SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chelleboyer/llm-evals-2-a56b96e9-5b1a-4351-9b07-3c46a9e2bfe6")
# Run inference
sentences = [
'What is the expression for the minimum variance of in terms of and ?',
'minα∈ℝ\u2061Var\u2062[z𝖼𝗏;α]=(1−ρ2)\u2062Var\u2062[z].subscript𝛼ℝVardelimited-[]superscript𝑧𝖼𝗏𝛼1superscript𝜌2Vardelimited-[]𝑧\\displaystyle\\min_{\\alpha\\in\\mathbb{R}}\\mathrm{Var}[z^{\\mathsf{cv};\\alpha}]=%\n\\left(1-\\rho^{2}\\right)\\mathrm{Var}[z].roman_min start_POSTSUBSCRIPT italic_α ∈ blackboard_R end_POSTSUBSCRIPT roman_Var [ italic_z start_POSTSUPERSCRIPT sansserif_cv ; italic_α end_POSTSUPERSCRIPT ] = ( 1 - italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Var [ italic_z ] .\n\n\n\nThe minimum is achieved if and only if α𝛼\\alphaitalic_α equals',
'explored how to select these components or how their different combinations influence the results.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.94 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.94 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.94 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9752 |
cosine_mrr@10 | 0.9667 |
cosine_map@100 | 0.9667 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 782 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 782 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 31.75 tokens
- max: 178 tokens
- min: 3 tokens
- mean: 148.03 tokens
- max: 309 tokens
- Samples:
sentence_0 sentence_1 What role do control variates play in accelerating unbiased LLM evaluation as discussed in the context?
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
1 Introduction
2 Related Work
2.1 LLM Evaluation: Metric, Benchmark and Systems
2.2 Speeding Up LLM Evaluation
2.3 Control Variates, Application, and related techniques
3 Preliminaries
3.1 LLM Evaluation
3.2 Human and Synthetic Evaluation
3.3 Other Notations
4 Efficient LLM Evaluation via Control Variates
4.1 Control Variates
Human annotation saving ratio.
4.2 Control Variates EvaluationHow does the concept of human annotation saving ratio relate to the use of control variates in efficient LLM evaluation?
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
1 Introduction
2 Related Work
2.1 LLM Evaluation: Metric, Benchmark and Systems
2.2 Speeding Up LLM Evaluation
2.3 Control Variates, Application, and related techniques
3 Preliminaries
3.1 LLM Evaluation
3.2 Human and Synthetic Evaluation
3.3 Other Notations
4 Efficient LLM Evaluation via Control Variates
4.1 Control Variates
Human annotation saving ratio.
4.2 Control Variates EvaluationWhat are the key steps involved in the Control Variates Evaluation process as outlined in the context?
4.2 Control Variates Evaluation
Synthetic annotation gathering (Line 4).
Human annotation sampling (Line 5).
Synthetic win rate estimation (Line 6).
Control variates coefficient computation (Line 7).
Win rate estimation (Line 8).
(Optional) Synthetic evaluator finetuning (Line 3).
Summary.
5 Experiments
5.1 Setup
Synthetic evaluators.
Finetuning procedure.
Benchmark.
5.2 Control Variates Evaluation v.s. Human Evaluation
Human annotation saving ratio on different benchmarks and synthetic evaluators.
Theory matches practice. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 5per_device_eval_batch_size
: 5num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 5per_device_eval_batch_size
: 5per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.3185 | 50 | - | 0.9539 |
0.6369 | 100 | - | 0.9826 |
0.9554 | 150 | - | 0.9726 |
1.0 | 157 | - | 0.9852 |
1.2739 | 200 | - | 0.9826 |
1.5924 | 250 | - | 0.9826 |
1.9108 | 300 | - | 0.9826 |
2.0 | 314 | - | 0.9826 |
2.2293 | 350 | - | 0.9752 |
2.5478 | 400 | - | 0.9852 |
2.8662 | 450 | - | 0.9852 |
3.0 | 471 | - | 0.9852 |
3.1847 | 500 | 0.3143 | 0.9752 |
3.5032 | 550 | - | 0.9752 |
3.8217 | 600 | - | 0.9852 |
4.0 | 628 | - | 0.9852 |
4.1401 | 650 | - | 0.9779 |
4.4586 | 700 | - | 0.9826 |
4.7771 | 750 | - | 0.9852 |
5.0 | 785 | - | 0.9852 |
5.0955 | 800 | - | 0.9852 |
5.4140 | 850 | - | 0.9852 |
5.7325 | 900 | - | 0.9826 |
6.0 | 942 | - | 0.9779 |
6.0510 | 950 | - | 0.9779 |
6.3694 | 1000 | 0.0878 | 0.9852 |
6.6879 | 1050 | - | 0.9779 |
7.0 | 1099 | - | 0.9852 |
7.0064 | 1100 | - | 0.9852 |
7.3248 | 1150 | - | 0.9852 |
7.6433 | 1200 | - | 0.9852 |
7.9618 | 1250 | - | 0.9852 |
8.0 | 1256 | - | 0.9852 |
8.2803 | 1300 | - | 0.9852 |
8.5987 | 1350 | - | 0.9826 |
8.9172 | 1400 | - | 0.9852 |
9.0 | 1413 | - | 0.9852 |
9.2357 | 1450 | - | 0.9826 |
9.5541 | 1500 | 0.0422 | 0.9826 |
9.8726 | 1550 | - | 0.9752 |
10.0 | 1570 | - | 0.9752 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for chelleboyer/llm-evals-2-a56b96e9-5b1a-4351-9b07-3c46a9e2bfe6
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.940
- Cosine Accuracy@3 on Unknownself-reported1.000
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.940
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.940
- Cosine Recall@3 on Unknownself-reported1.000