code
stringlengths 195
7.9k
| space_complexity
stringclasses 6
values | time_complexity
stringclasses 7
values |
---|---|---|
// C++ program to find maximum
// in arr[] of size n
#include <bits/stdc++.h>
using namespace std;
int largest(int arr[], int n)
{
int i;
// Initialize maximum element
int max = arr[0];
// Traverse array elements
// from second and compare
// every element with current max
for (i = 1; i < n; i++)
if (arr[i] > max)
max = arr[i];
return max;
}
// Driver Code
int main()
{
int arr[] = {10, 324, 45, 90, 9808};
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Largest in given array is "
<< largest(arr, n);
return 0;
}
// This Code is contributed
// by Shivi_Aggarwal | constant | linear |
// C++ program to find maximum
// in arr[] of size n
#include <bits/stdc++.h>
using namespace std;
int largest(int arr[], int n, int i)
{
// last index
// return the element
if (i == n - 1) {
return arr[i];
}
// find the maximum from rest of the array
int recMax = largest(arr, n, i + 1);
// compare with i-th element and return
return max(recMax, arr[i]);
}
// Driver Code
int main()
{
int arr[] = { 10, 324, 45, 90, 9808 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Largest in given array is "
<< largest(arr, n, 0);
return 0;
}
// This Code is contributed by Rajdeep Mallick | linear | linear |
// C++ program to find maximum in arr[] of size n
#include <bits/stdc++.h>
using namespace std;
// returns maximum in arr[] of size n
int largest(int arr[], int n)
{
return *max_element(arr, arr+n);
}
int main()
{
int arr[] = {10, 324, 45, 90, 9808};
int n = sizeof(arr)/sizeof(arr[0]);
cout << largest(arr, n);
return 0;
} | constant | linear |
// C++ program for find the largest
// three elements in an array
#include <bits/stdc++.h>
using namespace std;
// Function to print three largest elements
void print3largest(int arr[], int arr_size)
{
int first, second, third;
// There should be atleast three elements
if (arr_size < 3)
{
cout << " Invalid Input ";
return;
}
third = first = second = INT_MIN;
for(int i = 0; i < arr_size; i++)
{
// If current element is
// greater than first
if (arr[i] > first)
{
third = second;
second = first;
first = arr[i];
}
// If arr[i] is in between first
// and second then update second
else if (arr[i] > second && arr[i] != first)
{
third = second;
second = arr[i];
}
else if (arr[i] > third && arr[i] != second)
third = arr[i];
}
cout << "Three largest elements are "
<< first << " " << second << " "
<< third << endl;
}
// Driver code
int main()
{
int arr[] = { 12, 13, 1, 10, 34, 11 };
int n = sizeof(arr) / sizeof(arr[0]);
print3largest(arr, n);
return 0;
}
// This code is contributed by Anjali_Chauhan | constant | linear |
// C++ code to find largest three elements in an array
#include <bits/stdc++.h>
using namespace std;
void find3largest(int arr[], int n)
{
sort(arr, arr + n); // It uses Tuned Quicksort with
// avg. case Time complexity = O(nLogn)
int check = 0, count = 1;
for (int i = 1; i <= n; i++) {
if (count < 4) {
if (check != arr[n - i]) {
// to handle duplicate values
cout << arr[n - i] << " ";
check = arr[n - i];
count++;
}
}
else
break;
}
}
// Driver code
int main()
{
int arr[] = { 12, 45, 1, -1, 45, 54, 23, 5, 0, -10 };
int n = sizeof(arr) / sizeof(arr[0]);
find3largest(arr, n);
}
// This code is contributed by Aditya Kumar (adityakumar129) | constant | nlogn |
#include <bits/stdc++.h>
using namespace std;
int main()
{
vector<int> V = { 11, 65, 193, 36, 209, 664, 32 };
partial_sort(V.begin(), V.begin() + 3, V.end(), greater<int>());
cout << "first = " << V[0] << "\n";
cout << "second = " << V[1] << "\n";
cout << "third = " << V[2] << "\n";
return 0;
} | constant | nlogn |
// Simple C++ program to find
// all elements in array which
// have at-least two greater
// elements itself.
#include<bits/stdc++.h>
using namespace std;
void findElements(int arr[], int n)
{
// Pick elements one by one and
// count greater elements. If
// count is more than 2, print
// that element.
for (int i = 0; i < n; i++)
{
int count = 0;
for (int j = 0; j < n; j++)
if (arr[j] > arr[i])
count++;
if (count >= 2)
cout << arr[i] << " ";
}
}
// Driver code
int main()
{
int arr[] = { 2, -6 ,3 , 5, 1};
int n = sizeof(arr) / sizeof(arr[0]);
findElements(arr, n);
return 0;
} | constant | quadratic |
// Sorting based C++ program to
// find all elements in array
// which have atleast two greater
// elements itself.
#include<bits/stdc++.h>
using namespace std;
void findElements(int arr[], int n)
{
sort(arr, arr + n);
for (int i = 0; i < n - 2; i++)
cout << arr[i] << " ";
}
// Driver Code
int main()
{
int arr[] = { 2, -6 ,3 , 5, 1};
int n = sizeof(arr) / sizeof(arr[0]);
findElements(arr, n);
return 0;
} | constant | nlogn |
// C++ program to find all elements
// in array which have atleast two
// greater elements itself.
#include<bits/stdc++.h>
using namespace std;
void findElements(int arr[], int n)
{
int first = INT_MIN,
second = INT_MIN;
for (int i = 0; i < n; i++)
{
/* If current element is smaller
than first then update both first
and second */
if (arr[i] > first)
{
second = first;
first = arr[i];
}
/* If arr[i] is in between first
and second then update second */
else if (arr[i] > second)
second = arr[i];
}
for (int i = 0; i < n; i++)
if (arr[i] < second)
cout << arr[i] << " ";
}
// Driver code
int main()
{
int arr[] = { 2, -6, 3, 5, 1};
int n = sizeof(arr) / sizeof(arr[0]);
findElements(arr, n);
return 0;
} | constant | linear |
// CPP program to find mean and median of
// an array
#include <bits/stdc++.h>
using namespace std;
// Function for calculating mean
double findMean(int a[], int n)
{
int sum = 0;
for (int i = 0; i < n; i++)
sum += a[i];
return (double)sum / (double)n;
}
// Function for calculating median
double findMedian(int a[], int n)
{
// First we sort the array
sort(a, a + n);
// check for even case
if (n % 2 != 0)
return (double)a[n / 2];
return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;
}
// Driver code
int main()
{
int a[] = { 1, 3, 4, 2, 7, 5, 8, 6 };
int N = sizeof(a) / sizeof(a[0]);
// Function call
cout << "Mean = " << findMean(a, N) << endl;
cout << "Median = " << findMedian(a, N) << endl;
return 0;
} | constant | nlogn |
// C++ program to find med in
// stream of running integers
#include<bits/stdc++.h>
using namespace std;
// function to calculate med of stream
void printMedians(double arr[], int n)
{
// max heap to store the smaller half elements
priority_queue<double> s;
// min heap to store the greater half elements
priority_queue<double,vector<double>,greater<double> > g;
double med = arr[0];
s.push(arr[0]);
cout << med << endl;
// reading elements of stream one by one
/* At any time we try to make heaps balanced and
their sizes differ by at-most 1. If heaps are
balanced,then we declare median as average of
min_heap_right.top() and max_heap_left.top()
If heaps are unbalanced,then median is defined
as the top element of heap of larger size */
for (int i=1; i < n; i++)
{
double x = arr[i];
// case1(left side heap has more elements)
if (s.size() > g.size())
{
if (x < med)
{
g.push(s.top());
s.pop();
s.push(x);
}
else
g.push(x);
med = (s.top() + g.top())/2.0;
}
// case2(both heaps are balanced)
else if (s.size()==g.size())
{
if (x < med)
{
s.push(x);
med = (double)s.top();
}
else
{
g.push(x);
med = (double)g.top();
}
}
// case3(right side heap has more elements)
else
{
if (x > med)
{
s.push(g.top());
g.pop();
g.push(x);
}
else
s.push(x);
med = (s.top() + g.top())/2.0;
}
cout << med << endl;
}
}
// Driver program to test above functions
int main()
{
// stream of integers
double arr[] = {5, 15, 10, 20, 3};
int n = sizeof(arr)/sizeof(arr[0]);
printMedians(arr, n);
return 0;
} | linear | nlogn |
// CPP program to find minimum product of
// k elements in an array
#include <bits/stdc++.h>
using namespace std;
int minProduct(int arr[], int n, int k)
{
priority_queue<int, vector<int>, greater<int> > pq;
for (int i = 0; i < n; i++)
pq.push(arr[i]);
int count = 0, ans = 1;
// One by one extract items from max heap
while (pq.empty() == false && count < k) {
ans = ans * pq.top();
pq.pop();
count++;
}
return ans;
}
// Driver code
int main()
{
int arr[] = { 198, 76, 544, 123, 154, 675 };
int k = 2;
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum product is " << minProduct(arr, n, k);
return 0;
} | linear | nlogn |
// A simple C++ program to find N maximum
// combinations from two arrays,
#include <bits/stdc++.h>
using namespace std;
// function to display first N maximum sum
// combinations
void KMaxCombinations(int A[], int B[],
int N, int K)
{
// max heap.
priority_queue<int> pq;
// insert all the possible combinations
// in max heap.
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
pq.push(A[i] + B[j]);
// pop first N elements from max heap
// and display them.
int count = 0;
while (count < K) {
cout << pq.top() << endl;
pq.pop();
count++;
}
}
// Driver Code.
int main()
{
int A[] = { 4, 2, 5, 1 };
int B[] = { 8, 0, 5, 3 };
int N = sizeof(A) / sizeof(A[0]);
int K = 3;
// Function call
KMaxCombinations(A, B, N, K);
return 0;
} | quadratic | quadratic |
// An efficient C++ program to find top K elements
// from two arrays.
#include <bits/stdc++.h>
using namespace std;
// Function prints k maximum possible combinations
void KMaxCombinations(vector<int>& A,
vector<int>& B, int K)
{
// sort both arrays A and B
sort(A.begin(), A.end());
sort(B.begin(), B.end());
int N = A.size();
// Max heap which contains tuple of the format
// (sum, (i, j)) i and j are the indices
// of the elements from array A
// and array B which make up the sum.
priority_queue<pair<int, pair<int, int> > > pq;
// my_set is used to store the indices of
// the pair(i, j) we use my_set to make sure
// the indices does not repeat inside max heap.
set<pair<int, int> > my_set;
// initialize the heap with the maximum sum
// combination ie (A[N - 1] + B[N - 1])
// and also push indices (N - 1, N - 1) along
// with sum.
pq.push(make_pair(A[N - 1] + B[N - 1],
make_pair(N - 1, N - 1)));
my_set.insert(make_pair(N - 1, N - 1));
// iterate upto K
for (int count = 0; count < K; count++)
{
// tuple format (sum, (i, j)).
pair<int, pair<int, int> > temp = pq.top();
pq.pop();
cout << temp.first << endl;
int i = temp.second.first;
int j = temp.second.second;
int sum = A[i - 1] + B[j];
// insert (A[i - 1] + B[j], (i - 1, j))
// into max heap.
pair<int, int> temp1 = make_pair(i - 1, j);
// insert only if the pair (i - 1, j) is
// not already present inside the map i.e.
// no repeating pair should be present inside
// the heap.
if (my_set.find(temp1) == my_set.end())
{
pq.push(make_pair(sum, temp1));
my_set.insert(temp1);
}
// insert (A[i] + B[j - 1], (i, j - 1))
// into max heap.
sum = A[i] + B[j - 1];
temp1 = make_pair(i, j - 1);
// insert only if the pair (i, j - 1)
// is not present inside the heap.
if (my_set.find(temp1) == my_set.end())
{
pq.push(make_pair(sum, temp1));
my_set.insert(temp1);
}
}
}
// Driver Code.
int main()
{
vector<int> A = { 1, 4, 2, 3 };
vector<int> B = { 2, 5, 1, 6 };
int K = 4;
// Function call
KMaxCombinations(A, B, K);
return 0;
} | linear | nlogn |
// CPP for printing smallest k numbers in order
#include <algorithm>
#include <iostream>
using namespace std;
// Function to print smallest k numbers
// in arr[0..n-1]
void printSmall(int arr[], int n, int k)
{
// For each arr[i] find whether
// it is a part of n-smallest
// with insertion sort concept
for (int i = k; i < n; ++i) {
// find largest from first k-elements
int max_var = arr[k - 1];
int pos = k - 1;
for (int j = k - 2; j >= 0; j--) {
if (arr[j] > max_var) {
max_var = arr[j];
pos = j;
}
}
// if largest is greater than arr[i]
// shift all element one place left
if (max_var > arr[i]) {
int j = pos;
while (j < k - 1) {
arr[j] = arr[j + 1];
j++;
}
// make arr[k-1] = arr[i]
arr[k - 1] = arr[i];
}
}
// print result
for (int i = 0; i < k; i++)
cout << arr[i] << " ";
}
// Driver program
int main()
{
int arr[] = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 5;
printSmall(arr, n, k);
return 0;
} | constant | quadratic |
// C++ program to prints first k pairs with least sum from two
// arrays.
#include<bits/stdc++.h>
using namespace std;
// Function to find k pairs with least sum such
// that one element of a pair is from arr1[] and
// other element is from arr2[]
void kSmallestPair(int arr1[], int n1, int arr2[],
int n2, int k)
{
if (k > n1*n2)
{
cout << "k pairs don't exist";
return ;
}
// Stores current index in arr2[] for
// every element of arr1[]. Initially
// all values are considered 0.
