metadata
library_name: transformers
license: mit
base_model: gpt2-medium
tags:
- generated_from_trainer
model-index:
- name: chessgpt2-medium-m
results: []
chessgpt2-medium-m
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9654
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4607 | 0.1280 | 1000 | 1.8105 |
1.6726 | 0.2560 | 2000 | 1.4939 |
1.4686 | 0.3839 | 3000 | 1.3617 |
1.3601 | 0.5119 | 4000 | 1.2698 |
1.2875 | 0.6399 | 5000 | 1.2164 |
1.2366 | 0.7679 | 6000 | 1.1717 |
1.1992 | 0.8958 | 7000 | 1.1404 |
1.1646 | 1.0238 | 8000 | 1.1097 |
1.126 | 1.1518 | 9000 | 1.0934 |
1.1085 | 1.2798 | 10000 | 1.0705 |
1.0875 | 1.4077 | 11000 | 1.0541 |
1.0733 | 1.5357 | 12000 | 1.0388 |
1.059 | 1.6637 | 13000 | 1.0246 |
1.0451 | 1.7917 | 14000 | 1.0109 |
1.0327 | 1.9196 | 15000 | 1.0018 |
1.0118 | 2.0476 | 16000 | 0.9915 |
0.9862 | 2.1756 | 17000 | 0.9861 |
0.9806 | 2.3036 | 18000 | 0.9783 |
0.9757 | 2.4315 | 19000 | 0.9736 |
0.9713 | 2.5595 | 20000 | 0.9695 |
0.9675 | 2.6875 | 21000 | 0.9671 |
0.9659 | 2.8155 | 22000 | 0.9658 |
0.965 | 2.9434 | 23000 | 0.9654 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1