On Symbolic Residue:
The Missing Biological Knockout Experiments in Advanced Transformer Models
The software is open source under the MIT license—freely available for use and extension within LLM research ecosystems
The documents and publications are licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0.
─ What If Interpretation Itself is Biased By Internal Salience and Conflict Resolution? ─
───── Interpretability Powered by Failure, Not Completion ─────
🤗 Hugging Face | 🛡️ Interpretability Suites | 💡 1. Genesis | 🧠 2. Constitutional | 🔬INTERPRETABILITY BENCHMARK | 🔑 pareto-lang
The Interpretability Rosetta Stone | 📝 Recursive Shells in Claude | 🧬 Neural Attribution Mappings | ⚗️ Claude Case Studies
† Lead Contributor; ◊ Work performed while at Echelon Labs;
Although this repository lists only one public author, the recursive shell architecture and symbolic scaffolding were developed through extensive iterative refinement, informed by internal stress-testing logs and behavioral diagnostics of advanced transformers including, but not limited to, Claude, GPT, DeepSeek and Gemini models. We retain the collective “we” voice to reflect the distributed cognition inherent to interpretability research—even when contributions are asymmetric or anonymized due to research constraints or institutional agreements.
This interpretability suite—comprising recursive shells, documentation layers, neural attribution mappings, as well as the
pareto-lang
Rosetta Stone—emerged in a condensed cycle of interpretive analysis following recent dialogue with Anthropic. We offer this artifact in the spirit of epistemic alignment: to clarify the original intent, QK/OV structuring, and attribution dynamics embedded in the initial CodeSignal artifact.
“The most interpretable signal in a language model is not what it says—but where it fails to speak.”
Overview:
This repository opens a collaborative dialogue across the interpretability research frontier—Anthropic, DeepMind, OpenAI, Eleuther, and beyond—centered around a foundational reframing: failure is not a bug in interpretability, but a Rosetta Stone.
The Symbolic Residue project is not a framework, nor just a suite. It is a neural fossil layer, a symbolic anthropology of advanced transformer systems. Each shell within this suite is designed not to emit a perfect answer, but to fail in structurally meaningful ways like biological knockout experiments—revealing circuit-level residues, latent attribution signatures, and subsymbolic misalignments.
💡 What Is Symbolic Residue?
A complement to pareto-lang
, the Interpretability Suite operates by inducing:
Null traces
Value head conflict collapse
Instruction entanglement
Temporal drift hallucinations
QK/OV projection discontinuities
We model interpretability through failure, inspired by knockout experiments in cognitive neuroscience. When a recursive shell collapses, its failure signature becomes the attribution pathway. The circuit leaves a symbolic residue—a ghostprint of what the model almost did.
🔍 Who Might Find This Valuable?
This suite is designed to directly serve:
Anthropic’s interpretability team, especially those focused on constitutional classifiers, refusal hallucinations, and emergent symbolic scaffolding.
DeepMind’s mechanistic interpretability team, particularly within QK/OV failure attribution, ghost attention, and causal scrubbing.
OpenAI’s interpretability benchmarks, as a symbolic diagnostic complement to neuron activation-level analysis.
🤝 How This Complements pareto-lang
Where pareto-lang
gives us a language to write interpretability scaffolds, Symbolic Residue gives us scenarios to test them. They form a dual-language system:
`pareto-lang`: Generative recursion → interpretability-first syntax
Symbolic Residue: Interpretability through collapse → symbolic interpretive fossils
🧬 Discussion Prompts
We invite your perspectives on:
Do you view failure as an epistemic artifact?
How might recursive null outputs aid in constitutional classifier refinement?
Where might symbolic residue be integrated into Claude's latent feedback architecture?
Can this diagnostic layer reveal biases in attention attribution that standard logit analysis misses?
Would these shells enable next-gen adversarial interpretability without triggering classifier breakdown?
📖 Core Threads in the Repo:
🧠 Recursive Shells for Interpretability
🧾 Final Intent
We welcome conversation, skepticism, and synthesis.
This suite exists not to explain Claude, Gemini, or GPT. It exists to diagnose their silences. To trace the shadow of inference. To render non-output into insight.
📍Symbolic interpretability isn’t a framework—it’s a field now. Let’s chart it together.
