csikasote's picture
End of training
bd058a5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bemgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bemgen-100f50m-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bemgen
          type: bemgen
        metrics:
          - name: Wer
            type: wer
            value: 0.38982326111744586

whisper-medium-bemgen-100f50m-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4354
  • Wer: 0.3898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.1512 0.2641 200 0.8282 0.6534
2.4008 0.5282 400 0.6203 0.5097
2.2459 0.7923 600 0.5506 0.4644
1.3319 1.0555 800 0.5029 0.4017
1.5588 1.3196 1000 0.4675 0.3897
1.2908 1.5837 1200 0.4534 0.3727
1.4258 1.8478 1400 0.4354 0.3898
0.6383 2.1109 1600 0.4480 0.3600
0.6079 2.3750 1800 0.4444 0.3482
0.5709 2.6392 2000 0.4367 0.3405

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0