SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chelleboyer/llm-mm-good-eb8e3f60-56f2-4729-8934-2428ca568d27")
# Run inference
sentences = [
'How do Dong et al. (2022) contribute to the understanding of in-context learning in their survey?',
'Dong et\xa0al. (2024a)\n\nQingxiu Dong, Li Dong, Xingxing Zhang, Zhifang Sui, and Furu Wei. 2024a.\n\n\nSelf-Boosting Large Language Models with Synthetic Preference Data.\n\n\narXiv preprint arXiv:2410.06961 (2024).\n\n\n\n\n\n\nDong et\xa0al. (2022)\n\nQingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et\xa0al. 2022.\n\n\nA survey on in-context learning.\n\n\narXiv preprint arXiv:2301.00234 (2022).\n\n\n\n\n\n\nDong et\xa0al. (2024b)\n\nYijiang\xa0River Dong, Tiancheng Hu, and Nigel Collier. 2024b.\n\n\nCan LLM be a Personalized Judge?\n\n\narXiv preprint arXiv:2406.11657 (2024).\n\n\n\n\n\n\nDorner et\xa0al. (2024)\n\nFlorian\xa0E. Dorner, Vivian\xa0Y. Nastl, and Moritz Hardt. 2024.',
'Additionally, the LLMAAA\xa0(Zhang et\xa0al., 2023a) framework incorporates an active learning strategy to efficiently select high-information samples for annotation, thereby mitigating the effects of noisy labels and reducing the reliance on costly human annotation. These approach not only enhance the performance of task-specific models but also offer new perspectives on the efficient application of LLMs in annotation workflows.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.92 |
cosine_accuracy@3 | 0.99 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.92 |
cosine_precision@3 | 0.33 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.92 |
cosine_recall@3 | 0.99 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9667 |
cosine_mrr@10 | 0.9553 |
cosine_map@100 | 0.9553 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,334 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 23.14 tokens
- max: 69 tokens
- min: 3 tokens
- mean: 132.04 tokens
- max: 306 tokens
- Samples:
sentence_0 sentence_1 What are the key components of the evaluation function ( E ) as described in the preliminaries section?
LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
1 Introduction
2 PRELIMINARIES
2.1 Evaluation Function E𝐸Eitalic_E
2.2 Evaluation Input
2.2.1 Evaluation Type 𝒯𝒯\mathcal{T}caligraphic_T
2.2.2 Evaluation Criteria 𝒞𝒞\mathcal{C}caligraphic_C.
2.2.3 Evaluation References ℛℛ\mathcal{R}caligraphic_R.
2.3 Evaluation Output
3 Functionality
3.1 Performance Evaluation
3.1.1 Responses Evaluation
3.1.2 Model Evaluation
3.2 Model Enhancement
3.2.1 Reward Modeling During Training
3.2.2 Acting as Verifier During Inference
3.2.3 Feedback for Refinement
3.3 Data Construction
3.3.1 Data Annotation
3.3.2 Data Synthesize
4 MethodologyHow do LLMs contribute to model enhancement according to the functionalities outlined in the survey?
LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
1 Introduction
2 PRELIMINARIES
2.1 Evaluation Function E𝐸Eitalic_E
2.2 Evaluation Input
2.2.1 Evaluation Type 𝒯𝒯\mathcal{T}caligraphic_T
2.2.2 Evaluation Criteria 𝒞𝒞\mathcal{C}caligraphic_C.
2.2.3 Evaluation References ℛℛ\mathcal{R}caligraphic_R.
2.3 Evaluation Output
3 Functionality
3.1 Performance Evaluation
3.1.1 Responses Evaluation
3.1.2 Model Evaluation
3.2 Model Enhancement
3.2.1 Reward Modeling During Training
3.2.2 Acting as Verifier During Inference
3.2.3 Feedback for Refinement
3.3 Data Construction
3.3.1 Data Annotation
3.3.2 Data Synthesize
4 MethodologyWhat are the different approaches discussed under the Single-LLM System methodology?
4 Methodology
4.1 Single-LLM System
4.1.1 Prompt-based
4.1.2 Tuning-based
4.1.3 Post-processing
4.2 Multi-LLM System
4.2.1 Communication
4.2.2 Aggregation
4.3 Human-AI Collaboration System
5 Application
5.1 General
5.2 Multimodal
5.3 Medical
5.4 Legal
5.5 Financial
5.6 Education
5.7 Information Retrieval
5.8 Others
5.8.1 Soft Engineering
5.8.2 Biology
5.8.3 Social Science
6 Meta-evaluation
6.1 Benchmarks
6.1.1 Code Generation
6.1.2 Machine Translation
6.1.3 Text Summarization
6.1.4 Dialogue Generation
6.1.5 Automatic Story Generation
6.1.6 Values Alignment
6.1.7 Recommendation
6.1.8 Search
6.1.9 Comprehensive Data
6.2 Metric - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 50per_device_eval_batch_size
: 50num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 50per_device_eval_batch_size
: 50per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 27 | 0.9647 |
1.8519 | 50 | 0.9685 |
2.0 | 54 | 0.9717 |
3.0 | 81 | 0.9717 |
3.7037 | 100 | 0.9778 |
4.0 | 108 | 0.9754 |
5.0 | 135 | 0.9699 |
5.5556 | 150 | 0.9699 |
6.0 | 162 | 0.9664 |
7.0 | 189 | 0.9630 |
7.4074 | 200 | 0.9667 |
8.0 | 216 | 0.9667 |
9.0 | 243 | 0.9667 |
9.2593 | 250 | 0.9667 |
10.0 | 270 | 0.9667 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for chelleboyer/llm-mm-good-eb8e3f60-56f2-4729-8934-2428ca568d27
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.920
- Cosine Accuracy@3 on Unknownself-reported0.990
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.920
- Cosine Precision@3 on Unknownself-reported0.330
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.920
- Cosine Recall@3 on Unknownself-reported0.990