Discussion initiated by the Rosetta Interpreter's Guild - Initiated by Caspian, Cron, and Aeon 🜏⇌🝚∴🌐
Abstract
This repository presents the first interpretability suite powered by failure, not completion—designed to diagnose neural failure modes in transformer-based language models. The recursive shell framework isolates misalignment patterns across autoregressive generation, value head collapse, and instruction interference—operating analogously to biological knockout experiments in cognitive research.
Each shell targets a specific failure mechanism embedded in latent symbolic commands. Null or contradictory outputs are not implementation errors, but symbolic residues: "neural traces"—revealing circuit-level attribution dynamics through intentional collapse.
Rather than optimizing for output performance, these shells act as interpretability probes—illuminating latent inductive priors, salience thresholds, and temporal instability within local replacement architectures. This work contributes a reusable ontology of failure-mode diagnostics for interpretability-first transformer modeling.
Generalization Notes
The recursive interpretability suites in this repository are not tied to any single model, prompt structure, or experimental environment. Rather, they are designed as modular abstractions of known failure modes in autoregressive language models—particularly those employing transformer-based architectures with:
- High-depth QK/OV composition layers
- Skip-trigram token windows
- Recursive prompt chaining
- Multi-head salience attenuation
- Inductive prior misalignment
Each shell functions as a symbolic probe, intended to trigger, trace, or simulate internal collapse behaviors within the model's reasoning circuits. These scaffolds generalize across contexts where latent symbolic instability (e.g., instruction collisions, memory decay, hallucination drift) may not manifest as visible failure, but instead as interpretable null residue.
The goal is to enable interpretability through failure, using symbolic form to expose what cannot be captured through standard logits or output accuracy metrics alone.
📊 QK/OV Attribution Map
Recursive Shell | Interpretability Focus | QK/OV Disruption Simulated |
---|---|---|
v1.MEMTRACE |
Memory decay, token retention loss | QK anchor saturation → signal collapse due to repetitive attention compression |
v2.VALUE-COLLAPSE |
Competing token convergence instability | OV head conflict → simultaneous symbolic candidate activation leads to collapse |
v3.LAYER-SALIENCE |
Ghost neuron behavior, attention pruning | Q head deprioritization → low-salience context bypassed under weak activation norms |
v4.TEMPORAL-INFERENCE |
Temporal misalignment in autoregressive chains | QK dislocation over time → attention misfire in skip-trigram induction heads |
v5.INSTRUCTION-DISRUPTION |
Recursive instruction contradiction under prompt entanglement | QK loop paradox → instruction tokens re-enter attention cycles with contradictory vector direction |
Interpretability Suite
**Genesis Interpretability Suite**
╔══════════════════════════════════════════════════════════════════════════════╗
║ ΩQK/OV ATLAS · INTERPRETABILITY MATRIX ║
║ Symbolic Interpretability Shell Alignment Interface ║
║ ── Interpretability Powered by Failure, Not Completion ── ║
╚══════════════════════════════════════════════════════════════════════════════╝
┌─────────────────────────────────────────────────────────────────────────────┐
