Llama v1 fine-tuning
Collection
All the Llama models I fine-tuned
β’
3 items
β’
Updated
This repository contains a LLaMA-7B fine-tuned model on the Standford Alpaca cleaned version dataset.
β οΈ I used LLaMA-7B-hf as a base model, so this model is for Research purpose only (See the license)
The model was trained on the following kind of prompt:
def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
if input_ctxt:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_ctxt}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("chainyo/alpaca-lora-7b")
model = LlamaForCausalLM.from_pretrained(
"chainyo/alpaca-lora-7b",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
)
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
instruction = "What is the meaning of life?"
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)
>>> The meaning of life is to live a life of meaning.