chessgpt2-small-m

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9060

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.04
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.3011 0.1280 1000 1.7077
1.5883 0.2560 2000 1.4142
1.3992 0.3839 3000 1.2912
1.2978 0.5119 4000 1.2150
1.2322 0.6399 5000 1.1646
1.1846 0.7679 6000 1.1219
1.1477 0.8958 7000 1.0882
1.1142 1.0238 8000 1.0618
1.0801 1.1518 9000 1.0461
1.0616 1.2798 10000 1.0251
1.0409 1.4077 11000 1.0020
1.0253 1.5357 12000 0.9859
1.0098 1.6637 13000 0.9726
0.9947 1.7917 14000 0.9585
0.9817 1.9196 15000 0.9472
0.9591 2.0476 16000 0.9364
0.9338 2.1756 17000 0.9291
0.9273 2.3036 18000 0.9212
0.9219 2.4315 19000 0.9153
0.9167 2.5595 20000 0.9107
0.9123 2.6875 21000 0.9081
0.9103 2.8155 22000 0.9065
0.9092 2.9434 23000 0.9060

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
85.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dakwi/chessgpt2-small-m

Finetuned
(1139)
this model