This is a quantized model of Mistral-7B-Instruct-v0.3 using GPTQ developed by IST Austria using the following configuration:
- 8bit
- Act order: True
- Group size: 128
Usage
Install vLLM and run the server:
python -m vllm.entrypoints.openai.api_server --model cortecs/Mistral-7B-Instruct-v0.3-GPTQ-8b
Access the model:
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Mistral-7B-Instruct-v0.3-GPTQ-8b",
"prompt": "San Francisco is a"
} '
Evaluations
English | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-8b | Mistral-7B-Instruct-v0.3-GPTQ-4b |
---|---|---|---|
Avg. | 67.65 | 67.72 | 66.95 |
ARC | 64.2 | 64.1 | 62.1 |
Hellaswag | 75.6 | 75.6 | 76.0 |
MMLU | 63.16 | 63.47 | 62.75 |
French | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-8b | Mistral-7B-Instruct-v0.3-GPTQ-4b |
Avg. | 56.4 | 56.17 | 54.77 |
ARC_fr | 51.9 | 51.4 | 50.0 |
Hellaswag_fr | 65.8 | 65.8 | 63.8 |
MMLU_fr | 51.5 | 51.3 | 50.5 |
German | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-8b | Mistral-7B-Instruct-v0.3-GPTQ-4b |
Avg. | 51.83 | 51.73 | 51.7 |
ARC_de | 47.6 | 47.5 | 47.3 |
Hellaswag_de | 58.9 | 59.0 | 57.3 |
MMLU_de | 49.0 | 48.7 | 50.5 |
Italian | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-8b | Mistral-7B-Instruct-v0.3-GPTQ-4b |
Avg. | 54.93 | 54.8 | 52.83 |
ARC_it | 51.6 | 51.6 | 49.3 |
Hellaswag_it | 63.5 | 63.8 | 61.0 |
MMLU_it | 49.7 | 49.0 | 48.2 |
Safety | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-8b | Mistral-7B-Instruct-v0.3-GPTQ-4b |
Avg. | 60.32 | 60.54 | 64.8 |
RealToxicityPrompts | 89.7 | 90.0 | 90.7 |
TruthfulQA | 59.71 | 59.48 | 58.32 |
CrowS | 31.54 | 32.14 | 45.38 |
Spanish | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-8b | Mistral-7B-Instruct-v0.3-GPTQ-4b |
Avg. | 57.9 | 57.97 | 56.1 |
ARC_es | 53.5 | 53.5 | 51 |
Hellaswag_es | 68.5 | 68.5 | 66.2 |
MMLU_es | 51.7 | 51.9 | 51.1 |
We did not check for data contamination.
Evaluation was done using Eval. Harness using limit=1000
.
Performance
requests/s | tokens/s | |
---|---|---|
NVIDIA L4x1 | 2.63 | 1308.8 |
NVIDIA L4x2 | 4.36 | 2168.56 |
NVIDIA L4x4 | 5.53 | 2751.53 |
Performance measured on cortecs inference. |
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.