logic_speculative_DeepScaleR_data

This model is a fine-tuned version of agentica-org/DeepScaleR-1.5B-Preview on the logic_speculative_DeepScaleR_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.3297 0.1541 100 0.2195
0.2183 0.3082 200 0.2199
0.2286 0.4622 300 0.2197
0.2119 0.6163 400 0.2199
0.2454 0.7704 500 0.2196
0.2651 0.9245 600 0.2185
0.1332 1.0786 700 0.2226
0.2727 1.2327 800 0.2235
0.2075 1.3867 900 0.2236
0.2613 1.5408 1000 0.2233
0.0864 1.6949 1100 0.2232
0.2049 1.8490 1200 0.2230

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Safetensors
Model size
1.78B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cutelemonlili/random_0FXEXE5zwkhtZEzH