mms-1b-all-bem-natbed-combined
This model is a fine-tuned version of facebook/mms-1b-all on the GENBED - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.5565
- Wer: 0.4959
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.2239 | 0.1252 | 100 | 1.3301 | 0.8960 |
0.8992 | 0.2503 | 200 | 0.7774 | 0.6657 |
0.8263 | 0.3755 | 300 | 0.7550 | 0.5891 |
0.7846 | 0.5006 | 400 | 0.6995 | 0.5665 |
0.9046 | 0.6258 | 500 | 0.6796 | 0.5546 |
0.7688 | 0.7509 | 600 | 0.6881 | 0.5436 |
0.7139 | 0.8761 | 700 | 0.6999 | 0.5557 |
0.7922 | 1.0013 | 800 | 0.6811 | 0.5421 |
0.7929 | 1.1264 | 900 | 0.6760 | 0.5434 |
0.7508 | 1.2516 | 1000 | 0.6555 | 0.5660 |
0.7534 | 1.3767 | 1100 | 0.6411 | 0.5372 |
0.7316 | 1.5019 | 1200 | 0.6420 | 0.5320 |
0.7147 | 1.6270 | 1300 | 0.6726 | 0.5294 |
0.6734 | 1.7522 | 1400 | 0.6308 | 0.5253 |
0.7084 | 1.8773 | 1500 | 0.6205 | 0.5439 |
0.6714 | 2.0025 | 1600 | 0.6119 | 0.5231 |
0.6888 | 2.1277 | 1700 | 0.6350 | 0.5167 |
0.6871 | 2.2528 | 1800 | 0.6183 | 0.5118 |
0.6882 | 2.3780 | 1900 | 0.5974 | 0.5333 |
0.6769 | 2.5031 | 2000 | 0.5995 | 0.5301 |
0.6801 | 2.6283 | 2100 | 0.5880 | 0.5378 |
0.6695 | 2.7534 | 2200 | 0.5973 | 0.5051 |
0.6557 | 2.8786 | 2300 | 0.6027 | 0.5056 |
0.6525 | 3.0038 | 2400 | 0.5946 | 0.4996 |
0.6829 | 3.1289 | 2500 | 0.5882 | 0.4998 |
0.6627 | 3.2541 | 2600 | 0.6010 | 0.4985 |
0.6146 | 3.3792 | 2700 | 0.5770 | 0.5009 |
0.6205 | 3.5044 | 2800 | 0.5739 | 0.5021 |
0.7025 | 3.6295 | 2900 | 0.5806 | 0.5224 |
0.6379 | 3.7547 | 3000 | 0.6210 | 0.5064 |
0.6104 | 3.8798 | 3100 | 0.5702 | 0.5034 |
0.6607 | 4.0050 | 3200 | 0.5756 | 0.4891 |
0.6776 | 4.1302 | 3300 | 0.5679 | 0.4886 |
0.6343 | 4.2553 | 3400 | 0.5598 | 0.4899 |
0.5818 | 4.3805 | 3500 | 0.5807 | 0.4964 |
0.6085 | 4.5056 | 3600 | 0.5932 | 0.4915 |
0.6648 | 4.6308 | 3700 | 0.5580 | 0.4860 |
0.6359 | 4.7559 | 3800 | 0.5565 | 0.4959 |
0.6139 | 4.8811 | 3900 | 0.5605 | 0.4886 |
0.5995 | 5.0063 | 4000 | 0.5720 | 0.4803 |
0.6349 | 5.1314 | 4100 | 0.5506 | 0.5012 |
0.6134 | 5.2566 | 4200 | 0.5603 | 0.4784 |
0.5989 | 5.3817 | 4300 | 0.5714 | 0.4844 |
0.6083 | 5.5069 | 4400 | 0.5698 | 0.4758 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/mms-1b-all-bem-natbed-combined
Base model
facebook/mms-1b-all