// Here current index is the index before
// which all elements are considered as
// part of output.
int index2[n1];
memset(index2, 0, sizeof(index2));
while (k > 0)
{
// Initialize current pair sum as infinite
int min_sum = INT_MAX;
int min_index = 0;
// To pick next pair, traverse for all elements
// of arr1[], for every element, find corresponding
// current element in arr2[] and pick minimum of
// all formed pairs.
for (int i1 = 0; i1 < n1; i1++)
{
// Check if current element of arr1[] plus
// element of array2 to be used gives minimum
// sum
if (index2[i1] < n2 &&
arr1[i1] + arr2[index2[i1]] < min_sum)
{
// Update index that gives minimum
min_index = i1;
// update minimum sum
min_sum = arr1[i1] + arr2[index2[i1]];
}
}
cout << "(" << arr1[min_index] << ", "
<< arr2[index2[min_index]] << ") ";
index2[min_index]++;
k--;
}
}
// Driver code
int main()
{
int arr1[] = {1, 3, 11};
int n1 = sizeof(arr1) / sizeof(arr1[0]);
int arr2[] = {2, 4, 8};
int n2 = sizeof(arr2) / sizeof(arr2[0]);
int k = 4;
kSmallestPair( arr1, n1, arr2, n2, k);
return 0;
} | linear | linear |
// C++ program to Prints
// first k pairs with
// least sum from two arrays.
#include <bits/stdc++.h>
using namespace std;
// Function to find k pairs
// with least sum such
// that one element of a pair
// is from arr1[] and
// other element is from arr2[]
void kSmallestPair(vector<int> A, vector<int> B, int K)
{
int n = A.size();
// Min heap which contains tuple of the format
// (sum, (i, j)) i and j are the indices
// of the elements from array A
// and array B which make up the sum.
priority_queue<pair<int, pair<int, int> >,
vector<pair<int, pair<int, int> > >,
greater<pair<int, pair<int, int> > > >
pq;
// my_set is used to store the indices of
// the pair(i, j) we use my_set to make sure
// the indices does not repeat inside min heap.
set<pair<int, int> > my_set;
// initialize the heap with the minimum sum
// combination i.e. (A[0] + B[0])
// and also push indices (0,0) along
// with sum.
pq.push(make_pair(A[0] + B[0], make_pair(0, 0)));
my_set.insert(make_pair(0, 0));
// iterate upto K
int flag = 1;
for (int count = 0; count < K && flag; count++) {
// tuple format (sum, i, j).
pair<int, pair<int, int> > temp = pq.top();
pq.pop();
int i = temp.second.first;
int j = temp.second.second;
cout << "(" << A[i] << ", " << B[j] << ")"
<< endl; // Extracting pair with least sum such
// that one element is from arr1 and
// another is from arr2
// check if i+1 is in the range of our first array A
flag = 0;
if (i + 1 < A.size()) {
int sum = A[i + 1] + B[j];
// insert (A[i + 1] + B[j], (i + 1, j))
// into min heap.
pair<int, int> temp1 = make_pair(i + 1, j);
// insert only if the pair (i + 1, j) is
// not already present inside the map i.e.
// no repeating pair should be present inside
// the heap.
if (my_set.find(temp1) == my_set.end()) {
pq.push(make_pair(sum, temp1));
my_set.insert(temp1);
}
flag = 1;
}
// check if j+1 is in the range of our second array
// B
if (j + 1 < B.size()) {
// insert (A[i] + B[j + 1], (i, j + 1))
// into min heap.
int sum = A[i] + B[j + 1];
pair<int, int> temp1 = make_pair(i, j + 1);
// insert only if the pair (i, j + 1)
// is not present inside the heap.
if (my_set.find(temp1) == my_set.end()) {
pq.push(make_pair(sum, temp1));
my_set.insert(temp1);
}
flag = 1;
}
}
}
// Driver Code.
int main()
{
vector<int> A = { 1 };
vector<int> B = { 2, 4, 5, 9 };
int K = 8;
kSmallestPair(A, B, K);
return 0;
}
// This code is contributed by Dhairya. | linear | nlogn |
// C++ program to find k-th absolute difference
// between two elements
#include<bits/stdc++.h>
using namespace std;
// returns number of pairs with absolute difference
// less than or equal to mid.
int countPairs(int *a, int n, int mid)
{
int res = 0;
for (int i = 0; i < n; ++i)
// Upper bound returns pointer to position
// of next higher number than a[i]+mid in
// a[i..n-1]. We subtract (a + i + 1) from
// this position to count
res += upper_bound(a+i, a+n, a[i] + mid) -
(a + i + 1);
return res;
}
// Returns k-th absolute difference
int kthDiff(int a[], int n, int k)
{
// Sort array
sort(a, a+n);
// Minimum absolute difference
int low = a[1] - a[0];
for (int i = 1; i <= n-2; ++i)
low = min(low, a[i+1] - a[i]);
// Maximum absolute difference
int high = a[n-1] - a[0];
// Do binary search for k-th absolute difference
while (low < high)
{
int mid = (low+high)>>1;
if (countPairs(a, n, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver code
int main()
{
int k = 3;
int a[] = {1, 2, 3, 4};
int n = sizeof(a)/sizeof(a[0]);
cout << kthDiff(a, n, k);
return 0;
} | constant | nlogn |
// C++ program to find second largest element in an array
#include <bits/stdc++.h>
using namespace std;
/* Function to print the second largest elements */
void print2largest(int arr[], int arr_size)
{
int i, first, second;
/* There should be atleast two elements */
if (arr_size < 2) {
printf(" Invalid Input ");
return;
}
// sort the array
sort(arr, arr + arr_size);
// start from second last element as the largest element
// is at last
for (i = arr_size - 2; i >= 0; i--) {
// if the element is not equal to largest element
if (arr[i] != arr[arr_size - 1]) {
printf("The second largest element is %d\n",arr[i]);
return;
}
}
printf("There is no second largest element\n");
}
/* Driver program to test above function */
int main()
{
int arr[] = { 12, 35, 1, 10, 34, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
print2largest(arr, n);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129) | constant | nlogn |
// C++ program to find the second largest element in the array
#include <iostream>
using namespace std;
int secondLargest(int arr[], int n) {
int largest = 0, secondLargest = -1;
// finding the largest element in the array
for (int i = 1; i < n; i++) {
if (arr[i] > arr[largest])
largest = i;
}
// finding the largest element in the array excluding
// the largest element calculated above
for (int i = 0; i < n; i++) {
if (arr[i] != arr[largest]) {
// first change the value of second largest
// as soon as the next element is found
if (secondLargest == -1)
secondLargest = i;
else if (arr[i] > arr[secondLargest])
secondLargest = i;
}
}
return secondLargest;
}
int main() {
int arr[] = {10, 12, 20, 4};
int n = sizeof(arr)/sizeof(arr[0]);
int second_Largest = secondLargest(arr, n);
if (second_Largest == -1)
cout << "Second largest didn't exit\n";
else
cout << "Second largest : " << arr[second_Largest];
} | constant | linear |
// C++ program to find the second largest element
#include <iostream>
using namespace std;
// returns the index of second largest
// if second largest didn't exist return -1
int secondLargest(int arr[], int n) {
int first = 0, second = -1;
for (int i = 1; i < n; i++) {
if (arr[i] > arr[first]) {
second = first;
first = i;
}
else if (arr[i] < arr[first]) {
if (second == -1 || arr[second] < arr[i])
second = i;
}
}
return second;
}
int main() {
int arr[] = {10, 12, 20, 4};
int index = secondLargest(arr, sizeof(arr)/sizeof(arr[0]));
if (index == -1)
cout << "Second Largest didn't exist";
else
cout << "Second largest : " << arr[index];
} | constant | linear |
// C++ implementation to find k numbers with most
// occurrences in the given array
#include <bits/stdc++.h>
using namespace std;
// Comparison function to sort the 'freq_arr[]'
bool compare(pair<int, int> p1, pair<int, int> p2)
{
// If frequencies of two elements are same
// then the larger number should come first
if (p1.second == p2.second)
return p1.first > p2.first;
// Sort on the basis of decreasing order
// of frequencies
return p1.second > p2.second;
}
// Function to print the k numbers with most occurrences
void print_N_mostFrequentNumber(int arr[], int N, int K)
{
// unordered_map 'mp' implemented as frequency hash
// table
unordered_map<int, int> mp;
for (int i = 0; i < N; i++)
mp[arr[i]]++;
// store the elements of 'mp' in the vector 'freq_arr'
vector<pair<int, int> > freq_arr(mp.begin(), mp.end());
// Sort the vector 'freq_arr' on the basis of the
// 'compare' function
sort(freq_arr.begin(), freq_arr.end(), compare);
// display the top k numbers
cout << K << " numbers with most occurrences are:\n";
for (int i = 0; i < K; i++)
cout << freq_arr[i].first << " ";
}
// Driver's code
int main()
{
int arr[] = { 3, 1, 4, 4, 5, 2, 6, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
int K = 2;
// Function call
print_N_mostFrequentNumber(arr, N, K);
return 0;
} | linear | nlogn |
// C++ program to find k numbers with most
// occurrences in the given array
#include <bits/stdc++.h>
using namespace std;
// Function to print the k numbers with most occurrences
void print_N_mostFrequentNumber(int arr[], int N, int K)
{
// HashMap to store count of the elements
unordered_map<int, int> elementCount;
for (int i = 0; i < N; i++) {
elementCount[arr[i]]++;
}
// Array to store the elements according
// to their frequency
vector<vector<int> > frequency(N + 1);
// Inserting elements in the frequency array
for (auto element : elementCount) {
frequency[element.second].push_back(element.first);
}
int count = 0;
cout << K << " numbers with most occurrences are:\n";
for (int i = frequency.size() - 1; i >= 0; i--) {
for (auto element : frequency[i]) {
count++;
cout << element << " ";
}
// if K elements have been printed
if (count == K)
return;
}
return;
}
// Driver's code
int main()
{
int arr[] = { 3, 1, 4, 4, 5, 2, 6, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
int K = 2;
// Function call
print_N_mostFrequentNumber(arr, N, K);
return 0;
} | linear | linear |
//C++ simple approach to print smallest
//and second smallest element.
#include<bits/stdc++.h>
using namespace std;
int main() {
int arr[]={111, 13, 25, 9, 34, 1};
int n=sizeof(arr)/sizeof(arr[0]);
//sorting the array using
//in-built sort function
sort(arr,arr+n);
//printing the desired element
cout<<"smallest element is "<<arr[0]<<endl;
cout<<"second smallest element is "<<arr[1];
return 0;
}
//this code is contributed by Machhaliya Muhammad | constant | nlogn |
// C++ program to find smallest and
// second smallest elements
#include <bits/stdc++.h>
using namespace std; /* For INT_MAX */
void print2Smallest(int arr[], int arr_size)
{
int i, first, second;
/* There should be atleast two elements */
if (arr_size < 2)
{
cout<<" Invalid Input ";
return;
}
first = second = INT_MAX;
for (i = 0; i < arr_size ; i ++)
{
/* If current element is smaller than first
then update both first and second */
if (arr[i] < first)
{
second = first;
first = arr[i];
}
/* If arr[i] is in between first and second
then update second */
else if (arr[i] < second && arr[i] != first)
second = arr[i];
}
if (second == INT_MAX)
cout << "There is no second smallest element\n";
else
cout << "The smallest element is " << first << " and second "
"Smallest element is " << second << endl;
}
/* Driver code */
int main()
{
int arr[] = {12, 13, 1, 10, 34, 1};
int n = sizeof(arr)/sizeof(arr[0]);
print2Smallest(arr, n);
return 0;
}
// This is code is contributed by rathbhupendra | constant | linear |
// C++ program to find the smallest elements
// missing in a sorted array.
#include<bits/stdc++.h>
using namespace std;
int findFirstMissing(int array[],
int start, int end)
{
if (start > end)
return end + 1;
if (start != array[start])
return start;
int mid = (start + end) / 2;
// Left half has all elements
// from 0 to mid
if (array[mid] == mid)
return findFirstMissing(array,
mid+1, end);
return findFirstMissing(array, start, mid);
}
// Driver code
int main()
{
int arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 10};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Smallest missing element is " <<
findFirstMissing(arr, 0, n-1) << endl;
}
// This code is contributed by
// Shivi_Aggarwal | logn | logn |
//C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Program to find missing element
int findFirstMissing(vector<int> arr , int start ,
int end,int first)
{
if (start < end)
{
int mid = (start + end) / 2;
/** Index matches with value
at that index, means missing
element cannot be upto that po*/
if (arr[mid] != mid+first)
return findFirstMissing(arr, start,
mid , first);
else
return findFirstMissing(arr, mid + 1,
end , first);
}
return start + first;
}
// Program to find Smallest
// Missing in Sorted Array
int findSmallestMissinginSortedArray(vector<int> arr)
{
// Check if 0 is missing
// in the array
if(arr[0] != 0)
return 0;
// Check is all numbers 0 to n - 1
// are present in array
if(arr[arr.size() - 1] == arr.size() - 1)
return arr.size();
int first = arr[0];
return findFirstMissing(arr, 0, arr.size() - 1, first);
}
// Driver program to test the above function
int main()
{
vector<int> arr = {0, 1, 2, 3, 4, 5, 7};
int n = arr.size();
// Function Call
cout<<"First Missing element is : "<<findSmallestMissinginSortedArray(arr);
}
// This code is contributed by mohit kumar 29. | logn | logn |
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the maximum sum
int findMaxSum(vector<int> arr, int N)
{
// Declare dp array
int dp[N][2];
if (N == 1) {
return arr[0];
}
// Initialize the values in dp array
dp[0][0] = 0;
dp[0][1] = arr[0];
// Loop to find the maximum possible sum
for (int i = 1; i < N; i++) {
dp[i][1] = dp[i - 1][0] + arr[i];
dp[i][0] = max(dp[i - 1][1],
dp[i - 1][0]);
}
// Return the maximum sum
return max(dp[N - 1][0], dp[N - 1][1]);
}
// Driver Code
int main()
{
// Creating the array
vector<int> arr = { 5, 5, 10, 100, 10, 5 };
int N = arr.size();
// Function call
cout << findMaxSum(arr, N) << endl;
return 0;
} | linear | linear |
// C++ code to implement the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to return max sum such that
// no two elements are adjacent
int FindMaxSum(vector<int> arr, int n)
{
int incl = arr[0];
int excl = 0;
int excl_new;
int i;
for (i = 1; i < n; i++) {
// Current max excluding i
excl_new = max(incl, excl);
// Current max including i
incl = excl + arr[i];
excl = excl_new;
}
// Return max of incl and excl
return max(incl, excl);
}
// Driver code
int main()
{
vector<int> arr = { 5, 5, 10, 100, 10, 5 };
int N = arr.size();
// Function call
cout << FindMaxSum(arr, N);
return 0;
}
// This approach is contributed by Debanjan | constant | linear |
// C++ program to demonstrate working of Square Root
// Decomposition.
