he-cantillation

This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4313
  • Wer: 37.8893
  • Avg Precision Exact: 0.4754
  • Avg Recall Exact: 0.4866
  • Avg F1 Exact: 0.4799
  • Avg Precision Letter Shift: 0.4984
  • Avg Recall Letter Shift: 0.5113
  • Avg F1 Letter Shift: 0.5030
  • Avg Precision Word Level: 0.5105
  • Avg Recall Word Level: 0.5244
  • Avg F1 Word Level: 0.5151
  • Avg Precision Word Shift: 0.6800
  • Avg Recall Word Shift: 0.7089
  • Avg F1 Word Shift: 0.6906
  • Precision Median Exact: 0.375
  • Recall Median Exact: 0.4068
  • F1 Median Exact: 0.3905
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.0
  • Recall Min Word Shift: 0.0
  • F1 Min Word Shift: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 60000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
No log 0.0001 1 6.2393 110.8685 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1465 0.2962 2500 0.7718 61.2193 0.2875 0.3030 0.2936 0.3219 0.3423 0.3297 0.3405 0.3623 0.3483 0.5405 0.5932 0.5599 0.1368 0.1579 0.1455 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0667 0.5925 5000 0.6041 52.8951 0.3657 0.3756 0.3693 0.3989 0.4116 0.4035 0.4161 0.4290 0.4206 0.6173 0.6455 0.6280 0.2160 0.2333 0.2222 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0576 0.8887 7500 0.5474 49.1429 0.3890 0.3981 0.3923 0.4180 0.4302 0.4223 0.4327 0.4457 0.4370 0.6206 0.6476 0.6303 0.2261 0.2428 0.2353 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0552 1.1850 10000 0.5546 49.3049 0.3822 0.3988 0.3883 0.4092 0.4295 0.4165 0.4261 0.4496 0.4338 0.6053 0.6561 0.6226 0.2222 0.2576 0.2363 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0497 1.4812 12500 0.5479 49.9147 0.3636 0.3712 0.3666 0.3935 0.4041 0.3975 0.4113 0.4225 0.4152 0.6057 0.6373 0.6173 0.2 0.2094 0.2013 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0295 1.7775 15000 0.5342 48.7155 0.4055 0.4138 0.4083 0.4338 0.4439 0.4371 0.4500 0.4618 0.4535 0.6309 0.6577 0.6396 0.2470 0.2571 0.25 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0377 2.0737 17500 0.5136 46.1304 0.3919 0.4037 0.3967 0.4175 0.4322 0.4232 0.4320 0.4483 0.4378 0.6157 0.6509 0.6288 0.2099 0.2308 0.2175 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0202 2.3699 20000 0.5309 44.3608 0.4012 0.4122 0.4054 0.4276 0.4412 0.4325 0.4436 0.4596 0.4488 0.6299 0.6650 0.6427 0.2329 0.2576 0.2449 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.029 2.6662 22500 0.5077 46.8131 0.4103 0.4176 0.4129 0.4351 0.4440 0.4382 0.4502 0.4599 0.4530 0.6307 0.6557 0.6394 0.2275 0.25 0.2338 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0124 2.9624 25000 0.4679 43.1952 0.4293 0.4428 0.4344 0.4533 0.4699 0.4596 0.4672 0.4853 0.4735 0.6417 0.6792 0.6556 0.3 0.3333 0.3114 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0114 3.2587 27500 0.4747 47.7293 0.4276 0.4394 0.4321 0.4527 0.4666 0.4579 0.4666 0.4807 0.4714 0.6385 0.6666 0.6487 0.2812 0.3114 0.2963 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0265 3.5549 30000 0.4438 42.8144 0.4250 0.4368 0.4294 0.4479 0.4631 0.4535 0.4625 0.4799 0.4683 0.6470 0.6832 0.6599 0.2778 0.3012 0.2857 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0238 3.8512 32500 0.4454 41.6590 0.4508 0.4614 0.4549 0.4731 0.4859 0.4781 0.4868 0.5000 0.4919 0.6597 0.6896 0.6712 0.3191 0.3470 0.3276 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0178 4.1474 35000 0.4334 40.8610 0.4631 0.4709 0.4661 0.4880 0.4972 0.4912 0.5021 0.5124 0.5053 0.6759 0.6998 0.6842 0.3401 0.3581 0.3478 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0094 4.4437 37500 0.4594 42.0208 0.4477 0.4581 0.4516 0.4716 0.4853 0.4764 0.4855 0.5001 0.4903 0.6606 0.6936 0.6719 0.3125 0.3333 0.3182 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.008 4.7399 40000 0.4448 40.1024 0.4471 0.4582 0.4517 0.4702 0.4837 0.4754 0.4829 0.4978 0.4882 0.6558 0.6893 0.6685 0.3061 0.3333 0.3142 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0167 5.0361 42500 0.4367 42.5547 0.4564 0.4656 0.4600 0.4798 0.4902 0.4836 0.4923 0.5035 0.4964 0.6707 0.6940 0.6789 0.3333 0.3539 0.3422 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0028 5.3324 45000 0.4516 39.7654 0.4588 0.4687 0.4626 0.4807 0.4933 0.4855 0.4938 0.5078 0.4989 0.6760 0.7062 0.6872 0.3333 0.3600 0.3453 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0055 5.6286 47500 0.4354 38.9630 0.4715 0.4809 0.4752 0.4942 0.5057 0.4982 0.5061 0.5197 0.5104 0.6761 0.7034 0.6856 0.3556 0.3801 0.3636 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0196 5.9249 50000 0.4274 38.3824 0.4726 0.4855 0.4774 0.4945 0.5098 0.4999 0.5068 0.5234 0.5122 0.6692 0.7027 0.6811 0.375 0.4054 0.3823 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0038 6.2211 52500 0.4482 38.9543 0.4652 0.4763 0.4699 0.4880 0.5013 0.4935 0.5008 0.5155 0.5065 0.6727 0.7037 0.6846 0.3552 0.3846 0.3691 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0108 6.5174 55000 0.4453 39.4109 0.4742 0.4842 0.4783 0.4961 0.5079 0.5006 0.5083 0.5215 0.5128 0.6771 0.7048 0.6869 0.3624 0.3939 0.3787 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0078 6.8136 57500 0.4373 38.4320 0.4784 0.4893 0.4828 0.5000 0.5133 0.5048 0.5132 0.5276 0.5180 0.6806 0.7116 0.6918 0.3797 0.4138 0.4000 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0124 7.1098 60000 0.4313 37.8893 0.4754 0.4866 0.4799 0.4984 0.5113 0.5030 0.5105 0.5244 0.5151 0.6800 0.7089 0.6906 0.375 0.4068 0.3905 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 2.12.0
  • Tokenizers 0.20.1
Downloads last month
13
Safetensors
Model size
809M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cantillation/Teamim-large-v3-turbo_WeightDecay-0.005_Augmented_WithSRT_date-15-04-2025

Finetuned
(281)
this model