metadata
license: cc-by-nc-4.0
tags:
- merge
- mergekit
datasets:
- pankajmathur/orca_mini_v1_dataset
- openai/summarize_from_feedback
- PygmalionAI/PIPPA
- chargoddard/rpguild
- lemonilia/LimaRP
- PKU-Alignment/PKU-SafeRLHF
- Intel/orca_dpo_pairs
- allenai/ultrafeedback_binarized_cleaned
model-index:
- name: piano-medley-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.36
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.49
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 61.42
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.16
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.56
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/piano-medley-7b
name: Open LLM Leaderboard
Another experiment in the line of loyal-piano-m7.
Steps taken to produce this model:
- Train loyal-piano-m7
- cDPO with HuggingFaceH4/ultrafeedback_binarized to produce loyal-piano-m7-cdpo
- Train another model with different sampling of the same source datasets as loyal-piano, let's call it servile-harpsichord
- cDPO servile-harpsichord with allenai/ultrafeedback_binarized_cleaned, Intel/orca_dpo_pairs, and a helpfulness-only version of PKU-Alignment/PKU-SafeRLHF
- TIES merge several checkpoints of servile-harpsichord-cdpo with loyal-piano-m7-cdpo
Local benchmarks show the result to be better than any of the individual components. Let's see if that holds up!
Trained using the Alpaca prompt format.
Configuration for final merge:
models:
- model: chargoddard/loyal-piano-m7-cdpo
parameters:
density: 1.0
weight: 1.0
- model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-4186
parameters:
weight: 0.1
- model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-5796
parameters:
weight: 0.2
- model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-6118
parameters:
weight: 0.3
- model: /home/ubuntu/servile-harpsichord-cdpo/final
parameters:
weight: 0.4
merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
dtype: bfloat16
parameters:
density: 0.4
normalize: true
int8_mask: true
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.10 |
AI2 Reasoning Challenge (25-Shot) | 67.58 |
HellaSwag (10-Shot) | 85.36 |
MMLU (5-Shot) | 64.49 |
TruthfulQA (0-shot) | 61.42 |
Winogrande (5-shot) | 79.16 |
GSM8k (5-shot) | 56.56 |