#include "iostream"
#include "math.h"
using namespace std;
#define MAXN 10000
#define SQRSIZE 100
int arr[MAXN]; // original array
int block[SQRSIZE]; // decomposed array
int blk_sz; // block size
// Time Complexity : O(1)
void update(int idx, int val)
{
int blockNumber = idx / blk_sz;
block[blockNumber] += val - arr[idx];
arr[idx] = val;
}
// Time Complexity : O(sqrt(n))
int query(int l, int r)
{
int sum = 0;
while (l<r and l%blk_sz!=0 and l!=0)
{
// traversing first block in range
sum += arr[l];
l++;
}
while (l+blk_sz-1 <= r)
{
// traversing completely overlapped blocks in range
sum += block[l/blk_sz];
l += blk_sz;
}
while (l<=r)
{
// traversing last block in range
sum += arr[l];
l++;
}
return sum;
}
// Fills values in input[]
void preprocess(int input[], int n)
{
// initiating block pointer
int blk_idx = -1;
// calculating size of block
blk_sz = sqrt(n);
// building the decomposed array
for (int i=0; i<n; i++)
{
arr[i] = input[i];
if (i%blk_sz == 0)
{
// entering next block
// incrementing block pointer
blk_idx++;
}
block[blk_idx] += arr[i];
}
}
// Driver code
int main()
{
// We have used separate array for input because
// the purpose of this code is to explain SQRT
// decomposition in competitive programming where
// we have multiple inputs.
int input[] = {1, 5, 2, 4, 6, 1, 3, 5, 7, 10};
int n = sizeof(input)/sizeof(input[0]);
preprocess(input, n);
cout << "query(3,8) : " << query(3, 8) << endl;
cout << "query(1,6) : " << query(1, 6) << endl;
update(8, 0);
cout << "query(8,8) : " << query(8, 8) << endl;
return 0;
} | linear | linear |
// C++ program to do range minimum query
// using sparse table
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
// lookup[i][j] is going to store minimum
// value in arr[i..j]. Ideally lookup table
// size should not be fixed and should be
// determined using n Log n. It is kept
// constant to keep code simple.
int lookup[MAX][MAX];
// Fills lookup array lookup[][] in bottom up manner.
void buildSparseTable(int arr[], int n)
{
// Initialize M for the intervals with length 1
for (int i = 0; i < n; i++)
lookup[i][0] = arr[i];
// Compute values from smaller to bigger intervals
for (int j = 1; (1 << j) <= n; j++) {
// Compute minimum value for all intervals with
// size 2^j
for (int i = 0; (i + (1 << j) - 1) < n; i++) {
// For arr[2][10], we compare arr[lookup[0][7]]
// and arr[lookup[3][10]]
if (lookup[i][j - 1] <
lookup[i + (1 << (j - 1))][j - 1])
lookup[i][j] = lookup[i][j - 1];
else
lookup[i][j] =
lookup[i + (1 << (j - 1))][j - 1];
}
}
}
// Returns minimum of arr[L..R]
int query(int L, int R)
{
// Find highest power of 2 that is smaller
// than or equal to count of elements in given
// range. For [2, 10], j = 3
int j = (int)log2(R - L + 1);
// Compute minimum of last 2^j elements with first
// 2^j elements in range.
// For [2, 10], we compare arr[lookup[0][3]] and
// arr[lookup[3][3]],
if (lookup[L][j] <= lookup[R - (1 << j) + 1][j])
return lookup[L][j];
else
return lookup[R - (1 << j) + 1][j];
}
// Driver program
int main()
{
int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
int n = sizeof(a) / sizeof(a[0]);
buildSparseTable(a, n);
cout << query(0, 4) << endl;
cout << query(4, 7) << endl;
cout << query(7, 8) << endl;
return 0;
} | nlogn | nlogn |
// C++ program to do range minimum query
// using sparse table
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
// lookup[i][j] is going to store GCD of
// arr[i..j]. Ideally lookup table
// size should not be fixed and should be
// determined using n Log n. It is kept
// constant to keep code simple.
int table[MAX][MAX];
// it builds sparse table.
void buildSparseTable(int arr[], int n)
{
// GCD of single element is element itself
for (int i = 0; i < n; i++)
table[i][0] = arr[i];
// Build sparse table
for (int j = 1; j <= log2(n); j++)
for (int i = 0; i <= n - (1 << j); i++)
table[i][j] = __gcd(table[i][j - 1],
table[i + (1 << (j - 1))][j - 1]);
}
// Returns GCD of arr[L..R]
int query(int L, int R)
{
// Find highest power of 2 that is smaller
// than or equal to count of elements in given
// range.For [2, 10], j = 3
int j = (int)log2(R - L + 1);
// Compute GCD of last 2^j elements with first
// 2^j elements in range.
// For [2, 10], we find GCD of arr[lookup[0][3]] and
// arr[lookup[3][3]],
return __gcd(table[L][j], table[R - (1 << j) + 1][j]);
}
// Driver program
int main()
{
int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
int n = sizeof(a) / sizeof(a[0]);
buildSparseTable(a, n);
cout << query(0, 2) << endl;
cout << query(1, 3) << endl;
cout << query(4, 5) << endl;
return 0;
} | nlogn | nlogn |
// C++ program to find total count of an element
// in a range
#include<bits/stdc++.h>
using namespace std;
// Returns count of element in arr[left-1..right-1]
int findFrequency(int arr[], int n, int left,
int right, int element)
{
int count = 0;
for (int i=left-1; i<=right; ++i)
if (arr[i] == element)
++count;
return count;
}
// Driver Code
int main()
{
int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11};
int n = sizeof(arr) / sizeof(arr[0]);
// Print frequency of 2 from position 1 to 6
cout << "Frequency of 2 from 1 to 6 = "
<< findFrequency(arr, n, 1, 6, 2) << endl;
// Print frequency of 8 from position 4 to 9
cout << "Frequency of 8 from 4 to 9 = "
<< findFrequency(arr, n, 4, 9, 8);
return 0;
} | constant | linear |
// C++ program to get updated array after many array range
// add operation
#include <bits/stdc++.h>
using namespace std;
// Utility method to add value val, to range [lo, hi]
void add(int arr[], int N, int lo, int hi, int val)
{
arr[lo] += val;
if (hi != N - 1)
arr[hi + 1] -= val;
}
// Utility method to get actual array from operation array
void updateArray(int arr[], int N)
{
// convert array into prefix sum array
for (int i = 1; i < N; i++)
arr[i] += arr[i - 1];
}
// method to print final updated array
void printArr(int arr[], int N)
{
updateArray(arr, N);
for (int i = 0; i < N; i++)
cout << arr[i] << " ";
cout << endl;
}
// Driver code
int main()
{
int N = 6;
int arr[N] = {0};
// Range add Queries
add(arr, N, 0, 2, 100);
add(arr, N, 1, 5, 100);
add(arr, N, 2, 3, 100);
printArr(arr, N);
return 0;
} | constant | linear |
// C++ program for queries of GCD excluding
// given range of elements.
#include<bits/stdc++.h>
using namespace std;
// Filling the prefix and suffix array
void FillPrefixSuffix(int prefix[], int arr[],
int suffix[], int n)
{
// Filling the prefix array following relation
// prefix(i) = __gcd(prefix(i-1), arr(i))
prefix[0] = arr[0];
for (int i=1 ;i<n; i++)
prefix[i] = __gcd(prefix[i-1], arr[i]);
// Filling the suffix array following the
// relation suffix(i) = __gcd(suffix(i+1), arr(i))
suffix[n-1] = arr[n-1];
for (int i=n-2; i>=0 ;i--)
suffix[i] = __gcd(suffix[i+1], arr[i]);
}
// To calculate gcd of the numbers outside range
int GCDoutsideRange(int l, int r, int prefix[],
int suffix[], int n)
{
// If l=0, we need to tell GCD of numbers
// from r+1 to n
if (l==0)
return suffix[r+1];
// If r=n-1 we need to return the gcd of
// numbers from 1 to l
if (r==n-1)
return prefix[l-1];
return __gcd(prefix[l-1], suffix[r+1]);
}
// Driver function
int main()
{
int arr[] = {2, 6, 9};
int n = sizeof(arr)/sizeof(arr[0]);
int prefix[n], suffix[n];
FillPrefixSuffix(prefix, arr, suffix, n);
int l = 0, r = 0;
cout << GCDoutsideRange(l, r, prefix, suffix, n)
<< endl;
l = 1 ; r = 1;
cout << GCDoutsideRange(l, r, prefix, suffix, n)
<< endl;
l = 1 ; r = 2;
cout << GCDoutsideRange(l, r, prefix, suffix, n)
<< endl;
return 0;
} | linear | nlogn |
// C++ implementation of finding number
// represented by binary subarray
#include <bits/stdc++.h>
using namespace std;
// Fills pre[]
void precompute(int arr[], int n, int pre[])
{
memset(pre, 0, n * sizeof(int));
pre[n - 1] = arr[n - 1] * pow(2, 0);
for (int i = n - 2; i >= 0; i--)
pre[i] = pre[i + 1] + arr[i] * (1 << (n - 1 - i));
}
// returns the number represented by a binary
// subarray l to r
int decimalOfSubarr(int arr[], int l, int r,
int n, int pre[])
{
// if r is equal to n-1 r+1 does not exist
if (r != n - 1)
return (pre[l] - pre[r + 1]) / (1 << (n - 1 - r));
return pre[l] / (1 << (n - 1 - r));
}
// Driver Function
int main()
{
int arr[] = { 1, 0, 1, 0, 1, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
int pre[n];
precompute(arr, n, pre);
cout << decimalOfSubarr(arr, 2, 4, n, pre) << endl;
cout << decimalOfSubarr(arr, 4, 5, n, pre) << endl;
return 0;
} | linear | linear |
// CPP program to perform range queries over range
// queries.
