csikasote's picture
End of training
99837c8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bsbigcgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bsbigcgen-male-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bsbigcgen
          type: bsbigcgen
        metrics:
          - name: Wer
            type: wer
            value: 0.5177174413253567

whisper-medium-bsbigcgen-male-model

This model is a fine-tuned version of openai/whisper-medium on the bsbigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6923
  • Wer: 0.5177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.039 0.6421 200 0.9764 0.6942
2.6473 1.2825 400 0.7705 0.5812
2.3913 1.9246 600 0.7010 0.5269
1.6283 2.5650 800 0.6923 0.5177
0.7783 3.2055 1000 0.7241 0.5131
0.8723 3.8475 1200 0.7207 0.5140
0.3633 4.4880 1400 0.7590 0.4961

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0