metadata
license: cc-by-nc-sa-4.0
extra_gated_prompt: You agree that this data will only be used for non-commercial purposes.
extra_gated_fields:
Name: text
Email: text
Country: country
Organization or Affiliation: text
I agree to use this dataset for non-commercial use ONLY: checkbox
Complex Virtual Dressing Dataset (CVDD)
This dataset contains 516 pairs of virtual try-on test data in complex scenarios, as proposed in the paper "FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on".
The images in this dataset have varying resolutions. To ensure consistent testing under the same resolution, you can use the following code:
from PIL import Image
import math
def pad_and_resize(im, new_width=768, new_height=1024, pad_color=(255, 255, 255), mode=Image.LANCZOS):
old_width, old_height = im.size
ratio_w = new_width / old_width
ratio_h = new_height / old_height
if ratio_w < ratio_h:
new_size = (new_width, round(old_height * ratio_w))
else:
new_size = (round(old_width * ratio_h), new_height)
im_resized = im.resize(new_size, mode)
pad_w = math.ceil((new_width - im_resized.width) / 2)
pad_h = math.ceil((new_height - im_resized.height) / 2)
new_im = Image.new('RGB', (new_width, new_height), pad_color)
new_im.paste(im_resized, (pad_w, pad_h))
return new_im, pad_w, pad_h
def unpad_and_resize(padded_im, pad_w, pad_h, original_width, original_height):
width, height = padded_im.size
left = pad_w
top = pad_h
right = width - pad_w
bottom = height - pad_h
cropped_im = padded_im.crop((left, top, right, bottom))
resized_im = cropped_im.resize((original_width, original_height), Image.LANCZOS)
return resized_im
# resize image to same resolution(e.g., 768x1024)
image_size = image.size
image, pad_w, pad_h = pad_and_resize(image, 768, 1024)
# convert back to original size
image = unpad_and_resize(image, pad_w, pad_h, image_size[0], image_size[1])