sourabhd's picture
Removed artefact of template
647a924 verified
---
license: cc-by-nc-sa-4.0
language:
- en
library_name: transformers
tags:
- text-to-sql
- text2sql
- nlp2sql
- nlp-to-sql
- SQL
---
# Model Card for text2sql
<!-- Provide a quick summary of what the model is/does. -->
LLM instruction finetuned for Text-to-SQL task.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
- **Funded by :** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
- **Shared by :** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** English
- **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) Model is made available under non-commercial use for research purposes only. For commercial usage please connect at [email protected]
- **Finetuned from model :** [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
Model can be used a tool to convert queries in expressed in natural language (English) to SQL statements
### Downstream Use
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
The model could be used as the initial stage in a data analytics / business intelligence application pipeline.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
Model has been fine tuned on a specific task of converting English language statements to SQL queries.
Any use beyond this is not guaranteed to be accurate.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
- **Bias:** Trained for English language only.
- **Risk:** Guardrails are reliant on the base models CodeLlama (Llama2). Finetuning could impact this behaviour.
- **Limitations:** Intended to be a small model optimised for inference. Does not provide SoTA results on accuracy.
## How to Get Started with the Model
Use the code below to get started with the model.
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"dataeaze/dataeaze-text2sql-codellama_7b_instruct-dzsql",
torch_dtype=torch.bfloat16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained("dataeaze/dataeaze-text2sql-codellama_7b_instruct-dzsql")
# print("model device :", model.device)
tokenizer.pad_token = tokenizer.eos_token
model.eval()
prompt = """ Below are sql tables schemas paired with instruction that describes a task.
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
### Instruction: How many transactions were made by a customer in a specific month?
### Database: RewardsProgramDB61
### Input:
CREATE SCHEMA RewardsProgram;
CREATE TABLE Customer (
CustomerID INT NOT NULL AUTO_INCREMENT,
FirstName VARCHAR(50) NOT NULL,
LastName VARCHAR(50) NOT NULL,
Email VARCHAR(100) UNIQUE NOT NULL,
Phone VARCHAR(20) UNIQUE,
DateOfBirth DATE,
PRIMARY KEY (CustomerID)
);
CREATE TABLE Membership (
MembershipID INT NOT NULL AUTO_INCREMENT,
MembershipType VARCHAR(50) NOT NULL,
DiscountPercentage DECIMAL(5, 2) NOT NULL,
ValidFrom DATETIME,
ValidTo DATETIME,
CustomerID INT NOT NULL,
PRIMARY KEY (MembershipID),
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
);
CREATE TABLE Transaction (
TransactionID INT NOT NULL AUTO_INCREMENT,
TransactionDate TIMESTAMP,
TotalAmount DECIMAL(10, 2) NOT NULL,
CustomerID INT NOT NULL,
PRIMARY KEY (TransactionID),
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
);
CREATE TABLE TransactionDetail (
TransactionDetailID INT NOT NULL AUTO_INCREMENT,
TransactionID INT NOT NULL,
ProductID INT NOT NULL,
Quantity INT NOT NULL,
UnitPrice DECIMAL(10, 2) NOT NULL,
PRIMARY KEY (TransactionDetailID),
FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID),
FOREIGN KEY (ProductID) REFERENCES Product(ProductID)
);
CREATE TABLE Product (
ProductID INT NOT NULL AUTO_INCREMENT,
ProductName VARCHAR(100) NOT NULL,
UnitPrice DECIMAL(10, 2) NOT NULL,
AvailableQuantity INT NOT NULL,
CreatedDate DATETIME,
PRIMARY KEY (ProductID)
);
ALTER TABLE Membership ADD CONSTRAINT FK_Membership_Customer FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID);
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Transaction FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID);
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Product FOREIGN KEY (ProductID) REFERENCES Product(ProductID);"
"""
input_ids = tokenizer(prompt, padding=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids['input_ids'].to(model.device),
attention_mask=input_ids['attention_mask'].to(model.device),
max_new_tokens=3072,
)
generated_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_query)
```
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[SPIDER dataset Test Set](https://yale-lily.github.io/spider)
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
SQL queries are matched against the correct answer, with two types of evaluation
* Execution with Values
* Exact Set Match without Values
### Results
```
model-index:
- name: dataeaze/dataeaze-text2sql-codellama_7b_instruct-dzsql
results:
- task:
type: text-to-sql
dataset:
name: SPIDER 1.0
type: text-to-sql
metrics:
- name: Execution with Values
type: Execution with Values
value: 20.6
- name: Exact Set Match without Values
type: Exact Set Match without Values
value: 16.7
source:
name: Spider 1.0 - Leaderboard
url: https://yale-lily.github.io/spider
```
## Model Card Authors
* Suyash Chougule
* Chittaranjan Rathod
* Sourabh Daptardar
## Model Card Contact
"dataeaze systems" <[email protected]>