citeverifier model

from sentence_transformers.cross_encoder import CrossEncoder


class CROSSENCODER:
    def __init__(self, model_name, sim_threshold=0.5):
        self.model = CrossEncoder(model_name)
        self.sim_threshold = sim_threshold

    def __call__(self, premise: str, hypothesis: str) -> bool:
        scores = self.model.predict([[premise, hypothesis]])
        return float(scores[0]) > self.sim_threshold  # Here depends on num_labels during training
Downloads last month
177
Safetensors
Model size
568M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for clarin-knext/bge-reranker-v2-m3-citeverifier

Finetuned
(15)
this model