Search is not available for this dataset
image
imagewidth (px)
640
640
label
class label
10 classes
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us
0Among Us

Gameplay Images

A dataset from kaggle.

This is a dataset of 10 very famous video games in the world.

These include

  • Among Us
  • Apex Legends
  • Fortnite
  • Forza Horizon
  • Free Fire
  • Genshin Impact
  • God of War
  • Minecraft
  • Roblox
  • Terraria

There are 1000 images per class and all are sized 640 x 360. They are in the .png format.

This Dataset was made by saving frames every few seconds from famous gameplay videos on Youtube.

※ This dataset was uploaded in January 2022. Game content updated after that will not be included.

License

CC-BY-4.0

Dataset Structure

Data Instance

>>> from datasets import load_dataset

>>> dataset = load_dataset("Bingsu/Gameplay_Images")
DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 10000
    })
})
>>> dataset["train"].features
{'image': Image(decode=True, id=None),
 'label': ClassLabel(num_classes=10, names=['Among Us', 'Apex Legends', 'Fortnite', 'Forza Horizon', 'Free Fire', 'Genshin Impact', 'God of War', 'Minecraft', 'Roblox', 'Terraria'], id=None)}

Data Size

download: 2.50 GiB
generated: 1.68 GiB
total: 4.19 GiB

Data Fields

  • image: Image
    • A PIL.Image.Image object containing the image. size=640x360
    • Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
  • label: an int classification label.

Class Label Mappings:

{
    "Among Us": 0,
    "Apex Legends": 1,
    "Fortnite": 2,
    "Forza Horizon": 3,
    "Free Fire": 4,
    "Genshin Impact": 5,
    "God of War": 6,
    "Minecraft": 7,
    "Roblox": 8,
    "Terraria": 9
}
>>> dataset["train"][0]
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=640x360>,
 'label': 0}

Data Splits

train
# of data 10000

Note

train_test_split

>>> ds_new = dataset["train"].train_test_split(0.2, seed=42, stratify_by_column="label")
>>> ds_new
DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 8000
    })
    test: Dataset({
        features: ['image', 'label'],
        num_rows: 2000
    })
})
Downloads last month
55
Edit dataset card