gitlab-mr-analysis-default-model

This model is a fine-tuned version of distilbert-base-uncased-distilled-squad on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3356
  • Accuracy: 94.72759226713534%
  • F1: 0.9612

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 284 0.4056 85.76449912126537% 0.7346
0.4789 2.0 568 0.2722 91.47627416520211% 0.9335
0.4789 3.0 852 0.2413 94.37609841827768% 0.9592
0.1185 4.0 1137 0.2776 94.37609841827768% 0.9574
0.1185 5.0 1421 0.3132 93.84885764499121% 0.9472
0.0378 6.0 1705 0.3323 94.28822495606327% 0.9582
0.0378 7.0 1989 0.3393 94.28822495606327% 0.9575
0.0123 8.0 2274 0.3363 94.5518453427065% 0.9607
0.0077 9.0 2558 0.3333 94.63971880492092% 0.9606
0.0077 9.99 2840 0.3356 94.72759226713534% 0.9612

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.2
Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for crest-data-systems/gitlab-mr-analysis-default-model

Finetunes
7 models