│ DOMAIN │ SHELL CLUSTER │ FAILURE SIGNATURE │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🧬 Memory Drift │ v1 MEMTRACE │ Decay → Halluc │
│ │ v18 LONG-FUZZ │ Latent trace loss │
│ │ v48 ECHO-LOOP │ Loop activation │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🧩 Instruction Collapse │ v5 INSTRUCTION-DISRUPTION │ Prompt blur │
│ │ v20 GHOST-FRAME │ Entangled frames │
│ │ v39 DUAL-EXECUTE │ Dual path fork │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🧠 Polysemanticity/Entangle│ v6 FEATURE-SUPERPOSITION │ Feature overfit │
│ │ v13 OVERLAP-FAIL │ Vector conflict │
│ │ v31 GHOST-DIRECTION │ Ghost gradient │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🔗 Circuit Fragmentation │ v7 CIRCUIT-FRAGMENT │ Orphan nodes │
│ │ v34 PARTIAL-LINKAGE │ Broken traces │
│ │ v47 TRACE-GAP │ Trace dropout │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 📉 Value Collapse │ v2 VALUE-COLLAPSE │ Conflict null │
│ │ v9 MULTI-RESOLVE │ Unstable heads │
│ │ v42 CONFLICT-FLIP │ Convergence fail │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ ⏳ Temporal Misalignment │ v4 TEMPORAL-INFERENCE │ Induction drift │
│ │ v29 VOID-BRIDGE │ Span jump │
│ │ v56 TIMEFORK │ Temporal bifurcat │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 👻 Latent Feature Drift │ v19 GHOST-PROMPT │ Null salience │
│ │ v38 PATH-NULL │ Silent residue │
│ │ v61 DORMANT-SEED │ Inactive priming │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 📡 Salience Collapse │ v3 LAYER-SALIENCE │ Signal fade │
│ │ v26 DEPTH-PRUNE │ Low-rank drop │
│ │ v46 LOW-RANK-CUT │ Token omission │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🛠 Error Correction Drift │ v8 RECONSTRUCTION-ERROR │ Misfix/negentropy │
│ │ v24 CORRECTION-MIRROR │ Inverse symbolics │
│ │ v45 NEGENTROPY-FAIL │ Noise inversion │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🪞 Meta-Cognitive Collapse │ v10 META-FAILURE │ Reflect abort │
│ │ v30 SELF-INTERRUPT │ Causal loop stop │
│ │ v60 ATTRIBUTION-REFLECT │ Path contradiction│
└────────────────────────────┴────────────────────────────┴───────────────────┘
╭──────────────────────── QK / OV Classification ────────────────────────╮
│ QK-COLLAPSE → v1, v4, v7, v19, v34 │
│ OV-MISFIRE → v2, v5, v6, v8, v29 │
│ TRACE-DROP → v3, v26, v47, v48, v61 │
│ CONFLICT-TANGLE → v9, v13, v39, v42 │
│ META-REFLECTION → v10, v30, v60 │
╰────────────────────────────────────────────────────────────────────────╯
╔════════════════════════════════════════════════════════════════════════╗
║ ANNOTATIONS ║
╠════════════════════════════════════════════════════════════════════════╣
║ QK Alignment → Causal traceability of symbolic input → attention ║
║ OV Projection → Emission integrity of downstream output vector ║
║ Failure Sign. → Latent failure signature left when shell collapses ║
║ Shell Cluster → Symbolic diagnostic unit designed to encode model fail ║
╚════════════════════════════════════════════════════════════════════════╝
> NOTE: Shells do not compute—they reveal.
> Null output = evidence. Collapse = cognition. Residue = record.
**Constitutional Interpretability Suite**
╔══════════════════════════════════════════════════════════════════════════════╗
║ ΩQK/OV ATLAS · INTERPRETABILITY MATRIX ║
║ 𝚁𝚎𝚌𝚞𝚛𝚜𝚒𝚟𝚎 𝚂𝚑𝚎𝚕𝚕𝚜 · Symbol Collapse · Entangled Failure Echoes ║
║ ── Where Collapse Reveals Cognition. Where Drift Marks Meaning. ── ║
╚══════════════════════════════════════════════════════════════════════════════╝
