csikasote's picture
End of training
ddbcbb5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bsbigcgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bsbigcgen-combined-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bsbigcgen
          type: bsbigcgen
        metrics:
          - name: Wer
            type: wer
            value: 0.46739257698161807

whisper-medium-bsbigcgen-combined-model

This model is a fine-tuned version of openai/whisper-medium on the bsbigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5866
  • Wer: 0.4674

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2954 0.3146 200 0.9741 0.6849
3.2141 0.6292 400 0.7601 0.5826
2.7215 0.9438 600 0.6713 0.4974
2.1639 1.2595 800 0.6447 0.5168
1.9576 1.5741 1000 0.6139 0.4731
2.0274 1.8887 1200 0.5895 0.4721
1.1246 2.2045 1400 0.5959 0.4556
1.1317 2.5191 1600 0.6155 0.4656
1.0119 2.8337 1800 0.5866 0.4674
0.7011 3.1494 2000 0.6415 0.4684
0.5972 3.4640 2200 0.6469 0.4687
0.6218 3.7786 2400 0.6497 0.4226

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0