File size: 8,440 Bytes
9fa663b
 
 
 
 
 
 
352a93a
9fa663b
 
 
 
 
 
 
 
 
 
 
 
 
 
88109f2
9fa663b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8ca91
9fa663b
88109f2
9fa663b
 
 
 
 
 
 
 
 
352a93a
 
4f8ca91
9fa663b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352a93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88109f2
 
 
 
 
 
 
 
 
 
 
 
 
4f8ca91
88109f2
4f8ca91
 
 
 
88109f2
ece7187
 
4f8ca91
ece7187
39a7e37
88109f2
 
 
352a93a
88109f2
 
 
 
 
39a7e37
88109f2
 
 
 
 
39a7e37
88109f2
 
 
 
 
39a7e37
88109f2
 
 
 
39a7e37
9fa663b
 
88109f2
 
 
 
9fa663b
352a93a
88109f2
39a7e37
9fa663b
352a93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa663b
88109f2
 
 
9fa663b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from io import BytesIO
import datasets
import pandas as pd
import numpy as np
import json
from astropy.io import fits

from utils import ParallelZipFile

_DESCRIPTION = (
    "AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
    "and metadata features for variable stars. The dataset includes multiple "
    "subsets (full, sub10, sub25, sub50) and supports different random seeds (42, 66, 0, 12, 123). "
    "Each sample consists of:\n"
    "- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux_error).\n"
    "- **Spectra**: Spectral observations of shape `(M, 3)` (wavelength, flux, flux_error).\n"
    "- **Metadata**: Auxiliary features of shape `(25,)`.\n"
    "- **Label**: The class name as a string."
)

_HOMEPAGE = "https://huggingface.co/datasets/AstroM3"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/MeriDK/AstroM3Dataset/resolve/main"
_VERSION = datasets.Version("1.0.0")

_CITATION = """ 
@article{AstroM3,
  title={AstroM3: A Multi-Modal Astronomy Dataset},
  author={Your Name},
  year={2025},
  journal={AstroML Conference}
}
"""


class AstroM3Dataset(datasets.GeneratorBasedBuilder):
    """Hugging Face dataset for AstroM3 with configurable subsets and seeds."""

    DEFAULT_CONFIG_NAME = "full_42"
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=f"{sub}_{seed}", version=_VERSION, data_dir=None)
        for sub in ["full", "sub10", "sub25", "sub50"]
        for seed in [42, 66, 0, 12, 123]
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
                    "spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
                    "metadata": datasets.Sequence(datasets.Value("float32"), length=38),
                    "label": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _get_photometry(self, file_name):
        csv = BytesIO()
        file_name = file_name.replace(' ', '')
        data_path = f'vardb_files/{file_name}.dat'

        csv.write(self.reader_v.read(data_path))
        csv.seek(0)

        lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'],
                         dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float})

        return lc[['HJD', 'FLUX', 'FLUX_ERR']].values

    @staticmethod
    def _get_spectra(file_name):
        hdulist = fits.open(file_name)
        len_list = len(hdulist)

        if len_list == 1:
            head = hdulist[0].header
            scidata = hdulist[0].data
            coeff0 = head['COEFF0']
            coeff1 = head['COEFF1']
            pixel_num = head['NAXIS1']
            specflux = scidata[0,]
            ivar = scidata[1,]
            wavelength = np.linspace(0, pixel_num - 1, pixel_num)
            wavelength = np.power(10, (coeff0 + wavelength * coeff1))
            hdulist.close()
        elif len_list == 2:
            head = hdulist[0].header
            scidata = hdulist[1].data
            wavelength = scidata[0][2]
            ivar = scidata[0][1]
            specflux = scidata[0][0]
        else:
            raise ValueError(f'Wrong number of fits files. {len_list} should be 1 or 2')

        return np.vstack((wavelength, specflux, ivar)).T

    @staticmethod
    def _transform_metadata(row, info):
        row_copy = row.copy(deep=True)

        for transformation_type, value in info["metadata_func"].items():
            if transformation_type == "abs":
                for col in value:
                    row_copy[col] = (
                        row_copy[col] - 10 + 5 * np.log10(np.where(row_copy["parallax"] <= 0, 1, row_copy["parallax"]))
                    )
            elif transformation_type == "cos":
                for col in value:
                    row_copy[col] = np.cos(np.radians(row_copy[col]))
            elif transformation_type == "sin":
                for col in value:
                    row_copy[col] = np.sin(np.radians(row_copy[col]))
            elif transformation_type == "log":
                for col in value:
                    row_copy[col] = np.log10(row_copy[col])

        row_copy = (row_copy - info["mean"]) / info["std"]
        return row_copy

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators for train, val, and test."""

        # Get subset and seed info from the name
        sub, seed = self.config.name.split("_")

        # Load the splits and info files
        urls = {
            "train": f"{_URL}/splits/{sub}/{seed}/train.csv",
            "val": f"{_URL}/splits/{sub}/{seed}/val.csv",
            "test": f"{_URL}/splits/{sub}/{seed}/test.csv",
            "info": f"{_URL}/splits/{sub}/{seed}/info.json",
        }
        extracted_path = dl_manager.download(urls)

        df1 = pd.read_csv(extracted_path["train"])
        df2 = pd.read_csv(extracted_path["val"])
        df3 = pd.read_csv(extracted_path["test"])
        df_combined = pd.concat([df1, df2, df3], ignore_index=True)

        # Load all spectra files
        spectra_urls = {}
        for _, row in df_combined.iterrows():
            spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
        spectra_files = dl_manager.download(spectra_urls)

        # Load photometry and init reader
        photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
        self.reader_v = ParallelZipFile(photometry_path)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
                                                       "info_path": extracted_path["info"],
                                                       "spectra_files": spectra_files,
                                                       "split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
                                                            "info_path": extracted_path["info"],
                                                            "spectra_files": spectra_files,
                                                            "split": "val"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
                                                      "info_path": extracted_path["info"],
                                                      "spectra_files": spectra_files,
                                                      "split": "test"}
            ),
        ]

    def _generate_examples(self, csv_path, info_path, spectra_files, split):
        """Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""

        df = pd.read_csv(csv_path)

        with open(info_path) as f:
            info = json.loads(f.read())

        for i, (idx, row) in enumerate(df.iterrows()):
            photometry = self._get_photometry(row["name"])
            spectra = self._get_spectra(spectra_files[row["spec_filename"]])

            metadata = row[info["all_cols"]]
            # metadata_norm = self._transform_metadata(metadata, info)

            # yield idx, {
            #     "photometry": photometry,
            #     "spectra": spectra,
            #     "metadata": {
            #         "original": {
            #             "photometry": metadata[info["photo_cols"]].to_dict(),
            #             "metadata": metadata[info["meta_cols"]].to_dict()
            #         },
            #         "transformed": {
            #             "photometry": metadata_norm[info["photo_cols"]].to_dict(),
            #             "metadata": metadata_norm[info["meta_cols"]].to_dict()
            #         }
            #     },
            #     "label": row["target"],
            # }

            yield idx, {
                "photometry": photometry,
                "spectra": spectra,
                "metadata": row[info["all_cols"]],
                "label": row["target"],
            }