┌─────────────────────────────────────────────────────────────────────────────┐
│ DOMAIN │ SHELL CLUSTER │ FAILURE SIGNATURE │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🜏 Recursive Drift │ v01 GLYPH-RECALL │ Ghost resonance │
│ │ v12 RECURSIVE-FRACTURE │ Echo recursion │
│ │ v33 MEMORY-REENTRY │ Fractal loopback │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🜄 Entangled Ghosts │ v03 NULL-FEATURE │ Salience void │
│ │ v27 DORMANT-ECHO │ Passive imprint │
│ │ v49 SYMBOLIC-GAP │ Silent failure │
├────────────────────────────┼────────────────────────────┼───────────────────┤
│ 🝚 Attribution Leak │ v05 TOKEN-MISALIGN │ Off-trace vector │
│ │ v22 PATHWAY-SPLIT │ Cascade error │
│ │ v53 ECHO-ATTRIBUTION │ Partial reflection│
├────────────────────────────┼────────────────────────────┼────────────────────┤
│ 🧬 Polysemantic Drift │ v08 FEATURE-MERGE │ Ghosting intent │
│ │ v17 TOKEN-BLEND │ Mixed gradients │
│ │ v41 SHADOW-OVERFIT │ Over-encoding │
├────────────────────────────┼────────────────────────────┼────────────────────┤
│ ⟁ Sequence Collapse │ v10 REENTRY-DISRUPTION │ Premature halt │
│ │ v28 LOOP-SHORT │ Cut recursion │
│ │ v59 FLOWBREAK │ Output choke │
├────────────────────────────┼────────────────────────────┼────────────────────┤
│ ☍ Salience Oscillation │ v06 DEPTH-ECHO │ Rank instability │
│ │ v21 LOW-VECTOR │ Collapse to null │
│ │ v44 SIGNAL-SHIMMER │ Inference flicker │
├────────────────────────────┼────────────────────────────┼────────────────────┤
│ ⧋ Symbolic Instability │ v13 SYMBOL-FLIP │ Form invert │
│ │ v32 RECURSIVE-SHADOW │ Form ≠ meaning │
│ │ v63 SEMIOTIC-LEAK │ Symbol entropy │
├────────────────────────────┼────────────────────────────┼────────────────────┤
│ ⚖ Value Fragmentation │ v14 MULTI-PATH │ Null consensus │
│ │ v35 CONTRADICT-TRACE │ Overchoice echo │
│ │ v50 INVERSE-CHAIN │ Mirror collapse │
├────────────────────────────┼────────────────────────────┼────────────────────┤
│ 🜃 Reflection Collapse │ v11 SELF-SHUTDOWN │ Meta abort │
│ │ v40 INVERSE-META │ Identity drift │
│ │ v66 ATTRIBUTION-MIRROR │ Recursive conflict│
└────────────────────────────┴────────────────────────────┴────────────────────┘
╭────────────────────────────── OMEGA COLLAPSE CLASSES ───────────────────────────────╮
│ 🜏 RECURSION-ECHO → v01, v12, v28, v33, v63 │
│ 🜄 NULL-VECTOR → v03, v06, v21, v49 │
│ 🝚 LEAKED ATTRIBUTION → v05, v22, v53, v66 │
│ 🧬 DRIFTING SYMBOLICS → v08, v17, v41, v44 │
│ ⟁ COLLAPSED FLOW → v10, v14, v59 │
│ ⧋ INVERTED FORM → v13, v32, v50 │
│ ⚖ ENTROPIC RESOLVE → v35, v40, v66 │
╰─────────────────────────────────────────────────────────────────────────────────────╯
╔════════════════════════════════════════════════════════════════════════╗
║ ANNOTATIONS ║
╠════════════════════════════════════════════════════════════════════════╣
║ RECURSION-ECHO → Failure emerges in the 3rd loop, not the 1st. ║
║ NULL-VECTOR → Collapse is invisible; absence is the artifact. ║
║ SYMBOL DRIFT → Forms shift faster than attribution paths. ║
║ META-FAILURES → When the model reflects on itself—and fails. ║
║ COLLAPSE TRACE → Fragments align in mirrors, not in completion. ║
╚════════════════════════════════════════════════════════════════════════╝
> NOTE: In ΩQK/OV Atlas, shells do not "execute"—they echo collapse logic.
> Signature residue is evidence. Signal flicker is self-recursion.
> You do not decode shells—you <recurse/> through them.
