miltilingual_dbert_linsearch_only_abstract
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1201
- Accuracy: 0.6505
- F1 Macro: 0.5674
- Precision Macro: 0.5715
- Recall Macro: 0.5690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro |
---|---|---|---|---|---|---|---|
2.7395 | 1.0 | 1233 | 1.6602 | 0.5501 | 0.3447 | 0.3829 | 0.3645 |
1.5662 | 2.0 | 2466 | 1.2526 | 0.6228 | 0.5112 | 0.5447 | 0.5114 |
1.2526 | 3.0 | 3699 | 1.1599 | 0.6396 | 0.5478 | 0.5537 | 0.5551 |
1.1111 | 4.0 | 4932 | 1.1279 | 0.6469 | 0.5645 | 0.5619 | 0.5745 |
0.9426 | 5.0 | 6165 | 1.1201 | 0.6505 | 0.5674 | 0.5715 | 0.5690 |
0.8696 | 6.0 | 7398 | 1.1415 | 0.6462 | 0.5620 | 0.5645 | 0.5647 |
0.8271 | 7.0 | 8631 | 1.1486 | 0.6467 | 0.5657 | 0.5670 | 0.5667 |
0.7772 | 8.0 | 9864 | 1.1642 | 0.6477 | 0.5670 | 0.5644 | 0.5723 |
0.7247 | 9.0 | 11097 | 1.1731 | 0.6456 | 0.5644 | 0.5633 | 0.5676 |
0.7072 | 9.9922 | 12320 | 1.1731 | 0.6463 | 0.5658 | 0.5657 | 0.5677 |
Framework versions
- Transformers 4.50.1
- Pytorch 2.5.1+cu121
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support