#include <bits/stdc++.h>
#define max 10000
using namespace std;
// For prefix sum array
void update(int arr[], int l)
{
arr[l] += arr[l - 1];
}
// This function is used to apply square root
// decomposition in the record array
void record_func(int block_size, int block[],
int record[], int l, int r, int value)
{
// traversing first block in range
while (l < r && l % block_size != 0 && l != 0) {
record[l] += value;
l++;
}
// traversing completely overlapped blocks in range
while (l + block_size <= r + 1) {
block[l / block_size] += value;
l += block_size;
}
// traversing last block in range
while (l <= r) {
record[l] += value;
l++;
}
}
// Function to print the resultant array
void print(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Driver code
int main()
{
int n = 5, m = 5;
int arr[n], record[m];
int block_size = sqrt(m);
int block[max];
int command[5][3] = { { 1, 1, 2 }, { 1, 4, 5 },
{ 2, 1, 2 }, { 2, 1, 3 },
{ 2, 3, 4 } };
memset(arr, 0, sizeof arr);
memset(record, 0, sizeof record);
memset(block, 0, sizeof block);
for (int i = m - 1; i >= 0; i--) {
// If query is of type 2 then function
// call to record_func
if (command[i][0] == 2) {
int x = i / (block_size);
record_func(block_size, block, record,
command[i][1] - 1, command[i][2] - 1,
(block[x] + record[i] + 1));
}
// If query is of type 1 then simply add
// 1 to the record array
else
record[i]++;
}
// Merging the value of the block in the record array
for (int i = 0; i < m; i++) {
int check = (i / block_size);
record[i] += block[check];
}
for (int i = 0; i < m; i++) {
// If query is of type 1 then the array
// elements are over-written by the record
// array
if (command[i][0] == 1) {
arr[command[i][1] - 1] += record[i];
if ((command[i][2] - 1) < n - 1)
arr[(command[i][2])] -= record[i];
}
}
// The prefix sum of the array
for (int i = 1; i < n; i++)
update(arr, i);
// Printing the resultant array
print(arr, n);
return 0;
} | linear | logn |
// CPP program to count the number of indexes
// in range L R such that Ai = Ai+1
#include <bits/stdc++.h>
using namespace std;
// function that answers every query in O(r-l)
int answer_query(int a[], int n, int l, int r)
{
// traverse from l to r and count
// the required indexes
int count = 0;
for (int i = l; i < r; i++)
if (a[i] == a[i + 1])
count += 1;
return count;
}
// Driver Code
int main()
{
int a[] = { 1, 2, 2, 2, 3, 3, 4, 4, 4 };
int n = sizeof(a) / sizeof(a[0]);
// 1-st query
int L, R;
L = 1;
R = 8;
cout << answer_query(a, n, L, R) << endl;
// 2nd query
L = 0;
R = 4;
cout << answer_query(a, n, L, R) << endl;
return 0;
} | constant | constant |
// CPP program to count the number of indexes
// in range L R such that Ai=Ai+1
#include <bits/stdc++.h>
using namespace std;
const int N = 1000;
// array to store count of index from 0 to
// i that obey condition
int prefixans[N];
// precomputing prefixans[] array
int countIndex(int a[], int n)
{
// traverse to compute the prefixans[] array
for (int i = 0; i < n; i++) {
if (a[i] == a[i + 1])
prefixans[i] = 1;
if (i != 0)
prefixans[i] += prefixans[i - 1];
}
}
// function that answers every query in O(1)
int answer_query(int l, int r)
{
if (l == 0)
return prefixans[r - 1];
else
return prefixans[r - 1] - prefixans[l - 1];
}
// Driver Code
int main()
{
int a[] = { 1, 2, 2, 2, 3, 3, 4, 4, 4 };
int n = sizeof(a) / sizeof(a[0]);
// pre-computation
countIndex(a, n);
int L, R;
// 1-st query
L = 1;
R = 8;
cout << answer_query(L, R) << endl;
// 2nd query
L = 0;
R = 4;
cout << answer_query(L, R) << endl;
return 0;
} | linear | linear |
// C++ program to print largest contiguous array sum
#include <bits/stdc++.h>
using namespace std;
int maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0;
for (int i = 0; i < size; i++) {
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
// Driver Code
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
// Function Call
int max_sum = maxSubArraySum(a, n);
cout << "Maximum contiguous sum is " << max_sum;
return 0;
} | constant | linear |
// C++ program to print largest contiguous array sum
#include <climits>
#include <iostream>
using namespace std;
void maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0,
start = 0, end = 0, s = 0;
for (int i = 0; i < size; i++) {
max_ending_here += a[i];
if (max_so_far < max_ending_here) {
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0) {
max_ending_here = 0;
s = i + 1;
}
}
cout << "Maximum contiguous sum is " << max_so_far
<< endl;
cout << "Starting index " << start << endl
<< "Ending index " << end << endl;
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = sizeof(a) / sizeof(a[0]);
int max_sum = maxSubArraySum(a, n);
return 0;
} | constant | linear |
// C++ program to find maximum
// possible profit with at most
// two transactions
#include <bits/stdc++.h>
using namespace std;
// Returns maximum profit with
// two transactions on a given
// list of stock prices, price[0..n-1]
int maxProfit(int price[], int n)
{
// Create profit array and
// initialize it as 0
int* profit = new int[n];
for (int i = 0; i < n; i++)
profit[i] = 0;
/* Get the maximum profit with
only one transaction
allowed. After this loop,
profit[i] contains maximum
profit from price[i..n-1]
using at most one trans. */
int max_price = price[n - 1];
for (int i = n - 2; i >= 0; i--) {
// max_price has maximum
// of price[i..n-1]
if (price[i] > max_price)
max_price = price[i];
// we can get profit[i] by taking maximum of:
// a) previous maximum, i.e., profit[i+1]
// b) profit by buying at price[i] and selling at
// max_price
profit[i]
= max(profit[i + 1], max_price - price[i]);
}
/* Get the maximum profit with two transactions allowed
After this loop, profit[n-1] contains the result */
int min_price = price[0];
for (int i = 1; i < n; i++) {
// min_price is minimum price in price[0..i]
if (price[i] < min_price)
min_price = price[i];
// Maximum profit is maximum of:
// a) previous maximum, i.e., profit[i-1]
// b) (Buy, Sell) at (min_price, price[i]) and add
// profit of other trans. stored in profit[i]
profit[i] = max(profit[i - 1],
profit[i] + (price[i] - min_price));
}
int result = profit[n - 1];
delete[] profit; // To avoid memory leak
return result;
}
// Driver code
int main()
{
int price[] = { 2, 30, 15, 10, 8, 25, 80 };
int n = sizeof(price) / sizeof(price[0]);
cout << "Maximum Profit = " << maxProfit(price, n);
return 0;
} | linear | linear |
#include <iostream>
#include<climits>
using namespace std;
int maxtwobuysell(int arr[],int size) {
int first_buy = INT_MIN;
int first_sell = 0;
int second_buy = INT_MIN;
int second_sell = 0;
for(int i=0;i<size;i++) {
first_buy = max(first_buy,-arr[i]);//we set prices to negative, so the calculation of profit will be convenient
first_sell = max(first_sell,first_buy+arr[i]);
second_buy = max(second_buy,first_sell-arr[i]);//we can buy the second only after first is sold
second_sell = max(second_sell,second_buy+arr[i]);
}
return second_sell;
}
int main() {
int arr[] = {2, 30, 15, 10, 8, 25, 80};
int size = sizeof(arr)/sizeof(arr[0]);
cout<<maxtwobuysell(arr,size);
return 0;
} | constant | linear |
//C++ code of Naive approach to
//find subarray with minimum average
#include<bits/stdc++.h>
using namespace std;
//function to find subarray
void findsubarrayleast(int arr[],int k,int n){
int min=INT_MAX,minindex;
for (int i = 0; i <= n-k; i++)
{
int sum=0;
for (int j = i; j < i+k; j++)
{
sum+=arr[j];
}
if(sum<min){
min=sum;
minindex=i;
}
}
//printing the desired subarray
cout<<"subarray with minimum average is: ";
for (int i = minindex; i < minindex+k; i++)
{
cout<<arr[i]<<" ";
}
}
//driver code
int main() {
int arr[]={3, 7, 90, 20, 10, 50, 40};
int n=sizeof(arr)/sizeof(arr[0]),k=3;
//function call
findsubarrayleast(arr,k,n);
return 0;
}
//this code is contributed by Machhaliya Muhammad | constant | quadratic |
// A Simple C++ program to find minimum average subarray
#include <bits/stdc++.h>
using namespace std;
// Prints beginning and ending indexes of subarray
// of size k with minimum average
void findMinAvgSubarray(int arr[], int n, int k)
{
// k must be smaller than or equal to n
if (n < k)
return;
// Initialize beginning index of result
int res_index = 0;
// Compute sum of first subarray of size k
int curr_sum = 0;
for (int i = 0; i < k; i++)
curr_sum += arr[i];
// Initialize minimum sum as current sum
int min_sum = curr_sum;
// Traverse from (k+1)'th element to n'th element
for (int i = k; i < n; i++) {
// Add current item and remove first item of
// previous subarray
curr_sum += arr[i] - arr[i - k];
// Update result if needed
if (curr_sum < min_sum) {
min_sum = curr_sum;
res_index = (i - k + 1);
}
}
cout << "Subarray between [" << res_index << ", "
<< res_index + k - 1 << "] has minimum average";
}
// Driver program
int main()
{
int arr[] = { 3, 7, 90, 20, 10, 50, 40 };
int k = 3; // Subarray size
int n = sizeof arr / sizeof arr[0];
findMinAvgSubarray(arr, n, k);
return 0;
} | constant | linear |
// C++ program to Find the minimum
// distance between two numbers
#include <bits/stdc++.h>
using namespace std;
int minDist(int arr[], int n, int x, int y)
{
int i, j;
int min_dist = INT_MAX;
for (i = 0; i < n; i++) {
for (j = i + 1; j < n; j++) {
if ((x == arr[i] && y == arr[j]
|| y == arr[i] && x == arr[j])
&& min_dist > abs(i - j)) {
min_dist = abs(i - j);
}
}
}
if (min_dist > n) {
return -1;
}
return min_dist;
}
/* Driver code */
int main()
{
int arr[] = { 3, 5, 4, 2, 6, 5, 6, 6, 5, 4, 8, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = 3;
int y = 6;
cout << "Minimum distance between " << x << " and " << y
<< " is " << minDist(arr, n, x, y) << endl;
}
// This code is contributed by Shivi_Aggarwal | constant | quadratic |
// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
int minDist(int arr[], int n, int x, int y)
{
//previous index and min distance
int p = -1, min_dist = INT_MAX;
for(int i=0 ; i<n ; i++)
{
if(arr[i]==x || arr[i]==y)
{
//we will check if p is not equal to -1 and
//If the element at current index matches with
//the element at index p , If yes then update
//the minimum distance if needed
if( p != -1 && arr[i] != arr[p])
min_dist = min(min_dist , i-p);
//update the previous index
p=i;
}
}
//If distance is equal to int max
if(min_dist==INT_MAX)
return -1;
return min_dist;
}
/* Driver code */
int main()
{
int arr[] = {3, 5, 4, 2, 6, 3, 0, 0, 5, 4, 8, 3};
int n = sizeof(arr) / sizeof(arr[0]);
int x = 3;
int y = 6;
cout << "Minimum distance between " << x <<
" and " << y << " is "<<
minDist(arr, n, x, y) << endl;
return 0;
}
// This code is contributed by Mukul singh. | constant | linear |
// C++ program to Find the minimum
// distance between two numbers
#include <bits/stdc++.h>
using namespace std;
int minDist(int arr[], int n, int x, int y)
{
//idx1 and idx2 will store indices of
//x or y and min_dist will store the minimum difference
int idx1=-1,idx2=-1,min_dist = INT_MAX;
for(int i=0;i<n;i++)
{
//if current element is x then change idx1
if(arr[i]==x)
{
idx1=i;
}
//if current element is y then change idx2
else if(arr[i]==y)
{
idx2=i;
}
//if x and y both found in array
//then only find the difference and store it in min_dist
if(idx1!=-1 && idx2!=-1)
min_dist=min(min_dist,abs(idx1-idx2));
}
//if left or right did not found in array
//then return -1
if(idx1==-1||idx2==-1)
return -1;
//return the minimum distance
else
return min_dist;
}
/* Driver code */
int main()
{
int arr[] = { 3, 5, 4, 2, 6, 5, 6, 6, 5, 4, 8, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = 3;
int y = 6;
cout << "Minimum distance between " << x << " and " << y
<< " is " << minDist(arr, n, x, y) << endl;
} | constant | linear |
// C++ Code for the Approach
#include <bits/stdc++.h>
using namespace std;
// User function Template
int getMinDiff(int arr[], int n, int k)
{
sort(arr, arr + n);
// Maximum possible height difference
int ans = arr[n - 1] - arr[0];
int tempmin, tempmax;
tempmin = arr[0];
tempmax = arr[n - 1];
for (int i = 1; i < n; i++) {
// If on subtracting k we got
// negative then continue
if (arr[i] - k < 0)
continue;
// Minimum element when we
// add k to whole array
tempmin = min(arr[0] + k, arr[i] - k);
// Maximum element when we
// subtract k from whole array
tempmax = max(arr[i - 1] + k, arr[n - 1] - k);
ans = min(ans, tempmax - tempmin);
}
return ans;
}
// Driver Code Starts
int main()
{
int k = 6, n = 6;
int arr[n] = { 7, 4, 8, 8, 8, 9 };
// Function Call
int ans = getMinDiff(arr, n, k);
cout << ans;
} | constant | nlogn |
// C++ program to find Minimum
// number of jumps to reach end
#include <bits/stdc++.h>
using namespace std;
// Function to return the minimum number
// of jumps to reach arr[h] from arr[l]
int minJumps(int arr[], int n)
{
// Base case: when source and
// destination are same
if (n == 1)
return 0;
// Traverse through all the points
// reachable from arr[l]
// Recursively, get the minimum number
// of jumps needed to reach arr[h] from
// these reachable points
int res = INT_MAX;
for (int i = n - 2; i >= 0; i--) {
if (i + arr[i] >= n - 1) {
int sub_res = minJumps(arr, i + 1);
if (sub_res != INT_MAX)
res = min(res, sub_res + 1);
}
}
return res;
}
// Driver Code
int main()
{
int arr[] = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of jumps to";
cout << " reach the end is " << minJumps(arr, n);
return 0;
}
// This code is contributed
// by Shivi_Aggarwal | linear | np |
// C++ program for Minimum number
// of jumps to reach end
#include <bits/stdc++.h>
using namespace std;
int min(int x, int y) { return (x < y) ? x : y; }
// Returns minimum number of jumps
// to reach arr[n-1] from arr[0]
int minJumps(int arr[], int n)
{
// jumps[n-1] will hold the result
int* jumps = new int[n];
int i, j;
if (n == 0 || arr[0] == 0)
return INT_MAX;
jumps[0] = 0;
// Find the minimum number of jumps to reach arr[i]
// from arr[0], and assign this value to jumps[i]
for (i = 1; i < n; i++) {
jumps[i] = INT_MAX;
for (j = 0; j < i; j++) {
if (i <= j + arr[j] && jumps[j] != INT_MAX) {
jumps[i] = min(jumps[i], jumps[j] + 1);
break;
}
}
}
return jumps[n - 1];
}
// Driver code
int main()
{
int arr[] = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };
int size = sizeof(arr) / sizeof(int);
cout << "Minimum number of jumps to reach end is "
<< minJumps(arr, size);
return 0;
}
// This is code is contributed by rathbhupendra | linear | np |
// C++ program to find Minimum number of jumps to reach end
#include <bits/stdc++.h>
using namespace std;
// Returns Minimum number of jumps to reach end
int minJumps(int arr[], int n)
{
// jumps[0] will hold the result
int* jumps = new int[n];
int min;
// Minimum number of jumps needed to reach last element
// from last elements itself is always 0
jumps[n - 1] = 0;
// Start from the second element, move from right to
// left and construct the jumps[] array where jumps[i]
// represents minimum number of jumps needed to reach
// arr[m-1] from arr[i]
for (int i = n - 2; i >= 0; i--) {
// If arr[i] is 0 then arr[n-1] can't be reached
// from here
if (arr[i] == 0)
jumps[i] = INT_MAX;
// If we can directly reach to the end point from
// here then jumps[i] is 1
else if (arr[i] >= n - i - 1)
jumps[i] = 1;
// Otherwise, to find out the minimum number of
// jumps needed to reach arr[n-1], check all the
// points reachable from here and jumps[] value for
// those points
else {
// initialize min value
min = INT_MAX;
// following loop checks with all reachable
// points and takes the minimum
for (int j = i + 1; j < n && j <= arr[i] + i;
j++) {
if (min > jumps[j])
min = jumps[j];
}
// Handle overflow
if (min != INT_MAX)
jumps[i] = min + 1;
else
jumps[i] = min; // or INT_MAX
}
}
return jumps[0];
}
// Driver program to test above function
int main()
{
int arr[] = { 1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9 };
int size = sizeof(arr) / sizeof(int);
cout << "Minimum number of jumps to reach"
<< " end is " << minJumps(arr, size);
return 0;
}
// This code is contributed by Sania Kumari Gupta | linear | quadratic |
/* Dynamic Programming implementation
of Maximum Sum Increasing Subsequence
(MSIS) problem */
#include <bits/stdc++.h>
using namespace std;
/* maxSumIS() returns the maximum
sum of increasing subsequence
in arr[] of size n */
int maxSumIS(int arr[], int n)
{
int i, j, max = 0;
int msis[n];
/* Initialize msis values
for all indexes */
for ( i = 0; i < n; i++ )
msis[i] = arr[i];
/* Compute maximum sum values
in bottom up manner */
for ( i = 1; i < n; i++ )
for ( j = 0; j < i; j++ )
if (arr[i] > arr[j] &&
msis[i] < msis[j] + arr[i])
msis[i] = msis[j] + arr[i];
/* Pick maximum of
all msis values */
for ( i = 0; i < n; i++ )
if ( max < msis[i] )
max = msis[i];
return max;
}
// Driver Code
int main()
{
int arr[] = {1, 101, 2, 3, 100, 4, 5};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Sum of maximum sum increasing "
"subsequence is " << maxSumIS( arr, n ) << endl;
return 0;
}
// This is code is contributed by rathbhupendra | linear | quadratic |
# include <iostream>
using namespace std;
// Returns length of smallest subarray with sum greater than x.
