whisper-medium-bemgen-baseline-62

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5268
  • Wer: 0.4506

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 62
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9781 0.5125 200 0.7509 0.6631
0.5787 1.0231 400 0.5970 0.5311
0.4938 1.5356 600 0.5545 0.4928
0.243 2.0461 800 0.5268 0.4506
0.242 2.5586 1000 0.5386 0.4832
0.0958 3.0692 1200 0.5889 0.4549
0.1067 3.5817 1400 0.5833 0.4583
0.0525 4.0922 1600 0.5935 0.4436

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
29
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for csikasote/whisper-medium-bemgen-baseline-62

Finetuned
(700)
this model

Evaluation results