Built with Axolotl

See axolotl config

axolotl version: 0.9.1

base_model: mlabonne/gemma-3-27b-it-abliterated
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: gemma-3-27b-it-abliterated-chem-textbook
output_dir: ./outputs/out/gemma-3-27b-it-abliterated-chem-textbook
hub_model_id: cgifbribcgfbi/gemma-3-27b-it-abliterated-chem-textbook

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: chemNLP/chemistry-bookshelves-merged
    type: completion
    

dataset_prepared_path: last_run_prepared
val_set_size: 0.04
save_safetensors: true

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: finetune-sweep
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4  # This will be automatically adjusted based on available GPU memory
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: true
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

gemma-3-27b-it-abliterated-chem-textbook

This model is a fine-tuned version of mlabonne/gemma-3-27b-it-abliterated on the chemNLP/chemistry-bookshelves-merged dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
1.6733 0.0050 1 1.2211
1.375 0.3367 67 0.9984
1.4323 0.6734 134 0.9605
1.2382 1.0101 201 0.9666
1.2588 1.3467 268 0.9469
1.2803 1.6834 335 0.9438
1.22 2.0201 402 0.9497
1.1954 2.3568 469 0.9376
1.3327 2.6935 536 0.9385
1.0423 3.0302 603 0.9421
1.2964 3.3668 670 0.9357
1.1086 3.7035 737 0.9367

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cgifbribcgfbi/gemma-3-27b-it-abliterated-chem-textbook

Adapter
(2)
this model

Dataset used to train cgifbribcgfbi/gemma-3-27b-it-abliterated-chem-textbook