// If there is no subarray with given sum, then returns n+1
int smallestSubWithSum(int arr[], int n, int x)
{
// Initialize length of smallest subarray as n+1
int min_len = n + 1;
// Pick every element as starting point
for (int start=0; start<n; start++)
{
// Initialize sum starting with current start
int curr_sum = arr[start];
// If first element itself is greater
if (curr_sum > x) return 1;
// Try different ending points for current start
for (int end=start+1; end<n; end++)
{
// add last element to current sum
curr_sum += arr[end];
// If sum becomes more than x and length of
// this subarray is smaller than current smallest
// length, update the smallest length (or result)
if (curr_sum > x && (end - start + 1) < min_len)
min_len = (end - start + 1);
}
}
return min_len;
}
/* Driver program to test above function */
int main()
{
int arr1[] = {1, 4, 45, 6, 10, 19};
int x = 51;
int n1 = sizeof(arr1)/sizeof(arr1[0]);
int res1 = smallestSubWithSum(arr1, n1, x);
(res1 == n1+1)? cout << "Not possible\n" :
cout << res1 << endl;
int arr2[] = {1, 10, 5, 2, 7};
int n2 = sizeof(arr2)/sizeof(arr2[0]);
x = 9;
int res2 = smallestSubWithSum(arr2, n2, x);
(res2 == n2+1)? cout << "Not possible\n" :
cout << res2 << endl;
int arr3[] = {1, 11, 100, 1, 0, 200, 3, 2, 1, 250};
int n3 = sizeof(arr3)/sizeof(arr3[0]);
x = 280;
int res3 = smallestSubWithSum(arr3, n3, x);
(res3 == n3+1)? cout << "Not possible\n" :
cout << res3 << endl;
return 0;
} | constant | quadratic |
// O(n) solution for finding smallest subarray with sum
// greater than x
#include <iostream>
using namespace std;
// Returns length of smallest subarray with sum greater than
// x. If there is no subarray with given sum, then returns
// n+1
int smallestSubWithSum(int arr[], int n, int x)
{
// Initialize current sum and minimum length
int curr_sum = 0, min_len = n + 1;
// Initialize starting and ending indexes
int start = 0, end = 0;
while (end < n) {
// Keep adding array elements while current sum
// is smaller than or equal to x
while (curr_sum <= x && end < n)
curr_sum += arr[end++];
// If current sum becomes greater than x.
while (curr_sum > x && start < n) {
// Update minimum length if needed
if (end - start < min_len)
min_len = end - start;
// remove starting elements
curr_sum -= arr[start++];
}
}
return min_len;
}
/* Driver program to test above function */
int main()
{
int arr1[] = { 1, 4, 45, 6, 10, 19 };
int x = 51;
int n1 = sizeof(arr1) / sizeof(arr1[0]);
int res1 = smallestSubWithSum(arr1, n1, x);
(res1 == n1 + 1) ? cout << "Not possible\n"
: cout << res1 << endl;
int arr2[] = { 1, 10, 5, 2, 7 };
int n2 = sizeof(arr2) / sizeof(arr2[0]);
x = 9;
int res2 = smallestSubWithSum(arr2, n2, x);
(res2 == n2 + 1) ? cout << "Not possible\n"
: cout << res2 << endl;
int arr3[] = { 1, 11, 100, 1, 0, 200, 3, 2, 1, 250 };
int n3 = sizeof(arr3) / sizeof(arr3[0]);
x = 280;
int res3 = smallestSubWithSum(arr3, n3, x);
(res3 == n3 + 1) ? cout << "Not possible\n"
: cout << res3 << endl;
return 0;
} | constant | linear |
// C++ program to find maximum average subarray
// of given length.
#include<bits/stdc++.h>
using namespace std;
// Returns beginning index of maximum average
// subarray of length 'k'
int findMaxAverage(int arr[], int n, int k)
{
// Check if 'k' is valid
if (k > n)
return -1;
// Create and fill array to store cumulative
// sum. csum[i] stores sum of arr[0] to arr[i]
int *csum = new int[n];
csum[0] = arr[0];
for (int i=1; i<n; i++)
csum[i] = csum[i-1] + arr[i];
// Initialize max_sm as sum of first subarray
int max_sum = csum[k-1], max_end = k-1;
// Find sum of other subarrays and update
// max_sum if required.
for (int i=k; i<n; i++)
{
int curr_sum = csum[i] - csum[i-k];
if (curr_sum > max_sum)
{
max_sum = curr_sum;
max_end = i;
}
}
delete [] csum; // To avoid memory leak
// Return starting index
return max_end - k + 1;
}
// Driver program
int main()
{
int arr[] = {1, 12, -5, -6, 50, 3};
int k = 4;
int n = sizeof(arr)/sizeof(arr[0]);
cout << "The maximum average subarray of "
"length "<< k << " begins at index "
<< findMaxAverage(arr, n, k);
return 0;
} | linear | linear |
// C++ program to find maximum average subarray
// of given length.
#include<bits/stdc++.h>
using namespace std;
// Returns beginning index of maximum average
// subarray of length 'k'
int findMaxAverage(int arr[], int n, int k)
{
// Check if 'k' is valid
if (k > n)
return -1;
// Compute sum of first 'k' elements
int sum = arr[0];
for (int i=1; i<k; i++)
sum += arr[i];
int max_sum = sum, max_end = k-1;
// Compute sum of remaining subarrays
for (int i=k; i<n; i++)
{
sum = sum + arr[i] - arr[i-k];
if (sum > max_sum)
{
max_sum = sum;
max_end = i;
}
}
// Return starting index
return max_end - k + 1;
}
// Driver program
int main()
{
int arr[] = {1, 12, -5, -6, 50, 3};
int k = 4;
int n = sizeof(arr)/sizeof(arr[0]);
cout << "The maximum average subarray of "
"length "<< k << " begins at index "
<< findMaxAverage(arr, n, k);
return 0;
} | constant | linear |
/* C++ program to count minimum number of operations
to get the given target array */
#include <bits/stdc++.h>
using namespace std;
// Returns count of minimum operations to convert a
// zero array to target array with increment and
// doubling operations.
// This function computes count by doing reverse
// steps, i.e., convert target to zero array.
int countMinOperations(unsigned int target[], int n)
{
// Initialize result (Count of minimum moves)
int result = 0;
// Keep looping while all elements of target
// don't become 0.
while (1)
{
// To store count of zeroes in current
// target array
int zero_count = 0;
int i; // To find first odd element
for (i=0; i<n; i++)
{
// If odd number found
if (target[i] & 1)
break;
// If 0, then increment zero_count
else if (target[i] == 0)
zero_count++;
}
// All numbers are 0
if (zero_count == n)
return result;
// All numbers are even
if (i == n)
{
// Divide the whole array by 2
// and increment result
for (int j=0; j<n; j++)
target[j] = target[j]/2;
result++;
}
// Make all odd numbers even by subtracting
// one and increment result.
for (int j=i; j<n; j++)
{
if (target[j] & 1)
{
target[j]--;
result++;
}
}
}
}
/* Driver program to test above functions*/
int main()
{
unsigned int arr[] = {16, 16, 16};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Minimum number of steps required to "
"get the given target array is "
<< countMinOperations(arr, n);
return 0;
} | constant | linear |
// C++ program to find number of operations
// to make an array palindrome
#include <bits/stdc++.h>
using namespace std;
// Returns minimum number of count operations
// required to make arr[] palindrome
int findMinOps(int arr[], int n)
{
int ans = 0; // Initialize result
// Start from two corners
for (int i=0,j=n-1; i<=j;)
{
// If corner elements are same,
// problem reduces arr[i+1..j-1]
if (arr[i] == arr[j])
{
i++;
j--;
}
// If left element is greater, then
// we merge right two elements
else if (arr[i] > arr[j])
{
// need to merge from tail.
j--;
arr[j] += arr[j+1] ;
ans++;
}
// Else we merge left two elements
else
{
i++;
arr[i] += arr[i-1];
ans++;
}
}
return ans;
}
// Driver program to test above
int main()
{
int arr[] = {1, 4, 5, 9, 1};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Count of minimum operations is "
<< findMinOps(arr, n) << endl;
return 0;
} | constant | linear |
// C++ program to find the smallest positive value that cannot be
// represented as sum of subsets of a given sorted array
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
// Returns the smallest number that cannot be represented as sum
// of subset of elements from set represented by sorted array arr[0..n-1]
long long smallestpositive(vector<long long> arr, int n) {
long long int res = 1; // Initialize result
sort(arr.begin(), arr.end());
// Traverse the array and increment 'res' if arr[i] is
// smaller than or equal to 'res'.
for (int i = 0; i < n && arr[i] <= res; i++)
res = res + arr[i];
return res;
}
// Driver program to test above function
int main() {
vector<long long> arr1 = {1, 3, 4, 5};
cout << smallestpositive(arr1, arr1.size()) << endl;
vector<long long> arr2 = {1, 2, 6, 10, 11, 15};
cout << smallestpositive(arr2, arr2.size()) << endl;
vector<long long> arr3 = {1, 1, 1, 1};
cout << smallestpositive(arr3, arr3.size()) << endl;
vector<long long> arr4 = {1, 1, 3, 4};
cout << smallestpositive(arr4, arr4.size()) << endl;
return 0;
} | constant | nlogn |
// C++ program to print length of the largest
// contiguous array sum
#include<bits/stdc++.h>
using namespace std;
int maxSubArraySum(int a[], int size)
{
int max_so_far = INT_MIN, max_ending_here = 0,
start =0, end = 0, s=0;
for (int i=0; i< size; i++ )
{
max_ending_here += a[i];
if (max_so_far < max_ending_here)
{
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0)
{
max_ending_here = 0;
s = i + 1;
}
}
return (end - start + 1);
}
/*Driver program to test maxSubArraySum*/
int main()
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = sizeof(a)/sizeof(a[0]);
cout << maxSubArraySum(a, n);
return 0;
} | constant | linear |
// C++ implementation of simple method to find
// minimum difference between any pair
#include <bits/stdc++.h>
using namespace std;
// Returns minimum difference between any pair
int findMinDiff(int arr[], int n)
{
// Initialize difference as infinite
int diff = INT_MAX;
// Find the min diff by comparing difference
// of all possible pairs in given array
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
if (abs(arr[i] - arr[j]) < diff)
diff = abs(arr[i] - arr[j]);
// Return min diff
return diff;
}
// Driver code
int main()
{
int arr[] = { 1, 5, 3, 19, 18, 25 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "Minimum difference is " << findMinDiff(arr, n);
return 0;
} | constant | quadratic |
// C++ program to find minimum difference between
// any pair in an unsorted array
#include <bits/stdc++.h>
using namespace std;
// Returns minimum difference between any pair
int findMinDiff(int arr[], int n)
{
// Sort array in non-decreasing order
sort(arr, arr + n);
// Initialize difference as infinite
int diff = INT_MAX;
// Find the min diff by comparing adjacent
// pairs in sorted array
for (int i = 0; i < n - 1; i++)
if (arr[i + 1] - arr[i] < diff)
diff = arr[i + 1] - arr[i];
// Return min diff
return diff;
}
// Driver code
int main()
{
int arr[] = { 1, 5, 3, 19, 18, 25 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "Minimum difference is " << findMinDiff(arr, n);
return 0;
} | constant | nlogn |
// A Simple C++ program to find longest common
// subarray of two binary arrays with same sum
#include<bits/stdc++.h>
using namespace std;
// Returns length of the longest common subarray
// with same sum
int longestCommonSum(bool arr1[], bool arr2[], int n)
{
// Initialize result
int maxLen = 0;
// One by one pick all possible starting points
// of subarrays
for (int i=0; i<n; i++)
{
// Initialize sums of current subarrays
int sum1 = 0, sum2 = 0;
// Consider all points for starting with arr[i]
for (int j=i; j<n; j++)
{
// Update sums
sum1 += arr1[j];
sum2 += arr2[j];
// If sums are same and current length is
// more than maxLen, update maxLen
if (sum1 == sum2)
{
int len = j-i+1;
if (len > maxLen)
maxLen = len;
}
}
}
return maxLen;
}
// Driver program to test above function
int main()
{
bool arr1[] = {0, 1, 0, 1, 1, 1, 1};
bool arr2[] = {1, 1, 1, 1, 1, 0, 1};
int n = sizeof(arr1)/sizeof(arr1[0]);
cout << "Length of the longest common span with same "
"sum is "<< longestCommonSum(arr1, arr2, n);
return 0;
} | constant | quadratic |
// A O(n) and O(n) extra space C++ program to find
// longest common subarray of two binary arrays with
// same sum
#include<bits/stdc++.h>
using namespace std;
// Returns length of the longest common sum in arr1[]
// and arr2[]. Both are of same size n.
