citeverifier model
from sentence_transformers.cross_encoder import CrossEncoder
class CROSSENCODER:
def __init__(self, model_name, sim_threshold=0.5):
self.model = CrossEncoder(model_name)
self.sim_threshold = sim_threshold
def __call__(self, premise: str, hypothesis: str) -> bool:
scores = self.model.predict([[premise, hypothesis]])
return float(scores[0]) > self.sim_threshold # Here depends on num_labels during training
- Downloads last month
- 177
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for clarin-knext/bge-reranker-v2-m3-citeverifier
Base model
BAAI/bge-reranker-v2-m3