whisper-medium-nyagen-balanced-62

This model is a fine-tuned version of openai/whisper-medium on the nyagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4667
  • Wer: 0.4238

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 62
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4917 0.9864 200 0.6422 0.4577
0.2784 1.9716 400 0.4886 0.3640
0.1586 2.9568 600 0.4736 0.2924
0.0883 3.9420 800 0.4825 0.3126
0.037 4.9273 1000 0.4667 0.4238
0.0251 5.9125 1200 0.4977 0.2790
0.0116 6.8977 1400 0.5010 0.2717
0.0085 7.8829 1600 0.4902 0.2669
0.0058 8.8681 1800 0.5230 0.2597

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for csikasote/whisper-medium-nyagen-balanced-62

Finetuned
(700)
this model

Evaluation results