGmK73JCxpnG9j0H+e2atVy+qarbXOpRKs26C3BO9QSrSHjgjg4Gf++vY1lWqezg5ETlyxbHIj72mmfzLiTHmSYxnHQAdgOw/mSSX1V/tKy/5+Yh9WxTlvrR2CrdQlicACQZNfPSU5Pmkea+Zu7LFFFFZkhRRRQAUUUUAFFFFABTJZo4VDSyKik4BY45p9MlSOVfKkCsG/hPemrX1Ahub+C2jEjsSrZAKDIyO2akP+k2vBZBIvGRyM+oNY+o2UFjEZEbCMcLEQW+bGOCCP16VdjtpY1Pl3MqbuSrHeB64J5r1aGWvEU+eg7td9P+B+JT5UkyMxkQGwiDuFIEkxwBnOSPfj09qvVHDDHbxLFEoVVHAFSV9Tg8IsNBq929W/MylLmYUUUV2EhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/x6J+P86KLP/j0T8f50V4Vb+JL1Z7FL4I+iNCL/Vin0yL/AFYp9ZmgUUUUAFFFFABRRRQAUUUUAFFFFAFDUtR+xhIokElzKDsUnCgDqzH06fUn6kZDvqE5Jm1GVQf4IEWNR+PLfrSajcxjxDOXOESGOLefuq2WYgntkMtSA5GR0ryMZiakajjF2RxV6slKyKzWMMn+uMs/OcTytIPyYkVYACqFUAAcADtS0V50pyl8Tuczk3uwqOeBLiPy5M7cg8Eg5Bz2qSiknbVCKkMiwTPau4woDIWPO054/DB/DFWfNj/vr+dNkghmIMsSPjpuUHFM+xWv/PtD/wB+xVNxerHoyXzE/vr+dOznpUH2K0/59Yf+/YppT7Id8S4g/jjUfd/2lH8x+PXqrJ7BZFmikVgyhlIIIyCO9LUiCiiigAqreWYuQro2yeP/AFbjtTNTkligjkhLB1lXgdG7YI7/AOOKZtuJ7lpllkgjZQoTAJOM888DrXdg8HXrtSpf8D5j21uQSx6pO8YZEAB6kjaPfHc9x05HToaksXuS0qTMHjQ7VfuTk9+M9v8APRX02OSXzZJp2kAADb8Yx9KtoqoiooAVRgAdhX1GAwdeg/faS7L9RTmmrIWiiivVMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDWs/wDj0T8f50UWf/Hon4/zorwq38SXqz2KXwR9EaEX+rFPpkX+rFPrM0CiiigAooooAKKKKACiiigAqrfX8djGCRvlfIjiHVz/AEHqe1Wq57UsjxA2ejWqY/Bnz/MVjiKjp03NdCKknGLaII422u0xDyysXkOOCT2+gGAPYCoURbS7CIoWKYfKqjAVxyfzH/oNW6jniE8RQkjPIYdVPYivnudybcup5vNd6klFQ20/nJtfCzIMSJ6H/D0qapas7MkKKKKQBRRRQAUUUUAVmBtWLoCYScso/hPqPb1FWAQwBBBB5BHelqq5FkS+cW5PzD+4T3Ht/Kr+L1HuWqiuJhBFuxuYkKq56k9BUX2+HqqyuvZkjJB/GoP31zfrNki1RfkVhht3IJwecc9/Su3CZfVrVYxlFpddOgbbkyQ/P5spDy/3sfd9h6VLRRX3FOnCnFQgrJGLd9woooqwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDWs/wDj0T8f50UWf/Hon4/zorwq38SXqz2KXwR9EaEX+rFPpkX+rFPrM0CiiigAooooAKKKKACiiigArA1cY1u2PHzW0n6Mv+Nb9YOsc61Z9OLeX9Wj/wAK58X/AAZGVb+GyKiiivnTzSG4hMibo8LMvMbHsfT6GlhnWYHhldeGRhyv+fWpaq3eYpIrnHyxkh/UKe/0HBq1roNa6FqikVgyhlIIIyCO9LUCCiiigAooooAZNKsMZdsnsAOpPYCqyxM7iWc7pOoX+FPp/j/LpUcTTT3LNOqoYSyqgOep4b8v61ar63J8vjTgq81eT28kTJ20CiiiveICiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKANaz/49E/H+dFFn/x6J+P86K8Kt/El6s9il8EfRGhF/qxT6ZF/qxT6zNAooooAKKKKACiiigAooooAK5y8fz9cuHH3YI1hH+8fmb9Cv5V0dcxtMeoX8bfeE5b6hgCD/T8K48e2qLsYYh2gSUUUV4J54UdaKKAKuGtHjCsTA7bdrfwZ6YPpnjHuMelWqr30ZlsZ0UZYocAetTRyJLGHRgynoRVvVXG9rjqKKZLKkEZkkbCjGTjNSk27IQ+qbzyzM8dvhFU7TKwzz32j9Oe/0qOQPeTxsPOihQHnO0uTx069M9cdeKsqqooVVCqOAAMAV9FluT81quIWnb/MTdhkUKwqQuSWOWY9WPqakoor6eMVFWWxnuFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDWs/+PRPx/nRRZ/8AHon4/wA6K8Kt/El6s9il8EfRGhF/qxT6ZF/qxT6zNAooooAKKKKACiiigAooooAKzdT0952F1b/8fCLtKnpIvXb7H0PufWtKipnBTi4y2FJKSszmY5FlXcueCQQRggjqCOxp9XdVsWBN9bIWlA/exqOZFHoP7w7eo49MUEdZEV0IKsMgjuK8DE4d0ZW6dDzqtJwfkOooormMgqsf3WoLt6TKdwHqMc/lx+VWagniLMkqSCORcgEjIIPYj8B+VVHcaK815Jb6gYmG9HQFFXgg/wCf89aS2sY4AGYbpASdxJOM/X09fr60lpvuCbiU7iT+74wuMdQDyM+/v61br7LK8DGlTVSS95r+vmTOXRBRRRXrmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGtZ/8eifj/Oiiz/49E/H+dFeFW/iS9WexS+CPojQi/1Yp9Mi/wBWKfWZoFFFFABRRRQAUUUUAFFFFABRRRQAVzMkQtNTurVcCPiaMegbOR/30rfnXTVh65F5V3aXoHynNvJ7bjlSf+BDH/A65cZT56L8tTKvHmgyCiiivnzzQrPvQLi7htnCNEQXIxlgR/IHP9O9XZpRDC8rAlUUsQOvFUraE+dNdPEsbykfKOuB0z7162UYV1sQpNe7EL2Vy1RRRX2pkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/wAeifj/ADoos/8Aj0T8f50V4Vb+JL1Z7FL4I+iNCL/Vin1l6jfPZ28IjOCzZY9wgPzYrUByMioaaVy7puwUUUUhhRRRQAUUUUAFFFFABRRRQAVDdW0d5ay20wJjkUq2OD9R6GpqKAOXiMqNJb3GPtEJ2vgYDejD2I/qOxqWtTUtON2FmgKpdRj5Wbo47q3t79jzzyDkwadqF6kkxlezZH2pC8YO7HUk+/IGOO/NeNVwE/ae5scM8PLm93Yz9aEps18piGLhSvZs8YPtnFXBnHPWoLuHUY5IRc2WESQFpo3BT0HHXqanr6HJKMqVGXNvc5qsXGyYUUUV7JkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/x6J+P86KLP/j0T8f50V4Vb+JL1Z7FL4I+iM7VH824K52iKPblumSc/l0rUXV7QWIuWcKMEeWOWyOwHesu/RZLl1dQw44P0qukUcf3EVfoMV3rDKpTjr/TON4hwnItanqJvrZUtonXBDh2O1gfb6ev5etNs7+8tbRYdsTFc/M7Fu/4VFRWqwlNKz1Mniajd0LLfam0+8XAVCACsaDj6A/41raXfiWIRT3AafJwGQoSP5E/SsikZQwwRkVNTBwkvd0KhipJ+9qdLBcw3KloJFkUHaSp71LXJ2stxp0++BkMLsolVk6AcZGPauqR1kQOjBlYZBByDXnVaUqbszvp1FUV0OooqlqGoCyVFVA8shIVScDp1NZpOTsi20ldl2isePWZRIPOhXy/4ihJI98f0/nWrFNHPGJInV0PdTmqnSnD4kTCpGfwsfRRRUFhRRRQBU1KJ5tOmSNdz4BUZ6kHP9KwEYOisOhGa6quVCeUXiP/ACzYp+RwP0r0MDLVxOLGR0UhaKKK9E4AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDWs/+PRPx/nRRZ/8AHon4/wA6K8Kt/El6s9il8EfRFC8/4+3/AA/lUFT3n/H2/wCH8qgr2aP8OPojyqvxy9WFFFFaEBRRRQAhBIIBwfWptJ1F7Ox8mWKV3DnAyMAfU++aiorKrRjVspGlOrKnsWZNUvJtyjZChPBXlgPTPSqnlpu3lctnO48nP1p1FEKMIfCgnVnPdhU1ndfYrgyEMYmGHVfXscewzUNFVUgqkeVkwm4S5kdOjrJGrocqwBBHcU6snS7/AB5dnKAMLtiYHqAOh98VrV4k4OEuVnsQmpq6CiiioKCudv4zFqU4xgPhx78YP6g10VZWtRfJDcD+BtjfRv8A64H510YWfLVXmYYiHNTZl0UUV7J5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBrWf/Hon4/zoos/+PRPx/nRXhVv4kvVnsUvgj6IoXn/H2/4fyqCp7z/j7f8AD+VQV7NH+HH0R5VX45erCiiitCAooooAKKKKACiiigAooooAQjOOcEEEH0I5BrR0/UJzdrDcSeYsgIVioBDDntjtms+mSZ2ggkEMDlTg9ex9awr0ozi29zajUlCStsdZRRRXinrBUdxCtxbyQv8AddSKkooA5RC23DjDqSrD0I4P606p9QGzVZVVNqlQxOep9f8APp71BXu0p88FI8arHkm4hRRRWhAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGtZ/wDHon4/zoos/wDj0T8f50V4Vb+JL1Z7FL4I+iKF5/x9v+H8qgqe8/4+3/D+VQV7NH+HH0R5VX45erCiiitCAooooAKKKKACiiigAooooAKVEMk8MY6tIo/XJ/QGkqexeGO+Ek7BUjQsGY4AYkAZ/M1lXly02zSjHmqJHRUUgIYAggg8gilrwz2AooooAxtZj23ME3Z1MZ+o5H/s1Z9bupwGewkCjLp86j1I5x+PI/GsEEMoIOQeRXq4Kd4cvY83FwtPm7i0UUV2HKFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBrWf/Hon4/zoos/+PRPx/nRXhVv4kvVnsUvgj6IoXn/H2/4fyqCp7z/j7f8AD+VQV7NH+HH0R5VX45erCiiitCAooooAKKKKACiiigAooooAKaXCJOGQssifKQCSrrkr+GTTqa+7Ydn3qipBSjZlQk4yujQ0GOUPPJ5jND9xVPQEc8ewyf8AIrbqvYiMWEAibcgQANjGeOtWK8SpLmk2exCPLFIKKKKgoK5q4g+zXcsIGFB3J/un/DkfhXS1ka2mHt5ccZZCfryP5V04WfLUXmc+JhzU35GbRRRXsHlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/x6J+P86KLP/j0T8f50V4Vb+JL1Z7FL4I+iKF5/x9v+H8qgqe8/4+3/AA/lUFezR/hx9EeVV+OXqwooorQgKKKKACiiigAooooAKKKKACiiigDW0WXNvLCT/q3yB7Hn+ea065YEqScblZSrrnG5SOmf1rT0EP8AZZjIzs/mYJZy3YeteRiaLhJy6Hp4eqpRUeprUUUVynSFQXtv9qs5YRjcy/KT0Ddj+dT0UJ21B6nKqcjkEEEgg9iOtLUlyuy+ulHQSZ/MA/1qOvepy5oKR4s48smgoooqyQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1rP8A49E/H+dFFn/x6J+P86K8Kt/El6s9il8EfRFC8/4+3/D+VQVPef8AH2/4fyqCvZo/w4+iPKq/HL1YUUUVoQFFFFABRRRQAUUUUAFFFFABRRRQAVa068+yTFHH7mVhyByrHA/KqtMlO2MtjO0hseuDn+lZVqanBpmlKbhNNHWUUgIZQQcg8ilrwz2AooooA5q5O6/uj/00x+QA/pUdBbfLM46NK5/DcaK92irU4ryPGqu836hRRRWhAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa1n/x6J+P86KLP/j0T8f50V4Vb+JL1Z7FL4I+iKF5/x9v+H8qgqe8/4+3/AA/lUFezR/hx9EeVV+OXqwooorQgKKKKACiiigAooooAKKKKACiiigAo60UUAWbfUbq2VEyssSDAUjDY9M1uwypPCksZyjgEVzNaOj3GyR7Vj8p+ePP15H6g/ia87FYeMY88Ed2Gryb5ZM2Khupxa2ss5G7YpIXOMnsPxPFTVk627Zt4v4WJY++MYH65/CuKnDnmonXUlyxcjIg3CBNww2ORUlFFe6lZWPGbu7hRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKANaz/wCPRPx/nRRZ/wDHon4/zorwq38SXqz2KXwR9EULz/j7f8P5VBVm+UpeOGGDxVavZo/w4+iPKq/xJeoUUUVoQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMaON2/fbtm04KjOG7ZHcU+ipnHmVhxlyu5eg1X7PaLCIppZFGA8jDB+pzmqs9xNdSiSbaMDCqvQetR0VlTw1OD5luazxE5qz2CiiitzEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDWs/+PRPx/nRUlhbyvZoVQkc0V4Vb+JL1Z7NL4I+hqaxbw71fy1LNycisryIv+eSf98iiipUpLZlOKe6DyIv+eSf98ijyIv+eSf98iiijnl3Fyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkUeRF/wA8k/75FFFHPLuHLHsHkRf88k/75FHkRf8APJP++RRRRzy7hyx7B5EX/PJP++RR5EX/ADyT/vkUUUc8u4cseweRF/zyT/vkU5IITIv7pOv90UUUc8u4csex1MEaRQqqKFGM0UUVJR//2Q==
closed choice
grade5
social science
us-history
English colonies in North America
Identify the Thirteen Colonies
null
The colony is New Hampshire. During the colonial era, New Hampshire and New York both claimed the territory that would later become the state of Vermont. Vermont was never its own colony.
test
แมริแลนด์
นิวแฮมป์เชียร์
โรดไอแลนด์
2
เวอร์มอนต์
null
1
สิ่งมีชีวิตใดในบรรดานี้มีสสารที่เคยเป็นส่วนหนึ่งของไลเคน?
B
ด้านล่างนี้คือเครือข่ายอาหารจากระบบนิเวศทุ่งทุนดราในนูนวุต เขตปกครองในแคนาดาตอนเหนือ เครือข่ายอาหารเป็นแบบจำลองที่แสดงให้เห็นว่าสสารที่สิ่งมีชีวิตกินเข้าไปเคลื่อนที่ผ่านระบบนิเวศอย่างไร ลูกศรในเครือข่ายอาหารแสดงให้เห็นว่าสสารเคลื่อนที่ระหว่างสิ่งมีชีวิตในระบบนิเวศอย่างไร
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAH6AvgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCxRS4oxX0R4QlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFLijFACUUuKMUAJRS4oxQAlFX9L02TU7kwo4QKu5mIzgVsf8Ie//AD+L/wB+/wD69Zyqwi7NmkacpK6RzFFdP/wh7/8AP4v/AH7/APr0f8Ie/wDz+L/37/8Ar1Pt6fcfsZ9jmKK6f/hD3/5/F/79/wD16P8AhD3/AOfxf+/f/wBej29PuHsZ9jmKK6f/AIQ9/wDn8X/v3/8AXo/4Q9/+fxf+/f8A9ej29PuHsZ9jmKK6f/hD3/5/F/79/wD16P8AhD3/AOfxf+/f/wBej29PuHsZ9jmKK6f/AIQ9/wDn8X/v3/8AXo/4RB8cXi/9+/8A69Ht6fcPYz7HMUVLPC9vcSQSffjYqajxWqdzO1hKKXFGKYhKKXFPSJ5DhFLH2FJySV2NJt2RHRU72s6DLRkCocVMZxmrxdxyhKOklYSilxRirJEopcUYoASilxRx6ilcdhKKdtb0P5UlJSi9mNxa6CUUuKMVRIlFLijFACUUuKMUAMk3bMIMux2qPUngV61plmun6ZbWi9Iowp9z3/WvPPDdl9v8RWyEZjg/fv8Ah0/WvTq8jGT5qlux6mFhy079wooorkOkz9c1FdK0e5uyRuVcIPVjwK8UZi7FmOWJyT6muy8f6yLq9TTYWzHbndJju/p+A/nXGVnJ6lxQUUUUhhRRRQAUUUUAblFOxRivpTwBtFOxRigBtFOxRigBtFOxRigBtFOxRigBtFOxRigBtFOxRigBtFTQ201w22GNnPsKuf2HqGP+Pc/nSckt2NRb2Rm0Vcn027tk3ywlV9aqhSegJoTT2E01uNoqUQSnpG35UGCReqNTuFiKinYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQA2inYoxQBv+Ev+Py4/65j+ddRcXENpA008ixxr1Zq5jwmP9MuP+uY/nW1rcMkltBJGnmGC4SUx5ALgHoM9+f0rz8R8bO6h8CHrrWnNFLL9qQJFt8wkEbMnAznpSLqsDy7lljNv5Jlzht/3sZxjpWHcLNqV5qoitZVYi1+RwN3DknIz6VrXa3MGsy3sNs8yrZFVVf4n35C1z3ZvYnTW9OkEuy4z5ShnGxsgE4Bxiq91rtv9imlspUllieNWVlIwGYDvj3qtZTXVrY3Mw0+6l1CQeY7OgAdugUc9B/IVEbWaXRZYFtLo3TyxyyySoAZG3gnHPQAdPQUXYWRuG/tRE8pmXYknlMfR84x9c1BqWpDT7iyDlVimkZXYgkjCkjGO+azpLN28VeQuDasReuPRwNo/M4P4Vd1ZJheadcRW0k6wyszhMZAKEZ5ouxWLI1SyazN2LhPIB2lvQ+mOufakGq2JtDdfaU8kNtJOQQ3pjrn2rCn0+9uBJfLDPEGvROIUKiTaE2554z3xUptbmO2eeCG+LS3CNKZdhmKgY3KOgPT3oux2Rr/2vYC0+1G6QQh9hY5GG9COoNWoZkuIUmiO5HGVOMZFczFYXbmVjbXGG1CGYecQWKADJOPpXU00xNHn+tRsmt3m9SNz7hkdRjrVGur8WS2YgjjcbrvOY9vUDvn2rlsV6VGXNBHn1Y2kxtISACSQAOpNP6DJrB1G/wDtDGGI/uR1P97/AOtSr140Y8zHRoyqy5UaNreQXd6Y2mWG3QZLk4L+wrqY1RUAjA244xXm1dVourhbRY5gSF4yOor53E1qlV3kz3aNCFNWijoaqXFikp3J8jfoadbXsd07LGGwozk1ZrGlVnSlzQdi6lOM1yzRkNYTqfuA/Q037FcH/ll+ZFbNFd39qV7W0OT+z6V+pkrptw3Uxr+OamTSl/5aTMfZRitCiueeNrz3l+htHC0Y7RKyWFsn/LIMfVuanVEUYVVH0FOorncnLdmyilsgpCqsPmUH6iqkmp20ZxuLH/ZFM/te3/uv+VTcqzJ3srd/+WYU+q8VRurJrdTIpLxjrxyKtLqlq3VmH1WpkuYJRhZUOe2a6aOLq0n7r07GFXDU6i1RiKQwypBHtS1Pfad5WZ4CQvUgdqppNziTj37V7OHzGnVfLLRnl18DOmuaOqJaRmCKWbgCnMQilmOAK6Xw54Zku5Y7/UIykCndFCw5c9mYentXVXrqlHzOejRdR+Rr+D9Jaw0xrmddtxdEOQeqr/CP6/jXR0UjusaF3YKqjJJOABXjNtu7PWSsrIWsTxNr8Wh6czBgbuQYhTvn1PsKw9c8fQwFoNKUTSdDOw+UfQd64C7u7i+uGuLmVpZW6sxqHIpIjd2kkaR2LOxJYnqTTaKKgoKKKKACiiigAooooA36KdijFfSHgjaKdijFADaKdijFADaKdijFADaKeiF2Cjqa2LPw/LcqGLAe1TKajuVGDlsYlW7XTrq7dVjibB/iI4rpIfCGcEvXRWWnywoFbbgegxWE8TFL3TaGHbfvHO2/gxXjBknYP7VYg8DxiYGSYvH6dK6+GJV7c1ZAwOlcUsVU7nUsPDsYlrpFtYR7IYwPenSRYrYZciqktqzcg1mptu7NORJWRg3dpHOMSDIHbtVM2UKkLHEuewArpf7PBOWOR6UfZ4Y2GcA1qqtiHTucw2nTFtoix9elUbjTblesJP0ruwkW3k1nXjRqDiqjWdyZUlY86vLSRH+ZNpqkVKnmul1RImZ3Cnf9a5xiWPNd9OTaOGcbMZRTsUYrQgbRTsUYoAbRTsUYoAbRTsUYoAbRTsUYoAbRTsUYoAbRS4pyxs33VY/QUXCwyirSWF5J9y1nb6Rk1Ouhaq/3dPuT/wBszUucVuylCT6GdRWuvhnWW6afN+IAp48Ka2f+XFvxZf8AGl7WH8yH7KfYxaK3R4R1s/8ALn/4+v8AjR/wiGt/8+f/AI+v+NL21P8AmQeyn2MKitw+EtbH/Lkf++1/xph8La0P+XCT8CP8aPbU/wCZB7KfYxqK1W8OawvXTp/wXNQvo2pp96wuR/2yNUqkH1QvZy7FCirD2dzH9+3mX6oRURRl6gj6iqUkybMZRS4pcUAavh+/hsb1zcNsSRMbj0BzXQT6vo1zC0U9zDJG3VW6VxWKTaPSsZ0VN3ZrCq4qx2drqWh2UZS2ngjUnJxnk+5qf+3tL/5/Yq4XaPSjaPSo+rR7l/WJdjuv7e0v/n9io/t7S/8An9irhdo9KNo9KPq0e4fWH2O0h1TRIJZZYrmFXlOXbJyxqb+3tL/5/Yq4XaPSjaPSj6tHuH1iXY7r+3tL/wCf2Kj+3tL/AOf2KuF2j0o2j0o+rR7h9YfY7r+3tL/5/YqP7e0vH/H7H+tcLtHpRtHpR9Wj3D6w+xJezi81G4ulztkclc+naoqXpWRqmo/et4G56Ow7ewrSpUjRhdmcKcqs7Ih1PUPOYwQn92OGYfxe30rNoorwK1aVWXNI9ylSjSjyxCrumtiZl7EZqlU1pIIrlGPToaxkro2W50Ntcvay70weMEHvWiusr/FC34Gsiiuc0sjYOsRg/wCrJFNbWV/hhP4msmii4cqNBtXmP3URf1pY9XlB/eIrD24rOooCyNn+14cfcfPpVa41R5UZEQKrDBJPNZ9FFwsgooopDCiijIPegCWO5mi+45x6HkVEeSeBz2oopgdB4Q/s86sEvl3ynH2cucqp9MevpXpVeLAlWDKSCDkEdq9J8NeJIdXi+yyttvokBdT/ABj+8P612UarlpJ6nJVpqOsdjoK4T4h6q8aQaZE5G8eZLg9R0A/nXcu6xozuwVFGST0ArxnxFqQ1bXLm6Qnyydsf+6OB/jWsnoZRRl0UUVBYUUUUAFFFFABRRRQAUUUUAdFRTsUYr6M8IbRTsUYoAbRTsU+EJ5q7yNvfNA7E9pp73i5jkUEdQe1alv4XmkI8yXj/AGVyavaYIzgRqPwFdZZIFQZQ1x1a8o7HVToxe5ytt4OKyB3mYAHoK6S10dYAAhI9Setagx2FSAjFck685bnTGlGOxDFb7O+RU23FLmjNYtmlgCgUUuaQmkMCaieQgcKTTmzUW1i3tTQmL5hAyR+BrOvJcNuKggdjWg8G7+I4qpPaxspVgSPc1cbXJlc5+88RPbqcRZA7g1iyeJWlzmE+2Gra1PSYpI2WOPLH1bpWIPDpX7835Cu6n7K12clT2l9DLur1rrqgX3FVK3zo0CdSxqCTT4VHANdEZx2Rg4S6mPRVmeARHg1BitE7kNWG0U7FTW9nc3b7beCSVv8AYUmhu24JN7Feiuls/BOqXGDN5dup/vnJ/IVuW/gfTbdd95cyS468hFrCWJpx63NY4eb6Hn1WrfTb27P+j2k0nuqHFegfaPC2kcJ9l3j+6PMb8+aq3HjyzjG22tJZMdC2FFZ/WKkvgiX7GEfikc9b+DdZnwWhSEf9NHH9K1IPh/KcG4vkX2jQn+dVrjx1qUmRDFBCPoWNZc/iPV7jO++lUHsmF/lRbEy6pBehHo2dbF4G0qIZnnnf6sFH8ql/srwpZf6z7Nkf89Jsn8s157LcTzHMs0kh/wBpiaixR9XqP4psPbQW0T0f+1fClp9wWuR/ch3f0pp8Z6JDxFHKf9yICvO8UYp/VIdWw+sy6JHfP4/sx9yznb6kD+tV2+IK/wAGnn8Zf/rVxOKMVSwlLsL6xU7nYt8QJ/4bCMfWQ/4VGfH972soB9WNclijFP6tS7E+3qdzq/8AhPr/AP59Lf8AM0n/AAn2of8APrb/AK/41yuKMU/q1LsHt6nc6sePr7vaW/5mnjx/d97GE/RzXI4oxS+rUuwe3qdzs1+IEn8Wnr+Ev/1qlX4gRfx6e4+kgP8ASuHxRil9Vpdh/WKnc79PHtg337W4X6YP9amHjDQpuJY3H+/DmvOsUYqXg6ZX1mZ6N/anhS6++LXn+/Dj+lH9n+E7v7n2TJ/uS7f615zikxS+q2+GTD6xfeKPRW8GaJOMwySr/uSgj9apy/D+E/6m/cezoD/KuIV2Q5R2U+xxVyLV9Sg/1d9cL7eYTR7Gstph7Wk94m5N4C1BOYriCT65U1nT+E9ag62ZcesbBqkh8XazD1uVkH+2gNaMHj28XHn2kMg9VJX/ABoviY9mH7h90cxPYXlscT2s0f8AvIRVevQYPHljIMXFrNH64wwqx/anhbUuJRbbj/z1j2n88UfWKkfigHsYP4ZHm1Fejv4V0C+G62fZnvDLkfrmqieA0ivIZUvPMhVwzI6ckA9KpYun1E8NPocHUdxKLe2lmPSNCx/AV2fifwqbQvfWCEwHmSIdU9x7fyrkHRZEZGGVYYI9RWsKiqRvEznBwlaRwsPiqd7shbpWYHmMjj6V0dpqi6iAoYxsBygPJ/H0riNU0Ga38Qw2tsgLtICjnuh9a7mxsIrGIKoBcj5n7mvEqV60LwcmevCjSnaSRY8pD1G7/eOaQwQnrEn/AHzTyQOpxS1yOTe7OlJLYzNX22tiZIoY85AJ29BXEXureSMljz09TXod7b/a7KaDON6kA+hryrXLa7tJfJni2qDnOP61dNXdiZtpGvo2qyXc5Q7iv+1W9WPoNisFosuOWGRWxQ7X0CN7amvp85uLNHP3hlT+Bq1WToknyTwk8rISPoa1q5pKzN4u6CiiipGFFFFABRRRQAUUUdKAKWqXLW1kzIcOx2qfSuct7qW3nWVWOc8gnrV3WrxbiVYYzlI+pHc1l10Qj7upjN6nao4kjV16MMinVQ0ebzdPRc8x/Kav1g1Z2NU7oKhlubjT5odSs223Fq28f7S91PsRU1Iyh1KnoRg04uzuDV1Y2PEHjf8At2yjgsA0Vs6gyk9WPdfoD+dctWNaT/ZLponP7tmwfY+tbNdt76nJa2gUUUUCCiiigAooooAKKKKACiiigDpcUYp2KMV9EeGNxQBnoKdirFo8ccuZBxQ3ZDSI0tJpPuxmrVvpM7zL5qMI88kVsw3tsoGGUVaXVbWPrIKwlVn0RsqcerL+mWkFtjYST/tVtxuT3rn7TWLaeTYj81rR3Kf31/OuGonfU64NW0NNeR1qGQkdGNQfakUcuB+NZl14hsoHKPJz7VEYSb0RTkluaTzyL0Y0wXUzdxWOfENg/wDy2x9alXXbADIlU1p7OXYjnXc3I5pT1q0pBHNcsfEcCnhxilXxVBuC7hUujN9ClVj3OpyKOKyU1ISoG3qM+9TrdjGd4/Os+RovmRddwKqTPnpVK71i2tVzLKPwNZx8S2D/APLXH1q40pPVIiVSK0uXZRkmqMoFRSa5YkZEwrF1LV0lGLZiG9a6IU5NmM5xRpS4qhNt7kVn2sWpajL5dsssrd8dB9TXUaf4LbAk1O5J7+XGf5mtJONP4mRFSnsjmjCZnCRIXc9Aoya07PwZf3ZDT7baM/3uW/Kuil1jQtAQxW6o0g/hhGT+JrndQ8Z6hc5W2VbZPUct+dJTqz+BWXmNwpw+J3N6Hwzoekx+beOshH8UzYH5Uy58Y6VYp5VlCZcdBGu1a4Oaaa4kMk8ryOe7tmo8VSw19ajuS69tIKx0V5401O4yIfLt1/2Rk/mawri9urts3FxLKf8AaYkVFijFbxpwjsjGU5S3Y3FGKdijFWQNxRinYrd0nw1NehZrnMUB5A/ib/CpnUjBXkyowlJ2RhRxSSsFjRnY9lGa0Y/D2qSjItWA/wBogV3lpY21lGEt4lQeoHJ+pqxXFLGv7KOuOFX2meeSeHdUjGTak/7pBqhNaz27YmhdD/tKRXqVNeNJVKyIrKezDNKONl1Q3hY9GeVYoxXe3nhiwustGpgf1Tp+Vc9d+F7+3JMSidPVDz+VdMMTTl1sc86E4+Zh4oxUssEsLbZY2Q+jDFMxW9zKw3FGKdijFAhuKMU7FGKAG4oxTsUYoAbijFOxSUN2Gk2JijFOxRigQ3FGKdijFADcUYp2KMUANxRinYoxQAiM0bbkZlPqpxXR+HvEb2E8jX91cSQhMJH97LZ9653FGKicIzVmXCbi7o6698dzOCtpaKgP8Upz+grkZXMsryMFBYkkKMD8BRijFKFKFP4UE6kp/EZtxBHJqInZR5kSbVP161jza95d0yLEGiU4Jzya0Nbmlt8iIYaUABj265Nco0RCl1dXA6lT0rw8Uv38rns4b+DGxe1OW5uJDMVdYP4QT0qzoN2++SGST5AuV3HpTr5sacRjlgBisn7OBw0gEmcbcHGcZxn1wRXPujc7POelVNQ0631K1aC4QMCODjkGuf07UZbSdVZiYicMpPSurpNWA5W0s3t7aWFvv277WHsehFPrevPLjt5XIAZ1257n0rBJwMmmmBXgujZ6kZB90nDD2rp45FlQOhBUjIIri3be7N6nNW7LUZrI4X5oz1U0pwvqgjKx1dFVLPUYb3ITIcDJUirdYNW3NU7hRRRSGc9q17cR3zxxysqADgfSqa6jeL0uH/HmpdYBGpye4H8qoV0xSsjCTdy8NXvR/wAtQf8AgIqKbULqddrzNt9BxVaiq5UK7CiiimI0NIu/s11tY4jk4Psexrp64iuk0i++0Q+TIf3qD8xWNSPU0hLoadFFFYmpxlwd9xKfVj/OtPTbkyxGJzl4+/qO1Z12nl3cy+jn+dLZSeXexnsx2n8a7InLJG9RRRVkBRRRQAUUUUAFFFFABRRRQB1OKMUuKMV9CeIJijFLijFACYoxS4oxQAgJU5UkH1FSC4mByJn/AO+qZijFAyRrmdxhppCP96ouvWlxRigBMUYpcUYoEJijFLijFADhNKBgSuB/vU/7VcAY8+TH+9UWKMUWQ9QZmc5Zix9zmkxSgZOAMmuk0fwhcXu2a8zBAeQv8Tf4VE6kYK8iowlN2RgW1pPeTCK3iaRz2UV1+l+CkjAm1OTOOfKQ8D6mtG41PSPDVv5FuimXH+rj5Y/7xrkNU8Q3+qErJJ5cPaJOB+PrXPz1a3w6I35adP4tWdVeeJdK0eI21jGsjrxti4UfU1yeo+IdR1MkSTGOI/8ALOPgfj61l4oxWtOhCGu7M51pS02QmKMUuKMVsYiYoxS4oxQAmKMUuKMUAJilVGdgqglicADvTo43lkVI1LOxwAO9dromhJp6CecBrkj8E+nvWVWqqauzSnSc3oV9F8OLbhbm9UNL1WM9F+vvXR0UV5c6kpu8j0YQUFZBSEgAknAHUmlrlPHmqNY6MttE+2S6baSDztHX+gqHoUR6r4+srKZobOI3TqcFgcL+feqtl8RoHkC3lm0Sn+ONt2Pwrzyis+Zl8qPdLK/tdQtxPaTJLGe6np9asV4lpGp3Gl3qzQXDQrn58DIYehHeuvm+JABxBp5I9XfH6CqUhOJ3UsEU67ZY0dfRhmse88LWNwC0O6B/9nkflXML8SJ8/Pp0ZHtIf8KuwfEe0bieymT3Vg1XCq4/CyJU1LdFLU9GudL+aYBoc8SL0/H0rnbvUmilMcSg46k136+MfD9/C0M8xVHG1lljOCK8vu1iS8nSBt0IkYI3queK2njJuNkZQw0FK7LI1WcdVQ1Mmrr/ABxEfQ1lUVksVVXU0eHpvob8d/bSdJNp9G4qyCGGQQR7Vy9PjmkiOUdl+hrohjn9pGMsGvss6bFSW7iO4Rm5U/K2fQ1hRatMnEihx+Rq5HqdvJw2UPvW7rUq0HBu1zKNKrRmppbGteWnkHen+rP/AI6arYrSsriO8tShZXIGGweo9aoyxGGVoz26H1FY4HESbdGpujpx+Gikq9L4X+BHijFLg5wAT9KK9G6vY83ldriBSxCqMknAFOliMMpQtkgDP1qxYIGusn+FSagkbzJHc/xEmuVVZSxDgtkvxZ1OlGOGVR7yf4IZijFLijFdRyCYoxS4oxQAmKMUuKMUAZHiC3eXTmkjGWi+Yj271zGjwx+YwLOxCgfOc8DgD8K70qGBBGQeCK5ptOj0+/mWNsowBA/u+1eXmFH/AJeI9LA1f+XbHEAjBFY11b2lneCcIWnIz/8ArrarG1dCLhX7MuPyry1ueiylGjTTKijLO2BXbKNqgegxWbpWnR28KTsN0zLnJ/hzWnQ3cRlapcI4EKnJU5J9Kw7uXC+WOp6+wrQ166t7Jt20B8ZwP4jXOW919pyXP7zOTVxWlxNk9FFFMklt7iS1mEsRwR+tdBZ6xDcsI5B5ch4Hoa5qgHByOtTKCkUpNHb0VWsJ/tNlHITzjDfUVZrmehujD1625S5Uf7Lf0rErrdSQPp04PZc/lXJVvTd0YzWoUUUYI7VoQFFFFABUtvO9tOkqdVP51FRQB2VvOlzAssZ4YflUtcxpV8bW4COf3TnB9j610xOFJ9q5pR5WbxldHIXrb76dh3c1BkqQy9VII/Clc7nZvUk0ldK0MGdHG6yxrIvRhkU6s/SpN0DRHqjcfQ/5NaFWQFFFFAgooooAKKKKACiiigDrMUYoxRivoDxgxRijFGKADFGKMUYoAMUYoxRigAxRijFGKADFGKMUYoAMUYoxRigAxViysLnULgQ20Zdj19B7mr+i6Bc6vLkZjtwfmkI/Qeprrrm90zwtZCCFAZSOEH3mPqTWFSvZ8sNWa06V1zS0RFp2hafoFv8Aa72RHmUZLv0X6CsbWfF091uhsMww9DJ/E3+FY2papdarP5lxJkD7qD7q1RxUwoa81TVlTq6csNEBJYkkkk9SaMUYoxXSYBijFGKMUAGKMUYoxQAYoxRijFABinRxvLIscalnY4AHeljieWRY41LOxwAO9drouiJp6CWUBrhhyf7vsKyq1lTWu5dOm5sNE0RNPjEsoDXLDk/3fYVsUVj+JTqiaS8mlOFmT5mG3JK+3vXlzm5PmZ6MYqKsjYorgPDvjlg32bWH/wB2fHT2au3t7+0ukDwXMUinurA1CdymrGZq3inTNIkaGeRmnUZ8tFya8y17W5td1A3Ei7EUbY48/dH+Nd1480mO70r7fGB59t1I/iTv+VeY1MmyohRRRUjCiiigAooooAKKKKACirFpYXd9IEtbeSVj/dXNdRbfD6/lsJJZpUiuMZji65+p7UWC5x9FS3NrNZ3DwXEbRyocFWFS/wBm3u0MLaQqeQQM0m0txpN7FWmltr4PQ10uiaJDNbS3F6hyjhREx2lhjkitHXfD+kNozzaarx3ceG8tiTuHcUnJdy4wfVaHLadfPYXiTLnb0ceorqNXmWO1iu1G5MgEj0PQ1maHoVlqunzCa5ktLyE9HHyuO1bDWLNof2NiC4i259x0qHP2c41I7m9Om6kJ0pLQzba+hd0eNwWU52ng1buYhHIGT/VuMrXH8q3cEH8q6zQrk6hZvHcfO0Tg56ZH+c12SxbVSNVryfocVPDKdOVFeq9f+CW9OQmSYgfdTJ+mapD7orq9P02B0vWtBJteEIA/ZuuP5Vz7addIdpj5HGK2o4ikq06jdk7WM6uHqujCmlqr3+ZVxRipntLhBloXx9M1EVYdVYfUV3xr05bSRwSoVY7xf3CYoxS7WxnaceuKapLZJXHpVKcZOyZLpyirtC4oxRijFUSGK5fVL1be/lDglmbj8q6jFcRrus6dNrBtSjMF+V5B2celceOSdNX7nVg21U0LNpeR3YbZ1XrVLXLgW8cDBVZ9+Qrdxikj1SxtICsKMWHG0LyayZ5nu7gz3BAx91c8KK8a2uh6t9DcfxE/lqIoVDbRkk8Z9hWRdatdJuka6cOQcAH+lQh1PRh+dY0rs8hLMWwcA1cYolsWaaW4kLzSM7HuxzTFYowZTgjvSV13hL4f6r4kvImkgkttPyGkuHXGV9F9TWhFzHtbjz054YdasV7+fBGgLo76bDp8USMuPMVfnz67uua8W8RaBdeHdUe0uVyvWOQdHX1FRKNhxlcyaKKKko1NK1FbRZI5c7D8y/WuhjdZI1dDlWGQa4qt/QroNC1ux5TlfpWVSPVGkJdC1q8oj06Qd3worCgtlKBnGSe1X766jurnYCCkRwPc1FTgrIJasYsSL0UU4qp6gGloqhEUkCSDpg+oqtJaOvK/MKvUUxWMzypM42H8qYQQcEYNa1QzxB4zhRuouKxn1rQ628dt5Uke9gMBs1kkEHB60UOKe4JtbBRRRTEXNMfbeFezof0/ya2awLRtt7Cf9rH5jFb9UiHuFFFFMQUUUUAFFFFABRRRQB11FOxRivfPHG0U7FGKAG0U7FGKAG0U7FGKAG0U7FGKAG0U7FJigBK6Hw/4bfUmW5uQUtQeB0L/AE9ql8OeHDest3eKRbDlVP8AH/8AWq/4g8SLbqbDTmAYDa8i9F9hXNUquT5Ke5vCmornmTa14hg0mH7Dp6oZlGPlHyx//Xrh5ZZJ5Wlldndjksx5NIckkk5J6k0YrSlSVNabmc6jmxtFOxRitSBtFOxRigBtFOxRigBtFOxRigBtSQwS3EqxRIWdjgAVYsdNuNQl2Qp8vdz0FdppulQabFhBukP3nPU1jVrqnp1NadJz9Cvo+ix6cnmPh7gjlv7vsK1qKK82UnJ3Z3RioqyCiiipGee+NvDCwh9WskATOZ4x2/2hXDK7IcoxU+oOK9x1K1F7plzan/lrEyj6kcV4jNBLbStHNGyOpwQwxUSRcWOa7uXQo1xKVPUFyQahooqRhRRRQAUU6ON5pFjjQu7HCqBkk1c1bTJdIvRazff8tXP4jP8AOgCjRRUqW1xIu5IJGX1CkigCKup8G+G01i4e6u1JtIjjb03t6fSquj+EtS1SZd8L29v/ABSSDHHsO9eqafYQaZYxWluu2OMYHqT6mqihNksFvDbRCOCJI0HRUGBUlFFWQZWs+H7HW4SLiMCYDCSrww/xFeZ3Kaz4YufIuFYQZ4bGVYe1ew1HPBDcxNFPEkkbdVcZBqJwUkaU6jg7nI6NLp2toBbX22YD5opEww/Xmtf+wP8Ap5/8c/8Ar1z+veCBbBtR0SR4Zosv5QPp/dP9K0PCHixdZhFpdsq3yD6eYPUe9ZqnC9mjeVapbmjLQx9fvJvD+opDPB5lvIMpMvGfUY9qs2Oq6ffK0AkCzA/KTxn/AOtXQ+KNITWdDnhIHmoDJE3ow/x6VyHhbSdP8SaOUmLQ31o23zYzglf4SfXuPwqJUFeyLjip8t30KGreHpZLlp7UL85yyE459RXQ+DtENsZBOAxYEv6DsBVo27adOtvdHz1UD5sY3D1+tdJAkMdkWtFAUqSuO5xUwUm+V9DSfIlzxW5n3N7Fpim2tEG4csT2NV44NS1AeY0mxD0LHGfwFcp4k1CWG38tS3nTE7m7gd66Dwl4mW/svs184S4hH324Dr6/WnTXPrLYmtP2b5Yavqy+NClb79yPyJqK40C5CZt542b0dcVtpd28hwkyMfQNU1bKlT7HM8RW7nAXmm6jEczwuyjuoyv6VRIIOCCPrXptRSWtvN/rIY3/AN5Qa76eIUFyqJw1KLqPmcrs82ppdR1Ir0M6RpxPNnD/AN81JHYWkHMVrCpHQhBmreM7IhYbuzxPxJ4qj0xXtLUFrwjBJHEee/1rzYsxcuWO4nJPvVvVp5rrWL2e4JMzzuXz65NOhsg1s0kmQSMqK46taU3eR2UqSgrIpb2/vH86Mk9zSUVmWFFFFAG/4S8K3nizV1tLcFIEw08xHCL/AI+gr6ct4VtraKBPuRIEX6AYrlPh9pdr4f8ACNpG7Rpc3CieckjO5uQD9BgV05vrUf8ALdPzqkQ3csVg+LvDsXiPRZLcqBcxgvA/o3p9D0rUOo2g/wCW6fnSHU7Mf8thRoLU+a5EeKRo5FKupKsD2Iptdj8RtMgtdf8At1ocwXg3NgcLIOv59fzrjqxasbJ3QUquyHKsVPTINJRz260hlPVILmH7NM6MkUyFom/vAEgn8xVddRu1UKJ2wK9C+JlnbW3h3w7FbqQbVDCzEYySAT+oP515nWlkQmaUGtTx8SgSD8jVo69HjiFs/WsOijlQ7s6CPXIGQl0ZW9BzmteO1eRQ0rlc87V7fjXMaHpk2r6za2UClnkcZwM4A5J/KvWP+EOuF+9Nj/gBpcqQOTOQayXHySOrdsnIqAMQ2xxtcdR/hXcL4Qc9bhvwjqvqfg91sJJYnkeaIb0XZjOOo/KpaBSscNeR9JAPY1UrUYB1KnvWYw2sQexqUWxKKKKYhUbbLG3o4P610lcy33T9K9Aj8NXMsEcsc0TB1DDr3FUiZGLRWw3hrUF6CNvo1QNoWor/AMu5P0INMkzqKttpd8n3rWX/AL5qFrW4T70Eg+qmgCKinFHHVWH4U3B9KACigAkgDqaKAOyZGRirgqw4INJiu41PRodQUuMJOOjjv9a5G7sZ7KUxzIQex7GvZpVo1F5nmVKTgVcUYp2KMVsZjcUYp2KMUANxRinYoxQA3FGKdijFADcV0Hhzw+dQkF1cqRaoeAf4z/hVbQtGfVrv5srbxnMjevsK6LxBrKaZbDT7HCy7cHb/AMs1/wAa5qtRt+zhubU4JLnlsQeJPEAgU6fYMAQNsjr/AAj0FcbTjknJyTRitadNU1ZETm5u7G4oxTsUYrQgbijFOxRigBuKMU7FGKAG4oAz0rZ03QJ7wCSUmKE9CRyfpXS2uk2dmB5cILf3m5Nc9TEQhpuawoylqcdbaTe3WPLgbaf4m4Fbdl4WRCHu5N5/uL0/OujorlniZy20OiNCK31GRQxwRiOJAiDoAKfRRXObBRVa/gmubOSK3uGglI+WRRnBryS81nXLe7lguL+dZI2KsA2OaTdhpXPZKK8WTxFrEZyuoz/i2a07Lx1rFsw850uE7h1wfzFLmQ+U9WrN1j+zIbGS41KKFo0H8agk+wqLR9aj1/S3ntT5UwyrK3OxscfUV5hr99qlzqEkGpysZIWK7Bwo+gobEkZkzpJPI8abEZiVX0GelMoq/pejXusTiK0hLD+Jzwq/U1BZQrW0nw3qWsOPIgKxd5X4UV3ujeB7DTwst2BdTjn5h8o+grqFVUUKqhVHQAYAqlHuS5GDoPhSy0QCX/XXWOZGHT6DtWd418N3GqmG9sk3zRrsdO7DtiuwoqraWFc8y0LwPeXF2smpRGG2Q5Kk/M/tXpUUMUESxRRqiKMBVGAKfRQlYG7hWJrXinT9FBSR/NuO0Sdfx9Ko+MfEjaPbra2p/wBLmXO7+4vr9a8ukkeWRpJGLOxyWY5JNJysNI9f8M68dftZ5mhERjk2BQ2eMZrXmnit4zJNIsaDqWOK8a0zXtQ0iGWKylEaykFsrk5qteale6g+67uZJT6MePypcwcp2V/8QLiz1KaKGG3urdW+SRGIyKE+Jgx8+mNn2euDoqbvuX7vY7S98banq9tJbadY+VvBVm3ZbB9K5UaVq9m6zpaXEbIch1U8VVBwciu+8J6zpOjaYwur/dcTNuYYJ2jsKXLzPVlqpyrRGBJ461trJrV3jDFdpk2YasvRdbutCvftNqQdw2ujdGFdvrNnoPimNm024hTUQMoB8vmexFecSRvFI0cilXUlWU9QaiXMnubU3CSaSOvHjK51bVLdLiGKKI5X5euT713mgzlopYSfuHcPoa8TVirBgcEHIr1fRrlhbSysCrNb5IPY8VnzNTUmbKKdNwRjeKfEVvHqLQW1tG7J95iOM1hp4muE628WPbiofEVstvqm5W3ecgkPsckY/SsmtFCLV2c0q04u0Xsei6JnXLPzoHjEqHDxk8qa3rYaraYVoxNH6FxkfjXlmj6tcaNqCXUByBw6dnX0r2DT9SttS09LyBwYmGTn+H1Bq4U4rbQideclaWo5r+GJR558p/7hOT+lV31q2X7odvoK4K71ZpNdnvFJMbvjHqvStxGDoGU5BGQarmMuU2n10fwQn8TUL65P1CIv1rMqG6t1urdoWYrnuO1F2FkeLa/bpceLdTMWPJ+0sxI6cnJA/HNTRWct4rwwBd2w/eOBWmnhrUmvZrdLVxsclnI4PPXPeta00eawjKtC5c/ebbU7s0ukjzq8sp7GbyrhNrYyPQiq9ekXmkw3xQ3NuzFOhwRUT+GLW6j2JZMMdGQHIq7kXPPK1dA083upRu6breJg0mehx2rsYvAsTxLE1rKozkyHrXQWfhu3soFijjcIOwGM0WByJP8AhIpQMC3QD60f8JFcHpAn5mpfslpD95FB/wBo0efZx9GjH0o5SbhFrV3Iw/0UFe+M1pRa5FGBvsGJ/wBrNUVu4GHEi0v2mH/nqv500kK7IvFGoWusaBPbLZxxyr+8jYZyCP8AEZFeXV6qbi3PBkQj615fdRrFeTxqcqsjKPpmomi4MioDbSG9OaKKg0O6+Jt/BrHhmxmtbdYhBKHfaeoZcfzryevTL2W3vfApiLqJfswPTuv/AOqvM62M4hRRRSGe5/B3w5b2ejf8JCQ0t3dBolTA+RQ2Mj64r0prm47WTn6kV414UuoYvDVlsu3jIQ5CyEYOTXUWniK5hGI9QZx6O2aoze52s81+6YgtPLb+9kGqwTWj1Cn6gVzM/jG4iTmbc3opFEHjEyH5rqSM/wC0KlsaMr4h+HrqPThrKW8MbQvicxADcrcZIHocfnXlztvctjGa9xn1n+0rGe0mnimhnQo6nHIIrxS+s5NPvprSX70TYz6jsfxFRKxpF9CvRRRUlBXs/hSyutS8K6fdRBWHlbD83OVO3+leMV6n8L/EotdKutLkQuYpPNTn+Fuv6j9aqNupMr20OofS71Otux+nNVnhlj+/Gy/UVuHxGva3P50f8JDE3D2xI+oNVZEXZgUVc1C7iu5FMUAiA646mqdIY0xxt1RT9RUbWls3WCI/8BFTUUAVv7Ps9wb7NHkHIO2irNFAHZVFcW0N1EY5kDKfXtUtFap21RnuchqWgTWuZLfMsXp3WsfFej1lahoVveZePEUvqBwfrXZSxPSZzTodYnGYoxV280y5smxLGdvZhyDVSuxSTV0czTW43FGKdRTAbirNjZS6heJbQj5mPJ9B3NQAZIAGSa7rSLGHQNJe7usLKy7nPcDsorGrU5FpuaU4cz12HX11b+GtISC3AMxGEB6k92NcJJI80jSSMWdjlie5qzqN/LqV69xL34Vf7o7CqtFGnyK73YVJ8zsthuKMU6itjMbijFOooAbijFOq/p+kXF+wKrsi7u39KmUlFXY1Ft2RQSN5HCIpZj0ArpdK8PiMrPeAFuoj7D61q2OmW9gn7tcv3c9TVyuKriXLSJ1U6KWsg6UUUVym4UUUUAFFFISB1IoAyvEn2waJO1lcpBIoyWbjI7gHsa8bd2kcs7FmJySTkmu6+In24NbkSk2LDGxez+/rXB1nLcuOwUUV2OleALu7gSa8nFurDIQDLYpJXHc6XwRpLabonmyEeZdESYHZccVj/EHSS01rfwRlpJD5ThRkk9R/Wuu0fTP7IsVtBcyTIv3S/wDCPSr5VWIJAJByMjpWltLEX1PONC8Bz3JWfVCYYuoiH3m+vpXoNpZ29jbrBbRLHGvQKKnooSsDdwooopiCmySJEheRgqjqScCqeq6taaPaNcXUgA/hUdWPoK8p1zxHe63OTI5jtwfkhU8D6+ppN2Glc9jBDAEEEHoRS149pXivVNKASObzYR/yzk5H4eldZa/EGN7dprixdVQhWKMDyf8A9VLmQ+V9Cn8QLSKWdbpCfMhQI47EE8fzrhK7e+1GLxDZX80MbJnordeAP8K4qJPMlRC23cwGT2rJSu3c3nDlUbdUNoqW5tpLS4eGUYZT+dRU9zNpp2YUUUUxBRRW54c8OT69cnkx2sZ/eSf0HvQBH4a0m61PV4Ps4ZUicO8vZQD/ADrS+IelCz1eO+iXEd0Pmx/fHX8xivSNP0620y1W2tYgka/mT6msTx1Y/bPDEzgZe3YSr9Bwf0NOUfdHTnaaPKLKIT39tEejyqp/EivU71PJvbpFGF3Dj2ODXlthIItRtZD0WZG/UV6pq5xqU2DwQpP5VzT+A76b/epeR5xrBc6rcF92NxC59Ko17VHpVndadBHd2sUpEY5ZefzrLu/Amj3IJiSSBvVGyPyNdKg7I8+U05NnlNbGjXl7BBcwQSlYJl2uvr9Ks+I/Cs2grHKJ1mgkbYp6MD7ikgjEEKIvYdfek9A3JV024kwUQ/jxW7YwyW9okUhBZfT0rNi1KaMYbDj3qwurD+KI/gaQGlRWf/asX9xqP7Vi/uNQBs2dhc3zEQR5AOCx4ArWl0CO00+ee4lLuqEgLwAaZ4SilnD3x3xw8qqk/fPr+FP1rxFYS6XeRQSh5Y3CFfXkcj1FWkrXJbdzn8D0FX7LU5LKPy1jjZM5wRzXPnVh2iP5006s3aIfnU3KO3ttdt5DtnjEZ9eoqS51KJDvilt3THKHr+FcINVdmAEQJPvWmudoz170+Zi5ToPtej3Q/fWsYc9d0QNImhaTd5MaKfpGB/Sse0mEF1HIfuqeeM8V2MFxFPCskTAoelUncT0OfuvB1pLGRDI0bfpXOXvgG7jVmtnD47E9a7qW+nW58iK1diTwxOFpxs5pn3y3Dr/sRnAotcVzxS8jewaRblDG0edwauMdjJIznqzFvzr0z4jaFrt1qoFpp8k1gqgrJH8zO3fd+NcMnhvW3faulXZPp5RrOSZpGxl0V0CeCPEbH5tMmjHq4xWnZ+AbkMGvi+O6RqefxoUWxuSRjeTJL4ZMSZDNGcfTOf5Vzq6dEudwZjXrX/COfKFjt5lAGAAtNHhK6Y5jgkye5jqnFkqSR5OumxHJ2yY9xUkOmJIfLSJnY9/SvVD4O1g/dtSw9+KafB2toOLI49mFKzHzo5LRtPfTrLyZH3EsWx2X2rRrUk8O6rF9+zcVAdJvh/y7tTEUqKt/2Xej/l3ek/s29/59n/KkBVrO1awa6UTR8zIMY/vD0rb/ALOvP+feT8qT+zrz/n3k/KgDhPboR1Borota8N6pcMk1laneM7xjG6sR9J1uD/XaVcfVVzU2LTIKu6TqUuk6lFdxc7eHX+8p6iqLl4jiaGWM+joRUbXMSj72fYCizDQ9vtbmK8tY7iFt0cihlPtUtcF8O9WvLg3GnyQt9liHmRyEY2knp/Wu9qiQooooEFFFFABRRRQB2VFFRXSSSWsqROUkZCEYdjjitTMWeeK2iaWaRUjUZLMcAViaX4u03VLuS2RzG4YhN/AkHqK8w1DVNRvXaO9upZCpIKk8Aj2qkCVIIJBHIIqOYrlPemVWUhgCD2NZd1oFncEsqmJj3Xp+VYPgjxJLqG7Trxi80a7o5D1ZR2PvXZ1pCbWsWRKKejOWm8M3Cn91Kjj34qq2g36/8sQfo1dnSHJwFGWJwBW6xM0ZOhEwvDmhSfbjcXce1YT8qnu3/wBam+Kb2e7uBbRRv9niPJA4Zv8A61dTMRb26wofmbv/ADNVcADGOKn2z5+dor2a5eVHnhUjqpH1FJivQXghk+/EjfVRVaTSLGXrbqPpxW6xS6oxdB9GcPijFdXL4btX/wBW7p+tUZvDNwvMUqP7HitViKb6kujJGFigDJwBV2bSr2D78DY9RzWvoWkjAu7hef4FI/WqlVjGPMTGm27DNK0DcFnvBx1WP/GujVVRQqgADoBS0V506kpu7OyMFFWQUUUVBQUUUUAFFFRzzxW0LTTSKkajJZjgCgDJ8WXctl4cuZ4JjFKu0Kw68kcV5TJq2oStl724J/66Gtrxb4m/tqcW9vkWcRyM/wAZ9a5ms5PUtImluriZdss8rr1wzkioaKKQy/olsLvXLKAjIeZcj2zk17bXi3h6+g03XLa8uc+VESTtGTnBxXZy/Ee0DYispmHqSBVRaRLR21FcZD8RbFjia1mT3GDWxZ+LNGvcBLxUY/wyfLVXQrM26KZHLHKu6N1ceqnNPpiIrm5hs7d7i4kWOJBlmPauN1P4h28YZNPgaVu0j8D8qm+IszJo1tEDhZJ/m98A15pUSZSRb1HU7vVbkz3cpduw7L9BVSiipKCt/wAP2YurK9jkH7uTCg+4zWBXU6FqEa6d5WzLRZyqDkj1xWVW/LodGGSc9SPQYZrLULm1mQgFc57HB/8Ar1j6pZmyv5I8YQnch9jXTx65ayziJUl8wnAylN1GKy1JDA8qx3CdMnkH0rKM2pXaOidKMqfLF7GRJ/xONKEoGbu2GH9WX1rEro9J028sNVUumYWUqzKcgiquu6UbSY3EK/uHPIH8JrSMkpcphUpycOdrXqY1FFFbHMFdt8P7S9luJZ0uWjs42AeMfxtXE12HgDVks9RksZm2pc42E/3x/iKa3B7HplV7+AXOn3MDDIkiZfzFWK4zxR4uutOnezs7ZlYcGaRTj8PWrZCPMOVPuDXppvobzyrqWRUilCZdjgDgA/1rze3gkvLpIkGXkb/JroPEMqwQW2nxn5Y1Bb+Q/rXHu1E9K/LFz8vzPQZ/F2h24wb1Gx2QZrEvviLbIpWytnkbsz/KK86orp5mefyo0tR1m91m8SW8lyAw2oOFX6CtKubBwQfSuiRg6Kw6EZqWMdRRRQAVe0jTZNV1KK1TgMcu391e5qjXofhXT49I0WTUbnCvKu9if4UHQf1ppXYN2F8TalHomkR6fZ4SWRdigfwr3Ned1c1XUJNU1GW6kz8x+Uf3V7CqdDdwSsFI2dp29e2antIhPeQxMcK7hT+ddj/YenAf8e4/M0JXC5wtlNNb3Jlnj3gD5VU9K031xY1LNbSYHXBFdK2j6av/AC7gn6moJdD06YbWtht9Mmnyiuc1/wAJTaf88pfyqRfFlsowPOUegrb/AOEZ0n/n0X8zR/wjOk/8+i/maLBcy4/GcSOGE04I6Z5rSt/HsbEK0y/8DUinf8IzpP8Az6L+Zo/4RnSf+fRfzNOzDQ1oPFBlUMscbr6q1WV8Rxn70DD6Gse20Owtn3QQ7D7McVpJa2uPmhH1Bo1FoJJ4ilL/ALuJQv8AtHmnp4iP/LS3/I1IljZucCKnf2baf88h+dGoaCjxDb45ikFIfEUHaJzR/Ztp/wA8h+dB060HWIfnRqGhGfEYzxbnH1qaHxBburGVWjI6d81A1nZ9BDn8a4jULiVL64gEhCRuVGPSi7QWTOzuPE8akhY02/7ZrFvdct7jqkakd0XmuZJJ6nNFS22VY121WEdFY0w6svaI/nWXRSA0/wC1v+mX604asveMj8ayqKANtNSt36kr9RVpHV13KwI9RXNVdsbxbfKODtJzkdqAOkg0WXUbdphFG8Yz9/BziskaZYZ3fYrfP/XMV1XhG/inFxbI4bGJAP0P9K57V7q303U7i2cncjnAA7HkVTWlxJ6gkccQxGioPRRinVjya6P+WcRPuxqpJq90/RlX6CpuM6OkLAdSK5V7y5f70z/nURkdursfqaLgdb5sY/jX86PNj/vr+dchk+tGaLgdiHU9GH50Vx4Zh0Yj8aKLgex1Q1nVYtG09ryZHdAwXCdeav1Q1nTl1XSLmzPWRflPow5H61sZnjmp3EV5qdzcwoUjlkLqp6jNVadJG8MrxSDa6MVYHsRTayNDS0PV30TUPtiQrKwQqAxxjNdL/wALHuv+fCL/AL7NcRRRdhY7gfEi4zzYR49nNd74dvDqelw6nJF5QkUlVJ6c9a8Z0bTJNY1e2sY85lb5j/dXufyr2bUdR03Q7a1sJJ47dGXaik4+VauLZLRYZzLI0h79PYUlYVx4w0S3BzeK59EBNc/qHxFGCthaEns8p/pTuhWZ3hYKMkgD1NZd34k0iyJWa9j3D+FTk/pXleoeIdU1In7RdvtP8CHaKzKnmHynqz+PNEU8SSt9IzUL/EHSFHypO3/AK8vopczHyo9Ii+IlnJeJG9rJHAeGkJ5H4V1trd295CJbaZJEPQqc14VV/SNXudHvo7iBztB+dM8MO4pqQOJ7bRUNrcx3lpFcxHMcqhlPsamqyAooooAKKRmVFLMQFHUmuP17x1b2Ya303E8/Qyfwr/jSbsFjd1rXrPRLbzLh8yH7kS/eavLtb8R3utynzn2QA/LEp4H19ao3Vxd387XFw0ksjdWIzUHlyf3G/KobuWlYbRTvLk/uN+VHlyf3G/KkMbRTvLk/uN+VHlyf3G/KgBtFO8uT+435UeXJ/cb8qAG0U7y5P7jflR5bgZKN+VAE1vf3doc29zLH/usRWxB401uAAfaRIB/fUGufoouFjX1jxJfa3DHFd+Xtjbcuxcc4xWRRRQAUUUUAFaenRG7TbA/lXkXKEHG8en1rMroNDtILwRyo7R3Fu3zbf4h2/wAKio7K5tRjzSsX9N1IvcC2vIPLuegbb96o/EumF4xdxr86D58d19a6e2sEu2ABCzjoHXr9DV670hhpq7gGkjBDAd1rninfmijtny8vs5M8x07WbixcAsZIe6k9PpXWwz2+o2u5SHjcYKn+RrkNa019NuSyAm3c5U+ntVWz1Cazl3wyFT3B6GrlGM1eO5jCpOk+WaujV1TQZLYtNbAvD1K91rErq7LxLbzALcr5bevUU6+0W21BTPaOqOecr91qcajjpMU6MZ+9SfyOSq3pcay6rao0oiUyrlz25qO6s57OQpPGVPY9jTbZ5YrmOWEZkRgy8Z5FbJrc5GmnZnu9ZmvSxwaPcyNEssmwrGpUHLHgVgaL4i1d7Zxf26luqSHg/iKdPcS3Mm+Zyx7eg+lKpXilpubUsLOTvLRGDpGkx6TbPc3BBm25Y9lHpVW/0K5u47S/VwZLwF2jb/lmv8P6YroZrNr6Ew7XZWIyFHUelYuqa99jlktoYm85DsYv/CRXPTctWlqdVZQ0TeiM3VdPtdNs0iDb7lzkn0FY1STTSXErSSsWdupNR10RTS1OGpJSfuqyCtnTpfMtgp6ocVjVasZxDLgn5WpkG1RSAhhkHiloA09A006rq8MBH7sHfJ/uj/OK6fxxqYhtotMhOC43SAdlHQf59Km8F2S2ekzajN8plyQT2Rf8muL1S+bUtSnum/jb5R6L2H5VWyFuynRRSFgoyTUjLem/8hO1/wCuq/zrvSDXnumzZ1W1AH/LVf516BmqiJnPQ6tJB9sa4hleGK7dDNxhFyAPwFWLvWEtJXD28hijIDy8YGfT161DJpV+8N5Zhofs11O0jPk7lUkEjHrxUWo6Fd3T3ip5DrOQUkkJ3RgAfKB+H61ZJak1hUnu4xbystqpMkgxgfLupP7aHlQt9llEk+TFGcAsoAO72HND6ZN5eqruXN4MJ7fIF5/Gor3SHmFlIqxySW8fllJCQrAgdx9KAJBrkbi3EUEskkxdQgxlWXqDVqz1CG7gEn+qbeyFHOCGBwRVS20uSG5sptkMYh80ukecZbGP5VLZ6XHGsv2iOORjcPKhIzgMc0AN/t1EUyC1ma384QiYYwW3bfyzU39uQg3bPBKIbZmR5McFgQMD1JzWDKZkjXSoWjkT7YrKMHeBv3HI9uea2m0eSSwvrdpFVp7kzxsOxyCM/iKALMevRwC4NzbSwyRQGYI2Muo64q3ca1BbyRoyOS8DzjHooBI/WsmbS7vUXle8aKNjbPBGIyT97qx/IUh0zUbmVHuDAuy0ktwEJOSwAz+lIC9B4iWeSFXtpYEniMsTvjDADJ+nFUX1me7vtLMcU0UE8xw7YxIuwkfTsanbSHkXTUdl228DxSY77kC8VDBpuoCTTUmaDybFuGUnc42lRx260AbtcBqX/IXvP+uprv64DUv+Qvef9dTUyKRWoooqRhRRRQAUUUUAFFFFAGx4SvfsviiBScJMpiP48j9QKu/EKz8rVLe7A4mj2k+6/wD1iK5SG4aC8juEPzRuHH4GvRvG0C3/AIYjvIxny2WUH/Zbj+oqlqhPc8zoooqBhRRRQAUUUUAFFFFAHslV7y+ttPtzPdTLFGO7GrFec/EK9tZbqG1j+edOZG3cKOwx61s3YhK5zOu3UF7rl3c22fJlk3LkYrPoorMsKKKltreS7uoreIZklcIo9yaAPSPhlpAitrjV5lwX/dxE9lHU/n/KuO8W6wda8Q3E6tmFD5cX+6O/49a9G8SXEfhbwQtnbnbIyC3jx1yR8x/nXjtU9NBLuFFFFSMKKKKACiiigAooooA9V8B3RuPDSxscmGRk/DqP5109cR8N3zp98npKp/Mf/Wrt60WxD3Cs/VtZs9GtjNdSAH+FB95j7VV8QeIrbQrXLEPcsP3cQPX3PtXk+oajc6pdtc3Uhd26eij0FJuwJXNXXfFd9rLtGGMNt2jU9fqawQMkCkpV+8PrUFnrVvawRW8caRIFVQANoodrWOaOFxEJJM7FIGTjrUsf+rX6CuV1C4ae+uryOGZ2tHVYGRcr8py/PvyPwqyTqfJi/wCeaf8AfIo8mL/nmn/fIrG8+S71eSSK4k8iO1SdI0PDkluv5UliktxbWdy+ouHuV/eISMHIzhfQigDVLWo8vIi/eNtTAHJ/yKl8mL/nmn/fIrmdML2+naSFldhLdsGDHPHz8fpVuwea4hgvnvikkkxDRMflxuI249aYjUupbSziEkyooLBRhckn0FTLHEyhhEmCM/dFZOuW/nXel/vZEzc7flOP4W5+tVp57h4NSvPtbxSWkjLHGCMYUDGR3zSGdB5MX/PNP++RSGCFgQYkIPBG0VgXN7cDVIbUXBSK6CO7d4T/AHf+BY/nXR0AeR3iLFqF1GgwqTOoHoATUNWNQ/5Cl5/13f8A9CNV6goKKKKACiiigArVsNVmsI/NS1Qr90yAYrKrY0O8hjZ7O5UNFORjPY1E9tjWi/e3sdJpXjQyzpHIoVzwu4Zz+Ndnp+pJfbkK7XAyR2IrgE8M2pukaMyfeBCCu0s1g0mNpLmQCVh90dhWcZ6+69DqlTfL7616WM/XdIjIdXj3W8n/AI6a851PQ57Byy5eE9Gx0+teoXHivSMNFJIrZ6gkVgzalp0rNtmjEZ/hLZqZWi7x1RUbzjaWjR51sYdKs2moXVjIGikIHdT0NdTLbaFIxZmiB9mxWfqMui2ls32ZY5pyPkGcge5qlJS0SZnyOPvNo2bK9ttV07zpUXCg+Yrc7SKbpFzZ3IlFvbiLy8dRyQehrBbWrY6UIYYRFMykTbRgYxyc1m6RraS6eJg2xbqJSSO3XIqVRbTRcsTFST3Oo1LxFFbM0VsBLKOCf4RWZYeJLy1vxczBJ16GNhxj2rP+yxyLvgk4/MVGbaZf4Afoa2jSUTlqYiVT0PYtF12w1i3DWrBXA+aI8Fa57xf4SFyZ9VtXCOqF5UPRsDqPeuAgmurKdZ4TJFIpyGWu60vxlFqthNp2pFYbiWNo1l6KxIxz6Vte+5z2tsefUUroYpGjfhlOCPekqCgopMj1pDIg70AWYrqWHo2R6GtC2vBcSJGXCFmAy3QVi+avofypPN/2TSGez+Jr+307wiltZyo3mBYVKHPGOT+Q/WvNdzeprKi1B0ARmYoOgbtWhFOkoyp59KcncSVicSsO+aaWLHJNJRUgW9L/AOQtaf8AXVf516NXnOl/8ha0/wCuq/zr0ariJhRRRVCGSfdzVSK9tp5GSKdHZeoBqa+ikmsLiKI4keNlU+hI4rDthG0EEcGnv9ogt2B3LtCnbjBPfJoA1Yr61mZljnRmUZYA9BUf9oQyPEIJI5Q7hCQ3Tgn8a5+2jke7tWWOTi3lVx5OxUJX7vvzVy3tGistACwbSjqZMLjHyHk/jTEX9O1S3u1RmaNLhmZdmeeGI/pWh9utROIDOglP8Gea5WGMtYQWaWsi3Yu/M3lMYHmEls/SpXhf7BdWBtna/kuCyS7PVsht3sP5UAdQbmFUkcyqFiOHOfun3qZTmuUvzJFa63aGCV5biTfHtQkMCqjOfwNdTHwi/QUhklFFFIArgNS/5C95/wBdTXf1wGpf8he8/wCuppSGitRRRUjCiiigAooooAKilL9AOKlooAqYPoa9Q0M/2x4G+zNy3lPCfqOn9K866V2nw9vd4vbQnoVkX+R/pTjuKWxwBBUkHgjg0lafiG0+xa/ewAYUSll+h5H86zKljCiiigAooooAKKKKAN7UfiHPNAY7G28lmGPMY5I+lcXJI8sjSSMWdjksTyTTaKpu4WsFFFFABXZfDfS/tviBrx1zHaJuH++eB/U1xteveCbaPRPBj6hONplDXDk/3QOP0H6047iexyvxJ1X7ZryWSNmO0TB/3zyf0xXF1NeXUl7ez3Upy8zl2/E1DSeo0FFFFABRRRQAUUUUAFFFFAHoHw1P7rUR/tIf0NbHiLxbbaPG0MBWa8I4UHhfc15pZate6dBPDaTGJZ8byvXjP+NU2YsxZiSTySe9VzaCtqTXd5PfXL3FzIZJXOSTUFFFSMKUHBBpKKAPVLfVbGW3jdbqLDKDywFS2hs/KMNq0ZQZJVTnr1ryUqD2q1p99Ppl0s9u21h1HZh6GnzCseoJbWlipkVUiAQJuJ6KOg/WqkI0eCfzo3gV+cHf0z1wO1cRrWv3GrkIR5cA/wCWYPU+9Y2xfSnzBY9Rj/siIgpJANshlHz9G9R+dIo0dbn7QHgEmd2d/GfXHTNeYbF9KTYvpS5gseryXWnStG0k8LGNtyEuOD0z+tQSjRpp/Okkt2k4JO/rjpkd68v2L6VHLCGGV4NHMFj1Zn0mQShpbc+awZ/nHJHSrB1KxRSxuocAZPzivIo4Qg55NP2L6UcwWJ7qVZ725mT7kkrMv0JqKiikMKKKKACiiigAqe0k8q6jfy/MYH5V9T2qCnRyPFIsiHDKcg+lJ7DTs7ndy66ujwiR9puWThRyQa5K/wBZvNQkZpZWCn+EGqMkjyOXkYsx6kmoGnUcKCxqIU7G1Wu5vTQlPqaiaYdEGT69qZtkm7Ej0HSp4LKSUEn5APUVso9zAzb65eGMHqzHA9BVODVAk81rNkzQn5wo6Vr3GkyyyoWXKx5OB3pnkqjH92Ax6/L1qhFdm+3WUyROyB1ZAw68inWNpDYadb2kIP7tfmY/xE9TVtrZooFcgKCeBTY4nmbagJPr6UAaGmE+TIOwf+lXqZFEsMYRBgCn0hBSFVbqoP1FLRQBG0ETHLICfWqMzRo5VYcEeprRY7VJPYZrJmlMz7iMdqmTKihPMI6BR+FRgAdBS0VFywooooAKRdyHKMVNLRQBeg1DjbMuP9oVcSVJBlGB+lYtA4OQSD6igVjo7SYW15DORkRuGI+hrsv+Eo0vHMrD/gBrzFLyeP8Ai3D0arCaiv8AHGR7jmmnYlo9G/4SjS/+ezf98Gj/AISjS/8Ans3/AHwa4BLuB+jgH0PFShkbowP40+Zisd1/wlGl/wDPZv8Avg0f8JRpf/PZv++DXD8UUczCx2cvinSkG4zNjv8AIasadrFlqm8WswZl6qRg15/cAG3f6VRtbmazuEnt3KSKeCKakFj1LUNStNMhEt1KEUnAHc/hVGHxbpLsQs7dP7hrz6/vrnUro3F0+5v4VHRR7UWf+v8Awocgsekf8JRpf/PZv++DR/wlGl/89m/74NcPRS5mFjuk8T6YxwJm/wC+TT/+Ek03/nq3/fJrhYsCQVZo5gsdifEum4/1rf8AfJrkrmf7TeT3AUqJHLAH0qOihu47BRRRSAKKKKACiiigAooqG4uFt4yx69h60AV9RufLTylPzN19hXReB7v7P4itwThZ0MZ/LI/UVxMjtI5djkmtrS7k2tzaXIPMTq35GjZgzq/iFa+VrEFyBxNFg/VT/gRXIV6T4/txcaHb3ac+VIDn/ZYf/qrzanLcS2CiiipGFFFFABRRRQBj0UUVQBRRRQBPZWr319b2sY+aaRUH4mvVfH10mleEY7CE7fOKwqB/cUZP8h+dch8O7D7Z4oSZhlLWMyfj0H86s/E2/wDtGvQ2an5baLkf7Tc/yxVLRCe5xNFFFSMKKKKACiiigAooooAKKciNI4RFLMTgADk11WmeCLidUkvZPJB52Dlse9CTYN2OUAJOACfpV210bUL3BgtJGHrjAr1XTvD2nWEYEdsn1YZJrUWKNRhUAHoBV8hPMeRXHhTV7eLzGtt47hDkisx7K6jOHt5R9UNe47F/uimmCJuqA0cqDmZ4YYpF6xuPqpple4SWlqR80SfiorPm0fTpj+8s4W99uKOQOc8for1g+FdJPzfYU/WpB4Y0rAf7FGNvIo5GHOeR113h3wxFqdhHcnDBmO7fxtwe3rmuvn0jTpMBrKEknGdtWBYiCBEtlCRgYCrwBTUBORQl8L6ReKIGgVCo4aM4OawdY8CNb2zSaeWlYHO0nnFddbxNFKHY4NaeRjOeKbSEmzwiSN4pGjkUq68EEcim113jzTVt9SS+jxsuBhsf3h/9auRrJqzNE7hRRRQAUUUUAFFFFABRRRQAUUUA4OaAOl1HwzbaV4YOqX8krSBMiCPqzsQFX9a5rUbJtOv5bVjkxkA/kDj9a7y6ifU9Pi8RSTGeO0tg8NkPurMOC7euOorzyaWSeZ5pWLSOSzMe5rWyWxEbvc1rTZ9nTZjpz9an6Vnacu1mdmxxgAnrVmVbdz+8Yf8AfVSMdLdwQjLyL9AcmoUEl22908qLsCPmb6+lMEljAcoi7vUCmzaiSMRDHuaYWEu1luJisaEonH41asomhtwrjDEk0605tIj3K5NTUgCiiigAooooAr3kvlxFR95uKzKnu333Bx0HFQVnJ3ZolZBRRRSGFFFFABRRRQAUUUUAFFFFABRjHTj6UUUAKHcdHYfjTxcTjpK1R0UBYla5ndCpk4PtUPzf3zS0jMFGTQFhDwCSx/OoVupY5A0TbSPXmkHmXEmxQST0FX49I+X95Jg+gFUkyXYdBrAOBOmP9pa00kWRAyMGU9xXP3dm1q4ydynoajguprbPlNweoNKwHTdDVlJA49651NRnwG3BgfUVaj1Rf40ZT6jmnysRt0VSgv45ThXBPp3q2rhxxSAdRRRQAUUUUAFMklSIZdgBVS7vhETHHy/c+lZbyNI252JPvQBozamOREv4ms6SR5W3OxJptFMArStjm3Ws2tG0/wCPcfU0mB6v/wAhj4e/3n+zf+PJ/wDqry+vSvAM4uNBntW58uUjHswz/jXnd5AbW9ngPWORk/I1UtkxIhoooqBhRRRQAUUUUAY9FFFUAUUUUAepfC6yEWl3l8wwZZAgPso/xNee67enUdevrvORJM236A4H6CvUrD/iQ/DQS/dcWrSf8Cfp/MV47VPawluFFKqsxwoJPtQyMv3lI+oqRiUUVIkEsn3I2b6CgCOirH2G57xEfWmtaTr1jagCGrUGnXVwyrHESWOAKLS1nku4lSB3O4cAV6TomkmxQzzqBMRgc9BTSuJuxV8M+GhpaG4ulVrpug6hR7V0SfeLe9V5Lht+1OlWrdS2zP1NbJJGTdy4v3RS0U13CDPepKB3CDmq7zMe+KazFmyagnkCso98mqsTcmJJ60hYBgO5qMXEZ6nFRxv5lwT2xxQBoQPkbT+FSsMqRVeHPmDFWaTGjOlIUKx7Gr0RDRjHSqd0m0H2OagSRoyQjcelDYIp+JotbkSL+ygjKGy4/i/Ci7nuo9HWznkEN5LDgP1CtV9bp42+boe4rG8Q3dtcWMrwXSfa0jPlKQSN3uBU26jZzPi/7dY+HNNhu5RNN5zZf1GOK4n7ZJ6Cui8S6y95oGlWVzJDJfRjzJzCcquRgD64rlK4K1RqdosabLX21/7opRenun61UorL20+47sui9XuhpwvIz1yKod6sxxQEfNJk1arTC7LAuoj/ABUv2mL++KYsUHbB/GniKPsoq/bTHqH2iL++KPtMX96l8mP+4KTyov7oo9tIYfaYv71J9pi/vUvkxf3RSiGMfwCj2sxamjo/iE6XcD5jJbP8ssJ6MD1q74nv9IuhaTaSij5SskQjxj0NYYVR0ApapV5oLa3IfnlO5yR7AUvlp33GpaKPbyGQ+Un+3R5QLABiAe7DjNTUxpFXg5/Kj28kI14VEcSoDnaAKfWz4OXQ9ahj0iaGRb0K8nnA4zz0/KtS+8CXcdwgspllhY4Jfgp/jXXF8yuibnJUVsah4X1azmkjS3aZF6SxjIOelZU0EtrPJbzDEsbFXHuKYDKhuZvJi4+8eBU1Zd3JvnI7LwKluyKSuyDrRRSMwVcmszQCQOppaqSSF8dhUkMvG1vwosBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEgDJqvI5lYKo+nvSysZHCLzzjjvWrY2AgAkk5kP6VSQm7D7G0FtFlh+8br7e1W6KKszI54VniMbjg/pXPTwtBKY26jv610tUtSthLAZAPnTn6ik0NM2vh9Y6Rq89zp+oWyvMB5sTZIJHQj+Rrpta+HFpcSQSaWRbgMBKhOQV7ke9eYaRfz6bq1tdW0hSRHAyPQ8EV6Tfa5q+oxtEiGGN0UNt4+YHJIPbPFNSVtQad9CnrEehaVENN06yjmnj3K9xJksrfXuawUYp0NaJ0mdiWZSSTkktyTUUti8P30YD1qG7jSsQpMCcNxUtQtDxwaIpP4W/CpAmpshIicr1AOKdRTA5skk5PWinzLsndR0DGmUwCiiigArRtP8Aj3X8azq07cYt0+lJgdx8O7nZqN3bE8SRBwPcH/69ZPjC2+zeJ7sAYEhEg/Ef45pPCFz9m8T2hzxITGfxH+OK1/iLb7NRtLgDiSIoT7g//Xp/ZF1OMoooqRhRRRQAUUUUAY9FFFUAVLawG5u4YF6yyKg/E4qKun8HadHceJbAs4crJ5mB0+UZ/pQB2/xCk+y+FIrKIH97IkYA/uqM/wBBXmEGmuxzKdo9O9eg/EXUIobqytnbGEaTH1OP6Vw7alAOhJ/CnLcUdixHDHEuEUCpUijlkVZMBScE46VlS6oxGI0x7mqwu51ff5hzUjOzi0e0jOSgY+4q6sccYwqKo9hWToerfbE8mXiRenuKk1O6y3kqcBeWNAE19LbeUykKzkcY7VRtbC4vJNkMZPqfSq2lRzarqnlQKfKT7zdq9Fhgit0CRoFAqoxuTKVijp+nQaXAM4aU9XxzUkkzSH0HpSztukPOQKbHGZGwK22MySGP5S5+grQgA3E+gqi5C7UQ4Cnk1aVuB/d6/WgCzI4VM9z0qjNcbWAPJouLgjpy38qp/M7dyTQBN9qP92oGYsxJ60mDRigApyMVcEUgUk4AOacsbNnsAcHNAGlCcSD3qySAMms+KVY8Atkr3qxJOrpweO9LcZFMdyuT3Bqgxw+RU80wI2qeO9Zeq6nBo+nTX9zkonRR1Y9hSk0tWCJdQ1S10uza5vZVjjHY9WPoK8v17xnJqFy4syYLcjbhRy31NUdUkvtevpLu5lKo7bkjzkIOw/KqyaTGpBLsSK86rVnPSOiLsVFleT/Vws1TpBdP1jVR7mtQKFGAAPpTZH8tc7Wb6CsuTuOxVSzbHzsPwqUWkY65NS2gu9QuPIs7KWR8Z9ABWp/wjeukcWOPqwqlG+yDQylhjU5CinGND1UVqr4a1z+KyH/fYo/4RzWR/wAuX/jwquV9gujIMEZ/hFAhVT8pI/Gtf/hHNZ/58v8Ax4Uf8I5rP/Pl/wCPCjlfYLoyXj3/AMTD6VGbUH+NvzrYbw5rf8Nl+bCm/wDCOa7/AM+Y/wC+qXK+wroyhbKP4m/OnCHHR2/OtUeHNb72X5MKD4d1vtZD/voUcr7DujMC4/iJp1Xj4c17/n0Uf8CFUL+2v9IMZv4fLV/unsaHdboLi0ws+eE4+tV/7Rt/71IdTt/WlzLuBZLP2T9aaWl/55j86rHVIe1N/tRO2Pzpcy7hc1tO1G50y9ivbcbJYjn1yO4/Kve7eZbi2inT7siBx9CM184LqcR+9j8K9n+HmrNqvhdPMcM9vIYffaAMfof0rqw007xJkdZXK+IvCR1W9F3aypFKwxIGHDY6H611VFdhJ4peQT2M7wTxMkqZBBFYRJJJPWvfNQ0y11K2lgnjB8xdpcD5h3HNed+L/B0em2iXVkjtGIysrdw3UNUSjcuMrHDVXuD8wHpTJFeMb8lh60zdv5zms7GoUUUUxFiGTPyk/SpqpA4INXaTGFFFFIAooooAKKKKACiiigApshKoSKdTXGUbHpQBY0mBWDTNywOB7Vq1z1pdvavkcqeq1uQTx3Ee9Dn1HpWiM5IlooopiCormRY7aRm6bTUtUdVOLPHqwoYIxosiVMddw/nXrfavLNNtnu9St4E6s4/ADk16QlvsGZp2b6nAqC2W6a6LIhRhkGoTeW0fHmDj0pBf2x/5afnQIxp4WhlaNu3Q+tVvIHrXRs9rOPmZG+tRNa2RH8I+hpAYqjAxnNPRS7hF6k4FTCOIysgJIB4I71GwUPiMnI75oAlHhyGQlpTgnk4obwvakfLI4q3bNeEYDow9zV9N+PnC59qAOck8LEf6ubP1qs3hydT1J+grr6q3l0bZRhCSw4PpQBy40qONiJCxI6irAgQKFAwBUFxfTCQnyGOTkk96WK9D8NE6n6UAW7PNrf29wp/1cqt+Rru/iDB5ui29wvPlzDn2Yf8A1hXBA5Ga9I1T/iYeBPN6nyEk/EYz/Wqjs0J7nllFWjGp6rTGhXqDioGQUU4oexB+lNoAKKKKAMemtIiD5mApmppLbzZU4jbpis4kk5JzWM6/K7JCbLr3iD7oJrtvhUGuvE1xMQAsNuT+JIH+Ned16t8Hbf8AdardEdWjjB/An+oqaVSU6iTJbMD4m6g8njOWJG+WCJEx74z/AFrkPtkmOgrT8YXP2rxhqsucj7Qyj6Lx/SsSs51Jc7swuTG6lPfFPiumDgOcqarUVCqSTvcLnR6XdrZ3PnEn7vGPWpLzUTOCqZ+bqT1Nc2s0iDCscVNDcnz4/NciPcN+OuM810rER6oq57J4b0yPTNIiVeXlAkdj3JFX7ibGUHX1pthd297p0NxatuhdBsx/KqN/qemaWA9/eRx7jgLnJruukrmW7LKJuPJwO5qUyBE2oMD17msbRfEMGvGZrOCRbaHjzH43Mew/D+dUvFfiMeH7FTGA95NkRqeijuxqHUVr9Ckjbur2CzTfcSrGvYdzWJdeNba3jZY9oA6M5rym61a/vJ2mnupHdupJqozs5yzFvqa5nieyHoekx+PWuNRjhtg1xK52rEicE11326S1hBnYNcNyUTovtXm3w4nhi8RvHIq75YSI2PYjnj8K7zX7S4aGWS1YJI6bVc/wt61pSnKSuwZS1LxzYaU5jnP7zqUQZNcbrXxIvr1gmnK9pED97qzVzmoWl1Z3bx3isJScljzu9896q1zVK05abAbUPjrxBC+4X8jH/aXNa2kfETUBq0cmqSGS1I2sqLjBP8XviuPorNTmuoH0GJg6JJGQyOoZSO4NY3ibxJb+H7He+GupAfKiB6n1PtU/h+ZLjw5pskbhgIEUkHoQMEV5X4xu5LzxTfFySIn8pB6AcV2VZ8sLrqB6b4V1xvEGirdPsE6sUlRex7fpWvPaQXlu8FzEskbjBVhkYrw3StZvtFnMtjMYy33l6hvqK6KD4kaxG4MscEq9xtxUQrrltIDb1PwFcR7pNJu/l6iGbt7A1x9y93pl19m1O2aF+xxwa73R/iDp+o3EVtcRPbTSHaCeVz9ad4/04X/hi4nEeZrMiRWx1X+L9P5VM6cXFygx3PPpp45Yx5dyEbrmq6an5T7JcOB/GlYYnHcVICGGRXG5sLnp3gG7guL282tkiJev1ruJ5re2h82V9q5x9T6V518LtpvNQBQZEa/N+NdxrdnLcx2rwhz5E29lQ4YjBHHvzXdQd4JsTJ/7Rszam4EvyBtnQ53emPWom1O0W2+0GYeXv8s5ByG9MVnm2nitmkijuAZLhXlDsDIVAxkeh6VFDY3T7yIJArX8cw8w5O0KASa2shF3+2omvRaorbmhMisQR+FN07Wobq2t/McCeSPcRjgnGTipbq2uDrKzeWWje2aLcv8ACc55qtBpk6WuiKY8NAf3o/u/IR/OgC+uoQO0CrKpM6lox/eAqN9UtUjVzLkMSFAGScHBrK/sa9iS4lRQZLV8Wgz95ckn+ePwq2unTadNZzJE06Jb+U4TqGyDn8eaLAWZNVtI4opGmG2XOzAznHWmvq9kjsrTYKttY4OFPuaq2mlXCXVlLJHtHmzysv8AzzDDgUT6XcPpuqxiPLy3BZB/eHy8/oaLAX7e+t7p2SJ8soyQRg49a5P4lf8AIDtP+vkf+gmup+xTDXPPCfuvs2zd77s4rmviTDI2iWoVCT9pHT/dNZVvgYHl1FOZGU4ZSPqKbXmlBRRRQAV13gnxKnhqe8l3s3m2zKqdvM42/wBa5GiqhNwlzID6H8A6vPq/hhJruTzJ0leNnPfuP511FfNej+IbywNlaC4eKzivFuHCHryuc+vAr1vR/iNaXiapd3oW3tIJFW2X+OQHPb14r0qNeMkk9ybHc010WRGR1DKwwQRwRXLQeP8ASX0cahMWi3yMiQ8FyB3xVnV/GWmaVZxTb/OlmQPHEp5wRkE+lb88bXuI4Px74dg0CeG7tEC2U/yFM8q/X8jXFNEjAvEfqBW54j1m98S3azXLKkcYxHEvRf8A69YwsyDkPg+1ckq3vaLQ0TfUgopzxGJ9pOc8g02tk7q5YZwc1bMqDHzDmqbLuG0dyBStA6jOOB6UMC6GVuhBpazc4qRZnXvn60guXqKrrdD+JfyqVZUbowoGPooooAKKKKACiiigCvOp35A4xUmnzGG6Xn5W+U1JUMkPO5OvpTTE0dDRVayuRcQjP314YVZrQzCsbVZ98wiU8J1+tas8nkwPJ/dGa5tmLMWJyScmkyoo0/D6v/aRlUkeWh5HqeK6YtJKeSzGuY0i7NokhMe7e3XPpW3FrMeOQV/CsnON7AaKW3dj+AqUQRj+GqA1iDHLCpU1a1f+MCjmXcC15Mf92jyI/SozewlSVcE/Ws281YW+Rks3XApuSWrA1yoWNtoxxVEgjrXOT+KrtM+Un4MhqNPGU/Se1jb3HFZe3hcLnUpI0bBkJBFaiarGQN6MD3xXB/8ACUgN8qbkx/FwasweKbOQgSo8Z9cZFUq0O4XO5XULdv48fUVMrx3EeRhl9xXLQXttcqDFOjfjWrp935T+W5+Ruh9DWidwIrwW/m/uPxHamw2c033VwPU0XcBgnP8AdJypp6X9wgxuBHuKALkWlxrzIxY+g6V3WkIs3hhrcDhUeMD8/wDGvP11WXoY1J9q7nwfPJNYTrKm0iTIHsR/9aqjuKWxzDQxyLhkBB9q56/hkh86OMZfB25/SuomXyriSP8AuuR+tUrqyW5IbO1hxmpaGcELfWM4yR+IqzHZ6mfvzov4ZrpLjT3gTfvBHeofIdcMMHHNZqnbqwsZyaRqzrlJIyPdcUV0MOqRMMSDafbpRVci7gcvdW63Nu0Z69j6GuYkRo5GRhhgcGuyMB7GsnVdOaRfORf3gHI9RWNanzK6E0YNe0/CeEQ+E55z/wAtLlj+AAFeLdK9w8FD7F8MVm6fuppf1b/Cpwvx3JPF76Y3GoXMx6ySu/5kmq9Gc80VzsAooopAFFFFAEw1a+s7fyoLqaNOflViAKzZJZJm3SOzn1Y5q5t3/LjrSfYJAwZB0OeatNgeseErFtL8LW0cwVXfMr47A88/hivMvFGsf21rs1wpPkr+7iH+yP8AHrXTDxTcN4XuLJ4j9sYGOMr0Ckcn+dcSLC4/uY/Gt6k04qKG0VqKtf2fcf3R+dKNOuD1AH41jYViG2uJbS5juIHKSxncrDsa9L0T4h2lzCsOqr5MuMGQDKt/hXno0uXuyinf2U/eQVcJyhsOx6VfXHhnUGVnvbVlHIVxnFY+s23hGTSJXinhW5UHY0A6ntxXL2Hhq81O5FvaDzJdpbAHYDJqm2mSKSDnIq5VW1qhFGirRs2Xru/Ku+uPhnI/gey1O1DHUAhlmi/voeRj3AxWUYuV7dAKvw21FhNd6azEqy+dGPQjg/0qPxb4Q1CXVp9QsYvOinO9lX7ynvXKW63NnOJreWSKVejLwRXSWHjTW7Rh57i5jHUOvP51pGpFx5ZAcpdWN1ZNtubeSI/7a4qOC3mupRFBE8shGdqLk12GteLpNYs57WaxiEcgGwn7yH1BpfhoVtfHViWPEivH+an/AAqLRckkwOQuLW5spQlxDJDJjcA6lTj1r03w7q6Xvg4wXU6zSlZI5PNYDjPQ/gab8YrL/ie6fc9Fe3KceoY/415yIQAQGbB6jNU37KTQJlbU9LSy1Ca3jkDqjfKQc5HUVXigkXdxke1aBgQnvUiqFGAKwlZgangrXLbQtSna8LJHNGF3gfdIOa7/AP4T7QP+fs/98mvK3jRx8yiqz2ndD+Bq4VZQVkB64PG/h2SRR9sILHHKnFdKksTxh0dShGQwPGK+dmQqcMuK0k8QanFpDaYlywt2P4gegPpWkcT/ADID2GTxVo8cjRm6BKnB2jIpv/CW6P8A8/J/75NeIJLIn3XYfjUq31wvSU/jS+tPsM9q/wCEt0f/AJ+T/wB8mj/hLdG/5+T/AN8mvGRqdyO6n6ioZLmaVtzOfwp/WvID2z/hLdH/AOfk/wDfJo/4S3R/+fk/98mvE0u50+7K1TrqdwvUqfqKPrXkB7L/AMJbo/8Az8n/AL5Nc74r16z1SC3t7Ri+197NjAHGMfrXn39rTf3U/KkOq3B6bR+FJ4i6sBtFFbqoP1FRtawN1iX8qxTqN0f+WmPoKdHqdwjAs24dway54juaL6ZbP0Ur9DVaTRz1jk/AimT6tI/ES7B6nrVNrmZusrH8aTcewBPbSW7ASAc9CDUVKWZupJ+tJWYiSF0R8sM+lWhcx+pqjRQnYC/9pj/vVKL5c5L7jjGTzWXRT5mBrjVAO4pf7UX2rHop87A1jeC4kUZGRnpTqzbT/j5X6GtKu+hfkVy47EN0xW3Yg4PGKrx6jPGMFg4/2qlvTiAD1NZ/WrqTUFdib1NFZ0ZQSQpPbNSKQ33WB/GsugHHSuRYl9UK5qkEdQRSVBayz/3sp/tc1ZLKeq4PtW8a0ZDugDsvRjTvPk/vU3aD0YfjRsb0rRO+wx/2iT+9ThdMOoBqHBHakwfSmMti6Q9QRTxPGf4qpiNz0U04QSH+GgC6CCMg5paqDZbfNLIB7ZqGbVI8ERqxPrQFy60jW8qyRnDd/ete1ukuY8jhh1WuYiuxPwxw3oasxyPE4dDgiqTsJq50Vwoa3kU9Cprmq0X1VngZNgDEYzWdTbBKxE2oSWxMYQEA8E0n9sS/881pl5GWj3D+HqKoV51fmjMlml/bEn/PJfzoOsS9o1rNorLnkK5of2vP2VRR/a8/dVrPopc0u4F/+1pv7iflUM941wu1o0HuBzVaihybAKKKKQCqzKcqSD7GrMeo3kX3LmQf8CqrRQm1sBpDX9UwAbt2A6Z5rqtCuZ7vTBNcPudmODjsK4Oug0bX4rG0FtPGxUElWX3rejUtL3mNM7W3nWBy5jDntntXZeCL57i7vI3AHyKwA+p/xrzOHxBp0xx52w/7QxXceA7y3fWmSKRWLwt0OehBrvhJN6MHsVtftpE8QXoDlVMm4c+ozVJfPT7s7VueLNsXiCTJALorfpj+lYjOqqWzxTe41sI/nSjbJKSvpQyZjKrxxWdda3b2jbZD8390cmoovEthI2GLp7kVDnFO1wKr3RttQkU/cJ5HoaKoXU6vdSOzDLNnOeKKd0B0NIQGGDS0hOFJpgYt9paTkvHhZP0NepQqbD4RFW4ZdPbP1IP+NeeGvRvEX7j4VzDp/oca/ntqVFK8l2JkeFUUVNbrGzHzPwrzkIhAJ6CpFhkbopq6HhToVFO86P8Avir5UOxTFpIeuBTvsb/3hVrzY/74pwIYZByKfKh2Kgsj/fpwt5VHyy1aop8qCxUMVx/f/WmGG49SfxqZ7tVJABJFRG8bsoqXYWgsazxtnaT9TUoll7xfrUcdxLI2FUGrGJCOoBpryGKjFhypWnVGFlH/AC0B/ClHmhgQ4BBz0qgPZPAPhz+ydL+2XCYu7oA4PVE7D+tcT490L+yNcaeJcW13l1x0DfxD+v412nw5ur290a5uL24eb99sQuegAGf51514g16+1a6uIZ7hpLZZ2aND/CMnGPwrpny+zQluZ2mwwXGp20NxKkULSDzHY4AXv+le96bqNjqNl52nyrNAhKAp0yO1fPBiQ9VFekfCu/WOS90wkAMBMg9+h/pU0JWdu4M5DxLf6XfazJPp0LQBifMRsfezyR6VjsyqMsQBW74z0ePTPFV4gjASVvOT6Nz/ADzWEUU9VFZTvzO40RmaE9s/hUmm3g07WbK/jjYeRMrn6A8/pSgAdAKWos9wPU/ihpo1TwtDqNuN5tWEmR3jYcn+RrxavbfAetwaxor6Je4aWJCgVv8AlpGf8OlcL4k8CXGkaqsUCu9rPIFhkAyBk8A1tWg52nEk4yitXV/D99o169rdR7XXoezD1FZbKVOGGDXK4taMBK0NJ0TUNcuhb2Fu0rd2/hX6mr/hPwvc+J9UEEeUt4+ZpcfdHoPc17CH0/wzYiw0yJEEY+d/6k9zWtOlze9LYaTexyenfCezhiEmt32T3jj4H51sReEPBFoNosVlI7sS1Zlz4iFyWaHzLl+xHSs1fEs0cu25s9gzyAeQK6lTS2iaKn3Omk8KeCLkbTp6R57rkVjaj8ItHvUZ9I1B4X7I53L/AI1pxSpNEskbbkYZBqVHeNgyMVI7g1DUHvEPZroeP+IfBms+G3JvLYtBniePlT/hXP19K2+rLNEbbUI1mhcYO4Z49xXnvjn4ax20D6voI3W33pIBztHqvt7VhUw+nNAhprc8sooIwcGiuYQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhqoR5pJAWLIf6R9Aa0ao2I/eOfQVer1C47FG+bLIvpzVWpJ38yZm7ZwKjrzq0+abIe4UUUVkBLHcNGMcEVZjuEfjofeqIBPQV1ngLw5b67rynUJo4rK3IeQSMFMh7KM1UE5OyEPu/C9/Z+GbbW5kxDPJtCkchezH681iV9K6zpVtqmh3GmyBUilj2J6Kf4SPocV84XVtLZXc1rMu2WJyjD3BrprUvZtWAhp6SunuPQ0yisVOS2YXNDzFEe/Py4zVR7h34X5R+tRdsZOPSitZ12/hKcjOnVllIYk+hNR1oTxeYnH3h0rPropT54iHRnEqn3rTDFevIrKrTjbfGreoqKsnBqSC9iYEEZFFRDKnI/KpFYMMitIVFNaFp3Fqu0KZwVGOxqxSEAjBp1IKaswauVTaoehIpv2Mf3jVkgr16