metadata
license: cc-by-sa-4.0
tags:
- merge
- mergekit
- lazymergekit
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
base_model:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
model-index:
- name: Spaetzle-v12-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.96
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cstr/Spaetzle-v12-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.16
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cstr/Spaetzle-v12-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cstr/Spaetzle-v12-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.84
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cstr/Spaetzle-v12-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.03
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cstr/Spaetzle-v12-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.7
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cstr/Spaetzle-v12-7b
name: Open LLM Leaderboard
Spaetzle-v12-7b
Spaetzle-v12-7b is a merge of the following models using LazyMergekit:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
- on the basis of mayflowergmbh/Wiedervereinigung-7b-dpo-laser
🧩 Configuration
models:
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
# no parameters necessary for base model
- model: flemmingmiguel/NeuDist-Ro-7B
parameters:
density: 0.60
weight: 0.30
- model: Blizado/discolm-mfto-7b-german-v0.1
parameters:
density: 0.65
weight: 0.40
- model: ResplendentAI/Flora_DPO_7B
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v12-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.36 |
AI2 Reasoning Challenge (25-Shot) | 65.96 |
HellaSwag (10-Shot) | 86.16 |
MMLU (5-Shot) | 63.48 |
TruthfulQA (0-shot) | 57.84 |
Winogrande (5-shot) | 80.03 |
GSM8k (5-shot) | 62.70 |