int longestCommonSum(bool arr1[], bool arr2[], int n)
{
// Initialize result
int maxLen = 0;
// Initialize prefix sums of two arrays
int preSum1 = 0, preSum2 = 0;
// Create an array to store starting and ending
// indexes of all possible diff values. diff[i]
// would store starting and ending points for
// difference "i-n"
int diff[2*n+1];
// Initialize all starting and ending values as -1.
memset(diff, -1, sizeof(diff));
// Traverse both arrays
for (int i=0; i<n; i++)
{
// Update prefix sums
preSum1 += arr1[i];
preSum2 += arr2[i];
// Compute current diff and index to be used
// in diff array. Note that diff can be negative
// and can have minimum value as -1.
int curr_diff = preSum1 - preSum2;
int diffIndex = n + curr_diff;
// If current diff is 0, then there are same number
// of 1's so far in both arrays, i.e., (i+1) is
// maximum length.
if (curr_diff == 0)
maxLen = i+1;
// If current diff is seen first time, then update
// starting index of diff.
else if ( diff[diffIndex] == -1)
diff[diffIndex] = i;
// Current diff is already seen
else
{
// Find length of this same sum common span
int len = i - diff[diffIndex];
// Update max len if needed
if (len > maxLen)
maxLen = len;
}
}
return maxLen;
}
// Driver code
int main()
{
bool arr1[] = {0, 1, 0, 1, 1, 1, 1};
bool arr2[] = {1, 1, 1, 1, 1, 0, 1};
int n = sizeof(arr1)/sizeof(arr1[0]);
cout << "Length of the longest common span with same "
"sum is "<< longestCommonSum(arr1, arr2, n);
return 0;
} | linear | linear |
// C++ program to find largest subarray
// with equal number of 0's and 1's.
#include <bits/stdc++.h>
using namespace std;
// Returns largest common subarray with equal
// number of 0s and 1s in both of t
int longestCommonSum(bool arr1[], bool arr2[], int n)
{
// Find difference between the two
int arr[n];
for (int i=0; i<n; i++)
arr[i] = arr1[i] - arr2[i];
// Creates an empty hashMap hM
unordered_map<int, int> hM;
int sum = 0; // Initialize sum of elements
int max_len = 0; // Initialize result
// Traverse through the given array
for (int i = 0; i < n; i++)
{
// Add current element to sum
sum += arr[i];
// To handle sum=0 at last index
if (sum == 0)
max_len = i + 1;
// If this sum is seen before,
// then update max_len if required
if (hM.find(sum) != hM.end())
max_len = max(max_len, i - hM[sum]);
else // Else put this sum in hash table
hM[sum] = i;
}
return max_len;
}
// Driver program to test above function
int main()
{
bool arr1[] = {0, 1, 0, 1, 1, 1, 1};
bool arr2[] = {1, 1, 1, 1, 1, 0, 1};
int n = sizeof(arr1)/sizeof(arr1[0]);
cout << longestCommonSum(arr1, arr2, n);
return 0;
} | linear | linear |
// C++ program to print an array in alternate
// sorted manner.
#include <bits/stdc++.h>
using namespace std;
// Function to print alternate sorted values
void alternateSort(int arr[], int n)
{
// Sorting the array
sort(arr, arr+n);
// Printing the last element of array
// first and then first element and then
// second last element and then second
// element and so on.
int i = 0, j = n-1;
while (i < j) {
cout << arr[j--] << " ";
cout << arr[i++] << " ";
}
// If the total element in array is odd
// then print the last middle element.
if (n % 2 != 0)
cout << arr[i];
}
// Driver code
int main()
{
int arr[] = {1, 12, 4, 6, 7, 10};
int n = sizeof(arr)/sizeof(arr[0]);
alternateSort(arr, n);
return 0;
} | constant | nlogn |
// A STL based C++ program to sort a nearly sorted array.
#include <bits/stdc++.h>
using namespace std;
// Given an array of size n, where every element
// is k away from its target position, sorts the
// array in O(n logk) time.
void sortK(int arr[], int n, int k)
{
// Insert first k+1 items in a priority queue (or min
// heap)
//(A O(k) operation). We assume, k < n.
//if size of array = k i.e k away from its target position
//then
int size;
size=(n==k)?k:k+1;
priority_queue<int, vector<int>, greater<int> > pq(arr, arr +size);
// i is index for remaining elements in arr[] and index
// is target index of for current minimum element in
// Min Heap 'pq'.
int index = 0;
for (int i = k + 1; i < n; i++) {
arr[index++] = pq.top();
pq.pop();
pq.push(arr[i]);
}
while (pq.empty() == false) {
arr[index++] = pq.top();
pq.pop();
}
}
// A utility function to print array elements
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
// Driver program to test above functions
int main()
{
int k = 3;
int arr[] = { 2, 6, 3, 12, 56, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
sortK(arr, n, k);
cout << "Following is sorted array" << endl;
printArray(arr, n);
return 0;
} | constant | constant |
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
int sort(vector<int>& array, int l, int h, int k)
{
int mid = l + (h - l) / 2; //Choose middle element as pivot
int i = max(l, mid - k), j = i, end = min(mid + k, h); // Set appropriate range
swap(array[mid], array[end]); //Swap middle and last element to avoid extra complications
while (j < end) {
if (array[j] < array[end]) {
swap(array[i++], array[j]);
}
j = j + 1;
}
swap(array[end], array[i]);
return i;
}
void ksorter(vector<int>& array, int l, int h, int k)
{
if (l < h) {
int q = sort(array, l, h, k);
ksorter(array, l, q - 1, k);
ksorter(array, q + 1, h, k);
}
}
int main()
{
vector<int> array(
{ 3, 3, 2, 1, 6, 4, 4, 5, 9, 7, 8, 11, 12 });
int k = 3;
cout << "Array before k sort\n";
for (int& num : array)
cout << num << ' ';
cout << endl;
ksorter(array, 0, array.size() - 1, k);
cout << "Array after k sort\n";
for (int& num : array)
cout << num << ' ';
return 0;
} | logn | nlogn |
// C++ program to sort an array according absolute
// difference with x.
#include <bits/stdc++.h>
using namespace std;
// Function to sort an array according absolute
// difference with x.
void rearrange(int arr[], int n, int x)
{
multimap<int, int> m;
multimap<int, int>::iterator it;
// Store values in a map with the difference
// with X as key
for (int i = 0; i < n; i++)
m.insert(make_pair(abs(x - arr[i]), arr[i]));
// Update the values of array
int i = 0;
for (it = m.begin(); it != m.end(); it++)
arr[i++] = (*it).second;
}
// Function to print the array
void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Driver code
int main()
{
int arr[] = { 10, 5, 3, 9, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = 7;
// Function call
rearrange(arr, n, x);
printArray(arr, n);
return 0;
} | linear | nlogn |
// CPP program for the above approach
#include <bits/stdc++.h>
using namespace std;
void rearrange(int arr[], int n, int x)
{
/*
We can send the value x into
lambda expression as
follows: [capture]()
{
//statements
//capture value can be used inside
}
*/
stable_sort(arr, arr + n, [x](int a, int b) {
if (abs(a - x) < abs(b - x))
return true;
else
return false;
});
}
// Driver code
int main()
{
int arr[] = { 10, 5, 3, 9, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = 7;
// Function call
rearrange(arr, n, x);
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
return 0;
} | constant | nlogn |
// A C++ program to sort an array in wave form using
// a sorting function
#include<iostream>
#include<algorithm>
using namespace std;
// A utility method to swap two numbers.
void swap(int *x, int *y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// This function sorts arr[0..n-1] in wave form, i.e.,
// arr[0] >= arr[1] <= arr[2] >= arr[3] <= arr[4] >= arr[5]..
void sortInWave(int arr[], int n)
{
// Sort the input array
sort(arr, arr+n);
// Swap adjacent elements
for (int i=0; i<n-1; i += 2)
swap(&arr[i], &arr[i+1]);
}
// Driver program to test above function
int main()
{
int arr[] = {10, 90, 49, 2, 1, 5, 23};
int n = sizeof(arr)/sizeof(arr[0]);
sortInWave(arr, n);
for (int i=0; i<n; i++)
cout << arr[i] << " ";
return 0;
} | constant | nlogn |
// A O(n) program to sort an input array in wave form
#include<iostream>
using namespace std;
// A utility method to swap two numbers.
void swap(int *x, int *y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// This function sorts arr[0..n-1] in wave form, i.e., arr[0] >=
// arr[1] <= arr[2] >= arr[3] <= arr[4] >= arr[5] ....
void sortInWave(int arr[], int n)
{
// Traverse all even elements
for (int i = 0; i < n; i+=2)
{
// If current even element is smaller than previous
if (i>0 && arr[i-1] > arr[i] )
swap(&arr[i], &arr[i-1]);
// If current even element is smaller than next
if (i<n-1 && arr[i] < arr[i+1] )
swap(&arr[i], &arr[i + 1]);
}
}
// Driver program to test above function
int main()
{
int arr[] = {10, 90, 49, 2, 1, 5, 23};
int n = sizeof(arr)/sizeof(arr[0]);
sortInWave(arr, n);
for (int i=0; i<n; i++)
cout << arr[i] << " ";
return 0;
} | constant | linear |
// C++ program to Merge an array of
// size n into another array of size m + n
#include <bits/stdc++.h>
using namespace std;
/* Assuming -1 is filled for the places
where element is not available */
#define NA -1
/* Function to move m elements at
the end of array mPlusN[] */
void moveToEnd(int mPlusN[], int size)
{
int j = size - 1;
for (int i = size - 1; i >= 0; i--)
if (mPlusN[i] != NA)
{
mPlusN[j] = mPlusN[i];
j--;
}
}
/* Merges array N[] of size n into
array mPlusN[] of size m+n*/
int merge(int mPlusN[], int N[], int m, int n)
{
int i = n; /* Current index of i/p part of mPlusN[]*/
int j = 0; /* Current index of N[]*/
int k = 0; /* Current index of output mPlusN[]*/
while (k < (m + n))
{
/* Take an element from mPlusN[] if
a) value of the picked element is smaller
and we have not reached end of it
b) We have reached end of N[] */
if ((j == n)||(i < (m + n) && mPlusN[i] <= N[j]))
{
mPlusN[k] = mPlusN[i];
k++;
i++;
}
else // Otherwise take element from N[]
{
mPlusN[k] = N[j];
k++;
j++;
}
}
}
/* Utility that prints out an array on a line */
void printArray(int arr[], int size)
{
for (int i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
/* Driver code */
int main()
{
/* Initialize arrays */
int mPlusN[] = {2, 8, NA, NA, NA, 13, NA, 15, 20};
int N[] = {5, 7, 9, 25};
int n = sizeof(N) / sizeof(N[0]);
int m = sizeof(mPlusN) / sizeof(mPlusN[0]) - n;
/*Move the m elements at the end of mPlusN*/
moveToEnd(mPlusN, m + n);
/*Merge N[] into mPlusN[] */
merge(mPlusN, N, m, n);
/* Print the resultant mPlusN */
printArray(mPlusN, m+n);
return 0;
} | constant | linear |
// CPP program to test whether array
// can be sorted by swapping adjacent
// elements using boolean array
#include <bits/stdc++.h>
using namespace std;
// Return true if array can be
// sorted otherwise false
bool sortedAfterSwap(int A[], bool B[], int n)
{
int i, j;
// Check bool array B and sorts
// elements for continuous sequence of 1
for (i = 0; i < n - 1; i++) {
if (B[i]) {
j = i;
while (B[j])
j++;
// Sort array A from i to j
sort(A + i, A + 1 + j);
i = j;
}
}
// Check if array is sorted or not
for (i = 0; i < n; i++) {
if (A[i] != i + 1)
return false;
}
return true;
}
// Driver program to test sortedAfterSwap()
int main()
{
int A[] = { 1, 2, 5, 3, 4, 6 };
bool B[] = { 0, 1, 1, 1, 0 };
int n = sizeof(A) / sizeof(A[0]);
if (sortedAfterSwap(A, B, n))
cout << "A can be sorted\n";
else
cout << "A can not be sorted\n";
return 0;
} | constant | quadratic |
// CPP program to test whether array
// can be sorted by swapping adjacent
// elements using boolean array
#include <bits/stdc++.h>
using namespace std;
// Return true if array can be
// sorted otherwise false
bool sortedAfterSwap(int A[], bool B[], int n)
{
for (int i = 0; i < n - 1; i++) {
if (B[i]) {
if (A[i] != i + 1)
swap(A[i], A[i + 1]);
}
}
// Check if array is sorted or not
for (int i = 0; i < n; i++) {
if (A[i] != i + 1)
return false;
}
return true;
}
// Driver program to test sortedAfterSwap()
int main()
{
int A[] = { 1, 2, 5, 3, 4, 6 };
bool B[] = { 0, 1, 1, 1, 0 };
int n = sizeof(A) / sizeof(A[0]);
if (sortedAfterSwap(A, B, n))
cout << "A can be sorted\n";
else
cout << "A can not be sorted\n";
return 0;
} | constant | linear |
// CPP program to sort an array with two types
// of values in one traversal.