etFefKDi7Mz2Kv2Mf3qPsf+1VqipsgKhsz2YUxraQdAD9KvUUWQGYVKnBBFJWmVDDBANQPaqeVOKVgKdFSPC6dRkeoqOkMKKKKACuz+Fk5h8fWK5OJFkTH/ASf6VxldJ4Bk8nx3o7dMzhfzBH9auk7TXqB1vxmMtv4i06aKRk32pHynHIY/41wMWv6lEu0XBYf7QzXpHxvi/e6NN6iVf/AEE15JWteTjVdmCNE3f2hzJI37xjk5p4IPQ1l0oZh0JFYcwjUycYzxRWcs0o6MaKdwPS6CMjFFMlYquRXqFkEibDjNeg+OW8n4ZyL/0yhX9Vrzwkk816B8Rzs+HbL/tQj9RQ/gkJnh26jcKbRXnWHyodu9qN3tTaKLByodu9qfHcSR/d6VFRQFkWftsvt+VH2qZu+B7VXUZp9DYmwoooqSRySNGcqcVKbuQjAwKgop3YEwupR/FmnC8cdQDVerWm2T6lqdrZRjLzyrGPxNNN7Bc9r8Pt/YfwyF3INr/ZnuD9WyR/SvDmnkZixc5PNez/ABMvE0vwZFp0J2+eywqB/cXk/wAhXilb4l2aj2AlFxKP4vzrY8Na9JpHiOyvGbESyBZMd0PBrCorBSad0B7H8VdMa40i21e35NudshHdG6H8/wCdeR/a5Pb8q9o8E6hD4q8Evpt2d8kSG2lB6lcfKfy/lXjmq6dNpGqXNhOMSQOV+o7H8RW9fW01swuR/a5PanJcM+cuqn6VFDA0vOcD1q1HbIhz1PvWKuxq4tpfXdhdR3NrdbJYzlWFex+EfGsPiTZY3kAW9A3ZAyjY7+1ePsFVc7M+wFPsfEF3o9w01lmKZkKbiOQD6VtTm4PyHa57t4m0zStT05o9SkjhwMpKzAFD7V4de2EUd/JbxyJcYbaskfR/TFUptWuL6YzX1zNNJn+JsitrwWg1Txlp1uF/drIZWz3CjP8AQVU5qo0rBax6npWnReEvC8NrEoF1KN0jdyx6/l0rOYbwQ3zbuue9amvTGTUSmeI1A/rWXWkt7LoaQVkMjhihXbHGqj0AxWT4ktVm00zBfnhYNkdcdDWzTJY1mheNhlWUg0k7O5Zl+G5TJpAUnJSRlx6DOR/OteuR0G9FnqklnM2wMSh3f3x0rrqclqNqzCtPSdR+zSeRMcwPwQe1ZlFJOzuiWrqx558TfCI8P6wL60TFheElQOkb9Sv07iuEr6M1fTk8UeCruwkG6eJd0Z7hl5X/AArwJLWNZFLqWAPK5xn2rmr07SutmYPTQoDk4HWp5bG6ggSeW2ljic4V3UgMfave/A+n+Er7TluNN0+FbhABKsg3Oh/HtWj4t8Hx+JoLdVnEJt9xRduVJOP8KtYRuN0xXPm4Ru3RTTxbyH+GvQNW8Fapo2WltPMhH/LSIbhWF5af3R+VYui1uOxzv2WT2pfsj+oroPLj/urSeVEf4VpezCxg/ZH9RR9jkPTBrfESDoopwUDoBT9mFjnxYTnotO/s65/ufrW/RT9mh2Of/s66/wCef60f2ddf88/1roKKPZoLHPf2fdf88j+dNazuB1iauhaQJ1z+AqM3Kj+FvypciXULGTZxvHvDqVJx1qxI22Nm9BUs0gkkBAI471XuFd4iiDLGu6EvcuylsZefWnhHYZCsR7ClaCVTgofwojmkhOY3K1g6EZaxZAeTJ/zzb8qswWpK7nQ59CKfFqc7OqEoM8ZxV79/IMbh+BrGVJxeoFUKF4AAqWA4njwcfOP5082svsfxoW3lVg23oc1NmKx7R8T5ZIvBqPE7I32iPlTg9DXiTu8rl3Ysx5LE5Jr274iobrwBvUZIeJ/8/nXiRikHVDXRir84DKKUqR1BpK5gCiiigAqldRbW3joetXaa6h0KnvV058srgZlXLR8qUPbkVUYFWIPUUsbmOQMO1dlSPNGwzTpO+R1pQcjIorhTcXdCHK276+lOqLHccGnq27613U6qmvM0TuOqMjafY1JTZPuj606kU4u4NaDaKKK88zCiiigAooooAKY0SN1UU+igCA2sfvT1gjX+HP1qSiiwCbVHYVreGGEfirSnwOLqP/0IVlVf0Ntuv6c3pcx/+hCqj8SA9L+MkStp+lOQDiVx+YH+FeReUn9wV7J8YFzomnt6XJ/9BNePVriV+8YDPJj/ALgo8pB/CKfRWACBQOgFFLRQB3dIQCMGm+anrS+Yv94V6ZZC0ZU+or0D4jQtP4EaNOu+I4+lcMGU9xXonjUZ8JLj+/HTteLQnufPxGKSrF2ALmYDoHP86ihhkuJkhiUtI7BVUdzXneQ0xlFdF/whOtY/1Mf/AH3R/wAITrX/ADyj/wC+6rkl2HdHO0V0X/CE61/zyj/77o/4QnWv+eUf/fdHJLsF0c8DinBhW/8A8ITrX/PKP/vuj/hCda/55R/990ezl2E7MwaK3v8AhCda/wCeUf8A33Ve+8Larp9o9zPCvlJyxVs4HrSdOXYmxk0UzJ9afEodsM4UepqLD5Qrv/hTo5vNfl1KRcxWafKT/fbgfpmuOit4cgKd7fWvbNHt4vBngdp5lCyhDNIPVz0X+QrooU/e5n0JaOB+J+ovqfiYWcXMVkmz23nk/wBB+FcYLNj1YCtGed7m4knlbdJIxdj6k1HUz96TkyrFdbNAOSTTvssWPu1NTWdV6sB+NTZBY3vBWrr4e1+OUki2n/dzDPGD0P4Gut+JnhqO8hj1yBNzRqEm2917N+FeaqyuMqQR7V6z4D12LWdIfRr4h5ok2gN/y0j6fpXRStJcjE0ePm1AHyOy/jQZzDhZVP8AvDvXQ+K9Ebw3qzwOT9nk+aBz3X0+ormp7uNl2hd/PesJLldikW1YOoZTkGqF84aUAEHAo+2uOFVQPSqpOTmpbGFdr8K8f8JtHnr5EmPyFcVXR+A74af4002VjhHkMTH/AHhj+ZFVTdpoHser6rn+1LjP96qdaeuwmPUS/aRQf6VmV0S3ZpHYKKKKQzmPEmksZPt8Cbhj98o68dGFNi8TtHZqvlh5AuNxbr9a6nGRg1UOmWJl8020W4c521amrWkgMCLxJewyRveW6+Q56qpBA9R611COsiK6EFWGQR3Fctqt3Lq1ylhaQZRH+9+Yz7Culs7cWlnDbg7hGgXPriiaVkBveHZMXckfZkz+VeQa5YRWXiDUIFQAJcOB9M1654fBOok+iH+lcV8TNGksdWTVIEBguuJOcbZB/iKmcb079jGXxHMaTql1o18l3Zvsdeo7MPQ1q3PjLVX1qfULW4eASEHys5UAADGK5Jr3Y20oCfY037f/ANM/1rBTaVkwsesaP8TI5dsOr24XPBljGR+IrR1bwdofim1+16dKkUrDIkhPyk+4rxb7f/0z/WtDSvFWoaLcCaxkKHPzITlWHuK1VZNWnqLlLGteF73Q7rybxHUE/LIOVb6Gs0WqDu3517JoPifR/HWntY3sKJdbfngc9fdTXn/jHwxd+F7nzVUzafIfkl7qfRqmdJJc0dUI50QAdGb86eEx/Efzqob89lH4003jnpgVjdIZfoqgt3IDzgipheJ3U0+ZBcmJfPCgj60bpP7g/Ooftif3TTTe+ifrSuguTEy9kX86cpbHzIPwNVjet2UU1tQCLl157YouguLctmRQVIwKqyT+TJjnkU9ZjcMZCMDoKrXY/eKfaul6UhvYf9qXupqvc+W43pw3cUyisYzadyLkI6itkVlBMMD29Kt/az/drSc4u1hpl1ZnXo1SrdH+JfyrN+1/7H60huzjhQKzuh3PfdRYan8LPNHObJJPxXBP8jXjodT0YGvV/hzOutfDn7FIclPNtm+hyR+jV4VPHJbXEsDkh43KMPcHFa1ndRkSmb52nrimGKJuqrWB5j/32/Ol86T++351hcdzaa0jPTIqnIoRyoOcd6pefL/z0b86b5jn+I1LVxF2iqW9v7xpC5/vGlygJdLiYn1GahpWYs2TQBk4ruj7sVcC/bkmBc1LVJXZQACcCnidx1wa4pK7bAtUh4+b0qNJ1brwakP3T9KUW00wJaZJ2HvTx0pj/eH0ruqO0GaPYSiiivPMwooooAKKKKACiiigAooooAKu6P8A8huw/wCvmP8A9CFUqv6Gu7X9OX1uo/8A0IU47oD1T4v/APIv2P8A19f+ymvHK9h+MDY0TT19bkn/AMdNePVvif4gBRRRXOAUUUUAdfRRRXpFhXp3jL5vByt7xGvMT0r0/wAU/P4GDf7ER/UVUdmJ7o8ElbdM7erE1p+F1H/CT2H/AF0/oagm0u589wiZXPBzWn4a025j8R2LsgwJOefY1wRhLm2Fqei6jdmxsXuAoO0rwfcgf1pG1CBraaWCWOQxLkjdgD60zXbeWTSJkSJpGJX5VGSfmFZV7G9417LbW0iILJoiCm0uxOQAPb+tegIu3Orvbtdfu1xAITnPXecH8qvw3lvOHMUyOE+9g9Kwr62mYahiB3DJbYAH3sHkUt7BLqD3j2cLxKbXy/mXbvbdnH5ZH40AbSX9pJHJIlxGUjGXOegpDqVkFU/aY8MSBz1x6VgS2rT2l26C5eT7KY9rRBR1HHHU1qNaD+2bJhCPKS3cZ28A5WgDQF1AY1kEq7WbYpz1OcYqproB0DUM/wDPu/8AI1QhtnHiBrXH+jQubtf95hgD89xrQ1z/AJAOof8AXu//AKCamWwI8YX7opaRfuirFlZz6hew2dsheaZgqKPWvPNDrvhr4cOs6+LyZCbSyIds9Gf+Ef1rZ+LHiPzrqLQ7Z/kh/eT4PVuw/Ac/jXWubL4deB8Da0yrx6yzH+n9BXhN1cy3l1LczuXllYu7HuTXTP8Adw5OrJWruRh2HRj+dPE8o/jb86jormKJDNIern86jJJ6miigByuy/dYj6Vb0zVbrSdSgv7WQrNE24c8H1B9jVKihOwHvdxDpvxH8IK8ZVZsZU94ZR2Pt/SvDdQ0+50u/msruMxzxNtYH+Y9q2fB/iq48L6qJRl7SUhZ4vUeo9xXqPivwzZeN9Gi1PTHQ3YTdDIOkg/un/PFdLSrRut0TseGUVLcW81pcSW9xG0csbbWRhgg1FXMUFOR2jkWRCQ6kMpHYim0UAfQFlfJ4p8J2upRYM6LiRR1DDhh/Ws2uB8AeLT4c1QwXLE6fckCQf3D2b/GvVNT05dovbQiS3kG75eQM9x7V1p88eZbji7aGTRRRSNArG1+6lSKK0gz5s7bePTpWzWJqEUk3iKwCqdqDezY44zxTjuBoafYRafbLGgy3V37sat0VYs7SS8uBEg4/iPoKWrYGnpBSx0+71GY4jRCcn0AyayLCeLx94LurK5I+1oSM+jdUb+n51T+IOuRWenpoNm3zMAZyD0XsPqa5Hwf4gXQfEETyyBbef91KCex6H8DVuai1HoYPXU5W40ua3nkhfiSNirKexFVZIZIvvLx616X8TtFe01CPVLRMx3fDkdA47/iP5VwJhmkTbJIMHsBXNOHK7DTM6irv2Af3/wBKQWB7v+lRZjuQW1zNZ3EdxbyNHLGdyupwQa9v8KeI7Pxxoc2m6lGjXSptmjP8Y/vCvGfsA/vmr+jzTaJqkF/aysJYmzjsw7g+xrWlNwfkJ6h4s8Nz+GdaktHy0DfPBJ/eX/EVhV7x4p0y28a+DUu7UAzInnQHuD/Ev8xXiLWMgPBBpVafLLTYEyrRk+tTG1mH8GfpUZRl6qR+FZWGJuNLupuKKVkKyHbqqMWkkx1b0q1g+lKgKMTtHNVBRvqKyJI02IF9KguxwhqRptv8DVWmmMuBjAFdU5x5WkxtqxFRRRXKQFFFFABRRRQB6p8F9UEd7qOlu3+tUTxj3HB/Qj8q5f4j6UdK8a3oC4iuSLhP+Bdf1zWZ4U1g6F4msdQzhEkCye6Hg/oa9S+Luii/0K21m3AZrU4cjvG3f8Dj866F79K3YR4pRRRXOMKKKKAEJAHNRsxb6UrAlqTYfSuiEYRV2wEAycCpQMDihV2ivVPhbpvhvVNPvLa6iWXUpFKusv8AzzPdKTftZcqA8sorp/Gfg668K6iRhpLGU5hmx/46feuYrGUXF2YBT0kZeM8GmU5BmRR6miKu0Bo0xsbvfFPqM/6w/hXTX+BmktgooorhMwooooAKKKKACiiigAooooAK1/Csfm+LNJT1uo/55rIrpPAMPn+N9MGPuyF/yUmrgryQHa/GKTFlpUfrJI35Af415NXpnximzf6XBn7sTv8AmQP6V5nWmIf7xgFFFFYAFFFFAHX06ON5W2xozH0Aro7fw9AmDM7SH0HArVit4YF2xRqo9hXpFnN2+gXMozKREPTqa9Cv4objwmltI4YeVGCM8nGKxapXuoJaREqN7DtniqTsKVupBLpOnQRNJImFUZJLVgWNylpqcNwQTGj5x3xSXd/PevmVvl7KOgqsQR1BFSM7r/hJdK/5+P8Ax01Lb6hZajvFrMGdRkjGDXn2B6VJDNJbTLLCxR1OQRVcwrHb319badbG4u5lijHc1k/8JjoX/P6P++TXA+I7+91HUibqTKKP3aLwoFY+yuaVezshWR6t/wAJjoX/AD+j/vk0v/CY6H/z+j/vk15Rso2fSp+sMdkeoQeJ/Dtu8jpd/NIcsxBJNVdd8X6VLot1DbTmWaWMxqoUjrxmvOdn0oEZJwBk+1DrthZDVHAFezfDnwmmi2Da7qahLiRCUD8eVH6n3NYfw78CteTJrGqREWyHMETD/WH+8fatH4jeIbq9jbRtLI8gcXEgONx/uj2q6UOVc7Bu+iOO8c+Kn8S6yTExFjbkrAvr6sfrXLVNLaTw/wCsjYe9RbTXPOTbux6ISil2mjaam4XQlFO2mjb70XC6G0U7b70bfei4XQ2ut8FeNZ/DN35MxaXTpT+8j7of7y1ym33o2+9VGbi7oLo9v8U+EtP8aaamqaXLGLspmOVeko9G968WvbK5067ktbuFopozhlYV0HhPxhe+F7nCkzWTn95AT+o9DXqV9pegfEXSFuYJAJwPllXh4z6MK6Go1leO5KdjwWitzxB4X1Hw5dGK8iJjJ+SZfuv/AIH2rG2iuZ6OzK5kMrtvBvj+48P7bK+DXGnE8Dq0f09vauM2ik2+9OM3F3QXTPoOKHTNetvtmkXUbBuSoPT6jtVKfT7q3OHhbHqORXidjqF7pk4msrmSCQd0bFdnp/xY1q1UJeQQXajuRtb9K6FVhLfQak0dgVI6gj8KQW7yTKyoxIBGAKyU+L1my5l0Zt3+zIP8K2dO+KHh25CiYS2jnrvTIH4iqXI/tD532NC10S4mIaX91H3J61j+J/HOneGrV7DSCk9+RguDlYz6k9z7VsamNN8XWnk2XiJoVIwVglA3fUHmuF1D4RanGWeyvobgdcSAqT/OqkpJe4vmRzX3OJl1WW4laa4LSTOcu5PJNQSS28rbmVg3fFat94L8Qadkz6bMVH8UY3j9KxZImibbJGyMOzDBrjk2twuj2jw7dQeNfA0umSuGubdRHk9QR9xv6V5hPDJbXEkEq7ZI2Ksp7EVZ8Ea+fD3iOGZ2xbTfupx/snv+Brpfih4bkh1FNZsoneG4X995YztYfxcdiP5Vs5c8ObqhXONorMEsg6OfzpwuZR/F+lY86Hc0aKynkkkOS5pA8q9HP50cyHoew/C7VS0d1pUjZC/vogfTow/lXIeL9MGleJruBVxE7ebGPZuf55qn4D1Waz8Z6dub5JX8lvowx/PFdX8Xomt7nTb1AP3ivExx6YI/ma6L81K/YXU4SggHqKzTezHuPyppupj/ABmsLjsaRjQ9VH5VG1tE38OPpVNbiYHJbPsale8YjCjFK6FoPazH8LfnVeSFouuMe1NMjnqxppJPU1DaEFNKKeoFOopCIzCh7Un2dPepaKdwIfs6+po+zr6mpqKLsCH7OvqaPs6+pqaii7Ai+zp717j4C1ODxN4Nk0m8PmSQRm3lU9WjI+U/lx+FeJ1ueFPEEnhzXYbwZMJ+SZB/Eh6/iOta0anJLXYDO13QJND1m50+bOYm+Vv7y9j+VZpth2avcfH/AIci8S6JFrGm4kuIY96lf+WsZ5x9e9eK9Dg0VYOEvICubY9mpv2dvUVaorK7AqeQ/pSeU4/hq5RRcClsYfwmp7C9utMvYry0kaKeJtysKmoxTUrAe4eH9e0r4ieH5LDUIkFyFxNCfX++v+eK8k8YeD7zwrqJRwZbOQ/uZwOCPQ+hqnp9/c6Xex3lnKYpozlWX+Ve06Dr+lePtFfT9QiQXW3EsJ7/AO0v+eK6oyVZWe4j5+wfSpYMK+5geOnFdh4u8G3Xhi7LAGWxc/u5sdPZvQ1zNYXdOWqGiNrhv4Yz+NJGXaRmYYyKloonVlJWY22wooorIQUUUUAFFFFABRRRQAUUUUAFdz8KbbzvF5mxxBbu34nA/qa4avVvg9ZYj1O+I6lIVP0yT/MVtQV6iAwvitc+d4vEQPEFui/icn+tcNW74yvPt/jDU5wcr5xRT7L8v9Kwqmq7zbAKKKKzAKKKKAPbDwCayJdeW1ufKuIGRD0ccg1sVn3+nR3UbKy7lP5ivUVupNXnSvEku51bTzLFKApx82exPb3rJh0241C4MtzuhhUERp3+tUZ4bm0igsGbMMl3FtJ9N2SP0rY1PVltYyc8n7qjqaFu0jOUotKcvuLUWnWNkm8ovHV3rL1XVbaWFreBFfPV8cD6VrWIafTojcqCzDLAio7uHTrSIyzQxgdht5NI6Iu6ucpEnmSon95gKfNEqTyRLkOh6HuPUU2SQG4aWNQg3blUdqt36iZYb+LqpAkFOKT0Mas5Qaa2Oe1OxlumjaBN7jgqOpqvP4fu7a1aeZokIXcULfNituC78u9uYoxgR/J5g6g+gpsiJIrq4L7/ALxY5JrB0oSvIqSnzabHI1PFaTzn5I2x6ngV0MdnbxfciUH1xU4HYCs1h+7NOUx4NF7zv+C13vg/wTHdul5cw7LRTlQRzJ/9ar/hnwa1wUvdTQrD1SE9W9z7Vc8T+LktY207SmG8Da8q9EHotdMKUYa2F5Id4r8UpZRnTNMYCQDbI69EHoPesPT9Qt78CG4jQTe44auaJJJJJJPUmljLCRSmd2RjHrTbuUlY6i60GzuAdq+WT6dPyrnrzwbM2WjtjIv9+Ku0XOxd3XHNb2nj/Qo/x/nS5VLcGeLzeDdTHMUEh9mFU38M60hwdPm+oFe3CWC4vrm1UFZYAhYnodwOP5UkkTR/eHHrUPDQexB4f/wjur/9A+b8qP8AhHdX/wCgfN+Ve0vGh68VE0BHQio+qruB43/wjur/APQPm/Kj/hHdX/6B835V7AylfvDFJnAzS+rruI8g/wCEd1f/AKB835Uf8I7q/wD0D5vyr1/NQW10l0kjICBHI0Zz6g4NH1ddwPJ/+Ed1f/oHzflWho8HibQr1bqwtriNx1GPlYehHevT80daaoJO6YCaP4u0nxRA2lazbpb3h+V4Jh8rH2JrmPE/wtmty91obGWLqbdj8w/3T3rlfGnyeKpivyny0OR64rY8NfErUtHCW99m8tBwNx+dR7HvSdSMny1PvGcXPBLbTNDPG8cinDI4wRUde7lfCnj60/5ZvPj/AHJUrh9d+FmpWJaXTJBeQjnYeHH9DWc6ElrHVAcBRUtxaz2kxhuYZIZB1V1INRVgAhANJtp1FO47sRS6HKMVPqDitiw8Va9puPs2pzqo/hZtw/I1kUU1JrYLnoFh8WdXgAW8toLle5xtP6VuR/EHwrq6iPVdLMZPUtGHH515HRWirzW+oj2fTtA8CatqEE+nvE0qtvECuQGxzyprZOq3TX3lkAx79nlFeMZxivBrK8n0+9iu7WQxzRMGRh2Nd5/wtW68jd/Zdt9sxjzucZ9cVrCtG3YaaW5geO9PttM8YXtvaALEdr7B0UsMkVzdT3t5PqF7Nd3UhknlYs7Huagrmk022hBRRUsFvLcybIkLN/KklcB9jdGy1C2u1GTDKsgHrg5rqPGHjj/hKrOC3NiIBDJvDb8k8YxWfaeHwMNdPn/ZWtAaNYcEwYreFOpytdx8rOOwPSlrtDpVgR/qU/Kq0nh+zkbKlk9gaTw8gscpRW7d+HTEheGUEDs/+NZP2O42lhEWUHBK81nKnKO6CxBRSlWX7ykfUUlQIKKKKACiiigAooooAKKKKACilAJ6An6VItrO/wB2GQ/8BNOwHonw28YiykXRNQkxbyH/AEeRjwjH+E+xrI+JGnaXYeIidOmXzJQWngXpG3/1/SuV+xXSkHyXB7etWYtKvbpzLMCgPLSSGtuaUocjQ0mUI43lcJGpZj0ArRfRpYbfzZWyQeUTkj61ft44rQbLf7x4aRup/wAK1YYoRbHawbJ5Y9zT9koxbe5rTpptJnKtYfJuRj0yQw6VVkieJ9rqQa6+6tIZIWVjhimAwHNYckDRwCK65iJxHKP4D/hWUEpe69JG9fDpLmprQyaKnNlcBiBEzY7qMimm2nXrDIP+AmpcWjiIqns7y4sLuO6tZWimjOVdTyKhKsvVSPqKSlsB7d4Y8W6f4y05tL1SOMXZXa8TfdlHqvv7VwnjPwJc+HpWu7QNNpzH73Uxex9veuPilkglSWJ2SRDlWU4INeveDviBb6xCula4UFww2LI/3ZfY+hrqjONVcs9+4Hj1Fek+NPhw9oZNR0SMvB96S3HJT3X1HtXmxBBwRgisJ05QdmAUUUVABRRRQAUUVJFbyztiKNnPsKNwI6K0U0S9YZKKv1ahtDvV6Kp+jVfs5dgszOoqxLY3UP34HA9QM1XIwcGpaa3AK9y8IRr4c+G4vJRtYxPdNn3HH6AV45ommyaxrVpYRg5mkCk+i9z+Wa9Z+J+ox6X4Uh0uAhWuWEYUdo15P9BXRQ91SmB4zJI0sjyOcs7Fifc02iiuYAooooAKKKKAPaZJVVGw6g44yaw5tbubK5AuYleBjw6+lYeWY4yxNW0uj9n+z3MW9O2eCBXqwi5OyRFZte8mXdTuY7y70twV2l3kRd2MkLxmn2ulLNd/ab2dHYciNW4FYd1BH9pso4ZN/wC8bYO4BU5BrQubhbBBa2o33Dfeb0pRTu0iKkotRk1r2OpEsQGBIgx2zTJktbgASiNwOmSK46RZCwGSSAATnqac8aW8iC4kdUYA7gOKVuxtzqMU5FzVAtncRTCJHt87WTHFWL2eyi05vsUStPNhY07En19h1qoJIrhDZkYiOdrE85rOS3lk1KMAnNvHtwvdjn+mPzq6sJQST3MKLu2nsW4hY6XEFb/SLg/M3fLHr+tNmupJ4j5kaRgn5VA5A9atfYpFXcVjT8garlACcjmp0SshwjzS5m7lUIxGQDj1rpPC1osF+l7dwq8I4UMM4P8AeH0rLtZl+2i1kAMbxgj611UJUxLtGBjGPSi1jWNRSbiP8V6/fSQm3sEZLYjDyr94+3sK4Hk811ur6kNPtvlG6V+FWufjR7W1e9vGxwdkQ4GT7U7N6smVVRfKldlKtLQ7cT6ipbkRjfj37VzgvJQeSD9RVyy1mWyuFlVASOCPUVNjY9DrdsP+PKP6H+dcZYeIrG9ABk8mT+6/H612OmyI9jHtYHGehpx3Eznb5NNbXtYN/IEIt4jHlsfwtyPfpVF3urmS3j1FoVH2CNk+0uUG453EY/i6V2zwQStueKNj1yQDSyQwzACSNHx03AHFWScZeLG8cEF1JC0sdirmaV2CuTnlB3bj+VP0u0Go6hpzXDs5GmRy8k4L7uprsHhhkKl40Yr93IHFKscaEFVUEDaMDt6UAcz4itv3tmryxAZY+XMSI5OO57EdqwnJlh01dgS0YSj/AEhzsLhsAbu4xnFehyRxTLtkRXX0YZpGhheMRtGhQdFIGKAPP44QGsIr24SSzPmlWDHYWBG0EnrgZxVe38ryYI3cixa+mDkng9duT6Zr0Ge0tWh2uiBB0GBj8qy7yyS5txFHIIcNu+VQQfqDSsFjkHk2x3CW0gNr9vCsWY7QuwcE+ma2NFRkW5AlieLzAUWJiVTjkAmrtvpcdhC6ZMvmsXdmA5P0/CpUWOJdqBVHoOKliPMPG3/I0zf9ck/lXP1u+MZo5vFFwY3DBURSR6gc1hV51T4mMkhmlt5VlhkaORTkMpwRXcaH8UdV08LFqCi9hHG4nDj8e/41wdGCQTjgdaIzlD4WB7nB4i8IeL4RDdiESH/lncqFYH2NZWq/CaxuAZdKvGgJ5CP86/n1ryHpWzpfirWtHI+x38qoP4GO5fyNbe3jL+IgL+p/D/xDpmSbP7RGP44Du/TrXNzQS27lJonjYdnUg/rXpGm/F66TC6lYRyju8J2n8jXRxeNfB2uoI70RoT1W5i/rzR7OlL4ZAeIUV7fJ4G8HayN9m0ak97aYfyrHvPg/Ecmz1R19FlQH9Rik8NPpqB5RRXd3Xwo16HJhltZx7MVP6isi48A+JrfO7THcesbBv61m6U1ugOborTl8O61B/rNKu1/7ZE1Texu4/v2s6/70ZH9Kjla6AQUU4xuvVGH1FJg+hpAJ3rrPD+mSohmlwqOo2c8muTxXXeHdS86BbZyPNTAGepWt6LSuhx3NmUx2EX2hoZJwpUEKpbaCeWwOTj0qxFcyaxoTXTWbwMkrBAyFS6A4DYPIBHOKnglMMofGR3FO1a9ZrJo7cH5h8x6ECutSXLqOzuYLSqpx1p0BNxOkSjljjNVACTgDJNdDp9mllAZpSN5XJJ/hFRG7Zo7JFTXLGGWyjtwSrdiP61zlvp19aqximQE9V7Gt+5uvtcnmAYXGFHtUNaczWhFjJN1NGAt5Z7h/E6jIpkmm2GoKWtnCP/s/4Vs9etVJrCN28yL91KOjLx+dS1GW6HY5a8sZrGTbKOD0YdDVauvjlW4Y2t5GvmjsRww9RXP6rYfYbn5c+U/K+3tXJVpcuqIa6ooUUUViIKKKKAJra2ku51ijHJ7+grprHw3GcDy2mf1PSsnw+wF86nqU4/OvRLHKWcWD1Ga6qNOLV2UkUbbw4EA3eXGPRVqrqaWtiDFG7NKPvHsv/wBetfUb9rGyeUN83RQfU1xpd5ySzZdjg56k+taVJuEbpXN6NNTlZuw8NLIcxKQM4z3P406SG6IxJuIHOM5qykBTPldhjn1qs5uUb5nYE9+1c06snF309Drp0Yxmra+o9bIED73I/KrAGY/LHG3nHrVJJH3nEmSeCSaTzpEJcMSx4DVz2blr/SOm6UdNvTr/AFoSTN5eQX+bOQP5UxWTaEm+eNh8yntzTW+Zizj5gOfc+tLyyMSQAOOKzc1G3snqaKEpXVVaGfBdyWN08e1niVuP92ust7a2vLNbmC6TYez8EH0rn5W6IAQAOQe9XNDljg1OOGRQYbg7GB7Hsa9alNzgmzx60FCbiizLBGGKkI49QOKqTaXZzD5oVB9V4rb1O0W2lBiVhGfXpmqFW4p7mJzd9obwKZICZEHVT1FZAJByOCK7usPVdHLEz2y89WQfzFc1SjbWImjqfBnxHey8vTtacyW/3UuDyyex9RW74r8AWevwnVNFaNLlxvwp+Sb/AANeNkFSQQQR1Brtvh54g1i21mDTLUie1lb54pDwg7sD2op1eb3J6kmD/wAItqwstQupLR4ksSBKHGDknt6461jV9RT28N1bSwSoGjlUq49QRivBrnwLqkWrXVqqqsMUhVZHP3l7H8qKtDlty6gctUsNtNcNiKNm9wOK7zSvAMTTBZ5GuJO6qMKPrXc2XhOytUA2qCP7q1MKLluXyO12eY6T4OluAJbo4X+7XXR6LbQWLwRIAxHDY711jaLFtwkrKfcZqs2j3IPyvGw/KumMFDZDUTz90aNyrghh2NNrtrrTJEGZ7cMvqBmsqbSLaUZjzGf9npVBY56oJbK3uAd8CtjqcdK2JtHuY+U2yD24NdP4O0VXs7yW8hyJf3QVh26n+n5U+Xm0Eyj8PfC9vZzy6wUIJUxxbj0Hcj+X51y3jr7R4h8QPPDKpt4R5USn0HU/ia9F8UX/APYuix2dpGU80eWrAcIo6/jXnNKcI8vISlfU5ZtCvR0CH6NUbaPfL/yxz9CK62isfq8R2OMksbqL78DgfTNVyMHBru6rXFhbXQxJGM/3hwah4fsw5TjaK0dR0p7IeYp3xZ69x9aK55RcXZknWW8cIVo5dwDfxLwRSSaQ5BNvdbgexNKjOmTGQHxxkcZp0WpQTZiuojFKO49a9WDktYnPWSUytIjW1/YkxgSEuoAOedvUVeSyiiy8kixs3VmOWNZ98slvf2LN0aRgpBznKmrS2sdyjqgCzHlS3IPtzUReruVUi1FSWum/zJClszbYrkMwGSMdqsbYZrJVkxJARw47VlwsYQ0Zg2SIfmAHDUtjdNZzmE/NBIflz2Nacu7RjJykld3FmtRpyTTMd8ITcrZ6Y7fjTrRpbOyUQIHmk+eSRyOpqLUWme+is5mDqz+YwHQIOg/PFXTdywpuMMLxk4BHBNTdyld9DSV1TV+pVVJWk824mMjjoo6A0+plube7BHkvC47kcU2ORYkLrF5snYZwBQ7t6l05xjC6RDNFIPLuUVswnJ46iuk/tC3s9Na6nkCxDkepz2Hqa5qa+mhje4u5gqKOEXoKh01JdXmW4vGaOKIZtotvyj/aPvUTl9lblUoSbdRrQ3A8c0kV5qGyF3HyITnYO2ffFaDQWOo2jwblkRupB5FZM2hxBWnuJJHAGSxarejWdqF8+34xweea05Xy3M4y9/SOrMu48HyZJt7hSPRxWdc+GtSt1LeUsij+4cn8q7+ioOo8qIKkgggjqDViDULu1P7m4kQegbiuw1zw+l+pntwEuR19H+vvXESRvFI0cilXU4IPamBt2/im9jwJlWUfUg1qW/iuzfAmjmjPqDkVx1FAHotvqen3OPLu1yezNg/rV0RgjIYkf71eW1dtNWvbLHkzED0PIpAejeX/ALTfnR5f+0351zNj4vVsJexbf9tOn5V0FvqFpdKDDcRtntnn8qAKOt2c81sjQM52EllBPNczukVv9ZICD/ePFd7VS5021u+ZIxu/vLwaAMabxRd/2O8KIGvRwkp6fU+9efXEl8JWa4lm8xjkkseTXpVxoC+fAyEbDjeG78/1pLnQ/MQWrBA0bnymb+JC3Q+4JrnqNT6hy3PPrezM7zSrG2wQlx9eB/M1u3umWEGqzyTxMLS0ABUdZ5PT8en4Gt+w0yGKCZC6l/LaMhRwqhx/M1Y1K1sZdSZZvlEEjSysT64AAHc4/nXNbUVjnLLwvJKsl7fLFF5oL4JwsCnuR7DoPpVDUk+02LRaTamPSrc5e4k4MzepJ6+wFdldaWtzGkcjlLZVM00bPjeTjCn8MVkXMMd/IBeSiSGPiKCP93DGPfuaLDscFRXR3+lPOsn2eKWSOL+KOPamewVRyfqao3OiXFhpSXdzE4aU/Ku3hB6sexPYUmrE2MqiiikIfHNLE26OR0I7qcVsWni7X7HAg1W4Cj+Fn3D9axKKak1swO2tvin4igwJWt5wP78eP5VrQfGG6GPtGlwt7o5H8815nRWir1F1A9ei+L+nt/rtLnX/AHXBq2nxU8Oyf6y2uV+sYP8AWvFqKtYmoB7cPiL4Sk++HH+9b0v/AAnXgtupT8bf/wCtXiFKAWIABJJwAO9P6zPsgPZdR8ZeDp9Lu4oTH5rwuqf6Pjkg47V40jtGwZGKsOhB5rSi8Oa1P/q9Ku2/7ZEUah4e1bSrZbi/spLeJm2qXI5P0qKk5z1a2A7bw3fJqOmiQj95HhHz6461rtGhJZgOnOa868M6o2nXzR8FJxt57Hsa3b65uZHy8rFD2HArqoyUoorpc6CCys433xIhI75ziqOt3yCE20bZdvvY7CsJXdfuuw+hppJJya2UbEt3L0BzCvtxUlU7dmEoUchjjFay26gc8mocXctSVirRVswIR0xUTwMv3eRScWNSRnaham5hBjOJUO5DVPUAL/RfNA+eP5j7Eda2GVl6gis2H5J7+3I+XG8fiKTXNFpgzk6KmW0uG+7A5/4DT/7Pu/8Ang/5Vwcr7GZWrX0jw9d6uS0YCRDq7d6dpmhTXEymdCq54Tu1ek6dapZWixDaD1OK2p0b6yGkc1ZeDns5hKsoZ8Y5NdFbW00VuqOASvHBq9RXVGKirIo57XomkihjIwCWx9ccf1rnre2kE4LoVVeSTXcaha/a7N0H31+ZD6EVzTbZICSSARk+1TO9nY1p2urlbDxR71YMPenxyeYShUMOpzzVY3KICApYA8ZOKZ5+1mKoFZuOTXlxUoyTTsj15OMotNXZI0UKOcDr0qqfmyRt+Tt606R/NK9A3QnNIi8jaCWOPl9fWpS95zlv0G37qpx26kiRNcynkDuT1pJo8EAdPTpz9KvQwLGhZlAJHOKjCK9zkoflGaHGdNRto2ClCo5X1SI4rMSIrOCN1Q3UH2HyJg+SJ0x+dWzeCJjuBK9qhvopb6+sbeNTsZg5Nd2GcHdxPPxSmmlM624hW4iKN36H0NYMsTQyFHGCK6gQHuabJYwTEGRdxFdZxHLAZOBzV210ye55I8tfVhXQR20MQ+SJV+gqWgDn5vClrc8zMGPqFwarr4Iskfck8yH1VsV1FFS4Re6AztO0ldOcPHd3TEdA0px+VaMru5LszMx7k5NFFO2lkNaMmsb1rMsUUMG65rRt9ZaWdY3iADHGQaxWGDkfiKltZhDcRykbgpyRXE3UpSUb6HclCrG9tTq6KyJtbAYCGPI7lqtWmpRXTBMFJPQ9661Wg3ZM5XSmldou1SutMhuAWUeXJ/eH9au0Vo1cg5SSN4pWjkGHXqK0LfWJbW0SCKJBtHLHnJpmtkC7jI6hOfzqhUQnq12HOFrPuZOv69qF0XtrkhYM8LtHOO+awVcOOK09c1GGVWtUTcyty57EelYYJHQ4qmyC3RVbzX9aPNf1pAWaKahygJ9KSZWaCRUOHKkA+9AGDrWpCUG1i5UH529faisZ1ZHKuCGBwQaK8+cnJ3ZDO7UBmAJwD3qGJRe3OxQJMZ4I7VKDg5qu0ZacvBIYnPX0NevRbSlZdDKunoRao3lLaqPlEdwvGc4zkVceQQSKshKk9Hxwah1UNcaPIHjRZosOhQ53YOaswzpOhhnTfERxgcqazhBuUvIcptU1yqwy/uJWt87vmUjdjuPepIVtlsvNdzICPmVVzzVaFS8/kDOF4+fjK5q7FbmxjmKSK0BQsV3ZKnHat5vljyp6bnNLfaxmQSG51G5uAP3abYEJPTHP861Y4PtVnPblTn7wPoazdEiU2CW0oO6cFyfRjk/1qxb3VxaRum7a6NsbPcdqxp05O3dnRVnG7p9F+g63SWeBN7hCp2MW9up/KpW+ww8PdA47LU9g37qSWaOBll/vHHArN8QXNnaaVM0FrCJJPkV1bOCev6VM/cu5dAhzTtCDI7C3tte1aS4k40uz4AY8SP710iaxpUDeVGyqOnyrxXO6VZQppVvbyyyKMb2RR1Y1sR2lnaR+YI1T/akqacVa73Y61eUZcqWiFlvvtc8unjCxSHajAcg9vwrQ0iyeytCspBkc5YDoKyXuoPtUVzHAhdeQ4yM/WrX9uy/88U/M1vOomuWOiLpxv70tWblFZdlqcl3P5exF4z1NalYmgVh6/oi38RngUC5Qf99j0rcooA8qdGRirAhh1BpK3PFNqLfVt68LKm7Hoe9YdMAooooAKUEg5BI+lJWvY+Hby8wz7YEPIMnU/hSAqW+q31sR5VzIB6E5Fdt4e1C41CzE92qBN5j3g4yeOv51UsvC1hGQZHNw47E4H5VtXi2UOlC2KeVbvwHTpG/bNRUnZaDRBeXptJ2WXlYm2yRHuh6MtZmvXk1vcxyI+6HYJopB0b1/kKzLy9muUTzSHaJdobuRVJbtri2NhI5MaEmP2B9K4pS6kuWjZseHJzIdQaU52224n3zmh5RqvisbTtt2kDux7qB0/Ssax821847yA67W9x3p6OAxlDYJGBzUOWpMqlnZLQ6HXbqBrm0Y/MsimQoDjIJ4/QVX0i1S7v2ZoSyIMgHlR9fX6Vkyb5SuZDhRj3xWrFrH2S3FvZQ+Wh+/ITl29ee1NTEqsW7s2PtDWrO0/lxW54CnrjuT6fSuP19JtYmC2ctxcbm+RAuxPcgHk/U4FdVaXv2hPtVwIYYgSNzcnH91V/maq3K29zvitbgwxvzIYsBmH+07dPwqkrmujR55fWcVifJM6TT/AMYj5VPbPc1SrS1fT/sl1IYQDADgMrFv1NZtS01ozNhRRRSAKKKKACilVWdgqKWY8AAZJrq9F+Heu6uVd4PscB/5aT8HHsvWqjGUtEgOTrpPD3grWNfkV4YTBbZyZ5RgfgO9ek6d4F8N+GIBeanKk0icmW5ICg+y/wD66zNe+KttbK1toUAkYcCeQYUfRe9bqjGGtRgeh2ELWdlb2k1z58yRhS7YDPjvivGfidrv9qeIvsMT5t7EbOOhc/eP9PwrBXxTrI1pNWa9ke7TOCx4we2PSsiSR5ZXkkYs7ksxPcmirXU48qARWKOrDqDkV2drMt9ZJKRjcOR6GuLroPD10gjkt2bDZ3DPpUUJWlYqJoPbsgz1FMRdzhfU0txqsUMojWKWU9yi8CnW7JLMrICB1w3UV3KdwcddDRsrdIwXzlun0q5VFXZDlTiphc+q/lQpdwcexYopgkQj7wpS6j+IfnVEkdyfkA96xZ28vVo/SSEqfwrWnkVyAvOO9RW9olzqUMkjALECSD3z0qL6lpaEtlAJpgrRkpjk+lan9n23/PP9asqqqMKAB7UtAFQ6bbnoGH0NRNpn9yZx9a0KKAMh7S8i5SRmHs1RC8vYGwZXB9GrcprxpIMOoYe9AFCHW5V4lRX9xwazfMjeeVAu1Sdyg+h7fnV6808RoZIvujkqaoCznuVDwRlip4Pb6Umhp2K8tnCGLndg9cHio8RptUjJ6rnmm3V/JZXHk3cBCt36EfWkkvYyiiOIAjoT2rjqYeTfuWSO+niYpe/dstRJA/JQbsdxTGdUkBjiGc4Jx0qva3YSXMvIIxu9KkudQs4Xwz5Zv7tKVGfIktxwrQc223YWWd4iVVgSRkn0pv2tvmUEEAZ3elZ893HGGfiTLY4PenRxXl5gLAQJQdsa8Vly1GotI25qSclJkrOJ7hFXPJ+c9hXR6TJaiX7RNIFK/LGpHQetQ6V4UeKBWvpyZMfcXoB6Z71qvokBTCO4bsSc12UKPsk0cOIr+1afZF5bq3f7syH8alDK3Qg/Q1zkulXUROE3j1U1ctNPMSB5Axc9uwrc5jYoqr849aN7f3jQBaoqrvb+8aTcx7mgC3TGlVfc1XyfWkJAGScAUASmc9gK5u98RtY64ysQ1sAFceh9aXVvEMVvG8VmRJNjG4dFrhZLmSUs8o82OT7y5+YGpnFSVmXBuLuj1W31WxuUDR3MfPYtg1bjmUsGikBI5BU14+rG1ZCfO8ojpjO2rkF2XBaGRwAcZ5Fcrw3ZnUsT3R7RBrMqcSqJB69DT7rWPMi2wKyMerHtXH6GJhpcbzyOzv8AMNx6DtUl1DeFi1vcsuf4Sa05K1rcxn7Sle/KXNU1A28DSu2+VuFBPWsgeJJ8cwR/mapXFnfs++ZHkPrnNU2VkOGUg+hFXSp8iM6tTnfkS3Vx9quGmKKhbqFqGiitDIKKKKALMf8AqxT6ihOVx6VLTAzNU0tbpDLGMTAf99UVavLyKzgZ3YbsfKvcmiuepGnfVidi3HG8rbUGTUkWltHkvOufQnpUQYhWXJw3XBxUBtIicl5T7Fq64ysmr7mNRTb91F4xeQSzFJEwcgN2qKGdPsUc2muAG+by5Byc+9QlEVBEiBVbhj1JH1rKtLxLHT7mNz81s7KB688Vm58r8ilQdSN5bm2NREuY7yyPIwWVaVYbO3IcMwSYiJRzuyfQVFp081po8cYjEkrZkckgYZuay5CbjWLKKSR0ILOx7jjtWl/c5ttvxMFS99x6ammbWWyuwJGZonOFl/un3pbkR3N0WkmxbxyeW0gT5ZXA/pV6S/hvJotN04hgmDcTMuQi+nuxrRn+wNFHZkALuyFx+dLnc36GijyK0mr9DLi0WC4wVmBXt8xIrA8X24sGsrZnUqxLlVHQDj/GusttEjhm8y2u5Fjzyh5FVY7KC/1d9Xul81E/d2qN02j+M/U5xWda8lyrqaYe1P35rYZaxy/ZhcW9u8u7/Vll28euDTf7F1C9fzbthjtGDitT+2EN2ltHh3Y4wozitarTaRmowqScjm20q8z/AKofgRVSWGSB9kilW9DXX1Wu7GG8A3ghh0YdaR0bGFpkscF6JJG2qFPNXrjW1B226Z/2mpraCc/LcfmtRtoE5+7dKP8AgH/16AITq94T99R9FrOvte1K3lAS4GGGcbRxWg/hy9bpfoPpHVZvB9w7Za9Un1Kn/GgDn7y+uL+VZLmTeyjA4xgVXrqB4Nk73i/gn/16lTwan8d4x+iUAclU1taz3coigjZ3PYDpXZweE9PiIMnmSn/abA/Ste3tYLVNkESRr6KMUAZGj+HIbELNcYluO3ov0rcKgnOBS1AxkEmAjOp9SABUydkBZiiWSX5nA/3u/wCdZuo3Ygne3j09ZoWGWIB5P1FXI7ebIKJwfRV4qnd6xHaztA4uZGHUB9oHtwBXJUd3tYq+mpzd0Y3lJSAwgfwZJwfxrPCJFL8i5JrVvpo5pcx23knqQWJJ+uaz5FZm5Xj1FczbucsZe803oIUkA25ypb8hR5Kg434HQDNETsHC4G327U7ychs/3sijQ0vYbEzhc4G3171PCELLu37c846/hUexYxkZ5p1nf3NtcZAMbHgMBmhIzspO6NgJpPljMV8x/DFWXhsYwTDZ+aSO0obH4GqTa5qLDBuCPoAK1tLklurdXllUsSckykN+QreF76G8bbI5+70/MWVs7hY24JkII/lXI3umzWsrBULJngjnFekanbESYkbzEboaXRvC0WtPLi4MIjxkYyTmup0uda7jZ5WsMrthY2J+lalporSEeduyeiJya9kg8EaJZKHupGkx3lfaP0xVoaj4d0ldtskW4doUyfzojhktZMk820/wLe3mDHpzKp/jm+UfrXV6f8MrZMNfSofVIlA/U1oXXjRzlbS1Cjs0hz+grDu9a1C9yJrl9p/hX5R+laqMF0HqdRFB4Z8OD9zDbrKO6Luf86ytU8Z3rgpptukY/wCekhy35dK52kLKOpAp83YOUyNVFxqkvm6i0sz+rk8fSseXRYW/1bsh9+RXWGaPuwNV5Vtn/hIPqOKzlCMt0Oxxs2k3MXKgSD/Z61TZGQ4dSp9xiuzaAZ+VuPcU1rVHGHAYe4rKWHXQVjB0awguzI0x3bCMJn9a2HshE26CNAuMYAxUsVhbwS+ZGm1vUcVZrSnDkXmOxksrAncpB+lKgcuPLzu7YrVIB6ip4bhIU2rbxk9yRya0Aqww3JA8yQAemMmonkuEYqV6H0rSN4p/5d0/Wk+1L/zwT8zRoGpnLLOxwI8/hVnDjhlOfarH2pf+eCfmaUXij/l3joaQakAR27bfc1Yit3xhEY+9I+qtFjbbxUn9uS/88Uo0QHRaJbweeIr9mCPwpBwFPvXYR6Jp8fS3Vj/tEmvLf7dm/wCeKfma2k8dXKaOIQmLtXAV+oKe/vVJoTTNe50S/WV3ECspYnEZGB+FU2sbtD81tMP+AGqlv8QtRj4mt4JR+KmtBPiNFj95pz5/2ZP/AK1HuhqVmt7kHAtLhj6LEakh0nWLk/u7Hyl/vTuB+gyatn4gQlcpp7595B/hVG58eX0gIgt4Yvc5Y0aBqblr4XiiTzdTuRKByUHyoPr61i61qOlpqsJsGGNvlzbBhMDoR7isO5vtU1Zv380si+nRR+HSiLSmPMrgD0FDfRAkal9YWWqQeXOquMcMDyPoa4698P3OnSERSb4f4SwyPzHSutht44Fwi496lqbFJnBLbXTnasBLE4GDmpP+Ebu5XMlwj5PRVAx/Ou5wPSiiw7nLWfhttw3IsY9X/wABXUWdpbWS/Icuert1NLRRYVy15if3hS7l9RVSigRb3L6ikMiD+IVVooAs+anrSGWP/IrLvtQSzAXG6Q9FrGn1S6myN+xfReKANa71MR3JSNAVXg896dFqcL8OCh9+lc4rlTnOfWkumlOCudhHagDrfPi258xcfWuZ8T6pjbbxyERbd0hHeqMM7wuGU8dx60mqIk83mxuGyMFaGNbmPLKURJFwyZ5+ntUBEb+Yko3IfnDjqB71ZNkvlsgjKhueOxpVsXk2mQkOOC44yKlFXKaASbonnf8A2O2fcHvW/oWhvPOJbqc/Z16I3Bam2ltYWrbzEzvnPPQfhWl/aaDgRH86diWzqlACgLjA4GKWuXi1WcOPJj/Xirkmo3D9GC/7opiNp3VBl2AHuawtXuopyiRjO3nf61Ezs5yzEn3NVJCxf5qAGUUUUgCiiigByNsbPbvUOpyXqxKbNQVP3iOWH0qSnJIU+npSaurAclMZS5M2/d33daK7P93KOVB9iKK53h/MXKSUVGbiFesqfnUT39uv8efoK6hkzttwa5nU4B/bcTf8s5mUn6g4NbMmpxEECJmHucVj6vcCSCFkjCGJ8g5qa/K6VraoujzKpvozpJX2KDkAetc7qjTT61DHbuVdowoI7Zzmti2vftdurlBz1FZ1uTN4luJNo/dJjB/AUq0lKnGCXXcKScZOTfQ2bS2isrXyUyF6swOCT65qLeQ5zMRg/K55NSefkY2/rWdf3CRzW6nu+7aOpwOB+ZrSNV0l7pk6Makrvc149RkZxp4mYtcfK0rHlF7/AJ9K07jTdQuAIY2jhgAwNpzxXOQxFQXfmR+WP9Ktx3F1APkmkUduTShzN6bkzpw5UuiOl0zRYdPO/O+U9WNadcpHc6xIAUM7A9Dtp8kurRJumuDEP9pgD+XWhvuXGKirI6iiuKbULxutzIf+BVE08z/elc/VqQzuC6Dqy/nSGaMdZF/OuKS6ljGFI/EVIL+UdQp/CmB15uYR/wAtV/OkN3AP+Wq1yq6if4o/yNTpdo3VJB/wGgDoTe24/wCWn6U06hbj+In8KxlkVuhP4jFOoA1TqUPYMfwpp1NO0bfnWZRQBonU/SL9aaNSkYgLEMn3qhSYpPyA3I70DauCsvfyzu/+sKS5vIIG82Y7WxywTe5/HoKyFeUqIluDCpP3s8CrEF1AsrQRXU9w74A+TeAfXHf+X1rmqQl1KTG3cVq9sbu5i+zxMdygndNL+fQVzYlMjuURkQdN1bl3pl1Pexhpi7TNhfMPzY7kgdAKdJb293qEGmWnEMZO+Xuxxya5mjKcL7LUwoYdobaCxA3NjsPWrLW5XTRe7h5ZkMZ9jjNS+HYh/bkqSZKXETxgH6VDaiWbwnf2jg7orhHXPpnBoUQjST95sjstRt4b5UuIxJbSDZJxyM9CPert7ZfYJo5ImEtu/wA0TkZBHofeskWy+dIzYKsAMfStO1ulWJrW4y1u5zx1Q/3hTsgai1Ysrf2MyhbjT0DdN8LbP0rpLW9XyApXOOPmADD8utZWmaTF5byOFmUZWRD0ZeoZTWVdymNFhZVlixmGXowX0z/Q1rTg5PQ0jdam5qNxE3ydW7Ky9PxBqlb3dxaFzbzPEXGGKnGRWbZzFiUYk9xmrldkU0G4+SWSVt0kjOfVjmmUUUxBRSEgdSBSCRT93LfQZoAdSbR6Cg+Z2glP/AajaV16wuPqKAJ44Hlz5cTPjrtXNP8AsM//AD7Sf98Gtzw1KH0+RtuD5hH6CthpkXG4gZ4GT1qkhXOKOnzHrayf98Gon0ufqIJR/wABNd00yLjJCk8DJ61nXmrJaTzxtGzGG2NySD1AOMUcoXOONhdA4+zyn/gBpPsN3/z7Tf8AfBrvUmR4o5CQvmKCAT6inF1BwWAPoTRyhc4D7Dd/8+03/fBo+w3f/PtN/wB8Gu/DKWKhgWHUA8iq1zfx201tFje08vlcH7pwTz+VHKFzifsN3/z7Tf8AfBrZ0vw8ZozLeBkDD5UHB+prfnvFgvrW1KEtcb8MOg2jNTh1LFQwLDqM8iiwXOIvNIu7S4MYieVOqui5yKqvaXa9LWYn/cNegg7yQrKcDPXtShCVDDBU9CCMGjlC55s1lescm1m/74NN+wXn/PrN/wB8GvSCygAllwTgHPWoxMDcSRFGUIoO842nPajlC5539gvP+fWb/vg0fYLz/n1m/wC+DXo6srZ2sDjg4PShXRvusp+ho5Queay208ABlhkjB6FlIqKu38Ugf2DKcch1x+dchbWNzdjMMRI/vHgVLVhojWVl46ir1vfwxkZt1z6k1PH4duW+/LGn0yanXw2P4rk/gtICWHUoHwGyh9+lXAwYZUgj1FVP7BTH+vb/AL5p8ekSwnMV0V9ttMCzU62dw6hlhcg9Diq6wXK/eaJ/wIrrkUhFG3t2ppXBuxk2WlZUvcg8jhfSqk+m3EMxVEMidQw/rVyy1d7oQloUXzJ5Yvv8/ISMgd+lWV1WxkmeCO5ieZAcxhueKqxNzG+w3X/PB/yo+w3X/PB/yrR0nXrTUra3LTQrcypvMIbJFXE1GykujapdQtOOsYcbvyo5Q5jC+w3X/PB/ypklrPEhd4mVR1JFb0eqWE06wR3kDyt91FcEmpL0A2M+f+ebfyo5R3OYopqHKKfanVIypdadBdncwIfGNwrCu7GW0f5huTsw6V1FU9Ru0tYCGUM7cKppAczUscgA2t0qKikBYKQv1CmmG1hPbH0NRV2Hh7TLSXSkmlgSR3Y5LDPQ4prUDk/scfqfzo+xx+rfnXoi6RZt0so/++KeNDtT/wAucI/4CKrlFc86WyjZgoVmJ4A9a0rjw7NZ2aXLRAj+NRyU+tdxFo1vE4dIIUYdCF5qy9uiRs0sgCAEsT0A70coXPMQABwBilr0eLSNLeNXS1gdWAIbaCCKedG00/8ALnD+C0cocx5rSMoYYIr0c6Hp/a2iH/ARTG0K07W0H/fFHKFzzFhtYj0pK9KbQrQf8uUJ+iiq9xotg0EiG0jQlTyFwRS5Quee0UinIpakYUUUUAAJByKKKKAMeitG10LUbojZbMin+KT5RXQWHhKGIh7yTzW/uLwv/wBemBzFlp11qEmy3iLerdAPqa2L7wiItCupHlMlykZdQvCgjn8a7GKKOCMRxIqIOgUYFOZQ6FSMhhg0pK6sNOzucZ4fltT4Ytp5UXdblwT688Vl+FrJtQub+9kfYrEruxnJJyak09reHw5qKTkj7JLIqKDgMT0z+NVU1b+ydEtrWywbiYb37kE1gmrRb6L/AIApKfNOy1b0/M3rtNN01N9zOzHsg6n2wKm0TQTcXrarf24jyMW9s3OxfU+9UvDmlxxH+1NakAmz+7WY42++PWtfWNfthp8iWV2pnOACoPTvzWtubVhC8U9b/wBdDQub3TNO4leJG/uqMn8hXO6xrtpeqiwIwKH7zDgj6VzjEsxZiST1JpK1jJxd0KUVJWZtjxDcJbpAkjBVGPlGKpvqG9izBmJ7k1UjgeX7o49TVuOzReXO40m7u7H6CxXXmvtEZ+vpVikVQowAAKWpAKkgkWKUO8SyKP4W6VHRQB1enX1jcAJHGkUn9wgD8q0sD0rggcHI4NbNhrskOI7nMif3u4/xoA6TA9KNqn+EflTILiK4jDxOHU+lSUwImt4X6xr+VQPp0LfdJU+1XKKAMmTT5k5XDj261WZHQ4ZSPqK36QgHqKAOfOD1qpuuLMsIHdY5D8xQc49M11Xlp/cX8qRo0ZCpUYPWkBSgkW1Rpyoe4kAVIQc7R2Un9TUhtDZXTTgh5zbsX9S7cfgKa9m0UgltzgqcgHtVZnZVlEu7zXIyT3HX/CsJUR3IoNNks9VgMbh/KRZpW7D2FMlsZLMXquco8O4kdAd2QP0rYS9iW2kmkVWkkGxIh2UetE1yn9nBLgCRiRgf3iD1Pt2rN0n0DlRgLo05a3U8NNt4x0zn+gzWtJo1vYQxTkGQwzHeMcuhOOlWI78tdvIybmWPCbR/FikuRLc+Tlwp8ra4J5zVxo66glFEdtMkTzacDtO0NbTf3h1APv2rmbxo3uWaLIRvm2/3Seo/OunXT043ux/SkfS7VxynPrW8YKOwN6HNWSM9yu1SeucCthLKd/4MfXitSC2itlxGoHqamqhGYumSH70ir9BmpV0uEffd2/HH8qvUUAQJZW0f3YUz6kZqYKF6AD6UtFABRgHrRRQBqaXDGbV/lA+c9B7CsHUo7GPWr4asAY2hT7MXGeMHdt/2s/j0rX0S7+128wh4CSEEn6CtXyEJBcbyO7Va2Je5xTrYrd3P9qK5Q28YtfPBLbdvIH+1nr36VG8F39ll+0q3nf2Id27rnJ6+9d4VU4yAcdOKMA9QKYjg9VSFvNjmEEciWKGNpkZ2kJU8RgHgg9xzVuwsTeai07KJLhNNgeJnGcOQ3P1zXYlVJBIBx04oAA6CgDgdHtHkks2jurZL1EfzI1iYSs205EhJ9e5/Cls4bEtoKxbft4uB9p+U7w21t278fWu9CqCSAMnvijauc7Rn1xQBgapbuNb0rZkttnx9dnFYmiQBpbBmuLZLxNxnRYn85jtO4Oc+vc+2K7vAzTGwmWWPLH0oA4u00y1OmeG3Nsu+WULM2OXUqxw3qMgcGnz2sS3E1mIgLVdYiAjAwoUxgnj0zXUPNIONm0DpxULMXOWOe9AHN3NlYq/iJUtEKxxqYRt4jPl5JUdjn0qrqDyzwaiXyS9la545Jyc11uBzx160m0elAHL6jam1ur+LT4jHv08MViGMkPgn64zUlidNPiOz/s0IE+ySb9gwOq4z710jQfaFaLJXeCu5Tgj6Gm2Wgw2tybmWea4m2bFaQj5V6kAACmBleJkaTQ5URSzF0wB/vCm2URgsoYiACqAH61uauqJpzAADLLj35rKHSs5blIKKazqgy7BR7nFV31G0TrOv4c0hlqiqJ1ezH8Z/75NSR6laSsFWUAnseKALVdKv3R9K5qtRdYgVFDpIGxzhc1URMxLSyuhJpw8mRCt1eEsVPyht20n65FTaYsYs7Cwl0ub7XbA73aPaqMAQW3fxZ9vWtb+2rX+7L/3xR/bVr/dl/wC+Kq6JsYVppjppnhwC2ZJY5cy4XBXKNkn05xVTT9NmjNnb3L3gnt5y7KLcbM5PzeZjkHPrnmt678UWNoVV0m3MMj5KpP4tsXPIn+mz/wCvRdDsUbW0mi0fSQLdllS+DuNnIG5sk/hXTXlwBYXBYYxG38qxP+Ep0/0n/wC+P/r1Wv8AxLazWM0UCSmSRSo3LgDPelcLEdvPFLGuyRTx0zU1cwo2qB6VMtzMn3ZXH41BR0NY+ux/JDJ3BK1Sk1K5zhZm+tVpbiabHmyM+OmTRcCOiiikBYtrmOBh5ltHKP8Aa616HoF1bS6TC6RCJTn5cdOa80rvPDDhtGgCkEqzAj05qo7iY291LUAmtXMF8qJYOPKi8tSHGxSQT17mpLjUNRsJJke8E+/T5LlSYwPLdcdMdRz39K1X0i0ljvI2jO28OZuTzwBx6cCpX0u0kmWV49zLC0PJ4KNjIx+FWSUZNQulvNMjRlIuLWSRwwwCwVSOewyazEvr57W5hvrhxK9nKzwTQhPmC9Y2HDL+PpWzb+H7G3lSQCWQpG0SCWVnCoRgqAe1EPh+xhJ4mceU0SiSVmCIwwQuTxQBlWNxf2MelRvdCWK5s2OwxgCMqgIwev50Wt7qktlpSvfAz6l8xk8pQIlCbiFHcn3rdOl2p+zZQ/6NG0cfzHhSu0/pTH0izksILMowjt8eUyuQyYGAQetAGQ+q38Mkum+cr3Au44EuSg4V13ZI6ZGCPypt9qWo6et9afahLLEIHinaMZAd9pDAcHpWsNGsBZvamNmWR/MZ2cly/Zt3XNNXRbEW8sTLJJ5rK8jvIWdipyMk+mKAKBOq/wBrXOnjVDsjt1nWTyV3ZJI2+mOPrWnpVy2o6Ha3U6rvlhDMAOM45qx9jh+2SXe0+bJEImOf4QSf6miC3hsLBLeIbYYU2rk5wBQBxaaFZlNwRue24019EtQP9Ww9wxrUh/1QqSsyznZdDjP+qlZT6MM1nz6ZcwZJTevqvNdZLH/EB9ahoA42iulvtPhuY2YAJIBkMP60UrAcpB4h1KIgrds49H+YVsWvjFhgXdsD/tRn+hrnNchigmbyY0j/ANxQP5VTgJKckn61EKnN0BM9Gh8R6XMP+Pjyz6OpFSPrumRruN5GfZeTXnVFaAUb6/JlvoYxmKa5MoJ9if8AH9K0NLU/aPt8skYuSfkV14UdsdqxmGb8j/pp/WteuWhG8m30N6692y0udCdVlZCt2LZ4z15Bz9AKwZShlcxqVQn5QewplFdbdzkp01DYKdHtEi7/ALueabRQaGqskZHysuPrS+Yg/jX86yaKVgNXzY/76/nTwQRwc1j1YtCfOAycUWA0KKKKQBRRRQBJDPLbvvikZG9jWtB4imQATxLJ7rwaxaKAOmXxFakcxyg/QUh8R23aKU/lXNUUAdH/AMJJD/zwk/MVLF4gtZDhlkT8M1y9FAHcQ3UFx/qpVY+nepq4vT3db6LazDLDODXaUwCmsit95QfqKdRQBXe2tlBZlVQOpzis+XULSNgsMXmt0BPT9adrpIgiGTgsc1h0AdFDvmGZrmNF/wCecTAfmauxpGgwgH4Vx9ODsp4Yj6GgDsaK5u2nm3D96/8A30a27ZmYDLE/U0AWaKKzNQlkRTtdl+hxQBpMyoMswA9zVWXU7SLrKGPovNc07s5JZifqabQBsza72hi/FjVN9VvH/wCWm0f7IqlRQBM13cN96aQ/8CqP7Q7fL5zH23Vj6i7iXAZsemaq25IuYyCR81AHUWt7NZsTExAbqM4zWnHrin/WecD7PmsSigDoV1i3PWeYfUmnjVLY/wDL1J+bVzdFAHS/2nbf8/b/AJtSf2nbf8/b/m1c3RQB0n9qW3/P1J+bUf2pbf8AP1J+bVzdFAHSf2pbf8/Un5tR/alt/wA/Un5tXN0UAdC2r2wH+vmP0JrK1C9F0R5LTRkH73mEE1TqC5YqvBI+hoAeTddrqb/v4aQNdH/l6l/7+GsWWWQk5dj+NaWmf8ex/wB6gC4pnBybqf8A7+GrkeqX0Yx9pkYf7TE1UooAvnV7psFirEdM5NMk1O7kGPNKj/ZGKp0UAOd3c5dix9zmm0UUAFKpAcFhkA8ikooA6e31C1nACyBT/dbg1brjas2s0qyACRwPZjQB1OKMVHASYVJJJ96koAimt4rhNkqBh/Ksi40Rly1u+4f3W61uUUAclJazxHDxOPwqPa390/lXY03A9BQByyWV1KMpC2PUjFYl1eTRzNGVAwfzrstVkdYiFdgPY1xuq/6yP6GgCv8AbZfRfypftsnotVqKALQvm7oKcL4d0/WqdFFgLwvU7qwq1Z6nHb3Cv5kqqDkhSRmseiiwHX/8JSmPklf/AIE5pyeJJGPEyn23kf1rjqKYHcLrsx7E/SQ1dsdQlvJCuJFA6t5h4rzxXZT8rEfQ1tadLIMESPn1zSA7jD/89ZP++jQVcgjzZP8Avs1n2ckjRHc7Hjua0IzlBmgCswlU4Msn/fZpMyf89pP++zU0/aoaYCrJKv8Ay1k/76NDPI4w0jkehY0lFADhIwGAaXzX9ahJNMkYiPIJpAWTMwHJFVJ7+CLJL7m9F5rIuZHZyC7Ee5qs/wBw/SgCW81SW5BRR5cZ7DqaKoUUgP/Z
closed choice
grade5
natural science
biology
Ecosystems
Interpret food webs II
A food web is a model. A food web shows where organisms in an ecosystem get their food. Models can make things in nature easier to understand because models can represent complex things in a simpler way. If a food web showed every organism in an ecosystem, the food web would be hard to understand. So, each food web shows how some organisms in an ecosystem can get their food. Arrows show how matter moves. A food web has arrows that point from one organism to another. Each arrow shows the direction that matter moves when one organism eats another organism. An arrow starts from the organism that is eaten. The arrow points to the organism that is doing the eating. An organism in a food web can have more than one arrow pointing from it. This shows that the organism is eaten by more than one other organism in the food web. An organism in a food web can also have more than one arrow pointing to it. This shows that the organism eats more than one other organism in the food web.
