|
--- |
|
library_name: transformers |
|
language: |
|
- he |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: he-cantillation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# he-cantillation |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9273 |
|
- Wer: 71.8937 |
|
- Avg Precision Exact: 0.1966 |
|
- Avg Recall Exact: 0.2113 |
|
- Avg F1 Exact: 0.2010 |
|
- Avg Precision Letter Shift: 0.2269 |
|
- Avg Recall Letter Shift: 0.2498 |
|
- Avg F1 Letter Shift: 0.2336 |
|
- Avg Precision Word Level: 0.2459 |
|
- Avg Recall Word Level: 0.2741 |
|
- Avg F1 Word Level: 0.2538 |
|
- Avg Precision Word Shift: 0.4328 |
|
- Avg Recall Word Shift: 0.5013 |
|
- Avg F1 Word Shift: 0.4529 |
|
- Precision Median Exact: 0.0638 |
|
- Recall Median Exact: 0.0870 |
|
- F1 Median Exact: 0.0723 |
|
- Precision Max Exact: 1.0 |
|
- Recall Max Exact: 1.0 |
|
- F1 Max Exact: 1.0 |
|
- Precision Min Exact: 0.0 |
|
- Recall Min Exact: 0.0 |
|
- F1 Min Exact: 0.0 |
|
- Precision Min Letter Shift: 0.0 |
|
- Recall Min Letter Shift: 0.0 |
|
- F1 Min Letter Shift: 0.0 |
|
- Precision Min Word Level: 0.0 |
|
- Recall Min Word Level: 0.0 |
|
- F1 Min Word Level: 0.0 |
|
- Precision Min Word Shift: 0.0 |
|
- Recall Min Word Shift: 0.0 |
|
- F1 Min Word Shift: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 100000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Avg Precision Exact | Avg Recall Exact | Avg F1 Exact | Avg Precision Letter Shift | Avg Recall Letter Shift | Avg F1 Letter Shift | Avg Precision Word Level | Avg Recall Word Level | Avg F1 Word Level | Avg Precision Word Shift | Avg Recall Word Shift | Avg F1 Word Shift | Precision Median Exact | Recall Median Exact | F1 Median Exact | Precision Max Exact | Recall Max Exact | F1 Max Exact | Precision Min Exact | Recall Min Exact | F1 Min Exact | Precision Min Letter Shift | Recall Min Letter Shift | F1 Min Letter Shift | Precision Min Word Level | Recall Min Word Level | F1 Min Word Level | Precision Min Word Shift | Recall Min Word Shift | F1 Min Word Shift | |
|
|:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:-----------------:|:------------------------:|:---------------------:|:-----------------:| |
|
| 0.0506 | 3.5549 | 30000 | 0.7696 | 74.5620 | 0.1888 | 0.1999 | 0.1925 | 0.2219 | 0.2382 | 0.2266 | 0.2426 | 0.2636 | 0.2485 | 0.4348 | 0.4847 | 0.4502 | 0.0714 | 0.0854 | 0.0755 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0214 | 7.1098 | 60000 | 0.8339 | 70.3940 | 0.2052 | 0.2197 | 0.2098 | 0.2364 | 0.2572 | 0.2429 | 0.2575 | 0.2825 | 0.2647 | 0.4499 | 0.5098 | 0.4678 | 0.0741 | 0.0930 | 0.08 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.0062 | 10.6648 | 90000 | 0.9273 | 71.8937 | 0.1966 | 0.2113 | 0.2010 | 0.2269 | 0.2498 | 0.2336 | 0.2459 | 0.2741 | 0.2538 | 0.4328 | 0.5013 | 0.4529 | 0.0638 | 0.0870 | 0.0723 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu126 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.20.1 |
|
|