license: mit | |
language: | |
- en | |
- zh | |
base_model: | |
- deepseek-ai/DeepSeek-V3-0324 | |
pipeline_tag: text-generation | |
library_name: transformers | |
# DeepSeek V3 0324 AWQ | |
AWQ of DeepSeek V3 0324. | |
Quantized by [Eric Hartford](https://huggingface.co/ehartford) and [v2ray](https://huggingface.co/v2ray). | |
This quant modified some of the model code to fix an overflow issue when using float16. | |
To serve using vLLM with 8x 80GB GPUs, use the following command: | |
```sh | |
VLLM_WORKER_MULTIPROC_METHOD=spawn python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --max-num-batched-tokens 65536 --trust-remote-code --tensor-parallel-size 8 --gpu-memory-utilization 0.97 --dtype float16 --served-model-name deepseek-chat --model cognitivecomputations/DeepSeek-V3-0324-AWQ | |
``` | |
You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.7.3.dev187%2Bg0ff1a4df.d20220101.cu126-cp312-cp312-linux_x86_64.whl). | |
Inference speed with batch size 1 and short prompt: | |
- 8x H100: 48 TPS | |
- 8x A100: 38 TPS | |
Note: | |
- Inference speed will be better than FP8 at low batch size but worse than FP8 at high batch size, this is the nature of low bit quantization. | |
- vLLM supports MLA for AWQ now, you can run this model with full context length on just 8x 80GB GPUs. |