Try this model

Click to expand example usage
from transformers import MarianTokenizer, MarianMTModel
from uroman import Uroman
import pandas as pd
import torch

# Load input
df = pd.read_csv("test.csv")
uroman = Uroman()

# Romanize Coptic text
def preserve_brackets(text):
    return str(text).replace("[]", "<MISSING>")

df["coptic_text_romanized"] = [
    uroman.romanize_string(preserve_brackets(text)).replace("<MISSING>", "[]")
    for text in df["coptic_text"].tolist()
]

# Load model
model_name = "chaouin/coptic-french-translation-helsinki"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name).to("cpu")

# Translate
translations = []
for text in df["coptic_text_romanized"]:
    input_text = ">>fra<< " + text
    inputs = tokenizer(input_text, return_tensors="pt", max_length=128, truncation=True)
    inputs = {k: v.to("cpu") for k, v in inputs.items()}
    with torch.no_grad():
        output = model.generate(
            **inputs,
            max_length=128,
            num_beams=6,
            repetition_penalty=1.5,
            length_penalty=2.5
        )
    translations.append(tokenizer.decode(output[0], skip_special_tokens=True))

print(translations)

โžก๏ธ For a complete script to generate translations, see generate_translation_helsinki.py

๐Ÿ”ฌ For full training and evaluation scripts, visit the project repository

Downloads last month
7
Safetensors
Model size
248M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support