AstroM3Dataset / AstroM3Dataset.py
MeriDK's picture
Updated loading logic
352a93a
raw
history blame
8.44 kB
from io import BytesIO
import datasets
import pandas as pd
import numpy as np
import json
from astropy.io import fits
from utils import ParallelZipFile
_DESCRIPTION = (
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
"and metadata features for variable stars. The dataset includes multiple "
"subsets (full, sub10, sub25, sub50) and supports different random seeds (42, 66, 0, 12, 123). "
"Each sample consists of:\n"
"- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux_error).\n"
"- **Spectra**: Spectral observations of shape `(M, 3)` (wavelength, flux, flux_error).\n"
"- **Metadata**: Auxiliary features of shape `(25,)`.\n"
"- **Label**: The class name as a string."
)
_HOMEPAGE = "https://huggingface.co/datasets/AstroM3"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/MeriDK/AstroM3Dataset/resolve/main"
_VERSION = datasets.Version("1.0.0")
_CITATION = """
@article{AstroM3,
title={AstroM3: A Multi-Modal Astronomy Dataset},
author={Your Name},
year={2025},
journal={AstroML Conference}
}
"""
class AstroM3Dataset(datasets.GeneratorBasedBuilder):
"""Hugging Face dataset for AstroM3 with configurable subsets and seeds."""
DEFAULT_CONFIG_NAME = "full_42"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{sub}_{seed}", version=_VERSION, data_dir=None)
for sub in ["full", "sub10", "sub25", "sub50"]
for seed in [42, 66, 0, 12, 123]
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
"spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
"metadata": datasets.Sequence(datasets.Value("float32"), length=38),
"label": datasets.Value("string"),
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _get_photometry(self, file_name):
csv = BytesIO()
file_name = file_name.replace(' ', '')
data_path = f'vardb_files/{file_name}.dat'
csv.write(self.reader_v.read(data_path))
csv.seek(0)
lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'],
dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float})
return lc[['HJD', 'FLUX', 'FLUX_ERR']].values
@staticmethod
def _get_spectra(file_name):
hdulist = fits.open(file_name)
len_list = len(hdulist)
if len_list == 1:
head = hdulist[0].header
scidata = hdulist[0].data
coeff0 = head['COEFF0']
coeff1 = head['COEFF1']
pixel_num = head['NAXIS1']
specflux = scidata[0,]
ivar = scidata[1,]
wavelength = np.linspace(0, pixel_num - 1, pixel_num)
wavelength = np.power(10, (coeff0 + wavelength * coeff1))
hdulist.close()
elif len_list == 2:
head = hdulist[0].header
scidata = hdulist[1].data
wavelength = scidata[0][2]
ivar = scidata[0][1]
specflux = scidata[0][0]
else:
raise ValueError(f'Wrong number of fits files. {len_list} should be 1 or 2')
return np.vstack((wavelength, specflux, ivar)).T
@staticmethod
def _transform_metadata(row, info):
row_copy = row.copy(deep=True)
for transformation_type, value in info["metadata_func"].items():
if transformation_type == "abs":
for col in value:
row_copy[col] = (
row_copy[col] - 10 + 5 * np.log10(np.where(row_copy["parallax"] <= 0, 1, row_copy["parallax"]))
)
elif transformation_type == "cos":
for col in value:
row_copy[col] = np.cos(np.radians(row_copy[col]))
elif transformation_type == "sin":
for col in value:
row_copy[col] = np.sin(np.radians(row_copy[col]))
elif transformation_type == "log":
for col in value:
row_copy[col] = np.log10(row_copy[col])
row_copy = (row_copy - info["mean"]) / info["std"]
return row_copy
def _split_generators(self, dl_manager):
"""Returns SplitGenerators for train, val, and test."""
# Get subset and seed info from the name
sub, seed = self.config.name.split("_")
# Load the splits and info files
urls = {
"train": f"{_URL}/splits/{sub}/{seed}/train.csv",
"val": f"{_URL}/splits/{sub}/{seed}/val.csv",
"test": f"{_URL}/splits/{sub}/{seed}/test.csv",
"info": f"{_URL}/splits/{sub}/{seed}/info.json",
}
extracted_path = dl_manager.download(urls)
df1 = pd.read_csv(extracted_path["train"])
df2 = pd.read_csv(extracted_path["val"])
df3 = pd.read_csv(extracted_path["test"])
df_combined = pd.concat([df1, df2, df3], ignore_index=True)
# Load all spectra files
spectra_urls = {}
for _, row in df_combined.iterrows():
spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
spectra_files = dl_manager.download(spectra_urls)
# Load photometry and init reader
photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
self.reader_v = ParallelZipFile(photometry_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
"info_path": extracted_path["info"],
"spectra_files": spectra_files,
"split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
"info_path": extracted_path["info"],
"spectra_files": spectra_files,
"split": "val"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
"info_path": extracted_path["info"],
"spectra_files": spectra_files,
"split": "test"}
),
]
def _generate_examples(self, csv_path, info_path, spectra_files, split):
"""Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
df = pd.read_csv(csv_path)
with open(info_path) as f:
info = json.loads(f.read())
for i, (idx, row) in enumerate(df.iterrows()):
photometry = self._get_photometry(row["name"])
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
metadata = row[info["all_cols"]]
# metadata_norm = self._transform_metadata(metadata, info)
# yield idx, {
# "photometry": photometry,
# "spectra": spectra,
# "metadata": {
# "original": {
# "photometry": metadata[info["photo_cols"]].to_dict(),
# "metadata": metadata[info["meta_cols"]].to_dict()
# },
# "transformed": {
# "photometry": metadata_norm[info["photo_cols"]].to_dict(),
# "metadata": metadata_norm[info["meta_cols"]].to_dict()
# }
# },
# "label": row["target"],
# }
yield idx, {
"photometry": photometry,
"spectra": spectra,
"metadata": row[info["all_cols"]],
"label": row["target"],
}