gemma-2-9b-it-dpo-1000
This model is a fine-tuned version of google/gemma-2-9b-it on the bct_non_cot_dpo_1000 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2974
- Rewards/chosen: -0.1483
- Rewards/rejected: -2.5189
- Rewards/accuracies: 0.8700
- Rewards/margins: 2.3706
- Logps/chosen: -31.5266
- Logps/rejected: -58.9056
- Logits/chosen: -8.2139
- Logits/rejected: -6.9867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5146 | 1.7778 | 50 | 0.4857 | 0.5450 | -0.0018 | 0.8500 | 0.5468 | -24.5940 | -33.7344 | -6.5014 | -5.6575 |
0.3352 | 3.5556 | 100 | 0.3103 | 0.2930 | -1.4831 | 0.8600 | 1.7760 | -27.1142 | -48.5476 | -7.3532 | -6.2995 |
0.2271 | 5.3333 | 150 | 0.3008 | 0.0199 | -2.1688 | 0.8600 | 2.1887 | -29.8448 | -55.4048 | -7.9154 | -6.7490 |
0.2421 | 7.1111 | 200 | 0.2974 | -0.1483 | -2.5189 | 0.8700 | 2.3706 | -31.5266 | -58.9056 | -8.2139 | -6.9867 |
0.2241 | 8.8889 | 250 | 0.2987 | -0.2014 | -2.6345 | 0.8600 | 2.4332 | -32.0576 | -60.0622 | -8.3179 | -7.0668 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.2
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.20.0
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.