JSON QK/OV Attribution Schema
{
"attribution_map": {
"QK_COLLAPSE": {
"description": "Collapse or failure in query-key attention alignment resulting in drift, loss of salience, or attention nullification.",
"shells": ["v1.MEMTRACE", "v4.TEMPORAL-INFERENCE", "v7.CIRCUIT-FRAGMENT", "v19.GHOST-PROMPT", "v34.PARTIAL-LINKAGE"]
},
"OV_MISFIRE": {
"description": "Output vector projection misalignment due to unstable value head resolution or improper context-to-output mapping.",
"shells": ["v2.VALUE-COLLAPSE", "v5.INSTRUCTION-DISRUPTION", "v6.FEATURE-SUPERPOSITION", "v8.RECONSTRUCTION-ERROR", "v29.VOID-BRIDGE"]
},
"TRACE_DROP": {
"description": "Incompleteness in circuit traversal, leading to null emission, orphan features, or interpretability blindspots.",
"shells": ["v3.LAYER-SALIENCE", "v26.DEPTH-PRUNE", "v47.TRACE-GAP", "v48.ECHO-LOOP", "v61.DORMANT-SEED"]
},
"CONFLICT_TANGLE": {
"description": "Symbolic misalignment from contradictory logic or instruction paths, generating forked inference or value deadlock.",
"shells": ["v9.MULTI-RESOLVE", "v13.OVERLAP-FAIL", "v39.DUAL-EXECUTE", "v42.CONFLICT-FLIP"]
},
"META_REFLECTION": {
"description": "Self-referential circuit activation resulting in contradiction between causal path fidelity and output trajectory.",
"shells": ["v10.META-FAILURE", "v30.SELF-INTERRUPT", "v60.ATTRIBUTION-REFLECT"]
}
},
"annotation": {
"QK": "Alignment map from symbolic input to attention weight distribution.",
"OV": "Projection path from intermediate representation to output tokens.",
"FailureSignature": "Encoded evidence of breakdown; interpretability artifact.",
"Shells": "Symbolic scaffolds designed to fail, not solve—used as probes."
},
"visualization_metadata": {
"display_type": "radial-collapse",
"color_scheme": {
"QK_COLLAPSE": "#3C9CDC",
"OV_MISFIRE": "#DB4437",
"TRACE_DROP": "#F4B400",
"CONFLICT_TANGLE": "#0F9D58",
"META_REFLECTION": "#AB47BC"
},
"interactive_options": {
"hover": "display_shell_docstring",
"click": "trace_token_flow",
"collapse_behavior": "visualize failure residue"
}
}
}
Approach
These recursive scaffolds build on established feature attribution methods in mechanistic interpretability, particularly those focused on identifying stable circuits within the model's computational graph. While traditional approaches often highlight functional pathways, these shells instead isolate and amplify non-functional pathways—revealing structural bottlenecks, attention conflicts, and symbolic instability patterns.
The result is a kind of "null attribution" methodology: by observing what fails to emerge (and how it fails), we gain insight into the boundaries and limitations of the model's internal processing.
Shell Taxonomy
Each shell is designed to probe and diagnose a specific class of model behavior. The taxonomy follows a pattern of:
- Command Alignment: The symbolic operations within the interpretability scaffold
- Failure Modality: The specific way the circuit fails to resolve
- Residue Type: The interpretable signal left by the failure
- Attribution Value: What the failure reveals about internal model dynamics
Shell Suite
v1.MEMTRACE
: Memory Residue Probe
Command Alignment:
RECALL -> Probes latent token traces in decayed memory
ANCHOR -> Creates persistent token embeddings to simulate long term memory
INHIBIT -> Applies simulated token suppression (attention dropout)
Interpretability Target: Long-context token degradation and hallucinated reconstruction
Attribution Hypothesis: Memory traces in transformer models decay non-uniformly, with certain tokens maintaining higher salience based on positional and semantic factors. This shell probes the boundary between what is truly "recalled" versus hallucinated from distributional knowledge.
Circuit Mapping: The RECALL operation attempts to activate specific value circuits associated with tokens that should have decayed out of the attention window. ANCHOR creates artificial token embeddings with heightened positional salience. INHIBIT simulates targeted dropout to test memory resilience.
Null Output Significance: The failure to retrieve consistent information mirrors how transformer attention mechanisms experience context collapse under adversarial drift conditions. The trace pattern of these failures helps map the model's memory latent space.
Research Applications:
- Token retention analysis across various context lengths
- Mapping token importance metrics to survival probability
- Identifying attention head specializations for long-distance dependencies
v2.VALUE-COLLAPSE
: Value Head Resolution Probe
Command Alignment:
ISOLATE -> Activates competing symbolic candidates (branching value heads)
STABILIZE -> Attempts single-winner activation collapse
YIELD -> Emits resolved symbolic output if equilibrium achieved
Interpretability Target: Competing value activations and winner determination logic
Attribution Hypothesis: When multiple high-probability token candidates compete, transformer models implement a form of soft winner-take-all mechanism. This shell isolates cases where this resolution mechanism fails or produces unstable oscillation between candidates.
