This repo contains the latest version of PMC_LLaMA_7B, which is LLaMA-7b finetuned on the PMC papers in the S2ORC dataset.

Notably, different from chaoyi-wu/PMC_LLAMA_7B, this model is further trained for 10 epochs.

The model was trained with the following hyperparameters:

  • Epochs: 10
  • Batch size: 128
  • Cutoff length: 512
  • Learning rate: 2e-5

Each epoch we sample 512 tokens per paper for training.

The model can be loaded as follows:

import transformers
import torch
tokenizer = transformers.LlamaTokenizer.from_pretrained('chaoyi-wu/PMC_LLAMA_7B_10_epoch')
model = transformers.LlamaForCausalLM.from_pretrained('chaoyi-wu/PMC_LLAMA_7B_10_epoch')
sentence = 'Hello, doctor' 
batch = tokenizer(
            sentence,
            return_tensors="pt", 
            add_special_tokens=False
        )
with torch.no_grad():
    generated = model.generate(inputs = batch["input_ids"], max_length=200, do_sample=True, top_k=50)
    print('model predict: ',tokenizer.decode(generated[0]))
Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.