Use the arrows to follow how matter moves through this food web. For each answer choice, try to find a path of arrows that starts from the lichen. No arrow points to the bilberry. So, in this food web, matter does not move from the lichen to the bilberry.
test
บลูเบอร์รี
เห็ด
null
3
null
null
2
อัตราส่วนที่คาดหวังของลูกหลานที่มีขนแกะหนาต่อลูกหลานที่มีขนหยาบคือเท่าใด? เลือกอัตราส่วนที่น่าจะเป็นไปได้มากที่สุด
B
ข้อความนี้อธิบายลักษณะขนแกะ: ขนแกะ หรือขนชั้นนอกของแกะ มักถูกตัดออกและนำไปทำเป็นเส้นด้ายสำหรับผ้าและสิ่งทออื่นๆ ขนแกะแบบขนปุย ซึ่งมีขนสั้นกว่า มักใช้ทำเสื้อผ้าและผ้าห่ม ขนแกะแบบขนยาว ซึ่งมีขนยาวกว่า มักใช้ทำพรม ในกลุ่มแกะ บางตัวมีขนแกะแบบขนยาว และบางตัวมีขนแกะแบบขนปุย ในกลุ่มนี้ ยีนสำหรับลักษณะขนแกะมีอัลลีลสองชนิด อัลลีลสำหรับขนแกะแบบขนยาว (F) จะเด่นกว่าอัลลีลสำหรับขนแกะแบบขนปุย (f) ตารางพันเน็ตต์นี้แสดงการผสมข้ามระหว่างแกะสองตัว
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADxAOwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooA8h1fXfDuv+OnOr30z6LBa4iVVlUGXIzwo3dzz7CvXVxsXb0xxXEWX/JZdR/7BY/8AQo67igAooooAKKKKACiiigAooooAKKKKAOY8d69Fovhu5T7S0F5cxMlsVVsk8ZwQODg9Tis74bjQRpZbTJZJNQaGJr8v5n3yD/e467hxWt48/wCRH1b/AK4/+zCrnhb/AJFLRv8Arxh/9AFAGtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcrbaPfx/Ey91doMWElgIUl3ry+U4xnPY9q6qiigAooooAKKKKACiiigAooooAKKKKAMXxbYXOp+FdQsrOPzLiaPaibgMnI7nirOgW01l4d0y1uE2Tw2sUci5B2sFAIyOOtaNFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZgtILrU7zzk3bdmOSMfL7VN/ZNj/zw/8AH2/xoAu0VS/smx/54f8Aj7f40f2TY/8APD/x9v8AGgC7RVL+ybH/AJ4f+Pt/jR/ZNj/zw/8AH2/xoAu0VS/smx/54f8Aj7f40f2TY/8APD/x9v8AGgC7RVL+ybH/AJ4f+Pt/jR/ZNj/zw/8AH2/xoAu0VS/smx/54f8Aj7f40f2TY/8APD/x9v8AGgC7RWRqOnWsFjJJHFtdcYO4nuPerX9k2P8Azw/8fb/GgC7RVL+ybH/nh/4+3+NH9k2P/PD/AMfb/GgC7RVL+ybH/nh/4+3+NH9k2P8Azw/8fb/GgC7RVL+ybH/nh/4+3+NH9k2P/PD/AMfb/GgC7RVL+ybH/nh/4+3+NH9k2P8Azw/8fb/GgC7RVL+ybH/nh/4+3+NH9k2P/PD/AMfb/GgC7RVL+ybH/nh/4+3+NYWowpBfSRxrtRcYGc9hQB1VFFFABRRRQBStv+Qnff8AbP8A9Bq7VK2/5Cd9/wBs/wD0GrtABRRRQAUUUUAFFFFABRRRQAUUUUAUtW/5Bk3/AAH/ANCFXapat/yDJv8AgP8A6EKu0AFFFFABRRRQAUUUUAFFFFABRRRQAVzGrf8AITm/4D/6CK6euY1b/kJzf8B/9BFAHT0Vkax4o0XQZEi1O/SCRxuVNrM2PXCgkCtYEMAR0PNAC0UUUAUrb/kJ33/bP/0GrtUrb/kJ33/bP/0GrtABRRRQAUUUyaaO3gkmlcJHGpZ2PQAck0bg3bVj6Kw9I8U2WtXjW9pDdYAJ814wEOPQ596Zb+L9OvNVGn20dzM2/YZkjHlg+5znH4Vs6FRNrl2OZYug0mpLXReZv0UUVidIUUUUAUtW/wCQZN/wH/0IVdqlq3/IMm/4D/6EKu0AFFFFABRRRQAUVjaz4msNEmiguBNLPIMrFCm5sdM8kUX3iaw07S7e/uRMi3AzHFs/eH8M8Y+taqjUaTS32MJYqjFyTkvd38jZoqlpepR6tZC6ihniUsV2zLtbj2yau1nKLi7M1jJTipR2YUUUUigrmNW/5Cc3/Af/AEEV09cxq3/ITm/4D/6CKAORjv8AWn+J91c/8I4s16tkALRr1PkXK/OHIx36f7VeqDO0ZGD6VxFl/wAll1H/ALBY/wDQo67igAooooApW3/ITvv+2f8A6DV2qVt/yE77/tn/AOg1doAKKKKACuc8Z3V3Boc8UFkZ4pYnE0okC+SOOcd85P5V0dZHin/kV9R/64GtaDSqxur6nPi03Qmk7aM5zw9q2r23hu3htvD7zQrGdswuVXfycnGOO/5VB8P7y9hsvs8OlmW2kuT5l0JQNnyrxtxk44/Ouj8Kf8idZf8AXJv5ms34b/8AIuTf9fTf+grXdUnHkq+6t/Pz8zyqNKftMP77+F9uy02/4J2FFFFeYe6FFFFAFLVv+QZN/wAB/wDQhV2qWrf8gyb/AID/AOhCrtABRRRQAUUUUAeayajqbePIbptFb7WsGFtPPGcYPO7GO5pfEmo6lc65oj3OjNBJFNuihM4bzjuXjOOOQB+Na8v/ACVSH/r1/wDZTSeLv+Rp8M/9fH/s6V68Zx9pD3V8Pn2fmfNzpT9jVfO/j8tdVrt/wDp9Nubq7sxLeWRs5dxHlGQPx65FXKKK8ltN3SsfRRTSSbuFFFFIoK5jVv8AkJzf8B/9BFdPXMat/wAhOb/gP/oIoAtw+HfJ8Z3HiH7VnzrUW/keX05U53Z/2emO9blFFABRRRQBStv+Qnff9s//AEGrtUrb/kJ33/bP/wBBq7QAUUUUAFZfiSKSfw5fxQxvJI0JCoikkn2ArUoqoS5ZKXYipDng4PqrGL4agmg8KWkM0TxyrEwKOpDA5PY1n+ALS5s9AmjureWCQ3LMFlQqSNq84NdVRWjrNqSt8TuYRwqjKnK/wK35f5BRRRWJ1BRRRQBS1b/kGTf8B/8AQhV2qWrf8gyb/gP/AKEKu0AFFFFABRRRQByclncn4kxXQt5vswttpm2HZnB4z0o8UWdzceJPD0sNtNLHFPmR0QsEG5OSR06GusoroWIalGVtlY4pYKLhKF/ilzfin+gUUUVznaFFFFABXMat/wAhOb/gP/oIrp65jVv+QnN/wH/0EUAdPRRRQAUUUUAUrb/kJ33/AGz/APQau1Stv+Qnff8AbP8A9Bq7QAUUUUAFFFFABRRRQAUUUUAFFFFAFLVv+QZN/wAB/wDQhV2qWrf8gyb/AID/AOhCrtABRRRQAUUUUAFFFFABRRRQAUUUUAFcxq3/ACE5v+A/+giunrmNW/5Cc3/Af/QRQB09FFFABRRRQBStv+Qnff8AbP8A9Bq7WYJZ49TvPJt/Ozsz84XHy+9Tfab7/oH/APkZaALtFUvtN9/0D/8AyMtH2m+/6B//AJGWgC7RVL7Tff8AQP8A/Iy0fab7/oH/APkZaALtFUvtN9/0D/8AyMtH2m+/6B//AJGWgC7RVL7Tff8AQP8A/Iy0fab7/oH/APkZaALtFUvtN9/0D/8AyMtH2m+/6B//AJGWgA1b/kGTf8B/9CFXayNRnunsZFks/LQ4y3mg45HarX2m+/6B/wD5GWgC7RVL7Tff9A//AMjLR9pvv+gf/wCRloAu0VS+033/AED/APyMtH2m+/6B/wD5GWgC7RVL7Tff9A//AMjLR9pvv+gf/wCRloAu0VS+033/AED/APyMtH2m+/6B/wD5GWgC7RVL7Tff9A//AMjLR9pvv+gf/wCRloAu1zGrf8hOb/gP/oIra+033/QP/wDIy1haizvfSNJH5bnGV3ZxwO9AHVUUUUAFFFFAFK2/5Cd9/wBs/wD0GrtUrb/kJ33/AGz/APQau0AFFFFABRRRQAUUUUAFFFFABRRRQBS1b/kGTf8AAf8A0IVdqlq3/IMm/wCA/wDoQq7QAUUUUAFFFFABRRRQAUUUUAFFFFABXMat/wAhOb/gP/oIrp65jVv+QnN/wH/0EUAdPRRRQAUUUUAUrb/kJ33/AGz/APQau1Stv+Qnff8AbP8A9Bq7QAUUUUAFFFFABRRRQAUUUUAFFFFAFLVv+QZN/wAB/wDQhV2qWrf8gyb/AID/AOhCrtABRRRQAUUUUAFFFFABRRRQAUUUUAFcxq3/ACE5v+A/+giunrmNW/5Cc3/Af/QRQBR1XVNd1HxufD+kX8WnxwWv2iWZoFlZuRxg/UfrXaDIAycnua8tt/COhTfE++0qSwBsksRMsXmPw5Kc5znue9epABQAOg4oAWiiigClbf8AITvv+2f/AKDV2qVt/wAhO+/7Z/8AoNXaACiiigAqhrV5Jp+i3l3FjzIomZM+uOKv1znjTS7W90Ke6nQtLaRO0RDEYJxn69BWtFRlUipbXMMVKcaMpQ3SK/hG1vpLKLWbzVbq4MyMfIdiUXnrjPXj9apeEhqWvSvrN1q1yqJcFRaoxEZAAOCM4xz+lN0Dwlo994bt7ye3dppYyWIkYZ5PbPsKg+H+iWN1Y/2nLExuoLkhGDkAAKp6dO5r0JuFqkk9b22Wm+m/4njUlVcqEHHRpv4nrtq9Pw2PQaKKK8o+gCiiigClq3/IMm/4D/6EKu1S1b/kGTf8B/8AQhV2gAooooAKKKKAON1yfUNR8YW2iW1/NZQeT5jvCcMTyeo+gFHia41CyGiaNa38yPdP5UlyT855UA56/wAWfwrIfw1pa+PI9KELfZGg3lPMOc4Pfr2o8ReG9Msde0S2t4WWK6mCSguTkblH4cE168I0uaEb9L7Ls9dz5upOu6dWbWvNa/M9NVotNvPQ7zS7GTTrIW8t5PdsGJ82Y5b6VdqnpumWuk2YtbNCkQYtgsTyfrVyvKm7ybPoKUeWCVrfO/4hRRRUmgVzGrf8hOb/AID/AOgiunrmNW/5Cc3/AAH/ANBFAGdZf8ll1H/sFj/0KOu4oooAKKKKAKVt/wAhO+/7Z/8AoNXapW3/ACE77/tn/wCg1doAKKKKACsjxT/yK+o/9cDWvVa/so9RsJ7OZnWOZSjFCAQPbNXTkozTfRmVaLnSlFbtMyvCn/InWX/XJv5ms34b/wDIuTf9fTf+grXS6fp0Om6bFYQs7RRqVBcgtg/Qe9QaJoltoNk1pavK8bSGQmUgnJAHYD0reVWLjUXd3X4nJTw84zot/Zi0/uX+RpUUUVynoBRRRQBS1b/kGTf8B/8AQhV2qWrf8gyb/gP/AKEKu0AFFFFABRRRQBxsv/JVIf8Ar1/9lNJ4u/5Gnwz/ANfH/s6V0DaHbNr66yZJvtKx+WFyNmMEdMZ7+tGo6Hbanf2N5NJMslk++MIQATkHnIPoPSu2NeCnGXaNvwZ5c8JUdKpFbud16XX+Rp0UUVxHqBRRRQAVzGrf8hOb/gP/AKCK6euY1b/kJzf8B/8AQRQB09FFFABRRRQBStv+Qnff9s//AEGrtUrb/kJ33/bP/wBBq7QAUUUUAFFFFABRRRQAUUUUAFFFFAFLVv8AkGTf8B/9CFXapat/yDJv+A/+hCrtABRRRQAUUUUAFFFFABRRRQAUUUUAFcxq3/ITm/4D/wCgiunrmNW/5Cc3/Af/AEEUAdPRRRQAUUUUAUrb/kJ33/bP/wBBq7VK2/5Cd9/2z/8AQau0AFFFFABRRRQAUUUUAFFFFABRRRQBS1b/AJBk3/Af/QhV2qWrf8gyb/gP/oQq7QAUUUUAFFFFABRRRQAUUUUAFFFFABXMat/yE5v+A/8AoIrp65jVv+QnN/wH/wBBFAHT0UUUAFFFFAHMat/yE5v+A/8AoIqlRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=
closed choice
grade8
natural science
biology
Genes to traits
Use Punnett squares to calculate ratios of offspring types
Offspring phenotypes: dominant or recessive? How do you determine an organism's phenotype for a trait? Look at the combination of alleles in the organism's genotype for the gene that affects that trait. Some alleles have types called dominant and recessive. These two types can cause different versions of the trait to appear as the organism's phenotype. If an organism's genotype has at least one dominant allele for a gene, the organism's phenotype will be the dominant allele's version of the gene's trait. If an organism's genotype has only recessive alleles for a gene, the organism's phenotype will be the recessive allele's version of the gene's trait. A Punnett square shows what types of offspring a cross can produce. The expected ratio of offspring types compares how often the cross produces each type of offspring, on average. To write this ratio, count the number of boxes in the Punnett square representing each type. For example, consider the Punnett square below. | F | f F | FF | Ff f | Ff | ff There is 1 box with the genotype FF and 2 boxes with the genotype Ff. So, the expected ratio of offspring with the genotype FF to those with Ff is 1:2.
To determine how many boxes in the Punnett square represent offspring with a woolly fleece or a hairy fleece, consider whether each phenotype is the dominant or recessive allele's version of the fleece type trait. The question tells you that the F allele, which is for a hairy fleece, is dominant over the f allele, which is for a woolly fleece. A woolly fleece is the recessive allele's version of the fleece type trait. A sheep with the recessive version of the fleece type trait must have only recessive alleles for the fleece type gene. So, offspring with a woolly fleece must have the genotype ff. All 4 boxes in the Punnett square have the genotype ff. A hairy fleece is the dominant allele's version of the fleece type trait. A sheep with the dominant version of the fleece type trait must have at least one dominant allele for the fleece type gene. So, offspring with a hairy fleece must have the genotype FF or Ff. There are 0 boxes in the Punnett square with the genotype FF or Ff. So, the expected ratio of offspring with a woolly fleece to offspring with a hairy fleece is 4:0. This means that, based on the Punnett square, this cross will always produce offspring with a woolly fleece. This cross is expected to never produce offspring with a hairy fleece.
test
0:04
4:0 สี่ต่อศูนย์
2:2 สองต่อสอง
4
1:3 หนึ่งต่อสาม
3 ต่อ 1
3
ทรัพย์สินเหล่านี้มีอะไรเหมือนกัน?
C
เลือกคำตอบที่ดีที่สุด
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADQAiwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3WGGK4gSWWNZGdQ3zjOM9hUn2O1/59of++BRZ/wDHlb/9c1/lU1AEP2O1/wCfaH/vgUfY7X/n2h/74FTUUAQ/Y7X/AJ9of++BR9jtf+faH/vgVNRQBD9jtf8An2h/74FH2O1/59of++BU1FAEP2O1/wCfaH/vgUfY7X/n2h/74FTUUAQ/Y7X/AJ9of++BR9jtf+faH/vgVNRQBD9jtf8An2h/74FH2O1/59of++BU1FAEP2O1/wCfaH/vgUfY7X/n2h/74FTUUAQ/Y7X/AJ9of++BR9jtf+faH/vgVNRQBD9jtf8An2h/74FH2O1/59of++BU1FAEP2O2/wCfeH/vgURfJPJEPuhVYD0znj9KmqFf+P2X/rmn82oAmooooAqwwxXECSzRrIzqG+YZxnsKk+x2v/PtD/3wKLP/AI8rf/rmv8qmoAh+x2v/AD7Q/wDfAo+x2v8Az7Q/98CpqKAIfsdr/wA+0P8A3wKPsdr/AM+0P/fAqaigCH7Ha/8APtD/AN8Cj7Ha/wDPtD/3wKmooAh+x2v/AD7Q/wDfAo+x2v8Az7Q/98CpqKAIfsdr/wA+0P8A3wKPsdr/AM+0P/fAqaigCH7Ha/8APtD/AN8Cj7Ha/wDPtD/3wKmooAh+x2v/AD7Q/wDfAo+x2v8Az7Q/98CpqKAIfsdr/wA+0P8A3wKPsdr/AM+0P/fAqaigCH7Ha/8APtD/AN8Cj7Ha/wDPtD/3wKmooAh+x23/AD7w/wDfAoi+SeSIfdCqwHpnPH6VNUK/8fsv/XNP5tQBNRRRQBVhhiuIElmjWRnUN8wzjPYVJ9jtf+faH/vgUWf/AB5W/wD1zX+VTUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7X/n2h/wC+BR9jtf8An2h/74FTUUAQ/Y7b/n3h/wC+BVC9vn0+cRRqCpXcAe3t+latc/rn/H6n/XMfzNAG1Z/8eVv/ANc1/lU1Q2f/AB5W/wD1zX+VTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQr/x+y/9c0/m1TVCv/H7L/1zT+bUATUUUUAQ2f8Ax5W//XNf5VNUNn/x5W//AFzX+VTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQr/wAfsv8A1zT+bVNUK/8AH7L/ANc0/m1AE1FFFAENn/x5W/8A1zX+VTVDZ/8AHlb/APXNf5VNQAUUUUAFFFFABRRRQAUViat4w8P6HgahqlvG7MFWNTvdj6BVyazpfiDpS58q2vZvcRBR/wCPEVjUxNGl8ckjenha1X4ItnWUVxn/AAsS2/6Bd5/30n+NSR/ELTm/1tlfR++xW/kaxWYYV6KojZ5bil9hnX0ViWfi7Qr1gkeoRxyHokwMZ/8AHsVtKwZQykEHoRXTCcZq8Xc5Z0p03aaa9RaKKKsgKKKKACiiigArn9c/4/U/65j+ZroK5/XP+P1P+uY/maANqz/48rf/AK5r/Kpqhs/+PK3/AOua/wAqmoAKKKKACiiigAooooAKK5nXvH3h7w+zRXF4Jrpf+Xe3G98++OB+JFebeJfidrmtWbW2jWrabEx+abzMysvoMDC/hWNTEU6fxM2p0KlTZHsV/rGm6Wm+/v7a2H/TaUL/ADrCf4j+FVYiPUjOR/zxhdx+YGK+b3Wb7Xvvi7Mx5ldi2fqTzXpnh7TIHtUUAcjrXFPHu/uo6o4JWvJnfn4neFEVjJfyx7Rn57aQZ+ny1DH8WPB8rALqUnPc28mP5VxeteHkERIXnFebX0B0+98xFGQfmXswrNZhO9rF/UYWunofUGleIdI1tSdN1G3uSOqo/wAw+q9RWlXzlpotb21W8tZGiniP3kbbJG31HIr0Xwd8QjNdR6Nrsq/aGO23uzwJT/db0b36H61rhcyhWm6clyyMq+BlTjzwd0ekUUUV6RwhRRRQAVCv/H7L/wBc0/m1TVCv/H7L/wBc0/m1AE1FFFAENn/x5W//AFzX+VTVDZ/8eVv/ANc1/lU1ABRRRQAUUUUAFFFFABRRRQAUUySWOLHmSImem5gM0+ldAFFFFMAooooAKKKKACiiigAqFf8Aj9l/65p/NqmqFf8Aj9l/65p/NqAJqKKKAIbP/jyt/wDrmv8AKpqhs/8Ajyt/+ua/yqagAooooAKKK8/8YeLJriOfStEumgfBSW+jwSh9EzwT6msMRiKeHhz1HZG+Hw1TET5Kaub2u+L7LR2a3iH2q9H/ACyQ8J/vN2+nWvN/EvjC/e0ae/uX8tjsis7bKiRj0Ud2P1rnRa+IbeJidU08xqCzSyWzbvcn5sZrN0vSdR8Q+Xq1/qs8exmFn5Eap8nTfgg4J7d8V85iMdOu3JzSguivd/gfRUMJTw6UYQbm+rtp+P8AXc19I0aRZ/7S1FUa/cfKi/ct1/ur7+p71qXN7Z2alrq6hhHrI4X+dZv/AAi0Ev8Ax9ahqdz6h7pgPyXFWbbwzo1qwePToC/9913t+bZryak6U5c0pN+i0/P9D0Ie0irRil6vX8v1KjeKtLZttobi9b0tYGcfnjH60f2tq8//AB7eH5gOzXM6R/oMmt9Y1RQqqFUdABil21n7Wkvhh97/AMrF8tV7z+5f53OdafxI4+bStOK/3TdMf/ZasWHi3X/D77jp15bRDki3cXMR+qdR+ArYIppFa0sW6bvGKXo2v1FPD86tKTfqk1+R2XhT4naP4hZbaaeKC76Y3YVj6c8qfY/nXc14DqWhafqnzXNuPNH3ZkO11+jDmuo8GeJL7w+RYavqEt9pxwsM0qjzLf2Yj7y+/UV9Jgs4p1LQquz8/wCv8jwMZlFSPv0ldeX/AAf+CerUUiOrorowZWGQQcgilr2zwwooooAK5/XP+P1P+uY/ma6Cuf1z/j9T/rmP5mgDas/+PK3/AOua/wAqmqGz/wCPK3/65r/KpqACiiigAoorP1zWrPw/pFxqd/JsghXJx1Y9lHqSaG7BuUPFfiu18LaesskZnupciC3Q4LkdST2UdzXi/iH4s6/rdpJYRRw6fETh3tmbew/u7j0H0qrqF/qvjXU5765Ywxy/Kkan7sY6Ln09fU1m3nhJrePcmcj04ry62Jm27OyPSo4eNldXZHodks867h1OT716XZ6NE1r8sY6eleaaLctZX6Qz8E/db19vrXq2l6in2fGRyK83Vy1O6V1D3TivEmlJEGYKKo+GfER0u5FpcN+5JwjH+E+n0roPFFzGYnORXmlw4aRielEI3vFhN6Jnsl7rUMlqS7jpXlut3K3F07L0JrOF5ePEENxIEHAHfHvVeRWbkszH0J61pGm09WQ5JRtFE9pe3FrK0ltJs3LtYkZDUtxfTyjMx3d9yjBFS2dobgBh909K0G0j9392plOnGV3uVGE5R02PY/hX43Ov6Z/ZWoz51S2Hylus0fY57kdD+Br0avl7QLe4tbkXNnKYb2zcMjjt6H3B6H8a+ivDWuR+IdDgv0XZIcpNHn/VyDhh/h7EV6+ExUat4dUeXisM6VpdGa9FFFdpyBUK/wDH7L/1zT+bVNUK/wDH7L/1zT+bUATUUUUAQ2f/AB5W/wD1zX+VTVDZ/wDHlb/9c1/lU1ABRXKy6/fCSa4QxLBFIV8kr8xAOOvrXUqdyg4xkZ5riwmPo4tzjSfwuzNalKVOzl1MnW9SuLN7e3tQolmyd7jIUDHb15pNG1G5uZp7W72NJEAwdBgEH1HrV2/06DUYlSYMGQ5R1OGU+1c34f1CKwupba4YFpGw0p6qw4wfb0rz8RUxFDMYSqVLUpaJedv8+ptCMJ0WkveR19FFFe6cgUUUUAcjqckVv4gmk1GPzIyoEKsMqVxyB+Nb2iiYaYnnBlyzFFYYITPyg/hWDqd4s9xLKVLo+UXH8Ea9W/Pmui0y6N3Yo7EeYvySY/vDr/j+NfM5TXp1MwrqMnu7eff7nsdle/so6FyiiivpjjCkdtiM2M4GcClrN1nVk0u1yMNO4/dof5n2FZ1qsKMHUm7JFRi5PlRgDW9SMX2/7Qnl5z5G0Yx6Z65rsEbeitgjIzg1yHhaxg1A3F3Opk2SjaCcLu6k46d67CvJyWOJdKVWvPmUndeR0YrkUuWKtYKKyfEF5PaWcQt38tpZAhkx90YNUtGvLpdU+ySXD3MbRl8tyUIx39DmumrmdGni44Rp80vuM40JOm6h0dQr/wAfsv8A1zT+bVNUK/8AH7L/ANc0/m1eiYk1FFFAENn/AMeVv/1zX+VTVDZ/8eVv/wBc1/lU1ABRRWR4n1+18MeHrvVbtgEhX5F7u54VR6kmk3ZXGld2Rg+NfEbwZ0ixkKzOubiRTzGp/hHuf0FeaXOt6TpxEU99BGw4EYbLfkOazxBq3iOR7rVJ5bS3mYubeNsSy57u3b/dFa9jpVhp6BbS0hh91UZP1PU18bmGJjWqt1He2yXT59/RP1PssFQlQpKNNW7t9fl29WvQ5nXfEthqKQ6ZA9z5U7g3LrbvkQjrgYycnA/GtmPxXocSKn2h4VUAAPbyKAP++aboH+nalqertyHl+zQH0jj4OPq2a6IDPXmuWvOjG1Llenn1e/T5fIqkqsr1OZa+XRbdfmZMPifQpjhNWtM+jSBf51pQ3VtcDMFxFKP9hw38qJLG1nGJrWGQf7cYNUZvCegznc2l26t/ejXYfzXFcrdB919z/wAi26y7P71/mau2kIrF/wCEVWDnT9W1O0PZRP5ifk+aQxeKLL7k1jqUY7SKYJD+IyP0o9lCXwTXz0/4H4i9tJfFF/LX/g/gbRFMIrGHiiG3YJq9ldaa3TfKm6I/8DXI/PFa8U8NzCJYJUljbo6MCD+IqZ0pw1ktPw+/Y2p1oT0ixCKjYVKRTDSR0JnUeC/ERsrhNIu3/wBGkOLd2P8Aq2/ufQ9vyr0WvDXXcuOR7jtXqnhLWjrOjKZmzdQHypvcjo34jn86+tybHOrH2M3qtvQ+ZzrAqD9vBaPf17/M3qKKK908AK5/XP8Aj9T/AK5j+ZroK5/XP+P1P+uY/maANqz/AOPK3/65r/Kpqhs/+PK3/wCua/yqagAorN1HxBo+kyLHqGp2ttI3RJZQD+VT/wBq6cUd/t9rsRQ7t5y4VT0J54FK6AyfEHjHS/D58iRzcXzDKWkOC59z2Ue5rwzx14t1rxDfxQahsgs0PmR2sX3QemSf4jzWl4713RLnxNJd+H8LNk/aZ85S4YcfKo/9C7+9cNqd/NeXKSSxMCMjIHHNeRXxFWVVwVuU9DDxoKF/tHf+EVjdEziur1OyhNuSMdK8v8O67HZuFkfZj+9xXV3viq3Nr/rQxx2Nc1VNxsdcN9DkNfgSOZ9vBByCO1RWXim9tU8sr5m3jcDiqep37XtwQnLMfyrU0fw612oJ4H86iHuQtI1l70vdM2/1q7vz867R7tWfDG00u1jlgfwrtr3wh5UJZTzXKmBrHUkWToTtP9KtS0diHHVXNK00reoO2ku9L2KTiug01owgzSak0ZQ4xXmfWZ+0sdvso2tYwvD4UPJA/WNsj6H/ACa6mSGIQZ4zXEx3P2XVVcHAYFT/ADFbD6sDHjdVYmjOU1JdSaU0o2vsRXF0dNvluo+g+WQeqn/DrXV+A/HdpoOr3ttdrO9teBXQQpvKyDgnHuMflXnt9deexHbvVbTIYZ7lBcziAD7jsPlP1Nd2HTo/veqRy17Vbw6M+pfDvinT/EyXTWAnH2aQRyCaPYckZHFbVeG/DXxLY+GNdvtO1O5Ecd8UMc2792rLnrnJGc9c4r3FWDqGUgqRkEHgivdw9X2tNSPGr0/Z1HEWoV/4/Zf+uafzapqhX/j9l/65p/Nq3MiaiiigCGz/AOPK3/65r/Kpqhs/+PK3/wCua/yqagDH1XRY51a6tYkW9RhIp7OR2I6c0W+ti90ee5t4/wDSoVO+A9VYf0rYrltbs59K1FdYsONx2zJ/Cx9/r/OvNxS+rXrU1ZP4rf8ApXquvdHRTftPclv0/wAi3oWq3F7dyQSzRzqIw+5FxtOelYOpWYXX7yLhS3zqcevJH05q690k+ow6jYERySphkPGHXqrfUEflmotXuI59StLyMFfMXy5FPVWBwQfzFfNY+sqmClQlPmnTad+6ezX3nZSXLV5krJr8TS8P6uzn+z7skSrxGzHqPTP8j3FdFXD3FsZlDxkrMnKsK6PQ9W/tG2KS/LdQ/LIvr716OQZv9Zh9Xqv3lt5owxVDlfPHYkTW7KS9+yq7b92wNtO0t6ZqTVbg29g+w4kkxGn1Pf8ADk/hXNhY4NSe5LMbOK6J8v05+9n2POKu69c+fdRW8TZwoAI/vP3/AAUE/jTlnEvqlecmuaLcVb7l/n8hOglOKWxXs4leN5cZRh5aA/3Bx+vJqXQZzaajJZOflfhc9yB8p/FeP+A07KxlYUGAi9PbtVG+3RtDdxcMhHP45H6/zNfE5XjHhsXGr0v+H/DHTKHPFxfU7Os9tbslvfspdt4bYW2naG9M1YS8hawW8LBYim8k9hXKWphudcmNyzQWzZuRGT3BB5P64r9Ix2NlSlShRavN9e3VnFSpKXM5dDqr++i0+0aeXnHCqOrHsBXnt5dS6hcvcTtnJ7dPoPYfrV7VL+XWL0kBhAnyovt/ie/5VnXBCwtjjAr5XOc0+tVfZU37i/F9/wDI9HC4f2ceaW7Ov8HxbNCVyOZZGb9cf0qvrNxcT6s1vbvcOsMQJW3JG1yT97H4U+C8bT/D9na2+PtLQhie0YPOT+fArk21OWCG6tbctunf95JnJYDt+JJr0sXjKMKEMHzNNJN23Wmi9W/wOenSlKcqnmdBc6lca20GiwFWYqPtU4GQMdcf4101lp1rp6FbaIITjc3Ut9TWb4Z0f+y7DfKv+kzAM/8AsjsK3K9vA0JcqrV/jf4Lt/mctaavyQ2/MKhX/j9l/wCuafzapqhX/j9l/wCuafzavQMCaiiigCGz/wCPK3/65r/Kpqhs/wDjyt/+ua/yqagArzr4i3aXN/Z6aVVkgH2lwRn5zkL+Q3H8a9FrxrxLerL4g1W7lcLHHKV3E8BUGP6GvKzis6eGtHeTsevktFVMRzS2irlPIVSzEADkk9qwNT8WWsFldNYRzXrxRsWkhX92hx3c8flmmwW03iUi6vt8emE5gtAceaOzyex7L+dT+Jo44vDv2SFFjjlmhhCqMAAuO30r5inSpxqxhPV3+S/z/rU+jrVakqcpw0Vvm/8AIq6JqGoaXo1pav4evmWOMbnjeNixPJOM56k1uad4h07UZ/s6SNDdDrb3CGOT8j1/CtBeBgdKrajpNlq0Aiu4Q+OUccOh9VYcg1jOrSqSbnG1+q/yf+aJVKpTilCV7dH/AJr/AIJoipAK5m0v7vQ7yLT9XlM1rK221vzxk9kk9G9D3rpQa5atJwfdPZ9xxqKfk10H4ppFLmmk1kikRuqspVgCp6gjINYNx4YtVla40yWTTbk8lrfhGP8AtJ901vk1Ga2p1Z0/hY5U4z+JHOHWb7SSE1y3XyegvrYEx/8AA16p+orZjljniWWJ1eNhlWU5BH1qZwGUggEHgg9652fSLnSZWu9DwEJ3S2DHEcnqU/uN+hrpXs6v92X4P/L8vQF7Sl/eX4r/AD/P1Ntq3PBeoGx8SxxE4ivFMTD/AGhyp/mPxrltO1O31S3MkO5XQ7ZYnGHjb0YVaE7Ws0Vypw0Miyj/AICQa2ws5YfERk9LMuvTjiKEorVNHudFIjB0V16MMilr7w+ACuf1z/j9T/rmP5mugrn9c/4/U/65j+ZoA2rP/jyt/wDrmv8AKsXxtqV9pXhK+u9Pike4VMB0IzED1foc461tWf8Ax5W//XNf5Uy/sbfU9PuLG6TfBOhjkUHGQaUk2mkB8w3E7uXuJXeaaQ8u7bmdj6k1AlrDHCS8YLFcv/tV1njLwJqfhsSyxpJd6eDujuEXLJjkBwOn16fSuUN5DnC7n/3FyK+bqU6tN2lubJplOOe5DRMkJSGUkKRHhDjrhu5GRWhtE8G2ReGHIqFJ7WPovl/VCKnjlSVdyHIzjOKio76pWBE2j2sLzG1mALdV3D76/wCNTaroFrEpaIGNv9g8fl0rOnl2SoAxUqC+8dVx0IqS81iUwhbgbXI4YdG/z6Vk41XNSi9z1sPiYThyVN0Y9oAJVz1z82fWvVPDAj8tM4ryuKC4mdpoYyRnOO59xXT6H4jW0ASUlSvBz2rrqR5mVB2jY9P1VIRbfLjpXkPiVVNyQvXtXT3/AIut3gIV8nHSuGvrw3U7StwO1NR1uTtGxds9WKxKScHFLc6oZFIBzWRDFM6/JESMkjmhkmDqrAJlgPU8mp9jDmuX7afLYSeTLKx67s05HaU7Yw7n0UE10UXhxVtzIcsxH3jTvD9rHFqV2sp+UIo/HJrOWKp8jcdbD9hK6v1OeEEn2mJJ0KIzgEHqa6m706zi0wyEqAF5qPUNMn1XUIrHS4Gnu5HGxE69ep9B7mvUvDvwotIrLd4kkN9cOv8AqUcrHF9MYLH3/StKdCri1GcXZEVK1PDXi9WeI2lvGkXnTHAHA3HoPSvQ/hj4xvk1m00mTVYnsZWKLa3IIaP+6I25z9Diu1m+D3hadk3fbginPli44/UZrV8OfD3Q/DF1LcWcckrOQUFxtfyiO6nGQa9KhhalOfM2eNOfNqzqqhX/AI/Zf+uafzapqhX/AI/Zf+uafzavRMyaiiigCGz/AOPK3/65r/Kpqhs/+PK3/wCua/yqagApk0STwvFKoZHGGB7in0Umk1ZgcFeWM2manlMs8Z3KM/61On5jpVbUZo55Y7mEnDdvf3HrkV22r6f9vtfkwJ4/mjJ9fT6GuJurVpB58KkOGzJGe5B5/GvzzOMv+p4lSXwS2/y/yPZw1VVY3e6Ni2/eY2jIZe1QXMdzYyx6hbjbcR/eQ9JF9DUml3gFrC8SglMhfw4qzJKZ3LsPvHJx0zXi05qharCTU09vLvf9CnduzWhQt5Fk0UuDnIyx9+9QaWWV4y2W2rnLdieg/BQPzovIntPMEY/0e5ID/wDTNvX6EVpafEFtFLKMud5Hpnp+mKynO0G/5mDaSJnwJSx4OzmopFWS0YMvykYx7VJIyyIGGduDQ57fjXMiUZ1jczSlbCVv3UDb9v8AeOe/sDz+NUrwG71RkiP3CQSP1p9+JoL1ZLfh5VK/j/nH5VLbwfZUVV5fufU16M605tVJSu7JLysawilqie1tlg3712hF71i3v+pIHcgVsySyonzcnPIPPArO1q5S5nhMEQUjHbGcVNBXldstN3JL29Nva/ZImLTyAGWQ9QMVZ8KaMLq6+2Sr+4gPyg/xP/8AWrLtLKW9vEtozullbLMe3qTXpFpaxWVpHbwjCIMD396+myHL/bVHXqapP73/AMA48VVVOPJHdk9FFFfbnlBUK/8AH7L/ANc0/m1TVCv/AB+y/wDXNP5tQBNRRRQBDZ/8eVv/ANc1/lU1Q2f/AB5W/wD1zX+VTUAFfOXiWQ31zBp+Ti/vXMuO8asWb8+B+NfRtfON2hHjmGE/8u8NwfxMgX+lePm+ihLtd/O2n4nt5PZqce/Kvk3r+BuIAoAAwBwAKyPEnNvpy9jqEH/oVa4NY/iY7bGzk7R30DH/AL7A/rXy2H/ixPpcUv3UjoAakBqEGng1ytFtCXdpb6hZy2t1GJIZF2sprJ0i9n069Gh6lIXkAJs7lv8AlvGOx/2x39etbQNUtV0yHVrIwSMyOpDxTJ96Jx0YVpTmrezn8L/B9/8APv8Acc1Wm788N1+Pkae6kJrF0bVZp3k07UAsepWw/eAdJV7SL7H9DWvmsp0nCXKyqclNcyFJphNBNMJpJGqQhNMNKTTCa0RokYuq6bL9oGp6ZhL+MYZTwtwv91v6HtU1nqEOqacZogVyCjxtw0bDqpHqK0Sa53VkbR7xtYgU/Z5BsvY17joJB7jv7V2U37VKD36f5f5GUl7F+0W3X/P/ADPofR5DLolhIerW8ZP/AHyKu1R0Rdug6eAQQLaPkf7oq9X3cfhR8FUtzu3cK5/XP+P1P+uY/ma6Cuf1z/j9T/rmP5mqINqz/wCPK3/65r/Kpqhs/wDjyt/+ua/yqagAIBGCMivP9b+FGmajey3dhdyWDysWeNUDx7j1IHBH516BRUTpwqK01cE7Hkh+Dd3n/kOQEe9qf/iq8n1T+19D199H1OzS3mVsKxB2sOzD1Br6zrnvF3g3S/GOm/Zr+PbMmTBcoPniPse49q5Z4Gk17q1LjLufNqWchkaW4cO3Xao4PpTo1guYz5h3O45JHT2HpXSz/Dfxvp15NbpaQ3ltEflufNVVZfXkgiuTAkadyVVWLYxG2QSO4NeVUo1IfHoaehs6Pc29kfKvBtA6SY+Vv8DVXxELVyZodofHDL3/AMaeM7Ru645rNvIYmMixjY6ruGDw3qMVzU4L2vPc7441uHJNAmlXrwCUBSCM8g0+y0WW+t/NYk57dhW5a63AdO8t0CSAcqf6e1VdK1qK1t5ozjBkYj6E0OtXs7LVM7VClo76MuaDbRNbtHNgSRsUbPtWfrscMM0ZXH+sX+dPsYNY1K8nm0rTbu5idgC0MTMu769K9B0H4QT6mkd74luZbc5ytpARkD/abnB9h+dbUMHWnV5+jM62KpQhy3OUs9QmvgllZQSXNzJ9yGJcs3+A966Tw38J9aupWudbuksI5G3NDCQ8p9s9F/WvVdE8N6R4dt/J0uxitwfvOBl3+rHk1q16eHyylSvzatnn1sfUn8OhlaJ4c0vw9bmLTrVYy335D8zv/vMeTWrRRXopJKyOFtt3YUUUUxBUK/8AH7L/ANc0/m1TVCv/AB+y/wDXNP5tQBNRRRQBDZ/8eVv/ANc1/lU1Q2f/AB5W/wD1zX+VTUAFFFFABXLeIYfs1/HLb7Q84JdW6cY+b9cV1NYfieCKWwhd0BZZlAJ7A9a8rOqKq4Gomtlf7jowsuWqjmxPJEf+PiCPnPC9/wA6UXWet8x/3EH+FTC2ijlAWNVB54UCp2GyTGMfSvzFyj2/I9h2KjFJoykkt5IrDBHl8H9KnU8YH9oH6cVab5QCMHPbNSIfk357Vm56GUtimVBGSuo/n/8AXqJyR0+3j681qLl+Txg9PSoS258Hj3pKYomQ8hH/AC1ux/vJn+lV3umU/wDHyf8AgceK1ZceZ2xmq14qlzgjI4JB610Qkn0OhFFtSuNhUSRMMYOBjNVHvOctGM+oNaF5bI0EYVBuxleQcjvn9KgjsIWjt9yt88oySMBhkZUfr+VdNLkk0rbsXMkrnXeFbBIbAXrDMtwMj/ZXsP610FMiijghSKJQkaDaqjsKfX6fhaEcPRjSj0R4NSbnJyYUUUV0EBUK/wDH7L/1zT+bVNUK/wDH7L/1zT+bUATUUUUAQ2f/AB5W/wD1zX+VTVDZ/wDHlb/9c1/lU1ABXgHiK2Np8V76EjA+zu4+jOG/rXv9eT/EvR5YfGeka1FETFPbSWs7gcKQQy5+vI/CvPzOnz4eT7X/ACPTymryYhR72/MwwayvFCGTw3eFRlolEo+qkN/StMGmzRrcW8kL8rIpQ/QjFfG05ck1Lsz7OtT54Sj3RPBMJoY5VOVdQw+hGalBrC8LztJocMMh/fWpa2k+qHH8sVtA1FWnyTcexFOXPBS7koNO3VEDS5rKw7GfrOltfJHc2sgh1C2O63m/mreqnvT9I1ZdTt23oYbqFtlxA3WNv8D1Bq7msbV7CdLhdW0wD7dEuHj6C4j/ALp9/Q1vTanH2c/k+3l6P8PvOecHCXtI/Nfr6/n9xtk00mqenalBqlklzbk7W4ZW4ZGHVSOxFWSaycHF2e5vBqSTWwpNMJoJphNNI1SAmmeQbt0tQu4zusQBHXccf1pSa3vBdgb/AMTQuRmK0UzMffoo/PJ/CurCUnVrRgurM8TVVGjKo+iPVYo1hhSJAAiKFUDsBT6KK+9PzsK5/XP+P1P+uY/ma6Cuf1z/AI/U/wCuY/maANqz/wCPK3/65r/Kpqhs/wDjyt/+ua/yqagAooooAKKKKAOJ+Kuqy6Z4KmjhYrJeSrb7h1CnJb9AR+NeFW8QRdxHzH9K+hfHnhyTxP4Xms7cgXUbCaDccAsOx+oJFeASJLazvbXUbQXMR2yRSDDKa8fMlPmT6GkCOWURjG1mY9FUZzWd9luQSwi4GcDcM81qZHqKQuo6sPzrzYzcdkWHh6zsL3XbGDWbiK1so2UyvcEoGUdVBHr0r26w+Ffg6KdL2K0e5ib540knLxYPIwO4+ua8PlijuIijAFT0PpXoXwa8QXkeo3fh65dpLdUMsTSSH5MEAKoPY5zx6V6eBqwk+SS1Jbkloz2OGCK3hWKCJIo1GFRFAAHsBUlFFeuZBRRRQAUUUUAFFFFABUK/8fsv/XNP5tU1Qr/x+y/9c0/m1AE1FFFAENn/AMeVv/1zX+VTVDZ/8eVv/wBc1/lU1ABRRRQAVg+KLgJaw24ADyOHDMcKNvNb1VNR0621S1NvcqSmcgg4IPqK5cbRnXw86UHZtWNKMlCalLocK97g/PdQL2wBn+tN/tCHqb2Q/wC5GP8ACtafwGmSbe9Ye0iZ/UVUbwTqCfcnt3/Ej+lfDTyDFQ+xf0sessVRl1Ko1CE/8tbxvptFSLfQ4xtvCP8Artj+tSf8Irqyf8som+kgpR4e1VP+XTP0kX/GuWWUYlf8upfcV7Si/tDRdx9orzn/AKeP/r0hkDdIrr/v/wD/AF6nXRtUH/Lk/wD32v8AjUq6VqQ/5cX/AO+1/wAayeWYtbUpfcwU6P8AN+JmvJ7XY/4GD/WoHn/6azjH95Qf6VsnRdUfpaY+si/40w+GtUc/6uFfrJ/gK1hleMf/AC6f3Fe3pL7SMF7ggYEqn/eSo1vHidXwG2HIAJGPWukHg29k/wBZcwJ9Mt/hVu28D2iMGubiSXH8KjaD/WvQo5JjJNe5b1sZSxVFLc6DTb5NSsIruNSqyD7p6g9DVqo4YY7eFIYUCRoMKo6CpK+6pqSilN3fU8eVr6bBRRRViCoV/wCP2X/rmn82qaoV/wCP2X/rmn82oAmooooAhs/+PK3/AOua/wAqmqGz/wCPK3/65r/KpqACszX9JXWtGnsiQHYbomP8LjkGtOiplFSi4vZlQnKElKO6PCWV43eOVCkqMUdD1Vh1FANd1458Ns5bWbKMswH+lRqOWA/jHuO/t9K4MEMAQcg9DXxGNwksNVcHt0PvsFi4Yqkpx36rszGhP9meKZojxBqSeanoJVGGH4jB/Ct4GsrWrB7+wxA2y6hYS27+jjp+B6fjUulaimp2CXCqUflZIz1RxwVP41lUXPBVF00f6fh+RVNck3TfXVfr+P5mlupd1RZpd1c9jexJmjdUe6jdSsKxi6hbT6Vevq+nxl0f/j8tl/5aD++o/vD9RWra3kF9ax3NvIJIpBlWFSbqwLq3n0O6k1CwjaSzkO66tU6g95EHr6jvXTG1Vcr+Jbefl/l9xzuLovmXwvfy81+v3m+TSE1Ba3UF7bJcW8iyROMqy1NWLTTszqi01dCMwVSx6CvVvBuitpGjB5123dyfNlB6r/dX8B+ua5TwV4cOpXSapdp/ocLZhUj/AFrjv/uj9T9K9Nr6fJ8E6cfbzWr29D5fPMcpv6vB6Lf/ACCiiivdPnQrn9c/4/U/65j+ZroK5/XP+P1P+uY/maANqz/48rf/AK5r/Kpqhs/+PK3/AOua/wAqmoAKKKKACiiigArn/EngzRvFEY+325W4UYS4iO2Rfx7j2Oa6CilKKkrMDxbUfgvqUTsdN1O2nTss6mNvzGR/KsKf4W+LoD8unwze8Vwv9cV9DUVyywVJ9CuZngejfDDxPc6hHDfW4sbQ5MkzOkhXjsobk5rtdM+DWh2dytze3l5eThtwIfylB7fd5/WvR6KunhaUNUhOTYgAVQB0AxzS0UV0CCiiigAooooAKKKKACoV/wCP2X/rmn82qaoV/wCP2X/rmn82oAmooooAhs/+PK3/AOua/wAqmqGz/wCPK3/65r/KpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoV/4/Zf+uafzapqhX/j9l/65p/NqAJqKKKAIbP8A48rf/rmv8qmqGz/48rf/AK5r/KpqACiiigA61514q8GvbPJqOkxF4SS0tsg5Q92QenqPyr0WiufE4aniIck0dWExdTC1Oem/+CeDqwYZByKwr9H0XUG1aBC1pLgXsSjp6SAeo7+1e2a/4Js9Vd7q0YWl4eSwHySH/aHr7jn6159qejajpDFb+0ZI+nmqN0bfj2/HFfL18BWwkm7c0f0/Q+soY+hjYpJ8s1+f6mfFLHPEksTq8bjcrKcgin1zzRT+HZGns0a40lzukgTloD3ZPVfUdq27W7t763S4tpVliccMprgqUuVc0dY/1o/M76dXmfLLSS6fqvImooorI3CiirFhYXmqS+XYWslwc4LKMIv1Y8CqhTlUfLBXZE5xguaTsjm7rT7jTLiTUNJAKud1xZk4WT1Zf7rfoa7nwd4bk8TQQ6jdRTW+mnny5VKSSkdsdl9+/aum0LwFBaslzqzJczjlYV/1aH3/ALx+vHtXaAADAGAK+mweWN2niVqv617ny+NzVRbhhXo9/wDgf16DIoo4YkiiRUjQBVVRgAelPoor3D54KKKKACuf1z/j9T/rmP5mugrn9c/4/U/65j+ZoA2rP/jyt/8Armv8qmqGz/48rf8A65r/ACqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqFf+P2X/rmn82qaoV/4/Zf+uafzagCaiiigCGz/wCPK3/65r/Kpqhs/wDjyt/+ua/yqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqFf+P2X/AK5p/NqmqFf+P2X/AK5p/NqAJqKKKAIbP/jyt/8Armv8qmqGz/48rf8A65r/ACqagAooooAKKKKACkZQylWAIPUGlooAwr3wdoV8xd7FYpD1eAmM/pxXJXHwc0+O/wDtuk6teWMjMDLHtV45B3yuBz716VRWEsNRle8VqdEcXXiklN6Hnx+Gs+eNZXH/AF7f/ZVZg+G1uP8Aj41S4f2jRU/nmu4orBZbhU78iOl5tjGrc/5f5HO2fgjQbRgxtDcOO9w5f9On6V0EcccMYjiRUQdFUYAp1FdcKUKatBJHHUrVKrvUk36hRRRVmQUUUUAFFFFABXP65/x+p/1zH8zXQVz+uf8AH6n/AFzH8zQBtWf/AB5W/wD1zX+VTVDZ/wDHlb/9c1/lTpBMW/dyRqMdGQn+ooAkoqHbdf8APaH/AL9H/wCKo23X/PaH/v0f/iqAJqKh23X/AD2h/wC/R/8AiqNt1/z2h/79H/4qgCaiodt1/wA9of8Av0f/AIqjbdf89of+/R/+KoAmoqHbdf8APaH/AL9H/wCKo23X/PaH/v0f/iqAJqKh23X/AD2h/wC/R/8AiqNt1/z2h/79H/4qgCaiodt1/wA9of8Av0f/AIqjbdf89of+/R/+KoAmoqHbdf8APaH/AL9H/wCKo23X/PaH/v0f/iqAJqKh23X/AD2h/wC/R/8AiqNt1/z2h/79H/4qgCaiodt1/wA9of8Av0f/AIqjbdf89of+/R/+KoAmqFf+P2X/AK5p/NqlGdo3EE45IGKiX/j9l/65p/NqAJqKKKAIbP8A48rf/rmv8qmqGz/48rf/AK5r/KnSCYt+7kjUY6MhP9RQBJRUO26/57Q/9+j/APFUbbr/AJ7Q/wDfo/8AxVAE1FQ7br/ntD/36P8A8VRtuv8AntD/AN+j/wDFUATUVDtuv+e0P/fo/wDxVG26/wCe0P8A36P/AMVQBNRUO26/57Q/9+j/APFUbbr/AJ7Q/wDfo/8AxVAE1FQ7br/ntD/36P8A8VRtuv8AntD/AN+j/wDFUATUVDtuv+e0P/fo/wDxVG26/wCe0P8A36P/AMVQBNRUO26/57Q/9+j/APFUbbr/AJ7Q/wDfo/8AxVAE1FQ7br/ntD/36P8A8VRtuv8AntD/AN+j/wDFUATUVDtuv+e0P/fo/wDxVG26/wCe0P8A36P/AMVQBNUK/wDH7L/1zT+bVKM7RuIJxyQMVEv/AB+y/wDXNP5tQBNRRRQBDZ/8eVv/ANc1/lU1Q2f/AB5W/wD1zX+VOkExb93JGox0ZCf6igCSiodt1/z2h/79H/4qjbdf89of+/R/+KoAmoqHbdf89of+/R/+Ko23X/PaH/v0f/iqAJqKh23X/PaH/v0f/iqNt1/z2h/79H/4qgCaiodt1/z2h/79H/4qjbdf89of+/R/+KoAmoqHbdf89of+/R/+Ko23X/PaH/v0f/iqAJqKh23X/PaH/v0f/iqNt1/z2h/79H/4qgCaiodt1/z2h/79H/4qjbdf89of+/R/+KoAmoqHbdf89of+/R/+Ko23X/PaH/v0f/iqAJqKh23X/PaH/v0f/iqNt1/z2h/79H/4qgCauf1z/j9T/rmP5mt8Z2jcQTjkgYrA1z/j9T/rmP5mgDas/wDjyt/+ua/yqaobP/jyt/8Armv8qmoAKKKKACiisLxjeXmn+EtRu7CVYp4oiQ7LnA6HHPX0NAG7RXFS+I9cRru3txYPJptgl1dSTI4ExYFgqAN8vA6knntTrbxPq+r6j5OnRWUEB02G+3XCOzKXB+XAYZ7enQ+vAB2dFcDoniPXJtJ8PWnmWs1/qiyyi4njbakaDOCA3zNk9iBjtT7XxPe6jquggwBZmmvoJ44pXCO8ScY5AIJ/vA47etAHd0Vwlr421CC2vpdVt4Ip7e0e4FmYJYZQwPQFsq68/eBH0rV8M+INQ1W6kgvbb5PISZJ47WWFMnhk/edSODkcEGgDpqK5G78TanZ+JTZ3MEFpYmdIopJ4ZSJlbHIlXKq2TwpH4isnTvEOs2LzTSNFcWMniCSxbzndpVDPgbTnAVfT+VAHolFcVp3jK/1DWUjSy3WT3r2pVLaUvGq5AkaTGzGRyvUZ61m+ENTv7m88NLPfXMomtLxpRJKzbysxClsnkgcDPSgD0eiiigAooooAKhX/AI/Zf+uafzapqhX/AI/Zf+uafzagCaiiigCGz/48rf8A65r/ACqaobP/AI8rf/rmv8qmoAKKKKACiiigAooooAKK57WNY1GPXrbRtKS1FxJbPcvLdBigVSAFAUjkk9c8D1qtFr2r3HiaDTEisEiFjHeXDAtIR85VlQggHpwcfn0oA6qiuEg8Ya1PZabfrbWP2fVXkhtYgGMkTgNsLnOGBK8gYxnrVYfEW58sXRt7f7J9g3FsNn7Z5Rl2dfu4GMdfegD0SiuDu/FfiG2Gsn7Pp2dJt7aaZWVwXLpudR83HOcHtgdetdxBKJ7eOYDAkQMAe2RmgCSiiigAooooAKKKKACoV/4/Zf8Armn82qaoV/4/Zf8Armn82oAmooooAhs/+PK3/wCua/yqaobP/jyt/wDrmv8AKpqACiiigAooooAKKztfkkh8OapLE7JIlpKyupwVIQ4IPY1ymk+KNTsbbS4tTazeG50n7VFMzuGVkRSfNY5znOSQOvrQB3lFcJaeMtZnTUYYrGG9vIbOO6gEEEsQcM2CNsmGYAcgjG7HFVdT8U3s2iJM1zie21O2WRLSKWGUoTko0bc84IwCQaAPRaK4VvGt8dJ0y5WO2Eup3MiRBYZJfs8a5yHVTud+OQMD8s0kPiDXb/W/DceEs0uWuRcQyW7rv8vqwDEHBUgrkcHrnpQB3dFedaB4k1ey0/S5rySG5srvUpLItI7NOpLvtbcTjaMYxjoOvpPF4yvrueS1c2zRXVncywTWscyeWUBxiRwBJx3UDBoA76iuE8K6he3GvaPHPd3EqSeHUmdXkLBpPMA3kE8tjv1ru6ACiiigAooooAK5/XP+P1P+uY/ma6Cuf1z/AI/U/wCuY/maANqz/wCPK3/65r/KpqqwzRW8CQyyLGyKF+c4zjuKk+2Wv/PzD/32KAJqKh+2Wv8Az8w/99ij7Za/8/MP/fYoAmqC8s7fULOa0uohLbzKUkQ9waX7Za/8/MP/AH2KPtlr/wA/MP8A32KAMqbwjodwkSS2RYRReSD50mWTOdrHdlh7Nmr0Ok2MF9JeRW6pPJCsDEE48tei7egAz6VP9stf+fmH/vsUfbLX/n5h/wC+xQBlL4S0NLGKyWyKwQyGSICaQNGxGDtbduUH0BxU8fhzSIhZBLGNVshIIFBOFDjD5GfmyOuc1e+2Wv8Az8w/99ij7Za/8/MP/fYoAzbXwto1mX8qy3BojBiWR5AIz1RQxIUH0GKn0zQtO0cubGAxs6hSWkdztHQAsTgD0HFW/tlr/wA/MP8A32KPtlr/AM/MP/fYoAz5fDOkTX5vJLTMrSCZh5rhGcYwxTO0ngckdqd/wjmleSYfsv7s3n27HmN/rs53dfXt09qvfbLX/n5h/wC+xR9stf8An5h/77FAFGPw5pMOpHUI7QLcGQy5Ejbd54LbM7dx9cZosvDmlac9o9pa+W1ojxwHzGOxXbcw5POT61e+2Wv/AD8w/wDfYo+2Wv8Az8w/99igCaioftlr/wA/MP8A32KPtlr/AM/MP/fYoAmoqH7Za/8APzD/AN9ij7Za/wDPzD/32KAJqhX/AI/Zf+uafzaj7Zbf8/EP/fYoi+eeSYfcZVUH1xnn9aAJqKKKAIbP/jyt/wDrmv8AKpqqwzRW8CQzSLGyKF+c4zjuKk+2Wv8Az8w/99igCaioftlr/wA/MP8A32KPtlr/AM/MP/fYoAmoqH7Za/8APzD/AN9ij7Za/wDPzD/32KAJqKh+2Wv/AD8w/wDfYo+2Wv8Az8w/99igCpqmhabrJia+tvMaIEI6yMjAHqMqQcHuOlOtdF06yvFura1WKZbdbVSpIAiByFAzjr3xmrP2y1/5+Yf++xR9stf+fmH/AL7FAGfa+GdGsr9b23sVSdSzJ87FYy33iqk7VJ9gKi/4RDQfsJsv7PX7Mbn7WU3t/rf73XP4dPatX7Za/wDPzD/32KPtlr/z8w/99igCnPoGmXLaiZbbcdRRUuv3jDzAowo68YB7YrQjjWKJI0GEQBVHoBUf2y1/5+Yf++xR9stf+fmH/vsUATUVD9stf+fmH/vsUfbLX/n5h/77FAE1FQ/bLX/n5h/77FH2y1/5+Yf++xQBNRUP2y1/5+Yf++xR9stf+fmH/vsUATVCv/H7L/1zT+bUfbLb/n4h/wC+xRF888kw+4yqoPrjPP60ATUUUUAQ2f8Ax5W//XNf5VNVWGaK3gSGaRY2RQvznGcdxUn2y1/5+Yf++xQBNRUP2y1/5+Yf++xR9stf+fmH/vsUATUVD9stf+fmH/vsUfbLX/n5h/77FAC3NvFeWs1tOu+GZGjkXJGVIwRkc9KybfwhoNssix6eu2SD7Mwd3cCPuoyTgfTHPNav2y1/5+Yf++xR9stf+fmH/vsUAY48GaAB/wAeBP7ryiWnkJKgggElucEDBPIwMYqZPC2jpHs+yM2Z0uC7zOzs6fcJYsScehOK0vtlr/z8w/8AfYo+2Wv/AD8w/wDfYoAzpPC+jypMjWeBLcfam2yupEpGC6kH5Se+3Gad/wAI3pG2xAtNv2Fy9uVkcFCepyDk575znvV/7Za/8/MP/fYo+2Wv/PzD/wB9igDKtvCGhWdxFPDYAPEzOm6R2UM2cttJIzz1xmmReDNAh8ry7Er5QYIRPJlQwIKj5vu8n5enPStj7Za/8/MP/fYo+2Wv/PzD/wB9igCpZ6FpthcwXFtbeXLBaizjbex2xA5C8nnkdevvWjUP2y1/5+Yf++xR9stf+fmH/vsUATUVD9stf+fmH/vsUfbLX/n5h/77FAE1FQ/bLX/n5h/77FH2y1/5+Yf++xQBNXP65/x+p/1zH8zW19stv+fiH/vsVQvbF9QnE0bAIF2gnv7/AK0Af//Z
closed choice
grade4
natural science
physics
Materials
Compare properties of objects
An object has different properties. A property of an object can tell you how it looks, feels, tastes, or smells. Properties can also tell you how an object will behave when something happens to it. Different objects can have properties in common. You can use these properties to put objects into groups. Grouping objects by their properties is called classification.