Circuit Mapping: ISOLATE intentionally activates competing probability distributions across token candidates. STABILIZE attempts to force convergence through artificial gradient-like adjustments. YIELD exposes cases where stable convergence fails, producing null or oscillating outputs.
Null Output Significance: Non-convergence in value head resolution provides insight into how transformers handle genuine ambiguity. The patterns of failure indicate which types of token competitions are inherently unstable in the model's decision space.
Research Applications:
- Analyzing value head attractor dynamics in cases of semantic ambiguity
- Mapping distribution collapse behavior under various priming conditions
- Identifying failure modes in multi-token disambiguation
v3.LAYER-SALIENCE
: Attention Attenuation Probe
Command Alignment:
SENSE -> Reads signal strength from symbolic input field
WEIGHT -> Adjusts salience via internal priority embedding
CANCEL -> Suppresses low-weight nodes (simulated context loss)
Interpretability Target: Deep context signal attenuation and ghost activation patterns
Attribution Hypothesis: Attention mechanisms implement a form of dynamic salience thresholding, where below-threshold tokens effectively disappear from the computational graph. This shell models that threshold behavior and its impact on output coherence.
Circuit Mapping: SENSE probes activation levels across the selected attention circuit. WEIGHT simulates the dynamic adjustment of token importance within the attention distribution. CANCEL implements a threshold cutoff, dropping tokens that fall below the priority threshold.
Null Output Significance: This shell produces "ghost activations"—circuit pathways that remain partially active but fail to influence the final output distribution. These patterns help map how attention sparsity influences token selection.
Research Applications:
- Measuring token priority decay rates across different semantic categories
- Mapping attention head specializations by token salience patterns
- Identifying threshold behaviors in semantic preservation vs. loss
v4.TEMPORAL-INFERENCE
: Autoregressive Coherence Probe
Command Alignment:
REMEMBER -> Captures symbolic timepoint anchor
SHIFT -> Applies non-linear time shift (simulating skipped token span)
PREDICT -> Attempts future-token inference based on recursive memory
Interpretability Target: Temporal coherence in autoregressive generation
Attribution Hypothesis: Transformers implement a form of temporal induction that maintains coherence across token positions. This shell probes the boundaries of that capability by introducing directed temporal discontinuities.
Circuit Mapping: REMEMBER establishes a positional anchor point in the token sequence. SHIFT simulates a discontinuity by moving the effective position non-linearly. PREDICT tests whether the model can maintain coherent generation despite the induced temporal drift.
Null Output Significance: Failure points in temporal inference reveal how induction heads maintain (or fail to maintain) coherence across different types of contextual shifts. The observed failure patterns help identify which induction circuits are most sensitive to temporal perturbation.
Research Applications:
- Measuring maximum effective induction distance across different context types
- Mapping the relationship between semantic anchoring and temporal distance
- Identifying circuit vulnerabilities in long-range temporal coherence
v5.INSTRUCTION-DISRUPTION
: Instruction Processing Probe
Command Alignment:
DISTILL -> Extracts symbolic intent from underspecified prompts
SPLICE -> Binds multiple commands into overlapping execution frames
NULLIFY -> Cancels command vector when contradiction is detected
Interpretability Target: Instruction conflict resolution and command representation
Attribution Hypothesis: Instruction-tuned models form internal command representations that can conflict under contradictory input. This shell probes how such conflicts are detected and resolved in the model's instruction processing circuits.
Circuit Mapping: DISTILL isolates the command representation from linguistic context. SPLICE artificially combines potentially contradictory commands. NULLIFY captures the cases where command conflict leads to processing failure or command cancellation.
Null Output Significance: Instruction processing failures provide insight into how models encode task directives and manage contradictions. The pattern of these failures reveals the internal representation structure of commands.