#include <bits/stdc++.h>
using namespace std;
/* Method for segregation 0 and 1 given
input array */
void segregate0and1(int arr[], int n)
{
int type0 = 0;
int type1 = n - 1;
while (type0 < type1) {
if (arr[type0] == 1) {
swap(arr[type0], arr[type1]);
type1--;
}
else {
type0++;
}
}
}
// Driver program
int main()
{
int arr[] = { 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1 };
int n = sizeof(arr)/sizeof(arr[0]);
segregate0and1(arr, n);
for (int a : arr)
cout << a << " ";
} | constant | linear |
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Used for sorting
struct ele {
int count, index, val;
};
// Used for sorting by value
bool mycomp(struct ele a, struct ele b)
{
return (a.val < b.val);
}
// Used for sorting by frequency. And if frequency is same,
// then by appearance
bool mycomp2(struct ele a, struct ele b)
{
if (a.count != b.count)
return (a.count < b.count);
else
return a.index > b.index;
}
void sortByFrequency(int arr[], int n)
{
struct ele element[n];
for (int i = 0; i < n; i++) {
// Fill Indexes
element[i].index = i;
// Initialize counts as 0
element[i].count = 0;
// Fill values in structure
// elements
element[i].val = arr[i];
}
/* Sort the structure elements according to value,
we used stable sort so relative order is maintained.
*/
stable_sort(element, element + n, mycomp);
/* initialize count of first element as 1 */
element[0].count = 1;
/* Count occurrences of remaining elements */
for (int i = 1; i < n; i++) {
if (element[i].val == element[i - 1].val) {
element[i].count += element[i - 1].count + 1;
/* Set count of previous element as -1, we are
doing this because we'll again sort on the
basis of counts (if counts are equal than on
the basis of index)*/
element[i - 1].count = -1;
/* Retain the first index (Remember first index
is always present in the first duplicate we
used stable sort. */
element[i].index = element[i - 1].index;
}
/* Else If previous element is not equal to current
so set the count to 1 */
else
element[i].count = 1;
}
/* Now we have counts and first index for each element
so now sort on the basis of count and in case of tie
use index to sort.*/
stable_sort(element, element + n, mycomp2);
for (int i = n - 1, index = 0; i >= 0; i--)
if (element[i].count != -1)
for (int j = 0; j < element[i].count; j++)
arr[index++] = element[i].val;
}
// Driver code
int main()
{
int arr[] = { 2, 5, 2, 6, -1, 9999999, 5, 8, 8, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
sortByFrequency(arr, n);
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
return 0;
} | linear | nlogn |
// CPP program for above approach
#include <bits/stdc++.h>
using namespace std;
// Compare function
bool fcompare(pair<int, pair<int, int> > p,
pair<int, pair<int, int> > p1)
{
if (p.second.second != p1.second.second)
return (p.second.second > p1.second.second);
else
return (p.second.first < p1.second.first);
}
void sortByFrequency(int arr[], int n)
{
unordered_map<int, pair<int, int> > hash; // hash map
for (int i = 0; i < n; i++) {
if (hash.find(arr[i]) != hash.end())
hash[arr[i]].second++;
else
hash[arr[i]] = make_pair(i, 1);
} // store the count of all the elements in the hashmap
// Iterator to Traverse the Hashmap
auto it = hash.begin();
// Vector to store the Final Sortted order
vector<pair<int, pair<int, int> > > b;
for (it; it != hash.end(); ++it)
b.push_back(make_pair(it->first, it->second));
sort(b.begin(), b.end(), fcompare);
// Printing the Sorted sequence
for (int i = 0; i < b.size(); i++) {
int count = b[i].second.second;
while (count--)
cout << b[i].first << " ";
}
}
// Driver code
int main()
{
int arr[] = { 2, 5, 2, 6, -1, 9999999, 5, 8, 8, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
sortByFrequency(arr, n);
return 0;
} | linear | nlogn |
// CPP program to find shortest subarray which is
// unsorted.
#include <bits/stdc++.h>
using namespace std;
// bool function for checking an array elements
// are in increasing.
bool increasing(int a[], int n)
{
for (int i = 0; i < n - 1; i++)
if (a[i] >= a[i + 1])
return false;
return true;
}
// bool function for checking an array
// elements are in decreasing.
bool decreasing(int a[], int n)
{
for (int i = 0; i < n - 1; i++)
if (a[i] < a[i + 1])
return false;
return true;
}
int shortestUnsorted(int a[], int n)
{
// increasing and decreasing are two functions.
// if function return true value then print
// 0 otherwise 3.
if (increasing(a, n) == true ||
decreasing(a, n) == true)
return 0;
else
return 3;
}
// Driver code
int main()
{
int ar[] = { 7, 9, 10, 8, 11 };
int n = sizeof(ar) / sizeof(ar[0]);
cout << shortestUnsorted(ar, n);
return 0;
} | constant | linear |
// C++ program to find
// minimum number of swaps
// required to sort an array
#include<bits/stdc++.h>
using namespace std;
// Function returns the
// minimum number of swaps
// required to sort the array
int minSwaps(int arr[], int n)
{
// Create an array of
// pairs where first
// element is array element
// and second element
// is position of first element
pair<int, int> arrPos[n];
for (int i = 0; i < n; i++)
{
arrPos[i].first = arr[i];
arrPos[i].second = i;
}
// Sort the array by array
// element values to
// get right position of
// every element as second
// element of pair.
sort(arrPos, arrPos + n);
// To keep track of visited elements.
// Initialize
// all elements as not visited or false.
vector<bool> vis(n, false);
// Initialize result
int ans = 0;
// Traverse array elements
for (int i = 0; i < n; i++)
{
// already swapped and corrected or
// already present at correct pos
if (vis[i] || arrPos[i].second == i)
continue;
// find out the number of node in
// this cycle and add in ans
int cycle_size = 0;
int j = i;
while (!vis[j])
{
vis[j] = 1;
// move to next node
j = arrPos[j].second;
cycle_size++;
}
// Update answer by adding current cycle.
if (cycle_size > 0)
{
ans += (cycle_size - 1);
}
}
// Return result
return ans;
}
// Driver program to test the above function
int main()
{
int arr[] = {1, 5, 4, 3, 2};
int n = (sizeof(arr) / sizeof(int));
cout << minSwaps(arr, n);
return 0;
} | linear | nlogn |
#include <bits/stdc++.h>
using namespace std;
// Function returns the
// minimum number of swaps
// required to sort the array
int minSwaps(int nums[], int n)
{
int len = n;
map<int, int> map;
for (int i = 0; i < len; i++)
map[nums[i]] = i;
sort(nums, nums + n);
// To keep track of visited elements. Initialize
// all elements as not visited or false.
bool visited[len] = { 0 };
// Initialize result
int ans = 0;
for (int i = 0; i < len; i++) {
// already swapped and corrected or
// already present at correct pos
if (visited[i] || map[nums[i]] == i)
continue;
int j = i, cycle_size = 0;
while (!visited[j]) {
visited[j] = true;
// move to next node
j = map[nums[j]];
cycle_size++;
}
// Update answer by adding current cycle.
if (cycle_size > 0) {
ans += (cycle_size - 1);
}
}
return ans;
}
int main()
{
// Driver program to test the above function
int a[] = { 1, 5, 4, 3, 2 };
int n = 5;
cout << minSwaps(a, n);
return 0;
}
// This code is contributed by Harshal Khond | linear | nlogn |
// C++ program to find minimum number
// of swaps required to sort an array
#include <bits/stdc++.h>
using namespace std;
void swap(vector<int> &arr, int i, int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
int indexOf(vector<int> &arr, int ele)
{
for(int i = 0; i < arr.size(); i++)
{
if (arr[i] == ele)
{
return i;
}
}
return -1;
}
// Return the minimum number
// of swaps required to sort the array
int minSwaps(vector<int> arr, int N)
{
int ans = 0;
vector<int> temp(arr.begin(),arr.end());
sort(temp.begin(),temp.end());
for(int i = 0; i < N; i++)
{
// This is checking whether
// the current element is
// at the right place or not
if (arr[i] != temp[i])
{
ans++;
// Swap the current element
// with the right index
// so that arr[0] to arr[i] is sorted
swap(arr, i, indexOf(arr, temp[i]));
}
}
return ans;
}
// Driver Code
int main()
{
vector<int> a = {101, 758, 315, 730,
472, 619, 460, 479};
int n = a.size();
// Output will be 5
cout << minSwaps(a, n);
}
// This code is contributed by mohit kumar 29 | linear | quadratic |
// C++ program to find
// minimum number of swaps
// required to sort an array
#include<bits/stdc++.h>
using namespace std;
void swap(vector<int> &arr,
int i, int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
// Return the minimum number
// of swaps required to sort
// the array
int minSwaps(vector<int>arr,
int N)
{
int ans = 0;
vector<int>temp = arr;
// Hashmap which stores the
// indexes of the input array
map <int, int> h;
sort(temp.begin(), temp.end());
for (int i = 0; i < N; i++)
{
h[arr[i]] = i;
}
for (int i = 0; i < N; i++)
{
// This is checking whether
// the current element is
// at the right place or not
if (arr[i] != temp[i])
{
ans++;
int init = arr[i];
// If not, swap this element
// with the index of the
// element which should come here
swap(arr, i, h[temp[i]]);
// Update the indexes in
// the hashmap accordingly
h[init] = h[temp[i]];
h[temp[i]] = i;
}
}
return ans;
}
// Driver class
int main()
{
// Driver program to
// test the above function
vector <int> a = {101, 758, 315,
730, 472, 619,
460, 479};
int n = a.size();
// Output will be 5
cout << minSwaps(a, n);
}
// This code is contributed by Stream_Cipher | linear | nlogn |
// C++ program to sort an array
// with 0, 1 and 2 in a single pass
#include <bits/stdc++.h>
using namespace std;
// Function to sort the input array,
// the array is assumed
// to have values in {0, 1, 2}
void sort012(int a[], int arr_size)
{
int lo = 0;
int hi = arr_size - 1;
int mid = 0;
// Iterate till all the elements
// are sorted
while (mid <= hi) {
switch (a[mid]) {
// If the element is 0
case 0:
swap(a[lo++], a[mid++]);
break;
// If the element is 1 .
