any-news-classifier / README.md
data-silence's picture
Update README.md
841b67b verified
|
raw
history blame
2.84 kB
metadata
license: apache-2.0
base_model: sentence-transformers/LaBSE
tags:
  - generated_from_trainer
  - news
  - russian
  - media
  - text-classification
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: news_classifier_ft
    results: []
datasets:
  - data-silence/rus_news_classifier
pipeline_tag: text-classification
language:
  - ru
widgets:
  - text: Введите новостной текст для классификации
    example_title: Классификация новостей
    button_text: Классифицировать
    api_name: classify

news_classifier_ft

This model is a fine-tuned version of sentence-transformers/LaBSE on my rus-news-classifier dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3820
  • Accuracy: 0.9029
  • F1: 0.9025
  • Precision: 0.9030
  • Recall: 0.9029

Model description

This is a multi-class classifier of Russian news, made with the LaBSE model finetune for (AntiSMI Project)[https://github.com/data-silence/antiSMI-Project]. The news category is assigned by the classifier to one of 11 categories:

  • climate (климат)
  • conflicts (конфликты)
  • culture (культура)
  • economy (экономика)
  • gloss (глянец)
  • health (здоровье)
  • politics (политика)
  • science (наука)
  • society (общество)
  • sports (спорт)
  • travel (путешествия)

Intended uses & limitations

Enjoy to use in your purpose

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3544 1.0 3596 0.3517 0.8861 0.8860 0.8915 0.8861
0.2738 2.0 7192 0.3190 0.8995 0.8987 0.9025 0.8995
0.19 3.0 10788 0.3524 0.9016 0.9015 0.9019 0.9016
0.1402 4.0 14384 0.3820 0.9029 0.9025 0.9030 0.9029
0.1055 5.0 17980 0.4399 0.9022 0.9018 0.9024 0.9022

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1