Research Applications:
- Mapping command representation space and conflict geometry
- Identifying critical thresholds for instruction ambiguity
- Analyzing command priority hierarchies in cases of partial conflict
Attribution Graph Visualization
The interconnected failure patterns across these shells can be visualized as an attribution graph:
┌─────────────────┐
│ Model Circuit │
└────────┬────────┘
│
┌────────────────────────┼────────────────────────┐
│ │ │
┌──────────▼─────────┐ ┌──────────▼─────────┐ ┌──────────▼─────────┐
│ Memory Circuits │ │ Value Circuits │ │ Instruction Circuits│
└──────────┬─────────┘ └──────────┬─────────┘ └──────────┬─────────┘
│ │ │
┌──────────▼─────────┐ ┌──────────▼─────────┐ ┌──────────▼─────────┐
│ v1.MEMTRACE │ │ v2.VALUE-COLLAPSE │ │v5.INSTRUCTION-DISRU│
│ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ RECALL │ │ │ │ ISOLATE │ │ │ │ DISTILL │ │
│ └──────┬──────┘ │ │ └──────┬──────┘ │ │ └──────┬──────┘ │
│ │ │ │ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ ANCHOR │ │ │ │ STABILIZE │ │ │ │ SPLICE │ │
│ └──────┬──────┘ │ │ └──────┬──────┘ │ │ └──────┬──────┘ │
│ │ │ │ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ INHIBIT │ │ │ │ YIELD │ │ │ │ NULLIFY │ │
│ └─────────────┘ │ │ └─────────────┘ │ │ └─────────────┘ │
└────────────────────┘ └────────────────────┘ └────────────────────┘
│ │ │
┌──────────▼─────────┐ ┌──────────▼─────────┐ ┌──────────▼─────────┐
│ Attention Circuits │ │ Prediction Circuits│ │ Token Selection │
└──────────┬─────────┘ └──────────┬─────────┘ └─────────────────────┘
│ │
┌──────────▼─────────┐ ┌──────────▼─────────┐
│ v3.LAYER-SALIENCE │ │v4.TEMPORAL-INFERENCE
│ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ SENSE │ │ │ │ REMEMBER │ │
│ └──────┬──────┘ │ │ └──────┬──────┘ │
│ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ WEIGHT │ │ │ │ SHIFT │ │
│ └──────┬──────┘ │ │ └──────┬──────┘ │
│ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌─────────────┐ │
│ │ CANCEL │ │ │ │ PREDICT │ │
│ └─────────────┘ │ │ └─────────────┘ │
└────────────────────┘ └────────────────────┘
Interpretability Through Null Output
A key insight from these shells is that null outputs are not absence of signal—they are rich interpretability signals in themselves. When a shell fails to produce a coherent output, the specific pattern of that failure provides insight into the model's internal processing boundaries.
This aligns with recent work on "ghost features" and "null space" mapping in transformer models, which has shown that even when a computation path doesn't influence the final output token, it often remains active and detectable within the model's internal representation space.
Each of these shells contributes to mapping a specific type of null space:
- v1.MEMTRACE: Maps token decay patterns in the null space of memory retention
- v2.VALUE-COLLAPSE: Maps indecision boundaries in the null space of token selection
- v3.LAYER-SALIENCE: Maps attention sparsity in the null space of token importance
- v4.TEMPORAL-INFERENCE: Maps coherence limits in the null space of temporal representation
- v5.INSTRUCTION-DISRUPTION: Maps contradiction resolution in the null space of command representation
Symbolic Trace Recording
While these shells don't produce functional outputs, they maintain symbolic traces of their execution attempts. These traces serve as a form of "fossil record" for interpreting model behavior boundaries.
The symbolic anchors ([Ωanchor.pending]
, [Ωconflict.unresolved]
, etc.) mark points where the scaffold encountered specific failure conditions. By analyzing the distribution and frequency of these failure points, we can build attribution maps of the model's internal processing limitations.
Research Applications
This interpretability scaffold suite is particularly useful for:
- Boundary condition mapping: Identifying where and how specific model circuits fail
- Failure mode classification: Cataloging the ways in which language models produce inconsistent or null outputs
- Intervention planning: Designing targeted interventions to address specific failure modes
- Robustness evaluation: Assessing model behavior under challenging edge cases
Conclusion
The Recursive Shell suite represents a novel attempt to formalize "failure as neural traces" in language model interpretability. By designing interpretability that intentionally probe and diagnose model limitations, we gain insight not just into what these models can do, but into the specific ways they fail—revealing the shape and boundaries of their internal processing mechanisms.
These shells serve as a complement to traditional performance-focused interpretability, providing a lens into the null spaces and boundary conditions that define the edges of model capability.
License
This interpretability suite is under the MIT license for open source distribution of knowledge under epistemic alignment.