csikasote's picture
End of training
a6e9c95 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bigcgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bigcgen-baseline-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bigcgen
          type: bigcgen
        metrics:
          - name: Wer
            type: wer
            value: 0.5197446204776542

whisper-medium-bigcgen-baseline-model

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6934
  • Wer: 0.5197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.3168 0.6102 200 0.9403 0.6505
2.7179 1.2227 400 0.7717 0.5571
2.4784 1.8330 600 0.7120 0.5119
1.6451 2.4455 800 0.6934 0.5197
0.9938 3.0580 1000 0.7158 0.4881
0.9703 3.6682 1200 0.7220 0.5018
0.5808 4.2807 1400 0.7521 0.4930

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0