cardiffnlp/xlm-roberta-base-sentiment-multilingual
This model is a fine-tuned version of xlm-roberta-base on the
cardiffnlp/tweet_sentiment_multilingual (all)
via tweetnlp
.
Training split is train
and parameters have been tuned on the validation split validation
.
Following metrics are achieved on the test split test
(link).
- F1 (micro): 0.665948275862069
- F1 (macro): 0.6628627126803655
- Accuracy: 0.665948275862069
Usage
Install tweetnlp via pip.
pip install tweetnlp
Load the model in python.
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/xlm-roberta-base-sentiment-multilingual", max_length=128)
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
Reference
@inproceedings{dimosthenis-etal-2022-twitter,
title = "{T}witter {T}opic {C}lassification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics"
}
- Downloads last month
- 1,013
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train cardiffnlp/xlm-roberta-base-sentiment-multilingual
Space using cardiffnlp/xlm-roberta-base-sentiment-multilingual 1
Evaluation results
- Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.666
- Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.663
- Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.666