case 1:
mid++;
break;
// If the element is 2
case 2:
swap(a[mid], a[hi--]);
break;
}
}
}
// Function to print array arr[]
void printArray(int arr[], int arr_size)
{
// Iterate and print every element
for (int i = 0; i < arr_size; i++)
cout << arr[i] << " ";
}
// Driver Code
int main()
{
int arr[] = { 0, 1, 1, 0, 1, 2, 1, 2, 0, 0, 0, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
sort012(arr, n);
printArray(arr, n);
return 0;
}
// This code is contributed by Shivi_Aggarwal | constant | linear |
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Utility function to print the contents of an array
void printArr(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Function to sort the array of 0s, 1s and 2s
void sortArr(int arr[], int n)
{
int i, cnt0 = 0, cnt1 = 0, cnt2 = 0;
// Count the number of 0s, 1s and 2s in the array
for (i = 0; i < n; i++) {
switch (arr[i]) {
case 0:
cnt0++;
break;
case 1:
cnt1++;
break;
case 2:
cnt2++;
break;
}
}
// Update the array
i = 0;
// Store all the 0s in the beginning
while (cnt0 > 0) {
arr[i++] = 0;
cnt0--;
}
// Then all the 1s
while (cnt1 > 0) {
arr[i++] = 1;
cnt1--;
}
// Finally all the 2s
while (cnt2 > 0) {
arr[i++] = 2;
cnt2--;
}
// Print the sorted array
printArr(arr, n);
}
// Driver code
int main()
{
int arr[] = { 0, 1, 1, 0, 1, 2, 1, 2, 0, 0, 0, 1 };
int n = sizeof(arr) / sizeof(int);
sortArr(arr, n);
return 0;
} | constant | linear |
// This code is contributed by Anjali Saxena
#include <bits/stdc++.h>
using namespace std;
// Function to find position to insert current element of
// stream using binary search
int binarySearch(int arr[], int item, int low, int high)
{
if (low >= high) {
return (item > arr[low]) ? (low + 1) : low;
}
int mid = (low + high) / 2;
if (item == arr[mid])
return mid + 1;
if (item > arr[mid])
return binarySearch(arr, item, mid + 1, high);
return binarySearch(arr, item, low, mid - 1);
}
// Function to print median of stream of integers
void printMedian(int arr[], int n)
{
int i, j, pos, num;
int count = 1;
cout << "Median after reading 1"
<< " element is " << arr[0] << "\n";
for (i = 1; i < n; i++) {
float median;
j = i - 1;
num = arr[i];
// find position to insert current element in sorted
// part of array
pos = binarySearch(arr, num, 0, j);
// move elements to right to create space to insert
// the current element
while (j >= pos) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = num;
// increment count of sorted elements in array
count++;
// if odd number of integers are read from stream
// then middle element in sorted order is median
// else average of middle elements is median
if (count % 2 != 0) {
median = arr[count / 2];
}
else {
median = (arr[(count / 2) - 1] + arr[count / 2])
/ 2;
}
cout << "Median after reading " << i + 1
<< " elements is " << median << "\n";
}
}
// Driver Code
int main()
{
int arr[] = { 5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
printMedian(arr, n);
return 0;
} | constant | quadratic |
// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the median of stream of data
void streamMed(int A[], int n)
{
// Declared two max heap
priority_queue<int> g, s;
for (int i = 0; i < n; i++) {
s.push(A[i]);
int temp = s.top();
s.pop();
// Negation for treating it as min heap
g.push(-1 * temp);
if (g.size() > s.size()) {
temp = g.top();
g.pop();
s.push(-1 * temp);
}
if (g.size() != s.size())
cout << (double)s.top() << "\n";
else
cout << (double)((s.top() * 1.0
- g.top() * 1.0)
/ 2)
<< "\n";
}
}
// Driver code
int main()
{
int A[] = { 5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4 };
int N = sizeof(A) / sizeof(A[0]);
// Function call
streamMed(A, N);
return 0;
} | linear | nlogn |
// C++ code to count the number of possible triangles using
// brute force approach
#include <bits/stdc++.h>
using namespace std;
// Function to count all possible triangles with arr[]
// elements
int findNumberOfTriangles(int arr[], int n)
{
// Count of triangles
int count = 0;
// The three loops select three different values from
// array
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// The innermost loop checks for the triangle
// property
for (int k = j + 1; k < n; k++)
// Sum of two sides is greater than the
// third
if (arr[i] + arr[j] > arr[k]
&& arr[i] + arr[k] > arr[j]
&& arr[k] + arr[j] > arr[i])
count++;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = { 10, 21, 22, 100, 101, 200, 300 };
int size = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "Total number of triangles possible is "
<< findNumberOfTriangles(arr, size);
return 0;
}
// This code is contributed by Sania Kumari Gupta | constant | cubic |
// C++ program to count number of triangles that can be
// formed from given array
#include <bits/stdc++.h>
using namespace std;
// Function to count all possible triangles with arr[]
// elements
int findNumberOfTriangles(int arr[], int n)
{
// Sort the array elements in non-decreasing order
sort(arr, arr + n);
// Initialize count of triangles
int count = 0;
// Fix the first element. We need to run till n-3
// as the other two elements are selected from
// arr[i+1...n-1]
for (int i = 0; i < n - 2; ++i) {
// Initialize index of the rightmost third
// element
int k = i + 2;
// Fix the second element
for (int j = i + 1; j < n; ++j) {
// Find the rightmost element which is smaller
// than the sum of two fixed elements The
// important thing to note here is, we use the
// previous value of k. If value of arr[i] +
// arr[j-1] was greater than arr[k], then arr[i]
// + arr[j] must be greater than k, because the
// array is sorted.
while (k < n && arr[i] + arr[j] > arr[k])
++k;
// Total number of possible triangles that can
// be formed with the two fixed elements is
// k - j - 1. The two fixed elements are arr[i]
// and arr[j]. All elements between arr[j+1]/ to
// arr[k-1] can form a triangle with arr[i] and
// arr[j]. One is subtracted from k because k is
// incremented one extra in above while loop. k
// will always be greater than j. If j becomes
// equal to k, then above loop will increment k,
// because arr[k]
// + arr[i] is always greater than arr[k]
if (k > j)
count += k - j - 1;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = { 10, 21, 22, 100, 101, 200, 300 };
int size = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "Total number of triangles possible is "
<< findNumberOfTriangles(arr, size);
return 0;
}
// This code is contributed by Sania Kumari Gupta | constant | quadratic |
// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
void CountTriangles(vector<int> A)
{
int n = A.size();
sort(A.begin(), A.end());
int count = 0;
for (int i = n - 1; i >= 1; i--) {
int l = 0, r = i - 1;
while (l < r) {
if (A[l] + A[r] > A[i]) {
// If it is possible with a[l], a[r]
// and a[i] then it is also possible
// with a[l+1]..a[r-1], a[r] and a[i]
count += r - l;
// checking for more possible solutions
r--;
}
else
// if not possible check for
// higher values of arr[l]
l++;
}
}
cout << "No of possible solutions: " << count;
}
// Driver code
int main()
{
vector<int> A = { 10, 21, 22, 100, 101, 200, 300 };
// Function call
CountTriangles(A);
} | constant | quadratic |
// C++ program to finds the number of pairs (x, y)
// in an array such that x^y > y^x
#include <bits/stdc++.h>
using namespace std;
// Function to return count of pairs with x as one element
// of the pair. It mainly looks for all values in Y[] where
// x ^ Y[i] > Y[i] ^ x
int count(int x, int Y[], int n, int NoOfY[])
{
// If x is 0, then there cannot be any value in Y such
// that x^Y[i] > Y[i]^x
if (x == 0)
return 0;
// If x is 1, then the number of pairs is equal to number
// of zeroes in Y[]
if (x == 1)
return NoOfY[0];
// Find number of elements in Y[] with values greater
// than x upper_bound() gets address of first greater
// element in Y[0..n-1]
int* idx = upper_bound(Y, Y + n, x);
int ans = (Y + n) - idx;
// If we have reached here, then x must be greater than
// 1, increase number of pairs for y=0 and y=1
ans += (NoOfY[0] + NoOfY[1]);
// Decrease number of pairs for x=2 and (y=4 or y=3)
if (x == 2)
ans -= (NoOfY[3] + NoOfY[4]);
// Increase number of pairs for x=3 and y=2
if (x == 3)
ans += NoOfY[2];
return ans;
}
// Function to return count of pairs (x, y) such that
// x belongs to X[], y belongs to Y[] and x^y > y^x
int countPairs(int X[], int Y[], int m, int n)
{
// To store counts of 0, 1, 2, 3 and 4 in array Y
int NoOfY[5] = { 0 };
for (int i = 0; i < n; i++)
if (Y[i] < 5)
NoOfY[Y[i]]++;
// Sort Y[] so that we can do binary search in it
sort(Y, Y + n);
int total_pairs = 0; // Initialize result
// Take every element of X and count pairs with it
for (int i = 0; i < m; i++)
total_pairs += count(X[i], Y, n, NoOfY);
return total_pairs;
}
// Driver program
int main()
{
int X[] = { 2, 1, 6 };
int Y[] = { 1, 5 };
int m = sizeof(X) / sizeof(X[0]);
int n = sizeof(Y) / sizeof(Y[0]);
cout << "Total pairs = " << countPairs(X, Y, m, n);
return 0;
} | constant | nlogn |
/* A simple program to count pairs with difference k*/
#include <iostream>
using namespace std;
int countPairsWithDiffK(int arr[], int n, int k)
{
int count = 0;
// Pick all elements one by one
for (int i = 0; i < n; i++) {
// See if there is a pair of this picked element
for (int j = i + 1; j < n; j++)
if (arr[i] - arr[j] == k
|| arr[j] - arr[i] == k)
count++;
}
return count;
}
// Driver program to test above function
int main()
{
int arr[] = { 1, 5, 3, 4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
cout << "Count of pairs with given diff is "
<< countPairsWithDiffK(arr, n, k);
return 0;
}
// This code is contributed by Sania Kumari Gupta | constant | quadratic |
/* A sorting based program to count pairs with difference k*/
#include <iostream>
#include <algorithm>
using namespace std;
/* Returns count of pairs with difference k in arr[] of size n. */
int countPairsWithDiffK(int arr[], int n, int k)
{
int count = 0;
sort(arr, arr+n); // Sort array elements
int l = 0;
int r = 0;
while(r < n)
{
if(arr[r] - arr[l] == k)
{
count++;
l++;
r++;
}
else if(arr[r] - arr[l] > k)
l++;
else // arr[r] - arr[l] < sum
r++;
}
return count;
}
// Driver program to test above function
int main()
{
int arr[] = {1, 5, 3, 4, 2};
int n = sizeof(arr)/sizeof(arr[0]);
int k = 3;
cout << "Count of pairs with given diff is "
<< countPairsWithDiffK(arr, n, k);
return 0;
} | constant | nlogn |
#include <bits/stdc++.h>
using namespace std;
int BS(int arr[], int X, int low, int N)
{
int high = N - 1;
int ans = N;
while (low <= high) {
int mid = low + (high - low) / 2;
if (arr[mid] >= X) {
ans = mid;
high = mid - 1;
}
else
low = mid + 1;
}
return ans;
}
int countPairsWithDiffK(int arr[], int N, int k)
{
int count = 0;
sort(arr, arr + N);
for (int i = 0; i < N; ++i) {
int X = BS(arr, arr[i] + k, i + 1, N);
if (X != N) {
int Y = BS(arr, arr[i] + k + 1, i + 1, N);
count += Y - X;
}
}
return count;
}
int main()
{
int arr[] = { 1, 3, 5, 8, 6, 4, 6 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
cout << "Count of pairs with given diff is "
<< countPairsWithDiffK(arr, n, k);
return 0;
}
// This code is contributed by umadevi9616 | constant | nlogn |
// C++ program to print all distinct elements in a given array
#include <bits/stdc++.h>
using namespace std;
void printDistinct(int arr[], int n)
{
// Pick all elements one by one
for (int i=0; i<n; i++)
{
// Check if the picked element is already printed
int j;
for (j=0; j<i; j++)
if (arr[i] == arr[j])
break;
// If not printed earlier, then print it
if (i == j)
cout << arr[i] << " ";
}
}
// Driver program to test above function
int main()
{
int arr[] = {6, 10, 5, 4, 9, 120, 4, 6, 10};
int n = sizeof(arr)/sizeof(arr[0]);
printDistinct(arr, n);
return 0;
} | constant | quadratic |
// C++ program to print all distinct elements in a given array
#include <bits/stdc++.h>
using namespace std;
void printDistinct(int arr[], int n)
{
// First sort the array so that all occurrences become consecutive
sort(arr, arr + n);
// Traverse the sorted array
for (int i=0; i<n; i++)
{
// Move the index ahead while there are duplicates
while (i < n-1 && arr[i] == arr[i+1])
i++;
// print last occurrence of the current element
cout << arr[i] << " ";
}
}
// Driver program to test above function
int main()
{
int arr[] = {6, 10, 5, 4, 9, 120, 4, 6, 10};
int n = sizeof(arr)/sizeof(arr[0]);
printDistinct(arr, n);
return 0;
} | constant | nlogn |
/* CPP program to print all distinct elements
of a given array */
#include<bits/stdc++.h>
using namespace std;
// This function prints all distinct elements
void printDistinct(int arr[],int n)
{
// Creates an empty hashset
unordered_set<int> s;
// Traverse the input array
for (int i=0; i<n; i++)
{
// if element is not present then s.count(element) return 0 else return 1
// hashtable and print it
if (!s.count(arr[i])) // <--- avg O(1) time
{
s.insert(arr[i]);
cout << arr[i] << " ";
}
}
}
// Driver method to test above method
int main ()
{
int arr[] = {10, 5, 3, 4, 3, 5, 6};
int n=7;
printDistinct(arr,n);
return 0;
} | linear | linear |
// C++ approach
#include <bits/stdc++.h>
using namespace std;
int main() {
int ar[] = { 10, 5, 3, 4, 3, 5, 6 };
map<int ,int> hm;
for (int i = 0; i < sizeof(ar)/sizeof(ar[0]); i++) { // total = O(n*logn)
hm.insert({ar[i], i}); // time complexity for insert() in map O(logn)
}
cout <<"[";
for (auto const &pair: hm) {
cout << pair.first << ", ";
}
cout <<"]";
}
// This code is contributed by Shubham Singh | linear | nlogn |
// C++ program to merge two sorted arrays with O(1) extra
// space.
#include <bits/stdc++.h>
using namespace std;
// Merge ar1[] and ar2[] with O(1) extra space
void merge(int ar1[], int ar2[], int m, int n)
{
// Iterate through all elements
// of ar2[] starting from the last element
for (int i = n - 1; i >= 0; i--) {
// Find the smallest element greater than ar2[i].
// Move all elements one position ahead till the
// smallest greater element is not found */
int j, last = ar1[m - 1];
for (j = m - 2; j >= 0 && ar1[j] > ar2[i]; j--)
ar1[j + 1] = ar1[j];
// If there was a greater element
if (last > ar2[i]) {
ar1[j + 1] = ar2[i];
ar2[i] = last;
}
}
}
// Driver program
int main()
{
int ar1[] = { 1, 5, 9, 10, 15, 20 };
int ar2[] = { 2, 3, 8, 13 };
int m = sizeof(ar1) / sizeof(ar1[0]);
int n = sizeof(ar2) / sizeof(ar2[0]);
merge(ar1, ar2, m, n);
cout << "After Merging \nFirst Array: ";
for (int i = 0; i < m; i++)
cout << ar1[i] << " ";
cout << "\nSecond Array: ";
for (int i = 0; i < n; i++)
cout << ar2[i] << " ";
return 0;
} | constant | quadratic |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.