SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
forward
  • 'Proceed along this path ahead'
  • 'Proceed carefully in that direction'
  • 'Proceed forward a little'
right
  • 'Move toward the right'
  • 'Adjust your position to the right'
  • 'Adjust your position slightly to the right'
left
  • 'Head towards the left side'
  • 'Move towards your left'
  • 'Shift your way to the left'
backward
  • 'Could you step back slightly?'
  • 'Move backward, please'
  • 'Could you go back the other way?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("cahlen/setfit-navigation-instructions")
# Run inference
preds = model("Move to the right")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 5.0 12
Label Training Sample Count
right 22
left 21
forward 11
backward 13

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0024 1 0.1239 -
0.1220 50 0.1257 -
0.2439 100 0.0215 -
0.3659 150 0.0047 -
0.4878 200 0.0025 -
0.6098 250 0.0017 -
0.7317 300 0.0014 -
0.8537 350 0.0011 -
0.9756 400 0.0013 -
1.0 410 - 0.0182
1.0976 450 0.0009 -
1.2195 500 0.0008 -
1.3415 550 0.0007 -
1.4634 600 0.0007 -
1.5854 650 0.0006 -
1.7073 700 0.0007 -
1.8293 750 0.0006 -
1.9512 800 0.0006 -
2.0 820 - 0.0227
2.0732 850 0.0005 -
2.1951 900 0.0005 -
2.3171 950 0.0006 -
2.4390 1000 0.0005 -
2.5610 1050 0.0006 -
2.6829 1100 0.0005 -
2.8049 1150 0.0005 -
2.9268 1200 0.0004 -
3.0 1230 - 0.0236
3.0488 1250 0.0004 -
3.1707 1300 0.0004 -
3.2927 1350 0.0004 -
3.4146 1400 0.0005 -
3.5366 1450 0.0004 -
3.6585 1500 0.0004 -
3.7805 1550 0.0004 -
3.9024 1600 0.0004 -
4.0 1640 - 0.0240

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.8.0.dev20250331+cu128
  • Datasets: 3.5.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cahlen/setfit-navigation-instructions

Finetuned
(291)
this model