csikasote's picture
End of training
0a600de verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - swagen
metrics:
  - wer
model-index:
  - name: whisper-medium-swagen-male-5hrs-42
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: swagen
          type: swagen
        metrics:
          - name: Wer
            type: wer
            value: 0.3104715248009798

whisper-medium-swagen-male-5hrs-42

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5428
  • Wer: 0.3105

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6796 0.4840 200 0.7989 0.4599
0.5052 0.9679 400 0.6415 0.3811
0.2656 1.4501 600 0.6006 0.3754
0.2673 1.9341 800 0.5640 0.3127
0.1119 2.4162 1000 0.5842 0.2986
0.1332 2.9002 1200 0.5428 0.3105
0.0484 3.3823 1400 0.5926 0.2809
0.051 3.8663 1600 0.5963 0.3184
0.0297 4.3485 1800 0.5950 0.3115
0.0223 4.8324 2000 0.6172 0.2841

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0