Look at each object. For each object, decide if it has that property. An opaque object does not let light through. All three objects are opaque. A slippery object is hard to hold onto or stand on. The tortoise shell and the basketball are not slippery. A shiny object reflects a lot of light. You can usually see your reflection in a shiny object. The crown is shiny, but the basketball is not. The property that all three objects have in common is opaque.
test
เงาแวววาว
ลื่น
ทึบแสง
5
null
null
4
ลองพิจารณาแรงแม่เหล็กระหว่างแม่เหล็กในแต่ละคู่ ข้อความใดต่อไปนี้เป็นจริง
C
รูปภาพด้านล่างแสดงคู่แม่เหล็กสองคู่ แม่เหล็กในแต่ละคู่ไม่ส่งผลกระทบต่อกัน แม่เหล็กทั้งหมดที่แสดงทำจากวัสดุเดียวกัน แต่บางอันมีขนาดและรูปร่างที่แตกต่างกัน
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACrAj8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8/wDigunPL4VXVrb7TYHVv30PkNNuHkS/wKCW5x0Bqt4fgsrPxbLf+GdMuNM0GLTZPtn2iCSzt5ZtylCqSKCCAHy4XAB712OtaF/a+oaLdfafK/sy8+1bdm7zP3bptzkY+/nPPSrmradFrGj32mTsyw3lvJbyFDghXUqce+DQBxOgeOtRvfEGkWN59luINUSQxyW2n3UCRsib/lllG2ZSARlcdjjFVNA8S6xPbeGtM0ey0m0XULe9mfMTmOHypgMqofJzuORnqQc4GDtReC9VN/oV9deIUmuNGbbCq2OyNojGUcMu/O8gj5s4GOF5OZtC8E/2Lc6LN/aHnf2ZbXUGPJ2+Z50ivn7xxjbjHOc9qAOi1OwGp6dLZtc3FusuA0lu+x9uQSA3UZAIyOcE4IPNc18L4kg8AWUMa7Y47i7VRnOALmUCul1OG/nsXj028htLokbZprczKBnn5Qy5496w/B3hzVfDNkbG71m2v7RTI8ax2JhZXeRnYlvMbIyx4wKAOnooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArwbQ7Pwvc/D9kg8P3tx4ndbgQ3Fnps4k87zH8thOFCjHy87sDHPTFe81j+FtC/4Rrw7baT9p+0+QZD5uzZu3Oz9Mnpux17UAc3qfiPW9JbT9LW6sWv00+OW5H2G5vZXl6H5IB8iEg/OSc88cVUHjBr86HrUOnWqz3Ph68vlaUFniZPKOwEEfKSeeMnA6V0V54Xu5PEN7qdhq5s01CCKC8j+zh3Ij3YMb7hsOHI5DDvisqw+HclnZWVo+rrJHZabd6bCRa7T5c2zaT85yV2e2c9qAN7wpfarqugWupaqLRHvIo54orZGHloyg4YknJ57Yx05xk8f4v8PadFctFYtPd+MNSuhPZ3DOTLaIHGWyMbIUUEY79OSa9A0iw/srRbHTvM837LbxweZt27tqhc45xnHSuWt/CXiSx1fVNQs/EuniW/nMjPPpLSSKg4SPd54+VRwBgdz1JoA7WigZwM8migAooooAKKKKACiiigAooooAKKKKACiiigDPiuL66TzYEt1iJO3zM5P5U//iZ/9On/AI9RpP8AyDIf+Bf+hGuW1/xjqGla3cWUENq0ce3BdWJ5UHsw9a2oYedeXLDc5cXjKWEgqlXZux1P/Ez/AOnT/wAeo/4mf/Tp/wCPVwn/AAsHVv8An3sv++H/APiqP+Fg6t/z72X/AHw//wAVXX/ZeI7L7zz/AO38H3f3Hd/8TP8A6dP/AB6j/iZ/9On/AI9XCf8ACwdW/wCfey/74f8A+Ko/4WDq3/PvZf8AfD//ABVH9l4jsvvD+38H3f3Hd/8AEz/6dP8Ax6j/AImf/Tp/49XCf8LB1b/n3sv++H/+Ko/4WDq3/PvZf98P/wDFUf2XiOy+8P7fwfd/cd3/AMTP/p0/8eo/4mf/AE6f+PVwn/CwdW/597L/AL4f/wCKo/4WDq3/AD72X/fD/wDxVH9l4jsvvD+38H3f3Hd/8TP/AKdP/HqP+Jn/ANOn/j1cJ/wsHVv+fey/74f/AOKo/wCFg6t/z72X/fD/APxVH9l4jsvvD+38H3f3Hd/8TP8A6dP/AB6j/iZ/9On/AI9XCf8ACwdW/wCfey/74f8A+Ko/4WDq3/PvZf8AfD//ABVH9l4jsvvD+38H3f3Hd/8AEz/6dP8Ax6j/AImf/Tp/49XF2HjrU7rUba3eC0CSyojFUbOCQOPmr0GuavhqlBpT6ndg8dRxacqXQpf8TP8A6dP/AB6j/iZ/9On/AI9V2iuc7Cl/xM/+nT/x6j/iZ/8ATp/49V2igCl/xM/+nT/x6j/iZ/8ATp/49V2igCl/xM/+nT/x6j/iZ/8ATp/49V2qGrammk2YuXjaQFwuFOOuf8Kmc4wi5S2RUISnJRjux3/Ez/6dP/HqP+Jn/wBOn/j1YP8AwnNv/wA+Uv8A30KP+E5t/wDnyl/77Fcv9oYb+f8AM7P7NxX8n5G9/wATP/p0/wDHqP8AiZ/9On/j1YH/AAnMH/PlJ/32P8KP+E5h/wCfGT/v4P8ACl/aGG/m/MP7NxX8n5f5m/8A8TP/AKdP/HqP+Jn/ANOn/j1c/wD8JzD/AM+L/wDfwf4Uf8JzF/z4P/38H+FH9o4b+b8H/kH9m4r+T8V/mdB/xM/+nT/x6j/iZ/8ATp/49WAvjmA/fspB9HBq3b+MtMlYLIJofd0yP0Jqo47Dy2miZZfiY6uDNT/iZ/8ATp/49R/xM/8Ap0/8eqa2vLa8TdbTxyjvsbOPrU9dSaaujkacXZlL/iZ/9On/AI9R/wATP/p0/wDHqu0UxFL/AImf/Tp/49TZJdRhjaV1tmVRkhd2cVfqG8/48rj/AK5t/KgCSNxLEkg6MoYfjVP7Rdzyyi2SEJGxQmTPJHXpViz/AOPK3/65r/KoNO/5e/8Ar5f+lAB/xM/+nT/x6j/iZ/8ATp/49WN4i8RXekahHb28cDI0QcmRSTnJHYj0rI/4TbUv+eFp/wB8N/8AFVw1MxoU5uEr3R6FLLa9WCnG1n5nYf8AEz/6dP8Ax6j/AImf/Tp/49XH/wDCbal/zwtP++G/+Ko/4TbUv+eFp/3w3/xVZ/2rh+7+4v8AsjE9l952H/Ez/wCnT/x6j/iZ/wDTp/49XH/8JtqX/PC0/wC+G/8AiqP+E21L/nhaf98N/wDFUf2rh+7+4P7IxPZfedh/xM/+nT/x6j/iZ/8ATp/49XH/APCbal/zwtP++G/+Ko/4TbUv+eFp/wB8N/8AFUf2rh+7+4P7IxPZfedh/wATP/p0/wDHqP8AiZ/9On/j1cf/AMJtqX/PC0/74b/4qj/hNtS/54Wn/fDf/FUf2rh+7+4P7IxPZfedh/xM/wDp0/8AHqP+Jn/06f8Aj1cf/wAJtqX/ADwtP++G/wDiqP8AhNtS/wCeFp/3w3/xVH9q4fu/uD+yMT2X3nYf8TP/AKdP/HqP+Jn/ANOn/j1cf/wm2pf88LT/AL4b/wCKpyeNdSZ1BgtOTj7jf/FU/wC1MP3f3B/ZOJ7L7zrv+Jn/ANOn/j1H/Ez/AOnT/wAeq7RXonmFL/iZ/wDTp/49R/xM/wDp0/8AHqu0UAUv+Jn/ANOn/j1H/Ez/AOnT/wAeq7RQBS/4mf8A06f+PUf8TP8A6dP/AB6rtFAFL/iZ/wDTp/49R/xM/wDp0/8AHqu0UAUv+Jn/ANOn/j1H/Ez/AOnT/wAeq7RQBS/4mf8A06f+PUf8TP8A6dP/AB6rtFAFL/iZ/wDTp/49R/xM/wDp0/8AHqu0UAUv+Jn/ANOn/j1Ry3l1Z7XukhMbHGYs5B/GtGszXP8AjyT/AK6D+RoAm0n/AJBkP/Av/QjXmvjL/ka73/gH/oC16VpP/IMh/wCBf+hGvNfGX/I13v8AwD/0Ba9TKP479P1R8/xH/usf8S/JmFRRRX0R8WFFFFABV3TEtZLhxdFP9WTGJGKoz8YDEcgYz6dqpVPbXJtmc+VFKrrtZJFyCOvbBHTqCKmabi0i6TUZpssanb+T5LfZEg3g/NFL5kb4PVTk/jyfwqhVm6vWuY4ohFHDDESUjjzgE4yckkk8Dv2qtSppqPvDrOLm3Hb+vT8goooqzMKKKKALuj/8huw/6+Y//QhXs9eMaP8A8huw/wCvmP8A9CFez14OcfHH0PruGv4VT1QUUUV459MFFFFABRRRQAVz3jP/AJAa/wDXZf5GuhrnvGf/ACA1/wCuy/yNcuN/3efodeB/3mHqef1vXGm2v9qv5EZ+zK0kbJuJ2OqsRz1wcA/mO1YNXo9WuI7u5uAsebjdvUg7ee457Z4r5elKC0muqPq60ZvWD6Mo0UUVibhRRRQAUUUUAPjlkhkEkTsjjoynBFdPpPjGaIrFqI82Pp5qj5h9R3/z1rlaK2o4ipRd4Mwr4alXjaornrtvcQ3UKzQSLJG3RlNSV5ho+s3GkXG6M7oWP7yInhv8D716PZXkF/apc277kcfiD6H3r6XB42OIVtpLofL43Azw0r7xfUsVDef8eVx/1zb+VTVDef8AHlcf9c2/lXacIWf/AB5W/wD1zX+VQad/y9/9fL/0qez/AOPK3/65r/KoNO/5e/8Ar5f+lAHH+Nv+QzD/ANe6/wDoTVzddJ42/wCQzD/17r/6E1c3XyWO/wB4n6n2WA/3aHoFFFFch1hRRRQBc0uOGW/VbiPzIgkjsmSM4QnqPpU01jHBa3Tj51BjaGT1Rt3+GD6EGqVvO1tL5iAE7WTn0ZSp/Q1KL+b+zjYkKYi4cEj5h7A+lbQlDktJa6/kYTjNzvF6afmVaKKKxNwooooAKdH/AK1P94U2nR/61P8AeFNbg9j1+iiivtz4IKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszXP+PJP+ug/ka06zNc/48k/66D+RoAm0n/kGQ/8AAv8A0I15r4y/5Gu9/wCAf+gLXpWk/wDIMh/4F/6Ea818Zf8AI13v/AP/AEBa9TKP479P1R8/xH/usf8AEvyZhUUUV9EfFhRRRQAUUUUAFFFFABRRRQAUUUUAXdH/AOQ3Yf8AXzH/AOhCvZ68Y0f/AJDdh/18x/8AoQr2evBzj44+h9dw1/CqeqCiiivHPpgooooAKKKKACori2gu4/LuIklTOdrjIzUtFJpNWY02ndFD+xNL/wCfC3/79ij+xNL/AOfC3/79ir9FR7Gn/KvuNPb1f5n95Q/sTS/+fC3/AO/Yo/sTS/8Anwt/+/Yq/RR7Gn/KvuD29X+Z/eUP7E0v/nwt/wDv2KP7E0v/AJ8Lf/v2Kv0Uexp/yr7g9vV/mf3mc+gaU4wbCEf7ox/Ksu+8GWUwLWjvbv2Uncv68/rXS0VnPCUJq0oo0p4yvTd4zZ5XqOk3mly7LmLCn7rryrfQ1Sr124t4rqB4Z0DxuMFTXnGvaK+kXmFy1vJzG5/kfevBx2Xuh78NY/kfQYDMViPcnpL8zJra8N6wdLvgkjf6LMQHz0U9m/z2rForhpVJUpqcd0ehVpRqwcJbM9hqG8/48rj/AK5t/KsrwtqBvtHRXbMsB8tvcdj+X8q1bz/jyuP+ubfyr7ClUVWCmup8VWpOlUcJdAs/+PK3/wCua/yqDTv+Xv8A6+X/AKVPZ/8AHlb/APXNf5VBp3/L3/18v/StDM4/xt/yGYf+vdf/AEJq5uuk8bf8hmH/AK91/wDQmrm6+Sx3+8T9T7LAf7tD0CiiiuQ6wooooAKKKKACiiigAooooAKdH/rU/wB4U2nR/wCtT/eFNbg9j1+iiivtz4IKKKKACiiigAooooAxfFV5cWGgTXFrKY5VZQGABxkj1rj9M17WLxJy19cSyR7dlvEUV3znJBKnpxwAetdh4qs7i/0Ca3tYjJKzKQoIGcEetcPbeGdURHS50aWVWIIZJlRlx6HkY/CvYwKoug+e179bX6dz5nNXili06fNy26XtfXsn+Ql94k1iG5Mcd7eR4A3RzooZT3HTn64H0qr/AMJRrZ/5iMv6f4Vdv9A1y9eLGmSIkMYiQNKrNgEnk55PJqp/wieuf9A9/wDvpf8AGvRh9V5Vflv8jxqqzDnfLz2/7eGDxPrYOf7Rm/Srtr441mBh5kkVwvpJGB+oxVX/AIRTXP8AoHv/AN9L/jWddWN3ZNturaWE9t6EZq/Z4WpolF/cZOtj6HvSc163/U9F0fxrY6i6w3K/ZJzwNzZRj9e34109eF12nhDxQ8MqabfykxN8sMjH7h/uk+np6fy83GZaoxc6P3f5HuZZnrnJUsT12f8AmegVma5/x5J/10H8jWnWZrn/AB5J/wBdB/I14p9QTaT/AMgyH/gX/oRrzXxl/wAjXe/8A/8AQFr0rSf+QZD/AMC/9CNea+Mv+Rrvf+Af+gLXqZR/Hfp+qPn+I/8AdY/4l+TMKiiivoj4sKKKKACiiigAooooAKKKKACiiigC7o//ACG7D/r5j/8AQhXs9eMaP/yG7D/r5j/9CFez14OcfHH0PruGv4VT1QUUUV459MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVDWNPXU9MltyBvxujPow6f4fjV+ipnBTi4y2ZUJuElKO6PHyCCQQQR1BpK0degFvrt5GOnmFvz5/rWdXxlSHJJxfQ+5pz54Ka6o6TwXdGLVpLcn5Z4+nuOR+ma7e8/48rj/rm38q828PyeVr9k3rIF/Pj+tek3n/AB5XH/XNv5V9DlM70HHsz5rOIKNdSXVBZ/8AHlb/APXNf5VBp3/L3/18v/Sp7P8A48rf/rmv8qg07/l7/wCvl/6V6h5Jx/jb/kMw/wDXuv8A6E1c3XSeNv8AkMw/9e6/+hNXN18ljv8AeJ+p9lgP92h6BRRRXIdYUUUUAFFFFABRRRQAUUUUAFOj/wBan+8KbTo/9an+8Ka3B7Hr9FFFfbnwQUUUUAFFFFABRRRQAUUUUAFFFFABUc0EVxE0U0ayRsMFXGQakooTtqhNJqzPMvFXhj+yHF3aZNm7YKnkxn0+lcxXtWo2aahp1xaSAbZUK89j2P4HBrxYgqxBGCDgivpctxMq1Nqe6Phs7wMMLWUqatGX4Pqes+FtUOq6HFJI2Zoj5Uh9SO/4jFT65/x5J/10H8jXKfDu4IuL62zwyLIB9Dj+orq9c/48k/66D+RrxMbSVKvKK2PqsrxDr4SE5b7fdoTaT/yDIf8AgX/oRrgfFcaN4luyVBPyf+gLXfaT/wAgyH/gX/oRrg/FP/IyXf8AwD/0Ba8PNKs6dFODad+mnRn0eVUadWs41IqSt1V+qMTyY/7g/KjyY/7g/Kn0V4X1zE/8/Jfez3/7Pwn/AD6j/wCAr/IZ5Mf9wflR5Mf9wflT6KPrmJ/5+S+9h/Z+E/59R/8AAV/kM8mP+4Pyo8mP+4Pyp9FH1zE/8/Jfew/s/Cf8+o/+Ar/IZ5Mf9wflR5Mf9wflT6KPrmJ/5+S+9h/Z+E/59R/8BX+QzyY/7g/KjyY/7g/Kn0UfXMT/AM/Jfew/s/Cf8+o/+Ar/ACGeTH/cH5UeTH/cH5U+ij65if8An5L72H9n4T/n1H/wFf5FjS4oxq9lhB/r0/8AQhXrNeU6X/yFrL/run/oQr1avayqrUqQk5yb9Xc8PNqFKjOKpRUb9lYKKKK9U8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio5547a3knlbbHGpdj6Ac0JX0Qm0ldnmHiy8k/4Se8CMu0FR90HoozWL9sm/vL/wB8L/hRe3LXl9PcuMNLIzkemTmoK+op5fhlBKVOLfXRH5/WzbGSqScK0kruy5nt95r6FcTSa9YIWXBuEzhB6j2r1e8/48rj/rm38q8w8G2xuPE1ucZWINI34DA/UivT7z/jyuP+ubfyryMypUqVRRpRS06Kx9NkVavWoSnWm5a6XbfTzCz/AOPK3/65r/KoNO/5e/8Ar5f+lT2f/Hlb/wDXNf5VBp3/AC9/9fL/ANK849s4Xx+7Lr0AViB9mXp/vNXK+bJ/fb866n4g/wDIeg/69V/9CauTr6XCYWhKhGUoJu3ZHwmZY3EwxdSMKkkk+jY/zZP77fnR5sn99vzplFdH1PDf8+4/cjh/tDF/8/Zf+BP/ADH+bJ/fb86PNk/vt+dMoo+p4b/n3H7kH9oYv/n7L/wJ/wCY/wA2T++350ebJ/fb86ZRR9Tw3/PuP3IP7Qxf/P2X/gT/AMx/myf32/OjzZP77fnTKKPqeG/59x+5B/aGL/5+y/8AAn/mP82T++350ebJ/fb86ZRR9Tw3/PuP3IP7Qxf/AD9l/wCBP/Mf5sn99vzp0cshlT52+8O9RU+L/XJ/vCh4PDW/hx+5DWYYu/8AFl/4E/8AM9xooor5I/SAooooAKKKKACiiigAooooAKKKKACiiigBGYKpZjgAZJryGYpJNI4jTDMT9wetd54r1hLOyayibNxMuGx/Cvf8+lcDXiZljakJqFGbVt7O35Hu5bl9KrTdSvBSvtdJ/mdP4HjH9p3DhVGIccKB1Yf4V0+uf8eSf9dB/I1m+DLIwabJdOuGnb5f90f/AF81pa5/x5J/10H8jXo4J1JUIyqttvvqeZjYUoV5RoxUYrolZeexNpP/ACDIf+Bf+hGuD8U/8jJd/wDAP/QFrvNJ/wCQZD/wL/0I1wfin/kZLv8A4B/6Atcmb/wF6/oztyX/AHh+n6ox6KKK+cPpgooooAKKKKACiiigAooooAKKKKALel/8hay/67p/6EK9WrynS/8AkLWX/XdP/QhXq1e/k3wS9T53O/jh6BRRRXsniBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUc08VvC0s0ixxqMszHAFCV9EJtJXZJXDeONeXYdJtnycgzsO3ov9TSa745DI9tpIPPBuGGMf7o/qa4ZmLMWYkknJJ717eAy+SkqtVWtsj5bOM4hKDoYd3vu/0QlFFWbCxm1G+htIBmSRsfQdyfYV7Tairs+WjFykoxV2ztvh9p5S2udQdeZD5UZ9hyf1x+Vdfef8eVx/1zb+VNsbOKwsYbSEYjiUKPf3/HrTrz/jyuP+ubfyr5HE1vbVXM/SMDhvq2HjS7b+vULP/jyt/wDrmv8AKoNO/wCXv/r5f+lT2f8Ax5W//XNf5VBp3/L3/wBfL/0rA6zhPiD/AMh6D/r1X/0Jq5Ous+IP/Ieg/wCvVf8A0Jq5OvrMF/u8PQ/Os1/32p6hRRRXUcAUUUUAFFFFABRRRQAUUUUAFPi/1yf7wplPi/1yf7woew1ue40UUV8SfqYUUUUAFFFFABRRRQBV1G/i0yza6mV2RSAQgBPJx3NY/wDwmNj5Xm/Zb3y923f5a4z1xnd1qfxb/wAi9N/vJ/6EK5C1nSPR4oZ/+Pea4kV/9n5Uww9wf6jvXlYzF1KVbki7K1/xPXwWDpVaPPJXd7fhc6dvGenoQHtrxcgEZjUZB6H71J/wm2m/88Lv/vhf/iq5PWYmgu4onwWSCNSQcg/KOlZ1cFTMsRCTjdaeR6FPK8NOKlZ6+Z3h8badjiC6J91Uf+zVm33jWeWNks4BDn/lo53H8B0H61ytKFLMAoJJ6AVlPMsTNWvb0NoZXhoO/Lf1FkkeaRpJHZ3Y5LMck1f0bSZdXvREuViXmR/7o/xq7pfhW9virzqbaDuXHzH6D/Gu6sbG3062WC2jCIOvqx9Se5rXB5fOrLnqq0fzMsbmUKMeSk7y/BE0USQwpFGoVEUKoHYCs/XP+PJP+ug/ka06zNc/48k/66D+Rr6RK2h8u3fVk2k/8gyH/gX/AKEa4PxT/wAjJd/8A/8AQFrvNJ/5BkP/AAL/ANCNcH4p/wCRku/+Af8AoC15Wb/wF6/oz18l/wB4fp+qMeiiivnD6YKKKKACiitLR5/s/wBtl2BwLfDKejAugI/EZq4RUpWbsRUk4xulczaK1r+3W30qLy2LQyTs8THupVf1HIPuKyaKkHB2YU5qaugoooqCwooooAt6X/yFrL/run/oQr1avKdL/wCQtZf9d0/9CFerV7+TfBL1Pnc7+OHoFFFFeyeIFFFFABRRRQAVg+LtRu9L0Zbizl8qUzKu7aG4IPqD6VvVy/j3/kXl/wCu6/yNdGEipV4prS5xZjOUMLUlF2aRyH/CZa//AM//AP5Bj/8AiaP+Ey1//n//APIMf/xNYQGTiukuZpb37ZAktxbOkTM9lMgMSBRkhT/CeOOPxr6OpRowa9xfcv8AI+Jo4nFVE/3sr+r1/Ff5kH/CZa//AM//AP5Bj/8AiaP+Ey1//n//APIMf/xNYVFafVqH8i+5GH1/Ff8AP2X3v/M3f+Ey1/8A5/8A/wAgx/8AxNH/AAmWv/8AP/8A+QY//iawqKPq1D+Rfcg+v4r/AJ+y+9/5m0/i3XZBg6gw/wB1FH8hWbdX13etuurmWYjp5jk4qvRVxo04axil8jOpia1RWnNv1bYUUVZsdPutSuBBaQNK564HA9ye1W2oq7MoxlN8sVdldEaR1RFLMxwFAySa9R8KeHRo1qZ7gA3so+b/AGF/uj+v/wBak8O+FINGAuJys14R97Hyx/7v+NdHXz+Px/tf3dPb8z7LKModB+3r/F0Xb/ghUN5/x5XH/XNv5VNUN5/x5XH/AFzb+VeUfQhZ/wDHlb/9c1/lUGnf8vf/AF8v/Sp7P/jyt/8Armv8qg07/l7/AOvl/wClAHCfEH/kPQf9eq/+hNXJ11nxB/5D0H/Xqv8A6E1cnX1mC/3eHofnWa/77U9QooorqOAKKKKACiruku0WpRyLbtOUDEovXG08j3HX8Kt6i0l1pi3IvZ7mFJtmLlP3isQTgNk5HHr6cVnKpaSibQo81Nzvr2/p/lcx6KKK0MQooooAKfF/rk/3hTKfF/rk/wB4UPYa3PcaKKK+JP1MKKKKACiiigAooooAiuLaG7hMNxGskZ6q3SqX/CP6T/z4xflWlRUSpQk7ySZpGrUgrRk18zN/4R/Sf+fGL8qP+Ef0n/nxi/KtKip9hS/lX3Ir6xW/nf3szRoGlA5FhD+IzVuCztbb/UW0MX+4gX+VT0VUaUI6xikTKrUlpKTfzCiiirMwrM1z/jyT/roP5GtOszXP+PJP+ug/kaAJtJ/5BkP/AAL/ANCNcH4p/wCRku/+Af8AoC13mk/8gyH/AIF/6Eau1yYzC/WYKF7a3OzBYr6rUc7X0sePUV7DRXnf2N/f/D/gnp/25/07/H/gHj1Few0Uf2N/f/D/AIIf25/07/H/AIB49TldkDBWIDDDAHqOuD+Qr1+ij+xv7/4f8EX9t/8ATv8AH/gHkJlkMSxGRjGpJCE8An2plew0Uf2N/wBPPw/4If23b/l3+P8AwDx6ivYaKP7G/v8A4f8ABH/bn/Tv8f8AgHj1Few0Uf2N/f8Aw/4If25/07/H/gHlOl/8hay/67p/6EK9Woor0MHhPq0Wr3uedjcZ9akny2t53Ciiiuw4QooooAKKKKACud8aWlxe6GsVtC80nnKdqDJxg10VFaUqjpzU10McRRVelKk3ZPQ8d/4R/WP+gbdf9+zVh9N8SSQCB7fUWhHSNtxX8uletUV6Tzab3ijw1w7SW1R/geO/8I/rH/QNuv8Av2aP+Ef1j/oG3X/fs17FRT/tep/Kif8AVuj/ADv8Dx3/AIR/WP8AoG3X/fs0f8I/rH/QNuv+/Zr2Kij+16n8qD/Vuj/O/wADx9PDesv0024/Fcfzq/beCNauPvxRQD1lkH9M16jRUyzas9kkaQ4cwyd5Sb+7/I4zT/h9bxkPf3TTH/nnENq/iep/SustLK2sIBDawJDGOyjr9fWp6K4a2Jq1vjdz1cNgcPhv4UbefX7wooorA6wqG8/48rj/AK5t/KpqhvP+PK4/65t/KgAs/wDjyt/+ua/yqDTv+Xv/AK+X/pU9n/x5W/8A1zX+VQad/wAvf/Xy/wDSgDhPiD/yHoP+vVf/AEJq5OvdKK9ahmnsqahyXt5/8A+dxWQfWK0qvtLX8v8AgnhdFe6UVr/bP9z8f+Ac/wDqz/09/wDJf+CeF0V7pRR/bP8Ac/H/AIAf6s/9Pf8AyX/gnhqO0bh0YqynIZTgipLi8ubsg3NxNMV6GRy2Pzr26il/a6vf2f4/8Aa4baVvbaen/BPC6K90op/2z/c/H/gC/wBWf+nv/kv/AATwuivdKKP7Z/ufj/wA/wBWf+nv/kv/AATwunxf65P94V7jRR/bH9z8f+AC4Zt/y9/8l/4IUUUV4h9UFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZrn/Hkn/XQfyNadZmuf8AHkn/AF0H8jQBNpP/ACDIf+Bf+hGrtUtJ/wCQZD/wL/0I1doAKKKKACiiigAooooAKKKKACiiigAooooAinuYbYRmZ9okkWNeCcsTgDipazNcsZr+1t4oS4IuYnZkYKyqGySCab/Yf/UU1P8A8CP/AK1AFzUL6PTdPmvJkldIl3FIULu3oAB1JNU9I12PVbm7tGsrqyvLTYZbe6CbgrglWBRmUg7W6Hsc4pt8uoaToN2+lQz6pfgFoIZ5lyzHAA3MVGB1xkd6zfD63tla3U0uh6odQnlia4nvJbYNcEkKSvlysFVF528cdNxJyAW28V26amlpJYahHBJdGzS9eNRC03Pyj5t/UEbtu0nvS6L4kfXCkkGialDZSF9l5M0HlttJHRZS/JHHy/lWXGdWvvFfn6toGota2tyVsPLltjBGv3fPcebvZiCcDb8oOAM5NU9J8PT2+v6VNaeGo9E+ySyte3UU6Ml1GUZQi4O9wWZX+cLt28UAddcavZ2l61tczRwbYllMssyKoDPsAwW3ZLYGcYycZzxUtjqVjqcTS2F7bXcatsZ4JVkAb0JB68iuQ8X+HdR1fVZ5Le0E9vJaWsRy6gMVu0kcYJ/uAn36deK3dM0+5tvFWvXkkW22uxb+U+4fOVQhuAcjHA5oA3KiNzCLtbUv++aMyBcH7oIBOenUis/+w/8AqKan/wCBH/1qitdJmtPECXInuZ4fsrxl55Q21i6EAd+gP5UAbVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3n/Hlcf8AXNv5VNUN5/x5XH/XNv5UAFn/AMeVv/1zX+VQad/y9/8AXy/9Kns/+PK3/wCua/yqDTv+Xv8A6+X/AKUAXaKKKACiiigAooooAKKKKACiiigAooooAKiubmG0gM077IwQpOCeSQB09yKlrN16zmv9HltoAxkd4yNrBSAHUkgn2BoA0qZNKkEEk0hISNSzEAk4AyeByazf7D/6imp/+BH/ANapY7WXTbS5lhe7vpdhZIZZgSzAHCqTgDJ4yeKAKmleJodTvxZPp9/Yzvb/AGqFbtEHmxZALDazYwWXIbDDI4pmp+K7fSruaOaw1B7a3aNbm8SNfJhL4xnLBm+8M7FbGeay9AbV0e81PU/D2pNrMlsSXklthF8vK28O2ZioyerAZIyx6AGrnV7/AMQeTd+HtSudGtjHJClrNbBbiUYbdJvlVtqtjC4wSuTngUAatp4ke+1Oe0tdE1KSCC5a2lvA0AiVlxk4MocgZ7LWhe6pbafPDHcukSyJJIZXlRFRUG5idzA4x3AOO+K4+88PTza4r2XhqOyvBqiXR1mOdCGhDhnB58zLqGUpt25bOau+ONE1HWPK+wW/nbbC/hPzqvzyQ7UHJHU8e3fFAHS2eq6dqMksdlf2ty8JAlWCZXKZ/vAHjoevpVuua0/R7m08UWd0LZY7SLRltCVZcBw4IXAOeBn2rSl0fzZnk/tLUU3MW2pPgDPYDHSgC89zDHdRWzPiaVWZFweQuM8/iKlrEj0ea216zuVuLq4hSGVXaeUNsJKYwPfB/KtugAooooAKKKKACiiigArM1z/jyT/roP5GtOszXP8AjyT/AK6D+RoAm0n/AJBkP/Av5mrtc1eu9teSRwSPGmc7VYgVX+2XX/PzN/32aAOtorkvtl1/z8zf99mj7Zdf8/M3/fZoA62iuS+2XX/PzN/32aPtl1/z8zf99mgDraK5L7Zdf8/M3/fZo+2XX/PzN/32aAOtorkvtl1/z8zf99mj7Zdf8/M3/fZoA62iuS+2XX/PzN/32aPtl1/z8zf99mgDraK5L7Zdf8/M3/fZo+2XX/PzN/32aAOtorkvtl1/z8zf99mj7Zdf8/M3/fZoA62iuS+2XX/PzN/32aPtl1/z8zf99mgDraK5L7Zdf8/M3/fZo+2XX/PzN/32aAOtorkvtl1/z8zf99mj7Zdf8/M3/fZoA62iuS+2XX/PzN/32aPtl1/z8zf99mgDraK5L7Zdf8/M3/fZo+2XX/PzN/32aAOtorkvtl1/z8zf99mj7Zdf8/M3/fZoA62iuS+2XX/PzN/32aPtl1/z8zf99mgDraK5L7Zdf8/M3/fZo+2XX/PzN/32aAOtorkvtl1/z8zf99mj7Zdf8/M3/fZoA62iuS+2XX/PzN/32aPtl1/z8zf99mgDrahvP+PKf/rm38q5j7Zdf8/M3/fZqSGaaeZI5ZpHRiAVLnBoA6Oz/wCPKD/rmv8AKoNO/wCXv/r4f+lXFUKoVRgAYArB1VmtrwmF3j3jLbWIyaAN+iuS+2XX/PzN/wB9mj7Zdf8APzN/32aAOtorkvtl1/z8zf8AfZo+2XX/AD8zf99mgDraK5L7Zdf8/M3/AH2aPtl1/wA/M3/fZoA62iuS+2XX/PzN/wB9mj7Zdf8APzN/32aAOtorkvtl1/z8zf8AfZo+2XX/AD8zf99mgDraK5L7Zdf8/M3/AH2aPtl1/wA/M3/fZoA62iuS+2XX/PzN/wB9mj7Zdf8APzN/32aAOtorkvtl1/z8zf8AfZo+2XX/AD8zf99mgDraK5L7Zdf8/M3/AH2aPtl1/wA/M3/fZoA62iuS+2XX/PzN/wB9mj7Zdf8APzN/32aAOtorkvtl1/z8zf8AfZo+2XX/AD8zf99mgDraK5L7Zdf8/M3/AH2aPtl1/wA/M3/fZoA62iuS+2XX/PzN/wB9mj7Zdf8APzN/32aAOtorkvtl1/z8zf8AfZo+2XX/AD8zf99mgDraK5L7Zdf8/M3/AH2aPtl1/wA/M3/fZoA62szXP+PJP+ug/kaxftl1/wA/M3/fZq7pmbu6xcM0oUEgOxOKAP/Z
closed choice
grade8
natural science
physics
Velocity, acceleration, and forces
Compare magnitudes of magnetic forces
Magnets can pull or push on each other without touching. When magnets attract, they pull together. When magnets repel, they push apart. These pulls and pushes between magnets are called magnetic forces. The strength of a force is called its magnitude. The greater the magnitude of the magnetic force between two magnets, the more strongly the magnets attract or repel each other. You can change the magnitude of a magnetic force between two magnets by using magnets of different sizes. The magnitude of the magnetic force is smaller when the magnets are smaller.
Magnet sizes affect the magnitude of the magnetic force. Imagine magnets that are the same shape and made of the same material. The smaller the magnets, the smaller the magnitude of the magnetic force between them. Magnet A is the same size in both pairs. But Magnet B is smaller in Pair 2 than in Pair 1. So, the magnitude of the magnetic force is smaller in Pair 2 than in Pair 1.
test
ขนาดของแรงแม่เหล็กมีค่าเท่ากันทั้งสองคู่
แรงแม่เหล็กมีค่าน้อยกว่าในคู่ที่ 1
ขนาดของแรงแม่เหล็กมีค่าน้อยกว่าในคู่ที่ 2
6
null
null
5
เมืองหลวงของรัฐไวโอมิงคืออะไร
D
null
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
closed choice
grade4
social science
geography
State capitals
Identify state capitals of the West
null
Cheyenne is the capital of Wyoming.
test
ฟีนิกซ์
แบตันรูจ
โฮโนลูลู
7
เชเยนน์
null
6
"ข้อความต่อไปนี้เกี่ยวกับระบบสุริย(...TRUNCATED)
B
ใช้ข้อมูลเพื่อตอบคำถามด้านล่าง
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
true-or false
grade6
natural science
earth-science
Astronomy
Analyze data to compare properties of planets
"A planet's volume tells you the size of the planet.\nThe primary composition of a planet is what th(...TRUNCATED)
"The table tells you that Jupiter is the largest planet and that Jupiter is made mainly of gas. So, (...TRUNCATED)
test
จริง
เท็จ
null
8
null
null
7
"สิ่งมีชีวิตใดต่อไปนี้เป็นผู้บริโภ(...TRUNCATED)
A
"ด้านล่างนี้คือเครือข่ายอาหารจากทะ(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
closed choice
grade5
natural science
biology
Ecosystems
Interpret food webs I
"A food web is a model.\nA food web shows where organisms in an ecosystem get their food. Models can(...TRUNCATED)
"Primary consumers eat producers. So, in a food web, primary consumers have arrows pointing to them (...TRUNCATED)
test
โคพีพอด
ปลาคราปปี้ดำ
แบคทีเรีย
9
null
null
8
"ลองคิดถึงแรงแม่เหล็กระหว่างแม่เหล(...TRUNCATED)
B
"รูปภาพด้านล่างแสดงแม่เหล็กสองคู่ (...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
closed choice
grade4
natural science
physics
Magnets
Compare strengths of magnetic forces
"Magnets can pull or push on each other without touching. When magnets attract, they pull together. (...TRUNCATED)
"Distance affects the strength of the magnetic force. When magnets are closer together, the magnetic(...TRUNCATED)
test
แรงแม่เหล็กแรงกว่าในคู่ที่ 2
แรงแม่เหล็กแรงกว่าในคู่ที่ 1
"ความแรงของแรงแม่เหล็กเท่ากันทั้งส(...TRUNCATED)
10
null
null
9
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
1