SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("chelleboyer/llm-evals-2-a56b96e9-5b1a-4351-9b07-3c46a9e2bfe6")
# Run inference
sentences = [
    'What is the expression for the minimum variance of zmathsfcv;alpha z^{\\mathsf{cv};\\alpha}  in terms of rho\\rho and mathrmVar[z]\\mathrm{Var}[z]?',
    'minα∈ℝ\u2061Var\u2062[z𝖼𝗏;α]=(1−ρ2)\u2062Var\u2062[z].subscript𝛼ℝVardelimited-[]superscript𝑧𝖼𝗏𝛼1superscript𝜌2Vardelimited-[]𝑧\\displaystyle\\min_{\\alpha\\in\\mathbb{R}}\\mathrm{Var}[z^{\\mathsf{cv};\\alpha}]=%\n\\left(1-\\rho^{2}\\right)\\mathrm{Var}[z].roman_min start_POSTSUBSCRIPT italic_α ∈ blackboard_R end_POSTSUBSCRIPT roman_Var [ italic_z start_POSTSUPERSCRIPT sansserif_cv ; italic_α end_POSTSUPERSCRIPT ] = ( 1 - italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Var [ italic_z ] .\n\n\n\nThe minimum is achieved if and only if α𝛼\\alphaitalic_α equals',
    'explored how to select these components or how their different combinations influence the results.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.94
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.94
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.94
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9752
cosine_mrr@10 0.9667
cosine_map@100 0.9667

Training Details

Training Dataset

Unnamed Dataset

  • Size: 782 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 782 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 5 tokens
    • mean: 31.75 tokens
    • max: 178 tokens
    • min: 3 tokens
    • mean: 148.03 tokens
    • max: 309 tokens
  • Samples:
    sentence_0 sentence_1
    What role do control variates play in accelerating unbiased LLM evaluation as discussed in the context? Accelerating Unbiased LLM Evaluation via Synthetic Feedback
















    1 Introduction

    2 Related Work

    2.1 LLM Evaluation: Metric, Benchmark and Systems
    2.2 Speeding Up LLM Evaluation
    2.3 Control Variates, Application, and related techniques



    3 Preliminaries

    3.1 LLM Evaluation
    3.2 Human and Synthetic Evaluation
    3.3 Other Notations



    4 Efficient LLM Evaluation via Control Variates


    4.1 Control Variates

    Human annotation saving ratio.



    4.2 Control Variates Evaluation
    How does the concept of human annotation saving ratio relate to the use of control variates in efficient LLM evaluation? Accelerating Unbiased LLM Evaluation via Synthetic Feedback
















    1 Introduction

    2 Related Work

    2.1 LLM Evaluation: Metric, Benchmark and Systems
    2.2 Speeding Up LLM Evaluation
    2.3 Control Variates, Application, and related techniques



    3 Preliminaries

    3.1 LLM Evaluation
    3.2 Human and Synthetic Evaluation
    3.3 Other Notations



    4 Efficient LLM Evaluation via Control Variates


    4.1 Control Variates

    Human annotation saving ratio.



    4.2 Control Variates Evaluation
    What are the key steps involved in the Control Variates Evaluation process as outlined in the context? 4.2 Control Variates Evaluation

    Synthetic annotation gathering (Line 4).
    Human annotation sampling (Line 5).
    Synthetic win rate estimation (Line 6).
    Control variates coefficient computation (Line 7).
    Win rate estimation (Line 8).
    (Optional) Synthetic evaluator finetuning (Line 3).
    Summary.





    5 Experiments


    5.1 Setup

    Synthetic evaluators.
    Finetuning procedure.
    Benchmark.



    5.2 Control Variates Evaluation v.s. Human Evaluation

    Human annotation saving ratio on different benchmarks and synthetic evaluators.
    Theory matches practice.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 5
  • per_device_eval_batch_size: 5
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 5
  • per_device_eval_batch_size: 5
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss cosine_ndcg@10
0.3185 50 - 0.9539
0.6369 100 - 0.9826
0.9554 150 - 0.9726
1.0 157 - 0.9852
1.2739 200 - 0.9826
1.5924 250 - 0.9826
1.9108 300 - 0.9826
2.0 314 - 0.9826
2.2293 350 - 0.9752
2.5478 400 - 0.9852
2.8662 450 - 0.9852
3.0 471 - 0.9852
3.1847 500 0.3143 0.9752
3.5032 550 - 0.9752
3.8217 600 - 0.9852
4.0 628 - 0.9852
4.1401 650 - 0.9779
4.4586 700 - 0.9826
4.7771 750 - 0.9852
5.0 785 - 0.9852
5.0955 800 - 0.9852
5.4140 850 - 0.9852
5.7325 900 - 0.9826
6.0 942 - 0.9779
6.0510 950 - 0.9779
6.3694 1000 0.0878 0.9852
6.6879 1050 - 0.9779
7.0 1099 - 0.9852
7.0064 1100 - 0.9852
7.3248 1150 - 0.9852
7.6433 1200 - 0.9852
7.9618 1250 - 0.9852
8.0 1256 - 0.9852
8.2803 1300 - 0.9852
8.5987 1350 - 0.9826
8.9172 1400 - 0.9852
9.0 1413 - 0.9852
9.2357 1450 - 0.9826
9.5541 1500 0.0422 0.9826
9.8726 1550 - 0.9752
10.0 1570 - 0.9752

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 2.14.4
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for chelleboyer/llm-evals-2-a56b96e9-5b1a-4351-9b07-3c46a9e2bfe6

Finetuned
(167)
this model

Evaluation results