wav2vec2-base-librispeech-model
This model is a fine-tuned version of facebook/wav2vec2-base on the LIBRI10H - ENG dataset. It achieves the following results on the evaluation set:
- Loss: 0.5515
- Wer: 0.4641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.544 | 1.4493 | 500 | 1.7568 | 0.9820 |
1.42 | 2.8986 | 1000 | 1.0275 | 0.8168 |
1.0403 | 4.3478 | 1500 | 0.8305 | 0.7173 |
0.8574 | 5.7971 | 2000 | 0.7293 | 0.6649 |
0.7315 | 7.2464 | 2500 | 0.6632 | 0.6025 |
0.6389 | 8.6957 | 3000 | 0.6286 | 0.5695 |
0.5679 | 10.1449 | 3500 | 0.6102 | 0.5489 |
0.5085 | 11.5942 | 4000 | 0.5863 | 0.5215 |
0.4579 | 13.0435 | 4500 | 0.5661 | 0.4933 |
0.4097 | 14.4928 | 5000 | 0.5646 | 0.4823 |
0.382 | 15.9420 | 5500 | 0.5515 | 0.4644 |
0.3426 | 17.3913 | 6000 | 0.5585 | 0.4514 |
0.32 | 18.8406 | 6500 | 0.5598 | 0.4475 |
0.2926 | 20.2899 | 7000 | 0.6246 | 0.4587 |
0.2735 | 21.7391 | 7500 | 0.5887 | 0.4439 |
0.257 | 23.1884 | 8000 | 0.5978 | 0.4355 |
0.2409 | 24.6377 | 8500 | 0.5721 | 0.4215 |
0.2246 | 26.0870 | 9000 | 0.5979 | 0.4187 |
0.2139 | 27.5362 | 9500 | 0.6103 | 0.4145 |
0.2014 | 28.9855 | 10000 | 0.6436 | 0.4157 |
0.1917 | 30.4348 | 10500 | 0.6471 | 0.4188 |
0.184 | 31.8841 | 11000 | 0.6410 | 0.4068 |
0.1752 | 33.3333 | 11500 | 0.6426 | 0.4086 |
0.169 | 34.7826 | 12000 | 0.6633 | 0.4025 |
0.1612 | 36.2319 | 12500 | 0.6466 | 0.3968 |
0.1553 | 37.6812 | 13000 | 0.6573 | 0.3941 |
0.15 | 39.1304 | 13500 | 0.6989 | 0.3956 |
0.1442 | 40.5797 | 14000 | 0.7209 | 0.4062 |
0.1409 | 42.0290 | 14500 | 0.6950 | 0.3961 |
0.1356 | 43.4783 | 15000 | 0.6816 | 0.3863 |
0.134 | 44.9275 | 15500 | 0.6896 | 0.3867 |
0.1288 | 46.3768 | 16000 | 0.7073 | 0.3844 |
0.1263 | 47.8261 | 16500 | 0.7207 | 0.3836 |
0.1218 | 49.2754 | 17000 | 0.7430 | 0.3812 |
0.1217 | 50.7246 | 17500 | 0.7588 | 0.3831 |
0.1183 | 52.1739 | 18000 | 0.7478 | 0.3813 |
0.113 | 53.6232 | 18500 | 0.7269 | 0.3779 |
0.1109 | 55.0725 | 19000 | 0.7117 | 0.3735 |
0.1102 | 56.5217 | 19500 | 0.7532 | 0.3689 |
0.1084 | 57.9710 | 20000 | 0.7608 | 0.3704 |
0.1042 | 59.4203 | 20500 | 0.7571 | 0.3677 |
0.1048 | 60.8696 | 21000 | 0.7745 | 0.3683 |
0.1005 | 62.3188 | 21500 | 0.7845 | 0.3712 |
0.1006 | 63.7681 | 22000 | 0.7633 | 0.3664 |
0.0976 | 65.2174 | 22500 | 0.7721 | 0.3639 |
0.096 | 66.6667 | 23000 | 0.7659 | 0.3643 |
0.0938 | 68.1159 | 23500 | 0.7658 | 0.3620 |
0.0933 | 69.5652 | 24000 | 0.7692 | 0.3579 |
0.092 | 71.0145 | 24500 | 0.7785 | 0.3625 |
0.089 | 72.4638 | 25000 | 0.7845 | 0.3615 |
0.088 | 73.9130 | 25500 | 0.7973 | 0.3586 |
0.0862 | 75.3623 | 26000 | 0.7806 | 0.3576 |
0.0851 | 76.8116 | 26500 | 0.7947 | 0.3583 |
0.0846 | 78.2609 | 27000 | 0.7802 | 0.3526 |
0.0809 | 79.7101 | 27500 | 0.8093 | 0.3532 |
0.0813 | 81.1594 | 28000 | 0.8237 | 0.3572 |
0.0785 | 82.6087 | 28500 | 0.8130 | 0.3533 |
0.0799 | 84.0580 | 29000 | 0.7958 | 0.3511 |
0.0784 | 85.5072 | 29500 | 0.8108 | 0.3507 |
0.0767 | 86.9565 | 30000 | 0.8208 | 0.3511 |
0.0742 | 88.4058 | 30500 | 0.8270 | 0.3501 |
0.0746 | 89.8551 | 31000 | 0.8121 | 0.3459 |
0.073 | 91.3043 | 31500 | 0.8151 | 0.3485 |
0.0725 | 92.7536 | 32000 | 0.8265 | 0.3477 |
0.0717 | 94.2029 | 32500 | 0.8173 | 0.3446 |
0.0709 | 95.6522 | 33000 | 0.8135 | 0.3434 |
0.0704 | 97.1014 | 33500 | 0.8179 | 0.3431 |
0.0699 | 98.5507 | 34000 | 0.8134 | 0.3427 |
0.0691 | 100.0 | 34500 | 0.8155 | 0.3428 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for csikasote/wav2vec2-base-librispeech-model
Base model
facebook/wav2vec2-base