|
--- |
|
library_name: transformers |
|
language: |
|
- he |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: he-cantillation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# he-cantillation |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.7623 |
|
- Wer: 98.8781 |
|
- Avg Precision Exact: 0.0291 |
|
- Avg Recall Exact: 0.0505 |
|
- Avg F1 Exact: 0.0356 |
|
- Avg Precision Letter Shift: 0.0493 |
|
- Avg Recall Letter Shift: 0.0876 |
|
- Avg F1 Letter Shift: 0.0605 |
|
- Avg Precision Word Level: 0.0685 |
|
- Avg Recall Word Level: 0.1200 |
|
- Avg F1 Word Level: 0.0833 |
|
- Avg Precision Word Shift: 0.1707 |
|
- Avg Recall Word Shift: 0.3059 |
|
- Avg F1 Word Shift: 0.2088 |
|
- Precision Median Exact: 0.0 |
|
- Recall Median Exact: 0.0 |
|
- F1 Median Exact: 0.0 |
|
- Precision Max Exact: 0.4444 |
|
- Recall Max Exact: 1.0 |
|
- F1 Max Exact: 0.4286 |
|
- Precision Min Exact: 0.0 |
|
- Recall Min Exact: 0.0 |
|
- F1 Min Exact: 0.0 |
|
- Precision Min Letter Shift: 0.0 |
|
- Recall Min Letter Shift: 0.0 |
|
- F1 Min Letter Shift: 0.0 |
|
- Precision Min Word Level: 0.0 |
|
- Recall Min Word Level: 0.0 |
|
- F1 Min Word Level: 0.0 |
|
- Precision Min Word Shift: 0.0 |
|
- Recall Min Word Shift: 0.0 |
|
- F1 Min Word Shift: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 100000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift | |
|
|:-------------:|:-------:|:------:|:---------------:|:-------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:| |
|
| 0.0276 | 3.0030 | 20000 | 3.0853 | 98.7760 | 0.0336 | 0.0472 | 0.0380 | 0.0581 | 0.0831 | 0.0658 | 0.0801 | 0.1144 | 0.0904 | 0.2032 | 0.3029 | 0.2334 | 0.0213 | 0.0303 | 0.0267 | 0.6667 | 0.6667 | 0.6667 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0026 | 6.0060 | 40000 | 3.8257 | 98.8227 | 0.0303 | 0.0497 | 0.0364 | 0.0528 | 0.0880 | 0.0637 | 0.0728 | 0.1208 | 0.0877 | 0.1812 | 0.3095 | 0.2204 | 0.0 | 0.0 | 0.0 | 0.75 | 0.75 | 0.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0004 | 9.0090 | 60000 | 4.3074 | 99.0124 | 0.0283 | 0.0504 | 0.0347 | 0.0476 | 0.0872 | 0.0590 | 0.0641 | 0.1169 | 0.0792 | 0.1600 | 0.2986 | 0.1987 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0001 | 12.0120 | 80000 | 4.6534 | 98.8315 | 0.0295 | 0.0516 | 0.0361 | 0.0502 | 0.0882 | 0.0611 | 0.0687 | 0.1192 | 0.0826 | 0.1715 | 0.3112 | 0.2103 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0 | 15.0150 | 100000 | 4.7623 | 98.8781 | 0.0291 | 0.0505 | 0.0356 | 0.0493 | 0.0876 | 0.0605 | 0.0685 | 0.1200 | 0.0833 | 0.1707 | 0.3059 | 0.2088 | 0.0 | 0.0 | 0.0 | 0.4444 | 1.0 | 0.4286 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu126 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.20.1 |
|
|