See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/mistral-7b-instruct-v0.2
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 360b0e9f8b7b26b2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/360b0e9f8b7b26b2_train_data.json
type:
field_input: Company Name
field_instruction: Position
field_output: Long Description
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: cimol/bfb87241-ea49-403a-ab14-0acdcd3df67a
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 3e-5
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 15
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 1500
micro_batch_size: 8
mlflow_experiment_name: /tmp/360b0e9f8b7b26b2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 15
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 16
train_batch_size: 8
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5fa2e28f-f36a-4614-85db-7261a6f12380
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5fa2e28f-f36a-4614-85db-7261a6f12380
warmup_steps: 50
weight_decay: 0.1
xformers_attention: null
bfb87241-ea49-403a-ab14-0acdcd3df67a
This model is a fine-tuned version of unsloth/mistral-7b-instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 17333
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 2.3117 |
3.9181 | 0.0179 | 150 | 1.9397 |
3.78 | 0.0359 | 300 | 1.9002 |
3.7331 | 0.0538 | 450 | 1.8698 |
3.6815 | 0.0717 | 600 | 1.8483 |
3.6858 | 0.0896 | 750 | 1.8295 |
3.7452 | 0.1076 | 900 | 1.8141 |
3.549 | 0.1255 | 1050 | 1.8035 |
3.6103 | 0.1434 | 1200 | 1.7968 |
3.6685 | 0.1614 | 1350 | 1.7939 |
3.6901 | 0.1793 | 1500 | 1.7933 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for cimol/bfb87241-ea49-403a-ab14-0acdcd3df67a
Base model
unsloth/mistral-7b-instruct-v0.2