xlm_roberta_large_test_linsearch_only_abstract

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3349
  • Accuracy: 0.6504
  • F1 Macro: 0.6037
  • Precision Macro: 0.6113
  • Recall Macro: 0.6008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro
1.2114 1.0 4931 1.2224 0.6245 0.5249 0.5555 0.5501
1.0885 2.0 9862 1.1036 0.6427 0.5596 0.6009 0.5591
0.9781 3.0 14793 1.0828 0.6491 0.5760 0.6188 0.5811
0.8621 4.0 19724 1.0956 0.6569 0.5979 0.6363 0.6014
0.7267 5.0 24655 1.0899 0.6626 0.5970 0.6088 0.5941
0.6066 6.0 29586 1.2078 0.6517 0.5928 0.6177 0.5848
0.4627 7.0 34517 1.3349 0.6504 0.6037 0.6113 0.6008
0.3238 8.0 39448 1.5315 0.6398 0.5951 0.6064 0.5891
0.224 9.0 44379 1.8234 0.6438 0.5936 0.5994 0.5897
0.149 9.9981 49300 2.0762 0.6442 0.6011 0.6024 0.6007

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
9
Safetensors
Model size
560M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for c-ho/xlm_roberta_large_test_linsearch_only_abstract

Finetuned
(398)
this model